13.07.2015 Views

Number Theory

Number Theory

Number Theory

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Table of Contentsxv8.2.3 The Fundamental 2-Descent Map . . . . . . . . . . . . . . . . . . . 5358.2.4 Practical Use of 2-Descent with 2-Isogenies . . . . . . . . . . 5388.2.5 Examples of 2-Descent with 2-Isogenies . . . . . . . . . . . . . 5428.2.6 An Example of Second Descent . . . . . . . . . . . . . . . . . . . . 5468.3 Description of General 2-Descent . . . . . . . . . . . . . . . . . . . . . . . . . 5488.3.1 The Fundamental 2-Descent Map . . . . . . . . . . . . . . . . . . . 5488.3.2 The T-Selmer Group of a <strong>Number</strong> Field . . . . . . . . . . . . . 5508.3.3 Description of the Image of α . . . . . . . . . . . . . . . . . . . . . . 5528.3.4 Practical Use of 2-Descent in the General Case . . . . . . . 5548.3.5 Examples of General 2-Descent. . . . . . . . . . . . . . . . . . . . . 5558.4 Description of 3-Descent with Rational 3-Torsion Subgroup . . 5568.4.1 Rational 3-Torsion Subgroups . . . . . . . . . . . . . . . . . . . . . . 5578.4.2 The Fundamental 3-Isogeny. . . . . . . . . . . . . . . . . . . . . . . . 5588.4.3 Description of the Image of φ . . . . . . . . . . . . . . . . . . . . . . 5608.4.4 The Fundamental 3-Descent Map . . . . . . . . . . . . . . . . . . . 5638.5 The Use of L(E, s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5648.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5648.5.2 The Case of Complex Multiplication . . . . . . . . . . . . . . . . 5658.5.3 Numerical Computation of L (r) (E, 1) . . . . . . . . . . . . . . . 5728.5.4 Computation of Γ r (1, x) for Small x . . . . . . . . . . . . . . . . 5758.5.5 Computation of Γ r (1, x) for Large x . . . . . . . . . . . . . . . . 5808.5.6 The Famous Curve y 2 + y = x 3 − 7x + 6 . . . . . . . . . . . . 5828.6 The Heegner Point Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5848.6.1 Introduction and the Modular Parametrization . . . . . . . 5848.6.2 Heegner Points and Complex Multiplication . . . . . . . . . 5868.6.3 Use of the Theorem of Gross–Zagier . . . . . . . . . . . . . . . . 5898.6.4 Practical Use of the Heegner Point Method . . . . . . . . . . 5918.6.5 Improvements to the Basic Algorithm, in Brief . . . . . . . 5958.6.6 A Complete Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5988.7 Computation of Integral Points. . . . . . . . . . . . . . . . . . . . . . . . . . . 5998.7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6008.7.2 An Upper Bound for the Elliptic Logarithm on E(Z) . 6008.7.3 Lower Bounds for Linear Forms in Elliptic Logarithms 6038.7.4 A Complete Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6058.8 Exercises for Chapter 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607Part III. Analytic Methods9. Bernoulli Polynomials and the Gamma Function . . . . . . . . . . 6179.1 Bernoulli <strong>Number</strong>s and Polynomials . . . . . . . . . . . . . . . . . . . . . . 6179.1.1 Generating Functions for Bernoulli Polynomials . . . . . . 6179.1.2 Further Recursions for Bernoulli Polynomials . . . . . . . . 6249.1.3 Computing a Single Bernoulli <strong>Number</strong> . . . . . . . . . . . . . . 6299.1.4 Bernoulli Polynomials and Fourier Series . . . . . . . . . . . . 630

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!