13.07.2015 Views

[tel-00726959, v1] Caractériser le milieu interstellaire ... - HAL - INRIA

[tel-00726959, v1] Caractériser le milieu interstellaire ... - HAL - INRIA

[tel-00726959, v1] Caractériser le milieu interstellaire ... - HAL - INRIA

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

UNIVERSITÉ PIERRE ET MARIE CURIEHABILITATION À DIRIGER DES RECHERCHESprésentée parJérôme PETYCaractériser <strong>le</strong> <strong>milieu</strong> inters<strong>tel</strong>laire :une clé pour comprendre l’Univers<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Soutenue <strong>le</strong> 6 juin 2012 devant la commission d’examen :M. Pierre COX ExaminateurM. Thierry FORVEILLE RapporteurMme Maryvonne GERIN ExaminatriceM. Martin GIARD RapporteurMme Christine JOBLIN ExaminatriceM. Harvey S. LISZT ExaminateurMme Caroline TERQUEM PrésidenteM. Alwyn WOOTTEN RapporteurIRAM, 300 rue de la Piscine, F-38406 Saint Martin d’Hères Cedex& LERMA, Observatoire de Paris, UMR 8112, 61 avenue de l’Observatoire, 75014 Paris


<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012


<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Becoming a scientist requires a who<strong>le</strong> community.Thanks to all.


<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 20124


Tab<strong>le</strong> des matières1 Rapport de soutenance 7<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 20122 Curriculum vitae 92.1 Thèmes de recherche . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92.2 Tâches de service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92.3 Gestion et administration de la recherche . . . . . . . . . . . . . . . . . . . . . . 92.4 Participation à d’autres contrats de recherche . . . . . . . . . . . . . . . . . . . 102.5 Enseignement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102.6 Encadrement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102.7 Animation et diffusion de la culture scientifique . . . . . . . . . . . . . . . . . . 112.8 Parcours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Introduction 154 Caractériser observationnel<strong>le</strong>ment la transition HI → H 2 174.1 Etudes en absorption derrière une source continuum . . . . . . . . . . . . . . . . 184.2 Etudes directes en émission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194.3 Combiner <strong>le</strong>s deux approches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194.4 La luminosity CO par molécu<strong>le</strong> H 2 . . . . . . . . . . . . . . . . . . . . . . . . . 204.5 Intermittency of inters<strong>tel</strong>lar turbu<strong>le</strong>nce : extreme velocity-shears and CO emissionon milliparsec sca<strong>le</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224.6 The CO luminosity and CO-H 2 conversion factor of diffuse ISM : does CO emissiontrace dense mo<strong>le</strong>cular gas ? . . . . . . . . . . . . . . . . . . . . . . . . . . 364.7 Imaging diffuse clouds : Bright and dark gas mapped in CO . . . . . . . . . . . . 465 La Tête de Cheval : une référence observationnel<strong>le</strong> pour <strong>le</strong>s modè<strong>le</strong>s chimiques 695.1 Les modè<strong>le</strong>s photochimiques et la Tête de Cheval . . . . . . . . . . . . . . . . . 695.2 Une physique bien contrainte et une chimie riche . . . . . . . . . . . . . . . . . 705.3 Perspectives : des re<strong>le</strong>vés de raies sensib<strong>le</strong>s et non-biaisés . . . . . . . . . . . . . 735.4 Are PAHs precursors of small hydrocarbons in photo-dissociation regions ? TheHorsehead case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 755.5 Low sulfur dep<strong>le</strong>tion in the Horsehead PDR . . . . . . . . . . . . . . . . . . . . 905.6 Deuterium fractionation in the Horsehead edge . . . . . . . . . . . . . . . . . . 1105.7 The ionization fraction gradient across the Horsehead edge : an archetype formo<strong>le</strong>cular clouds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1145


6 TABLE DES MATIÈRES5.8 HCO mapping of the Horsehead : tracing the illuminated dense mo<strong>le</strong>cular cloudsurfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1275.9 H 2 CO in the Horsehead PDR : photo-desorption of dust grain ice mant<strong>le</strong>s . . . . 1366 Le projet SCHISM, financé par l’Agence Nationa<strong>le</strong> de la Recherche 1456.1 Résumé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1456.2 Dossier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 20127 Spectro-imagerie grand-champ enradio-astronomie (sub)-millimétrique 1597.1 Mode té<strong>le</strong>scope unique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1597.2 Mode interférométrique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1607.3 Le futur de la radio-astronomie (sub-)millimétrique . . . . . . . . . . . . . . . . 1627.4 CLASS evolution : I. Improved OTF support . . . . . . . . . . . . . . . . . . . . 1647.5 Weeds : a CLASS extension for the analysis of millimeter and submillimeterspectral surveys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1697.6 IRA-M30m EMIR time/sensitivity estimator . . . . . . . . . . . . . . . . . . . . 1747.7 IRAM-30m HERA time/sensitivity estimator . . . . . . . . . . . . . . . . . . . 1787.8 Impact of ACA on the wide-field imaging capabilities of ALMA . . . . . . . . . 1807.9 Wide-field imaging of ALMA with the ALMA Compact Array : Imaging simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1907.10 Revisiting the theory of interferometric wide-field synthesis . . . . . . . . . . . . 1987.11 WIFISYN : The GILDAS imp<strong>le</strong>mentation of a new wide-field synthesis algorithm2198 Gestion des logiciels GILDAS 2258.1 Présentation et contexte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2258.2 Assurer la continuité et la professionnalisation . . . . . . . . . . . . . . . . . . . 2268.3 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2278.4 Preparing GILDAS for large datasets : I. GREG 2011 . . . . . . . . . . . . . . . 2289 Action Spécifique ALMA (administration de la recherche) 2359.1 Statut du projet ALMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2359.2 Objectifs de l’action spécifique . . . . . . . . . . . . . . . . . . . . . . . . . . . 2359.3 Activités 2008-2011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2369.4 Quel avenir pour l’ASA ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2389.5 Contribution de l’Action Spécifique ALMA à l’exercice de prospective 2009 . . . 2399.6 Besoins en services d’observation ALMA pour la période 2011-2014 . . . . . . . 242Artic<strong>le</strong>s publiés dans des revues à comité de <strong>le</strong>cture 245Mémos IRAM et ALMA 249Actes de colloques nationaux et internationaux 251


Rapport après soutenanceHabilitation à Diriger des Recherches de Jérôme Pety,présentée <strong>le</strong> 6 juin 2012Dans son mémoire intitulé “Caractériser <strong>le</strong> <strong>milieu</strong> inters<strong>tel</strong>laire: une clé pour comprendrel’univers”, présenté par écrit et en séminaire, Jérôme Pety fait <strong>le</strong> point surun domaine de recherche très actuel et actif auquel il a apporté une contribution trèsimportante. Les trois rapporteurs qui ont examiné son mémoire écrit ont conclu à lap<strong>le</strong>ine recevabilité de celui–ci, sous réserve de la présentation ora<strong>le</strong>.A l’issue de cette présentation, <strong>le</strong> jury considère que Jérôme Pety a atteint <strong>le</strong>niveau d’un chercheur accompli, bénéficiant d’une reconnaissance internationa<strong>le</strong>, auteurde travaux originaux couvrant un large spectre, de l’instrumentation logiciel<strong>le</strong> à larecherche observationnel<strong>le</strong>.<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012L’expertise de Jérôme Pety est reconnue dans un domaine extrêmement vaste. Sesrecherches observationnel<strong>le</strong>s sur la physico–chimie du <strong>milieu</strong> inters<strong>tel</strong>laire ont donnédes résultats souvent inattendus car contraires aux prédictions des modè<strong>le</strong>s. Ses étudesfont ainsi progresser très significativement la compréhension de la chimie inters<strong>tel</strong>laire.L’activité d’instrumentation logiciel<strong>le</strong> de Jérôme Pety, qui concerne <strong>le</strong> développementde logiciels d’analyse de données d’une part et de nouvel<strong>le</strong>s fonctionalités de spectro–imagerie grand champ en radioastronomie d’autre part, a une portée internationa<strong>le</strong> etest indispensab<strong>le</strong> à la communauté des radioastronomes. Jérôme Pety fait preuve dansces développements d’un esprit tout à fait novateur.Enfin, <strong>le</strong> jury souligne <strong>le</strong> fait que Jérôme Pety a d’importantes responsabilités dansla gestion de la recherche, et qu’il a déjà co–encadré avec beaucoup d’enthousiasme etde succés des thèses de doctorat et des post–doctorants. Il a un ta<strong>le</strong>nt certain pourgérer des groupes et faire travail<strong>le</strong>r ensemb<strong>le</strong> des chercheurs et des ingénieurs.Il ne fait aucun doute que Jérôme Pety a acquis une grande expérience dans undomaine qu’il a largement contribué à développer. Il a démontré qu’il a la statured’un directeur de recherches, apte à créer une éco<strong>le</strong> ainsi qu’à stimu<strong>le</strong>r des coopérationsinternationa<strong>le</strong>s largement engagées. Par conséquent, <strong>le</strong> jury à l’unanimité décerne àJérôme Pety l’Habilitation à Diriger des Recherches.Caroline TerquemProfesseur UPMC


<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 20128 RAPPORT DE SOUTENANCE


Chapitre 2Curriculum vitae<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 20122.1 Thèmes de rechercheJérôme PETYMarié, deux enfants.Astronome-adjoint à l’Obs. de Paris,détaché à l’IRAM (Grenob<strong>le</strong>).– Physique et chimie du <strong>milieu</strong> inters<strong>tel</strong>laire (gaz diffus et régions de photo-dissociation).– Spectro-imagerie grand-champ en radio-astronomie (sub)-millimétrique.2.2 Tâches de service2003–PrésentRESPONSABLE DES LOGICIELS GILDASTemps passé : 70% jusque 2006, 50% depuis.GILDAS est la suite des logiciels de réduction et d’analyse des données produitespar <strong>le</strong>s instruments de l’IRAM : l’interféromètre du Plateau de Bure (France) et <strong>le</strong>30m à Pico Ve<strong>le</strong>ta (Espagne).2.3 Gestion et administration de la recherche2012–2016 LEADER DU PACKAGE SCIENCE SOFTWARE POUR LE PROJET NOEMADéfinition et suivi du planning des développements logiciels. Participation au développementdes spécifications instrumenta<strong>le</strong>s.2009–2013 COORDINATEUR DU PROJET DE RECHERCHE ANR : SCHISMStructure and Chemistry of the Inter-S<strong>tel</strong>lar Medium.Partenaires : IRAM, LERMA-LRA and LUTH-ISM.Budget demandé et alloué : 488 438 euros9


10 CURRICULUM VITAE2008–PrésentDIRECTEUR DE L’ACTION SPÉCIFIQUE ALMARéf<strong>le</strong>xion sur <strong>le</strong>s besoins en services d’observation ALMA pour la période2011-2014. Représentation du conseil scientifique à la commission spécialiséeAstronomie-Astrophysique du CNRS et à l’exercice de prospective 2009-2010 del’astronomie.2.4 Participation à d’autres contrats de recherche2010–2012 CHERCHEUR EXTÉRIEUR DANS LE CONTRAT ESPAGNOL MICINN “ASTROFI-SICA MOLECULAR : UNA NUEVA VISION DEL UNIVERSO EN LA ERA DE HER-SCHEL Y ALMA”, PI : J.R. GOICOECHEA.AYA2009-07304<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 20122.5 Enseignement2009, 2011 ECOLES DE RADIO-ASTRONOMIE MILLIMÉTRIQUE DE L’IRAMCours 1 : Présentation de GILDAS.Cours 2 : Démonstration de la réduction de données avec CLASS.Cours 3 : Stratégies d’observations hétérodynes.Cours 4 : La PDR de la Tête de Cheval.TP : Encadrement de groupes qui ont cartographié <strong>le</strong> <strong>milieu</strong> inters<strong>tel</strong>laire (la PDRde NGC7023 ou de l’environnement de la region HII W49 en CO).2002, 2004,2006, 2008,2010ECOLES D’INTERFÉROMÉTRIE MILLIMÉTRIQUE DE L’IRAMCours 1 : Une visite guidée de l’interférométrie millimétrique.Cours 2 : L’imagerie et la déconvolution.Cours 3 : Présentation de GILDAS.TP : Co-organisation des TP de calibration et d’imagerie.2.6 Encadrement2011–2012 SÉJOUR POST-DOCTORAL DE P. GRATIER.Financé par <strong>le</strong> programme ANR SCHISM pour travail<strong>le</strong>r sur la structure et la chimiedu <strong>milieu</strong> inters<strong>tel</strong>laire.2011 TRAVAIL DE M. LONJARET ET J.-C. ROCHE, INGÉNIEURS DE RECHERCHE.Financés par un contrat européen du 6ème PCRD (ALMA Enhancement) pour travail<strong>le</strong>rsur l’imagerie grand-champ d’ALMA.2010–2013 THÈSE DE V. GUZMAN.Co-direction avec M. Gerin et J.R. Goicoechea. « Etude de la nébu<strong>le</strong>use de la Têtede Cheval. » Financée par une bourse chilienne, complétée par l’IRAM pour ladurée de sa thèse.


2.7 ANIMATION ET DIFFUSION DE LA CULTURE SCIENTIFIQUE 112008 STAGE DE MASTER 2 DE J. MONTILLAUD.Co-direction avec M. Gerin. « Etude de l’émission de CN, HCN et HNC dans lanébu<strong>le</strong>use de la Tête de Cheval. » J. Montillaud a continué en thèse avec C. Joblinà Toulouse pour des raisons personnel<strong>le</strong>s.2007–2011 SÉJOUR POST-DOCTORAL DE N. RODRIGUEZ-FERNANDEZ.Co-direction avec F. Gueth. Financé par un contrat européen du 6ème PCRD(ALMA Enhancement) pour travail<strong>le</strong>r sur l’imagerie grand-champ d’ALMA.2007–PrésentTRAVAIL D’E. REYNIER, INGÉNIEUR DE RECHERCHEFinancé par l’IRAM pour moderniser <strong>le</strong>s services généraux de GILDAS, puis pourmettre en place un niveau système de soumission et de gestion des projets scientifiques.<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 20122006–PrésentTRAVAIL DE S. BARDEAU, INGÉNIEUR DE RECHERCHECo-direction avec S. Guilloteau jusqu’en 2008. Financé par un contrat CNRS de2006 à 2008 (1 an à l’Observatoire de Bordeaux et 2 ans à l’IRAM), S. Bardeau amis au point l’interfaçage de GILDAS avec python.Depuis 2009, S.Bardeau a un contrat avec l’IRAM pour travail<strong>le</strong>r à mi-temps sur <strong>le</strong>coeur de GILDAS et à mi-temps sur CLASS, <strong>le</strong> logiciel de réduction des donnéesspectroscopiques (en remplacement de P. Hily-Blant, voir ci-dessous).2006–2007 SÉJOUR POST-DOCTORAL DE V. PIÉTU.Co-direction avec F. Gueth. Financé par l’IRAM pour travail<strong>le</strong>r sur <strong>le</strong> logiciel d’étalonnagedes données interférométriques, CLIC de GILDAS. V. Piétu a obtenu unCDI de l’IRAM en 2008 comme responsab<strong>le</strong> de CLIC.2005–2007 SÉJOUR POST-DOCTORAL DE P. HILY-BLANT.Financé par l’IRAM pour travail<strong>le</strong>r sur CLASS. P. Hily-Blant a obtenu un poste demaître de conférence à l’université Joseph Fourier de Grenob<strong>le</strong> début 2008.2.7 Animation et diffusion de la culture scientifiqueJuin 2012Dec. 2011ATELIER PCMI-ASA AUX JOURNÉES DE LA SF2A“Analyse, réduction et visualisation de données de spectro-imagerie”.JOURNÉES ASA À GRENOBLE (∼ 60 SCIENTIFIQUES)“ALMA early science cyc<strong>le</strong> 0 : et après ?”, en collaboration avec <strong>le</strong> GDR spectroscopie.2011 CONTACTS AVEC PLUSIEURS JOURNALISTES SUR ALMAVoir par exemp<strong>le</strong> l’artic<strong>le</strong> “ALMA en éveil” dans la Libre Belgique.Nov. 2010ARTICLE “ALMA, L’OBSERVATOIRE GÉANT” DANS LA REVUE L’AstronomieÉDITÉE PAR LA SOCIÉTÉ FRANÇAISE D’ASTRONOMIE.Rédaction et iconographie.


12 CURRICULUM VITAEJuin 2010Nov. 2009Avril 2009ATELIER ASA À LA SEMAINE DE L’ASTROPHYSIQUE FRANÇAISE“ALMA Early Science”.COMMUNIQUÉ DE PRESSE CNRS SUR LES PREMIÈRES FRANGES D’ALMAParticipation à la rédaction.JOURNÉES ASA À GRENOBLEOrganisation de l’a<strong>tel</strong>ier où ∼ 100 scientifiques sont venus discuter pendant 2 joursde la manière dont ils voulaient se préparer scientifiquement aux premiers appels àproposition d’ALMA.Juil<strong>le</strong>t 2007 CHRONIQUE CUTTING EDGE DE LA REVUE ANGLAISE Astronomy NowSujet : “The Horsehead’s heavy hydrogen”. Interaction avec <strong>le</strong> chroniqueur et re<strong>le</strong>cture.<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Nov. 2006COLLOQUE PCMI À GRENOBLEParticipation au comité d’organisation scientifique.Février 2005 COMMUNIQUÉ DE PRESSE JOINT A&A ET CNRSSujet : “Hydrocarbons in the Horsehead mane”. Rédaction du communiqué. Informationreprise dans <strong>le</strong> Nouvel Obs., Ciel & Espace, Le Monde, et sur de nombreuxsites internet d’information scientifique.2.8 Parcours2006–PrésentINSTITUT DE RADIO ASTRONOMIE MILLIMÉTRIQUE/OBSERVATOIRE DE PARISAstronome-adjoint à l’Obs. de Paris, détaché à l’IRAM (Grenob<strong>le</strong>).2003–2005 OBSERVATOIRE DE PARIS/INSTITUT DE RADIO ASTRONOMIE MILLIMÉTRIQUEAstronome-adjoint à l’Obs. de Paris, en mission longue à l’IRAM (Grenob<strong>le</strong>).2001–2002 INSTITUT DE RADIO ASTRONOMIE MILLIMÉTRIQUESéjour post-doctoral à Grenob<strong>le</strong>.2000 UNIVERSITÉ PARIS VIATER.1997–1999 ÉCOLE NORMALE SUPÉRIEURE/OBSERVATOIRE DE PARISThèse d’astrophysique soutenue <strong>le</strong> 4 octobre 1999.1995–1996 CALIFORNIA INSTITUTE OF TECHNOLOGYService militaire en tant que coopérant scientifique.1994 UNIVERSITÉ PARIS VIDEA d’astrophysique.


2.8 PARCOURS 131992–1993 ÉCOLE NORMALE SUPÉRIEURE/UNIVERSITÉ PARIS VIMagistère Interuniversitaire de Physique.1989–1991 CLASSES PRÉPARATOIRES EFFECTUÉES AU LYCÉE FAIDHERBES, LILLE.Admis à l’Éco<strong>le</strong> Norma<strong>le</strong> Supérieure (Ulm).1988 BACCALAURÉAT SÉRIE C OBTENU DANS L’ACADÉMIE DE LILLE.<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012


<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012


Chapitre 3Copyright: IRAM/PdBIIntroduction<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Les molécu<strong>le</strong>s sont de loin <strong>le</strong>s traceurs <strong>le</strong>s plus riches de la matière diffuse dans l’univers,des galaxies à grand z aux disques proto-planétaires. Leurs degrés de liberté internes et externesgardent en effet la signature des conditions physiques de l’environnement où el<strong>le</strong>s évoluent.Pour bénéficier p<strong>le</strong>inement des diagnostics fondés sur <strong>le</strong>s raies moléculaires, <strong>le</strong>urs processus deformation et de destruction doivent être compris quantitativement et pas seu<strong>le</strong>ment qualitativement.C’est une véritab<strong>le</strong> gageure étant donné <strong>le</strong>s conditions physiques extrêmes (faib<strong>le</strong> densité,basse température, éclairement UV souvent important) et la dynamique comp<strong>le</strong>xe (turbu<strong>le</strong>ncemagnéto-hydrodynamique) du <strong>milieu</strong>.Mes travaux cherchent à définir, à réaliser et à interpréter <strong>le</strong>s observations origina<strong>le</strong>s, souventà la limite des capacités instrumenta<strong>le</strong>s actuel<strong>le</strong>s en radio-astronomie (sub)-millimétrique.Ces observations permettent des avancées significatives dans la compréhension des processusphysiques et chimiques à l’œuvre dans <strong>le</strong> <strong>milieu</strong> inters<strong>tel</strong>laire galactique ou extra-galactique,de la naissance des étoi<strong>le</strong>s à <strong>le</strong>ur mort. J’ai ainsi été amené à participer à des études variées :détection puis cartographie des raies de CO et CI dans des QSO à grand redshift (2.58 et4.12) [A30, A31, A34], caractérisation des courants de refroidissement dans <strong>le</strong> cœur de l’amasde galaxies Persée [A17], étude de la morphologie des vents d’une AGB [A20], caractérisationde la physique et de la chimie de proto-étoi<strong>le</strong>s [A14, A19, A22, A23, A24, A26, A3]. Ces étudesse font à l’interface de PCMI et des PNCG et PNPS.Plutôt qu’une description exhaustive de l’ensemb<strong>le</strong> de mes travaux, j’ai choisi de présenterici ceux qui m’ont continuement occupé durant <strong>le</strong>s dix dernières années et qui cherchent à caractériserla structure et la chimie du <strong>milieu</strong> inters<strong>tel</strong>laire local. La partie 4 décrit <strong>le</strong>s efforts quej’ai entrepris pour contraindre la composition et la formation des nuages moléculaires géants.La partie 5 montre que la nébu<strong>le</strong>use de la Tête de Cheval est non seu<strong>le</strong>ment un objet emblématiquede l’astronomie, mais surtout un fantastique laboratoire pour tester la physique et lachimie du <strong>milieu</strong> inters<strong>tel</strong>laire. Comprendre <strong>le</strong>s diagnostics physiques et chimiques loca<strong>le</strong>mentest d’autant plus important que <strong>le</strong>s progrès récents en radio-astronomie (spectromètres à hauterésolution sur de très larges bandes passantes, échantillonnage du plan focal par des multi-pixels,haute résolution angulaire à l’aide des interféromètres) permettent l’observation de traceurs chimiquesdans de nouveaux environnements extrêmes comme <strong>le</strong>s disques proto-planétaires ou <strong>le</strong>sgalaxies loca<strong>le</strong>s et à haut redshift. Dans la mesure du possib<strong>le</strong>, j’essaie de mettre à disposition dela communauté <strong>le</strong>s outils nouveaux développés pour réaliser ces études. Par exemp<strong>le</strong>, la partie 7présente <strong>le</strong>s algorithmes et <strong>le</strong>s logiciels qu’il a fallu (qu’il faut) créer ou modifier pour permettre


16 INTRODUCTION<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012de faire efficacement de l’imagerie grand-champ en radio-astronomie (sub)-millimétrique.Les deux parties suivantes de ce dossier détail<strong>le</strong>nt deux autres activités dont l’impact sur <strong>le</strong>scommunautés française et internationa<strong>le</strong> est important, même si cela ne se traduit pas en nombrede citations d’artic<strong>le</strong>s. Qui plus est, ces activités occupent une large fraction de mon temps depuisque je suis devenu astronome-adjoint fin 2002. Il s’agit d’une part de gérer <strong>le</strong>s logicielsGILDAS (cf. partie 8) : non seu<strong>le</strong>ment tous <strong>le</strong>s résultats obtenus avec <strong>le</strong>s instruments de l’IRAM(30m à Pico Ve<strong>le</strong>ta et interféromètre du Plateau de Bure) sont réduits à l’aide de GILDAS, maiscertains de ces logiciels (par exemp<strong>le</strong> CLASS) sont utilisés dans de nombreux autres observatoiresde radio-astronomie dans <strong>le</strong> monde (par exemp<strong>le</strong> l’instrument HIFI d’Herschel). D’autrepart, je suis directeur de l’Action Spécifique ALMA depuis janvier 2008. Le premier objectif del’ASA est de préparer la communauté française à la compétition accrue sur ALMA, de façon àobtenir un retour scientifique à la hauteur des investissements français dès <strong>le</strong>s premiers appels àpropositions 1 (cf. partie 9).Enfin, je coordonne <strong>le</strong> projet ANR SCHISM (Structure and Chemistry of the Inters<strong>tel</strong>lar Medium)depuis <strong>le</strong> 1er septembre 2009 pour une durée de 4 ans (cf. partie 6). Ce projet explore <strong>le</strong>couplage de la chimie en phase gazeuse à cel<strong>le</strong> à la surface des grains, et <strong>le</strong> couplage de la chimieavec la turbu<strong>le</strong>nce magnéto-hydrodynamique (MHD) (phénomènes de transport, structuresdissipatives, chocs). Sa pertinence vient du lien fort entre développements numériques pointuset observations utilisant <strong>le</strong>s instruments <strong>le</strong>s plus performants du domaine : <strong>le</strong> sa<strong>tel</strong>lite Hersche<strong>le</strong>t <strong>le</strong>s interféromètres millimétriques (Plateau de Bure et ALMA). Dans ce cadre, j’encadre enthèse Viviana Guzman en co-direction avec M. Gerin et J. Goicoechea.L’ensemb<strong>le</strong> de ces activités se fait en collaborations nationa<strong>le</strong>s et internationa<strong>le</strong>s. En ce quiconcerne la recherche, il faut retenir plus particulièrement <strong>le</strong> groupe de M. Gerin et E. Falgaroneau LERMA, celui de S. Guilloteau au LAB, H. Liszt du NRAO (USA), R. Lucas du JAO(Joint ALMA office au Chili), J.R. Goicoechea (CSIC, Espagne). Il faut ajouter plus récemment<strong>le</strong> groupe PDR de Meudon (F. Le Petit et al., LUTH) qui est l’un des trois partenaires de l’ANRSCHISM, ainsi que S. Maret et P. Hily-Blant de l’IPAG pour l’interfaçage des bases de donnéesspectroscopiques (par exemp<strong>le</strong> CDMS et/ou JPL) à GILDAS [A4]. Mes activités IRAM etALMA me donnent aussi l’occasion d’être en contact avec la plupart des grands observatoiresde radio-astronomie du monde. J’apprécie particulièrement <strong>le</strong> travail en équipe, tant avec deschercheurs confirmés qu’avec de jeunes chercheurs ou ingénieurs. A l’IRAM, j’encadre ainsirégulièrement des post-docs et des ingénieurs logiciels. En 2008, j’ai aussi suivi une formationde chef de projet au CNRS pour améliorer mes capacités de gestion.Je suis actuel<strong>le</strong>ment astronome-adjoint à l’Observatoire de Paris, détaché à l’IRAM. Danscette position particulière, je participe au lien entre la communauté française et l’IRAM, un desacteurs majeurs de la radio-astronomie aujourd’hui. Je souhaite continuer à jouer un rô<strong>le</strong> dansla mise en service scientifique d’ALMA et dans la réalisation du projet NOEMA d’extension duPlateau de Bure pour un budget total de 33 Meuros 2 .1 La date limite du premier appel pour <strong>le</strong> cyc<strong>le</strong> 0 de la phase dite "early science" (avec 16 antennes disponib<strong>le</strong>s)était fin juin 2011. La date limite pour <strong>le</strong> prochain appel (lorsque 32 antennes seront disponib<strong>le</strong>s) sera probab<strong>le</strong>mentdébut juil<strong>le</strong>t 2012.2 Ce projet a été classé 1ère priorité dans la catégorie des projets à budget moyen par l’exercice de prospective2009-2010 de l’INSU, puis il a été sé<strong>le</strong>ctionné comme projet EQUIPEX à hauteur de 10 Meuros en 2011.


<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Chapitre 4Copyright: Tom Dame (Top) & Douglas P. Finkbeiner (Bottom)Caractériser observationnel<strong>le</strong>ment la transitionHI → H 2Sur <strong>le</strong> long chemin qui conduit des phases ionisées, chaudes et peu denses du <strong>milieu</strong> inters<strong>tel</strong>laire,jusqu’à la formation des étoi<strong>le</strong>s et des systèmes planétaires associés, la formation desnuages moléculaires géants est encore mal comprise aujourd’hui. L’incompréhension de cetteétape clé est due aux difficultés intrinsèques à caractériser observationnel<strong>le</strong>ment la transitionHI → H 2 : 1) au contraire de nombreux autres objets astrophysiques (par exemp<strong>le</strong> galaxies vuesde face, proto-étoi<strong>le</strong>s, étoi<strong>le</strong>s, planètes), la géométrie du <strong>milieu</strong> inters<strong>tel</strong>laire est mal contrainte,


18 CARACTÉRISER OBSERVATIONNELLEMENT LA TRANSITION HI → H 2<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012<strong>le</strong>s différentes phases étant imbriquées <strong>le</strong>s unes dans <strong>le</strong>s autres ; 2) <strong>le</strong> <strong>milieu</strong> est très turbu<strong>le</strong>nt ;3) alors que l’hydrogène ionisé et neutre peut être directement caractérisé par <strong>le</strong>s raies Hα et HIà 21 cm, l’hydrogène moléculaire froid est invisib<strong>le</strong> car H 2 n’a pas de raies dipolaires, commetoute molécu<strong>le</strong> symétrique. Les points 1 et 2 impliquent une approche statistique. Le point 3 impliqueune caractérisation du gaz moléculaire par des traceurs minoritaires, typiquement CO, quisont affectés par une chimie propre, dont il faut tenir compte. Il y a donc besoin de diagnostiquesphysiques et chimiques clairs pour progresser.Les nuages moléculaires géants ont été définis observationnel<strong>le</strong>ment comme étant <strong>le</strong>s régionsdu ciel détectées en 12 CO J=1–0 avec des antennes de petite tail<strong>le</strong> (typiquement 1m dediamètre) : ils ont une masse et une tail<strong>le</strong> typique de 10 6 M ⊙ et 20 pc, ce qui donne une densitémoyenne de 600 H 2 cm −3 . Pour mieux comprendre la composition et la formation des nuagesmoléculaires géants, il faut faire appel à un autre classement observationnel basé sur l’extinctionvisuel<strong>le</strong> et l’émission HI :Les nuages diffus sont définis par <strong>le</strong>ur émission HI et ils ont une extinction visuel<strong>le</strong> faib<strong>le</strong>(A v ≤ 1 mag). Le gaz de ces nuages diffus est neutre, tiède (60 K) et peu dense (10 2 cm −3 ).Il voit son hydrogène atomique se transformer en hydrogène moléculaire alors que son carboneest sous forme neutre ou ionisée (N CO < quelques 10 16 cm −2 et N C ∼ 3.10 17 cm −2 ).Le gaz est soumis au champ UV typique inter-étoi<strong>le</strong>s, ce qui devrait empêcher <strong>le</strong> développementd’une chimie même rudimentaire.Les nuages sombres sont traditionnel<strong>le</strong>ment identifiés par <strong>le</strong>ur forte extinction visuel<strong>le</strong> (A v >6 mag, typiquement 10) et par <strong>le</strong>ur émission CO. Le gaz des nuages sombres est neutre,froid (10 K), dense (10 4 cm −3 ). Le gaz moléculaire est constitué d’hydrogène moléculaireet tout son carbone se trouve dans CO. Le gaz est bien protégé du champ de rayonnementUV, ce qui permet <strong>le</strong> développement d’une chimie comp<strong>le</strong>xe.Les nuages translucents ont une extinction visuel<strong>le</strong> comprise entre 2 et 5. Ils forment la transitionentre nuages diffus et nuages sombres.Nous verrons par la suite que cette distinction par l’extinction visuel<strong>le</strong> n’est pas aussi simp<strong>le</strong>. Il ya deux moyens complémentaires de caractériser observationnel<strong>le</strong>ment la transition du gaz diffusau gaz sombre.4.1 Etudes en absorption derrière une source continuumLe <strong>milieu</strong> inters<strong>tel</strong>laire a été découvert en 1907 par l’étude de raies atomiques en absorption(NaI et CaII) devant <strong>le</strong> continuum visib<strong>le</strong> d’étoi<strong>le</strong>s. Les premières molécu<strong>le</strong>s (CN, CH et CH + )ont aussi été détectées en absorption dans <strong>le</strong>s années 1937–1940. Les raies en absorption UVde CO et H 2 ont été détectées en 1970–1971 avant d’être étudiées plus systématiquement par <strong>le</strong>sa<strong>tel</strong>lite Copernicus. Cette méthode, qui est encore très utilisée de nos jours (cf. <strong>le</strong> sa<strong>tel</strong>lite FUSEou quelques programmes utilisant <strong>le</strong> dernier spectrographe UV du HST : COS), met justementen évidence <strong>le</strong>s nuages diffus. Mais il est diffici<strong>le</strong> de savoir si <strong>le</strong>s propriétés mesurées sont cel<strong>le</strong>sdu gaz diffus ou si el<strong>le</strong>s sont dues à l’interaction entre l’étoi<strong>le</strong> à l’origine du continuum visib<strong>le</strong>ou UV et <strong>le</strong> gaz ins<strong>tel</strong>laire comme nous l’avons montré avec P. Boissé (professeur à l’UPMC)dans <strong>le</strong> cas de la ligne de visée menant à HD34078 [A10]. L’avantage majeur de cette techniqueest qu’el<strong>le</strong> permet une mesure directe et donc très précise de la densité de colonne de l’espèce


4.2 ETUDES DIRECTES EN ÉMISSION 19<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012absorbante, indépendamment de tout transfert de rayonnement (un photon continuum absorbééga<strong>le</strong> une molécu<strong>le</strong> absorbante).H. Liszt (NRAO, USA) et R. Lucas (Joint ALMA Office, Chili) ont donc adapté cette méthodeen radio-astronomie millimétrique avec l’étude de l’absorption par <strong>le</strong> gaz galactique del’émission continuum brillante de quelques dizaines de quasars extragalactiques, assurant unemesure non-biaisée (par la source continuum) des propriétés du gaz diffus. Ce travail, que j’ai rejointen 2003, a conduit à de nombreuses surprises, parmi <strong>le</strong>squel<strong>le</strong>s une importante (mais néanmoinslimitée) chimie polyatomique : détection de HCO + , CCH, C 3 H 2 , CN, HCN, HNC, H 2 CO,NH 3 [A27, et références citées dans cet artic<strong>le</strong>] ; non-détection de CH 3 OH et HC 5 N [A16]. Cettechimie a parfois lieu dans des régions incapab<strong>le</strong>s d’exciter CO à des niveaux d’émission détectab<strong>le</strong>s.Les modè<strong>le</strong>s standards de la chimie des nuages diffus prévoit des abondances chimiquesinférieures d’au moins un ordre de grandeur à ce qui est observé. Les profils de raies ne montrentpas de traces évidentes de processus énergétiques (des chocs par exemp<strong>le</strong>), qui permettraientd’activer une chimie chaude. En résumé, nous avons vu une chimie extraordinaire dans <strong>le</strong> gazdiffus, mais <strong>le</strong>s données ne donnent pas encore de suggestions claires qui puissent l’expliquer.L’étape suivante est la recherche en émission de la structure du gaz par observation des nuagesporteurs. Un des buts majeurs de ce travail est de comprendre si la cinématique des raies signa<strong>le</strong><strong>le</strong> dépôt d’énergie en quantité suffisante pour provoquer la chimie observée en absorption.4.2 Etudes directes en émissionPour former des nuages moléculaires géants, il faut dissiper loca<strong>le</strong>ment l’énergie turbu<strong>le</strong>nte etmagnétique responsab<strong>le</strong> du support des nuages diffus contre l’effondrement gravitationnel. Bienque ces processus de dissipation soient mal connus, ils sont une source potentiel<strong>le</strong> d’énergie pourprovoquer la chimie du <strong>milieu</strong> diffus [A36]. Durant mon service militaire et ma thèse, j’ai mis aupoint avec D. Lis (Caltech, USA) et E. Falgarone (LERMA) des outils d’étude de la cinématiquedes raies de CO, permettant de caractériser la dissipation de la turbu<strong>le</strong>nce [A33, A38, A39]. Lesrésultats de ces outils statistiques sont d’autant plus probants que la tail<strong>le</strong> de l’échantillon étudiéest plus grande. Deux possibilités s’offrent dans <strong>le</strong> cadre du <strong>milieu</strong> inters<strong>tel</strong>laire. Soit on augmen<strong>tel</strong>a tail<strong>le</strong> de la région étudiée à résolution constante : la limite vient du risque d’étudier desrégions soumises à des conditions physiques différentes. Soit on augmente la résolution à tail<strong>le</strong>de région fixée : il est alors naturel de faire de l’imagerie grand-champ avec des interféromètres.Avec P. Hily-Blant et E. Falgarone, nous avons réalisé <strong>le</strong>s deux options dans la même région duciel appelée Polaris [A9, A18]. Les données du Plateau de Bure nous ont permis en particulier demettre en évidence de nouvel<strong>le</strong>s structures CO à très petite échel<strong>le</strong> (milli-parsec) : il s’agit de gradientsd’émission très aigus à la fois spatia<strong>le</strong>ment et en vitesse, aux bords de régions où l’émissionCO est relativement continue. Les gradients de vitesse locaux, jusque 780 km s −1 pc −1 , sont<strong>le</strong>s plus grands jamais mesurés dans une région sans formation active d’étoi<strong>le</strong>. Une interprétationpossib<strong>le</strong> est que ces structures sont un lieu de dissipation de l’énergie turbu<strong>le</strong>nte à l’origine duCO vu en émission.4.3 Combiner <strong>le</strong>s deux approches


20 CARACTÉRISER OBSERVATIONNELLEMENT LA TRANSITION HI → H 2<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Depuis 2006, j’améliore avec H. Liszt et R. Lucas notrecompréhension de la transition du gaz diffus au gazsombre en combinant <strong>le</strong>s deux approches sur <strong>le</strong>s mêmesrégions du ciel. Ce qui rend vraiment fructueux cet exerciceest que <strong>le</strong>s échel<strong>le</strong>s spatia<strong>le</strong>s échantillonnées par <strong>le</strong>sdeux méthodes dans <strong>le</strong> plan du ciel sont très différentes.La figure 4.1 montre par exemp<strong>le</strong> <strong>le</strong> rougissement mesuréà une résolution angulaire de 6 minutes d’arc enfonction de la profondeur optique en HI mesurée en absorptiondevant des sources continuum qui ne sont pasrésolues (sauf exception) à 1 seconde d’arc avec l’interféromètredu VLA. L’excel<strong>le</strong>nte corrélation (coefficientde corrélation égal à 0.9) entre ces deux grandeurs mesuréesà des résolutions très différentes ne peut s’expliquerque de deux manières : soit <strong>le</strong> gaz HI ne présente pasde structures, soit <strong>le</strong> gaz HI absorbant est bien mélangéavec l’ensemb<strong>le</strong> du gaz (atomique et moléculaire) tracépar l’extinction visuel<strong>le</strong> [A6]. Ainsi, nous nous demandons1) quel<strong>le</strong> est la nature du nuage qui « héberge » laligne de visée étudiée en absorption et 2) si <strong>le</strong>s propriétésdéduites par <strong>le</strong>s études en absorption sont représentativesdes caractéristiques de ce nuage hôte.⌠⌡ τ(H I)dv [km s -1 ]1001010.1 1E B-V [mag]w/COw/HCO +No HCO + ,CO,CO+ -1FIG. 4.1 – Absorption par l’hydrogèneatomique (résolution angulaire:< 1 ′′ ) en fonction du rougissementtotal mesuré dans la même direction(résolution angulaire: ∼ 6 ′ ,Sch<strong>le</strong>gel et al. 1998).Nous avons par exemp<strong>le</strong> analysé une carte de 7 ◦ de champ de vue à une résolution de 3 ′obtenue avec <strong>le</strong> té<strong>le</strong>scope de NANTEN autour de la ligne de visée conduisant à l’étoi<strong>le</strong> ζOph,ligne de visée archétype des études du <strong>milieu</strong> diffus en optique [A11]. Nous avons montré quel’étoi<strong>le</strong> est occultée par un seul nuage hôte qui a une structure cinématique comp<strong>le</strong>xe et nul<strong>le</strong>mentpar deux nuages distincts comme <strong>le</strong>s études en absorption <strong>le</strong> laissaient supposer : <strong>le</strong>s études enabsorption ne capturent donc qu’une partie aléatoire des propriétés du nuage hôte. Ainsi, seu<strong>le</strong>une étude statistique d’un grand nombre de lignes de visée observées en absorption permet dedéduire <strong>le</strong> comportement intrinsèque du gaz diffus.Nous avons aussi obtenu avec l’interféromètre du Plateau de Bure une carte de l’émissionde 12 CO J=1–0 dans la direction du quasar NRAO150 sur un champ de vue de 100 ′′ × 100 ′′à une résolution de 4 ′′ [A15]. Alors que <strong>le</strong>s raies d’émission de 12 CO J=1–0 font typiquement2-3 K à une résolution spatia<strong>le</strong> de l’ordre de la minute d’arc, nous avons obtenu ici des brillancesmaximum de 12-13 K parfois à moins de 6 ′′ de la direction de NRAO150. La présence de pointsbrillants aussi proches d’une ligne de visée diffuse est une réel<strong>le</strong> surprise car il n’est pas intuitifa priori d’associer une faib<strong>le</strong> extinction visuel<strong>le</strong> (A v ∼ 1 mag) à une forte émission en CO.4.4 La luminosity CO par molécu<strong>le</strong> H 2Pendant <strong>le</strong>s trois dernières années, nous avons imagé en 12 CO J=1–0 <strong>le</strong>s nuages hôtes d’environune dizaine d’autres lignes de visées à différentes latitudes galactiques avec <strong>le</strong> 30m del’IRAM et <strong>le</strong> 12m de l’Arizona Radio Observatory. Nous échantillonnons ainsi deux types de


4.4 LA LUMINOSITY CO PAR MOLÉCULE H 2 21<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012lignes de visée : 1) des lignes de visée diffuses (A v ≤ 1) ; et 2) des lignes de visée classiquementappelées sombres (A v ≥ 6). Les lignes de visées dites sombres se trouvent dans <strong>le</strong> plan de laGalaxie : el<strong>le</strong>s sont en fait composées d’un ensemb<strong>le</strong> de nuages diffus, chaque nuage ayant uneextinction visuel<strong>le</strong> typique de 1. Par ail<strong>le</strong>urs, on observe des brillances de l’ordre de 10 K dèsqu’on fait des cartes en émission, quel<strong>le</strong> que soit la latitude ou l’extinction visuel<strong>le</strong>. Ainsi, deslignes de visée dont on croit habituel<strong>le</strong>ment qu’el<strong>le</strong>s font partie de nuages moléculaires géantssont en fait composées de gaz diffus [A6]. C’est possib<strong>le</strong> car deux régimes physiques bien séparésproduisent <strong>le</strong> même genre de brillance en 12 CO J=1–0 (typiquement 10 K) : d’une part, <strong>le</strong>gaz diffus à cause d’une excitation subtherma<strong>le</strong> dans un gaz tiède (30 − 60 K) et à faib<strong>le</strong> densité(< 300 − 500 cm −3 ) ; d’autre part, <strong>le</strong> gaz moléculaire thermalisé à basse température (< 20 K)et à haute densité (> 10 4 cm −3 ). Nous mettons ainsi en évidence aussi bien du gaz qui n’émetpas en CO (gaz sombre) que du gaz qui émet plus de CO que son contenu en hydrogène ne <strong>le</strong>laisse supposer (gaz surbrillant) [A1]. Le facteur de conversion CO-H 2 reste néanmoins typiqueparce que <strong>le</strong>s luminosités CO par molécu<strong>le</strong> de H 2 et <strong>le</strong>s facteurs de couverture en surface du COsombre ou surbrillant se compensent en moyenne.Ces résultats sont d’une grande importance pour la compréhension 1) du gaz sombre détectépar FERMI (Abdo et Fermi/LAT collaboration, ApJ 2010, 710, 133) et PLANCK (Planck Collaboration,2011, ArXiv e-prints 1101.2029), et 2) de l’utilisation du facteur X CO = N H2/W CO(W CO étant l’aire intégrée de l’émission CO) dans l’indicateur d’efficacité de la formation desétoi<strong>le</strong>s dans <strong>le</strong>s galaxies extérieures (L FIR /M H2). Cette problématique est au cœur de plusieursconférences internationa<strong>le</strong>s sur <strong>le</strong> <strong>milieu</strong> inters<strong>tel</strong>laire. Cela a par exemp<strong>le</strong> permis de mettre enévidence la contradiction entre nos mesures [C5, C1] et <strong>le</strong> résultats de modè<strong>le</strong>s récents (Gloveret al. 2010, MNRAS, 404, 2-29). Cette contradiction provient d’une chimie inadaptée au <strong>milieu</strong>diffus dans <strong>le</strong>s modè<strong>le</strong>s utilisés (Shetty et al. 2011, MNRAS, 412, 1686).


A&A 507, 355–368 (2009)DOI: 10.1051/0004-6361/200810963c○ ESO 2009Astronomy&AstrophysicsIntermittency of inters<strong>tel</strong>lar turbu<strong>le</strong>nce: extreme velocity-shearsand CO emission on milliparsec sca<strong>le</strong> ⋆E. Falgarone 1 ,J.Pety 1,2 , and P. Hily-Blant 31 LERMA/LRA, CNRS, UMR 8112, Éco<strong>le</strong> Norma<strong>le</strong> Supérieure & Observatoire de Paris, 24 rue Lhomond, 75005 Paris, Francee-mail: falgarone@lra.ens.fr2 Institut de Radio Astronomie Millimétrique, 300 rue de la Piscine, 38406 Saint-Martin-d’Hères, Francee-mail: pety@iram.fr3 LAOG, CNRS UMR 5571, Université Joseph Fourier, BP53, 38041 Grenob<strong>le</strong>, Francee-mail: pierre.hilyblant@obs.ujf-grenob<strong>le</strong>.frReceived 13 September 2008 / Accepted 29 September 2009ABSTRACT<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Aims. The condensation of diffuse gas into mo<strong>le</strong>cular clouds and dense cores occurs at a rate driven largely by turbu<strong>le</strong>nt dissipation.This process still has to be caught in action and characterized.Methods. We observed a mosaic of 13 fields with the IRAM-PdB interferometer (PdBI) to search for small-sca<strong>le</strong> structure in the12 CO(1−0) line emission of the turbu<strong>le</strong>nt and translucent environment of a low-mass dense core in the Polaris Flare. The large sizeof the mosaic (1 ′ × 2 ′ ) compared to the resolution (4 ′′ ) is unprecedented in the study of the small-sca<strong>le</strong> structure of diffuse mo<strong>le</strong>culargas.Results. The interferometer data uncover eight weak and elongated structures with thicknesses as small as ≈3 mpc (600 AU) and<strong>le</strong>ngths up to 70 mpc, close to the size of the mosaic. These are not filaments because once merged with short-spacings data, thePdBI-structures appear to be the sharp edges, in space and velocity-space, of larger-sca<strong>le</strong> structures. Six out of eight form quasiparal<strong>le</strong>lpairs at different velocities and different position ang<strong>le</strong>s. This cannot be the result of chance alignment. The velocity-shearsestimated for the three pairs include the highest values ever measured in regions that do not form stars (up to 780 km s −1 pc −1 ). TheCO column density of the PdBI-structures is in the range N(CO) = 10 14 to 10 15 cm −2 and their H 2 density, estimated in several ways,does not exceed a few 10 3 cm −3 . Because the larger sca<strong>le</strong> structures have sharp edges (with litt<strong>le</strong> or no overlap for those that are pairs),they have to be thin layers of CO emission. We call them SEE(D)S for sharp-edged extended (doub<strong>le</strong>) structures. These edges marka transition, on the milliparsec sca<strong>le</strong>, between a CO-rich component and a gas undetected in the 12 CO(1−0) line because of its lowCO abundance, presumably the cold neutral medium.Conclusions. We propose that these SEE(D)S are the first directly-detected manifestations of the intermittency of inters<strong>tel</strong>lar turbu<strong>le</strong>nce.The large velocity-shears reveal an intense straining field, responsib<strong>le</strong> for a local dissipation rate several orders of magnitudeabove average, possibly at the origin of the thin CO layers.Key words. ISM: evolution – ISM: kinematics and dynamics – ISM: mo<strong>le</strong>cu<strong>le</strong>s – ISM: structure – ISM: general – turbu<strong>le</strong>nce1. IntroductionTurbu<strong>le</strong>nce in the inters<strong>tel</strong>lar medium (ISM) remains a puzz<strong>le</strong>in spite of dedicated efforts on observational and numericalgrounds. This is because it is compressib<strong>le</strong>, magnetized, andmulti-phase, but also because of the huge range of sca<strong>le</strong>s separatingthose of injection and dissipation of energy. Moreover,because turbu<strong>le</strong>nce and magnetic fields are the main support ofmo<strong>le</strong>cular clouds against their self-gravity, turbu<strong>le</strong>nt dissipationis a key process among all those eventually <strong>le</strong>ading to star formation(see the reviews of Elmegreen & Scalo 2004; Scalo &Elmegreen 2004).In mo<strong>le</strong>cular clouds, turbu<strong>le</strong>nce is observed to be highly supersonicwith respect to the cold gas. It is thus anticipated todissipate in shocks in a cloud-crossing time (i.e. ≈ afew10Myrfor giant mo<strong>le</strong>cular clouds of 100 pc with internal velocity dispersionof a few km s −1 ). Magnetic fields do not significantlyslow the dissipation down (Mac Low et al. 1998). Actually, this⋆ Based on observations obtained with the IRAM Plateau de Bure interferometerand 30m <strong>tel</strong>escope. IRAM is supported by INSU/CNRS(France), MPG (Germany), and IGN (Spain).is the basis of the turbu<strong>le</strong>nt models of star formation (Mac Low& K<strong>le</strong>ssen 2004) – one of the two current scenarii of low-massstar formation – in which self-gravitating entities form in theshock-compressed layers of supersonic turbu<strong>le</strong>nce.However, whi<strong>le</strong> it is unquestionab<strong>le</strong> that the ISM is regularlyswept by large-sca<strong>le</strong> shock-waves triggered by supernovae explosionsthat partly feed the inters<strong>tel</strong>lar turbu<strong>le</strong>nt cascade (Joung& Mac Low 2006; de Avil<strong>le</strong>z & Breitschwerdt 2007), the smal<strong>le</strong>stsca<strong>le</strong>s, barely subparsec in these simulations, are still ordersof magnitude above the smal<strong>le</strong>st observed structures andare unlikely to provide a proper description of the actual dissipationprocesses. Whether turbu<strong>le</strong>nt dissipation occurs primarily incompressive (curl-free) or in so<strong>le</strong>noidal (divergence-free) modesin the inters<strong>tel</strong>lar medium has therefore to be considered as anopen issue.An ideal target to study turbu<strong>le</strong>nt dissipation is the diffusemo<strong>le</strong>cular gas because it is the component in which densecores form, with <strong>le</strong>ss turbu<strong>le</strong>nt energy density than their environment.The word “diffuse” here comprises all material in theneutral ISM at large that is not in dense cores i.e. whose totalhydrogen column density is <strong>le</strong>ss than a few 10 21 cm −2 .ThisArtic<strong>le</strong> published by EDP Sciences


356 E. Falgarone et al.: Extreme velocity-shears and CO on milliparsec sca<strong>le</strong><strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012includes the mixture of cold and warm neutral medium (CNMand WNM), the edges of mo<strong>le</strong>cular cloud comp<strong>le</strong>xes (also cal<strong>le</strong>dtranslucent gas), and the high latitude clouds. Diffuse gas buildsup a major mass fraction of the ISM. Actually, on the 30 pcsca<strong>le</strong>, Goldsmith et al. (2008) find that half the mass of theTaurus-Auriga-Perseus comp<strong>le</strong>x lies in regions having H 2 columndensity below 2.1 × 10 21 cm −2 .Turbu<strong>le</strong>nt dissipation may also provide clues to the “outstandingmysteries” raised by observations of diffuse mo<strong>le</strong>culargas (see the review of Snow & McCall 2006): the ubiquitoussmall sca<strong>le</strong> structure, down to AU-sca<strong>le</strong>s (Hei<strong>le</strong>s 2007), theremarkab<strong>le</strong> mo<strong>le</strong>cular richness found in this hosti<strong>le</strong> medium,weakly shielded from UV radiation (e.g. Liszt & Lucas 1998;Gredel et al. 2002), the bright emission in the H 2 pure rotationallines exceeding the predictions of photon-dominated region(PDR) models (Falgarone et al. 2005; Lacour et al. 2005),the 12 CO small-sca<strong>le</strong> structures with a broad range of temperatures,H 2 densities and linewidths that preclude a sing<strong>le</strong> interpretationin terms of cold dense clumps (Ingalls et al. 2000, 2007;Heithausen 2004, 2006; Sakamoto & Sunada 2003).The present paper extends the investigation of turbu<strong>le</strong>ncedown to the mpc-sca<strong>le</strong> in the translucent environment of a lowmassdense core of the Polaris Flare. Over the years, this investigationhas progressed along three comp<strong>le</strong>mentary directions:(i)(ii)A two-point statistical analysis of the velocity field tracedby the 12 CO line emission, and conducted on maps of increasingsize. Using numerical simulations of mildly compressib<strong>le</strong>turbu<strong>le</strong>nce, Lis et al. (1996)andPety & Falgarone(2003) first proposed that the non-Gaussian probability distributionfunctions (pdfs) of line centroid velocity increments(CVI) be the signatures of the space-time intermittencyof turbu<strong>le</strong>nce 1 because the extrema of CVI (E-CVI)trace extrema of the line-of-sight average of the modulusof the plane-of-the-sky (pos) vorticity. Statistical analysisconducted on parsec-sca<strong>le</strong> maps in two nearby mo<strong>le</strong>cularclouds have revea<strong>le</strong>d that these extrema form parsec-sca<strong>le</strong>coherent structures (Hily-Blant et al. 2008; Hily-Blant &Falgarone 2009, resp. Paper III, HF09).A detai<strong>le</strong>d analysis (density, temperature, mo<strong>le</strong>cular abundances)of these coherent structures, based on their mo<strong>le</strong>cularline emission. The gas there is more optically thin inthe 12 CO lines, warmer and more dilute than the bulk ofthe gas (Hily-Blant & Falgarone 2007, hereafter Paper II),and large HCO + abundances, unexpected in an environmentweakly shielded from UV radiation, have been detectedthere (Falgarone et al. 2006, Paper I).(iii) Chemical models of non-equilibrium warm chemistry triggeredby bursts of turbu<strong>le</strong>nt dissipation (Joulain et al. 1998).The most recent progresses along those lines include thechemical models of turbu<strong>le</strong>nt dissipation regions (TDRs)by Godard et al. (2009) and their successful comparison toseveral data sets, among which new submillimeter detectionsof 13 CH + (1−0) (Falgarone et al., in preparation).1 Intermittency here refers to the empirical property of high Reynoldsnumber turbu<strong>le</strong>nce to present an excess of rare events compared toGaussian statistics, this excess being increasingly large as velocity fluctuationsat smal<strong>le</strong>r and smal<strong>le</strong>r sca<strong>le</strong>s are considered (see the reviewof Anselmet et al. 2001). Although the origin of intermittency is still anopen issue (but see Mordant et al. 2002; Chevillard et al. 2005; Arnéodoet al. 2008), it is quantitatively characterized by the anomalous scalingof the high-order structure functions of the velocity and the shapeof non-Gaussian pdfs of quantities involving velocity derivatives (e.g.Frisch 1995).Fig. 1. The location of the 13-field mosaic observed at the Plateaude Bure interferometer (centered at RA = 01:55:12.26 and Dec =87:41:56.30) is shown as the box on top of the integrated emission ofthe 12 CO and 13 CO (J = 1−0) maps obtained at the IRAM-30m. Thisis a place of low, almost feature<strong>le</strong>ss, CO line brightness. The arc-likestructure visib<strong>le</strong> in 13 CO traces the outer layers of the low-mass densecore. Contour <strong>le</strong>vels are shown in the wedges.The 12 CO(J = 2−1) observations of the Polaris Flare with unprecedentedangular resolution and dynamic range are the firstto evidence the association between extrema of CVI and observedvelocity-shears 2 (HF09). No shock signature (densityand/or temperature enhancement, SiO detection) has been foundin the coherent structure of E-CVI identified in the Polaris Flare(Hily-Blant and Falgarone, in preparation). All the above suggest(but does not prove yet) that the coherent structures carryingthe statistical properties of intermittency are regions of intensevelocity-shears where dissipation of turbu<strong>le</strong>nce is concentrated.The 12 CO(1−0) observations reported in this paper have beenperformed in a field located on one branch of the Polaris FlareE-CVI structure, in the translucent and feature<strong>le</strong>ss environmentof a dense core (Fig. 1). The outline of the paper is the following:the observations and data reduction are described in Sect. 2. Theobservational results are given in Sect. 3. The characterizationof the emitting gas is made in Sect. 4 and we discuss, in Sect. 5,the possib<strong>le</strong> origin and nature of the CO structures that we havediscovered. Section 6 puts our results in the broad perspectiveprovided by other data sets and Sect. 7 compares them to chemicalmodel predictions and numerical simulations of turbu<strong>le</strong>nce.The conclusions are given in Sect. 8.2. IRAM Plateau de Bure InterferometerobservationsWe used the IRAM Plateau de Bure Interferometer (PdBI) toimage, at high angular resolution and in the 12 CO (J = 1−0)line, a region of ∼1 ′ × 2 ′ in the translucent environment of adense core in the Polaris Flare (Heithausen 1999; Heithausenet al. 2002). The location of the target field is shown in Fig. 1as a rectang<strong>le</strong> on larger sca<strong>le</strong>, sing<strong>le</strong>-dish maps of integrated12 CO(J = 1−0) and 13 CO(J = 1−0) emission from (Falgaroneet al. 1998, hereafter F98). The average column density in thisregion (∼10 21 cm −2 ) is about 100 times smal<strong>le</strong>r than in the centralparts of the dense core (∼10 23 cm −2 ), 3 arcmin westwards.The average integrated 13 CO intensity over the mosaic area isweak W( 13 CO) = 2Kkms −1 .2 We use velocity-shear rather than velocity-gradient because the observationsprovide cross-derivatives of the velocity field, i.e. the displacementmeasured in the plane-of-the-sky (pos) is perpendicular tothe line-of-sight velocity.


E. Falgarone et al.: Extreme velocity-shears and CO on milliparsec sca<strong>le</strong> 357Tab<strong>le</strong> 1. Observation parameters. The projection center of all the data displayed in this paper is: α 2000 = 01 h 55 m 12.26 s , δ 2000 = 87 ◦ 41 ′ 56.30 ′′ .Mo<strong>le</strong>cu<strong>le</strong> Transition Frequency Instrument Config. Beam PA Vel. Resol. Int. Time NoiseGHz arcsec◦km s −1 hours K12 CO (J = 1−0) 115.271195 PdBI C&D 4.4 × 4.2 80 0.1 65.2/180 a 0.23 b115.271195 30m — 21.3 0 0.1 —/— 0.4013 CO (J = 1−0) 110.201354 30m — 22.3 0 0.1 —/— 0.19a Two values are given for the integration time: the 5 antennae array equiva<strong>le</strong>nt on-source time and the <strong>tel</strong>escope time.b The noise value quoted here is the noise at the mosaic phase center.<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 20122.1. ObservationsThe observations dedicated to this project were carried out in1998 and 1999 with the IRAM interferometer at Plateau deBure in the C and D configurations (baseline <strong>le</strong>ngths from 24 mto 161 m). One correlator band of 10 MHz was centered onthe 12 CO (J = 1−0) frequency to cover a ∼23 km s −1 bandwidthwith a channel spacing of 39 kHz, i.e. ∼0.1 kms −1 . Fouradditional correlator bands of 160 MHz were used to measurethe 2.6 mm continuum over the 500 MHz instantaneousIF-bandwidth then availab<strong>le</strong>.We observed a 13-field mosaic centered on α 2000 =01 h 55 m 12.26 s , δ 2000 = 87 ◦ 41 ′ 56.30 ′′ . The field positions followeda compact hexagonal pattern to ensure Nyquist samplingin all directions and an almost uniform noise over a large fractionof the mosaic area (see Fig. A.1 of Appendix A). The imagedfield-of-view is about a rectang<strong>le</strong> of dimension of 85 ′′ ×130 ′′ oriented at a position-ang<strong>le</strong> of 15 ◦ (because the (RA, Dec)PdBI field was se<strong>le</strong>cted in maps made in (l, b) coordinates).Polaris being a circumpolar source, this project was a goodtime-fil<strong>le</strong>r. It was thus observed at 22 different occasions, givinga total of about 180 hours of <strong>tel</strong>escope time with most often 3 or4 antennas and rarely 5 antennas. Taking into account the timefor calibration and data filtering this translates into on-sourceintegration time of useful data of 65.2 h for a full 5-antenna array.The typical 2.6 mm resolution of these data is 4.3 ′′ .Thedata used to produce the missing short-spacings are those of theIRAM key-program, fully described in F98 (see also Tab<strong>le</strong> 1).2.2. Data reductionThe data processing was done with the GILDASf 3 software suite(Pety 2005). Standard calibration methods imp<strong>le</strong>mented in theGILDAS/CLIC program were applied using close bright quasarsas calibrators. The calibrated uv tab<strong>le</strong>s were processed throughan Hanning filter which spectrally smoothed the data (to increasethe intensity signal-to-noise ratio) whi<strong>le</strong> keeping the same velocity/frequencychannel spacing.All other processing took place into the GILDAS/MAPPINGsoftware. Following Gueth et al. (1996), the sing<strong>le</strong>-dish mapfrom the IRAM-30m key program were used to create the shortspacingvisibilities not samp<strong>le</strong>d at the Plateau de Bure. Thesewere then merged with the interferometric observations. Twodifferent sets of uv tab<strong>le</strong>s (i.e. with and without short-spacings)were then imaged using the same method. Each mosaic field wasimaged and a dirty mosaic was built combining those fields in thefollowing optimal way in terms of signal-to-noise ratio (Gueth2001)∑J(α, δ) =iB i (α, δ)σ 2 i/ ∑F i (α, δ)iB i (α, δ) 2·3 See http://www.iram.fr/IRAMFR/GILDAS for more informationabout the GILDAS softwares.σ 2 iIn this equation, J(α, δ) is the brightness distribution in the dirtymosaic image, B i are the response functions of the i primaryantenna beams, F i are the brightness distributions of the individualdirty maps and σ i are the corresponding noise values.As may be seen in this expression, the dirty intensity distributionis corrected for primary beam attenuation, which makes thenoise <strong>le</strong>vel spatially heterogeneous. In particular, noise stronglyincreases near the edges of the field of view. To limit this effect,both the primary beams used in the above formula and the resultingdirty mosaics are truncated. The standard <strong>le</strong>vel of truncationis set at 20% of the maximum in MAPPING.Deconvolution methods were different for both data sets (i.e.with and without short-spacings). The dirty image of the PdBIonlydata was deconvolved using the standard Clark CLEAN algorithm.One spatial support per channel map was defined byse<strong>le</strong>cting positive regions on the first c<strong>le</strong>an image which was obtainedwithout any constraint. This geometrical constraint wasthen used in a second deconvolution. Whi<strong>le</strong> it can bias the result,this two-step process is needed when deconvolving interferometricobservations of extended sources without short-spacings.Indeed, the lack of short-spacings implies (among other things)a zero valued integral of the dirty beam and dirty image, whichin turn perturbs the CLEAN convergence when the source is extendedbecause the algorithm searches as many positive as negativeCLEAN components. The only way around is to guide thedeconvolution by the definition of a support where the signalis detected. On the other hand, the deconvolution of the combinedshort-spacings and interferometric uv visibilities can processblindly (i.e. without the possib<strong>le</strong> bias of defining a supportwhere to search for CLEAN components). This is what has beendone and the good correlation of the structures seen in the deconvolvedimages of the data with and without short-spacings(see Figs. 4 and 5) gives us confidence in our deconvolution ofthe PdBI-only data.The two resulting data cubes (with and without shortspacings)were then sca<strong>le</strong>d from Jy/beam to T mb temperaturesca<strong>le</strong> using the synthesized beam size (see Tab<strong>le</strong> 1). Final noiserms measured at the centered of the mosaic is about 0.23 K inboth data cubes.3. Observational results3.1. PdBI structures: sharp edges of extended structuresAt the adopted cloud distance of d = 150 pc, 1 ′′ correspondsto 0.75 mpc or 150 AU, so that the spatial resolution of thePdBI data is 3.2 mpc or 660 AU.The integrated emission detected with the PdBI is displayedin Fig. 2 (<strong>le</strong>ft panel), with the corresponding signal-to-noise ratio(right panel). The integrated emission covers most of themosaic area. This is no longer true when this emission is displayedin velocity slices (Fig. 3, top panels). Several distinctstructures are detected in addition to the bright CO peak, at


358 E. Falgarone et al.: Extreme velocity-shears and CO on milliparsec sca<strong>le</strong>3.2. Observed characteristics of the PdBI structures<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Fig. 2. Map of integrated emission of the PdBI data (top <strong>le</strong>ft), andsignal-to-noise ratio (top right) forthe 12 CO (J = 1−0) line. Same forthe 3 mm continuum emission (bottom panels). The synthesized beamis shown in the bottom <strong>le</strong>ft inserts.velocities [−3.1, −2.3] km s −1 . Most are weak (the first <strong>le</strong>vel inthe PdBI channel maps of Fig. 3 is 3σ) but they extend overmany contiguous synthesized beams (10 to 30).The PdBI data merged with the short-spacings provided bythe 30m <strong>tel</strong>escope and the 12 CO(1−0) emission detected by theIRAM-30m <strong>tel</strong>escope are displayed in the same velocity-slices,for comparison, in Fig. 3, central and bottom panels respectively.Most of the structures seen by the PdBI lie at the edgein space and in velocity space of extended emission presentin the sing<strong>le</strong>-dish channel maps. This property is most visib<strong>le</strong>for the two structures in the north-west of the mosaic over[−4.8, −4.4] km s −1 and [−2, −1.2] km s −1 , and in the centralregion at v = −2.8 kms −1 . It is even better seen by comparingthe sing<strong>le</strong>-dish maps before and after combination with thePdBI data. The sing<strong>le</strong>-dish maps are changed in two-ways: thestructures exhibit sharper, more coherent boundaries and theseboundaries extend further in velocity-space (e.g. channels −4.7and −2.3 km s −1 ). In a given channel of width Δv c , the size ofthe detected structures in the CO emission Δx c is inversely proportionalto the velocity-shear, Δx c =Δv c /(∂v LSR /∂x pos ). Hence,the detection of small-sca<strong>le</strong> structures at the edge of the velocitycoverage of larger-sca<strong>le</strong> structures may be favored by an increaseof the velocity shear at these edges.The fact that these structures appear both in PdBI-only dataand in combined (PdBI+30m) data gives confidence in their reality,independently of the deconvolution techniques.In summary, the interferometer is sensitive by construction tosmall-sca<strong>le</strong> (i.e. sharp) variations of the space-velocity CO distribution.It happens that the sharp structures detected by the interferometerlie at the edge in space and velocity of regions ofshallow CO emission that extend over at <strong>le</strong>ast arcminutes, as displayedin the 30m channel maps. The PdBI-structures are thereforethe sharp edges of extended structures.We have identified eight structures in the space-velocity12 CO(J = 1−0) PdBI data cube that are well separated from oneanother in direction and in velocity. They are shown in Fig. 4,each drawn over its proper velocity range. The right panels showthe PdBI data combined with 30m data over the same velocityranges to further illustrate that the PdBI filtering emphasizes thesharpness of the edge of the space-velocity structures. Figure 4also shows that the sing<strong>le</strong>-dish structures cover a large fractionof the mosaic area. For instance, in the case of structure #1, thesing<strong>le</strong>-dish structure extends over the who<strong>le</strong> southern half of themosaic, whi<strong>le</strong> for structure #5 it almost covers the northern half.The observed properties of the 8 PdBI structures are given inTab<strong>le</strong> 2. The peak 12 CO(J = 1−0) temperature is that detected bythe PdBI, therefore the excess above the extended background,resolved out by the PdBI. The size θ 1/2 is the half-power thicknessof the elongated structures, deconvolved from the beamsize. The projected thickness, in mpc, is cal<strong>le</strong>d l ⊥ by oppositionto the unknown depth along the line-of-sight (los), cal<strong>le</strong>d l ‖ .Theposition-ang<strong>le</strong> PA is that of the direction defined, within ±10 ◦ ,by the three brightest pixels of each structure. When they are notaligned, as in the case of #8, we determine a direction with themeaning of a <strong>le</strong>ast-square fit. It corresponds to an average PAover the detected structure that does not take into account thesubstructure visib<strong>le</strong> in Fig. 6 for instance. Because of their differentvelocity width and CO line temperature, the CO integratedbrightness of the eight structures varies by a factor 25.Most of the PdBI-structures are elongated and straight withdifferent position-ang<strong>le</strong>s in the sky. Interestingly, they do notshadow each other in space and in velocity space (i.e. each fillsonly a small area of the mosaic in a small velocity interval, andthe positions and areas of the detected structures are different).Their cumulative surface filling factor in the mosaic field is large,f S ≈ 0.5(Fig.2), i.e. f S = 0.6 for the structures detected at morethan 1-sigma and f S = 0.3 for 3-sigma detections. However, thefraction of the sing<strong>le</strong>-dish power (integrated over the mosaic)seen by the PdBI in the 12 CO(1−0) line is low. It depends onthe velocity interval: it varies between 2% in the 12 CO line-core(defined as the velocity range, [−5.0, −3.5] km s −1 ,overwhichthe sing<strong>le</strong>-dish 13 CO/ 12 CO is the largest, see F98), and 6% in theline-wings. Figure 5 displays the emission profi<strong>le</strong> of the 8 PdBIstructureswith the sing<strong>le</strong>-dish 12 CO and 13 CO(J = 1−0) emissionsover the same area (defined by the polygons of Fig. 4).Last, the PdBI-structures cover the full velocity range ofthe sing<strong>le</strong>-dish CO line (see bottom panel of Fig. 5) includingthe far line-wings (e.g. structure #2 at −5.5 km s −1 ). Note howeverthat the spectrum integrated over the who<strong>le</strong> mosaic peaksat −3 kms −1 , in the wing of the sing<strong>le</strong>-dish 12 CO line whi<strong>le</strong> itsminimum, around −4.5 km s −1 , coincides with the peak of thesing<strong>le</strong>-dish 13 CO line (i.e. line core). The broad velocity distributionof the PdBI-structures within the sing<strong>le</strong>-dish line coverageensures that they are not artefacts of radiative transfer. If theywere, they would appear preferentially at extreme velocities becauseCO photons escape probability is larger there. There maybe a small effect since the power fraction in the line-wings isslightly larger than in the line-core, but these fractions are afew percent in each case. The structures found are therefore rea<strong>le</strong>dges in space and velocity-space of larger structures.In this respect, it is interesting to place each PdBI-structurein its 12 CO(1−0) larger-sca<strong>le</strong> environment at the appropriate velocity(Fig. 8). The PdBI-structures, marked as polygons, lie atthe edge of structures that extend beyond the field of the mosaic,


E. Falgarone et al.: Extreme velocity-shears and CO on milliparsec sca<strong>le</strong> 359<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Fig. 3. From top to bottom, maps of the PdBI, PdBI+30m and 30m of 12 CO(1−0) emission integrated over the same velocity slices of 0.3 km s −1centered as indicated.up to ∼300 ′′ or 0.2 pc. In the case of structures #3, #4 and #5, theorientation of the edges of the large-sca<strong>le</strong> patterns is more visib<strong>le</strong>in the 13 CO(1−0) maps (Fig. 9), likely because of the 12 CO(1−0)optical depth. This coincidence strongly suggests that the


360 E. Falgarone et al.: Extreme velocity-shears and CO on milliparsec sca<strong>le</strong>Tab<strong>le</strong> 2. Spatial and kinematic characteristics of the 12 CO PdBI-only structures.Structure v min v max Δv 1/2 T peak W(CO) θ 1/2al ⊥ PA n max bH 2km s −1 km s −1 km s −1 K Kkms −1 arcsec mpc◦cm −31 –5.7 –5.2 0.1 0.6 0.06 4 3.0 109 10002 –5.6 –5.4 0.2 1.8 0.36 10 7.5 173 24003 –5.2 –4.8 0.2 2.4 0.48 9 6.8 62 32004 –4.3 –4.1 0.1 1.2 0.12 8 6.0 59 10005 –3.4 –2.6 0.4 4 1.6 12 9.0 91 89006 –3.4 –2.6 0.25 1.2 0.3 10 7.5 161 20007 –3.2 –3.0 0.15 1.2 0.18 15 11.3 173 8008 –1.7 –1.3 0.15 1.2 0.18 9 6.8 59 1200a Projected thickness of the filamentary structures deconvolved from beam size; b upper limit because computed as n H2using l ‖ with N(H 2 ) derived from W(CO) (see text).= N(H 2 )/l ⊥ instead of<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Fig. 4. The 8 structures described in Tab<strong>le</strong> 1. Left panels: PdBI-only 12 CO(1−0) emission integrated over the indicated velocity interval appropriateto each structure. Right panels: same for the combined PdBI+30m mission. The polygons show the area over which the CO spectra of Fig. 5 arecomputed.


E. Falgarone et al.: Extreme velocity-shears and CO on milliparsec sca<strong>le</strong> 361<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Fig. 5. Comparison of spectra integrated over either the polygons defined in Fig. 4 and the who<strong>le</strong> mosaic. The 12 CO and 13 CO (J = 1−0) sing<strong>le</strong>dishspectra are shown resp. in light and darker grey, whi<strong>le</strong> the PdBI only 12 CO (J = 1−0) spectra is shown in black. 13 CO amplitude have beenmultiplied by a factor of two and PdBI only 12 CO amplitude by a factor of 10. Note that i) only a small fraction of the sing<strong>le</strong>-dish flux is recoveredat PdBI and ii) the centroid velocities of the small-sca<strong>le</strong> structures are all, but one, outside that of the 13 CO peak.orientation of the PdBI-structures is not only real but also rootedin the larger-sca<strong>le</strong> environment.3.3. Pairs of paral<strong>le</strong>l structuresOne of the most chal<strong>le</strong>nging finding of this study is the factthat among the eight elongated PdBI-structures, six form 3close pairs (separated by <strong>le</strong>ss than 20 ′′ in projection) of structuresparal<strong>le</strong>l within ±10 ◦ (Tab<strong>le</strong> 2 and Fig. 4). These are thepairs of structures [#3, #8], [#1, #5] and [#6, #7]. The averageposition-ang<strong>le</strong>s of each pair PA = 60, 100 and 168 ◦ are all different.Since the structures (at <strong>le</strong>ast in the two first pairs) are atdifferent velocities, they are not due to artefacts of the deconvolutionprocess.The probability of a chance association of these three pairs inthe field of the mosaic is estimated to be at most 4 × 10 −9 .Itisthecube of the probability of having one close pair of paral<strong>le</strong>l structures.The latter is the product of the probability, equal to 5.4 ×10 −3 , that two, out of eight, randomly oriented straight structuresbe aligned within ±10 ◦ of each other (i.e. be together in a


362 E. Falgarone et al.: Extreme velocity-shears and CO on milliparsec sca<strong>le</strong>structures (SEEDS) when they belong to a pair, to emphasizethis essential property.3.4. Velocity shears<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Fig. 6. Structures #3 at −5 kms −1 and#8at−1.5 km s −1 overplotted(resp. black and red contours) to display their close spatial correlation.solid ang<strong>le</strong> ΔΩ = 0.1 sr), by that (ranging between 0.2 and 0.3depending on the orientation of the pair) to be separated in projectionby <strong>le</strong>ss than 20 ′′ inamosaicof1 ′ × 2 ′ . The probabilityof a chance association is only slightly underestimated if oneconsiders the structure #8 that is not straight, strictly speaking.Since the probability of a chance association of the observedpairs is so low, we infer that the pairs are real associations. Thisphysical connexion is supported by the detail of the spatial distributionof the 12 CO emission integrated over the two velocityranges of structures #3 and #8 in Fig. 6: the ho<strong>le</strong>, in the lowvelocityemission is fil<strong>le</strong>d in by high-velocity emission, whi<strong>le</strong> acommon average orientation exists over ∼1 ′ for the pair.Two position-velocity cuts (Fig. 7) across the pair [#3, #8]further illustrate what is meant by sharp edges and real association.The cut across the PdBI-only data cube (<strong>le</strong>ft panel) showstwo CO peaks centered at offset positions 40 ′′ (resp. 46 ′′ )andvelocities −4.9 km s −1 (resp. −1.6 km s −1 ) for the low- and highvelocitycomponent respectively. These resolved peaks are locatedexactly at the terminal pixels of the larger-sca<strong>le</strong> structuresvisib<strong>le</strong> at the same velocities in the cut across the PdBI+30mdata cube (right panel). On this cut, the low-velocity componentmay be followed over all offsets below ≈46 ′′ , whi<strong>le</strong> the highvelocitycomponent is visib<strong>le</strong> at all offsets above ≈40 ′′ . This cutalso illustrates a c<strong>le</strong>ar difference between the two velocity components:the velocity of structure #3 (peak at −5 kms −1 in thePdBI spectrum of Fig. 5) falls within the velocity coverage ofthe bright extended gas ( 12 CO and 13 CO line core in the sing<strong>le</strong>dishspectra) whi<strong>le</strong> that of structure #8 (peak at −1.5 km s −1 inthe PdBI spectrum of Fig. 5) is not b<strong>le</strong>nded with any other emissionin that extreme velocity range and appears as a weak emissionin the sing<strong>le</strong>-dish spectrum (i.e. a line-wing). Such b<strong>le</strong>ndingsin space and velocity projections with extended componentsresolved out by the PdBI observations (Fig. 7, right panel)explain why such pairs of structures are so difficult to recognizein sing<strong>le</strong>-dish observations or low sensitivity interferometricobservations.The PdBI-structures cannot therefore be understood as isolatedentities. Not only are they the sharp edges of largerCO-structures seen in the sing<strong>le</strong>-dish maps but also 6 out of 8 ofthese edges are paired. In the following, we will call the CO extendedstructures bounded by sharp edges either sharp-edgedextended structures (SEES) or sharp-edged extended doub<strong>le</strong>The pairs being real associations, we ascribe a velocity-shear toeach of them. The projected separation δl ⊥ and velocity differenceδv LSR between the low- and high-velocity components ofeach pair provide a measure of the velocity-shear δv LSR /δl ⊥ .Wecannot determine whether this measure is a lower or upper limitof the true velocity-shears because of the projection effects: boththe separation measured in the pos and the velocity differenceare lower limits.The results are given in Tab<strong>le</strong> 4. The method used is illustratedin Fig. 7 (<strong>le</strong>ft panel) for the pair [#3, #8]: the projectedseparation between the low- and high-velocity components is 6 ′′or 4.5 mpc whi<strong>le</strong> the velocity separation is 3.5 km s −1 , hencea velocity-shear of 777 km s −1 pc −1 , the largest ever measuredin CO emission in a mo<strong>le</strong>cular cloud devoid of star formationactivity. These values correspond to an average over severalpositions along the shear direction, including those wherethe two velocity components partially overlap. The separationis therefore slightly underestimated by the averaging. Note thatone pair only, [#6, #7], has a very small velocity-shear, probablybecause, in that case, the two velocity components involvedin the shear are mostly in the pos. A rate-of-strain, defined asa = 1 2 δv LSR/δl ⊥ , and timesca<strong>le</strong> τ = a −1 , are also given to helpcomparison with chemical models (Sect. 7). The large observedvelocity-shears translate into timesca<strong>le</strong>s as short as a few 10 3 yr,if the Lagrangian and Eu<strong>le</strong>rian views of the fluid can be exchanged(see Mordant et al. 2002).3.5. The SEE(D)S are layers of CO emissionThe small-sca<strong>le</strong> structures detected by the PdBI have propertiesnever seen before because the present observations are most sensitiveand the field of view is large in comparison to the resolution:(1) they are not clumps, but elongated structures, onlybounded by the limited size of the mosaic; (2) they all mark asharp fall-off of the CO emission in se<strong>le</strong>cted velocity ranges:they are not isolated filaments, but the sharp edges (3 to 11 mpcin projection), simultaneously in space and velocity-space, oflarger structures, the SEE(D)S, extending beyond the mosaic(l > 0.2 pc); (3) six of these form three pairs of paral<strong>le</strong>l structuresat different velocities, with a small projected separationand the velocity-shears estimated for two of these pairs, several100 km s −1 pc −1 , are the largest ever measured in non-star formingclouds.If the SEE(D)S were CO-emitting volumes (i.e.3-dimensional structures in space) of characteristic dimensionl, their edges would be surfaces commensurate with l 2 .In projection, these edges would appear as surfaces, alsocommensurate with l 2 for a random viewing ang<strong>le</strong>. Only ifthese surfaces were plane and viewed edge-on (within ±5 degfor a projected size <strong>le</strong>ss than one tenth of their real size) wouldthese edges appear as thin elongated structures. We ru<strong>le</strong> thisout on statistical grounds: the mere fact that we detect 8 sharpCO-edges in the small field-of-view of the PdBI observationssuggests that it is not a rare configuration and that the eightsharp CO-edges are seen from random viewing ang<strong>le</strong>s. We thusinfer that the SEE(D)S are CO-layers, rather than volumes andthat their thickness is ∼10 mpc or <strong>le</strong>ss, on the order of the widthof the PdBI-structures.


E. Falgarone et al.: Extreme velocity-shears and CO on milliparsec sca<strong>le</strong> 363Fig. 7. Position-velocity diagrams across the pair of structures [#3, #8]. Left: cut across the PdBI-only map. Center: rotated PdBI channel-map[−1.7, −1.3] km s −1 , showing the direction and distance (horizontal size of the box) over which the CO emission is averaged for the cut. The cutruns from the southern to northern edge of the box. Right: same across the PdBI+30m data cube.<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Fig. 8. Integrated maps of the same velocity range as that defined inFig. 4 of the 12 CO (J = 1−0) emission observed at the IRAM-30m.Green crosses delimit the mosaic position and the red polygon as definedin Fig. 4 shows the position of the elongated structures detectedat PdBI.Fig. 9. Same as Fig. 8 except that the sing<strong>le</strong> dish map is that of13 CO (J = 1−0).


364 E. Falgarone et al.: Extreme velocity-shears and CO on milliparsec sca<strong>le</strong><strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012This statistical argument is reinforced by the presence ofpairs. The SEEDS are structures that have sharp edges withonly small or null overlaps. If their interface were 2-dimensional(i.e. if the SEEDS were volumes), the small overlap would occuronly for an edge-on viewing, an unlikely case. Their interfaceis therefore 1-dimensional rather than 2-dimensional andthe SEEDS are layers of CO emission. This ensures that underany viewing ang<strong>le</strong> the two extended velocity componentsare detected with only a narrow or null spatial overlap in projection.The SEEDS could still be be 3-dimensional pure velocitystructures,where large velocity-shears produce sharp edgesin channel maps of finite spectral resolution (see Sect. 3.1).However, with the same statistical argument as above, concerningdensity structures, we ru<strong>le</strong> out the possibility that the SEEDSbe 3-dimensional velocity structures. These must be CO layers.In summary, the sharpness of the edges of the SEE(D)S, associatedwith the fact that we detect 8 cases in the mosaic andthree close-pairs that do not overlap in space, implies that theSEE(D)S are thin layers of CO emission rather than volumes.4. Gas density of the PdBI-structures4.1. Estimates from CO line emissionBecause of the elongated shape of most of the structures and thefact that they are edges of more extended emission, we have nottried to decompose the observed emission using clump findingalgorithms such as GAUSSCLUMP (Stutzki & Guesten 1990).We estimate below the gas density in these structures in two independentways and compare the results to those inferred fromthe dust continuum emission.First, we compute upper limits of the H 2 densities (Tab<strong>le</strong> 2)by adopting the CO-to-H 2 conversion factor X = 1.56 ± 0.05 ×10 20 cm −2 (K km s −1 ) −1 (Hunter et al. 1997) sothatn H2 =5 × 10 4 cm −3 W(CO)/l mpc ,foralos depth equal to the projectedthickness l ⊥ . Since we are observing edges of layers (seeSect. 3.2), the inferred densities are overestimated by the unknownfactor l ‖ /l ⊥ . The upper limits of the H 2 densities derivedfrom the galactic CO to H 2 conversion factor (Tab<strong>le</strong> 2) varybya factor 10 only.Alternatively, one may use a LVG analysis to estimate thegas properties in these structures. Two assumptions are made:(1) the CO emission is not beam-diluted and (2) the excitation isassumed to be the same as measured in the same field with theIRAM-30m so that we adopt the line ratio R(2−1/1−0) = 0.7 ±0.1 (Falgarone et al. 1998; Hily-Blant et al. 2008). This valuemay be representative of the excitation of translucent mo<strong>le</strong>culargas because the same line ratio is found in different observationssampling a similar kind of mo<strong>le</strong>cular gas (Pety et al. 2008).Under these conditions, the CO column densities per unit velocityare very well determined for all line temperatures. They aregiven in Tab<strong>le</strong> 4 for the brightest, weakest, and most commonCO peak temperature observed. The inferred CO column densitiesdiffer by only a factor 10 to 16 between the brightest andweakest structure.Tab<strong>le</strong> 4 also gives the range of gas kinetic temperaturesand associated range of densities, thermal pressures P th /k andCO abundances of possib<strong>le</strong> solutions. The range of temperaturesis bounded towards high values by the thermal width of theCO lines (T k < 250 K for the broadest line,


E. Falgarone et al.: Extreme velocity-shears and CO on milliparsec sca<strong>le</strong> 365Tab<strong>le</strong> 3. Spatial and kinematic characteristics of the three pairs of paral<strong>le</strong>l PdBI-only structures.Pair v 1 v 2 δv LSRaδl ⊥ δv/δl ⊥ a b τ c l dkm s −1 km s −1 km s −1 mpc km s −1 pc −1 s −1 yr mpc#3, #8 –5.0 –1.5 3.5 4.5 777 1.3 × 10 −11 2.5 × 10 3 45#1, #5 –5.4 –3.0 2.4 9.0 267 4.5 × 10 −12 4 × 10 3 45#6, #7 –3.0 –3.1 0.1 16 6 10 −13 3 × 10 5 40a Averaged separation between the PdBI CO peaks; b a = 1 2 δv/δl ⊥; c τ = a −1 ; d <strong>le</strong>ngth over which the structures are paral<strong>le</strong>l within ±10 ◦ .Tab<strong>le</strong> 4. Results of LVG radiative transfer calculations for representative observed values (see Tab<strong>le</strong> 2).T peak N(CO)/Δv a Δv N(CO) T k range n H2 range b P th /k range b X(CO) range bK cm −2 /km s −1 km s −1 cm −2 K cm −3 Kcm −3 ×10 −5brightest 4 3–4 × 10 15 0.4 1.2–1.6 × 10 15 10–200 3 × 10 3 –250 3–5 × 10 4 2–20most common 1.2 1.5 × 10 15 0.2 3 × 10 14 10–140 8 × 10 3 –300 8–4 × 10 4 0.16–4weakest 0.6 1.0 × 10 15 0.1 1.0 × 10 14 7–35 1 × 10 4 –800 7–3 × 10 4 0.11–1.4a Assuming R(2−1/1−0) = 0.7 ± 0.1; b the LHS (resp. RHS) values correspond to the lowest (resp. highest) gas temperature.<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012is expected to lie closer to the noise <strong>le</strong>vel. In addition, the surfacefilling factor of the 12 CO structures being large in the centralarea of the mosaic, the PdBI visibility of the continuum emissionof individual structures is expected to be highly reducedcompared to that of the line which takes advantage of velocityspace.This may be the reason that the continuum emission andthe 12 CO emission do not coincide elsewhere: the continuumemission is more heavily filtered out by the interferometer thanthe 12 CO emission.5. What are the SEE(D)S?5.1. Manifestations of the small-sca<strong>le</strong> intermittencyof turbu<strong>le</strong>nceThe two largest velocity-shears given in Tab<strong>le</strong> 3 are more thantwo orders of magnitude larger (within the uncertainties due toprojections) than the average value of 1 km s −1 pc −1 estimatedon the parsec sca<strong>le</strong> in mo<strong>le</strong>cular clouds (Goldsmith & Arquilla1985). The velocity field in these two SEEDS therefore significantlydeparts from predictions based on scaling laws obtainedfrom 12 CO(1−0) in mo<strong>le</strong>cular clouds, such as that shownin Fig. 10. In spite of a significant scatter of the data points,apowerlawδv l ∝ l 1/2 characterizes the increase of the velocityfluctuations with the size-sca<strong>le</strong> l, at <strong>le</strong>ast above ∼1 pc.Belowthat sca<strong>le</strong>-<strong>le</strong>ngth, the scatter increases and a slope 1/3 would notbe inconsistent with the data. According to the former scaling,the velocity-shear should increase as l −1/2 , therefore by no morethan 140 1/2 = 12 between 1 pc and 7 mpc. If the other scalingis adopted, this factor becomes 140 2/3 = 26. Now, the observedshears increase by more than two orders of magnitudebetween these two sca<strong>le</strong>s. This is conspicuous in Fig. 10 wherethe 8 PdBI-structures of Tab<strong>le</strong> 2 are plotted either individuallyor as pairs (i.e. as they would be characterized if the spatial resolutionwere poorer and individual structures were not isolatedin space, providing for instance a linewidth Δv 1/2 = 3.5 kms −1and a size l ⊥ ∼ 7 mpc for the pair [#3, #8]).This result has to be put in the broader perspective describedin Sect. 1. The statistical analysis of the velocity field of thishigh latitude cloud (Paper III, HF09) shows that the pdf ofthe 12 CO line-centroid velocity increments increasingly departsfrom Gaussian as the lags over which the increments are measureddecrease. The locus of the positions that populate the pdfFig. 10. Size-linewidth relation for a large samp<strong>le</strong> of 12 CO(1−0) structures(see Appendix B) to which are added: the SAMS data (sing<strong>le</strong>-dishdata from Heithausen 2002, 2006 (solid triang<strong>le</strong>s); PdBI data withinSAMS2 Heithausen 2004 (open triang<strong>le</strong>s)), a polygon that provides therange of values for the 12 structures of Sakamoto & Sunada (2003)and the eight structures of Tab<strong>le</strong> 2 (solid squares). The 3 empty squareswithout error bars show where the three pairs of PdBI-structures wouldbe if not resolved spatially (i.e. the velocity increment between the twostructures would appear as a linewidth for the pair). Same with the largetriang<strong>le</strong> for the pair of structures in SAMS2. The straight lines show theslopes 1/3 and1/2 for comparison.non-Gaussian wings forms elongated and thin (∼0.03 pc) structuresthat have a remarkab<strong>le</strong> coherence, up to more than a parsec.HF09 propose, on this statistical basis, but also because of theirthermal and chemical properties given in Sect. 1, that these structurestrace the intermittency of turbu<strong>le</strong>nt dissipation in the field.The pair of structures [#3, #8] belongs to that locus of positions(see their Fig. 3). The extremely large velocity-shears measuredin that small field are not just exceptional values: they have to beunderstood as a manifestation of the small-sca<strong>le</strong> intermittencyof inters<strong>tel</strong>lar turbu<strong>le</strong>nce, as studied on statistical grounds in amuch larger field.


366 E. Falgarone et al.: Extreme velocity-shears and CO on milliparsec sca<strong>le</strong><strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 20125.2. The emergence of CO-rich gasThe PdBI-structures mark sharp edges in the 12 CO emission.As discussed in Sect. 3.3 and illustrated in Fig. 7, theCOemissionof space-velocity structures extending over arcminutes (theSEE(D)S) drops below the detection <strong>le</strong>vel over 4.3 ′′ (the resolution).Therefore, several questions arise: what is the natureof the undetected gas that provides the continuity of the flow?Is it undetected because its density is too low to excite theJ = 1−0 transition of 12 CO? Or is it dense enough but withtoo low a CO abundance? For simplicity, in the following discussion,“CO-rich” qualifies the gas with X(CO) > 10 −6 ,theCO abundance of the weakest detected structure (Tab<strong>le</strong> 4), and“CO-poor” the gas with a lower CO abundance.Acording to LVG calculations, the 3σ detection limit of ourobservations allows us to detect CO column densities as low asN(CO) ∼ afew10 14 cm −2 in gas as diluted as n H ∼ 50 cm −3 ,at any temperature, and for a velocity dispersion of 0.2 km s −1 ,characteristic of the structures found. This detection limit is verylow. Therefore, if the undetected gas on the other side of the edgeis CO-rich (with a total hydrogen column density comparab<strong>le</strong> tothat of the detected part), it has to be at a density lower thann H ∼ 50 cm −3 , not to excite the 12 CO(J = 1−0) transition at adetectab<strong>le</strong> <strong>le</strong>vel. We ru<strong>le</strong> out this possibility because this densityis that of the CNM and it is unlikely that gas at that density beCO-rich (see also the models of Pety et al. 2008).The alternative is that the undetected gas is CO-poor and thatit is not its low density but its low CO abundance that makesit escape detection in 12 CO(J = 1−0). Given the sharpness ofthe edges of the SEE(D)S, between 3 and 11 mpc (Tab<strong>le</strong> 2), theprocess responsib<strong>le</strong> for this transition has to be ab<strong>le</strong> to generatea significant CO enrichment over that small sca<strong>le</strong>.In the above, we ru<strong>le</strong> out the possibility that the sharp edges(i.e. the PdBI-structures) mark photodissociation fronts, becausethe orientations of such fronts would not be randomly distributed,as is observed. Moreover, there is no source of UV photonsin that high-latitude cloud and the radiation field there isthe ambient galactic ISRF. Photodissociation fronts would nothave different orientations depending on gas velocities varyingby only a few km s −1 . The sharp edges are not either folds inlayers of CO emission because those who belong to SEES (sing<strong>le</strong>structures) lack the second part of the layer, and those whobelong to SEEDS have the two parts at different velocities.We thus infer that the SEE(D)S are the outcome of a dynamicalprocess, that involves large velocity-shears, and takesplace in a gas undetected in 12 CO(1−0) emission, because it isCO-poor, not because it is too diluted. This gas may be the CNMand the dynamical process has to be ab<strong>le</strong> to enrich the CNM inCO mo<strong>le</strong>cu<strong>le</strong>s within a few 10 3 yr and over a few milliparsec.6. Comparison with other data setsOur results broaden the perspective regarding the existenceof small-sca<strong>le</strong> CO structures in mo<strong>le</strong>cular clouds. Heithausen(2002, 2004, 2006) has found small-area mo<strong>le</strong>cular structures(SAMS) that are truly isolated CO features in the high latitudesky. PdBI observations of the SAMS (Heithausen 2004)revealbright sub-structures that are all brighter and broader thanour PdBI-structures. Unfortuna<strong>tel</strong>y, the emission has been decomposedinto clumps, a questionab<strong>le</strong> procedure because shortspacingshave not been combined to the PdBI data and theCLEAN procedure tends to create structures on the beam sca<strong>le</strong>.The large H 2 densities inferred are therefore likely overestimated.An interesting feature can be seen in the channel maps,though. Two elongated thin patterns cross the field, reminiscentfor their thickness and <strong>le</strong>ngth of what is found in the presentstudy. A velocity shear of 180 km s −1 pc −1 is estimated betweenthese two elongated structures for a velocity separationof 0.9 km s −1 and a pos spatial separation of 10 ′′ on average(or 5 mpc at the assumed distance of 100 pc). This velocityshearis thus commensurab<strong>le</strong> with the two largest values foundin the Polaris field.Ingalls et al. (2007) have detected milliparsec clumps in ahigh latitude cloud. They are located in the line-wings of theCO sing<strong>le</strong>-dish spectrum and they model them as tiny (1−5mpc)clumps of density of a few 10 3 cm −3 . A more detai<strong>le</strong>d comparisonwith the present results is not possib<strong>le</strong> because they do notanalyze individual structures.Sakamoto & Sunada (2003) have discovered a number ofCO small-sca<strong>le</strong> structures in the low-obscuration regions of longstrip maps beyond the edge of the Taurus mo<strong>le</strong>cular cloud.Their main characteristics are their large line-width and theirsudden appearance, and disappearance, within 0.03 to 0.1 pc.The authors interpret these features as the signature of structureformation induced by the thermal instability of the warmneutral medium (WNM) in the turbu<strong>le</strong>nt cloud envelope. TheseCO small-sca<strong>le</strong> structures thus carry the kinematic signaturesof the embedding WNM, hence their large velocity dispersion,both interclump and intraclump. The inferred line ratio,R(2−1)/(1−0) = 0.4, is low, consistent with a low excitationtemperature and H 2 densities lower than ∼10 2 cm −3 . The authorspropose that their small-sca<strong>le</strong> CO structures pinpoint mo<strong>le</strong>cu<strong>le</strong>formingregions, driven by the thermal instability in the turbu<strong>le</strong>ntdiffuse ISM.Our data therefore share many properties with these differentsamp<strong>le</strong>s. Figure 10 allows a comparison of the projected size andlinewidth of the above milliparsec-sca<strong>le</strong> structures with thoseof 12 CO(1−0) structures identified in data cubes from non-starformingregions of all sizes, up to several 100 pc (see the re<strong>le</strong>vantreferences in Appendix B). Although some of them (a few individualPdBI-structures of our samp<strong>le</strong>) further extend the generalscaling law down to 2 mpc, most of them significantly departfrom this law by a large factor. As already mentioned in Sect. 5.1,the departure is the largest for the pairs of PdBI-structures, asthey would appear if they were not resolved spatially i.e. asanomalously broad structures with respect to their size. The increasedscatter of velocity-widths of the structures below 0.1 pcdown to 1 mpc may be seen as another manifestation of the intermittencyof turbu<strong>le</strong>nce in translucent mo<strong>le</strong>cular gas.7. Comparison with experiments, numericalsimulations and chemical modelsThe present data set discloses small-sca<strong>le</strong> structures of intensevelocity-shears that carry the statistical properties of intermittencyand, in conjunction with that of HF09, reveals a connexionbetween parsec-sca<strong>le</strong> and milliparsec sca<strong>le</strong> velocity-shears. Thedynamic range of coup<strong>le</strong>d sca<strong>le</strong>s in the Polaris Flare is thereforeon the order of ∼10 3 . Moreover, velocity differences, up to3.5 km s −1 , close to the rms velocity dispersion of the CNM turbu<strong>le</strong>ncemeasured on 10-pc sca<strong>le</strong>s (or more) (Mivil<strong>le</strong>-Deschêneset al. 2003; Haud & Kalberla 2007), are found in the PdBI fieldover ∼10 mpc, without any detected density enhancement norshock signature. We argue that the SEE(D)S are the CO-richparts of straining sheets in a gas undetected in 12 CO(1−0), likelythe CNM, and that the fast CO enrichment is driven by enhancedturbu<strong>le</strong>nt dissipation in the intense velocity-shears. We show belowthat these findings may be understood in the light of recent


E. Falgarone et al.: Extreme velocity-shears and CO on milliparsec sca<strong>le</strong> 367<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012numerical simulations of incompressib<strong>le</strong> and compressib<strong>le</strong> turbu<strong>le</strong>nce,and the TDR chemical model of Godard et al. (2009).The fact that the most dissipative structures appear to belayers of intense strain-rate is consistent with recent resultsof numerical simulations of incompressib<strong>le</strong> turbu<strong>le</strong>nce at highReynolds number (Moisy & Jiménez 2004) and laboratory experiments(Ganapathisubramani et al. 2008). These regions arenot randomly distributed and form inertial-range clusters (Moisy& Jiménez 2004) or develop at the boundaries regions of high<strong>le</strong>vel of vorticity (i.e. vortex tubes) (Ganapathisubramani et al.2008). Coupling between small-sca<strong>le</strong> statistics of the velocityfield and the properties of the large-sca<strong>le</strong> flows is also c<strong>le</strong>arlyprobed in the high-Re numerical simulations of Mininni et al.(2006): correlations are observed between large-sca<strong>le</strong> shear andsmall-sca<strong>le</strong> intermittency.In compressib<strong>le</strong> turbu<strong>le</strong>nce, the fact that the most dissipativestructures are shear-layers is not expected. Yet, in their hydrodynamicalsimulations of mildly compressib<strong>le</strong> turbu<strong>le</strong>nce, Porteret al. (2002) show that the compressib<strong>le</strong> component of the velocityfield is weaker than its so<strong>le</strong>noidal counterpart by a factor ∼3,independent of the nature of the driving process (compressib<strong>le</strong> orso<strong>le</strong>noidal) and Vestuto et al. (2003) find that the energy fractionin the so<strong>le</strong>noidal modes is dominant and increases with the magneticfield intensity in compressib<strong>le</strong> magneto-hydrodynamical(MHD) turbu<strong>le</strong>nce. These numerical experiments are still farfrom approaching the ISM conditions but they suggest that turbu<strong>le</strong>ntdissipation may occur primarily in so<strong>le</strong>noidal modes,i.e. without direct gas compression, and that the properties ofthe small sca<strong>le</strong>s are coup<strong>le</strong>d to the large-sca<strong>le</strong>s.In the TDR models of Godard et al. (2009), the chemical enrichmentof the CNM is driven by high gas temperatures and enhancedion-neutral drift, without density enhancement. The temperatureincrease is due to viscous dissipation in the layers oflargest velocity-shears at the boundaries of coherent vortices 4 .The large ion-neutral drift occurs in the layers of largest rotationalvelocity in which ions and magnetic fields decoup<strong>le</strong> fromneutrals. These two dissipative processes trigger endothermicchemical reactions, blocked at the low temperature of the CNM.Enrichments consistent with observations are obtained for turbu<strong>le</strong>ntrates-of-strain a = 10 −11 s −1 induced by large sca<strong>le</strong> turbu<strong>le</strong>nceand for modera<strong>tel</strong>y dense gas (n H < 200 cm −3 )characteristicof the CNM. There is no direct determination of therates-of-strain generated by turbu<strong>le</strong>nce in the CNM. We notehowever that the largest observed velocity-shear (Tab<strong>le</strong> 3) corresponds,if the projected quantities provide reasonab<strong>le</strong> estimates,to a comparab<strong>le</strong> rate-of-strain. The range of observed CO columndensities from N(CO) = 10 14 to 1.6 × 10 15 cm −2 can bereproduced by intense velocity-shears occurring in gas of density100 to 200 cm −3 . In this framework, the energy sourcetapped to enrich the medium in mo<strong>le</strong>cu<strong>le</strong>s is the supersonic turbu<strong>le</strong>nceof the CNM.The association between the large observed velocity-shearsand local enhanced dissipation rate is therefore supported notonly by the earlier works presented in the Introduction but alsoby a quantitative agreement between the TDR chemical modelsand the present observational results. We cannot ru<strong>le</strong> out howevera contribution of low-velocity C-shocks to the turbu<strong>le</strong>nt dissipation.If they propagate in the CNM, they are not visib<strong>le</strong> in theCO lines. Such shocks are not yet reliably model<strong>le</strong>d (Hily-Blantet al., in preparation).4 The “sinews of turbu<strong>le</strong>nce” put forward by Moffatt et al. (1994) thatlink large-sca<strong>le</strong> strain and small-sca<strong>le</strong> vorticity.8. Conclusions and perspectivesIRAM-PdBI observations of a mosaic of 13 fields in the turbu<strong>le</strong>ntenvironment of a low-mass dense core have disclosedsmall and weak 12 CO(1−0) structures in translucent mo<strong>le</strong>culargas. They are straight and elongated structures but they are notfilaments because, once merged with short-spacings data, thePdBI-structures appear as the sharp edges of larger-sca<strong>le</strong> structures.Their thickness is as small as ≈3 mpc (600 AU), and their<strong>le</strong>ngth, up to 70 mpc, is only limited by the size of the mosaic.Their CO column density is a well determined quantity for theexcitation conditions found at larger sca<strong>le</strong> and is in the rangeN(CO) = 10 14 to 10 15 cm −2 .TheirH 2 density, estimated inseveral ways, including the continuum emission of the brighteststructure, does not exceed a few 10 3 cm −3 . Their well-distributedorientations can be followed in the larger-sca<strong>le</strong> environment ofthe field. Six of them form three pairs of quasi-paral<strong>le</strong>l structures,physically related. The velocity-shears estimated for thethree pairs include the largest ever measured in non-star-formingclouds (up to 780 km s −1 pc −1 ).The PdBI-structures are therefore not isolated and are theedges of so-cal<strong>le</strong>d SEE(D)S for sharp-edged extended (doub<strong>le</strong>)structures. We show that the SEE(D)S are thin layers of CO-richgas and that their sharp edges pinpoint a small-sca<strong>le</strong> dynamicalprocess, at the origin of the CO contrast detected by the PdBI.We propose that the SEE(D)S are the outcomes of the chemica<strong>le</strong>nrichment driven by intense dissipation occurring in largevelocity-shears and that they are CO-rich layers swept along bythe straining field of CNM turbu<strong>le</strong>nce.The present work is the first detection of mpc-sca<strong>le</strong> intensevelocity-shears belonging to a parsec-sca<strong>le</strong> shear. The large departurefrom average of the kinematic properties of these structures,confirms that they are a manifestation of the small-sca<strong>le</strong>intermittency of turbu<strong>le</strong>nce in this high latitude field, a propertyalready established on statistical grounds (HF09). The values ofthe velocity-shears (or rate-of-strain) provide a quantitative constrainton the dissipation rate that can be compared to chemicalmodels. The link between the turbu<strong>le</strong>nt dissipation in the diffusegas and the dense core observed in the vicinity of the PdBI mosaic(Fig. 1) still remains to be established.Last, we would like to stress that sub-structure still exists inthese mpc-sca<strong>le</strong> structures of the diffuse ISM and that the nextgeneration of interferometers (e.g. ALMA) should be ab<strong>le</strong> to observegas at the dissipation sca<strong>le</strong> of turbu<strong>le</strong>nce (that is still unknown)or at <strong>le</strong>ast observe the effects on the ISM (temperature,excitation, mo<strong>le</strong>cular abundances) of the huge re<strong>le</strong>ase of energyexpected to occur there.Acknow<strong>le</strong>dgements. We thank the IRAM staff at Plateau de Bure and Grenob<strong>le</strong>for their support during the observations. E.F. is most grateful to Michael Dumke,Emmanuel Dartois, Anne Dutrey and Stéphane Guilloteau for their help duringthe early stages of the data reduction. E.F. also acknow<strong>le</strong>dges the stimulantdiscussions over the years with E. Ostriker, P. Hennebel<strong>le</strong>, A. Lazarian, B. G.Elmegreen, M. M. Mac-Low, E. Vasquez-Semadeni and many others that cannotbe listed here. We thank J. Scalo, our (formerly anonymous) referee, forhis dedicated efforts at making us write our observational paper accessib<strong>le</strong> tonumericists.Appendix A: Noise <strong>le</strong>vel in the mosaicMosaic noise is inhomogeneous due to primary beam correction.This is shown in Fig. A.1. The 13-field mosaic produces a largearea with uniform noise <strong>le</strong>vel. Only at the edge of the mosaicdoes it increase sharply due to the primary beam correction (thecontour shown are at a 2−4 sigma <strong>le</strong>vel, 1 sigma being measuredat the map center on a channel devoided of signal).


368 E. Falgarone et al.: Extreme velocity-shears and CO on milliparsec sca<strong>le</strong><strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Fig. A.1. Map of the noise <strong>le</strong>vel in K km s −1 over the 13-field mosaic.Appendix B: The size-linewidth scaling lawMo<strong>le</strong>cular cloud parameters have long been determined as thoseof three-dimensional structures isolated in the four-dimensionalspace of the mo<strong>le</strong>cular line data sets T L (x,y,v z ), the line brightnesstemperature being a function of position in the pos (twocoordinates x,y), and one spectral dimension, the projected velocityon the los direction v z . In this 4D space, 3D structuresare isolated following different methods (Stutzki & Guesten1990; Williams et al. 1994; Falgarone & Perault 1987; Loren1989; Falgarone et al. 1992). The size and linewidth of thelarge number of clouds displayed in Fig. 10 have been obtainedby using published values, corrected in several cases toallow the size and linewidth obey the same definitions in allthe samp<strong>le</strong>s (see Falgarone 1998). The structures are identifiedin 12 CO(1−0) mo<strong>le</strong>cular line surveys of the central partsof the Galaxy (stars, Dame et al. 1986; open triang<strong>le</strong>s Solomonet al. 1987) and of the third quadrant (open hexagons, Mayet al. 1997), in the Rosette (crosses) and Madda<strong>le</strong>na (opensquares) mo<strong>le</strong>cular clouds (Williams et al. 1994), in non-starformingclouds (solid triang<strong>le</strong>s, Falgarone & Perault 1987; solidsquares, Falgarone et al. 1992; tripods, Lemme et al. 1995), inρ Ophiuchus (solid hexagons, Loren 1989) and in a high latitudecloud (starred triang<strong>le</strong>s, Heithausen et al. 1998).ReferencesAnselmet, F., Antonia, R. A., & Danaila, L. 2001, Planet. Space Sci., 49, 1177Arnéodo, A., Benzi, R., Berg, J., et al. 2008, Phys. Rev. Lett., 100, 254504Chevillard, L., Roux, S. G., Lévêque, E., et al. 2005, Phys. Rev. Lett., 95, 064501Dame, T. M., Elmegreen, B. G., Cohen, R. S., & Thaddeus, P. 1986, ApJ, 305,892de Avil<strong>le</strong>z, M. A., & Breitschwerdt, D. 2007, ApJ, 665, L35Elmegreen, B. G., & Scalo, J. 2004, ARA&A, 42, 211Falgarone, E. 1998, in Starbursts: Triggers, Nature, and Evolution, Les HouchesSchool, ed. B. Guiderdoni, & A. Kembhavi, 41Falgarone, E., & Perault, M. 1987, in Physical Processes in Inters<strong>tel</strong>lar Clouds,ed. G. E. Morfill, & M. Scho<strong>le</strong>r, NATO ASIC Proc., 210, 59Falgarone, E., Puget, J.-L., & Perault, M. 1992, A&A, 257, 715Falgarone, E., Panis, J.-F., Heithausen, A., et al. 1998, A&A, 331, 669Falgarone, E., Verstraete, L., Pineau Des Forêts, G., & Hily-Blant, P. 2005, A&A,433, 997Falgarone, E., Pineau Des Forêts, G., Hily-Blant, P., & Schilke, P. 2006, A&A,452, 511Frisch, U. 1995, Turbu<strong>le</strong>nce. The <strong>le</strong>gacy of A.N. Kolmogorov, ed. U. FrischGanapathisubramani, B., Lakshminarasimhan, K., & C<strong>le</strong>mens, N. T. 2008,Journal of Fluid Mechanics, 598, 141Godard, B., Falgarone, E., & Pineau Des Forêts, G. 2009, A&A, 495, 847Goldsmith, P. F., & Arquilla, R. 1985, in Protostars and Planets II, ed. D. C.Black, & M. S. Matthews, 137Goldsmith, P. F., Heyer, M., Narayanan, G., et al. 2008, ApJ, 680, 428Gredel, R., Pineau des Forêts, G., & Federman, S. R. 2002, A&A, 389, 993Gueth, F. 2001, in Proceedings from IRAM Millimeter Interferometry SummerSchool 2, 207Gueth, F., Guilloteau, S., & Bachil<strong>le</strong>r, R. 1996, A&A, 307, 891Haud, U., & Kalberla, P. M. W. 2007, A&A, 466, 555Hei<strong>le</strong>s, C. 2007, in SINS – Small Ionized and Neutral Structures in the DiffuseInters<strong>tel</strong>lar Medium, ed. M. Haverkorn, & W. M. Goss, ASP Conf. Ser., 365,3Heithausen, A. 1999, A&A, 349, L53Heithausen, A. 2004, ApJ, 606, L13Heithausen, A. 2006, A&A, 450, 193Heithausen, A., & Thaddeus, P. 1990, ApJ, 353, L49Heithausen, A., Bensch, F., Stutzki, J., Falgarone, E., & Panis, J. F. 1998, A&A,331, L65Heithausen, A., Bertoldi, F., & Bensch, F. 2002, A&A, 383, 591Hily-Blant, P., & Falgarone, E. 2007, A&A, 469, 173Hily-Blant, P., & Falgarone, E. 2009, A&A, 500, L29Hily-Blant, P., Falgarone, E., & Pety, J. 2008, A&A, 481, 367Hunter, S. D., Bertsch, D. L., Ca<strong>tel</strong>li, J. R., et al. 1997, ApJ, 481, 205Ingalls, J. G., Bania, T. M., Lane, A. P., Rumitz, M., & Stark, A. A. 2000, ApJ,535, 211Ingalls, J. G., Reach, W. T., Bania, T. M., & Carpenter, J. M. 2007, in SINS –Small Ionized and Neutral Structures in the Diffuse Inters<strong>tel</strong>lar Medium,ed. M. Haverkorn, & W. M. Goss, ASP Conf. Ser., 365, 201Jenkins, E. B., & Tripp, T. M. 2007, in SINS – Small Ionized and NeutralStructures in the Diffuse Inters<strong>tel</strong>lar Medium, ed. M. Haverkorn, & W. M.Goss, ASP Conf. Ser., 365, 51Joulain, K., Falgarone, E., Des Forets, G. P., & Flower, D. 1998, A&A, 340, 241Joung, M. K. R., & Mac Low, M.-M. 2006, ApJ, 653, 1266Lacour, S., Ziskin, V., Hébrard, G., et al. 2005, ApJ, 627, 251Lagache, G., Abergel, A., Boulanger, F., Désert, F. X., & Puget, J.-L. 1999,A&A, 344, 322Lemme, C., Walms<strong>le</strong>y, C. M., Wilson, T. L., & Muders, D. 1995, A&A, 302,509Lis, D. C., Pety, J., Phillips, T. G., & Falgarone, E. 1996, ApJ, 463, 623Liszt, H. S., & Lucas, R. 1998, A&A, 339, 561Loren, R. B. 1989, ApJ, 338, 902Mac Low, M.-M., & K<strong>le</strong>ssen, R. S. 2004, Rev. Mod. Phys., 76, 125Mac Low, M.-M., K<strong>le</strong>ssen, R. S., Burkert, A., & Smith, M. D. 1998, Phys. Rev.Lett., 80, 2754May, J., Alvarez, H., & Bronfman, L. 1997, A&A, 327, 325Mininni, P. D., A<strong>le</strong>xakis, A., & Pouquet, A. 2006, Phys. Rev. E, 74, 016303Mivil<strong>le</strong>-Deschênes, M.-A., Joncas, G., Falgarone, E., & Boulanger, F. 2003,A&A, 411, 109Moffatt, H. K., Kida, S., & Ohkitani, K. 1994, Journal of Fluid Mechanics, 259,241Moisy, F., & Jiménez, J. 2004, Journal of Fluid Mechanics, 513, 111Mordant, N., Delour, J., Léveque, E., Arnéodo, A., & Pinton, J.-F. 2002, Phys.Rev. Lett., 89, 254502Pety, J. 2005, in SF2A-2005: Semaine de l’Astrophysique Française, ed. F.Casoli, T. Contini, J. M. Hameury, & L. Pagani, 721Pety, J., & Falgarone, E. 2003, A&A, 412, 417Pety, J., Lucas, R., & Liszt, H. S. 2008, A&A, 489, 217Porter, D., Pouquet, A., & Woodward, P. 2002, Phys. Rev. E, 66, 026301Sakamoto, S., & Sunada, K. 2003, ApJ, 594, 340Scalo, J., & Elmegreen, B. G. 2004, ARA&A, 42, 275Snow, T. P., & McCall, B. J. 2006, ARA&A, 44, 367Solomon, P. M., Rivolo, A. R., Barrett, J., & Yahil, A. 1987, ApJ, 319, 730Stutzki, J., & Guesten, R. 1990, ApJ, 356, 513Vestuto, J. G., Ostriker, E. C., & Stone, J. M. 2003, ApJ, 590, 858Williams, J. P., de Geus, E. J., & Blitz, L. 1994, ApJ, 428, 693


A&A 518, A45 (2010)DOI: 10.1051/0004-6361/201014510c○ ESO 2010Astronomy&AstrophysicsThe CO luminosity and CO-H 2 conversion factor of diffuse ISM:does CO emission trace dense mo<strong>le</strong>cular gas? ⋆H. S. Liszt 1 ,J.Pety 2,3 , and R. Lucas 41 National Radio Astronomy Observatory, 520 Edgemont Road, VA 22903-2475 Charlottesvil<strong>le</strong>, USAe-mail: hliszt@nrao.edu2 Institut de Radioastronomie Millimétrique, 300 rue de la Piscine, 38406 Saint Martin d’Hères, France3 Obs. de Paris, 61 av. de l’Observatoire, 75014 Paris, France4 Al-MA, Avda. Apoquindo 3846 Piso 19, Edificio Alsacia, Las Condes, Santiago, Chi<strong>le</strong>Received 26 March 2010 / Accepted 8 May 2010ABSTRACT<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Aims. We wish to separate and quantify the CO luminosity and CO-H 2 conversion factor applicab<strong>le</strong> to diffuse but partially-mo<strong>le</strong>cularISM when H 2 and CO are present but C + is the dominant form of gas-phase carbon.Methods. We discuss galactic lines of sight observed in Hi, HCO + and CO where CO emission is present but the intervening cloudsare diffuse (locally A V< ∼ 1 mag) with relatively small CO column densities N CO< ∼ 2 × 10 16 cm −2 . We separate the atomic and mo<strong>le</strong>cularfractions statistically using E B−V as a gauge of the total gas column density and compare N H2 to the observed CO brightness.Results. Although there are H 2 -bearing regions where CO emission is too faint to be detected, the mean ratio of integrated CO brightnessto N H2 for diffuse ISM does not differ from the usual value of 1 K km s −1 of integrated CO brightness per 2 × 10 20 H 2 cm −2 .Moreover, the luminosity of diffuse CO viewed perpendicular to the galactic plane is 2/3 that seen at the Solar galactic radius insurveys of CO emission near the galactic plane.Conclusions. Commonality of the CO-H 2 conversion factors in diffuse and dark clouds can be understood from considerations ofradiative transfer and CO chemistry. There is unavoidab<strong>le</strong> confusion between CO emission from diffuse and dark gas and misattributionof CO emission from diffuse to dark or giant mo<strong>le</strong>cular clouds. The character of the ISM is different from what has beenbelieved if CO and H 2 that have been attributed to mo<strong>le</strong>cular clouds on the verge of star formation are actually in more tenuous,gravitationally-unbound diffuse gas.Key words. ISM: mo<strong>le</strong>cu<strong>le</strong>s – ISM: clouds1. IntroductionIt is a truism that sky maps of CO emission are understoodas uniquely tracing the Galaxy’s mo<strong>le</strong>cular clouds, dense, coldstrongly-shielded regions where the hydrogen is predominantlymo<strong>le</strong>cular and the dominant form of gas phase carbon is CO.Moreover, CO emission plays an especially important ro<strong>le</strong> inISM studies as the tracer of cold mo<strong>le</strong>cular hydrogen throughthe use of the so-cal<strong>le</strong>d CO-H 2 conversion factor which directlysca<strong>le</strong>s the integrated 12 CO J = 1–0 brightness W CO to H 2 columndensity N H2 . This deceptively simp<strong>le</strong> conversion is critically importantto determining mo<strong>le</strong>cular and total gas column densitiesand so to understanding the most basic properties of star formation(Leroy et al. 2008; Bigiel et al. 2008; Bothwell et al. 2009),the origins of galactic dust emission (Draine et al. 2007), andother such fundamentals.Yet, it is increasingly recognized that CO emission is presentalong lines of sight lacking high extinction or large mo<strong>le</strong>cularcolumn densities (Liszt & Lucas 1998). It is also the case thatsome very opaque lines of sight showing CO emission are comprisedentirely of diffuse material and H 2 -bearing diffuse clouds(McCall et al. 2002): a discussion of such a line of sight fromour own work is described in Appendix A here. Even in canonicaldark clouds like Taurus, detai<strong>le</strong>d high-resolution mappingof the CO emission (Goldsmith et al. 2008) reveals that much⋆ Appendix E is only availab<strong>le</strong> in e<strong>le</strong>ctronic form athttp://www.aanda.orgof it originates in relatively weakly-shielded gas where 13 CO isstrongly enhanced through isotopic fractionation, implying thatthe dominant form of gas phase carbon must be C + (Watson et al.1976).Conversely, it is also the case that mo<strong>le</strong>cular gas is detectedin the local ISM even when CO emission is not. Lines of sightwith N CO> ∼ 10 12 cm −2 , N H2> ∼ 10 19 cm −2 have long been detectab<strong>le</strong>in surveys of uv absorption (Sonnentrucker et al. 2007;Burgh et al. 2007; Sheffer et al. 2007, 2008), with expected integratedCO brightnesses as low as W CO = 0.001 K km s −1 (Liszt2007b). And, as discussed here, mm-wave HCO + and CO absorptionfrom clouds with N H2> ∼ 10 20 cm −2 are also more commonthan CO emission along the same lines of sight (see Lucas& Liszt 1996; Liszt & Lucas 2000, and Appendix A).Thus we are <strong>le</strong>d to ask two questions that are of particularimportance to the use of CO emission as a mo<strong>le</strong>cular gas tracer.First, where and how does the observed local CO luminosity reallyoriginate? Second, how comp<strong>le</strong><strong>tel</strong>y is the mo<strong>le</strong>cular materialrepresented by CO emission? The approach we take to addressthese issues is based on radiofrequency surveys of Hi, HCO +and CO absorption and emission along lines of sight through theGalaxy toward extragalactic background sources. By combining1) measurements of extinction (constraining the total gas columndensity); 2) measurements of Hi absorption (to determinethe gas column of atomic hydrogen); 3) the strength of HCO + absorption(tracing H 2 directly) and 4) the integrated CO J = 1–0brightness W CO , we relate W CO to N H2 along sightlines where weArtic<strong>le</strong> published by EDP Sciences Page 1 of 10


A&A 518, A45 (2010)1001010⌠⌡ τ(H I)dv [km s -1 ]10⌠⌡ τ(HCO + )dv [km s -1 ]1W CO [K km s -1 ]1f H2 =1/31w/COw/HCO +No HCO + ,CO,CO0.1HCO + only, no H I0.1HCO + onlyH I onlyHI&HCO +0.1 1E B-V [mag]0.1 1E B-V [mag]0.1 1E B-V [mag]<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Fig. 1. Atomic and mo<strong>le</strong>cular absorption and emission vs. total reddening. Left:IntegratedVLAHi optical depth from Dickey et al. (1983) and thiswork. Midd<strong>le</strong>: integrated PdBI HCO + optical depth from Lucas & Liszt (1996) and this work. Right: integrated ARO12m CO J = 1–0 brightnessat 1 ′ resolution. In each case the horizontal axis is the total line of sight reddening E B−V (Sch<strong>le</strong>gel et al. 1998). For explanation of the symbols usedin the plots, see Sect. 3.have previously shown that the intervening gas is diffuse, neitherdark nor dense, and the CO column densities are relatively small.The results are somewhat surprising: although there is muchvariability, the mean CO brightness per H 2 -mo<strong>le</strong>cu<strong>le</strong> W CO /N H2 ,i.e. the CO-H 2 conversion factor, does not differ between diffuseand fully mo<strong>le</strong>cular clouds. Although this was phenomenologicallyinferred long ago, the physical basis for it is now betterunderstood in terms of the radiative transfer and chemistry ofH 2 - and CO-bearing diffuse and dark gas.The plan of the present work is as follows. Section 2 describesthe observational material that is used here, some ofwhich is new. Section 3 derives the CO-H 2 conversion factor indiffuse gas. Section 4 discusses the fraction of the local galacticCO luminosity (viewed perpendicular to the galactic plane) thatcan be attributed to diffuse gas. Section 5 discusses the physicalprocesses at play to set the ratio of CO brightness to H 2 columndensity and explains why the same value may apply to dark anddiffuse gas. Section 6 discusses which mo<strong>le</strong>cular emission diagnosticsmight actually be used to distinguish between the COcontributions from diffuse and dark gas. Sections 7 and 8 presenta brief summary and discuss how our concept of the ISM mightchange when a substantial portion of the observed CO emissionis ascribed to diffuse rather than dense mo<strong>le</strong>cular gas.2.2. Hi absorptionThis is mostly taken from the VLA results of Dickey et al.(1983) but a line profi<strong>le</strong> for B2251+158 (3C 454.3) was madeavailab<strong>le</strong> on the website of John Dickey and we took new Hiabsorption profi<strong>le</strong>s toward J0008+686, J0102+584,B0528+134,B0736+017, J2007+404, J2023+318 and B2145+067 at theVLA in 2005 May and July.2.3. HCO + absorptionWe used results from the PdBI’s HCO + survey of Lucas & Liszt(1996) along with the slightly more recent results of Liszt &Lucas (2000) and a few additional profi<strong>le</strong>s that were taken at thePdBI in 2001–2004.The rotational excitation of HCO + above the cosmicmicrowave background is very weak in diffusegas (Liszt & Lucas 1996) so that N HCO + =1.12 × 10 12 cm −2 (∫ τ(HCO + )dv/1kms −1) for an assumedHCO + permanent dipo<strong>le</strong> moment of 3.889 Debye. This dipo<strong>le</strong>moment is slightly smal<strong>le</strong>r than the value used in most of ourprevious work (4.07 D), increasing the inferred HCO + columndensities by 10%.2. Observational materialThedatausedinthisworkaregiveninTab<strong>le</strong>sE.1andE.2ofAppendix E (availab<strong>le</strong> online).2.1. E B−VValues of the total reddening E B−V along the line of sight arefrom the work of Sch<strong>le</strong>gel et al. (1998) at a spatial resolution of6 ′ . The claimed rms error of these measurements is a percentage(16%) of the value. To convert to column density we usethe equiva<strong>le</strong>nce N H = N(H I)+ 2N H2 = 5.8 × 10 21 H cm −2 E B−Vestablished by Bohlin et al. (1978) andRachford et al. (2009).Typically A V = E B−V /3.1 (Spitzer 1978).2.4. J = 1–0 CO emissionAll the results quoted here are from the ARO12m antenna at1 ′ resolution, placed on a main-beam sca<strong>le</strong> by dividing the nativeTr∗ values by 0.85. Most of these profi<strong>le</strong>s were used onthe Tr ∗ sca<strong>le</strong> in our earlier work (Liszt & Lucas 1996, 1998,2000) but profi<strong>le</strong>s toward sources with Hi absorption and lackingHCO + absorption data (noted in Fig. 1) and toward sourceswith J-names in Tab<strong>le</strong>s C.1 and C.2 are new. The velocity resolutionwas typically 0.1 km s −1 and all spectra were taken infrequency-switching mode and deconvolved (folded) using theEKHL algorithm (Liszt 1997a). Where upper limits on CO emissionare shown, they are plotted symbolically at very conservativevalues taken over much wider ranges than are occupied byPage 2 of 10


H. S. Liszt et al.: CO luminosity of diffuse gas<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012HCO + emission. The contributions of such sightline to ensemb<strong>le</strong>averages of W CO was taken as zero in each case.3. The mean N H2 /W CO ratio of diffuse gas3.1. Considering who<strong>le</strong> lines of sightBecause the target background sources are extragalactic, thelines of sight considered here traverse the entire galactic gaslayer, crossing the entire possib<strong>le</strong> gamut of gas phases. However,they either have low extinction (at |b| > ∼ 15–20 ◦ ) or, more often,can be decomposed into components whose individual mo<strong>le</strong>cularcolumn densities are relatively small according to our previousstudies of absorption and emission in these directions(see Appendix A for an examp<strong>le</strong>). For instance, the highestCO column densities observed for individual components areN CO< ∼ 2 × 10 16 cm −2 (Liszt & Lucas 1998), representing about7% of the free carbon column density expected for diffuse ISMat A V = 1mag(Sofia et al. 2004). 13 CO is increasingly stronglyfractionated in diffuse clouds having higher N CO (Liszt & Lucas1998; Liszt 2007a), requiring that carbon must be predominantlyin the form of C + .3.2. Separating the atomic and mo<strong>le</strong>cular gas fractionsIn order to derive the N H2 /W CO conversion factor, we need toestimate N H2 independent of the CO emission tracer. To do this,we could use previous estimates of the mean fraction of H 2 inthe diffuse ISM, which range from > ∼ 25% (Savage et al. 1977)in uv absorption to 40–45% using a chemically-based approachfounded on the observed constancy of X CH = N CH /N H2 (Liszt &Lucas 2002; Sheffer et al. 2008; Weselak et al. 2010). However,as this is the core of our argument, we take two other and moredetai<strong>le</strong>d approaches to separating the atomic and mo<strong>le</strong>cular columndensities along the actual ensemb<strong>le</strong> of lines of sight we havestudied. Both methods depend on knowing the total column densityN H from the measured reddening and both are detai<strong>le</strong>d in thefollowing subsections.3.3. Estimating the atomic gas fraction via HI absorptionIn Fig. 1 at <strong>le</strong>ft we show the integrated Hi absorption plottedagainst reddening. This diagram is comprised of the entire samp<strong>le</strong>of Dickey et al. (1983) along with a handful of other sightlinesobserved in Hi by us at the VLA and in HCO + at the PdBI(see Sect. 2). Symbols differentiate 1) those portions of the samp<strong>le</strong>for which HCO + and CO were observed (all sightlines observedin HCO + were also observed in CO emission and most inCO absorption); 2) a few for which we only have Hi absorptionand CO emission data; and 3) those which lack any mo<strong>le</strong>culardata. Strictly speaking, only those lines of sight for which wehave mo<strong>le</strong>cular absorption line data can be proven to be composedwholly of diffuse gas but the samp<strong>le</strong> appears to be veryhomogeneous in terms of its absorbing properties and many ofthe lines of sight lacking mo<strong>le</strong>cular absorption data show COemission well beyond the galactic extent of the dense gas layer.The surprisingly tight, nearly linear correlation between theintegrated Hi optical depth and reddening (correlation coefficient0.90, power-law slope 1.02) establishes the applicability of thecomparison of reddening values (which are measured on a rathercoarse 6 ′ spatial sca<strong>le</strong>) with Hi absorption measurements againstthe extragalactic continuum sources, sampling sub-arcsecondbeams. This excel<strong>le</strong>nt correlation between fan and pencil-beamquantities testifies to the high degree to which Hi absorbinggas is mixed in the inters<strong>tel</strong>lar gas. The samp<strong>le</strong> mean reddeninginFig.1at <strong>le</strong>ft is 〈E B−V 〉 = 1.14 mag and the samp<strong>le</strong>mean integrated Hi opacity is 〈∫ τ(Hi)dv 〉 = 16.50 kms −1 sothat 〈∫ τ(Hi)dv 〉 / 〈E B−V 〉 = 1.45 km s −1 /mag for the samp<strong>le</strong> asa who<strong>le</strong>.Estimating the Hi column density from the Hi absorptionmust be done with care because the atomic gas is divided betweenwarm and cold phases having widely differing opticaldepth. Separation of the warm and cold, absorbing and nonabsorbingphases was recently considered in great detail byHei<strong>le</strong>s & Troland (2003) inanewHi emission-absorption surveyalong many lines of sight. From their tabulated results, it waspossib<strong>le</strong> to form the ratio of N Hi to ∫ τ(Hi)dv (a small portion ofwhich actually arises in warmer gas) as shown in Fig. B.1 of theappendices and briefly discussed in Sect. B1 there. The samp<strong>le</strong>mean ratio over all lines of sight in the Hei<strong>le</strong>s & Troland (2003)survey is N Hi / ∫ τ(Hi)dv = 2.6 ± 0.2 × 10 20 cm −2 /km s −1 wherethe error estimate (which is a range, not a standard deviation)ref<strong>le</strong>cts the extent to which the ratio can be affected by samp<strong>le</strong>se<strong>le</strong>ction criteria based on reddening, galactic latitude, etc. Thismean value shows very litt<strong>le</strong> variation when computed on subsamp<strong>le</strong>sse<strong>le</strong>cted on different criteria.It is then possib<strong>le</strong> to derive the atomic gas fraction, if we assumethat our absorption samp<strong>le</strong> has similar properties. Writing∫N Hiτ(Hi)dvf Hi ≈ ( ∫ ) × (), (1)τ(Hi)dv 5.8 × 10 21 E B−Vtaking the first term from our analysis of the results of Hei<strong>le</strong>s&Troland(2003) and the second from the mean for the datashown in Fig. 1. The result is that f Hi = 0.65, so that f H2 = 2N(H 2 )/N(H) = 0.35.This estimate of the mo<strong>le</strong>cular gas fraction for our samp<strong>le</strong>of sightlines falls in the midd<strong>le</strong> of the range of current genera<strong>le</strong>stimates for diffuse gas as noted in the beginning of thisSection, i.e. f H2> ∼ 0.25 from Copernicus corrected for samplingbiases (Bohlin et al. 1978) and f H2 ≈ 0.40−0.45 from asamp<strong>le</strong> of lines of sight observed toward bright stars in opticalabsorption lines observed in CH (Liszt & Lucas 2002), giventhat X CH = N CH /N H2 is nearly constant at 4.5 × 10 −8 (Shefferet al. 2008; Weselak et al. 2010).3.4. Checking the mo<strong>le</strong>cular gas fraction via mo<strong>le</strong>cularchemistryShown in the midd<strong>le</strong> panel is the integrated HCO + absorption.As noted in Sect. 2.3 the integrated optical depth is directlytranslatab<strong>le</strong> into HCO + column density given the near-absenceof rotational excitation in the relatively low density diffuse gas:N HCO + = 1.12 × 10 12 cm (∫ −2 τ(HCO + )dv/1kms −1) .Therelativeabundance of HCO + is known to be nearly constant atX HCO + ≃ 2−3 × 10 −9 from its fixed ratio with respect to OHin individual clouds (Liszt & Lucas 1996, 2000) and the nearconstancyof X OH ≈ 10 −7 (Weselak et al. 2010).Figure 1 shows that HCO + becomes readily detectab<strong>le</strong> atE B−V> ∼ 0.1 mag, which is just where H 2 itself becomes abundantin the diffuse ISM (Savage et al. 1977). When detected, N HCO +shows a correlation with E B−V (correlation coefficient 0.66 andpower law slope 0.7 for the points with detected HCO + )butthelarger scatter in the midd<strong>le</strong> panel, compared to that at <strong>le</strong>ft, suggeststhat the mo<strong>le</strong>cular portion of the gas is <strong>le</strong>ss well mixed thanthe absorbing Hi.Page 3 of 10


A&A 518, A45 (2010)If X HCO + is assumed, a value for f H2 could be derived fromthe data in the midd<strong>le</strong> panel of Fig. 1. Conversely,if f H2 = 0.35is assumed and samp<strong>le</strong> means are used, then 〈N HCO +〉 /(5.8 ×10 21 cm −2 〈E B−V 〉) = 5.46 × 10 −10 and X HCO + = N HCO +/N H2 =3.1×10 −9 , consistent with the previously established value (Liszt& Lucas 1996, 2000). Therefore the decomposition of the ensemb<strong>le</strong>of lines of sight appears to yield consistent results betweenseveral independent measures of both the atomic andmo<strong>le</strong>cular components.W CO [K-km s -1 ]101σ zxf H2= 30pc<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 20123.5. The ensemb<strong>le</strong>-averaged CO luminosity and N H2 /W COconversion factorShown at the right in Fig. 1 is the integrated 12 CO J = 1–0intensity W CO plotted against E B−V . CO emission is not reliablydetected except at E B−V > 0.3 mag(i.e.A V> ∼ 1 mag). Indiscussing this data, it is important to note that values of N COhave been measured in the diffuse gas (Liszt & Lucas 1998)andthey are quite small compared to the column of free gas phasecarbon expected at A V = 1mag(i.e.3× 10 17 cm −2 ,seeSofiaet al. 2004). Moreover, the lines of sight having the largest valuesof W CO are composed of several emission components (seeAppendix A for an examp<strong>le</strong>). The CO emission along these linesof sight orginates in diffuse gas where C + is the dominant formof carbon.If it is accepted that f H2 = 0.35, the bulk CO-H 2 conversionfactor may be inferred immedia<strong>tel</strong>y from the data shownin Fig. 1. The samp<strong>le</strong> means are 〈W CO 〉 = 4.42 K km s −1 and〈E B−V 〉 = 0.888 mag or ( 〈 〉N H2 = 9.01 × 10 20 H 2 cm −2 ), implyingW CO = 1Kkms −1 per 2.04×10 20 H 2 cm −2 . Rather strikingly,there is apparently no difference in the mean CO luminosity perH 2 in diffuse and fully mo<strong>le</strong>cular gas. For insight into the scatterpresent in the ensemb<strong>le</strong> of sightlines, the right-hand panel ofFig. 1 shows a line corresponding to the ensemb<strong>le</strong> mean conversionfactor and f H2 = 1/3. The range in f H2 determined forthe diffuse gas, roughly 0.25–0.45 or 0.35 ± 0.1, implies a 30%margin of error for the method as a who<strong>le</strong>.An alternative approach to this determination based onmo<strong>le</strong>cular chemistry, comparing W CO with N HCO +as a surrogatefor N H2 and giving similar results, is discussed in Appendix C.4. The proportion of CO emission arisingfrom diffuse gasThe similarity of the CO-H 2 conversion factors in diffuse andfully mo<strong>le</strong>cular gas must have <strong>le</strong>d to confusion whereby COemission arising in diffuse gas has been attributed to “mo<strong>le</strong>cularclouds”, i.e. the truism noted in the Introduction. To quantify thisphenomenon we derive the mean luminosity of diffuse mo<strong>le</strong>culargas viewed perpendicular to the galactic plane W CO (b)sin|b|for a plane-paral<strong>le</strong>l stratified gas layer and we compare that tothe equiva<strong>le</strong>nt luminosity perpendicular to the galactic plane inferredfrom surveys of CO emission near the galactic equator.Shown in Fig. 2 is the distribution of W CO with 1/ sin |b|.Forreference a line is shown corresponding to the canonical CO-H 2conversion factor and the combination f H2 × σ z = 30 pc, inthe simplistic case that the galactic gas layer can be describedby a sing<strong>le</strong> Gaussian vertical component with dispersion σ z .For convenience the diffuse gas is usually described by severalcomponents having a range of vertical sca<strong>le</strong> heights (Cox2005) but the neutral gas components of the nearby ISM are notwell-described by simp<strong>le</strong> plane-paral<strong>le</strong>l layers (see also Hei<strong>le</strong>s& Troland 2003) owing to local geometry (the local bubb<strong>le</strong>)Page 4 of 100.1b


H. S. Liszt et al.: CO luminosity of diffuse gas<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012(Münch 1952) which were very unlikely to have samp<strong>le</strong>d darkcloud lines of sight. GAIA photometry should sett<strong>le</strong> this matter,but the issue of the total mean density of the ISM locally andrelative proportions of atomic and mo<strong>le</strong>cular material are not asc<strong>le</strong>arly defined as is generally assumed.5. Rationa<strong>le</strong> for a common CO-H 2 conversionThe very first discussions of the applicability of a commonN H2 /W CO conversion factor (Liszt 1982; Young & Scovil<strong>le</strong>1982) noted that diffuse and dense gas at 60–100 K, or darkdense gas at 12 K, all had similar ratios W CO /N H2 .ForinstanceW CO ≈ 1.5 Kkms −1 , N H2 = 5 × 10 20 km s −1 toward ζOph (a typical diffuse line of sight) and W CO = 450 K km s −1 ,N H2 = 2 × 10 23 H 2 cm −2 toward Ori A. By comparison, a darkcloud like L204, near ζ Oph, with A V = 5maghasN H2 ≈5 × 10 21 cm −2 , N CO ≈ 8 × 10 17 cm −2 and an integrated brightnessW CO ≈ 15 K km s −1 (Tachihara et al. 2000)orN H2 /W CO ≈3×10 20 H 2 cm −2 (K km s) −1 . Comparing the two gas phases samp<strong>le</strong>din CO near ζ Oph it is apparent that the higher CO columndensity in the dark cloud is more than compensated by the diminishedbrightness per CO mo<strong>le</strong>cu<strong>le</strong>. The result is a nearly constantratio of W CO to N H2 across phases whi<strong>le</strong> the brightness per COmo<strong>le</strong>cu<strong>le</strong> W CO /N CO varies widely.The physical basis for this behavior has become more apparentrecently with closer study of CO in diffuse gas (Pety et al.2008; Liszt et al. 2009). To begin the discussion we rewrite theCO-H 2 conversion factor χ CO as( ) ( ) ( )1 WCO NCO WCO= × = X CO , (2)χ CO N CO N H2 N COseparating the coup<strong>le</strong>d and competing effects of cloud structureor radiative transfer (W CO /N CO ) and CO chemistry (N CO /N H2= X CO ). Simply put, the specific brightness W CO /N CO can beshown to be higher in warmer, subthermally-excited diffuse gasby about the same amount (a factor 30–50) that X CO is lower:〈X CO 〉 = 3 × 10 −6 for the diffuse gas (Burgh et al. 2007) comparedto ≈10 −4 in dark gas where the carbon is very nearly all inCO.As noted by Goldreich & Kwan (1974) in the original expositionof the LVG model for radiative transfer, W CO /N CO willbe much greater when the excitation of CO is weak – when thekinetic temperature is much greater than the J = 1–0 excitationtemperature. Moreover when CO is excited somewhat above thecosmic microwave background but well below the kinetic temperature,the brightness of the CO J = 1–0 line will be linearlyproportional to N CO even when the line is quite optically thick(again, see Goldreich & Kwan 1974). As Michel Guelin pointedlyreminded us, this occurs because weak excitation meansthat there is also litt<strong>le</strong> collisional de-excitation so that the gasmerely scatters emitted photons until they eventually escape. AsGoldreich & Kwan (1974) showed, this proportionality betweenbrightness and column density persists until the opacity is sovery large that the transition approaches thermalization throughradiative trapping.The discussion of the previous paragraph also appliesto other mo<strong>le</strong>cu<strong>le</strong>s, but because CO has such a smalldipo<strong>le</strong> moment the proportionality between CO brightnessand column density is only weakly dependent on ambientphysical conditions: a nearly universal ratio N CO /W CO =10 15 CO cm −2 /(K km s −1 ) can be calculated for diffuse gasusing recent excitation cross-sections (Liszt 2007b). This isin excel<strong>le</strong>nt agreement with measured values of N CO andCO J = 1–0 excitation temperatures in the diffuse gas seen towardstars in uv absorption (Sonnentrucker et al. 2007; Burghet al. 2007; Sheffer et al. 2008) or at mm-wave<strong>le</strong>ngths in absorptionagainst distant quasars (Liszt & Lucas 1998). Forthe observed value 〈X CO 〉 = 3 × 10 −6 (Burgh et al. 2007)the N H2 /W CO conversion ratio in diffuse clouds is N H2 /W CO =10 15 /3 × 10 −6 = 3.3 × 10 20 H 2 cm −2 /(K km s −1 ).Finally, note that even if the ratio W CO /N CO is not constantbetween gas phases, it is still the case that W CO ∝ N CO separa<strong>tel</strong>yin either the dense or diffuse gas. For the diffuse gas the proportionalityis based in the microphysics of CO radiative transfer ala Goldreich & Kwan (1974). For the dark cloud case, note thatthere is a fixed ratio of N CO /N H2 when the gas-phase carbon is inCO and the hydrogen is in H 2 so that a W CO –N H2 conversion isfully equiva<strong>le</strong>nt to a W CO –N CO conversion.6. Discriminating between emission from diffuseand dense gasThere are ways in which mm-wave mo<strong>le</strong>cular emission differsbetween dense and diffuse gas, even if not in 12 CO. Emissionfrom mo<strong>le</strong>cu<strong>le</strong>s like CS, HCN and HCO + having higher dipo<strong>le</strong>moments is generally thought to sing<strong>le</strong> out denser gas than doesCO, especially in extreme environments (Wu et al. 2005). Note,however, that surveys of the Milky Way galactic plane findwidely-distributed emission in HCO + , CS, HCN, etc. with intensityratios of 1–2% relative to W CO from essentially all featuresdetected in CO (Liszt 1995; Helfer & Blitz 1997).Relatively litt<strong>le</strong> is known of the emission from mm-wavespecies in diffuse gas beyond that from CO. Most common isemission from HCO + because it is chemically ubiquitous andsomewhat more easily excited owing to its positive charge andhigh dipo<strong>le</strong> moment. Although HCO + emission is weak in theexamp<strong>le</strong> shown here in Appendix A it appears at <strong>le</strong>vels > ∼ 1%of W CO in portions of the diffuse cloud around ζ OphorinthePolaris flare (Liszt & Lucas 1994; Liszt 1997; Falgarone et al.2006). Therefore HCO + emission is probably not a good discriminatorbut CS and HCN appear with high abundance onlywhen N HCO + > ∼ 10 12 cm −2 or N H2 > 5 × 10 20 cm −2 and shouldbe much more weakly excited in low density gas. In any case,searching for emission that is 100 times weaker than W CO maynot be an effective use of observing time and only in very dense,warmer gas like that found in massive, OB star-forming regionslike Ori A are the higher dipo<strong>le</strong> moment mo<strong>le</strong>cu<strong>le</strong>s substantiallybrighter than 1–2% relative to W CO .A more effective method of discriminating between COemission from diffuse and dark or dense gas is afforded by13 CO. Although the abundance of 13 CO is enhanced by fractionation(see the examp<strong>le</strong> in Appendix A) lowering the observed12 CO/ 13 CO brightness temperature ratios (Liszt & Lucas 1998;Liszt 2007b; Goldsmith et al. 2008), those ratios are still noticeablyhigher in diffuse gas. Typically they are > ∼ 10–15 instead of


A&A 518, A45 (2010)<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 20127. SummaryIn Sects. 2 and 3 we described and considered a samp<strong>le</strong> of linesof sight studied in Hi and mo<strong>le</strong>cular absorption and known tobe comprised of diffuse gas. Their mo<strong>le</strong>cular component showsfeatures whose CO, HCO + and other mo<strong>le</strong>cular column densitiesare small compared to those of dark clouds (in the case of CO,at <strong>le</strong>ast 30 times smal<strong>le</strong>r). There is often quite substantial fractionationof 13 CO (indicating that the dominant form of carbonis C + ) and the rotational excitation of CO is sub-thermal withimplied cloud temperatures typical of those determined directlyfor diffuse H 2 in optical/uv surveys, i.e. 30 K or more.Using an externally-determined value for the ratio of totalHi column density to integrated Hi absorption and the standardequiva<strong>le</strong>nce between reddening and N H we derived the mo<strong>le</strong>culargas fraction for this samp<strong>le</strong> to be f H2 = 0.35, in the midd<strong>le</strong> ofthe range of other estimates for the diffuse ISM as a who<strong>le</strong> basedon optical (mainly CH) and uv (Hi and H 2 ) absorption studies.We showed that this estimate for f H2 implies the samevalue X HCO + = 3 × 10 −9 that was previously determinedfrom comparisons of OH and HCO + column densities in individualclouds. We then compared measured CO brightnesseswith the inferred mo<strong>le</strong>cular gas column densities to derive theensemb<strong>le</strong> mean N H2 /W CO conversion factor. Surprisingly, Wefound this mean to be just equal to the locally-accepted value2.0 × 10 20 H 2 /(Kkms −1 ) for “mo<strong>le</strong>cular” gas believed to residein dense dark fully-mo<strong>le</strong>cular clouds near the galactic equator.Such exact agreement is probably something of an accidentof sampling, but the fact that diffuse and dark gas wouldhave very similar N H2 /W CO conversion factors, which had beeninferred empirically long ago, now has a firmer physical basis.In Sect. 5 we explained it as the result of the brighteningof CO J = 1–0 emission per CO mo<strong>le</strong>cu<strong>le</strong> that was theoreticallypredicted for warmer more diffuse gas by Goldreich &Kwan (1974), which compensates for the lower relative abundanceX CO there. The mean CO abundance observed in opticalabsorption in diffuse clouds 〈X CO 〉 = 3 × 10 −6 , combinedwith the observed and expected brightness per CO mo<strong>le</strong>cu<strong>le</strong>,W CO /N CO = 1 Kkms −1 /10 15 CO cm −2 , can be be combined toform an CO-H 2 conversion factor of N H2 /W CO = 10 15 /3×10 −6 =3.3 × 10 20 H 2 cm −2 /(K km s −1 ).In Sect. 4 we derived the expected brightness of diffusegas viewed perpendicular to the galactic plane from afar,0.47 K km s −1 , and compared that to the value expected fromsurveys of CO emission in the galactic plane, combined with anarrow (60 pc dispersion) Gaussian vertical distribution; that is0.75 K km s −1 . This suggests that there has been confusion in thegeneral attribution of CO emission to “mo<strong>le</strong>cular clouds” whenin fact much of it arises in the diffuse ISM. This view is consistentwith the motivations discussed in the Introduction, wherebyCO emission is increasingly being found along lines of sightlacking high extinction and whereby CO emission seen alongdark lines of sight is found (through mo<strong>le</strong>cular absorption studiesand in other ways) to originate in components having therelatively small mo<strong>le</strong>cular number and column densities typicalof diffuse gas. An examp<strong>le</strong> of such a line of sight is given inAppendix A here.We briefly discussed in Sect. 4 the decomposition of the totalmean density of neutral gas in the nearby ISM, 1.2 H cm −3(Spitzer 1978), into its atomic and mo<strong>le</strong>cular constituents. Wenoted that although the balance is generally believed to beroughly 50–50 (Cox 2005), some emission might shift to thediffuse side of the balance sheet if CO emission is reinterpreted.Moreover, we pointed out that the mo<strong>le</strong>cular contribution to thePage 6 of 10true local mean density from large-sca<strong>le</strong> galactic CO surveysin the galactic plane should be questioned more generally becauseit is unc<strong>le</strong>ar to what extent Spitzer’s estimate, based on theearlier optical work of Münch, incorporates the contribution ofoptically-opaque gas.Although the ability to discriminate between the separatecontributions to W CO from diffuse and darker, denser gas is limitedwhen only 12 CO is considered, it should be possib<strong>le</strong> to inferthe nature of the host gas using other emission diagnostics (seeSect. 6). The most efficient of these is probably the brightnessof 13 CO, which, although enhanced by fractionation, is still substantiallyweaker, relative to W CO ,indiffuse gas. Searching foremission from species having higher dipo<strong>le</strong> moments such as CSJ = 2–1 and HCN (and probably not HCO + because it is chemicallyso ubiquitous and more easily excited) are alternatives thatmight require somewhat longer integration times.8. Discussion: Interpreting a sky occupied by COemission from diffuse gasThe usual interpretation of CO sky maps, galactic surveys, etc,is that CO emission mostly traces dark and or “giant” mo<strong>le</strong>cularclouds (GMC) composed of dense cold gas occupying a verysmall fraction of the inters<strong>tel</strong>lar volume at high thermal pressurewithin an ISM that may confine them via its ram or turbu<strong>le</strong>ntpressure if they are not gravitationally bound. The balancebetween GMC and diffuse atomic material may be control<strong>le</strong>dby quasi-equilibrium between local dynamics and the overlyingweight of the gas layer but the mo<strong>le</strong>cular material inferred fromCO emission is generally believed to be that which is most nearlyon the verge of forming stars, for instance through the Schmidt-Kenicutt power-law relation between star formation rate and gassurface density 2 (Leroy et al. 2008; Bigiel et al. 2008).By contrast, CO emission from diffuse mo<strong>le</strong>cular gas originateswithin a warmer, lower-pressure medium that occupies amuch larger fraction of the volume and contributes more substantiallyto mid-IR dust or PAH emission but only has the requisitedensity and chemistry to produce CO mo<strong>le</strong>cu<strong>le</strong>s and COemission (since W CO ∝ N CO ) over a very limited portion of thatvolume. In this case a map of CO emission is a map of CO abundanceand CO chemistry first, and only secondarily a map of themass even if the mean CO-H 2 conversion ratio is (as we haveshown) “standard”. Moreover, although CO emission traces themo<strong>le</strong>cular column density N H2 quite decently where W CO is atdetectab<strong>le</strong> <strong>le</strong>vels, it arises in regions that are not gravitationallybound or about to form stars. The CO sky is mostly an image ofthe CO chemistry.Acknow<strong>le</strong>dgements. The National Radio Astronomy Observatory is operated byAssociated Universites, Inc. under a cooperative agreement with the US NationalScience Foundation. The Kitt Peak 12-m millimetre wave <strong>tel</strong>escope is operatedby the Arizona Radio Observatory (ARO), Steward Observatory, University ofArizona. IRAM is operated by CNRS (France), the MPG (Germany) and the IGN(Spain). This work has been partially funded by the grant ANR-09-BLAN-0231-01 from the French Agence Nationa<strong>le</strong> de la Recherche as part of the SCHISMproject. We thank Bob Garwood for providing the H I profi<strong>le</strong>s of Dickey et al.(1983) in digital form.Appendix A: NRAO150: an examp<strong>le</strong> of a dark lineof sight comprised of diffuse gasThe estimated total extinction along this comparatively lowlatitudeline of sight at l = 150.4 ◦ , b = −1.6 ◦ (see Tab<strong>le</strong> E.2)2 It is also recognized that more precise tracers of the high-densitystar-forming material may be needed in extreme environments such asULIRG (Wu et al. 2005).


H. S. Liszt et al.: CO luminosity of diffuse gas6<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012T r* [Kelvin]e -τ -1543213 COx3112 CO(1-0)02HNC112 CO(1-0),13 COx20HCO +-1H Ix100-40 -20 0V LSR [km s -1 ]Fig. A.1. Line profi<strong>le</strong>s toward and near B0355+508 = NRAO150.Bottom: absorption line profi<strong>le</strong>s of H I, HCO + , 12 CO, 13 CO (multipliedby 2) and HNC; Hi absorption and emission are present over a muchbroader velocity range than shown here. Top: Emission from 12 CO,13 CO (sca<strong>le</strong>d upward by a factor 3) and HCO + (sca<strong>le</strong>d upward by afactor 100). The HCO + profi<strong>le</strong> is an average over a 3.5 ′ region aroundthe continuum (to avoid absorption). See Appendix A.is E B−V = 1.5 mag or A V ≈ 5 mag but it would be quiteopaque even if only the atomic gas were present. A lower limiton N Hi from the integrated 21 cm emission of the nearest profi<strong>le</strong>in the Leiden-Dwingeloo Survey (Hartmann & Burton 1997)in the optically thin limit is N Hi> ∼ 7.4 × 10 21 cm −2 , implyingE B−V> ∼ 1.27 mag. The H I column density derived by takingthe ratio of N Hi to Hi absorption as discussed in Sect. 3 here is,understandably, slightly larger, N Hi = 1.1 × 10 22 cm −2 .We show in Fig. A.1 various absorption and emission profi<strong>le</strong>salong and around the line of sight to NRAO150 akaB0355+508. We have published various analyses of this line ofsight in the references noted below, and most recently we synthesizedthe CO emission in a 90 ′′ region around NRAO150 at6 ′′ resolution (Pety et al. 2008). Hi absorption and emission extendwell outside the narrow kinematic interval shown here. Theweak HCO + absorption at −35 km s −1 is real, as is the broadwing extending up to −25 km s −1 .CO emission is fairly strong in this direction, W CO =17 K km s −1 , nominally implying 2N H2 ≈ 7 × 10 21 , comparab<strong>le</strong>to N Hi , but mo<strong>le</strong>cular absorption spectra of HCO + and CON(H I) tot [cm-2 ]10 2110 200.1 1 10⌡ ⌠ τ(H I) dv [km s -1 ]E BV >0.09E BV 36, >54 and >25 at the 2σ <strong>le</strong>velin these components (Liszt & Lucas 1998).In emission, the 12 CO/ 13 CO brightness ratios are 12 and 30for the two strong kinematic components, ref<strong>le</strong>cting both thefractionation and the fact that W CO ∝ N CO in the diffuse gasregime as discussed in the text here.HCO + emission is weak in Fig. A.1. The profi<strong>le</strong> shown (fromLucas & Liszt 1996) is an average of positions around the continuumsource to avoid contamination from absorption. The low<strong>le</strong>vels of HCO + emission seen toward our samp<strong>le</strong> of backgroundcontinuum sources can be understood as arising from relativelylow density gas (n H2< ∼ 100 cm −3 ) when the e<strong>le</strong>ctron fraction isas high as expected for diffuse gas, i.e. 2 × 10 −4 (Lucas & Liszt1994, 1996).Appendix B: The ratio of total to absorbing HIShowninFig.B.1 is a plot of the data from the tab<strong>le</strong>s of Hei<strong>le</strong>s &Troland (2003) that were used in Sect. 3 to convert the ∫ τ(Hi)dvmeasurements in Fig. 1 to a total quantity of Hi. The plot showsa regression line (power-law slope 0.84) fit to data points withE B−V > 0.09 mag (the range occupied by the HCO + detections inFig. 1) to point out a slight upturn at low ∫ τ(Hi)dv.Thesamp<strong>le</strong>means are largely unaffected by setting various samp<strong>le</strong> se<strong>le</strong>ctioncriteria.Appendix C: A chemistry-based determinationof N H2 /W COIt is also possib<strong>le</strong> to determine W CO /N H2 without the H I measureor formally estimating f H2 , although we preferred not toPage 7 of 10


A&A 518, A45 (2010)<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012W CO [K-km s -1 ]1010.11 10⌡⌠ τ(HCO + )dv [km s -1 ]Fig. C.1. Integrated CO J = 1–0 brightness plotted against theintegrated HCO + J = 1–0 optical depth. N HCO + = 1.12 ×10 12 cm −2 (∫ τ(HCO + )dv/1 kms −1) . See Appendix D.do this in the main discussion. In Fig. C.1 we show the variationof W CO with ∫ τ(HCO + )dv. CO appears reliably at detectab<strong>le</strong><strong>le</strong>vels W CO> ∼ 0.3Kkms −1 , N CO> ∼ 3 × 10 14 cm −2when N HCO + > ∼ 3 × 10 11 cm −2 or N H2> ∼ N HCO +/3 × 10 −9 =10 20 cm −2 .IfX HCO + = 3 × 10 −9 the ensemb<strong>le</strong> mean values〈W CO 〉 = 3.45 K km s −1 , 〈∫ τ(HCO + )dv 〉 = 2.38 km s −1 implyW CO = 1Kkms −1 per 2.6 × 10 20 H 2 cm −2 , just 30% above thatderived in Sect. 3.5.The near linearity of the N CO –N HCO + relationship in Fig. C.1results from bulk averaging over who<strong>le</strong> lines of sight: giventhe same general mix of conditions, an ensemb<strong>le</strong> of richer andpoorer or shorter and longer sightlines will show proportionalitiesbetween almost any two quantities in this way. As shownin Fig. A.1 there is no such proportionality on a per-componentbasis. In detail, and with much scatter, the overall chemical variationis approxima<strong>tel</strong>y N CO ∝ (N H2 ) 2 (Liszt 2007b; Sheffer et al.2008).Appendix D: Calculating the CO brightnessfrom galactic survey resultsThe statistics of observing the clumpy galactic mo<strong>le</strong>cular clouddistribution are Poisson (Gordon & Burton 1976; Burton &Gordon 1978) so the integrated CO brightness W CO (r) accumulatedwhen traversing a path of <strong>le</strong>ngth r in the galactic plane isW CO (r) = W CO0 (1 − exp (−r/λ))(D.1)where W CO0 is the characteristic brightness of a clump (GMC)and λ is the geometric mean free path between clumps.Although it is possib<strong>le</strong> to derive W CO0 and λ separa<strong>tel</strong>y, galacticsurvey results are given in terms of a hybrid quantity A CO whoseunits are K km s −1 per kpc corresponding to evaluating W CO (r)when r ≪ λ, i.e.W CO (r) = (W CO0 /λ) r = A CO r.ThecoefficientA CO is closely related to the mean density: just convertW CO to N H2 . For H I the integrated brightness per unit distanceis directly converted into a mean density n(H I), if it is assumedthat the gas is optically thin.The brightness of the CO cloud ensemb<strong>le</strong> viewed verticallythrough the galactic disk is then just A CO Δz, whereΔz is theequiva<strong>le</strong>nt thickness of the disk. For a Gaussian vertical distributionwith dispersion σ z , Δz = (2π) 1/2 σ z .ReferencesBigiel, F., Leroy, A., Walter, F., et al. 2008, AJ., 136, 2846Bohlin, R. C., Savage, B. D., & Drake, J. F. 1978, ApJ, 224, 132Bothwell, M. S., Kennicutt, R. C., & Lee, J. C. 2009, MNRAS, 400, 154Burgh, E. B., France, K., & McCandliss, S. R. 2007, ApJ, 658, 446Burton, W. B., & Gordon, M. A. 1978, A&A, 63, 7Cox, D. P. 2005, ARA&A, 43, 337Dickey, J. M., Kulkarni, S. R., Hei<strong>le</strong>s, C. E., & Van Gorkom, J. H. 1983, ApJSS,53, 591Draine, B. T., Da<strong>le</strong>, D. A., Bendo, G., et al. 2007, ApJ, 663, 866Falgarone, E., Pineau Des Forêts, G., Hily-Blant, P., & Schilke, P. 2006, A&A,452, 511Garwood, R. W., & Dickey, J. M. 1989, ApJ, 338, 841Goldreich, P., & Kwan, J. 1974, ApJ, 189, 441Goldsmith, P. F., Heyer, M., Narayanan, G., et al. 2008, ApJ, 680, 428Gordon, M. A., & Burton, W. B. 1976, ApJ, 208, 346Hartmann, D., & Burton, W. B. 1997, Atlas of galactic neutral hydrogen(Cambridge; New York: Cambridge University Press)Hei<strong>le</strong>s, C., & Troland, T. H. 2003, ApJ, 586, 1067Helfer, T. T., & Blitz, L. 1997, ApJ, 478, 233Leroy, A. K., Walter, F., Brinks, E., et al. 2008, AJ, 136, 2782Liszt, H. 1997a, A&ASS, 124, 183Liszt, H. S. 1982, ApJ, 262, 198Liszt, H. S. 1995, ApJ, 442, 163Liszt, H. S. 1997, A&A, 322, 962Liszt, H. S. 2007a, A&A, 476, 291Liszt, H. S. 2007b, A&A, 461, 205Liszt, H., & Lucas, R. 2002, A&A, 391, 693Liszt, H. S., & Lucas, R. 1994, ApJ, 431, L131Liszt, H. S., & Lucas, R. 1996, A&A, 314, 917Liszt, H. S., & Lucas, R. 1998, A&A, 339, 561Liszt, H. S., & Lucas, R. 2000, A&A, 355, 333Liszt, H. S., Burton, W. B., & Bania, T. M. 1981, ApJ, 246, 74Liszt, H. S., Pety, J., & Tachihara, K. 2009, A&A, 499, 503Lucas, R., & Liszt, H. S. 1994, A&A, 282, L5Lucas, R., & Liszt, H. S. 1996, A&A, 307, 237McCall, B. J., Hink<strong>le</strong>, K. H., Gebal<strong>le</strong>, T. R., et al. 2002, ApJ, 567, 391Morton, D. C. 1975, ApJ, 197, 85Münch, I. G. 1952, ApJ, 116, 575Pety, J., Lucas, R., & Liszt, H. S. 2008, A&A, 489, 217Rachford, B. L., Snow, T. P., Destree, J. D., et al. 2009, ApJSS, 180, 125Savage, B. D., Drake, J. F., Budich, W., & Bohlin, R. C. 1977, ApJ, 216, 291Sch<strong>le</strong>gel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525Sheffer, Y., Rogers, M., Federman, S. R., et al. 2008, ApJ, 687, 1075Sheffer, Y., Rogers, M., Federman, S. R., Lambert, D. L., & Gredel, R. 2007,ApJ, 667, 1002Sofia, U. J., Lauroesch, J. T., Meyer, D. M., & Cart<strong>le</strong>dge, S. I. B. 2004, ApJ, 605,272Sonnentrucker, P., Welty, D. E., Thorburn, J. A., & York, D. G. 2007, ApJSS,168, 58Spitzer, L. 1978, Physical processes in the inters<strong>tel</strong>lar medium (New York:Wi<strong>le</strong>y-Interscience)Tachihara, K., Abe, R., Onishi, T., Mizuno, A., & Fukui, Y. 2000, Publ. Astron.Soc. Jpn., 52, 1147Van Dishoeck, E. F., & Black, J. H. 1986, ApJSS, 62, 109Watson, W. D., Anicich, V. G., & Huntress, W. T., J. 1976, ApJ, 205, L165Weselak, T., Galazutdinov, G. A., Be<strong>le</strong>tsky, Y., & Krełowski, J. 2010, Mon. Not.R. Astron. Soc., 402, 1991Wu, J., Evans, II, N. J., Gao, Y., et al. 2005, ApJ, 635, L173Young, J. S., & Scovil<strong>le</strong>, N. 1982, ApJ, 258, 467Pages 9 to 10 are availab<strong>le</strong> in the e<strong>le</strong>ctronic edition of the journal at http://www.aanda.orgPage 8 of 10


H. S. Liszt et al.: CO luminosity of diffuse gasAppendix E: DataThedatashowninFig.1 are tabulated in Tab<strong>le</strong>s E.1 and E.2. The sources of these data are discussed in Sect. 2.Tab<strong>le</strong> E.1. Data used in this work.<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Source l baE B−V∫τ(Hi)dvb∫τ(HCO + )dv cdW CO◦ ◦ mag km s −1 km s −1 Kkms −1B1748-253 3.745 0.635 7.86 45.37(0.40)B2005+403 6.816 4.302 0.69 4.67(0.05) 0.41(0.02)


A&A 518, A45 (2010)Tab<strong>le</strong> E.2. Data used in this work (continued).<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Source l baE B−V∫τ(Hi)dvb∫τ(HCO + )dv cdW CO◦ ◦ mag km s −1 km s −1 Kkms −1B0056+666 123.782 3.992 1.20 13.30(1.05)J0102+584 124.426 −4.436 0.56 9.75(0.10) 0.34(0.01)


A&A 541, A58 (2012)DOI: 10.1051/0004-6361/201218771c○ ESO 2012Astronomy&AstrophysicsImaging diffuse clouds: bright and dark gas mapped in CO ⋆,⋆⋆H. S. Liszt 1 and J. Pety 2,31 National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesvil<strong>le</strong>, VA 22903-2475, USAe-mail: hliszt@nrao.edu2 Institut de Radioastronomie Millimétrique, 300 rue de la Piscine, 38406 Saint Martin d’Hères, France3 Obs. de Paris, 61 Av. de l’Observatoire, 75014 Paris, FranceReceived 3 January 2012 / Accepted 14 March 2012ABSTRACT<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Aims. We wish to relate the degree sca<strong>le</strong> structure of galactic diffuse clouds to sub-arcsecond atomic and mo<strong>le</strong>cular absorption spectraobtained against extragalactic continuum background sources.Methods. We used the ARO 12 m <strong>tel</strong>escope to map J = 1−0 CO emission at 1 ′ resolution over 30 ′ fields around the positionsof 11 background sources occulted by 20 mo<strong>le</strong>cular absorption line components, of which 11 had CO emission counterparts. Wecompared maps of CO emission to sub-arcsec atomic and mo<strong>le</strong>cular absorption spectra and to the large-sca<strong>le</strong> distribution of inters<strong>tel</strong>larreddening.Results. 1) The same clouds, identified by their velocity, were seen in absorption and emission and atomic and mo<strong>le</strong>cular phases,not necessarily in the same direction. Sub-arcsecond absorption spectra are a preview of what is seen in CO emission away from thecontinuum. 2) The CO emission structure was amorphous in 9 cases, quasi-periodic or wave-like around B0528+134 and tang<strong>le</strong>dand filamentary around BL Lac. 3) Strong emission, typically 4−5 KatE B−V ≤ 0.15 mag and up to 10−12 K at E B−V< ∼ 0.3 magwas found, much brighter than toward the background targets. Typical covering factors of individual features at the 1 K km s −1 <strong>le</strong>velwere 20%. 4) CO-H 2 conversion factors as much as 4−5 times below the mean value N(H 2 )/W CO = 2 × 10 20 H 2 cm −2 (K km s −1 ) −1 arerequired to explain the luminosity of CO emission at/above the <strong>le</strong>vel of 1 K km s −1 . Small conversion factors and sharp variability ofthe conversion factor on arcminute sca<strong>le</strong>s are due primarily to CO chemistry and need not represent unresolved variations in reddeningor total column density.Conclusions. Like Fermi and Planck we see some gas that is dark in CO and other gas in which CO is overluminous per H 2 . A standardCO-H 2 conversion factor applies overall owing to balance between the luminosities per H 2 and surface covering factors of bright anddark CO, but with wide variations between sightlines and across the faces of individual clouds.Key words. ISM: clouds – ISM: mo<strong>le</strong>cu<strong>le</strong>s1. IntroductionWith somewhat imprecise boundaries, inters<strong>tel</strong>lar clouds aregenerally classed as diffuse, A V< ∼ 1 mag, or dark, A V> ∼ 4−6mag,with an intermediate translucent regime (Snow & McCall 2006).In diffuse clouds the dominant form of carbon is C + and hydrogenis mostly atomic, although with a very significant overalladmixture of H 2 , 25% or more as a global average (Savageet al. 1977; Liszt et al. 2010). In dark or mo<strong>le</strong>cular cloudsthe carbon is overwhelmingly in CO with an admixture of C Iand the hydrogen resides almost entirely in H 2 . The populationof diffuse clouds is sometimes cal<strong>le</strong>d H I clouds in radioastronomical terms.The shadows of dark clouds are seen outlined againstbrighter background fields and the clouds themselves are oftenimaged in the mm-wave emission of CO and many otherspecies: the 12 CO(1−0) sky (Dame et al. 2001) is usually (and inpart incorrectly, see below) understood as a map of fullymo<strong>le</strong>cularclouds. The shadows of H I or diffuse clouds are theirabsorption-line spectra and for the most part, individual diffuseclouds are known only as kinematic features in optical and/or⋆ Based on observations obtained with the ARO Kitt Peak 12 m<strong>tel</strong>escope.⋆⋆ Appendices are availab<strong>le</strong> in e<strong>le</strong>ctronic form athttp://www.aanda.orgradio absorption spectra. No means exist to image individualdiffuse clouds at optical wave<strong>le</strong>ngths and attempts to map individualH I clouds at radio wave<strong>le</strong>ngths are generally frustratedby the b<strong>le</strong>nding and overlapping of contributions from multip<strong>le</strong>clouds and gas phases. This lack of identity has greatly complicatedour ability to define diffuse clouds physically becauseabsorption lines do not generally permit a direct determinationof the cloud size or internal density.When diffuse clouds discovered in absorption-line spectrahave a sufficiently high comp<strong>le</strong>ment of mo<strong>le</strong>cu<strong>le</strong>s they may beimaged at radio wave<strong>le</strong>ngths in species such as OH and CH and,most usefully, CO. Despite a low fractional abundance of COrelative to H 2 , 〈X(CO)〉 = 3 × 10 −6 (Burgh et al. 2007), mappingis facilitated by an enhanced brightness of the J = 1−0 line indiffuse gas: the temperature is somewhat e<strong>le</strong>vated (T K> ∼ 25 K),the density is comparatively small at typical ambient thermalpressure (Jenkins & Tripp 2011) and the rotation ladder is subthermallyexcited. In accord with theory (Goldreich & Kwan1974), it is found observationally that there is a simp<strong>le</strong>, linearproportionality between the integrated intensity W CO of theCO J = 1−0 lines and the CO column density, even when the gasis optically thick: N(CO) ≈ 10 15 cm −2 W CO /Kkms −1 for W CO ≈0.2−6Kkms −1 (Liszt & Lucas 1998; Liszt 2007). Per mo<strong>le</strong>cu<strong>le</strong>,the ratio W CO /N(CO) is 30−50 times higher in diffuse gas, comparedto conditions in dense shielded fully-mo<strong>le</strong>cular gas whereArtic<strong>le</strong> published by EDP Sciences A58, page 1 of 23


A&A 541, A58 (2012)<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012the rotation ladder is thermalized (Liszt et al. 2010). Of coursethis is of substantial assistance in the present work. Conversely,the high brightness (5−12 K) of many of lines we detectedshould not be taken as discrediting their origin in diffuse gas.Earlier we showed that, in the mean, CO-H 2 conversion factorsare similar in diffuse and dense fully mo<strong>le</strong>cular gas (Lisztet al. 2010), because the small abundance of CO relative to H 2in diffuse gas is compensated by a much higher brightness perCO mo<strong>le</strong>cu<strong>le</strong>. But the proportionality between W CO and N(CO)in diffuse gas, where CO represents such a small fraction of theavailab<strong>le</strong> gas phase carbon, means that the CO map of a diffusecloud is really an image of the CO chemistry. Moreoverthe CO abundance exhibits extreme sensitivities to local conditionsthat are manifested as order of magnitude scatter inN(CO)/N(H 2 ) in optical absorption line studies (Sonnentruckeret al. 2007; Burgh et al. 2007; Sheffer et al. 2007, 2008), evenbeyond the often-rapid variation of N(H 2 ) with E B−V (Savageet al. 1977)(E B−V ≈ A V /3.1). The net result is that the CO emissionmap of a diffuse cloud can only indirectly be interpreted astracing the underlying mass distribution, or even that of the H 2 .Nonethe<strong>le</strong>ss, it should (we hope) provide some impression ofthe nature of the host gas, especially in the absence of any othermeans of ascertaining this.In this paper we present maps of CO J = 1−0 emissionat arcminute resolution over 11 sky fields, typically 30 ′ × 30 ′around the positions of compact extragalactic mm-wave continuumsources that we have long used as targets for absorptionline studies of the chemistry of diffuse clouds. As is thecase for nearly all background sources seen at galactic latitudes|b| < 15−18 ◦ , and for some sources at higher latitudes, the currenttargets were known to show absorption from HCO + andfrom one or more other commonly-detected species (OH, CO,C 2 H, C 3 H 2 ); most but not all directions also were known to showCO emission in at <strong>le</strong>ast some of the kinematic features presentin absorption.This work is organized as follows. The observational materialdiscussed here is summarized in Sect. 2. In Sects. 3−5 wediscuss the new maps with sources grouped in order of kinematiccomp<strong>le</strong>xity. Section 6 is an intermediate summary of the<strong>le</strong>ssons drawn from close scrutiny of the maps. Section 7 brieflydiscusses the influences of galactic and internal cloud kinematicsand Sect. 8 presents a comparison of CO intensity and reddeningwithin a few of the simp<strong>le</strong>r individual fields. Appendix A showsa few position-velocity diagrams that, whi<strong>le</strong> of interest, couldbe considered redundant with those shown in the main text inFigs. 13 and 14. Figures B.1 and B.2 in Appendix B show the targetlines of sight in the context of large-sca<strong>le</strong> galactic kinematicssamp<strong>le</strong>d in H I emission.2. Observational material2.1. CO J = 1–0 emissionOn-the-fly maps of CO J = 1−0 emission were made at theARO 12 m <strong>tel</strong>escope in 2008 December, 2009 January and2009 December in generally poor weather using filter banks with100 kHz or 0.260 km s −1 channel spacing and spectral resolution.System temperatures were typically 450−750 K. The datawere subsequently put onto 20 ′′ pixel grids using the AIPS tasksOTFUV and SDGRD; the final spatial resolution is 1 ′ .Mostmaps are approxima<strong>tel</strong>y 30 ′ × 30 ′ on the sky and were comp<strong>le</strong>tedin 4−5 h total observing time. The new CO emission dataare presented in terms of the TR ∗ sca<strong>le</strong> in use at the 12 m antennaand all velocities are referred to the kinematic Local StandardA58, page 2 of 23of Rest. The typical rms channel-channel noise in these mapsat 1 ′ and 0.26 km s −1 resolution is 0.4−0.5 K; their sensitivity israther moderate and the detectability limit is of order 1 K km s −1for a sing<strong>le</strong> line component.More sensitive CO J = 1−0 line profi<strong>le</strong>s at higher spectralresolution (25 kHz) had been previously observed toward thecontinuum sources as part of our survey efforts, for instance seeLiszt & Lucas (1998). It is these profi<strong>le</strong>s that are displayed inthe figures shown here representing emission in the specific directionof the background target and used to calculate line profi<strong>le</strong>integrals as quoted in Tab<strong>le</strong> 1.Many inters<strong>tel</strong>lar clouds lie at distances of about 150 pc fromthe Sun, just outside the Local Bubb<strong>le</strong>. At this distance the 1 ′ resolutionof our CO mapping corresponds to 0.041 pc.2.2. H I absorption and emission and N(H I)The λ 21 cm H I absorption spectra shown here are largely fromthe work of Dickey et al. (1983) augmented by a few spectrataken at the VLA in 2005 May. The spectral resolution of thisdata is 0.4−1.0 km s −1 .Figures B.1 and B.2 of the Appendix B show latitudevelocitydiagrams of H I emission drawn from the Leiden-Dwingeloo Survey of Hartmann & Burton (1997).The H I column densities quoted in Tab<strong>le</strong> 1 were derived inone of two ways. Where an H I absorption profi<strong>le</strong> exists we appliedthe formula given in footnote 3 to Tab<strong>le</strong> 1, which is an empiricalrelation derived by Liszt et al. (2010) using the AreciboH I emission-absorption survey data of Hei<strong>le</strong>s & Troland (2003).The effective H I spin temperature implied by use of this formulais 143 K. In other cases (see footnote 4 to Tab<strong>le</strong> 1) we apply theoptically-thin limit to the data of Hartmann & Burton (1997).2.3. Mo<strong>le</strong>cular absorptionAlso shown here are spectra of λ18 cm OH absorption fromLiszt & Lucas (1996), λ6cmH 2 CO from Lisztetal.(2006), J =1−0 mm-wave absorption spectra of CO (Liszt & Lucas 1998),HCO + (Lucas & Liszt 1996), HCN and HNC (Liszt & Lucas2001), CS J = 2−1 (Lucas & Liszt 2002) and the 87.32 GHzN = 1−0, J = 3/2−1/2, F = 2−1 transition of C 2 H(Lucas &Liszt 2000).2.4. ReddeningMaps of reddening were constructed from the results of Sch<strong>le</strong>ge<strong>le</strong>t al. (1998). This dataset has 6 ′ spatial resolution on a 2.5 ′ pixelgrid. The stated sing<strong>le</strong>-pixel error is a percentage, 16%, of thepixel value. On average, 1 mag of reddening corresponds to aneutral gas column N(H) = 5.8 × 10 21 cm −2 (Savage et al. 1977).2.5. Target fieldsThe positions and other observational properties are summarizedin Tab<strong>le</strong> 1 where the sources are grouped according to their orderofpresentationinSects.3−5.The groups appear in orderof increasing reddening and gas column density and decreasingdistance from the galactic plane. The line profi<strong>le</strong> integrals W COquoted in Tab<strong>le</strong> 1 result from the more sensitive earlier observationsnoted in Sect. 2.1. The mean values quoted for W CO alongindividual sightlines are averages over the new map data takenfor this work.


H. S. Liszt and J. Pety: Imaging diffuse clouds: bright and dark gas mapped in COTab<strong>le</strong> 1. Continuum target, line of sight and map field properties 1 .Target RA Dec l b Map2E B−V N (H I) 3 N(H 2 ) 4 7f H2 W CO 〈W CO 〉(J2000) (J2000) size mag 10 20 cm −2 10 20 cm −2 Kkms −1 Kkms −1B0736+017 07:39:18.03 01:37:04.6 216.99 11.38 15 ′ 0.13 7.7 3.3 0.46 0.8 0.4B0954+658 09:58:47.24 65:33:54.7 145.75 43.13 30 ′ 0.12 5.3 5 4.8 0.64 1.6 0.6B1730-130 17:33:02.66 –13:04:49.5 12.03 10.81 30 ′ 0.53 28.3 4.3 0.23 0.4 0.4B1928+738 19:27:48.58 73:58:01.6 105.63 23.54 20 ′ 0.13 7.2 5 2.7 0.43


A&A 541, A58 (2012)<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Tab<strong>le</strong> 2. Noise <strong>le</strong>vels and spatial covering factors.Target V σ profi<strong>le</strong> σ mapaf >1bf >2km s −1 K K kms −1B0736 5.1,7.2 0.43 0.48 0.18 0.07B0954 2.6,5.2 0.25 0.33 0.20 0.12B1730 4.0,6.1 0.36 0.52 0.20 0.03B1928 –4.2, –0.8 0.46 0.52 0.03 0.00B1954 –1.0, 2.4 0.33 0.35 0.20 0.13B2251 –10.8, –7.9 0.28 0.32 0.06 0.02B0528 0.6.3.7 0.23 0.36 0.07 0.058.9,11.7 0.33 0.69 0.46B2200 –3.8, 2.8 0.39 0.63 0.61 0.50B0212 –14.1, –7.9 0.30 0.80 0.26 0.11–1.4, 1.0 0.36 0.03 0.011.3, 4.9 0.66 0.34 0.19B0224 –17.1, –11.9 0.43 0.76 0.14 0.03–11.6, –9.2 0.60 0.33 0.20–9.2, –5.1 0.56 0.39 0.20–4.9, –2.0 0.47 0.47 0.33–2.0, –0.2 0.39 0.05 0.28–0.2 ... 2.0 0.42 0.09 0.03B0355 –19.2, –15.9 0.35 0.63 0.18 0.07–15.8, –11.7 0.92 0.43 0.28–11.1, –9.8 0.59 0.34 0.18–9.6, –7.3 0.62 0.34 0.10–6.0, –1.4 0.79 0.17 0.04Notes. (a) Fraction of mapped area with W CO ≥ 1Kkms −1 ; (b) fractionof mapped area with W CO ≥ 2Kkms −1 .the background sources B0528+134 and B2200+420 (BL Lac)that are also kinematically simp<strong>le</strong> but are heavily patterned andrather bright in CO emission; these are discussed in Sect. 4.Figures 10−12 (Sect. 5) show the results over three targetfields with rather amorphous structure whose kinematics aretoo comp<strong>le</strong>x to fit into the framework in which the data forthe other sources are presented in earlier figures. Two of thesesources (B0212+735 and B0224+671) are relatively near eachother on the sky and samp<strong>le</strong> similar galactic structure whi<strong>le</strong> thethird target B0355+508 (NRAO150) is the only source within 2 ◦of the galactic equator (see Tab<strong>le</strong> 1).The format of Figs. 2−11 is: at upper <strong>le</strong>ft a 90 ′ map of E B−Vfrom the dataset of Sch<strong>le</strong>gel et al. (1998), with an inset showingthe field of view mapped in CO, typically 30 ′ on a side; at lower<strong>le</strong>ft a map of W CO ; at lower right various atomic (H I) and mo<strong>le</strong>cularabsorption spectra showing the kinematic structure towardthe background source; at upper right, CO emission spectra ofvarious sorts as depicted in the figure captions. The absorptionspectra shown at lower right in these figures are somewhat inhomogeneousbecause not all sources have the same full comp<strong>le</strong>mentof profi<strong>le</strong>s. In general, H I is at the bottom wherever possib<strong>le</strong>and above that are spectra of the most common mo<strong>le</strong>cu<strong>le</strong>sobserved in absorption; HCO + , observed toward all targets, OH,C 2 Hand/or CO. The uppermost spectrum wherever possib<strong>le</strong> isa species like H 2 CO or HNC (Liszt et al. 2006; Liszt & Lucas2001) that is detected <strong>le</strong>ss commonly and is indicative of greaterchemical comp<strong>le</strong>xity.Also shown for all sources are CO emission spectra at variouslocations in the field mapped, as indicated in the spectra.More comp<strong>le</strong>x aspects of the presentation are discussed in theindividual figure captions.A58, page 4 of 232.7. Mo<strong>le</strong>cular gas properties in the current samp<strong>le</strong>The sightlines studied here were se<strong>le</strong>cted on the basis of theirknown HCO + absorption spectra, creating the possibility thatthe samp<strong>le</strong> is biased to large mo<strong>le</strong>cular fractions and/or strongCO emission. However, it was earlier noticed in a flux-limitedsurvey (Lucas & Liszt 1996) not based on prior know<strong>le</strong>dge ofCO emission that very nearly all sightlines at galactic latitudeswithin about 15 ◦ of the galactic equator show HCO + absorption.Our present tally, slightly extending the earlier result, is thatHCO + absorption occurs toward 19 of 19 sources at |b| < ∼ 12 ◦ ,toward22 of 25 sources at |b| < ∼ 18 ◦ and toward 4 out of 12 sourcesat |b| > ∼ 23 ◦ including three shown here. Thus it is a near certaintythat HCO + absorption would be detected over the entirety of thesky fields mapped here below about 15 ◦ −18 ◦ , no matter what isthe covering factor of detectab<strong>le</strong> CO emission. This is discussedin Sect. 8 immedia<strong>tel</strong>y following the more descriptive portionsof the text.If we discuss the mean properties of the ten sightlines inTab<strong>le</strong> 1 having reliably determined E B−V (all except B0355+508that lies too near the galactic plane) in the same terms that weused earlier to derive the mean CO-H 2 conversion factor in diffusegas, (Liszt et al. 2010), we derive an ensemb<strong>le</strong> averageN(H 2 )W CO= 5.8 × 1021 cm −2 〈E B−V 〉−〈N(H I)〉〈2W CO 〉= 1.52 × 10 20 cm −2 (K km s −1 ) −1 ,i.e., 25% smal<strong>le</strong>r than the previous result found a larger samp<strong>le</strong>.In the same terms, the mean atomic gas fraction is〈N(H I)〉/〈N(H)〉 = 0.74, as opposed to 0.65 found earlier.Estimates of N(H 2 ) based on assuming the ensemb<strong>le</strong>-averagemean value (Liszt et al. 2010) N(HCO + )/N(H 2 ) = 3 × 10 −9along each line of sight are also given in Tab<strong>le</strong> 1. They indicatehigher mo<strong>le</strong>cular fractions and somewhat higher total columndensities N(H) than are found using sca<strong>le</strong>d E B−V for N(H)and using the decomposition discussed just above based onsubtracting N(H I) from N(H) determined as the sca<strong>le</strong>d E B−V .Specifically the chemistry-based ensemb<strong>le</strong> average is 〈 f H2 〉 =〈2N(H 2 )〉/〈(N(H I)+2N(H 2 )〉 = 0.43.3. Six simp<strong>le</strong> fields at moderate-high latitude3.1. B0736+0117 (b ∼ 11 ◦ )The 15 ′ sky field around B0736+016 shown in Fig. 2 is thesmal<strong>le</strong>st and kinematically simp<strong>le</strong>st field studied; the map wasmade on the spur of the moment in a relatively brief open periodbetween two other larger maps. The reddening is modestover the area of the CO map shown in Fig. 2, E B−V< ∼ 0.165 magbut the mo<strong>le</strong>cular fraction implied by the entries in Tab<strong>le</strong> 1 isof order 30−50%. Toward the source the integrated CO is fairlyweak,


H. S. Liszt and J. Pety: Imaging diffuse clouds: bright and dark gas mapped in COδ (J2000)2˚00'1˚30'1˚00'0.12 0.06 0.080.160.180.2 0.160.18B0736+0170.1 0.14 0.120.080.210.14T r* [Kelvin]43210-1peakB0736CO7h42m 7h40m 7h38mα (J2000)10.0640.5C 2 Hx2.74<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012δ(J2000)1˚40'231˚35'1 3 21˚30'B0736+0177h39m30sα(J2000)7h39m0e -τ -10.0HCO +-0.5H I0 10 20V LSR (KM S -1 )Fig. 2. The sky field around the position of B0736+017. Upper <strong>le</strong>ft: reddening at 6 ′ resolution (Sch<strong>le</strong>gel et al. 1998). The inscribed whiterectang<strong>le</strong> shows the smal<strong>le</strong>r region mapped in CO emission. Lower <strong>le</strong>ft: integrated CO emission W CO in units of K km s −1 ; contour <strong>le</strong>vels arein 1, 2, ... K km s −1 . Lower right: absorption line profi<strong>le</strong>s, sca<strong>le</strong>d as noted. Upper right: CO emission, toward B0736+017 and at the peak of thenearby CO distribution.in Tab<strong>le</strong> 1 with N(H I) or E B−V . Consistent with this high mo<strong>le</strong>cularfraction and the relative simplicity of a higher-latitude lineof sight, this field is the only one studied in which there is astrong proportionality between E B−V and W CO , as discussed inSect. 8. The comp<strong>le</strong>ment of supporting material is disappointinglys<strong>le</strong>nder.3.3. B1730-130 (b ∼ 11 ◦ )The reddening is relatively large over this field (Fig. 4) andtheHCO + absorption is strong, implying a mo<strong>le</strong>cular fraction of orderone-third, but CO emission is very weak toward the backgroundcontinuum source (W CO = 0.4 K km s −1 ) and absent overmost of the field mapped. Much stronger but still rather weakemission (1.5 K) is seen 15 ′ to the northwest as indicated inFig. 4. All of the absorption profi<strong>le</strong>s shown in Fig. 4 have a redwardwing that is separa<strong>tel</strong>y visib<strong>le</strong> in the two spatially-averagedCO profi<strong>le</strong>s shown at upper right.3.4. B1928+738 (b ∼ 23.5 ◦ )CO emission is absent over the entire 20 ′ field shown in Fig. 5despite the presence of fairly strong HCO + absorption and asuggested mo<strong>le</strong>cular fraction approaching 40%. The reddeningis modest, approxima<strong>tel</strong>y 0.15 mag around the target, but theimplied CO-H 2 conversion factor is very large; from the entriesin Tab<strong>le</strong> 1 we have N(H 2 )/W CO > 2.5 × 10 21 cm −2 at the 2σ <strong>le</strong>vel.3.5. B1954+513 (b ∼ 12 ◦ )The reddening in the field around this source is modest, 0.18 mag(see Figs. 6 and 17), and CO emission toward the backgroundcontinuum source is unimpressive (2 K) but the HCO + absorptionis strong and the mo<strong>le</strong>cular fraction is of order 40%. Twokinematic components are found in the field with 4.5 K peakbrightness, only one of which is seen toward B1954 in eitheremission or absorption.3.6. B2251+158 = 3C 454.3 (b ∼−38 ◦ )As shown in Fig. 1, this very strong continuum source is seenabout 3 ◦ removed from an elongated comp<strong>le</strong>x of high-latitudeclouds that includes the objects MBM53-55 (Magnani et al.1985) and new clouds discovered by Yamamoto et al. (2003).B2251+158 lies within the region surveyed by Yamamoto et al.(2003) in CO but the emission detected here (see Fig. 7) escapedtheir notice, presumably because of their 4 ′ map sampling of the2.7 ′ beam. The reddening is moderate, E B−V< ∼ 0.11 mag (seeFig. 7) and CO emission toward the continuum source is quiteweak (0.8 K). However, much stronger emission (5 K) is seenA58, page 5 of 23


A&A 541, A58 (2012)0.08 0.10.20.12δ (J2000)66˚00'65˚30'65˚00'0.040.06B0954+6580.08 0.120.140.160.1T r* [Kelvin]54321peakB0954CO<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012δ(J2000)65˚40' 3665˚30'65˚20'10h05m 10h00m 9h55mα (J2000)45110h00m21B0954+6589h58mα(J2000)Fig. 3. The sky field around the position of B0954+658, as in Fig. 2.0.03only 5 ′ away, as with B0736, B0954 and B1954. There is no obviouslarge-sca<strong>le</strong> correlation of the CO emission with reddening,as evidenced by the weakness of the CO at the position of highestreddening in the larger field shown at upper <strong>le</strong>ft in Fig. 7 (i.e. thespectrum labe<strong>le</strong>d “NW” at upper right there). The relationshipbetween W CO and E B−V is shown in Figs. 16, 17.The blue wing of the peak emission and the line seen at thenorthwest reddening peak both fall to the blue of the CO emissionor absorption seen toward B2251. Nonethe<strong>le</strong>ss they overlapa weaker blue wing of the HCO + absorption that has nocounterpart in CO emission, and they fill in a portion of theH I absorption spectrum.4. Two unusual fields at moderate latitude4.1. B0528+134 (b ∼−11 ◦ )Mm-wave absorption toward B0528+134 (Fig. 8) was first discussedby Hogerheijde et al. (1995). This object is viewedagainst the outer edge of the dark cloud B30 in the λ Orionis ringof mo<strong>le</strong>cular clouds (Madda<strong>le</strong>na & Morris 1987) that is centeredon the H II region S264 and its central ionizing star Lambda Ori(Fig. 1). There is a very substantial foreground reddening E B−V =0.86 mag and much more heavily extincted regions in the fieldto the South.Although CO emission toward B0528+134 is fairly weak,2.3 K, emission over the surrounding field is characterizedby a pronounced quasi-periodic pattern with some very strong(10−12 K) and narrow CO emission lines: emission is undetectab<strong>le</strong>over much of the intervening troughs. A similarA58, page 6 of 237.220e -τ -10C 2 Hx4.431HCO +00 5 10V LSR (KM S -1 )wavelike pattern may have been observed across the surface ofthe Orion mo<strong>le</strong>cular cloud by Berné et al. (2010).A weak blue-shifted component of HCO + absorption that isabsent in CO toward B0528 has a very bright CO emission counterpartto the Southeast as shown in Fig. 8. Despite an 8 km s −1velocity difference, the blueshifted emision line gives the strongvisual impression of being physically associated with the mainkinematic component at 10 km s −1 , see the map at lower <strong>le</strong>ft inFig. 8. The kinematic span of the CO emission seen at top rightin Fig. 8 neatly coincides with the extent of the H I absorptiontoward B0528+134.4.2. B2200+420 = BL Lac (b ∼−10.5 ◦ )This target (see Fig. 9) was the first source seen in mm-waveabsorption from diffuse gas (Marscher et al. 1991), in CO actually,and was also the first seen in HCO + absorption in ourwork (Lucas & Liszt 1993). CO emission toward the source isfairly strong, 4 K or 6 K km s −1 and the line is quite opaque.The mo<strong>le</strong>cular column density indicated by the strong HCO + absorptionis about as large as N(H) inferred from E B−V =0.32 mag, given the E B−V − N(H) relationship N(H) = 5.8 ×10 21 cm −2 E B−V of Savage et al. (1977).The CO emission in this field originates from an unusual filamentarymorphology (Fig. 9 at lower <strong>le</strong>ft) at the edge of anarched pattern in the reddening map. The integrated intensitytakes on very large values within the field, up to 20 K km s −1 butthe profi<strong>le</strong> is compound and relatively broad. Toward the continuumsource only the blue side of the core of H I absorption is


H. S. Liszt and J. Pety: Imaging diffuse clouds: bright and dark gas mapped in CO-12˚30'b=100.65 0.6110.70.55.78CO0.51δ (J2000)-13˚00' 0.45B1730-1300.5 0.550.60.65-13˚30'0.450.750.7T r* [Kelvin]nw quadrant0 0.417h36m 17h34m 17h32mα (J2000)-12˚50'20.403.2B1730HCNx9.12<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012δ(J2000)-13˚00'-13˚10'B1730-13017h34m 17h33m3 017h32mα(J2000)32e -τ -1C 2 Hx19.11CO(1-0)0HCO-1+H I-20 10V LSR (KM S -1 )Fig. 4. The sky field around the position of B1730-130, as in Fig. 2. The emission profi<strong>le</strong> labe<strong>le</strong>d “nw quadrant” is an average over that portion ofthe map. The emission profi<strong>le</strong> labe<strong>le</strong>d 〈otf CO〉 is the mean over the entire region mapped in CO.seen strongly in mo<strong>le</strong>cular absorption or CO emission but a redshiftedCO emission component overlaying the red side of theH I line core is present to the Northeast as indicated in Fig. 9.5. Three comp<strong>le</strong>x fields at low-moderate latitude5.1. B0212+735 (b ∼ 12 ◦ )B0212+735 (Fig. 10) sits in a mild trough with E B−V ≈ 0.76 magin a region of substantial reddening at moderate galactic latitudeb = 12 ◦ . It has three mo<strong>le</strong>cular absorption components whosebalance is entirely opposite to that of H I. Whereas most ofthe atomic absorption toward B0212+725 occurs in a deep andbroad feature at v < ∼ 10 km s −1 , most of the mo<strong>le</strong>cu<strong>le</strong>s are concentratedin a narrower-lined feature at v ≈ 4kms −1 . An obviousmo<strong>le</strong>cular absorption feature at 0-velocity is, very unusually, notapparent in H I. It seems possib<strong>le</strong> that the low velocity resolutionof the H I profi<strong>le</strong> (1 km s −1 ) is responsib<strong>le</strong>. The only otherpublished examp<strong>le</strong> of this phenomenon is toward B0727-115(Lequeux et al. 1993).The CO emission line kinematics have been color coded atlower <strong>le</strong>ft in Fig. 10 to display the observed behavior in onepanel. The gray-sca<strong>le</strong> background represents the integrated intensityof the gas at 1.5−5 kms −1 ; higher resolution mappingwith the IRAM 30 m <strong>tel</strong>escope to be discussed in a forthcomingpaper indicates that the feature is compound but this is notapparent in the present dataset. The blue contours represent theCO profi<strong>le</strong> integral at −16 km s −1 ≤ v ≤−9.5 kms −1 ; consistentwith the prominence of this gas in H I, it is almost as widely distributedover the field as the stronger emission at 1.5−5 kms −1(Tab<strong>le</strong> 2: 26% vs. 34%) even if it is barely seen toward the continuum.The profi<strong>le</strong> labe<strong>le</strong>d “A” at upper right is an examp<strong>le</strong>.The green contours represent the profi<strong>le</strong> integral at −2 kms −1 ≤v ≤ 1kms −1 and an examp<strong>le</strong> is shown at upper right as profi<strong>le</strong>“B”. Emission from this gas occurs only at the eastern edgeof the map area.5.2. B0224+671 (b ∼ 6 ◦ )This line of sight toward B0224+671 (Fig. 11) samp<strong>le</strong>s the twolower-velocity features seen toward B0212+735 but at substantiallylower galactic latitude b = 6.2 ◦ ,seeTab<strong>le</strong>1. The extinctionis large in this field as are the H I and inferred H 2 column densities.CO emission is weak on a per-component basis towardthe continuum target but fairly total large values of W CO are attainedoverall.The integrated CO emission is compact but rather form<strong>le</strong>ssbecause it is the sum of many kinematic components.Paradoxically, the strongest mo<strong>le</strong>cular features seen toward andnear B0224+671 are not widely distributed over the map areaas shown in the midd<strong>le</strong> panel at right in Fig. 11 comparingthe profi<strong>le</strong> toward B0224+671 with the unweighted averageof all profi<strong>le</strong>s denoted “〈otf〉”: the strongest emission peak, atthe red edge of the CO emission profi<strong>le</strong> toward B0224+671A58, page 7 of 23


A&A 541, A58 (2012)b=240.11 0.1 0.120.274˚30'0.13 0.09δ(J2000)0.140.1574˚00'1928+7380.160.160.17 0.14 0.15 0.1373˚30'74˚05'19h36m0.1819h24mα(J2000)0.092.4T r* [Kelvin]0.01 0C 2 Hx14.80.5<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012δ(J2000)74˚00'73˚55'73˚50'B1928+73819h30m 19h28m 19h26mα(J2000)0e -τ -1HCO +0.0-10 0V LSR (KM S -1 )Fig. 5. The sky field around B1928+738. The emission profi<strong>le</strong> at upper right labe<strong>le</strong>d 〈otf CO〉 is the mean over the 20 ′ × 20 ′ region mapped in CO.is strongly underrepresented in the mean profi<strong>le</strong>. Examp<strong>le</strong>s ofprofi<strong>le</strong>s seen over the map area are shown at upper right inFig. 11; they were chosen at local peaks in more finely-divided(in velocity) maps of integrated intensity, with velocity increasingfrom a to g. Especially at v


H. S. Liszt and J. Pety: Imaging diffuse clouds: bright and dark gas mapped in CO<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012δ(J2000)δ(J2000)52˚00'51˚30'51˚00'51˚40'51˚30'51˚20'0.160.18 0.2 0.19 0.170.150.130.12B1954+5130.16 0.15 0.14 0.130.1220h00m0.1119h55mα (J2000)B1954+5130.140.220.14.2019h57m 19h56m 19h55m 19h54mα(J2000)T r* [Kelvin]e −τ -143210C 2Hx6.21OH1667x15.40HCO-1+West PeakEast CO PeakB1954-5 0 5V LSR (KM S -1 )Fig. 6. The sky field around the position of B1954+513, as in Fig. 2.Inthemapatlower <strong>le</strong>ft the graysca<strong>le</strong> represents the total integrated emissionat −1 ≤ v ≤ 2kms −1 and the red and blue contours show the individual distributions of red and blue-shifted components, respectively. Profi<strong>le</strong>s atthe peak of the red and blue-shifted emission components are shown at upper right along with the profi<strong>le</strong> toward the continuum source (shaded).however that absorption at the mean field velocity is not absenttoward the continuum source.The comp<strong>le</strong>xity of the emission distribution makes the divisioninto ranges based on HCO + absorption quite arbitrary.Moreover, the emission and absorption profi<strong>le</strong>s show ratherdifferent structure even toward the continuum target. A verydetai<strong>le</strong>d discussion of CO emission within a 90 ′′ field centeredon NRAO150 was given by Pety et al. (2008). Remarkably, thepeak emission brightness seen just 6 ′′ from the background continuumsource is almost 13 K. As the spatial resolution increases,the CO emission profi<strong>le</strong> toward B0355 more nearly resemb<strong>le</strong>sthe absorption and the b<strong>le</strong>nded emission at v ≈−10 km s −1resolves into two distinct components.Conversely, in the present dataset, the emission componentsseen toward B0355+508 lose their identity as the resolution degradesbelow a 4 ′ hpbw. Both the peak profi<strong>le</strong> and the mean arebroad, largely unstructured and centrally peaked about velocitieslying between the two strong CO emission components seentoward the background.6. Statistical <strong>le</strong>ssonsFaute de mieux, the first surveys for suitab<strong>le</strong> absorption-line targetswere conducted in CO emission (Bania et al. 1991; Liszt &Wilson 1993; Liszt 1994) but the discovery of yet more commonHCO + absorption (Lucas & Liszt 1996) caused a reversal in thesearch strategy for diffuse mo<strong>le</strong>cular gas. Thus, all targets studiedhere were pre-se<strong>le</strong>cted to have absorption from HCO + butonly some were known to have CO emission. However any divisionbetween targets with and without CO emission is mis<strong>le</strong>adingbecause the same sightline may have and lack CO emissionon a per-component basis.Stronger CO emission is always found somewhere else in themap when CO is present toward the continuum but comparablystrong CO emission was found, somewhere on the sky, from absorptioncomponents lacking CO emission counterparts towardthe continuum background. This is true with only one exception,B1928. The implication is that CO emission is somewhatmore ubiquitous than is presently believed to be the case becauseA58, page 9 of 23


0.080.09 0.1A&A 541, A58 (2012)0.140.0716˚30'0.11δ (J2000)0.1316˚00'B2251+1580.07 0.09 0.08 0.154peakCO15˚30'16˚20'0.060.0622h54m 22h52m 22h50mα (J2000)5.71T r* [Kelvin]3210NWB2251<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012δ(J2000)16˚10'16˚00'22h55m 22h54mλ=86.5 0.222h53mα (J2000)24B2251+15813e −τ -1CS(2-1)0.412 CO0.2HCO0.0+H I-0.2-0.4-20 -10 0V LSR (KM S -1 )Fig. 7. The sky field around the position of B2251+158 (C454.3), as in Fig. 2. The map of reddening at upper <strong>le</strong>ft is offset to show a separatepeak to the Northwest near 22 H 50 M and a profi<strong>le</strong> at the position of this peak is shown at upper right, shaded green and labe<strong>le</strong>d “NW”, along withprofi<strong>le</strong>s toward 3C 454.3 (shaded) and at the peak of the small clump that is seen immedia<strong>tel</strong>y adjacent to the continuum source.nearly all HCO + absorption components will be found in nearbyemission after a small search. In terms of numbers, in this workwe observed 20 absorption line components (and a few distinctline wings) with 13 carbon monoxide emission counterparts towardthe continuum targets, and we found 23 CO emission componentswithin 15 ′ of the background continuum source duringthe mapping.The following gives some conclusions that are drawn fromthe preceding presentation; they should generally be understoodas applying on a component-by-component basis.From the standpoint of CO emission.1) In every case where CO emission was detected toward thebackground source, much stronger emission was also detectedwithin approxima<strong>tel</strong>y 15 ′ and often much <strong>le</strong>ss.2) Near B0355+508, B0528+134 and B2200+430 the nearbystronger emission was very strong indeed, with peak linetemperatures of 10−12 K and/or line profi<strong>le</strong> integrals as largeas 20 K km s −1 .3) 1) and 2) are also generally true for kinematic componentsthat were present in absorption toward the continuum sourcebut not detected in emission there (7 of 20 components).4) In one case only (B1928+738), representing 1 of 11 fieldsand 1 of 20 kinematic absorption line components, the entirefield mapped was devoid of emission when emission was notdetected toward the continuum source (from a kinematic absorptionline component). The field mapped around B1928was only 20 ′ × 20 ′ as against 30 ′ × 30 ′ or more for all of theother fields.5) In 2 fields we found an emission feature without a counterpartin mo<strong>le</strong>cular absorption toward the background continuumobject (B1954 and B0355 at −20 km s −1 ).From the standpoint of absorption.1) The same kinematic components are seen in both absorptionand emission with angular separations of up to 15 ′ .2) The absorption spectra toward a background source are a previewof what will be seen in emission in a larger field aboutthe background source.A58, page 10 of 23


H. S. Liszt and J. Pety: Imaging diffuse clouds: bright and dark gas mapped in CO0.8 0.61.98<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012δ (J2000)δ(J2000)14˚00'13˚30'13˚00'13˚40'13˚30'1B0528+1340.6 1 0.81.21.41.60.455h34m 5h32m 5h30m 5h28mα (J2000)10.7B13˚20'C05h32m 5h31m 5h30mα(J2000)ADT r* [Kelvin]e −τ -120 D10 C0 B-10 A-20B0528*4HNCx4.772CO1HCO0+H I-10 10V LSR(KM S -1 )Fig. 8. The sky field around the position of B0528+134, as in Fig. 2. The map of CO emission at lower <strong>le</strong>ft superposes the integrated intensityat 0−4 kms −1 as blue contours against a background graysca<strong>le</strong> representing emission at v = 8−12 km s −1 . Very strong CO lines are seen in theforeground gas as shown in the upper right panel: positions at which they originate are indicated at lower <strong>le</strong>ft.3) Mo<strong>le</strong>cular absorption components seen toward thecontinuum source were found in CO emission somewherein the field except in the smal<strong>le</strong>r region mappedaround B1928+738.From the standpoint of the atomic-mo<strong>le</strong>cular transition.1) The same kinematic components are seen in both atomic andmo<strong>le</strong>cular tracers at angular separations between 0 ′ and 15 ′ .2) The components seen in mo<strong>le</strong>cular absorption are presentin H I absorption, although somewhat indistinctly in somecases. For instance, the 0-velocity mo<strong>le</strong>cular absorption linein B0212+735 appears only as a blue wing of the 4 km s −1H I absorption component.3) Portions of H I absorption profi<strong>le</strong>s adjacent to mo<strong>le</strong>cularfeatures but lacking a mo<strong>le</strong>cular counterpart are seenin CO emission elsewhere in the field in two cases on(B2200+420 and B0528+134).4) We saw no mo<strong>le</strong>cular features in absorption or emission outsidethe span of the H I absorption (see Appendix B).7. KinematicsMo<strong>le</strong>cular gas is generally well-mixed with other componentsof the ISM (Dame & Thaddeus 1994; Gir et al. 1994) and doesnot require exceptional kinematics. This is apparent in our workfrom the coincidence of mo<strong>le</strong>cular and atomic absorption features,even if they do not have precisely the same patterns ofline depth. The kinematics are affected by galactic structure andlocal external influences such as shocks, but this only becomesapparent on broad angular sca<strong>le</strong>s. The targets B0212+735 andB0224+671 (Figs. 10, 11) are relatively close to each other andboth are most strongly absorbed in H I around −15 km s −1 .Thebackground target B2251+158 (Fig. 7 and Sect. 3.6) is seen inthe outskirts of the MBM53-55 cloud comp<strong>le</strong>x, which is part ofa large shell that has been extensively mapped in mo<strong>le</strong>cular andatomic gas (Gir et al. 1994; Yamamoto et al. 2003).In individual line profi<strong>le</strong>s and over small sca<strong>le</strong>s, the kinematicsare often dominated by the internal structure of individualclouds. The internal motions of diffuse mo<strong>le</strong>cular gas areA58, page 11 of 23


A&A 541, A58 (2012)43˚00'0.3 0.44 0.42 0.340.40.47δ (J2000)42˚30'42˚00'0.260.24B2200+4200.34 0.4 0.3 0.260.260.240.320.220.280.24T r* (Kelvin)10 C0 B-10 A<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012δ(J2000)41˚30'42˚30'42˚20'42˚10'0.2122h06m 04m 02m 22h00mα (J2000)19.3C22h04m 22h03m 22h02mα(J2000)AB0.4e -τ -1-20 B2200HCN2CO1OH*150HCO-1+H I-213 CO-10 0 10V LSR (KM S -1 )Fig. 9. The sky field around the position of B2200+420 (BL Lac), as in Fig. 2. The map of CO emission at lower <strong>le</strong>ft superposes the integratedintensity in the range v = 0−2 kms −1 as red contours against a background graysca<strong>le</strong> representing emission at v ≤ 0kms −1 . Mo<strong>le</strong>cular absorptionand most emission is sequestered in the blue wing of the core of the HI absorption profi<strong>le</strong> but a red-shifted emission component is present to theNortheast as illustrated by the spectrum at position “C” indicated at lower <strong>le</strong>ft.now understood to ref<strong>le</strong>ct turbu<strong>le</strong>nt gas flows (Pety & Falgarone2003; Hily-Blant & Falgarone 2009) that are characterized byunsteady projected velocity fields with strong shears and abruptreversals of the velocity gradient. Sakamoto & Sunada (2003)show the transition between diffuse and dense mo<strong>le</strong>cular gas atthe edge of TMC1 and Liszt et al. (2009) discussgasflowsinthe diffuse cloud occulting ζ Oph.In this section we discuss the kinematics of just two of thefields mapped here. Further examp<strong>le</strong>s of CO kinematics in individualsky fields are given in Figs. A.1−A.3 of Appendix A andthe galactic context for all fields is given in Figs. B.1 and B.2of Appendix B, showing large-sca<strong>le</strong> latitude-velocity cuts in HIfrom the Leiden-Dwingeloo H I survey of Hartmann & Burton(1997) with the locations of the continuum background sourcesmarked in each case.Figure 13 shows the kinematics in the relatively simp<strong>le</strong> skyfield around B1954+513 (Sect. 3.5 and Fig. 6) with the spatiallydisplacedblue and red-shifted CO emission components thatwere illustrated in Fig. 6. The red-shifted component seen towardthe continuum has a partially-resolved velocity gradientthat carries it just to the midpoint of the associated HCO + absorptionprofi<strong>le</strong> at the continuum position. It is certain that theblue-shifted CO emission to the West would have an associatedHCO + absorption at its position but the structure of the redwardgas cannot be traced away from the continuum and, regrettablywe do not have an H I absorption profi<strong>le</strong> that might show both thered and blue-shifted gas in atomic absorption as toward BL Lac(Fig. 9 and Sect. 4.2).Figure 14 shows the more complicated field at low latitudearound B0355+508(Sect.5.3,Fig.12) and illustrates how thepartition of a line profi<strong>le</strong> into components, no matter how seeminglyobvious, can also be arbitrary and capricious. None ofthe well-defined absorption features has an obvious CO emissioncounterpart except perhaps in the immediate vicinity ofthe continuum target. This is not an artifact of taking a cut indeclination, which is actually richer than that in right ascension(see Fig. 12).Nonethe<strong>le</strong>ss, mapping the CO emission does help to clarifyinterpretation of the absorption profi<strong>le</strong>s. For instance, considergas near −9 kms −1 around the location of B0355 in Fig. 14. InA58, page 12 of 23


H. S. Liszt and J. Pety: Imaging diffuse clouds: bright and dark gas mapped in CO0.5 0.61.60.8 0.9 0.774˚30'10Bδ (J2000)74˚00'B0212+73573˚30' 1 0.9 0.8 0.71.40.6T r* (Kelvin)0 A*10<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012δ(J2000)δ(J2000)73˚00'74˚00'73˚50'73˚40'δ1.2B2h20mα (J2000)A0.42h10m02h20m 2h18m 2h16m 2h14mα(J2000)Right Ascension(J2000)7e -τ -1-10 0212+735H2 2 CO*7.8CO1OH*7.30HCO-1+H I-2-20 -10 0 10V LSR (KM S -1 )Fig. 10. The sky field around the position of B0212+735, as in Fig. 2. Contours in the CO emission map at lower <strong>le</strong>ft are color coded in blue foremission at −15 ≤ v ≤−9.5kms −1 and in green for emission at −2 ≤ v ≤ 1kms −1 . The gray sca<strong>le</strong> background represents the integrated emissionof the strongest emission component seen toward the continuum source, at v = 1.5−5 kms −1 . 12 CO spectra at two locations labe<strong>le</strong>d A and B areshown at upper right along with a strongly-sca<strong>le</strong>d mean profi<strong>le</strong> taken over the full map area.absorption there are two distinct kinematic components at −11and −8kms −1 that would usually be interpreted as unrelated because,aside from their separation in velocity, they have differentpatterns of chemical abundances (Fig. 12). However, Fig. 14shows that the CO emission line has an appreciab<strong>le</strong> velocity gradientacross the position of the continuum source, spanning thetwo absorption lines, making it likely that the two absorptioncomponents are part of the same body 1 . Moreover, the CO mappingsuggests that the components at −17 and −10 km s −1 mayalso be part of the same structure (and separated by a velocitygradient), which was actually suggested by several coincidencesin our earlier high-resolution CO mapping (Pety et al.2008). The lines at −11 and −17 km s −1 are very bright (13 K)at high resolution and have considerab<strong>le</strong> chemical comp<strong>le</strong>xity.There are also some seemingly correlated spatial intensity variations.The evidence for an association is entirely indirect but has1 Pety et al. (2008) show that the overlapping CO emission line is resolvedinto two kinematic components at 6 ′′ resolution toward the continuumsource.a c<strong>le</strong>ar precedent in the kinematics around B0528+134 (Sect. 4.1and Fig. 8) where a similar velocity separation occurs betweentwo emission components that are seen superposed in an unusualwave-like spatial configuration.8. The brightness of diffuse cloud CO8.1. W CO relative to E B−V and f H2The large-sca<strong>le</strong> finding chart in Fig. 1 is a map of the total interveninggas column density, except where discrete sources ofinfrared emission (often H II regions) “<strong>le</strong>ak” into the map (usefullyindicating when the background target may have been observedthrough disturbed foreground gas). Large-sca<strong>le</strong> surveysof CO emission at 8 ′ resolution show a good correlation withreddening (Dame et al. 2001), contributing to the common interpretationof CO sky maps as displaying the global distributionof dense, fully-mo<strong>le</strong>cular gas.In diffuse gas appreciab<strong>le</strong> scatter in the W CO − E B−V relationshipis expected because the reddening is a sum overA58, page 13 of 23


A&A 541, A58 (2012)68˚00'1.1 0.91.46g10fδ (J2000)67˚30'1.167˚00'1.31.3B0224+671T r* [Kelvin]e0dc-10ba<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012δ(J2000)66˚30'67˚30'67˚20'67˚10'2h35m 2h30m 2h25mα (J2000)fdabg0.7617.40.42h30m 2h28m 2h26mα(J2000)ecT r* [Kelvin]e -τ -10.50.0112 CO0HCO +-1C 2 H x 8H I-20 0V LSR (KM S -1 )Fig. 11. The sky field around the position of B0224+671, much as in Fig. 2. Themapatlower <strong>le</strong>ft has been integrated over the very wide interval−15.5 ≤ v ≤ +2kms −1 .Showninthe midd<strong>le</strong> panel at right are the CO emission spectrum toward B0224+671 and as averaged over the region ofthe entire CO emission map. At top right are examp<strong>le</strong> profi<strong>le</strong>s from the positions labe<strong>le</strong>d at lower <strong>le</strong>ft, chosen from maps of integrated intensityover narrow intervals increasing in velocity from a)−g).B0224atomic and mo<strong>le</strong>cular components that both make importantcontributions to N(H), combined with the fact that both N(H 2 )and N(CO)/N(H 2 ) exhibit order-of-magnitude or larger scatterwith respect to E B−V even when all quantities are measuredalong the same microscopic sightlines toward nearby brightstars (Burgh et al. 2007; Rachford et al. 2009). The disparityin angular resolution between the reddening data and our1 ′ CO maps presents another sort of complication that is consideredin Sect. 8.2 but does not by itself dominate the scatter.Recall also the discussion in Lisztetal.(2010) where a goodcorrelation was shown between E B−V at 6 ′ resolution comparedwith the integrated H I optical depth measured in absorption at21 cm toward a larger set of the same kind of point-like radiocontinuumbackground target considered here.Small-sca<strong>le</strong> maps of reddening are shown in the variousFigs. 2−12 detailing the individual fields. They may visuallysuggest correlations between E B−V and W CO ,andthereis a threshold E B−V> ∼ 0.09 mag for detecting CO emission,consistent with the well-known and quite abrupt increaseof N(H 2 )/N(H) at comparab<strong>le</strong> reddening (Savage et al. 1977).However, reddening is not a reliab<strong>le</strong> predictor of CO emissionin our sky fields. For instance, in the field around B2251+158 inFig. 7, CO emission is much weaker at the peak of the reddeningmap where E B−V = 0.14 mag (the profi<strong>le</strong> indicated as “NW” atupper right in Fig. 7) than nearer the continuum source at smal<strong>le</strong>rE B−V = 0.10 mag. Around B2200+420 (Fig. 9) theshapeoftheCO distribution appears to paral<strong>le</strong>l that of the reddening but indetail CO only traces the edge rather than the peak ridge of theE B−V distribution.In Fig. 15 we show the relationship between W CO and E B−Vin the four simp<strong>le</strong> cases discussed in Sect. 3, where the extinctionis small and a sing<strong>le</strong> narrow CO spectral component ispresent at each pixel 2 . The rms noise <strong>le</strong>vels in these four datasets(Tab<strong>le</strong> 2) are 0.48, 0.33, 0.32 and 0.35 K km s −1 reading clockwisefrom upper <strong>le</strong>ft so that datapoints with W CO> ∼ 1Kkms −12 Green diamonds in Figs. 15 and 16 show E B−V and W CO toward thecontinuum target as given in Tab<strong>le</strong> 1.A58, page 14 of 23


H. S. Liszt and J. Pety: Imaging diffuse clouds: bright and dark gas mapped in CO51˚20'f-19,-16e13.3f-16,-12e24.6f-12,-9.5e13.5-9.5,-7ef9.7-6,-1.5ef15.9al<strong>le</strong>f36Declination(J2000)51˚10'51˚00'50˚50'50˚40'gab4h00mpkcd0.43h58mgab4h00mpkcd0.43h58mgab4h00mpkcd0.43h58mgab4h00mpkcd0.43h58mgab4h00mpkcd0.43h58mgab4h00mpkcd0.43h58mRight Ascension(J2000)<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012T r* [Kelvin]40 g30 f20 e10 d0 B0355-10 c-20 b-30 a-40 pk-20 -10 0V LSR (KM S -1 )T r* [Kelvin]e -τ -10 -1 0355+508/32 HNC1 CO0 HCO +-1 H I-2-40 -20 0V LSR (KM S -1 )Fig. 12. The sky field around the position of B0355+508. At top are maps of integrated CO intensity made over the velocity intervals indicatedin each panel, corresponding to the five strong components of the HCO + absorption profi<strong>le</strong> seen at lower right. CO emission profi<strong>le</strong>s at variouslocations indicated in the map panels are shown at lower <strong>le</strong>ft. CO emission profi<strong>le</strong>s toward B0355+508 and averaged over the map area are shownabove the absorption line profi<strong>le</strong>s.(the usual last contour on CO sky maps) are detected at orabove the 90% confidence <strong>le</strong>vel. To put these brightness andsensitivity <strong>le</strong>vels in context, note that there is a straightforwardrelationship between W CO , f H2 ,andE B−V once the CO-H 2and E B−V /N(H) conversion factors are fixed; for the standardW CO /N(H 2 ) = 2 × 10 20 cm −2 H 2 (km s −1 ) −1 and N(H)/E B−V =5.8 × 10 21 cm −2 mag −1 one has W CO = 14.5 f H2 E B−V Kkms −1 .At E B−V = 0.1 mag, emission only slightly exceeding 1 K km s −1implies a mo<strong>le</strong>cular fraction f H2 > 1 and therefore is too brightto be accomodated by a CO-H 2 conversion factor as large as thestandard 2 × 10 20 cm −2 H 2 (km s −1 ) −1 .Shown in each panel of Fig. 15 are lines representing theCO emission expected if various fractions f H2 of the total neutralgas column are in H 2 with a typical galactic W CO /N(H 2 ) conversionfactor X CO = 2 × 10 20 H 2 cm −2 (K km s −1 ) −1 .Muchof the CO in Fig. 15 occurs above the line corresponding tof H2 = 1 and is therefore too bright to be accomodated by theusual CO-H 2 conversion factor; indeed, almost every CO linewith W CO> ∼ 1Kkms −1 may be described as overly-bright inthis way if f H2 = 0.5, hence the great majority of all the statisticallysignificant emission represented in Fig. 15 andinthemaps shown earlier for these sources. For the brightest pixelsN(H 2 )/W CO < 5 × 10 19 H 2 cm −2 (K km s −1 ) −1 .The same W CO -E B−V diagrams are shown for sources withhigher E B−V in Fig. 16. Much of the gas around B2200+420falls above the line for f H2 = 1, and attains such high brightnessthat its H 2 /W CO ratio is 3−4 times below the standard conversionfactor. However, this case becomes increasingly harder to maketoward the other sources having higher E B−V as in the bottompanels of Fig. 16.8.2. Sub-structure in reddening would not eliminate largeW CO /E B−V ratiosCO emission is heavily structured on arcminute sca<strong>le</strong>s, well belowthe 6 ′ angular resolution of the reddening maps, and the highvalues and large scatter in W CO /E B−V in Fig. 15 cannot be accomodatedwith a fixed ratio of W CO /N(H 2 )orW CO /N(H) exceptby positing strong unresolved variations, essentially clumping,in E B−V . It is important to understand the extent to whichthis might represent unresolved structure in the total columndensity, for instance with regard to c<strong>le</strong>aning maps of the cosmicmicrowave background (Planck Collaboration 2011). Giventhe extreme sensitivities of the CO abundance and brightnessto N(H 2 )indiffuse clouds and the fact that even f H2 may varyin diffuse material, it is entirely possib<strong>le</strong> that the large contrastsseen in W CO do not have strong consequences for the distributionof N(H), E B−V ,orevenN(H 2 ).Shown in Fig. 17 are cumulative distribution functions ofthe integrated CO emission W CO in the fields around B0954+658A58, page 15 of 23


A&A 541, A58 (2012)α(J2000)-19H57m56m55m3.8W CO [K km s -1 ]64206B0736+017100%50%25%0.08 0.10 0.12 0.14 0.16 0.18B1954+51364206B0954+6580.08 0.10 0.12 0.14 0.16 0.18B2251+15854m-2 0 2 4V LSR (KM S -1 )0.3W CO [K km s -1 ]420420<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Fig. 13. A right ascension-velocity diagram of CO emission throughthe position of B1954+513. The HCO + (not CO) absorption spectrumtoward B1954 is shown with its 0-<strong>le</strong>vel at the location of the continuumsource; the peak absorption is 90%. Contours are shown at<strong>le</strong>vels 1−3, ... K.δ (J2000)51˚20'51˚10'51˚00'50˚50'6.40.08 0.10 0.12 0.14 0.16 0.18E BV0.08 0.10 0.12 0.14 0.16 0.18E BVFig. 15. Distribution of E B−V and W CO for four fields mapped herein CO. Each 20 ′′ pixel in the CO maps is plotted as a separate point.The (red) dashed lines in each panel show the CO emission expectedif 25%, 50% and 100% of the gas is in mo<strong>le</strong>cular form with a typicalvalue of the W CO -N(H 2 ) conversion factor, N(H 2 )/W CO = 2 ×10 20 H 2 cm −2 (K km s −1 ) −1 . In each panel a (green) fil<strong>le</strong>d diamond isshown at the value given in Tab<strong>le</strong> 1 toward the background source.W CO [K km s -1 ]20151050B0528+1340.8 1.020151050B2200+4200.25 0.30 0.35 0.4015B0212+73515B0224+67150˚40'-20 -10 0V LSR (KM S -1 )0.3W CO [K km s -1 ]10501050Fig. 14. A declination-velocity diagram of CO emission at theright ascension of B0355+508. The CO absorption spectrum towardB0355+508 is shown with its baseline <strong>le</strong>vel at the declination of thebackground source. The strongest CO absorption line is quite opaque,see Fig. 12.and BL Lac, using the original ARO data and versions of the datasmoothed to lower angular resolution 3 ′ (similar to NANTEN)and 5 ′ (similar to Planck). The brightness distribution of theCO around B0954+658 is compact in Fig. 3 but still sufficientlyextended that 4.5 K km s −1 integrated intensities are present at5 ′ resolution; this is well above the line for f H2 = 1inFig.15.The distribution of strongly emitting CO around BL Lacis sufficiently broad in ang<strong>le</strong> that 20−30% of the pixels are0.65 0.70 0.75 0.80 0.85 0.90E BV1.0 1.2E BVFig. 16. As in Fig. 15 for four fields with larger reddening.occupied by CO with W CO ≥ 5Kkms −1 whether the angularresolution is 1 ′ or 5 ′ ; the very strongest CO lines haveW CO> ∼ 15 K km s −1 at 1−5 ′ resolution in the BL Lac field.This is consistent with our recent observations of CO emissionin the field around ζ Oph (Liszt et al. 2009) wherethesamepeak brightnesses were found in ARO and NANTEN data at3 ′ resolution.Because high CO brightness, and, therefore, impossiblyhigh ratios W CO /E B−V (requiring f H2 > 1 for the meanA58, page 16 of 23


H. S. Liszt and J. Pety: Imaging diffuse clouds: bright and dark gas mapped in COTab<strong>le</strong> 3. Components with weak CO emission toward the continuum target.Target V τ(1−0) T ∗ RdN(CO)/dV T exc (1−0) p(H 2 ) n(H 2 ) akm s −1 K 10 15 cm −2 (km s −1 ) −1 K 10 3 cm −3 K cm −3∫τ(HCO + )dv/totalB0212 –10.3 0.49 0.40 0.65 3.4–3.6 1.9–2.5 75–100 0.122–0.05 0.95


A&A 541, A58 (2012)<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012As examp<strong>le</strong>s of the application of this notion, we note:– For a typical line with τ(1−0) = 1.5 and a Ray<strong>le</strong>igh-Jeansbrightness above the CMB of 1.5 K, T exc (1−0) = 5.04 K andp(H 2 )/k = 5 × 10 3 cm −3 Korn(H 2 ) = 200 cm −3 at T K = 25 K.– For the strongest absorption line component toward B0355(−17.8 km s −1 ), τ(1−0) = 3.1 andT exc (1−0) ≈ 6K,sothatp(H 2 )/k ≈ 5 × 10 3 cm −3 K once more.– The ≈4.5 K lines observed at the peak positions in severalof the simp<strong>le</strong> fields discussed in Sect. 3 require p(H 2 )/k > ∼8.5 × 10 3 cm −3 Kor> ∼ 15 × 10 3 cm −3 Kforτ(1−0) = 3or1,respectively. Such a heavy over-pressure must be transient.– The very bright 10−12 K lines seen near B0528+134 andB2200+420 require excitation temperatures of 15 K or moreand lie somewhat beyond the range where W CO and N(CO)can be shown to be linearly proportional. They will be discussedsepara<strong>tel</strong>y in a forthcoming publication based on observationsof HCO + , HCN, and CS.8.5. Failing to detect H 2 when CO emission is weakThere are cases where the brightness of the 1−0 line is well below1 K even when the CO optical depth is appreciab<strong>le</strong>, as summarizedin Tab<strong>le</strong> 3; unfortuna<strong>tel</strong>y we do not have a CO absorptionprofi<strong>le</strong> toward B1928+738 in whose field CO emission wasnot detected, see Sect. 3.4. The regions of very low p(H 2 )towardB0212 and B0224 somehow manage to produce appreciab<strong>le</strong>amounts of CO without exciting it to detectab<strong>le</strong> <strong>le</strong>vels butother lines represented in Tab<strong>le</strong> 3 do not arise in regions of especiallylow pressure.In Sect. 2.7 we showed that, on the who<strong>le</strong>, mo<strong>le</strong>cular gasis not underrepresented by CO emission in the col<strong>le</strong>ction ofsightlines comprising this work and earlier we showed that thesame is true of the larger samp<strong>le</strong> of absorption-cloud sightlinesfrom which the current samp<strong>le</strong> was drawn (Liszt et al. 2010).Moreover, CO emission from all of the components representedin Tab<strong>le</strong> 3 is detected (usually quite strongly) elsewhere in themapped fields except around B1928. However, the fraction ofmo<strong>le</strong>cular gas that is detectab<strong>le</strong> in CO along individual sightlinesvaries substantially. To quantify this we derived the H 2 columndensity from the integrated optical depth measured in HCO +(Lucas & Liszt 1996), see the right-most column in Tab<strong>le</strong> 3.With H 2 calculated in that way, the fraction of mo<strong>le</strong>cular gasthat is missed by failing to detect CO emission from particularindividual components in four directions is 12% toward B0212,16% toward B0224, 8% toward B0528+134 and 100% towardB1928. Overall the fraction of mo<strong>le</strong>cular gas represented bythe weakly-emitting CO summarized in Tab<strong>le</strong> 3 is 8% towardB0528, 16% toward B0224, 22% toward B0212, 43% towardB0355 and 100% toward B1730 and B1928.9. DiscussionEven at E B−V = 0.1−0.3 mag, the CO emission traced in thiswork runs the full gamut from undetectab<strong>le</strong> to having brightnesscomparab<strong>le</strong> to that seen in fully-mo<strong>le</strong>cular dark clouds.CO emission may be undetectably weak (≪1 K)whenmo<strong>le</strong>culargas is present in absorption (including that of CO itself) butin other directions it may be so bright that the N(H 2 )/W CO ratiois 4−5 times smal<strong>le</strong>r than the typical CO-H 2 conversion factor2 × 10 20 cm −2 (K km s −1 ) −1 . Under the conditions encounteredin diffuse clouds, CO emission is foremost an indicator of theCO chemistry, secondarily an indicator of the rotational excitation(which ref<strong>le</strong>cts the partial thermal pressure of H 2 ) and onlyA58, page 18 of 23peripherally a measure of the underlying hydrogen column densitydistribution as discussed in Sect. 8. Indeed, the simulationsof CO emission from the inters<strong>tel</strong>lar medium by Shetty et al.(2011) agree with observations for the dense gas. However, a detai<strong>le</strong>dcomparison with our results on the diffuse material showsthat the brightness per CO mo<strong>le</strong>cu<strong>le</strong> is correct but there are up to4 orders of magnitude difference in N(H 2 )/N(CO). This is linkedto the poorly-understood polyatomic chemistry in the diffuse gas(see Shetty et al. 2011, their Sect. 4.3).The over-arching issues most re<strong>le</strong>vant to diffuse cloudCO emission are three-fold: 1) how it may be identified for whatit is, originating in relatively tenuous gas that is unassociatedwith star formation; 2) whether it makes a substantial contributionwhen CO emission is used as a surrogate for N(H 2 )incircumstanceswhere emission contributions from diffuse and denseheavily-shielded gas may be b<strong>le</strong>nded; 3) how it is related to theso-cal<strong>le</strong>d “dark” gas discovered by and Fermi (Abdo et al. 2010)and Planck (Planck Collaboration 2011) that is most prominentat moderate extinction where the transition from atomic tomo<strong>le</strong>cular gas occurs and is claimed to host 50−120% of thepreviously-known CO emitting gas in the solar neighbourhood.As for the identification of diffuse gas, the W CO /W13 CO ratiois the most acessib<strong>le</strong> and direct probe. When diffuse cloud COis excited to detectab<strong>le</strong> <strong>le</strong>vels it is generally in the regime whereW CO ∝ N(CO) and W13 CO ∝ N( 13 CO) so that the brightness ratioW CO /W13 CO will be much larger than the values 3−5 thatareseen when emission arises from optically thick lines from densergas where the rotation ladder is close to being thermalized.Fractionation progressively lowers the N( 12 CO)/N( 13 CO) columndensity ratio in diffuse gas at larger N(CO) (Liszt & Lucas1998; Sheffer et al. 2007) but not below about 15. Intensity ratiosW CO /W13 CO of 8−10 or higher are a strong indicator thatthere is a major contribution from diffuse material.Regarding the contribution of diffuse gas we recently assessedit in the case where an outside observer looked downon the Milky Way disk in the vicinity of the Sun (Liszt et al.2010). We compared the mean emission for the ensemb<strong>le</strong> oflines of sight from which the current background targets weredrawn with the vertically-integrated emission expected for thegalactic disk component at the Solar Circ<strong>le</strong> drawn from galacticplane surveys. The ensemb<strong>le</strong> mean in our dataset, expressedas an equiva<strong>le</strong>nt to looking vertically through the galactic layer,was 2 〈W CO sin(|b|)〉 = 0.47 K km s −1 . The galactic disk contributionwas inferred from galactic plane surveys that findA(CO) = 5Kkms −1 (kpc) −1 and an equiva<strong>le</strong>nt disk thicknessof 150 pc, implying an integrated intensity through the disk of5Kkms −1 (kpc) −1 × 0.15 kpc = 0.75 K km s −1 .Even if viewed as entirely distinct (because it originatesat galactic latitudes well above those typically samp<strong>le</strong>d ingalactic plane surveys) the diffuse gas contribution to the totalseen looking down on the Milky Way from outside wouldbe 0.47/(0.47+0.75) = 38%, a surprisingly high fraction giventhe supposed absence of mo<strong>le</strong>cular gas and CO emission athigher galactic latitudes. The alternative, that the diffuse gas isalready incorporated in galactic plane surveys, makes the majorityof the gas (0.47/0.75) in the galactic plane diffuse. Thisis an even more radical proposition, but is consistent with findingthat the preponderance of the mo<strong>le</strong>cular gas seen toward theheavily-extincted line of sight toward B0355+508 at b = −1.6 ◦is actually diffuse.In fact, the extent of the diffuse and/or high-latitude contributionto the local CO emission remains to be determined by widefieldCO surveys whose detection limit is substantially betterthan 1 K km s −1 and perhaps no worse than even 0.25 K km s −1 .


H. S. Liszt and J. Pety: Imaging diffuse clouds: bright and dark gas mapped in CO<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Assessing the contribution of diffuse gas at lower latitudes awaitsa wider examination of the character of the gas seen in the galacticdisk, but the contribution of diffuse mo<strong>le</strong>cular gas in the innergalactic disk is apparent in recent HERSCHEL/PRISMASobservations of sub-mm absorption spectra toward star-formingregions (Gerin et al. 2010; Sonnentrucker et al. 2010).10. Summary and conclusionsWe compared maps of CO emission with reddening maps on atypical field of view of about 30 ′ × 30 ′ at an angular resolutionof 1 ′ toward 11 diffuse lines of sight for which we already hadsub-arcsec mo<strong>le</strong>cular and/or atomic absorption profi<strong>le</strong>s. This allowedus to draw three kinds of conclusions.10.1. Conclusions about the position-position-velocitystructure of the emission– Although most of the CO emission structure was amorphousor merely blob-like when mapped, the emission aroundB0528+138 was found to be highly regular and quasiperiodicwhi<strong>le</strong> that around B2200+420 (BL Lac) was seento be filamentary and tang<strong>le</strong>d.– Toward B0355+508 and B0528+134, CO mapping suggeststhat pairs of absorption lines separated by 6−8 kms −1 arephysically related, not merely accidental superpositions.– CO mapping shows that partition of an absorption profi<strong>le</strong>into kinematic components, no matter how seemingly obvious,may actually be arbitrary and capricious: the decompositionmay have no apparent validity in emission at positionsonly slightly removed from the continuum background.10.2. Conclusions linking the absorption to the emissionkinematics– The same clouds were seen in absorption and emission, andin atomic and mo<strong>le</strong>cular phases, although not necessarilyin the same location. We fai<strong>le</strong>d to find CO emission correspondingto just one out of 20 mo<strong>le</strong>cular absorption features,in one relatively small spatial field, i.e. 20 ′ × 20 ′ vs. 30 ′ × 30 ′or more. Conversely, whi<strong>le</strong> mapping away from the continuumbackground we saw only 2 CO emission features lackingmo<strong>le</strong>cular absorption counterparts.– CO emission was sometimes found in the field at velocitiescorresponding to features seen only in H I absorption towardthe continuum. We saw no mo<strong>le</strong>cular features outside thespan of the H I absorption.10.3. Conclusions regarding the CO luminosity of diffuse gas– We found relatively bright CO emission at modest reddeningin the fields we mapped, with peak brightnesses of 4−5KatE B−V< ∼ 0.15 mag and up to 10−12 K at E B−V ≃ 0.3 mag(i.e. A V ≃ 1 mag). This was true even for features that wereseen only in absorption toward the continuum source in thefield center.– The CO emission lines represent small column densitiesN(CO) ≤ 10 16 cm −2 , <strong>le</strong>ss than 10% of the amount offree gas phase carbon expected along a line of sight withE B−V = 0.15 mag or A V = 0.5 mag. The dominant form ofgas phase carbon is still C + .– When CO emission was detected at <strong>le</strong>vels of 1.5 K km s −1and higher, it was generally over-luminous in the senseof having a small ratio N(H 2 )/W CO , i.e. a value of theCO-H 2 conversion factor below 2 × 10 20 H 2 (K km s −1 ) −1 .W CO /N(H 2 ) ratios as small as N(H 2 )/W CO< ∼ 5 ×10 19 cm −2 H 2 (km s −1 ) −1 are mandated by the observed reddeningin cases where the line of sight was relatively free ofextraneous material.– On average, the W CO /N(H 2 ) ratio in diffuse gas is locally thesame as in dense fully mo<strong>le</strong>cular clouds despite the presenceof strong variations between individual diffuse gas parcels orsightlines. The global W CO /N(H 2 ) ratio in diffuse gas is theresult of averaging over limited regions where CO emissionis readily detectab<strong>le</strong> and overly bright (in the sense of havingW CO /N(H 2 ) much higher than the mean), and with other regionshaving a significant mo<strong>le</strong>cular component (as seen inabsorption) but where CO emission is comparatively weakor simply undetectab<strong>le</strong>.– Small W CO /N(H 2 ) ratios and sharp variations in theW CO /E B−V ratio are not artifacts of the disparity in resolutionbetween the 1 ′ CO emission beam and the 6 ′ resolution ofthe reddening maps, because high CO brightnesses and smallW CO /E B−V ratios persist when the resolution of the CO mapsis degraded to that of the reddening maps.– Sharp variations in the CO emission brightness on arcminutesca<strong>le</strong>s do not necessarily represent unresolved structure inthe reddening maps or in the column density of H or H 2 .Detectab<strong>le</strong> CO emission generally arises in the regime whereW CO ∝ N(CO), and variations in the line brightness representprimarily the CO chemistry with its extreme sensitivityto E B−V and N(H 2 ). Secondarily the line brightness is influencedby CO rotational excitation since some features arenot seen in emission toward continuum sources where thereis CO absorption with appreciab<strong>le</strong> optical depth.– Only marginally does the CO brightness represent the underlyingmass or H 2 column density distribution of diffusemo<strong>le</strong>cular gas.Acknow<strong>le</strong>dgements. The National Radio Astronomy Observatory is operated byAssociated Universites, Inc. under a cooperative agreement with the US NationalScience Foundation. The Kitt Peak 12-m millimetre wave <strong>tel</strong>escope is operatedby the Arizona Radio Observatory (ARO), Steward Observatory, University ofArizona. IRAM is operated by CNRS (France), the MPG (Germany) and the IGN(Spain). This work has been partially funded by the grant ANR-09-BLAN-0231-01 from the French Agence Nationa<strong>le</strong> de la Recherche as part of the SCHISMproject (http://schism.ens.fr/). We thank Edith Falgarone for commentsthat inspired Sects. 8.4 and 8.5 of this work and we thank the editor, MalcolmWalms<strong>le</strong>y, for a variety of interesting and stimulating comments and corrections.ReferencesAbdo, A. A., Ackermann, M., Ajello, M., et al. (Fermi/LAT Collaboration) 2010,ApJ, 710, 133Bania, T. M., Marscher, A. P., & Barvainis, R. 1991, AJ, 101, 2147Berné, O., Marcelino, N., & Cernicharo, J. 2010, Nature, 466, 947Burgh, E. B., France, K., & McCandliss, S. R. 2007, ApJ, 658, 446Dame, T. M., & Thaddeus, P. 1994, ApJ, 436, L173Dame, T. M., Hartmann, D., & Thaddeus, P. 2001, ApJ, 547, 792Dickey, J. M., Kulkarni, S. R., Hei<strong>le</strong>s, C. E., & Van Gorkom, J. H. 1983, ApJS,53, 591Gerin, M., de Luca, M., Goicoechea, J. R., Herbst, E., Falgarone, E., et al. 2010,A&A, 521, L16Gir, B.-Y., Blitz, L., & Magnani, L. 1994, ApJ, 434, 162Goldreich, P., & Kwan, J. 1974, ApJ, 189, 441Hartmann, D., & Burton, W. B. 1997, Atlas of galactic neutral hydrogen(Cambridge; New York: Cambridge University Press)Hei<strong>le</strong>s, C., & Troland, T. H. 2003, ApJ, 586, 1067Heithausen, A. 2004, ApJ, 606, L13Hily-Blant, P., & Falgarone, E. 2009, A&A, 500, L29Hogerheijde, M. R., De Geus, E. J., & Spaans, F. 1995, ApJ, 441, L93A58, page 19 of 23


A&A 541, A58 (2012)Jenkins, E. B., & Tripp, T. M. 2011, ApJ, 734, 65Lequeux, J., Al<strong>le</strong>n, R. J., & Guilloteau, S. 1993, A&A, 280, L23Liszt, H. S. 1994, ApJ, 429, 638Liszt, H. S. 2007, A&A, 476, 291Liszt, H. S., & Lucas, R. 1996, A&A, 314, 917Liszt, H. S., & Lucas, R. 1998, A&A, 339, 561Liszt, H. S., & Lucas, R. 2000, A&A, 355, 333Liszt, H., & Lucas, R. 2001, A&A, 370, 576Liszt, H. S., & Wilson, R. W. 1993, ApJ, 403, 663Liszt, H., Lucas, R., & Pety, J. 2006, A&A, 448, 253Liszt, H. S., Pety, J., & Tachihara, K. 2009, A&A, 499, 503Liszt, H. S., Pety, J., & Lucas, R. 2010, A&A, 518, A45Lucas, R., & Liszt, H. S. 1993, A&A, 276, L33Lucas, R., & Liszt, H. S. 1996, A&A, 307, 237Lucas, R., & Liszt, H. S. 2000, A&A, 358, 1069Lucas, R., & Liszt, H. S. 2002, A&A, 384, 1054Madda<strong>le</strong>na, R. J., & Morris, M. 1987, ApJ, 323, 179Magnani, L., Blitz, L., & Mundy, L. 1985, ApJ, 295, 402Marscher, A. P., Bania, T. M., & Wang, Z. 1991, ApJ, 371, L77Pety, J., & Falgarone, E. 2003, A&A, 412, 417Pety, J., Lucas, R., & Liszt, H. S. 2008, A&A, 489, 217Planck Collaboration 2011, A&A, 536, A19Rachford, B. L., Snow, T. P., Destree, J. D., et al. 2009, ApJS, 180, 125Sakamoto, S., & Sunada, K. 2003, ApJ, 594, 340Savage, B. D., Drake, J. F., Budich, W., & Bohlin, R. C. 1977, ApJ, 216, 291Sch<strong>le</strong>gel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525Sheffer, Y., Rogers, M., Federman, S. R., Lambert, D. L., & Gredel, R. 2007,ApJ, 667, 1002Sheffer, Y., Rogers, M., Federman, S. R., et al. 2008, ApJ, 687, 1075Shetty, R., Glover, S. C., Dul<strong>le</strong>mond, C. P., & K<strong>le</strong>ssen, R. S. 2011, MNRAS,412, 1686Smith, A. M., Stecher, T. P., & Krishna Swamy, K. S. 1978, ApJ, 220, 138Snow, T. P., & McCall, B. J. 2006, ARA&A, 44, 367Sonnentrucker, P., Welty, D. E., Thorburn, J. A., & York, D. G. 2007, ApJS, 168,58Sonnentrucker, P., Neufeld, D. A., Phillips, T. G., Gerin, M., Lis, D. C., et al.2010, A&A, 521, L12Yamamoto, H., Onishi, T., Mizuno, A., & Fukui, Y. 2003, ApJ, 592, 217<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Pages 21 to 23 are availab<strong>le</strong> in the e<strong>le</strong>ctronic edition of the journal at http://www.aanda.orgA58, page 20 of 23


H. S. Liszt and J. Pety: Imaging diffuse clouds: bright and dark gas mapped in CO54m30sΔδ=20"2.831m1 2 33.9α(J2000)-22H54m53m30s-14 -12 -10 -8 -6V LSR (KM S -1 )0.3α(J2000)-2H30m29m28m27m1 23<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Fig. A.1. A right ascension-velocity diagram of CO emission 20 ′′ Northof B2251+158. The CO absorption spectrum toward B2251 is shownwith its 0-<strong>le</strong>vel at the location of the continuum source; the peak absorptionis 22%, see Fig. 7. Contours are shown at <strong>le</strong>vels 1−3, ... K.α(J2000)-2H21m20m19m18m17m16m15m14m1-10 0V LSR (KM S -1 )122.80.3Fig. A.2. A right ascension-velocity diagram of CO emission acrossthe field of B0212+735. The CO absorption spectrum toward B0212is shown with its 0-<strong>le</strong>vel at the location of the continuum source; thestrongest absorption line is quite opaque, see Fig. 10. Contours areshown at <strong>le</strong>vels 1−3, ... K.-10 0V LSR (KM S -1 )0.3Fig. A.3. A right ascension-velocity diagram of CO emission across thefield of B0224+671 at the declination of the continuum source. TheCO absorption spectrum toward B0224+671 is shown with its 0-<strong>le</strong>velat the location of the continuum source; the peak optical depth is 1.2,see Fig. 11. Contours are shown at <strong>le</strong>vels 1−3, ... K.that occur in the absorption line profi<strong>le</strong>s are somewhat haphazardsamp<strong>le</strong>s of the larger sca<strong>le</strong> gas distribution traced in CO emissionbut toward B0212+735 the diagram also indicates how theCO emission underrepresents the mo<strong>le</strong>cular gas distribution.Appendix B: The galaxy viewed in atomic gasaround the background targetsTo provide context for the kinematics seen in the present work,Figs. B.1 and B.2 show large-galactic-sca<strong>le</strong> H I latitude-velocitydiagrams for each of the sources studied here, using results ofthe LDSS survey of Hartmann & Burton (1997). The spatial resolutionof these data is 35 ′ and the data are on a 30 ′ grid. Thediagrams were constructed at the galactic longitude nearest thebackground target (see Tab<strong>le</strong> 1). The latitudes of the sources aremarked. Even if it was not apparent from the overlap of the H Iand mo<strong>le</strong>cular absorption in the figures in the text, these mapsmake it c<strong>le</strong>ar that the mo<strong>le</strong>cular gas studied here is part of “normal”galactic structure, mixed into the general ISM.Appendix A: CO line kinematicsaround three additional objectsShown in Figs. A.1−A.3 are position-velocity diagrams in rightascension across the positions of B2251+158, b0212+735 andB0224+671. As in Figs. 13 and 14 in the main text, theHCO + absorption spectrum toward the continuum backgroundtarget is superposed in the figures with its baseline positionedwhere the diagram most nearly crosses the location of the continuum.These diagrams are intended to show how the featuresA58, page 21 of 23


A&A 541, A58 (2012)Galactic LatitudeB0212+73510220˚ B0224+6712020˚20404010˚606010˚800˚20 40600˚20 80 40 60Galactic Latitude116-50 0V LSR (KM S -1 )0-10˚-50 0V LSR (KM S -1 )0B0355+50820 40116B0415+3792089<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Galactic Latitude10˚0˚-10˚608010020 40-50 0V LSR (KM S -1 )B0528+13440 20Galactic Latitude10˚0˚-10˚0130B0736+01780406020 4060-50 0V LSR (KM S -1 )0101Galactic Latitude0˚-10˚60 8010020 4060Galactic Latitude10˚0˚204060 8010020 40 6080-10˚-20˚-40 -20 0 20V LSR (KM S -1 )00 50V LSR (KM S -1 )0Fig. B.1. Latitude-velocity diagrams of H I brightness around six background targets used for mm-wave mo<strong>le</strong>cular absorption studies, usingH I data from the LDSS survey (Hartmann & Burton 1997). The spatial resolution is 35 ′ and the diagrams were constructed at the nearestlongitude on the 0.5 ◦ grid of the survey datacube. The latitudes of the sources are marked. The line of sight toward B0415+379 (3C 111) is notdiscussed in this work.A58, page 22 of 23


H. S. Liszt and J. Pety: Imaging diffuse clouds: bright and dark gas mapped in CO50˚B0954+6584110˚B1730-1302040135Galactic Latitude40˚30˚20Galactic Latitude0˚608010020204020˚40-60 -40 -20 0 20V LSR (KM S -1 )0-10˚0 50V LSR (KM S -1 )0<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Galactic Latitude20˚10˚0˚40206020 4060 801000 50V LSR (KM S -1 )2060 40 80100135B1928+738 B1954+513200119Galactic Latitude10˚0˚-10˚-20˚40806020 40 60-100 -50 0V LSR (KM S -1 )B2251+15820801180300˚Galactic Latitude-10˚B2200+42020Galactic Latitude-30˚-40˚-50˚2040-60˚-100 -50 0V LSR (KM S -1 )00-60 -40 -20 0 20V LSR (KM S -1 )Fig. B.2. Latitude-velocity diagrams of H I brightness around six background targets used for mm-wave mo<strong>le</strong>cular absorption studies, usingH I data from the LDSS survey (Hartmann & Burton 1997), as in Fig. B.1.A58, page 23 of 23


<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Chapitre 5Copyright: CFHT/CoelumLa Tête de Cheval : une référence observationnel<strong>le</strong>pour <strong>le</strong>s modè<strong>le</strong>s chimiques5.1 Les modè<strong>le</strong>s photochimiques et la Tête de ChevalLes modè<strong>le</strong>s des régions de photo-dissociations (PDRs) sont utilisés pour comprendre l’évolutionde la matière éclairée par <strong>le</strong> rayonnement UV, à la fois dans notre galaxie et dans <strong>le</strong>sgalaxies extérieures. Au vu de la comp<strong>le</strong>xité inhérente à la constitution de réseaux et de modè<strong>le</strong>schimiques fiab<strong>le</strong>s, il y a un vrai besoin d’observations bien contraintes qui puissent servir de


<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 201270LA TÊTE DE CHEVAL : UNE RÉFÉRENCE OBSERVATIONNELLE POUR LES MODÈLESCHIMIQUESréférence primaire. Une référence observationnel<strong>le</strong> idéa<strong>le</strong> donnerait aux chimistes un ensemb<strong>le</strong>d’abondances (avec <strong>le</strong>s incertitudes associées) en fonction de la distance (ou de l’extinction visuel<strong>le</strong>)à l’étoi<strong>le</strong> excitatrice. Cet objectif est diffici<strong>le</strong> à atteindre pour plusieurs raisons : 1) lagéométrie de la source n’est jamais aussi simp<strong>le</strong> que souhaitée, lorsqu’el<strong>le</strong> est connue ; 2) <strong>le</strong>sspectres produits par <strong>le</strong>s instruments doivent être inversés à l’aide de méthodes comp<strong>le</strong>xes detransfert de rayonnement pour obtenir des abondances ; 3) <strong>le</strong>s spectres sont souvent mesurés àdes résolutions angulaires très différentes, impliquant de la dilution et/ou du mélange de différentescomposantes du gaz dans <strong>le</strong> lobe du té<strong>le</strong>scope.Dans ce contexte, la PDR présente dans la crinière de la Tête de Cheval est un cas particulièrementintéressant parce que 1) la transition du gaz diffus, chaud et ionisé au gaz dense, froidet noir est brusque ; 2) la géométrie de la PDR est simp<strong>le</strong> (pratiquement unidimensionnel<strong>le</strong>, vuede profil). Le profil de densité à travers la PDR est bien contraint et nous faisons des efforts pourcontraindre à son tour <strong>le</strong> profil thermique. La combinaison d’une faib<strong>le</strong> distance à la Terre (à400 pc, 1 ′′ correspond à 0.002 pc), d’un faib<strong>le</strong> éclairement UV (χ = 60) et d’une grande densité(n H = 10 5 cm −3 ), implique que tous <strong>le</strong>s processus physiques et chimiques importants peuventêtre testés dans un champ de vue de moins de 50 ′′ avec des échel<strong>le</strong>s spatia<strong>le</strong>s allant de 1 à 10 ′′ .5.2 Une physique bien contrainte et une chimie richeDans <strong>le</strong>s 10 dernières années, j’ai mis en œuvre avec M. Gerin (Obs. de Paris/LERMA) etJ. Goicoechea (Centro de Astrobiología, CSIC) un programme ambitieux et cohérent d’observationsde cette PDR. Nous avons utilisé <strong>le</strong>s mêmes instruments et <strong>le</strong>s mêmes méthodes d’observation,de réduction et d’analyse des données. Pour chaque espèce chimique, nous avons essayé1) d’observer au moins deux transitions à une résolution angulaire similaire (de 5 à 15 ′′ ) pourcontraindre proprement <strong>le</strong>s conditions d’excitations, et 2) d’observer <strong>le</strong>s isotopologues 1 associéspour inférer des densités de colonne et des abondances précises. L’obtention de cartes del’émission étendue s’est aussi révélée essentiel<strong>le</strong> pour comprendre <strong>le</strong>s distributions spatia<strong>le</strong>s desémissions des diverses espèces.Cet effort a conduit à la publication de 8 artic<strong>le</strong>s dans A&A avec <strong>le</strong>s résultats suivants :1. La PDR a un gradient de densité très pentu, augmentant jusqu’à n H = 10 5 cm −3 en moinsde 10 ′′ , à une pression approximativement constante de P = 4 10 6 K cm −3 [A28].2. Les abondances des petits hydrocarbures sont plus grandes que <strong>le</strong>s prédictions émanant demodè<strong>le</strong>s de chimie en phase uniquement gazeuse. Cela suggère qu’un chemin chimiquesupplémentaire pour la formation de ces petites chaînes hydrocarbonnées doit être considérédans <strong>le</strong>s PDRs. Nous avons proposé que <strong>le</strong> surplus de petits hydrocarbures pourraitprovenir de la photo-érosion des PAHs [A29, A32].3. La déplétion du soufre en phase gazeuse, nécessaire pour expliquer <strong>le</strong>s abondances de CSet de HCS + , est inférieure de plusieurs ordres de grandeur à cel<strong>le</strong> invoquée dans toutes <strong>le</strong>sétudes précédentes, quel<strong>le</strong> que soit la source [A25].4. Un cœur dense et froid (T ∼ 20 K, n > 2 10 5 cm −3 ) existe juste derrière la PDR. Dans cecœur dense, <strong>le</strong> fractionnement du deutérium est efficace, ce qui donne [DCO + ]/[HCO + ] >1 Des isotopologues sont des molécu<strong>le</strong>s qui différent uniquement dans <strong>le</strong>ur composition isotopique, par exemp<strong>le</strong>CS et C 34 S.


5.2 UNE PHYSIQUE BIEN CONTRAINTE ET UNE CHIMIE RICHE 71<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012FIG. 5.1 – Région de photo-dissociation (PDR) de la Tête de Cheval révélée par l’émission dedivers traceurs moléculaires à des résolutions angulaires allant de 11 ′′ à 32 ′′ . Le champ de vuecouvre 200 ′′ × 200 ′′ . Les cartes ont été tournées de 14 ◦ dans <strong>le</strong> sens inverse des aiguil<strong>le</strong>s d’unemontre autour du centre de l’image pour amener la direction de l’étoi<strong>le</strong> excitatrice à l’horizontalcar cela simplifie la comparaison de la stratification des divers traceurs. La barre vertica<strong>le</strong> indique<strong>le</strong> bord de la PDR. Le sque<strong>le</strong>tte blanc, défini sur la carte d’émission de DCO + , est reproduit surtoutes <strong>le</strong>s images pour fournir une référence spatia<strong>le</strong>. Le lobe angulaire des observations estdessiné à l’échel<strong>le</strong> dans <strong>le</strong> coin en bas, à gauche. L’émission des raies a été intégrée entre 10.1and 11.1 km s −1 . La va<strong>le</strong>ur des niveaux de contours est indiquée sur <strong>le</strong>s tab<strong>le</strong>s de cou<strong>le</strong>ur, à droitede chaque image.


72LA TÊTE DE CHEVAL : UNE RÉFÉRENCE OBSERVATIONNELLE POUR LES MODÈLESCHIMIQUES<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012FIG. 5.2 – Même description que la Figure 5.1, mais il s’agit cette fois de zooms en grande partieobtenus à l’aide de l’interféromètre du Plateau de Bure. Le champ de vue couvre 140 ′′ × 140 ′′ et<strong>le</strong>s résolutions angulaires sont comprises entre 1 ′′ et 6 ′′ .


5.3 PERSPECTIVES : DES RELEVÉS DE RAIES SENSIBLES ET NON-BIAISÉS 73<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 20120.02 [A21].5. Alors que DCO + est un bon traceur du cœur moléculaire dense et froid, tota<strong>le</strong>ment protégédu rayonnement UV, <strong>le</strong> radical HCO apparaît comme un excel<strong>le</strong>nt traceur des zones densesaffectées par <strong>le</strong> rayonnement [A13]. Ce radical est détecté avec une abondance 100 foissupérieure aux prédictions des modè<strong>le</strong>s. Nous avons proposé une alternative pour rendrecompte de cette surabondance. La réaction O + CH 2 → HCO + H pourrait reproduirel’abondance mesurée à condition que la constante de vitesse de cette réaction ne s’effondrepas à basse température. HCO pourrait éga<strong>le</strong>ment être synthétisé sur <strong>le</strong>s manteauxdes grains et libéré en phase gazeuse par des processus non-thermiques. La confirmationd’une de ces deux hypothèses nécessite des données de laboratoire qui permettraient uneévaluation quantitative.6. La photo-désorption des glaces par <strong>le</strong> rayonnement UV est nécessaire pour expliquer lagrande quantité de H 2 CO mesurée la PDR de la Tête de Cheval [A2].7. Nous avons exploité <strong>le</strong>s mesures des ions moléculaires pour étudier la variation de l’abondanceé<strong>le</strong>ctronique depuis <strong>le</strong>s zones <strong>le</strong>s plus éclairées jusqu’aux zones <strong>le</strong>s plus sombres [A12].Nous avons étudié en détail l’influence des principa<strong>le</strong>s sources d’é<strong>le</strong>ctron (<strong>le</strong> taux d’ionisationpar <strong>le</strong>s rayons cosmiques et l’abondance des métaux) ainsi que l’influence de laprésence de PAH. Cette étude a renforcé notre intérêt pour la chimie du soufre, puisquel’abondance du soufre et son état de charge sont des paramètres déterminants pour <strong>le</strong> degréd’ionisation dans <strong>le</strong>s zones translucentes (A v de quelques magnitudes).Presque tous ces résultats étaient inattendus à l’origine du projet, ce qui illustre l’importanced’avoir de bonnes sources astrophysiques de référence pour contraindre <strong>le</strong>s modè<strong>le</strong>s chimiques.5.3 Perspectives : des re<strong>le</strong>vés de raies sensib<strong>le</strong>s et non-biaisésCet effort a été amp<strong>le</strong>ment reconnu. Nous avons encore de nombreuses données à exploiterafin de compléter l’inventaire des molécu<strong>le</strong>s simp<strong>le</strong>s et de commencer l’étude de molécu<strong>le</strong>s pluscomp<strong>le</strong>xes : 1) des cartes de SO et de H 2 S obtenues à l’IRAM-30m pour compléter <strong>le</strong>s donnéespubliées sur CS et HCS + ; 2) des cartes des raies de rotation-inversion de NH 3 obtenues avecEffelsberg et <strong>le</strong> VLA pour contraindre la température du gaz ; et 3) des cartes de CN, HCNet HNC obtenues avec l’IRAM-30m et l’interféromètre du Plateau de Bure 2 pour commencerl’étude de la chimie de l’azote. Nous allons obtenir des cartes de C + et de CO de niveau J é<strong>le</strong>védans <strong>le</strong> cadre du temps ouvert 1 avec Herschel/HIFI (c’est une partie d’un programme sur 2PDRs dont <strong>le</strong> PI est C. Joblin). En août 2011 et février 2012, nous avons surtout obtenu au 30m<strong>le</strong> premier re<strong>le</strong>vé de raies non-biaisé à 3 et 1 mm avec <strong>le</strong>s nouveaux spectromètres à transforméede Fourier (cf. section 7). La figure 5.3 montre <strong>le</strong> re<strong>le</strong>vé à 3 mm. Avec V. Guzman, étudiantechilienne en thèse avec nous sur la chimie en phase solide depuis mars 2010, et P. Gratier, postdocà l’IRAM depuis janvier 2011, nous avons réalisé grâce à ce re<strong>le</strong>vé la deuxième détection deCF + , la première détection en millimétrique de CH 3 NC, et la première détection d’un nouvel ionréactif. Dans <strong>le</strong> cadre du projet ANR SCHISM, nous prévoyons de mettre <strong>le</strong>s données publiéesà disposition de la communauté pour augmenter l’impact de nos travaux.2 Ces données ont fait l’objet du stage de master 2 de J. Montillaud en 2008.


74LA TÊTE DE CHEVAL : UNE RÉFÉRENCE OBSERVATIONNELLE POUR LES MODÈLESCHIMIQUES<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012FIG. 5.3 – Les spectres en haut et en bas montrent <strong>le</strong>s re<strong>le</strong>vés de raie dans la bande à 3 mm àune résolution spectra<strong>le</strong> de 49 kHz pour deux positions dans la nébu<strong>le</strong>use de la Tête de Cheval,spectres obtenus en ∼ 60 heures à l’IRAM-30m à l’aide des récepteurs EMIR et des nouveauxspectromètres à transformée de Fourier. Chaque spectre a environ 740 000 canaux, c.-à-d. autantd’informations que dans une image de 860 × 860 pixels ! Le bruit médian est ∼ 8 mK [T ∗ A].Les positions des re<strong>le</strong>vés de raies correspondent aux deux environnements typiques à l’intérieurdu carré blanc sur l’image de l’intensité intégrée de C 18 O (grande image à gauche obtenueavec <strong>le</strong> multi-pixel IRAM/HERA) : 1) la région de photo-dissociation (PDR) indiquée par unecroix verte sur la carte d’émission intégrée de CCH (image zoomée au centre haut obtenue avecl’IRAM/PdBI), et 2) <strong>le</strong> cœur dense indiqué par une croix b<strong>le</strong>ue sur la carte d’émission intégréede DCO + (image zoomée au centre bas obtenue avec l’IRAM/PdBI). Les spectres au centre àdroite montrent comment des raies fortes ou faib<strong>le</strong>s sont résolues.


A&A 435, 885–899 (2005)DOI: 10.1051/0004-6361:20041170c○ ESO 2005Astronomy&AstrophysicsAre PAHs precursors of small hydrocarbonsin photo-dissociation regions? The Horsehead caseJ. Pety 1,2 , D. Teyssier 3,4 , D. Fossé 1 , M. Gerin 1 ,E.Roueff 5 ,A.Abergel 6 , E. Habart 7 , and J. Cernicharo 3<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 20121 LERMA, UMR 8112, CNRS, Observatoire de Paris and Eco<strong>le</strong> Norma<strong>le</strong> Supérieure, 24 rue Lhomond,75231 Paris Cedex 05, Francee-mail: [fosse;gerin]@lra.ens.fr2 IRAM, 300 rue de la Piscine, 38406 Grenob<strong>le</strong> Cedex, Francee-mail: pety@iram.fr3 Instituto de Estructura de la Materia, CSIC, Serrano 121, 28006 Madrid, Spaine-mail: [cerni;teyssier]@damir.iem.csic.es4 Space Research Organization Netherlands, PO Box 800, 9700 AV Groningen, The Netherlands5 LUTH UMR 8102, CNRS and Observatoire de Paris, Place J. Janssen 92195 Meudon Cedex, Francee-mail: evelyne.roueff@obspm.fr6 IAS, Université Paris-Sud, Bât. 121, 91405 Orsay Cedex, Francee-mail: abergel@ias.u-psud.fr7 Osservatorio Astrofisico di Arcetri, L.go E. Fermi 5, 50125 Firenze, Italye-mail: habart@arcetri.astro.itReceived 27 April 2004 / Accepted 11 January 2005Abstract. We present maps at high spatial and spectral resolution in emission lines of CCH, c-C 3 H 2 ,C 4 H, 12 CO and C 18 Oofthe edge of the Horsehead nebula obtained with the IRAM Plateau de Bure Interferometer (PdBI). The edge of the Horseheadnebula is a one-dimensional Photo-Dissociation Region (PDR) viewed almost edge-on. All hydrocarbons are detected at highsignal-to-noise ratio in the PDR where intense emission is seen both in the H 2 ro-vibrational lines and in the PAH mid-infraredbands. C 18 O peaks farther away from the cloud edge. Our observations demonstrate that CCH, c-C 3 H 2 and C 4 H are present inUV-irradiated mo<strong>le</strong>cular gas, with abundances nearly as high as in dense, well-shielded mo<strong>le</strong>cular cores.PDR models i) need a large density gradient at the PDR edge to correctly reproduce the offset between the hydrocarbons andH 2 peaks; and ii) fail to reproduce the hydrocarbon abundances. We propose that a new formation path of carbon chains, inaddition to gas phase chemistry, should be considered in PDRs: because of intense UV-irradiation, large aromatic mo<strong>le</strong>cu<strong>le</strong>sand small carbon grains may fragment and feed the inters<strong>tel</strong>lar medium with small carbon clusters and mo<strong>le</strong>cu<strong>le</strong>s in significantamounts.Key words. ISM: clouds – ISM: mo<strong>le</strong>cu<strong>le</strong>s – ISM: individual object: Horsehead nebula – radio lines: ISM1. IntroductionDue to the ISO mission, the know<strong>le</strong>dge of inters<strong>tel</strong>lar dust hassignificantly progressed in the recent years. With its instrumentssensitive in the mid-infrared, ISO revea<strong>le</strong>d the spatialdistribution and line profi<strong>le</strong> of the Aromatic Infrared Bands(AIBs at 3.3, 6.2, 7.7, 8.6 and 11.3 µm features), which haveshed light on the emission mechanism and their possib<strong>le</strong> carriers(Boulanger et al. 2000; Rapacioli et al. 2005). However, nodefinite identification of individual species has been possib<strong>le</strong>yet because the bands are not specific for individual mo<strong>le</strong>cu<strong>le</strong>s.The most likely carriers are large polycyclic aromatic hydrocarbons(PAHs) with about 50 carbon atoms (Allain et al.1996b; Le Page et al. 2003). The ubiquity of the aromatic bandemission in the inters<strong>tel</strong>lar medium has triggered a wealth oftheoretical and laboratory work in the past two decades, whichhas <strong>le</strong>d to a revision of astrophysical models. PAHs are nowsuspected to play a major ro<strong>le</strong> in both inters<strong>tel</strong>lar mediumphysics and chemistry. With their small size, they are themost efficient partic<strong>le</strong>s for the photo-e<strong>le</strong>ctric effect (Bakes &Tie<strong>le</strong>ns 1994; Weingartner & Draine 2001; Habart et al. 2001).Their presence also affects the ionization balance (Flower &Pineau des Forêts 2003; Wolfire et al. 2003), and possibly theformation of H 2 (Habart et al. 2004). The ro<strong>le</strong> of PAHs in theneutralization of atomic ions in the diffuse inters<strong>tel</strong>lar mediumhas been recently reconsidered by Liszt (2003), following previouswork by Lepp et al. (1988). As emphasized soon aftertheir discovery (Omont 1986; Lepp & Dalgarno 1988), PAHsArtic<strong>le</strong> published by EDP Sciences and availab<strong>le</strong> at http://www.edpsciences.org/aa or http://dx.doi.org/10.1051/0004-6361:20041170


886 J. Pety et al.: Are PAHs precursors of small hydrocarbons in photo-dissociation regions?<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012also play a ro<strong>le</strong> in gas chemistry: some laboratory experimentsand theoretical calculations suggest that PAHs may fragmentinto small carbon clusters and mo<strong>le</strong>cu<strong>le</strong>s under photon impact(C 2 ,C 3 ,C 2 H 2 , etc.) (Joblin 2003; Le Page et al. 2003; Allainet al. 1996b,a; Leger et al. 1989; Scott et al. 1997). In addition,investigation of the lifetimes of inters<strong>tel</strong>lar PAHs implies thatphoto-dissociation may be the main limiting process for theirlife in the inters<strong>tel</strong>lar medium (Verstraete et al. 2001).It is therefore appropriate to wonder whether PAHs couldfragment continuously and feed the inters<strong>tel</strong>lar medium withsmall hydrocarbons and carbon clusters. This hypothesis isattractive for the following reasons:i) Cyclopropenylidene (c-C 3 H 2 ) is widely distributed in theinters<strong>tel</strong>lar medium (Matthews & Irvine 1985; Matthewsii)et al. 1986; Cox et al. 1988; Lucas & Liszt 2000).Recent works have shown that the diffuse inters<strong>tel</strong>larmedium is more chemically active than previously thoughtwith mo<strong>le</strong>cu<strong>le</strong>s as large as C 3 (Goicoechea et al. 2004;Oka et al. 2003; Ádámkovics et al. 2003; Roueff et al.2002; Maier et al. 2001) and c-C 3 H 2 (Lucas & Liszt 2000)widely distributed. The abundances of C 3 and c-C 3 H 2 aretightly connected to those of smal<strong>le</strong>r mo<strong>le</strong>cu<strong>le</strong>s, C 2 andCCH respectively, with abundance ratios of [C 2 ]/[C 3 ] ∼10−40 (Oka et al. 2003) and [CCH]/[c-C 3 H 2 ] ∼ 27.7 ±8 (Lucas & Liszt 2000).iii) Thorburn et al. (2003) have found a correlation between theabundance of C 2 and the strength of some (weak) DiffuseInters<strong>tel</strong>lar Bands (DIBs).As PAHs are present in the diffuse inters<strong>tel</strong>lar medium, couldthey contribute to form both the small carbon clusters (C 2 ,C 3 ) and larger hydrocarbon mo<strong>le</strong>cu<strong>le</strong>s which could be theDIB carriers?Unfortuna<strong>tel</strong>y, studies of the PAH emission bands in thediffuse inters<strong>tel</strong>lar clouds where the carbon clusters have beendetected is extremely difficult because of the low column densities,and also because the bright background stars used forvisib<strong>le</strong> spectroscopy prohibit the use of sensitive IR cameraswhich would be saturated. Photo-Dissociation regions (PDRs)are the first inters<strong>tel</strong>lar sources in which AIBs have been foundand for which the PAH hypothesis has been proposed (Sellgren1984; Leger & Puget 1984). It is therefore interesting to investigatethe carbon chemistry in these sources. Fossé et al. (2000)and Teyssier et al. (2004) have discussed medium spatial resolution(30 ′′ ) observations of various hydrocarbons in nearbyPDRs. They show that CCH, c-C 3 H 2 and C 4 H are ubiquitous inthese regions, with abundances almost as high as in dark, wellshielded clouds, despite the strong UV radiation. Fuente et al.(2003) also report high abundances of c-C 3 H 2 in NGC 7023and the Orion Bar. Heavier mo<strong>le</strong>cu<strong>le</strong>s may be present in PDRsas Teyssier et al. (2004) report a tentative detection of C 6 Hinthe Horsehead nebula. PDRs and diffuse clouds therefore seemto share the same carbon chemistry, but because of their largerH 2 column density and gas density, PDRs offer more opportunitiesto detect rare species.Teyssier et al. (2004) and Fuente et al. (2003) propose thatthe presence of carbon chains is in favor of a causal link betweensmall hydrocarbons and PAHs, but they lack the spatialresolution to draw firm conclusions. In the present work, wepresent high spatial resolution observations of one source studiedby Teyssier et al. (2004), the Horsehead nebula, obtainedwith the Plateau de Bure interferometer. We describe the observationsin Sect. 2. We show the interferometer maps in Sect. 3.Section 4 presents a comparison with chemical models.2. Observations and data reduction2.1. The Horsehead nebulaThe Horsehead nebula, also cal<strong>le</strong>d Barnard 33, appears as adark patch of ∼5 ′ extent against the bright HII region IC 434.Emission from the gas and dust associated with this globu<strong>le</strong> hasbeen detected from mid-IR to millimeter wave<strong>le</strong>ngths (Aberge<strong>le</strong>t al. 2002, 2003; Teyssier et al. 2004; Pound et al. 2003). Fromthe analysis of the ISOCAM images, Abergel et al. (2003)conclude that the Horsehead nebula is a PDR viewed edgeonand illuminated by the O9.5V star σOri at a projecteddistance of 0.5 ◦ (3.5 pc for a distance of 400 pc, Anthony-Twarog 1982). The far-UV intensity of the incident radiationfield is G 0 = 60 relative to the average inters<strong>tel</strong>lar radiationfield in Draine units (Draine 1978). The gas density, derivedfrom the excitation of mo<strong>le</strong>cular lines and from the penetrationdepth of the UV-radiation, is a few 10 4 cm −3 (Abergel et al.2003). From a combined analysis of maps of both CO andatomic carbon, Lis & Guesten (2005) obtain similar figuresfor the gas density. Habart et al. (2004, 2005) have mode<strong>le</strong>dthe emission of H 2 (from narrow band images of the H 2 rovibrationalline), PAHs and CO, and conclude that i) the gasdensity follows a steep gradient at the cloud edge, rising ton H = 10 5 cm −3 in <strong>le</strong>ss than 10 ′′ (i.e. 0.02 pc); and ii) this densitygradient model is essentially a constant pressure model (withP = 4 × 10 6 Kkms −1 ).The edge of the Horsehead nebula is particularly welldelineated by the mid-IR emission due to PAHs, with abright 7.7 µm-peak (hereafter named the “IR peak”) reaching25 MJy/sr at α 2000 = 05 h 40 m 53.70 s ,δ 2000 = −02 ◦ 28 ′ 04 ′′ .Figure 1 shows the region observed with the IRAM PdBI centerednear the “IR peak”. Two mosaics (one for hydrocarbonlines and the other for the CO lines) have been observed. Theirset-ups are detai<strong>le</strong>d in Tab<strong>le</strong> 1.2.2. Observations2.2.1. c-C 3 H 2 and C 4 HFirst PdBI observations dedicated to this project were carriedout with 6 antennae in the CD configuration (baseline <strong>le</strong>ngthsfrom 24 to 229 m) during March-April 2002. The 580 MHzinstantaneous IF-bandwidth allowed us to simultaneously observec-C 3 H 2 and C 4 H at 3 mm using 3 different 20 MHz-widecorrelator windows. One other window was centered on theC 18 O(J = 2−1) frequency. The full IF bandwidth was also coveredby continuum windows both at 3.4 and 1.4 mm. c-C 3 H 2and C 4 H were detected but the weather quality precluded useof 1.4 mm data.We observed a seven-field mosaic in a compact hexagonalpattern with full Nyquist sampling at 1.4 mm andArtic<strong>le</strong> published by EDP Sciences and availab<strong>le</strong> at http://www.edpsciences.org/aa or http://dx.doi.org/10.1051/0004-6361:20041170


<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Tab<strong>le</strong> 1. Observation parameters.J. Pety et al.: Are PAHs precursors of small hydrocarbons in photo-dissociation regions? 887Phase centerNumber of fieldsMosaic 1 α 2000 = 05 h 40 m 54.27 s δ 2000 = −02 ◦ 28 ′ 00 ′′ 7Mosaic 2 α 2000 = 05 h 40 m 53.00 s δ 2000 = −02 ◦ 28 ′ 00 ′′ 4Mo<strong>le</strong>cu<strong>le</strong> and Line Frequency Beam PA Noise a Obs. dateGHz arcsec◦Kkms −1Mosaic 1c-C 3 H 2 2 1,2 −1 0,1 85.339 6.13 × 4.75 36 3.1×10 −2 Mar. 2002 and Apr. 2002C 4 H-1 N = 9−8, J = 19/2−17/2 85.634 6.11 × 4.74 36 2.6 × 10 −2 Mar. 2002 and Apr. 2002C 4 H-2 N = 9−8, J = 17/2−15/2 85.672 6.11 × 4.74 36 3.4 × 10 −2 Mar. 2002 and Apr. 2002CCH-1 N = 1−0, J = 3/2−1/2 F = 2−1 87.316 7.24 × 4.99 54 3.4 × 10 −2 Dec. 2002 and Mar. 2003CCH-2 N = 1−0, J = 3/2−1/2 F = 1−0 87.328 7.24 × 4.99 54 2.5 × 10 −2 Dec. 2002 and Mar. 2003CCH-3 N = 1−0, J = 1/2−1/2 F = 1−1 87.402 7.24 × 4.99 54 3.4 × 10 −2 Dec. 2002 and Mar. 2003CCH-4 N = 1−0, J = 1/2−1/2 F = 0−1 87.407 7.24 × 4.99 54 2.3 × 10 −2 Dec. 2002 and Mar. 2003C 18 O J = 2−1 219.560 6.54 × 4.31 65 9.8 × 10 −2 Mar. 2003Mosaic 212 CO J = 1−0 115.271 5.95 × 5.00 65 1.2 × 10 −1 Nov. 199912 CO J = 2−1 230.538 2.97 × 2.47 66 1.7 × 10 −1 Nov. 1999a The noise values quoted here are the noises at the mosaic center (Mosaic noise is inhomogeneous due to primary beam correction; it steeplyincreases at the mosaic edges). Those noise values have been computed in 1 km s −1 velocity bin.Fig. 1. The field of view covered when mapping small hydrocarbonsat 3.4 mm with the Plateau de Bure Interferometer (PdBI) is shown asa square over this ESO–VLT composite image (B, V and R bands) ofthe Horsehead nebula. Each circ<strong>le</strong> indicates the 3.4 mm primary beamof the PdBI at one of the 7 observed positions. Those positions arelargely oversamp<strong>le</strong>d at the hydrocarbon wave<strong>le</strong>ngth (3.4 mm) to ensuresimultaneous Nyquist-sampling at 1.4 mm used to observe C 18 O.A linear combination of the 7 pointed observation is done to obtainthe final dirty image.large oversampling at 3.4 mm. This mosaic, centered on theIR peak, was observed for about 6h of on-source observingtime per configuration. The rms phase noises were between 15and 40 ◦ at 3.4 mm, which introduced position errors


888 J. Pety et al.: Are PAHs precursors of small hydrocarbons in photo-dissociation regions?<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Tab<strong>le</strong> 2. Calibrator fluxes in Jy.B0420−014 B0607−157 B0528+1343mm 1mm 3mm 1mm 3mm 1mm27.11.1999 3.5 1.430.03.2002 4.8 2.316.04.2002 4.8 2.522.04.2002 4.8 2.423.12.2002 12.5 2.618.03.2003 12.0 7.8 2.1 0.8726.03.2003 12.8 2.1configuration C (baseline <strong>le</strong>ngths from 24 to 82 m). The observationconsisted of a 4-field mosaic, fully samp<strong>le</strong>d at 1.3 mm.The mosaic center is slightly shifted compared to the two otherobservations. The weather was excel<strong>le</strong>nt with phase noise from3to5 ◦ and 6 to 10 ◦ at 2.6 mm and 1.3 mm, respectively. Typicalresolutions were 5 ′′ at 2.6 mm and 2.5 ′′ at 1.3 mm.2.2.4. Other data: H 2 , ISO-LW2 and 1.2 mm dustcontinuumThe H 2 v = 1−0 S(1) map shown here is a small part ofHorsehead observations obtained at the NTT using SOFI. Theresolution is ∼1 ′′ . Extensive explanations of the data reductionand analysis are discussed elsewhere (Habart et al. 2004,2005). The ISO-LW2 map (published by Abergel et al. 2003)shows aromatic features at 7.7 µm with a resolution of ∼6 ′′ .The 1.2 mm dust continuum was obtained at the IRAM-30 m<strong>tel</strong>escope with a resolution of ∼11 ′′ and has already been presentedby Teyssier et al. (2004).2.3. PdBI data processingAll data reduction was done with the GILDAS 1 softwares supportedat IRAM. Standard calibration methods using closecalibrators were applied to all the PdBI data. The calibratorfluxes used for the absolute flux calibration are summarized inTab<strong>le</strong> 2.Following Gueth et al. (1996), sing<strong>le</strong>-dish, fully samp<strong>le</strong>dmaps obtained with the IRAM-30 m <strong>tel</strong>escope (Teyssier et al.2004; Abergel et al. 2003) were used to produce the shortspacingvisibilities filtered out by each mm-interferometer(e.g. spatial frequencies between 0 and 15 m for PdBI). Thosepseudo-visibilities were merged with the observed, interferometricones. Each mosaic field were then imaged and a dirtymosaic was built combining those fields in the following optimalway in terms of signal-to-noise ratio (Gueth 2001):∑J(α, δ) =iB i (α, δ)σ 2 i/ ∑ B i (α, δ) 2F i (α, δ)·iIn this equation, J(α, δ) is the brightness distribution in the dirtymosaic image, B i are the response functions of the primary1 See http://www.iram.fr/IRAMFR/GILDAS for more informationabout the GILDAS softwares.σ 2 iantenna beams, F i are the brightness distributions of the individualdirty maps, and σ i are the corresponding noise values.As may be seen in this equation, the dirty intensity distributionis corrected for primary beam attenuation. This impliesthat noise is inhomogeneous. In particular, noise strongly increasesnear the edges of the field of view. To limit this effect,both the primary beams used in the above formula and the resultingdirty mosaics are truncated. The standard <strong>le</strong>vel of truncationis set at 20% of the maximum in GILDAS. In our case,the intensity distribution does not drop to zero at all field edges.Hence, we used a much lower <strong>le</strong>vel of truncation of the beam(i.e. 5%) to ensure a better deconvolution of the side lobes ofthe sources sitting just at the field edges. We then use the standardadaptation to mosaics of the Högbom CLEAN algorithmto deconvolve (Gueth 2001). The sharp edge of the H 2 emissiondefines a boundary that may be used as a priori know<strong>le</strong>dgein the deconvolution of the PdBI images: we use this boundaryas a numerical support (in the language of signal processing)to exclude the search for CLEAN components outside thePDR front (i.e. in the direction of the exciting star). We finallytruncated the noisy c<strong>le</strong>an mosaic edges using the standard truncation<strong>le</strong>vel. The C 4 H maps are particularly difficult to deconvolvedue to their low signal-to-noise ratio, S/N < 10 to 15.3. Results3.1. MapsThe PdBI maps are shown in Figs. 2 and 3 together withthe 7 µm ISOCAM image (Abergel et al. 2003), the 1.2 mmdust emission map (Teyssier et al. 2004) and the map of theH 2 2.1 µm line emission (Habart et al. 2004, 2005) for comparison.For all lines, we obtained excel<strong>le</strong>nt spatial resolutions,similar to or even better than the ISOCAM pixel size of 6 ′′ (seeTab<strong>le</strong> 1). Figure 2 shows the maps in the natural Equatorial coordinatesystem whi<strong>le</strong> Fig. 3 shows the maps in a coordinatesystem where the x-axis is in the direction of the exciting starand the y-axis defines an empirical PDR edge that correspondsto the sharp boundary of the H 2 emission (i.e. the mapshave been rotated by 14 ◦ counter-clockwise and horizontallyshifted by 20 ′′ ). The latter presentation enab<strong>le</strong>s a much bettercomparison of the PDR stratification.The main structure in all hydrocarbon maps is an approximativelyN-S filament, following nicely the cloud edge and correspondingclosely to the mid-IR filament on the ISO-LW2 image.A weaker and more extended emission is also detected,which has no counterpart in the ISO-LW2 image and can be attributedto the bulk of the cloud. It is interesting to note that thehydrocarbon emission presents a minimum behind the main filament,and a weaker secondary maximum within the extendedemission. The hydrocarbon emission is stronger on the edges ofthe dust 1.2 mm emission and avoids the region of maximumdust emission where the gas is likely denser. This confirms atendency revea<strong>le</strong>d by chemical surveys of dense cores (studyof TMC-1 by Pratap et al. 1997 and L134N by Dickens et al.2000; Fossé 2003): i.e. carbon chains (CCH, C 4 H,...) generallyavoid the densest and more dep<strong>le</strong>ted cores.Artic<strong>le</strong> published by EDP Sciences and availab<strong>le</strong> at http://www.edpsciences.org/aa or http://dx.doi.org/10.1051/0004-6361:20041170


J. Pety et al.: Are PAHs precursors of small hydrocarbons in photo-dissociation regions? 889<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Fig. 2. Integrated emission maps obtained with the Plateau de Bure Interferometer. Maps of i) the H 2 v = 1−0 S(1) emission (Habart et al.2004, 2005); ii) the mid-IR emission (Abergel et al. 2003, labe<strong>le</strong>d ISO-LW2); and iii) the 1.2 mm dust continuum (Teyssier et al. 2004, labe<strong>le</strong>d1.2mm) are also shown for comparison. The center of all maps has been set to the mosaic 1 phase center: RA(2000) = 05h40m54.27s,Dec(2000) = −02 ◦ 28 ′ 00 ′′ . The map size is 110 ′′ × 110 ′′ , with ticks drawn every 10 ′′ . Either the synthesized beam or the sing<strong>le</strong> dish beam isplotted in the bottom <strong>le</strong>ft corner. The emission of all the lines observed at PdBI is integrated between 10.1 and 11.1 km s −1 . Values of contour<strong>le</strong>vel are shown on each image wedge (contours of the H 2 image have been computed on an image smoothed to 5 ′′ resolution). The sharp edgeof the H 2 emission (upper right panel) defines a boundary, which is used as a numerical support (in the language of signal processing) fordeconvolution of the other images. This deconvolution support is overplotted in red on each panel.Even at the high spatial resolution provided by the plateaude Bure Interferometer, the maps of all hydrocarbons remainvery similar. Detai<strong>le</strong>d inspection of the maps shows small differencesbetween CCH and c-C 3 H 2 , but these do not affect theoverall similarity. Indeed, the joint histogram describing thecorrelation of line maps for i) the two most intense CCH lines;ii) c-C 3 H 2 and CCH; and iii) C 4 H and CCH are displayed inFig. 4. As expected the two CCH lines are extremely well correlatedas illustrated by the elongated shape (approaching astraight line) of the joint histogram. The correlations betweenc-C 3 H 2 and CCH, and between C 4 H and CCH are excel<strong>le</strong>nttoo, although the signal-to-noise ratio is not as good for C 4 H.For this plot, we have used all points lying inside the supportused for the deconvolution.The high resolution c-C 3 H 2 map appears to show morestructure than the CCH maps, particularly in the well-shieldedcloud interior (on the <strong>le</strong>ft hand side of the main filament).This effect seems real since it does not appear for the sa<strong>tel</strong>liteCCH line maps, which have similar intensities and signal-tonoiseratio as the c-C 3 H 2 map. The C 4 H maps are too noisyfor a detai<strong>le</strong>d analysis but are neverthe<strong>le</strong>ss very well correlatedwith the CCH map. The correlations found at low spatial resolution(Teyssier et al. 2004) are not an artifact but persist athigh spatial resolution.The correspondence of hydrocarbons with CO and C 18 Ois not as good. The C 18 O(J = 2−1) map presents two maxima,located on either side of the CCH peak along the N-S direction:the CCH peak is associated with a local minimum ofC 18 O emission. Also, the C 18 O emission peak is displaced fartherinside the cloud (East) compared to CCH and the otherhydrocarbons.To illustrate further the differences in the spatial distributionof CO, C 18 O and the hydrocarbons, we show two series ofcuts across the PDR in Fig. 5. The UV radiation comes fromArtic<strong>le</strong> published by EDP Sciences and availab<strong>le</strong> at http://www.edpsciences.org/aa or http://dx.doi.org/10.1051/0004-6361:20041170


890 J. Pety et al.: Are PAHs precursors of small hydrocarbons in photo-dissociation regions?<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Fig. 3. Same as Fig. 2 except that maps have been rotated by 14 ◦ counter-clockwise around the image center to bring the exciting star directionin the horizontal direction as this eases the comparison of the PDR tracer stratifications. Maps have also been horizontally shifted by 20 ′′ toset the horizontal zero at the PDR edge delineated as the vertical red line. Horizontal red lines delimit the two lanes that have been verticallyaveraged to produce the two series of cuts shown in Fig. 5.σ Ori far to the right side of Fig. 3. The cuts have been takenalong the σ Ori direction (i.e. PA = −104 ◦ ). The main peak forall hydrocarbons is located near an offset of δx ≃ 12−15 ′′ at<strong>le</strong>ss than 5 ′′ of the H 2 peak. The ISO-LW2 peak is located halfwaybetween hydrocarbons and H 2 peaks. Intense 12 CO emissionin both the J = 1−0 andJ = 2−1 lines is also detected inthe same region, whi<strong>le</strong> the C 18 O(J = 2−1) emission arises farther(at <strong>le</strong>ast 5 ′′ ) inside the cloud.AsshowninFig.6,the 12 CO (J = 2−1) emission (convolvedat the same angular resolution as the 12 CO J = 1−0transition) is very bright (≥50 K at 10.6kms −1 , the line peakvelocity) and more intense than 12 CO (J = 1−0) in the mostexternal layers of the PDRs, directly facing σOri. The line intensityratio T b (1−0)/T b (2−1) rises from ∼0.3 to∼0.8 fromWest to East. Combined with the high brightness temperaturedetected for both lines, the higher brightness temperature ofthe 12 CO(2−1) line is a c<strong>le</strong>ar sign of the presence of warmand dense gas. We have estimated the kinetic temperature usingan LVG model. We assumed that the emission is resolvedand fills the beam. We explored the kinetic temperature dependenceupon the density by solving for 5 different protondensities going from 1.6 × 10 4 cm −3 to 10 5 cm −3 . Under thesehypotheses, the 12 CO line intensity ratio and brightness temperatureconstrain the kinetic temperature to increase from 60 K inthe inner PDR (15 ′′ = 0.03 pc from the PDR edge) to morethan 100 K in the outer layers for proton densities larger than4 × 10 4 cm −3 . For lower proton densities, the kinetic temperaturestill starts from 60 K in the inner PDR but increases muchmore stiffly. The kinetic temperature derived from sing<strong>le</strong> dishobservations (Abergel et al. 2003) is lower, in the 30−40 Krange and corresponds to the bulk of the cloud, rather than tothe warm UV-illuminated edge.3.2. AbundancesWe have computed the CO and hydrocarbon column densitiesat three representative positions in the maps: the “IR peak”where the PAH and hydrocarbon emission is the largest, the“IR edge” 10 ′′ West which represents the region with the mostintense UV-radiation and a “Cloud” position behind the IR filament.Tab<strong>le</strong> 3 lists the derived column densities and abundancesrelative to the total number of protons for theseArtic<strong>le</strong> published by EDP Sciences and availab<strong>le</strong> at http://www.edpsciences.org/aa or http://dx.doi.org/10.1051/0004-6361:20041170


J. Pety et al.: Are PAHs precursors of small hydrocarbons in photo-dissociation regions? 891<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012is the largest. The H 2 column densities are derived from thedust 1.2 mm emission assuming the same dust properties forall positions but a dust temperature range of 20 to 40 K for the“Cloud” position and 40 to 80 K for the IR positions.The LVG solution implies a typical 12 CO column densityof 2 × 10 17 cm −2 . This is inconsistent with the derived columndensity of C 18 O and the local ISM 16 O/ 18 O e<strong>le</strong>ment ratio (560,Wilson & Rood 1994). Figure 7 shows c<strong>le</strong>ar indications of selfabsorptionof the 12 CO spectra (asymmetries and dips in thetop of the line profi<strong>le</strong>s) whi<strong>le</strong> the C 18 O spectra are Gaussian.The same behaviour is seen in the sing<strong>le</strong> dish data discussedby Abergel et al. (2003) (cf. their Fig. 5). This explains whythe LVG solution does not succeed in correctly inferring the12 CO column density. Conversely, the C 18 O abundance relativeto H is fairly constant for all positions at [C 18 O] = 1.0 × 10 −7 .Assuming a local ISM 16 O/ 18 O e<strong>le</strong>ment ratio, this correspondsto a CO abundance relative to the total number of hydrogenatoms of [CO] = 5.6 × 10 −5 , in rather good agreementwith the gas phase abundance of carbon derived from CO inwarm mo<strong>le</strong>cular clouds, and to the carbon abundance in diffuseclouds (Lacy et al. 1994; Sofia & Meyer 2001). In addition,using IRAM-30 m spectra of 13 CO and C 18 O publishedby Abergel et al. (2003), we found [ 13 CO]/[C 18 O] ∼ 7. Thisgood agreement with the local ISM isotopic ratio make us confidentthat we can use our LVG analysis on the PdBI C 18 O spectrato estimate the CO density. According to Lis & Guesten(2005), atomic carbon is <strong>le</strong>ss abundant than CO in the PDR.The peak column density of neutral carbon, observed with a15 ′′ beam, is ∼1.6×10 17 cm −2 corresponding to a carbon abundanceof [C] = 5 × 10 −6 . Even if we take into account the differencein linear resolution, we do not expect an increase of thecolumn density larger than a factor of two based on the comparisonof the low resolution sing<strong>le</strong> dish data with the interferometermaps of other tracers. Finally, although the H 2 columndensities are fairly similar at the “IR peak” and “cloud” positions,the abundances of hydrocarbons are larger by a factor ofat <strong>le</strong>ast 5.0 at the “IR peak”. The abundances seem to be evenlarger at the “IR edge” than at the cloud position.Fig. 4. Joint histogram of the integrated emission of i) the secondbrightest CCH line (top); ii) c-C 3 H 2 (midd<strong>le</strong>); and iii) one C 4 H line(bottom) vs. the main CCH line. The value at a given position of thisjoint histogram is the percentage of pixels of the input images whoseintensities lies in the respective vertical and horizontal bins. Only imagepixels lying inside the deconvolution support (shown in Fig. 2)have been used in the histogram computation. Contour <strong>le</strong>vels are setto 0.125, 0.25, 0.5, 1, 2, 4 and 8% of points per pixel.3 positions. We have used a LVG model with different uniformtotal hydrogen density 2 (from 10 4 cm −3 to 10 5 cm −3 )andakinetictemperature of 40 K for the “cloud” position, and between60 and 100 K for the IR positions. The variance of the columndensities therefore ref<strong>le</strong>cts both the systematic effect due to theimperfect know<strong>le</strong>dge of the physical conditions, and the randomnoise of the data. In most cases, the former contribution2 “Total hydrogen density” is an abbreviation of the total density ofhydrogen in all forms.4. Discussion4.1. Comparison with modelsWe have used a monodimensional PDR code (Le Petit et al.2002, http://aristote.obspm.fr/MIS/) to model theobservations of the Horsehead nebula. The slab geometry islocally appropriate as seen in Fig. 3. We did not take into accountprojection effects as the source is viewed almost edgeon.Indeed, Habart et al. (2005) show that the main effect ofthe PDR possib<strong>le</strong> small inclination (


892 J. Pety et al.: Are PAHs precursors of small hydrocarbons in photo-dissociation regions?<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Fig. 5. Emission profi<strong>le</strong>s along the exciting star direction (PA = −104 ◦ in the equatorial coordinate system). To improve the signal-to-noiseratio, those emission profi<strong>le</strong>s have been integrated along the perpendicular direction between −15 ′′


J. Pety et al.: Are PAHs precursors of small hydrocarbons in photo-dissociation regions? 893Tab<strong>le</strong> 3. Mo<strong>le</strong>cular column densities and abundances at 3 differentpositions of the PDR named “Cloud”, “IR peak” and “IR edge”.Equatorial offsets refer to the Mosaic 2 map center given in Tab<strong>le</strong> 1.(δx,δy)offsets refer to the coordinate system defined in Fig. 3. H 2 columndensities have been derived from the 1.2 mm dust continuumemission using a dust temperature range of 20 to 40 K for the “Cloud”position and 40 to 80 K for the IR positions. Others column densitiesused LVG models with a representative set of densities and kinetictemperature. 1-σ uncertainties thus ref<strong>le</strong>ct the systematics dueto the approximate know<strong>le</strong>dge of density and kinetic temperature.Abundances are computed with respect to the number of protons, i.e.[X] = 0.5 N(X)/N(H 2 ).δRA δDec δx δyCloud +6 ′′ −4 ′′ +24.9 ′′ −5.3 ′′IR peak −6 ′′ −4 ′′ +12.2 ′′ −2.4 ′′IR edge −12 ′′ −4 ′′ +7.4 ′′ −1.0 ′′<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Fig. 6. Spatial variation along the direction of the exciting star of a) the12 CO J = 2−1 brightness temperature (convolved at the same angularresolution as the J = 1−0 transition); b) 1−0/2−1 ratio and c), d),e) the kinetic temperature. (δx,δy)offsets refer to the coordinate systemdefined in Fig. 3. The cuts at δy =+10 ′′ are drawn in blue, thoseat δy = +5 ′′ in green and those δy = +0 ′′ in red. The data cutshave been taken from the 10.6 km s −1 velocity channel correspondingto the 12 CO line peak. The kinetic temperature is derived from anLVG model assuming i) unity beam filling factor; and ii) uniform totalhydrogen density of n H = 1.6 × 10 4 cm −3 (dashed lines), 2 × 10 4 cm −3(full lines), 4 × 10 4 cm −3 (dotted lines) and 10 5 cm −3 (dotted-dashedlines). Arrows indicate lower limits.parameters. As the observations involve comp<strong>le</strong>x carbonmo<strong>le</strong>cu<strong>le</strong>s, we have used the so-cal<strong>le</strong>d “new standard model”chemical rate fi<strong>le</strong> of Herbst and collaborators (Lee et al. 1998),availab<strong>le</strong> on the web site 3 . In a previous paper (Teyssier et al.2004), we have found that the other extensive chemical rate fi<strong>le</strong>provided by the UMIST group (Le Teuff et al. 2000) gave close3 http://www.physics.ohio-state.edu/˜eric/research_fi<strong>le</strong>s/cddata.july03Quantity Unit Cloud IR peak IR edgeS 1.2mm mJy/Beam 38 ± 2 35± 2 12± 2N(H 2 ) 10 21 cm −2 27 ± 9.5 10.5 ± 4 3.6± 1.7N(C 18 O) 10 15 cm −2 5.8 ± 0.5 4 ± 0.5 1 ± 0.3N(CCH) 10 13 cm −2 5.5 ± 1 30± 5 11± 3N(c-C 3 H 2 ) 10 12 cm −2 2.3 ± 0.7 24 ± 10 9.5 ± 5N(C 4 H) 10 12 cm −2 20 ± 10 40 ± 10 37 ± 10Quantity Unit Cloud IR peak IR edge[C 18 O] 10 −7 1.07 1.9 1.4[CCH] 10 −8 0.10 1.4 1.5[c-C 3 H 2 ] 10 −10 0.43 11.4 13.2[C 4 H] 10 −9 0.37 1.9 5.2results for the carbon chain mo<strong>le</strong>cu<strong>le</strong>s. As C 18 O observationsare reported, we have added to this reaction set the main isotopicmo<strong>le</strong>cu<strong>le</strong>s involving 18 O and introduced the correspondingfractionation reactions (Graedel et al. 1982). We have alsointroduced the photo-dissociation rates given by van Dishoeck(1988), when availab<strong>le</strong>, which have been calculated specificallywith the Draine ISRF and which were different from the valuesreported in the chemical rate fi<strong>le</strong>. The resulting chemical networkinvolves about 450 chemical species and 5000 reactions.Only the most stab<strong>le</strong> isomeric forms of hydrocarbons are consideredhere.We define a reference model (hereafter named model A)of the Horsehead nebula as a uniform sheet of gas and dustof total hydrogen density n H = 10 5 cm −3 exposed to a ISRFof 100 measured in Draine units. The cosmic ray ionizationrate has a value of 5 × 10 −17 s −1 and the e<strong>le</strong>mental abundancesare as follows: C/H = 1.38 × 10 −4 ,O/H = 3.02 × 10 −4 ,18 O/H = 6 × 10 −7 ,N/H = 7.95 × 10 −5 ,S/H = 5.8 × 10 −8 ,Cl/H = 1.86 × 10 −9 ,P/H = 9.3 × 10 −10 ,Fe/H = 1.7 × 10 −9 ,Mg/H = 10 −8 ,Na/H = 2.3 × 10 −9 . The properties of the grainsare the same as described in Le Petit et al. (2002), i.e. the sizedistribution law is taken from Mathis et al. (1977) with an exponentof −3.5 and we describe the attenuation of grains from theArtic<strong>le</strong> published by EDP Sciences and availab<strong>le</strong> at http://www.edpsciences.org/aa or http://dx.doi.org/10.1051/0004-6361:20041170


894 J. Pety et al.: Are PAHs precursors of small hydrocarbons in photo-dissociation regions?<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Fig. 7. CO spectra (convolved at the same angular resolution) along the direction of the exciting star at δy = −2.5 ′′ . In the cuts, the labelδx = 13 ′′ indicates the IR peak position (cf. Tab<strong>le</strong> 3). Note that 12 CO J = 2−1 peak intensity decreases at positions δx = 13 ′′ and 15 ′′ whi<strong>le</strong>12 CO J = 1−0 increases even reaching its maximum at δx = 15 ′′ . In addition, both 12 CO lines show a small but c<strong>le</strong>ar dip (i.e. the center channelintensity is lower than its first neighbours) at δx = 15 ′′ . Finally, whi<strong>le</strong> C 18 O spectra are very close to Gaussian, 12 CO spectra show asymmetricprofi<strong>le</strong>s. Spectra cuts at other close δy values show the same trends.far-UV to the visib<strong>le</strong> via the galactic extinction curve given asan analytic function of 1/λ by including the coefficients derivedby Fitzpatrick & Massa (1988). Charge exchange reactions betweenC + and PAHs are not taken into account. The gas to dustmass ratio is 100.Figure 8 shows i) the abundance of the H 2 rovibrationallyexcitedinthev = 1, J = 3 <strong>le</strong>vel at the origin of the 2.12 µm line(this abundance is hereafter referred to as [H ⋆ 2]); and ii) the C,CO and hydrocarbon abundances for this reference model and5 variants. We ensure that the [H ⋆ 2] peak position is set atδx = 10 ′′ as in the observations. Our reference model correctlyreproduces the observed 3 to 5 ′′ offset between the hydrocarbonand H 2 peaks. The C 18 O also peaks behind thehydrocarbons at δx = 20−25 ′′ .However,theH 2 profi<strong>le</strong> is notcorrectly mode<strong>le</strong>d here.In model B, we replaced the Galactic extinction curveby one more representative of mo<strong>le</strong>cular gas. We have chosenHD 147889 in Ophiuchus. Its extinction curve has arather strong far-UV rise (E B−V = 1.09, Fitzpatrick & Massa1988). Its ratio between the total and se<strong>le</strong>ctive extinctions, R V ,is 4.2 a figure typical of mo<strong>le</strong>cular gas (Gordon et al. 2003;Cardelli et al. 1989). The PDR stratification does not qualitativelychange compared to model A: It is just compressed. Inmodel C, we added reactions of charge exchange between C +and PAHs. This enhances the neutral atomic carbon abundancebut does not have a large effect on the hydrocarbons: onlyCCH peaks closer to the H 2 peak compared to model A. Neithermodel B nor C improves the modeling of the H 2 profi<strong>le</strong>.As shown by model D, E and F, the density structure hasa major impact on the PDR structure. Figure 9 shows thedensity profi<strong>le</strong>s associated with each model. When keepingthe total hydrogen density uniform but decreasing its value to2 × 10 4 cm −3 (as in model D), the carbon and hydrocarbonabundance peaks are highly broadened and shifted inward bymore than 20 ′′ , a prediction c<strong>le</strong>arly violated by the high resolutionPdBI data. Models E and F use a density profi<strong>le</strong> providedby Habart et al. (2004, 2005) to fit the 2.12 µm-H 2 emission.Indeed, the [H ⋆ 2] profi<strong>le</strong> qualitatively changes (it is now a peakrising from zero at the PDR edge) but it also reproduces the H 2filament width. Those two models, which impose a steep totalhydrogen density gradient at the PDR edge, are the only onesthat succeed in correctly reproducing the offset between the hydrocarbonand H 2 peaksaswellastheformoftheH 2 peak. Theonly difference between models E and F is the gaseous sulfurabundance: sulfur is dep<strong>le</strong>ted from the gas phase in model E(S/H = 5.8 × 10 −8 ) whi<strong>le</strong> the gaseous sulfur abundance is solarin model F (S/H = 10 −5 ).Figure 10 is a zoom in our two best models (i.e. E and F)of the spatial variations of the abundances of hydrocarbons relativeto i) total hydrogen density (top panel); and ii) CCH (bottompanel). The observed abundances are overplotted with theirerror bars. The dashed vertical line separates the zone wherethe proton gas density is constant from the zone where the protongas density rapidly decreases outward. This latter zone isassociated with the PDR. The sulfur e<strong>le</strong>ment abundance hasdifferent effects in the two regions. In the region of moderatevisual extinction (i.e. the “IR edge” and the “IR peak” whereA V< ∼ 1), the charge transfer reaction between C + and S <strong>le</strong>adingto S + and C reinforces the abundance of neutral carbonand thus enab<strong>le</strong>s the formation of carbon chains via the rapidneutral-carbon atom reactions. However this effect is small.Indeed this is in the dark region where the sulfur e<strong>le</strong>mentalArtic<strong>le</strong> published by EDP Sciences and availab<strong>le</strong> at http://www.edpsciences.org/aa or http://dx.doi.org/10.1051/0004-6361:20041170


J. Pety et al.: Are PAHs precursors of small hydrocarbons in photo-dissociation regions? 895<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Fig. 8. Predictions of the spatial variation of the abundance relative to H 2 , using a unidimensional PDR code. For each model, the abundanceof the population of the the upper <strong>le</strong>vel of the 2.12 µm H 2 line (i.e. v = 1, J = 3), written [H ⋆ 2], is shown on a linear sca<strong>le</strong> (top). The C,CO and hydrocarbon abundances are shown on a logarithmic sca<strong>le</strong> (bottom). The mode<strong>le</strong>d cloud is illuminated from the right-hand side. Theδx-axis origin has been set so that [H ⋆ 2 ] peaks at the position of the observed H 2 peak (i.e. δx = 10 ′′ ). The vertical dotted blue line indicatesthe peak of the c-C 3 H 2 and C 4 H abundances. Each model is described in 4 lines: i) the density structure; ii) the UV-field properties; iii) thechemical network used; and iv) the gaseous sulfur abundance. 6 different models are compared here. Our reference model is labe<strong>le</strong>d A. The totalhydrogen density is kept uniform at a value of n H = 10 5 cm −3 . The far-UV intensity of the radiation field is G 0 = 100 (in Draine units) and theextinction curve is the mean Galactic one. The chemical network rate fi<strong>le</strong> is the New Standard Model one with minor modifications describedin the text. Charge exchange reactions between C + and PAHs are not taken into account. The gaseous sulfur abundance is low compared tosolar (i.e. S/H = 5.8 × 10 −8 ). The parameters varied in other models are emphasized in red. Model B uses a different extinction curve. ModelC adds reactions of charge exchange between C + and PAHs. Model D decreases the uniform total hydrogen density. Models E and F use thedensity profi<strong>le</strong> derived from the model of the H 2 observations (Habart et al. 2004, 2005). Model F uses a solar gaseous sulfur abundance (i.e.S/H = 10 −5 ).Artic<strong>le</strong> published by EDP Sciences and availab<strong>le</strong> at http://www.edpsciences.org/aa or http://dx.doi.org/10.1051/0004-6361:20041170


896 J. Pety et al.: Are PAHs precursors of small hydrocarbons in photo-dissociation regions?<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Fig. 9. Spatial variation of the total hydrogen density in models A toF. In model E and F, the density increases as a power law of scalingexponent 4 in the first 10 ′′ and then is kept constant at a value of2 × 10 5 cm −3 .AsinFig.8,thex-axis origin has been set so that [H ⋆ 2 ]peaks at the position of the observed 2.12 µm, H 2 line peak (i.e. δx =10 ′′ ).abundance has a large effect. When the sulfur abundance issolar, the small carbon chains C 2 , CCH, C 2 H 2 ,C 3 H, C 3 H 2and C 4 H react with S + to give C 2 S + , CCS + ,HC 2 S + ,C 3 S + ,HC 3 S + and C 4 S + . In this main destruction path of the smallcarbon chains, one hydrogen atom is re<strong>le</strong>ased impairing the reformationof the carbon chains. When S is higly dep<strong>le</strong>ted as inModel E, this destruction mechanism is superseded by otherpathways involving C + . Those pathways form carbon chainions which in turn contribute to the formation of other carbonchains. Overall, model E (i.e. low S/H) performs better in thecomparison with observed abundances. The only exception isthe n(c-C 3 H 2 )/n(CCH) ratio at the “cloud” position. We willthus use model E only for comparison with the observations.At the IR peak (median point at δx = 15.5 ′′ ), the CCHabundance is correctly reproduced whi<strong>le</strong> c-C 3 H 2 and C 4 Habundances are underestimated by at <strong>le</strong>ast a factor of 3.Discrepancies are much higher both at the “cloud” (point tothe right at δx = 27 ′′ ) and the “IR edge” (point to the <strong>le</strong>ft atδx = 9 ′′ ) positions. In the UV-illuminated edge, the mode<strong>le</strong>d[CCH] has a quite shallow increase with δx whi<strong>le</strong> the mode<strong>le</strong>d[c-C 3 H 2 ]and[C 4 H] share the same steep abundance profi<strong>le</strong>. Incontrast, the observed (“IR edge”) abundances are very similarfor the 3 species, ref<strong>le</strong>cting the very good spatial correlation betweenthe different hydrocarbons (see Fig. 4). This discrepancyis independent of our know<strong>le</strong>dge of the total hydrogen densityas it is also seen when comparing abundances relative to CCH.In summary, none of our models is ab<strong>le</strong> to correctly reproducethe relative stratification of H 2 and small hydrocarbons.Comparison of model A and C shows that to reproduce theobserved offset between hydrocarbon and H 2 peaks, we needa high total hydrogen density (10 5 cm −3 ). By varying the profi<strong>le</strong>density (model E and F), a shallow total hydrogen densityincrease at the PDR edge is needed to reproduce the profi<strong>le</strong>of the 2.12 µm H 2 line. However, the shallower the totalFig. 10. Comparison between our two best models (curves) and observed(points with error bars) abundances of the small hydrocarbons.CCH is shown as a green solid line, c-C 3 H 2 as a dashed red line andC 4 H as a blue dotted line. The top and bottom panels respectivelyshow abundances relative to the total hydrogen density and CCH. Thedashed vertical line shows the position where the total hydrogen densityprofi<strong>le</strong> changes from a steep gradient to a constant.hydrogen density increase, the larger the mode<strong>le</strong>d offset betweenH 2 and the hydrocarbons. A good compromise is providedby a total hydrogen density profi<strong>le</strong> increasing as a powerlaw with a scaling exponent 4 on the first 10 ′′ and then constantatavalueof2×10 5 cm −3 . Habart et al. (2005) showthat this model essentially corresponds to a constant pressuremodel (with P = 4 × 10 6 Kkms −1 ). Model E with low sulfure<strong>le</strong>mental abundance performs better than model F with solarabundance. Nonethe<strong>le</strong>ss, even model E does not succeed inArtic<strong>le</strong> published by EDP Sciences and availab<strong>le</strong> at http://www.edpsciences.org/aa or http://dx.doi.org/10.1051/0004-6361:20041170


J. Pety et al.: Are PAHs precursors of small hydrocarbons in photo-dissociation regions? 897<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012reproducing the good hydrocarbon correlation seen in the illuminatedpart of the PDR: whi<strong>le</strong> CCH is correctly predicted tohave a smooth abundance increase, mode<strong>le</strong>d c-C 3 H 2 and C 4 Habundances show a much too steep increase.4.2. Can the fragmentation of PAHs contributeto the synthesis of small hydrocarbons?Examining the model predictions in more detail, three hypothesescan be proposed to explain the discrepancies betweenmodel calculations and observations:i) The photo-dissociation rates used in the models maybe incorrect. As the main destruction process near thecloud edge is photo-dissociation, the actual values of thephoto-dissociation rates are critical for an accurate prediction.However, similar results are obtained with theUMIST95 and NSM rate fi<strong>le</strong>s. The photo-dissociation ratesfor c-C 3 H 2 , C 3 H and C 4 H are 10 −9 s −1 for both ratefi<strong>le</strong>s, and differ by a factor of two for CCH (i.e. 0.51 ×10 −9 s −1 for UMIST95 and 10 −9 s −1 for NSM). The photodissociationrates of larger chains are similar. In mostcases, except for CCH and acety<strong>le</strong>ne, the numbers givenin the rate fi<strong>le</strong>s are not well documented. For instance,van Dishoeck (1988) discusses the photo-dissociation rateof c-C 3 H 2 and concludes that it is accurate within an orderof magnitude. More accurate photo-dissociation ratesare c<strong>le</strong>arly needed for the carbon chains and cyc<strong>le</strong>s. Recentcalculations have been performed for C 4 H showing thatthe photo-dissociation threshold is 5.74 eV, but that efficientphoto-dissociation requires more energetic photons,typically above 6.5 eV (Graf et al. 2001). However,it is unlikely that the rates are low enough to explainthe large discrepancies between the models and the datasince these mo<strong>le</strong>cu<strong>le</strong>s are known to be sensitive to UVradiation(Jackson et al. 1991; Song et al. 1994).ii) Another possibility is that the chemical networks are missingimportant reactions for the synthesis of hydrocarbons.Neutral-neutral reactions are progressively includedin the rate fi<strong>le</strong>s, but still are much <strong>le</strong>ss numerous thanion-mo<strong>le</strong>cu<strong>le</strong> reactions. It is now known that atomic carbon,diatomic carbon and CCH may react with hydrocarbons(Kaiser et al. 2003; Stahl et al. 2002; Mebel & Kaiser2002). More work remains to be done. However, preliminarytests using a more extended data base of chemicalreactions have not <strong>le</strong>d to significant improvement.iii) The excel<strong>le</strong>nt spatial correlation between the mid-IR emissiondue to PAHs and the distribution of carbon chainssuggests a last hypothesis: the fragmentation of PAHs dueto the intense far UV-radiation could seed the inters<strong>tel</strong>larmedium with a variety of carbon clusters, chains andrings (Scott et al. 1997; Verstraete et al. 2001; Le Page et al.2003; Joblin 2003, and references therein). These specieswould then further react with gas phase species (C, C + ,H,H 2 , etc.) and participate in the synthesis of the observedhydrocarbons. Fuente et al. (2003) also favor this explanationto explain the abundance of c-C 3 H 2 they observed inother PDRs.A correct exploration of this third hypothesis needs a goodqualitative and quantitative description of both the fragmentationand reformation of PAHs, which is out of the scope of thispaper. We here give only a few indications. Omont (1986) pioneeredattempts to understand the ro<strong>le</strong> of PAHs in inters<strong>tel</strong>larchemistry. Elaborating on this work, Lepp & Dalgarno (1988)suggested that the participation of PAHs in the ion chemistry ofdense clouds <strong>le</strong>ads to large increases in the abundances of smallhydrocarbons. Indeed, when the PAH fractional abundance exceeds∼10 −7 , the formation of PAH − triggers mutual neutralizationof the positive atomic and mo<strong>le</strong>cular ions and introducesnew pathways for the formation of comp<strong>le</strong>x mo<strong>le</strong>cu<strong>le</strong>s.The equilibrium abundances of neutral atomic carbon C, CCHand c-C 3 H 2 may thus be enhanced by two orders of magnitude.By comparison, our model C which includes charge exchangebetween C + and PAHs, shows a decrease of C 4 Handc-C 3 H 2abundances by at <strong>le</strong>ast an order of magnitude in the dark region.Introduction of mutual neutralization between C + and PAH −could be an interesting alternative to our “artificial” loweringof the sulfur abundance. We are currently acquiring CS data atPdBI to constrain the S chemistry independently.Lepp et al. (1988) suggested that the ion chemistryof diffuse clouds has litt<strong>le</strong> impact on the CH, OH andHD abundance, but can <strong>le</strong>ad to a large increase in the abundanceof other species (H 2 ,NH 3 and most noticeably CH 4and C 2 H 2 ) by successive reactions of PAH and PAH − withcarbon and hydrogen atoms. Talbi et al. (1993) suggestedthat Coulombic explosion of doubly ionized PAH could createc-C 3 H 2 through the e<strong>le</strong>ctronic dissociative recombinationof C 3 H + 3. Laboratory experiments by Jochims et al. (1994) suggestedthat PAHs with <strong>le</strong>ss than 30−40 carbon atoms will beUV-photodissociated in HI regions whi<strong>le</strong> larger ones will bestab<strong>le</strong>. Based on those results, models by Allain et al. (1996b,a)indicate that only PAHs with more than 50 carbon atoms survivethe high UV radiation field of the diffuse inters<strong>tel</strong>larmedium, whereas smal<strong>le</strong>r PAHs such as coronene or ova<strong>le</strong>neare destroyed by the loss of acety<strong>le</strong>nic groups. Destructiontimesca<strong>le</strong>s are a few years for neutral species and typically fivetime shorter for the corresponding cations. All those reactionsstart from neutral or cation PAHs. They will be in competitionwith charge exchange and mutual neutralization discussedabove. Mutual neutralization has a maximal effect in the transitionregion where the gas is mo<strong>le</strong>cular but the e<strong>le</strong>ctronic abundanceis significant. This region corresponds more or <strong>le</strong>ss to theregion of maximum emission from the PAHs or slightly deeperin the mo<strong>le</strong>cular cloud. All other cited reactions are more efficienttoward the illuminated edge where PAHs are mainly neutral.Recently, Le Page et al. (2003) discussed the possibility ofaddition reactions with ionized carbon, starting from the highreaction rate between C + and anthracene measured by Canosaet al. (1995). If similar reaction rates persist for heavier PAHs,addition reactions with carbon would be very efficient in counteractingthe destruction by far-UV photons.From the observational point of view, the mid-IR emissiondue to PAHs is extended in inters<strong>tel</strong>lar clouds. On the otherhand, a detai<strong>le</strong>d analysis of the mid and far-IR images obtainedby IRAS <strong>le</strong>d Boulanger et al. (1990) and Bernard et al.(1993) to conclude that PAHs disappear in the dense cold cloudArtic<strong>le</strong> published by EDP Sciences and availab<strong>le</strong> at http://www.edpsciences.org/aa or http://dx.doi.org/10.1051/0004-6361:20041170


898 J. Pety et al.: Are PAHs precursors of small hydrocarbons in photo-dissociation regions?<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012interiors, probably because they coagulate and/or condense.Stepnik et al. (2003) describe a convincing case for such a processin a small filament of the Taurus cloud. Rapacioli et al.(2005) have found c<strong>le</strong>ar evidence for spatial variations of thearomatic infrared band profi<strong>le</strong>s, likely due to the spatial variationof the nature of their carriers. A sophisticated analysis ofISOCAM-CVF data allowed them to separate the mid-IR spectraof the ionized and neutral PAHs from the spectra of carbonaceousvery small grains (possibly PAH aggregates). Thevery small grains are located at a larger distance from the illuminatingstars than the PAHs, <strong>le</strong>nding support to the idea thatPAHs are produced from the photo-evaporation of these verysmall grains. Whi<strong>le</strong> more examp<strong>le</strong>s are needed to understandthe origin and fate of inters<strong>tel</strong>lar PAHs, it appears nonethe<strong>le</strong>ssthat these macro mo<strong>le</strong>cu<strong>le</strong>s are re<strong>le</strong>ased in the gas phase in theUV-illuminated regions of the inters<strong>tel</strong>lar medium, i.e. in thediffuse clouds, in PDRs, etc. In those regions, the destructionof the carbon ske<strong>le</strong>ton is the main process limiting the smal<strong>le</strong>stpossib<strong>le</strong> PAH size. It is likely that some carbon-bearingmo<strong>le</strong>cu<strong>le</strong>s are re<strong>le</strong>ased in the gas phase in the UV-illuminatedregions, either as a secondary product of the evaporation of thedust partic<strong>le</strong>s giving rise to PAHs, or as products of the destructionof the PAH carbon ske<strong>le</strong>ton.5. Summary and conclusionsWe have presented maps of the edge of the Horsehead nebula inrotational lines of excited H 2 ,CO,C 18 O and simp<strong>le</strong> hydrocarbonmo<strong>le</strong>cu<strong>le</strong>s, CCH, c-C 3 H 2 and C 4 H with 6 ′′ resolution. Allthe hydrocarbon maps are strikingly similar to each other, andto the mid-IR emission mapped by ISOCAM (Abergel et al.2003) whi<strong>le</strong> we measured a 3 to 5 ′′ offset between the hydrocarbonand H 2 peaks. State-of-the-art chemical models fail toreproduce both the PDR hydrocarbon stratification and the absoluteabundances of 2 of 3 observed hydrocarbons. We haveexamined three hypotheses to improve the models, and we concludethat the most likely explanation is that we are witnessingthe fragmentation of PAHs in the intense far-UV radiation dueto σOri.A detai<strong>le</strong>d modeling of the chemistry including this newmechanism is beyond the scope of this paper. Indeed, such amodeling requires rates for both the growth (by addition ofmo<strong>le</strong>cu<strong>le</strong>s or of carbon and hydrogen atoms) and the fragmentationof PAHs. This last item requires an accurate descriptionof the fragmentation cascade of PAHs, in all their possib<strong>le</strong>equilibrium states (ionized, neutral, partially or totally dehydrogenated,...). Laboratory experiments such as the ion cyclotronicresonance cell PIRENEA (Joblin 2003) are key instrumentsto provide such information. In addition, the rate fi<strong>le</strong>sused by the model need to be updated, especially the photodissociationrates of the simp<strong>le</strong> carbon chains. A critical reviewof the ro<strong>le</strong> of neutral-neutral reactions in inters<strong>tel</strong>lar chemistryis also warranted.Acknow<strong>le</strong>dgements. We are grateful to the IRAM staff at Plateau deBure, Grenob<strong>le</strong> and Pico Ve<strong>le</strong>ta for competent help with the observationsand data reduction. IRAM is supported by the INSU/CNRS(France), MPG (Germany) and IGN (Spain). This work has benefitedfrom many discussions with C. Joblin and C.M. Walms<strong>le</strong>y. We thankD. Lis for the communication of the (CI) map of the Horsehead nebulain advance of publication. We also thank E. Herbst for providingan updated chemical rate fi<strong>le</strong>. M.G. is grateful to the CSO for thehospitality of its office in Hilo where she worked on this paper. Weacknow<strong>le</strong>dge funding by the French CNRS/PCMI program. We thankthe referee, J. Black, for insightful comments which improved the presentationand the discussion of our results.ReferencesÁdámkovics, M., Blake, G. A., & McCall, B. J. 2003, ApJ, 595, 235Abergel, A., Bernard, J. P., Boulanger, F., et al. 2002, A&A, 389, 239Abergel, A., Teyssier, D., Bernard, J. P., et al. 2003, A&A, 410, 577Allain, T., Leach, S., & Sedlmayr, E. 1996a, A&A, 305, 602Allain, T., Leach, S., & Sedlmayr, E. 1996b, A&A, 305, 616Anthony-Twarog, B. J. 1982, AJ, 87, 1213Bakes, E. L. O., & Tie<strong>le</strong>ns, A. G. G. M. 1994, ApJ, 427, 822Bernard, J., Boulanger, F., & Puget, J. 1993, A&A, 277, 609Boulanger, F., Cox, P., & Jones, A. P. 2000, in Infrared SpaceAstronomy, Today and Tomorrow, 251Boulanger, F., Falgarone, E., Puget, J., & Helou, G. 1990, ApJ, 364,136Canosa, A., Laubé, S., Rebrion, C., et al. 1995, Chem. Phys. Lett., 245Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245Cox, P., Guesten, R., & Henkel, C. 1988, A&A, 206, 108Dickens, J. E., Irvine, W. M., Snell, R. L., et al. 2000, ApJ, 542, 870Draine, B. T. 1978, ApJS, 36, 595Fitzpatrick, E. L., & Massa, D. 1988, ApJ, 328, 734Flower, D. R., & Pineau des Forêts, G. 2003, MNRAS, 343, 390Fossé, D., Cesarsky, D., Gerin, M., Lequeux, J., & Tiné, S. 2000,in ISO Beyond the Peaks: The 2nd ISO Workshop on AnalyticalSpectroscopy, ESA SP-456, 91Fossé, D. 2003, Ph.D. Thesis, Université Paris VIFuente, A., Rodrıguez-Franco, A., Garcıa-Burillo, S., Martın-Pintado,J., & Black, J. H. 2003, A&A, 406, 899Goicoechea, J. R., Rodríguez-Fernández, N. J., & Cernicharo, J. 2004,ApJ, 600, 214Gordon, K. D., Clayton, G. C., Misselt, K. A., Landolt, A. U., & Wolff,M. J. 2003, ApJ, 594, 279Graedel, T. E., Langer, W. D., & Frerking, M. A. 1982, ApJS, 48, 321Graf, S., Geiss, J., & Leutwy<strong>le</strong>r, S. 2001, J. Chem. Phys., 114, 4542Gueth, F. 2001, in Proc. IRAM Millimeter Interferometry SummerSchool, 2, 207Gueth, F., Guilloteau, S., & Bachil<strong>le</strong>r, R. 1996, A&A, 307, 891Habart, E., Abergel, A., Walms<strong>le</strong>y, C. M., & Teyssier, D. 2004, in 4thCologne-Bonn-Zermatt Symp.: The dense inters<strong>tel</strong>lar medium ingalaxiesHabart,E.,Abergel,A.,Walms<strong>le</strong>y,C.M.,Teyssier,D.,&Pety,J.2005, A&A, acceptedHabart, E., Boulanger, F., Verstraete, L., Walms<strong>le</strong>y, C. M., &Pineau des Forêts, G. 2004, A&A, 414, 531Habart, E., Verstraete, L., Boulanger, F., et al. 2001, A&A, 373, 702Jackson, W. M., Anes, D. S., & Continetti, R. E. 1991, J. Chem. Phys.,95, 7327Joblin, C. 2003, in Semaine de l’Astrophysique Francaise, SF2A-2003Jochims, H. W., Ruhl, E., Baumgar<strong>tel</strong>, H., Tobita, S., & Leach, S.1994, ApJ, 420, 307Kaiser, R. I., Vereecken, L., Peeters, J., et al. 2003, A&A, 406, 385Lacy, J. H., Knacke, R., Gebal<strong>le</strong>, T. R., & Tokunaga, A. T. 1994, ApJ,428, L69Artic<strong>le</strong> published by EDP Sciences and availab<strong>le</strong> at http://www.edpsciences.org/aa or http://dx.doi.org/10.1051/0004-6361:20041170


J. Pety et al.: Are PAHs precursors of small hydrocarbons in photo-dissociation regions? 899<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Le Page, V., Snow, T. P., & Bierbaum, V. M. 2003, ApJ, 584, 316Le Petit, F., Roueff, E., & Le Bourlot, J. 2002, A&A, 390, 369Le Teuff, Y. H., Millar, T. J., & Markwick, A. J. 2000, A&AS, 146,157Lee, H.-H., Roueff, E., Pineau des Forets, G., et al. 1998, A&A, 334,1047Leger, A., D’Hendecourt, L., Boissel, P., & Desert, F. X. 1989, A&A,213, 351Leger, A., & Puget, J. L. 1984, A&A, 137, L5Lepp, S., & Dalgarno, A. 1988, ApJ, 324, 553Lepp, S., Dalgarno, A., van Dishoeck, E. F., & Black, J. H. 1988, ApJ,329, 418Lis, D., & Guesten, R. 2005, in preparationLiszt, H. 2003, A&A, 398, 621Lucas, R., & Liszt, H. S. 2000, A&A, 358, 1069Maier, J. P., Lakin, N. M., Walker, G. A. H., & Boh<strong>le</strong>nder, D. A. 2001,ApJ, 553, 267Mathis, J. S., Rumpl, W., & Nordsieck, K. H. 1977, ApJ, 217, 425Matthews, H. E., Avery, L. W., Madden, S. C., & Irvine, W. M. 1986,ApJ, 307, L69Matthews, H. E., & Irvine, W. M. 1985, ApJ, 298, L61Mebel, A. M., & Kaiser, R. I. 2002, Chem. Phys. Lett., 360, 139Oka, T., Thorburn, J. A., McCall, B. J., et al. 2003, ApJ, 582, 823Omont, A. 1986, A&A, 164, 159Pound, M. W., Reipurth, B., & Bally, J. 2003, AJ, 125, 2108Pratap, P., Dickens, J. E., Snell, R. L., et al. 1997, ApJ, 486, 862Rapacioli, M., Joblin, C., & Boissel, P. 2005, A&A, 429, 193Roueff, E., Fe<strong>le</strong>nbok, P., Black, J. H., & Gry, C. 2002, A&A, 384, 629Scott, A., Du<strong>le</strong>y, W. W., & Pinho, G. P. 1997, ApJ, 489, L193Sellgren, K. 1984, ApJ, 277, 623Sofia, U. J., & Meyer, D. M. 2001, ApJ, 554, L221Song, X., Bao, Y., & Urdahl, R. S. 1994, Chem. Phys. Lett., 217, 216Stahl, F., Sch<strong>le</strong>yer, P. V. R., Schaefer, H. F., & Kaiser, R. I. 2002, Plan.Sp. Sci., 50, 685Stepnik, B., Abergel, A., Bernard, J.-P., et al. 2003, A&A, 398, 551Talbi, D., Pauzat, F., & Ellinger, Y. 1993, A&A, 268, 805Teyssier, D., Fossé, D., Gerin, M., et al. 2004, A&A, 417, 135Thorburn, J. A., Hobbs, L. M., McCall, B. J., et al. 2003, ApJ, 584,339van Dishoeck, E. F. 1988, in Rate Coefficients in Astrochemistry,ASSL, 146, 49Verstraete, L., Pech, C., Moutou, C., et al. 2001, A&A, 372, 981Weingartner, J. C., & Draine, B. T. 2001, ApJ, 563, 842Wilson, T. L., & Rood, R. 1994, ARA&A, 32, 191Wolfire, M. G., McKee, C. F., Hol<strong>le</strong>nbach, D., & Tie<strong>le</strong>ns, A. G. G. M.2003, ApJ, 587, 278Artic<strong>le</strong> published by EDP Sciences and availab<strong>le</strong> at http://www.edpsciences.org/aa or http://dx.doi.org/10.1051/0004-6361:20041170


A&A 456, 565–580 (2006)DOI: 10.1051/0004-6361:20065260c○ ESO 2006Astronomy&AstrophysicsLow sulfur dep<strong>le</strong>tion in the Horsehead PDR ⋆,⋆⋆J. R. Goicoechea 1 ,J.Pety 1,2 , M. Gerin 1 , D. Teyssier 3 , E. Roueff 4 , P. Hily-Blant 2 , and S. Baek 11 LERMA–LRA, UMR 8112 CNRS, Observatoire de Paris and Éco<strong>le</strong> Norma<strong>le</strong> Supérieure, 24 Rue Lhomond,75231 Paris Cedex 05, Francee-mail: [javier;gerin]@lra.ens.fr2 IRAM, 300 rue de la Piscine, 38406 Grenob<strong>le</strong> Cedex, Francee-mail: [pety;hilyblan]@iram.fr3 European Space Astronomy Centre, Urb. Villafranca del Castillo, PO Box 50727, Madrid 28080, Spaine-mail: dteyssier@sciops.esa.int4 LUTH UMR 8102, CNRS and Observatoire de Paris, Place J. Janssen, 92195 Meudon Cedex, Francee-mail: evelyne.roueff@obspm.frReceived 23 March 2006 / Accepted 9 June 2006<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012ABSTRACTAims. We present 3.65 ′′ × 3.34 ′′ angular-resolution IRAM Plateau de Bure Interferometer (PdBI) observations of the CS J = 2–1 linetoward the Horsehead Photodissociation Region (PDR), comp<strong>le</strong>mented with IRAM-30m sing<strong>le</strong>-dish observations of several rotationallines of CS, C 34 SandHCS + . We analyse the CS and HCS + photochemistry, excitation and radiative transfer to obtain their abundancesand the physical conditions prevailing in the cloud edge. Since the CS abundance sca<strong>le</strong>s to that of sulfur, we determine the gas phasesulfur abundance in the PDR, an interesting intermediate medium between translucent clouds (where sulfur remains in the gas phase)and dark clouds (where large dep<strong>le</strong>tions have been invoked).Methods. A nonlocal non-LTE radiative transfer code including dust and cosmic background illumination adapted to the Horseheadgeometry has been developed to carefuly analyse the CS, C 34 S, HCS + and C 18 O rotational line emission. We use this model toconsistently link the line observations with photochemical models to determine the CS/HCS + /S/S + structure of the PDR.Results. Densities of n(H 2 ) ≃ (0.5−1.0) × 10 5 cm −3 are required to reproduce the CS and C 34 S J = 2–1 and 3–2 line emission.CS J = 5–4 lines show narrower line widths than the CS low-J lines and require higher density gas components not resolved by the∼10 ′′ IRAM-30m beam. These values are larger than previous estimates based in CO observations. We found χ(CS) = (7 ± 3) ×10 −9 and χ(HCS + ) = (4 ± 2) × 10 −11 as the averaged abundances in the PDR. According to photochemical models, the gas phasesulfur abundance required to reproduce these values is S/H = (3.5 ± 1.5) × 10 −6 , only a factor < ∼ 4 <strong>le</strong>ss abundant than the solar sulfure<strong>le</strong>mental abundance. Since only lower limits to the gas temperature are constrained, even lower sulfur dep<strong>le</strong>tion values are possib<strong>le</strong>if the gas is significantly warmer.Conclusions. The combination of CS, C 34 SandHCS + observations together with the inclusion of the most recent CS collisional andchemical rates in our models implies that sulfur dep<strong>le</strong>tion invoked to account for CS and HCS + abundances is much smal<strong>le</strong>r than inprevious studies.Key words. astrochemistry – ISM: clouds – ISM: mo<strong>le</strong>cu<strong>le</strong>s – ISM: individual objects: Horsehead nebula – radio lines: ISM –radiative transfer1. IntroductionSulfur is an abundant e<strong>le</strong>ment (the solar photosphere abundanceis S/H = 1.38 × 10 −5 ; Asplund et al. 2005), which remains undep<strong>le</strong>tedin diffuse inters<strong>tel</strong>lar gas (e.g. Howk et al. 2006) andHII regions (e.g. Martín-Hernández et al. 2002; García-Rojaset al. 2006, and references therein) but it is historically assumedto dep<strong>le</strong>te on grains in higher density mo<strong>le</strong>cular clouds by factorsas large as ∼10 3 (Tieftrunk et al. 1994). This conclusionis simply reached by adding up the observed gas phase abundancesof S-bearing mo<strong>le</strong>cu<strong>le</strong>s in well known dark clouds suchas TMC1 (e.g. Irvine et al. 1985; Ohishi & Kaifu 1998). As⋆ Based on observations obtained with the IRAM Plateau de Bureinterferometer and 30 m <strong>tel</strong>escope. IRAM is supported by INSU/CNRS(France), MPG (Germany), and IGN (Spain).⋆⋆ Appendix A is only availab<strong>le</strong> in e<strong>le</strong>ctronic form athttp://www.edpsciences.orgsulfur is easily ionized (ionization potential ∼10.36 eV), sulfurions are probably the dominant gas-phase sulfur species intranslucent gas. Ruff<strong>le</strong> et al. (1999) proposed that if dust grainsare typically negatively charged, S + may freeze-out onto dustgrains during cloud collapse more efficiently than neutral speciessuch as oxygen. However, the nature of sulphur on dust grains(either in mant<strong>le</strong>s or cores) is not obvious. Van der Tak et al.(2003) observed large abundances of gas phase OCS, ∼10 −8 ,instar forming regions, and suggested that together with the detectionof solid OCS (with an abundance of ∼10 −7 ; Palumboet al. 1997), it implies that OCS is a major sulfur carrier in dustgrains. However, the ∼4.9 µm ice feature attributed to OCS isbest reproduced when OCS is mixed with methanol. In fact, theband is b<strong>le</strong>nded with a methanol overtone whose contributionhas not been studied in detail (Dartois 2005). In any case, the absenceof strong IR features due to S-bearing ices in many ISO’smid-IR spectra (e.g. Boogert et al. 2000; Gibb et al. 2004) andArtic<strong>le</strong> published by EDP Sciences and availab<strong>le</strong> at http://www.edpsciences.org/aa or http://dx.doi.org/10.1051/0004-6361:20065260


566 J. R. Goicoechea et al.: Low sulfur dep<strong>le</strong>tion in the Horsehead PDRTab<strong>le</strong> 1. Observation parameters.Phase centerNumber of fieldsMosaic 1 α 2000 = 05 h 40 m 54.27 s δ 2000 = −02 ◦ 28 ′ 00 ′′ 7Mosaic 2 α 2000 = 05 h 40 m 53.00 s δ 2000 = −02 ◦ 28 ′ 00 ′′ 4Mo<strong>le</strong>cu<strong>le</strong> & Line Frequency Beam PA Noise a Obs. date(GHz) (arcsec) ( ◦ ) (Kkms −1 )Mosaic 1CS J = 2–1 97.981 3.65 × 3.34 48 1.2 × 10 −1 Aug. & Oct. 2004 and Mar. 2005C 18 O J = 2–1 219.560 6.54 × 4.31 65 9.8 × 10 −2 Mar. 2003Mosaic 2CO J = 1–0 115.271 5.95 × 5.00 65 1.2 × 10 −1 Nov. 199912 CO J = 2–1 230.538 2.97 × 2.47 66 1.7 × 10 −1 Nov. 1999a The noise values quoted here are the noises at the mosaic center (Mosaic noise is inhomogeneous due to primary beam correction; it steeplyincreases at the mosaic edges). Those noise values have been computed in 1 km s −1 velocity bin.<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012the presence of S ii recombination lines in dark clouds such asRho Ophiuchi (Pankonin & Walms<strong>le</strong>y 1978) all argue againsta large dep<strong>le</strong>tion of sulfur from the gas phase. In this case, theabundance of species such as CS may indicate that somethingimportant is lacking from chemical models or that an abundantsulfur-bearing carrier has been missed. Therefore, the abundancesof sulfur species remain interesting puzz<strong>le</strong>s for inters<strong>tel</strong>larchemistry. In the case of dense clouds, standard chemicalmodels predict that most of the gas phase sulfur is shared betweenS, SO and CS (Millar & Herbst 1990), whi<strong>le</strong> H 2 Sisalsoabundant in the Orion Bar PDR (Jansen et al. 1995). In all thesecases, a large sulfur dep<strong>le</strong>tion, ∼10 2 , was required in the modelsto explain the observed abundances.PDRs offer an ideal intermediate medium between diffuseand dark cloud gas to investigate the sulfur dep<strong>le</strong>tion prob<strong>le</strong>m.In this work we have tried to determine the CS abundancein the Horsehead PDR as a tool for estimating the sulfur gasphase abundance. However, CS chemistry is an open issue itselfin different environments, from hot cores (e.g. Wakelam et al.2004) to extragalactic sources (e.g. Martín et al. 2005). Recentlaboratory experiments on dissociative recombination of HCS +and OCS + (Montaigne et al. 2005) imply a substantial modificationof previous reaction rate coefficients, dissociative channelsand branching ratios used in chemical models. The latest availab<strong>le</strong>reaction rates and collisional coefficients have been used inour photochemical and radiative transfer models.1.1. The Horsehead nebulaThe Horsehead nebula, appears as a dark patch of ∼5 ′ diameteragainst the bright HII region IC 434. Emission from gas anddust associated with this globu<strong>le</strong> has been detected from IR tomillimeter wave<strong>le</strong>ngths (Abergel et al. 2002, 2003; Pound et al.2003; Teyssier et al. 2004, Habart et al. 2005; Pety et al. 2005a),although the first astronomical plates were taken ∼120 yr ago. Inparticular, the Horsehead western edge is a PDR viewed nearlyedge-on and illuminated by the O9.5V star σOri at a projecteddistance of ∼3.5 pc (Anthony-Twarog 1982). The intensity ofthe incident FUV radiation field is χ ≃ 60 relative to the inters<strong>tel</strong>larradiation field (ISRF) in Draine’s units (Draine 1978).According to the evolutionary view of Reipurth & Bouchet(1984), the Horsehead nebula was a quiescent and dense cloudcore embedded in a more diffuse cloud (L1630). The erosiveaction of the UV radiation from σOri on the ambient gas <strong>le</strong>dto the apparent emergence of the core cloud, as in the earlieststages of Bok globu<strong>le</strong>s still attached to their parental cloud.However, the observed morphology together with the velocitygradients of the cloud, require a more involved description includinga pre-existing rotating velocity field as well as densityinhomogeneities in the initial structures (Pound et al. 2003;Hily-Blant et al. 2005). The erosive effect of the ionizing anddissociating radiation field together with these initial conditionsexplain the peculiar shaping of the Horsehead nebula. In particular,the densest regions of the initial inhomogeneities are nowbelieved to be the East-West filamentary material connecting itto the parental cloud, and the PDR. In this work we have studiedthe PDR through CS, C 34 SandHCS + observations.2. Observations and data reduction2.1. Observations2.1.1. Pico Ve<strong>le</strong>ta sing<strong>le</strong>-dishThe sing<strong>le</strong>-dish data presented in this paper have been gatheredbetween February and October 2004 at the IRAM 30-m <strong>tel</strong>escope.The Horsehead nebula PDR was mapped in the CS J =2–1 and 5–4 lines in order to provide the short-spacings for theinterferometric observations presented thereafter. The final mapconsists of 5 on-the-fly coverages performed along perpendicularscanning directions, and combined with the PLAIT algorithmintroduced by Emerson & Gräve (1888), allowing to efficientlyreduce the stripes over the map. The noise <strong>le</strong>vels (1σ rms) perregridded pixel and resolution channel of 80 kHz are of the orderof 0.15 K at 3 mm, and 0.64 K at 1.3 mm. The latter valuewas not low enough to provide any useful mapping informationat 1.3 mm since the CS J = 5–4 line peak is < ∼ 1K.In comp<strong>le</strong>ment to these data, dedicated positions wereprobed over a larger set of species and transitions. The frequencyswitching mode was used to observe CS J = 2–1, 3–2and 5–4 lines, as well as C 34 S J = 2–1, 3–2, and HCS + J =2–1 lines. Tab<strong>le</strong> 2 summarizes the corresponding observing parameters.Longer integrations allowed to reach, in a resolutionchannel of 40 kHz, rms noise <strong>le</strong>vels of 25, 42 and 36 mK at 3,2, and 1.3 mm respectively. All CS and C 34 S lines were detectedwith a S/N ratio better than 10. Figures 4 and 8 show some spectracol<strong>le</strong>cted at positions inside and across the PDR.The data were first calibrated to the TA ∗ sca<strong>le</strong> using the socal<strong>le</strong>dchopper wheel method (Penzias & Burrus 1973), andfinally converted to main beam temperatures using efficiencies(B eff /F eff ) of 0.81, 0.74 and 0.50 at 3, 2 and 1.3 mmrespectively.


J. R. Goicoechea et al.: Low sulfur dep<strong>le</strong>tion in the Horsehead PDR 567Tab<strong>le</strong> 2. Line parameters for the IRAM 30-m CS observations.Mo<strong>le</strong>cu<strong>le</strong> Transition Frequency HPBW(GHz) (arcsec)CS J = 2–1 97.980968 25J = 3–2 146.96905 16J = 5–4 244.93561 10C 34 S J = 2–1 96.412982 25J = 3–2 144.61715 16HCS + J = 2–1 85.347884 29Tab<strong>le</strong> 3. Calibrator fluxes in Jy.Date B0420−014 B0607−1573mm 1mm 3mm 1mm20.08.2004 3.4 2.9 1.4 0.9304.10.2004 3.4 2.9 1.6 0.9027.02.2005 3.5 2.9 1.6 0.9002.03.2005 3.2 2.3 1.6 0.8912.03.2005 3.2 2.3 1.6 0.9013.03.2005 3.2 2.3 1.6 1.00<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 20122.1.2. Plateau de Bure InterferometerPdBI observations dedicated to this project were carried out with6 antennae in the BCD configuration (baseline <strong>le</strong>ngths from 24to 331 m) from August 2004 to March 2005. The 580 MHz instantaneousIF-bandwidth allowed us to simultaneously observeCS, l-C 3 Hand 34 SOat3 mmusing3different 20 MHz–widecorrelator windows. Another window was centered on the 13 COJ = 2–1 line frequency at 1 mm. The full IF bandwidth was alsocovered by continuum windows both at 3.4 and 1.4 mm. OnlyCS J = 2–1 and 13 CO J = 2–1 (not shown here) were detected.We observed a seven-field mosaic. The mosaic was Nyquistsamp<strong>le</strong>d in declination at 3.4 mm and Nyquist samp<strong>le</strong>d in RightAscension at 1.3 mm. This ensures correct sampling in the illuminatingstar direction both at 3 and 1 mm whi<strong>le</strong> maximizing thefield of view along the edge of the PDR eases the deconvolution.This mosaic, centered on the IR peak (Abergel et al. 2003), wasobserved for about 30 h of <strong>tel</strong>escope time with 6 antennas. This<strong>le</strong>ads to an on-source integration time of useful data of 10 h afterfiltering out data with tracking errors larger than 1 ′′ and withphase noise worse than 40 ◦ at 3.4 mm. The rms phase noiseswere between 15 and 40 ◦ at 3.4 mm, which introduced positionerrors


568 J. R. Goicoechea et al.: Low sulfur dep<strong>le</strong>tion in the Horsehead PDR<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Fig. 1. Integrated emission maps obtained with the Plateau de Bure Interferometer. The center of all maps has been set to the mosaic phase center:RA(2000) = 05h40m54.27s, Dec(2000) = −02 ◦ 28 ′ 00 ′′ . The map size is 110 ′′ × 110 ′′ , with ticks drawn every 10 ′′ . The synthesized beam is plottedin the bottom <strong>le</strong>ft corner. The emission of all lines is integrated between 10.1 and 11.1 km s −1 . Values of contour <strong>le</strong>vel are shown on each imagewedge. The four panels are shown in a coordinate system adapted to the source: i.e. maps have been rotated by 14 ◦ counter-clockwise around theimage center to bring the exciting star direction in the horizontal direction as this eases the comparison of the PDR models. Maps have also beenhorizontally shifted by 20 ′′ to set the horizontal zero at the PDR edge, delineated by the vertical line.CS and C 34 S sing<strong>le</strong>-dish observations at larger spatial sca<strong>le</strong>sare presented in Fig. 4. CS line ratios are similar in all observedPDR positions. However, there is a trend for CS linesto peak where C 18 O emission decreases. Again, this is indicativeof larger abundances in the lower density regions and/orline opacity effects in the denser regions. The latter hypothesisis playing a ro<strong>le</strong> because CS J = 3–2 lines show asymmetricalprofi<strong>le</strong>s in the who<strong>le</strong> region, especially red-wing likeself-absorptions. See for examp<strong>le</strong> the (−52, −40) position withrespect to the IRAM-30 m C 18 O J = 2–1 map of Hily-Blantet al. (2005; Fig. 4). In addition, CS J = 3–2 and 2–1 linesmust be optically thick since their intensity is only a factor∼5 stronger than the analogous C 34 S lines, significantly lowerthan the 32 S/ 34 S = 23 solar isotopic ratio (Bogey et al. 1981).In addition, CS 3−22−1line ratios are ∼0.7 whi<strong>le</strong> the optically thinC 34 S 3−22−1line ratios are larger ∼0.9. Therefore, the CS J =3–2 line is likely to be the most opaque CS line. Finally, Fig. 8shows c<strong>le</strong>ar detections of the HCS + J = 2–1 line. As the expectedHCS + abundance is lower than that of C 34 S, these linesare weak and should be optically thin. Line intensities are quitesimilar in all observed PDR positions.4. Numerical methodology4.1. Photochemical modelsWe have used the Meudon PDR code (publicly availab<strong>le</strong> athttp://aristote.obspm.fr/MIS/), a photochemical modelof a unidimensional stationary PDR (Le Bourlot et al. 1993).The model has been described in detail elsewhere (Le Petitet al. 2006). In few words, the PDR code solves the FUV radiativetransfer in an absorbing and diffusing medium of gas anddust. This allows the explicit computation of the FUV radiationfield (continuum+lines) and therefore, the explicit integrationof consistent C and S photoionization rates together with H 2 ,CO, 13 CO, and C 18 O photodissociation rates. Penetration ofFUV radiation into the cloud strongly depends on dust propertiesthrough dust absorption and scattering of FUV photons.Properties of dust grains are those described in Pety et al. (2005).We have taken a sing<strong>le</strong> dust albedo coefficient of 0.42 andan scattering asymmetry parameter of 0.6.Once the FUV field has been determined, the steadystatechemical abundances are computed for a givenchemical network. The Ohio State University (osu)


J. R. Goicoechea et al.: Low sulfur dep<strong>le</strong>tion in the Horsehead PDR 569Tab<strong>le</strong> 4. IRAM-30 m line observation parameters from Gaussian fits.<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Fig. 2. Emission profi<strong>le</strong>s along the exciting star direction (PA = −104 ◦in the equatorial coordinate system). To improve the signal-to-noiseratio, emission profi<strong>le</strong>s have been integrated along the perpendiculardirection between −7.5 ′′ < δy < +7.5 ′′ . We show from top to bottom12 CO J = 2–1, 12 CO J = 1–0, C 18 O J = 2–1, 12 CS J = 2–1, c-C 3 H 22 12 –1 01 and 1.2 mm dust continuum emission (Pety et al. 2005a). The3σ noise <strong>le</strong>vel is indicated by the dashed lines. It rises at the cut edgesdue to the primary beam correction. Note that the fields of view of the12 CO and C 18 O data are smal<strong>le</strong>r than the field of view of the 12 CS databecause of the smal<strong>le</strong>r mosaic size and/or the higher frequency.gas-phase chemical network (osu.2005; September 2005re<strong>le</strong>ase; http://www.physics.ohio-state.edu /∼eric/research.html) has been used as our chemical framework.The most important changes compared to previous versionsare the decrease, by a factor of 2, of rate coefficients ofphotoionization and photodissociation reactions produced bycosmic-ray-induced H 2 secondary photons, the inclusion offluorine (F) and its chemistry (see Neufeld et al. 2005) and theupdate of several reaction rates. In addition, several changeshave been carried out by us on the chemical network. Inparticular, we have introduced different 18 O bearing speciesinto the chemical network by assuming similar reaction ratesto those involving the major isotopologues. Fractionationreactions have been added following Graedel et al. (1982) andspecific photodissociation cross-sections for C 18 O are explicitlyintroduced to compute the corresponding photodissociation rate.When availab<strong>le</strong>, we have also used the photodissociation ratesgiven by van Dishoeck (1988), which are explicitly calculatedfor the Draine inters<strong>tel</strong>lar radiation field (ISRF). Finally, wehave further upgraded the sulfur network by adding the mostrecent reaction rates, dissociation channels and branching ratios∫Mo<strong>le</strong>cu<strong>le</strong>/ Offset ∆v FWHM T∗A dvTransition ( ′′ ) (km s −1 ) (K km s −1 )CS J = 2–1 −52, −40 0.75 ± 0.01 2.60 ± 0.01−64, +30 0.89 ± 0.01 3.63 ± 0.01−35, −25 0.78 ± 0.01 3.68 ± 0.01−20, −15 0.77 ± 0.01 3.55 ± 0.01CS J = 3–2 −52, −40 0.72 ± 0.01 1.82 ± 0.02−64, +30 0.93 ± 0.01 2.58 ± 0.02−35, −25 0.76 ± 0.01 2.73 ± 0.02−20, −15 0.80 ± 0.01 2.40 ± 0.02CS J = 5–4 −52, −40 0.43 ± 0.02 0.35 ± 0.01−64, +30 0.76 ± 0.02 0.62 ± 0.02−35, −25 0.58 ± 0.02 0.52 ± 0.01−20, −15 0.60 ± 0.03 0.40 ± 0.02C 34 S J = 2–1 −52, −40 0.47 ± 0.02 0.26 ± 0.01−64, +30 0.67 ± 0.04 0.38 ± 0.02−35, −25 0.59 ± 0.02 0.40 ± 0.01−20, −15 0.58 ± 0.03 0.45 ± 0.02C 34 S J = 3–2 −52, −40 0.48 ± 0.04 0.20 ± 0.01−64, +30 0.74 ± 0.05 0.28 ± 0.02HCS + J = 2–1 −52, −40 0.8 ± 0.3 0.07 ± 0.03−35, −25 0.6 ± 0.3 0.05 ± 0.03−20, −15 0.9 ± 0.4 0.10 ± 0.03of HCS + and OCS + dissociative recombination (Montaigneet al. 2005) and by including the CS photoionization (ionizationpotential ∼11 eV). These processes have direct impact onCS chemistry. The resulting network involves ∼450 speciesand ∼5000 reactions. Finally, the model computes the thermalstructure of the PDR by solving the balance between the mostimportant processes heating and cooling the gas (see Le Bourlotet al. 1993). Our standard conditions for the model of theHorsehead PDR include a power-law density profi<strong>le</strong> (Eq. (2))and a FUV radiation field enhanced by a factor χ = 60 withrespect to the Draine ISRF (see Tab<strong>le</strong> 6). Different sulfur gasphase abundances, S/H, have been investigated. To be consistentwith PdBI CO observations, thermal balance was solved untilthe gas temperature reached a minimum value of 30 K, thena constant temperature was assumed.4.2. Radiative transfer modelsWe have used a simp<strong>le</strong> nonlocal non-LTE radiative transfer codeto model our millimeter line observations. The code hand<strong>le</strong>sspherical and plane-paral<strong>le</strong>l geometries and accounts for linetrapping, collisional excitation, and radiative excitation by absorptionof microwave cosmic background and dust continuumphotons. Arbitrary density, temperature or abundance profi<strong>le</strong>s,and comp<strong>le</strong>x velocity gradients can be included. A more detai<strong>le</strong>ddescription is given in the Appendix. The choice of a nonlocaltreatment is needed to analyze optically thick lines of abundant,high-dipo<strong>le</strong> moment mo<strong>le</strong>cu<strong>le</strong>s, such as CS, in regions where thegas density is below the critical densities of the associated transitions.Tab<strong>le</strong> 5 shows the critical densities of observed C 18 O,HCS + and CS lines. Under these conditions, radiative transferand opacity effects may dominate the line profi<strong>le</strong> formation. Ourradiative transfer analysis has been used to infer abundancesand physical conditions directly from observations but also topredict line spectra from the photochemical model results. The


570 J. R. Goicoechea et al.: Low sulfur dep<strong>le</strong>tion in the Horsehead PDR<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Fig. 3. Spectra along the direction of the exciting star at δy = 0 ′′ . 12 CO J = 1–0, C 18 O J = 2–1 and 12 CS J = 2–1 spectra cubes were smoothed bya15 ′′ -FWHM 1D-Gaussian along the y direction perpendicular to the illuminating star direction. Due to their small field of view (in particular inthe y direction), the 12 CO J = 2–1 data were just smoothed by a 5 ′′ -FWHM circular Gaussian.Fig. 4. IRAM-30 m CS J = 2–1, 3–2 and 5–4, and C 34 S J = 2–1 and 3–2 sing<strong>le</strong>-dish observations (histograms) at different positions of theHorsehead PDR sing<strong>le</strong>-dish C 18 O J = 2–1 emission centered at α 2000 = 05 h 40 m 58 s , δ 2000 = −02 ◦ 27 ′ 20 ′′ (from Hily-Blant et al. 2005).following temperature dependent collisional rate coefficients 2have been adopted:– for CS: we have used the latest CS + He collisional ratesfrom Lique et al. (2006), kindly provided by F. Lique2 Some of them retrieved from BASECOL, a data base for collisiona<strong>le</strong>xcitation data at http://www.amdpo.obspm.fr/basecol. We consideredH 2 , He and H as the collisional partners in all CS, C 34 S, HCS +and C 18 O excitation models. See Appendix.prior to publication, sca<strong>le</strong>d by the reduced mass factor(µ CS−H2 /µ CS−He ) 1/2 . Most of the models were repeated withthe older collisional rates of Turner et al. (1992).– for C 34 S: same as CS but using C 34 S spectroscopy to computecollisional excitation rates through detai<strong>le</strong>d balance.– for C 18 O: CO + H 2 de-excitation rates from Flower (2001)but using C 18 O spectroscopy to compute collisional excitationrates through detai<strong>le</strong>d balance.


J. R. Goicoechea et al.: Low sulfur dep<strong>le</strong>tion in the Horsehead PDR 571<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Tab<strong>le</strong> 5. Einstein coefficients, transition upper <strong>le</strong>vel energies and criticaldensities for the range of temperatures considered in this work.Mo<strong>le</strong>cu<strong>le</strong> Transition A ij E i n cr(s −1 ) (K) (cm −3 )C 18 O J = 2–1 6.01 × 10 −7 15.8 ∼8 × 10 3HCS + J = 2–1 1.11 × 10 −5 6.1 ∼5 × 10 4C 34 S J = 2–1 1.60 × 10 −5 6.9 ∼4 × 10 5J = 3–2 5.79 × 10 −5 13.9 ∼1 × 10 6CS J = 2–1 1.68 × 10 −5 7.1 ∼4 × 10 5J = 3–2 6.07 × 10 −5 14.1 ∼1 × 10 6J = 5–4 2.98 × 10 −4 35.3 ∼5 × 10 6– for HCS + : HCS + + He collisional rates from Monteiro(1984), sca<strong>le</strong>d by the reduced mass factor (µ HCS+ −H 2/µ HCS + −He) 1/2 , have been used.5. Modeling and interpretation5.1. CS, C 34 S and HCS + sing<strong>le</strong>-dish emissionIn order to get a first order approximation of the CS excitationand column density, we have assumed that <strong>le</strong>vel populations areonly determined by a Boltzmann distribution at a sing<strong>le</strong> rotationaltemperature. If one accepts that lines are optically thin,this approach corresponds to the widely used rotational-diagram.However, observed CS/C 34 S intensity ratios, and CS line profi<strong>le</strong>s(see Fig. 4) c<strong>le</strong>arly show that the low-J CS lines are opticallythick towards the Horsehead. Therefore, we have included opticaldepth effects and built a rotational-diagram corrected foropacity through:ln Nthin i+ ln C τ = ln N − ln Q − E i(1)g iT rotwhere Nithin are the upper <strong>le</strong>vel populations determined from observationsin the optically thin limit (underestimated if lines areoptically thick), E i is the upper i-<strong>le</strong>vel energy in K, Q is the partitionfunction at T rot and C τ is the line opacity correction factorτ ij1−e −τ ij>1 (Goldsmith & Langer 1999). We have performedthis analysis at different cloud positions. Resulting diagrams areshown in Fig. 5 as a function of different CS J = 2–1 line opacities(τ 2−1 = 0, 1 and 5). In the optically thin limit CS columndensities are N(CS) ∼ 5 × 10 13 cm −2 andtheyhavetobeconsidered as lower limits. Low excitation temperatures (T rot ∼6–9 K) are also inferred from the rotational-diagrams. These values,much lower than expected gas temperatures in a PDR, aresuggestive of radiative excitation effects in CS lines and <strong>le</strong>velpopulations far from thermalization. Therefore, we only use therotational-diagrams as input for the first iteration of a more comp<strong>le</strong>xanalysis.In order to obtain a more detai<strong>le</strong>d overview of the CS excitation,we have made several statistical equilibrium calculations(see Appendix) around the expected physical conditionsin the Horsehead. In particular, we have run a grid of sing<strong>le</strong>componentmodels for T k = 10, 20, 30, 50 and 70 K, n(H 2 ) =10 4 ,5× 10 4 ,10 5 and 5 × 10 5 cm −3 ,andχ(CS) from 10 −10to 10 −7 . As a reference value, the cloud total extinction is assumedto be constant and equal to A V = 20 mag in all models,i.e. the spatial <strong>le</strong>ngth is changed accordingly. Figure 6 specificallyshows se<strong>le</strong>cted results for T k = 30 K, which gives appropriateabsolute intensities for the CS lines. In particular, integratedline intensity ratios of observed lines as a function of CS abundancefor different densities are shown. Averaged ratios fromTab<strong>le</strong> 6. Horsehead standard conditions and gas phase abundances.ParameterValueRadiation field χ60 (Draine units)Cosmic ray ionization rate ζ5 × 10 −17 s −1Density profi<strong>le</strong> n H = n(H) + 2n(H 2 ) 50to2× 10 5 cm −3Line of sight spatial depth l depth 0.05–0.1 pcLine of sight inclination ang<strong>le</strong> ϕ 0 ◦ to 5 ◦He/H = n(He)/n H1.00 × 10 −1O/H3.02 × 10 −4C/H1.38 × 10 −4N/H7.95 × 10 −518 O/H 6.04 × 10 −7Cl/HSi/HMg/HF/HNa/HFe/HP/H1.00× 10 −71.73 × 10 −81.00 × 10 −86.68 × 10 −92.30 × 10 −91.70 × 10 −99.33 × 10 −10Fig. 5. CS rotational-diagrams corrected for line opacity effects at eachobserved position of Fig. 4. Rotational-diagrams for different consideredCS J = 2–1 line opacities (τ 2−1 ) are shown in each box. Rotationtemperatures for each opacity correction are also indicated.CS sing<strong>le</strong>-dish observations are 3−22−1∼ 0.7,5−42−1∼ 0.2 and5−43−2 ∼0.3. Therefore, densities ≥5 × 10 4 cm −3 are needed to populatethe CS intermediate-J <strong>le</strong>vels. On the other hand, for high densities(≥5 × 10 5 cm −3 ), collisions start to efficiently populate these<strong>le</strong>vels and the predicted line ratios involving the CS J = 5–4 linebecome much larger than observed. Thus, mean densities are inthe range n(H 2 ) ≃ (0.5–1.0) × 10 5 cm −3 , i.e. lower than CS criticaldensities (Tab<strong>le</strong> 5). Excitation temperatures are predicted tobe subthermal, T ex < T k , especially for the highest frequencylines. Due to line-trapping, the maximum T ex is reached at thecenter of the cloud, whi<strong>le</strong> it gradua<strong>tel</strong>y drops at both surfaceswhere line photons are optically thin and line trapping is not efficient.The only exception is the CS J = 1–0 transition whichshows an increase of the excitation temperature, Tex1−0 , at bothsurfaces. This rising in Tex1−0 is due to the significant collisiona<strong>le</strong>xcitation coupling from the J = 0toJ = 2 <strong>le</strong>vel, and to the largeradiative de-excitation rates from J = 2toJ = 1 <strong>le</strong>vel. At bothsurfaces, where optically thin CS J = 2–1 line photons can easilyescape from the cloud (Tex2−1 decreases), the above excitationconditions favor the population of the J = 1 <strong>le</strong>vel with respectto the J = 0 <strong>le</strong>vel. Therefore, Tex1−0 can reach large suprathermalvalues. A typical examp<strong>le</strong> is shown in Fig. A.2. Thus, within this


572 J. R. Goicoechea et al.: Low sulfur dep<strong>le</strong>tion in the Horsehead PDRFig. 6. Grid of CS sing<strong>le</strong>-component models assuming T k = 30 K and a fixed extinction of 20 mag. Panels show different line ratios as a functionof χ(CS). Each panel correspond to a sing<strong>le</strong> density, from n(H 2 ) = 10 4 to 5 × 10 5 cm −3 . Mean observed ratios are 3−25−4≃ 0.7, ≃ 0.2 and2−1 2−15−4≃ 0.3.3−2<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012range of parameters and even if physical conditions are homogeneous,excitation gradients must be taken into account.For these temperatures and densities, T k ≃ 20–30 K andn(H 2 ) ≃ (0.5–1.0) × 10 5 cm −3 ,theCS 5−4 5−42−1and3−2line ratiosare better fitted in the interval χ(CS) ≃ (0.2–1.0) × 10 −8 .Neverthe<strong>le</strong>ss, the 3−22−1line ratio is systematically predicted tobe larger than observed in these sing<strong>le</strong>-component models.Therefore, a more comp<strong>le</strong>x density structure and/or additionalopacity effects in low-J CS lines may be affecting the observedprofi<strong>le</strong>s. The latter hypothesis is c<strong>le</strong>arly favored by the factthat the C 34 S 3−22−1line intensity ratio is larger (∼0.9) than theCS 3−22−1ratio (∼0.7) and thus closer to the sing<strong>le</strong>-componentmodel predictions. Since the C 34 S emission is optically thin, radiativetransfer effects are <strong>le</strong>ss important and C 34 S column densitiescan be accura<strong>tel</strong>y determined.C 34 S sing<strong>le</strong>-component radiative transfer models for se<strong>le</strong>ctedpositions within the region have been run (Fig. 7). SinceC 34 S emission can arise from different gas components of higherdensity, not resolved by the large sing<strong>le</strong>-dish beam, we havemode<strong>le</strong>d each position in spherical geometry. This allows toexplore different components of different beam filling factors.The maximum extinction in the models varies from A V = 20 to12 mag depending on the cloud position. These values are consistentwith those obtained from sing<strong>le</strong>-dish 1.2 mm dust continuumemission observations (Teyssier et al. 2004; Pety et al.2005a). Following our previous general excitation calculationswe have considered gas temperatures in the range 20–25 K. Forthese conditions, densities between n(H 2 ) = 7 × 10 4 and 1.2 ×10 5 cm −3 satisfactorily reproduce the observed C 34 S absoluteintensities. Best fits are obtained for turbu<strong>le</strong>nce velocities (seeAppendix for the definition of v turb ) between 0.3 and 0.4 km s −1(Tab<strong>le</strong> 7). Although C 34 S is slightly enhanced where C 18 Odecreases,we have averaged the 4 positions to find the meanC 34 S abundance in the region covered with sing<strong>le</strong>-dish observationsand found χ(C 34 S) = (3 ± 1) × 10 −10 . Since nuc<strong>le</strong>osynthesismodels favor a constant galactic 32 S/ 34 S ratio and manyobservations reproduce the solar ratio within their error bars(Wannier et al. 1980; Frerking et al. 1980), especially in localdiffuse clouds (Lucas & Liszt 1998), we adopt 32 S/ 34 S = 23here as the isotopic ratio in the Horsehead. Therefore, the derivedχ(C 34 S) abundance translates to χ(CS) = (7 ± 3) × 10 −9 .The same physical conditions at each position have been usedto model the HCS + J = 2–1 lines (see Fig. 8). Lines are reproducedfor an averaged abundance of χ(HCS + ) = (4 ± 2) × 10 −11 ,therefore, a CS/HCS + ≃ 175 abundance ratio is derived.Using the CS abundance inferred from the C 34 S analysis,we have now tried to fit the CS lines at each position. Since aFig. 7. Radiative transfer models for CS and C 34 S discussed in thetext (curves) that best fits the IRAM-30 m observations (histograms).Offsets in arcsec refer to the (0,0) position of the C 18 O(2–1) map (seeFig. 4). Predicted line profi<strong>le</strong>s have been convolved with the <strong>tel</strong>escopeangular resolution at each frequency. Intensity sca<strong>le</strong> is in main beamtemperature.sing<strong>le</strong>-component model does not reproduce the observed lineratios and absolute intensities, we have explored other possibilities.In princip<strong>le</strong>, CS low-J lines are optically thick and maynot trace the high density gas revea<strong>le</strong>d by C 34 S, especially if the


J. R. Goicoechea et al.: Low sulfur dep<strong>le</strong>tion in the Horsehead PDR 573Fig. 8. IRAM-30 m HCS + (2–1) sing<strong>le</strong>-dish observations (histograms) at different positions of the Horsehead. Offsets in arcsec refer to the (0,0) positionof the C 18 O(2–1) map (see Fig. 4). Radiative transfer models for HCS + at se<strong>le</strong>cted positions are also shown (curves). Predicted line profi<strong>le</strong>shave been convolved with the <strong>tel</strong>escope angular resolution at each frequency. Intensity sca<strong>le</strong> is in main beam temperature.<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Tab<strong>le</strong> 7. Sing<strong>le</strong>-component radiative transfer model parameters.ParameterT kn(H 2 )v turbχ(C 34 S)χ(HCS + )Value20–25 K(7–12) × 10 4 cm −30.3–0.5 km s −1(3 ± 1) × 10 −10(4± 2) × 10 −11medium is inhomogeneous and dense clumps and a more diffuseinterclump medium coexist. The same argumentation hasbeen used to interpret HCN and H 13 CN observations in theOrion Bar PDR (Lis & Schilke 2003). In addition, it is wellknown that low-J CS lines may not be a good column densitytracer if their emission is scattered by a low density halo(Gonzá<strong>le</strong>z-Alfonso & Cernicharo 1993). This process can bea common effect in optically thick lines of high-dipo<strong>le</strong> momentmo<strong>le</strong>cu<strong>le</strong>s such as CS or HCO + (Cernicharo & Guélin 1987).In this scenario, the CS J = 3–2 and 2–1 lines from the densemedium will be attenuated and scattered over larger areas thanthe true spatial extend of the dense clumps. This possibility hasbeen analyzed in more detail in the next section. Fortuna<strong>tel</strong>y,observations of the CS J = 5–4 line allow to directly trace thedense clumps more safely (Tab<strong>le</strong> 8). In particular, we found thatthese lines can only be reproduced with denser gas components,n(H 2 ) = (4 ± 2) × 10 5 cm −3 , not resolved by the ∼10 ′′ beam ofthe IRAM-30 m <strong>tel</strong>escope at ∼250 GHz. Note that the CS J =5–4 line widths are fitted if the turbu<strong>le</strong>nt velocity in the densergas is ∼0.2 km s −1 , a factor 2 lower than the one required by theC 34 S J = 3–2 and 2–1 lines (Fig. 7). Thus, a different spatialorigin for this line emission is favored.At this stage we have a general know<strong>le</strong>dge of the CS andHCS + excitation and abundance in the region. In the followingsections we concentrate in the photochemistry of these species.Only higher angular observations provide the appropriate linearsca<strong>le</strong> to resolve the most important physical gradients inthe PDR edge. Hence, interferometric observations should allowa better comparison with chemical predictions.5.2. The PDR edgePdBI C 12 O J = 2–1, 1–0, C 18 O J = 2–1, and CS J = 2–1 observationsalong the direction of the exciting star (at δy = 0 ′′ )areshown in Fig. 3. Here we take these spectra as representative ofthe PDR edge and try to constrain its physical conditions througha combined analysis of photochemical and radiative transfermodels. Both models use a unidimensional plane-paral<strong>le</strong>lTab<strong>le</strong> 8. Two-component radiative transfer model parameters.ParameterValueT k20–25 Kn(H 2 )(3–7) × 10 4 cm −3dense component (2–6) × 10 5 cm −3(filling factor) 0.3v turb0.3–0.4 km s −1dense component 0.2–0.3 km s −1χ(CS)(7 ± 3) × 10 −9S/H(3.5± 1.5) × 10 −6description of the geometry. Although some physical processesrequire more comp<strong>le</strong>x geometries, the main physical and chemicalgradients across the illuminated direction can be consistentlydescribed in this way. Plane-paral<strong>le</strong>l geometry was judged to bethe best approach for this edge-on PDR since H 2 and PAH emissionsare only observed at the illuminated edge and not deeperinside the cloud (Habart et al. 2005).In this analysis, we have used the PdBI CS J = 2–1 andC 18 O J = 2–1 lines. As low-J 12 CO optical depths are veryhigh, they do not trace the bulk of material. The intensity peak ofthese lines only provide a good estimation of the CO excitationtemperatures (i.e. a lower limit to the gas temperature). Sincethe asymptotic brightness temperature of CO J = 1–0 lines is∼30 K, we take this value as the minimum of T k in the PDR.We note that lower temperatures do not reproduce the observedline intensities. For the rest of the (warmer) positions closer tothe PDR edge, the gas temperature was determined by solvingthe thermal balance. The predicted gas temperature in thedensity peak is ∼50 K whi<strong>le</strong> it rises to ∼200–250 K in theH 2 emitting regions where the density is n H ≃ 10 3 –10 4 cm −3 .More exact temperature values require observations of higher-J CO lines at comparab<strong>le</strong> spatial resolution. We are currentlyanalysing 13 CO J = 3–2 data from the SMA interferometer.Regarding the density structure, both the observed H 2 andPAH mid-IR emission, together with their spatial segregation,are much better reproduced with a steep density gradient thanwith an uniform density (Habart et al. 2005). The same densitygradient is needed to correctly reproduce the observed offset betweenthe small hydrocarbons (Pety et al. 2005a) and H 2 emission(where the density is not at its peak). Therefore, in order toreproduce PdBI observations of CS and C 18 O, a steep power-lawdensity gradient at the illuminated regions and a step-density inthe more shielded region have been assumed.The following methodology was carried out: a fullPDR model with Horsehead standard conditions (see Sect. 4.1)


574 J. R. Goicoechea et al.: Low sulfur dep<strong>le</strong>tion in the Horsehead PDR<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012was run with a particular choice of the density gradient describedin Eq. (2). Afterwards, the PDR output was used as input for thenonlocal radiative transfer calculation in a fashion described inAppendix A.2. In this way, physical parameters can be tunedmore accura<strong>tel</strong>y by iteration of different radiative transfer models.Once better parameters have been found, a new PDR computationis performed with this choice of physical parameters.Hence, the most appropriate physical and chemical descriptionof the PDR edge was found through the PDR model→transfermodel→check with observations→transfer model→PDR modeliterative process. Therefore, synthetic CS and C 18 O abundanceprofi<strong>le</strong>s are consistently computed as a function of the edge distanceδx (in arcsec) and directly compared with observations.Different PDR spatial depths were investigated. Dependingon the adopted density profi<strong>le</strong>, the spatial depth l depth is determinedby the line of sight visual extinction. However, theA V value depends on the method used to measure it. If opticallythin 1.2 mm dust emission is used (Teyssier et al. 2004;Pety et al. 2005a; Habart et al. 2005), the resulting column densitiesdepend on the usually unknown grain properties and onthe assumed temperature. Taking into account our poor know<strong>le</strong>dgeof the cloud thermal structure, a factor ∼2 of uncertaintyin A V can be assumed. In addition, the angular resolution ofmillimeter continuum observations is at <strong>le</strong>ast a factor ∼2 worsethan PdBI mo<strong>le</strong>cular line observations. Due to the steep decreaseof the density towards the edge, and due to the ∼11 ′′ beam of1.2 mm continuum observations, the observed emission peakwill appear deeper inside the cloud, shifted a few arcsec fromthe real density peak (which is closer to the edge). Therefore,together with the PDR edge location, the exact peak density positioncan also be uncertain by a few arcsec. Finally, beam dilutionhas to be also taken into account when comparing sing<strong>le</strong>dishversus interferometric observations. Here we have chosenl depth = 0.05–0.1 pc, which implies extinction peaks around A V ≃15–30 mag. These values are expected in compact globu<strong>le</strong>s(Reipurth & Bouchet 1984). Since CS and C 18 O excitation andline transfer are quite different, the following combined analysisprovides an accurate description of the edge density structure.The empirical density profi<strong>le</strong> in the models, n H = n(H) + 2n(H 2 ),as a function of δx is:⎧⎪⎨n H (δx) =⎪⎩n H (0) + [n H (δx 1 ) − n H (0)] ( )δx βδx 1; δx1 ≥ δx ≥ 0n H (δx 1 ); δx 2 ≥ δx >δx 1(2)n H (δx 2 ); δx >δx 2where δx is the distance away from the PDR edge, n H (0) is theambient density at the edge, and n H (δx 1 )andn H (δx 2 ) are constantdensities in the δx 2 ≥ δx >δx 1 and δx >δx 2 regions respectively.Se<strong>le</strong>cted photochemical models are shown in Fig. 9.The normalized population of the H 2 v = 1, J = 3<strong>le</strong>velisshownintheupper panel and is used to place the δx-axis originof the models and thus to accura<strong>tel</strong>y check with observations.Although some uncertainty in the location of the PDR edge exists,we place the peak of this curve at the maximum of observedH 2 1–0 S(1) 2.12 µm excited line (δx ∼ 10 ′′ ; Habart et al. 2005).Best models are found for a peak density around n H (δx 1 ) = 2 ×10 5 cm −3 . This density is reached in a <strong>le</strong>ngth of ∼2.5 ′′ –5 ′′ (or5–10 × 10 −3 pc) and stays constant in a <strong>le</strong>ngth of δx 2 −δx 1< ∼ 20 ′′(or 0.04 pc). In order to fit the smooth decrease of C 18 O emissionand also of the 1.2 mm continuum emission, the density has todecrease again by at <strong>le</strong>ast a factor ∼2. We have simply mode<strong>le</strong>dthis as a step-function for δx >δx 2 and decrease the density ton H (δx 2 ) = 10 5 cm −3 . We have chosen δx 1 = 12 ′′ and δx 2 = 30 ′′ .Our models confirm that high density gas and a large gradientslope, β ∼ 3–4, are needed to reproduce the PdBI and H 2 observations(Habart et al. 2005), although we found a slightly smal<strong>le</strong>rgradient sca<strong>le</strong> <strong>le</strong>ngth.As proposed by Habart et al. (2005) the PDR edge can beslightly inclined with respect to the line of sight by a smallang<strong>le</strong> ϕ. In plane-paral<strong>le</strong>l geometry, the maximum inclinationcan be estimated assuming that the observed spatial extend ofthe H 2 emission, d H2 , is mainly due to the projection of l depthin the plane of the sky, thus sin ϕ ≃ d H2 /l depth .Sinced H2 ∼0.01 pc, an inclination ang<strong>le</strong> ϕ ∼ 5 ◦ , has been considered in theradiative transfer models (see Appendix A.2). As expected, evensuch a small inclination shifts the emission peak significantlyand should therefore be taken into account. Figure 10 shows thePdBI C 18 O line observations and the combined PDR+transfermodeling including such geometrical effects. The agreement isexcel<strong>le</strong>nt, probably favored by the well-established CO photochemistry(Fig. 9) and because C 18 O J = 2–1 lines do not showcomp<strong>le</strong>x radiative transfer effects (τ 2−1 ∼ 0.8).To analyse the spatial distribution of the CS abundance predictedby photochemical models at the PDR edge we have alsotried to fit the PdBI CS J = 2–1 lines. Figure 9 shows the effectsof different sulfur abundances; S/H = 2 × 10 −5 and S/H = 2 ×10 −6 . Figure 11 (no inclination) and Fig. 12 (inclination considered)show the resulting synthetic CS map, using S/H = 2 × 10 −6and a minimum gas temperature of 30 K, over PdBI observationsat two constant δy cuts (δy = 30 ′′ and 0 ′′ ). Contrary to C 18 O, theCS emission detected with the PdBI at a fixed δx near the edgeshows an emission gradient in the δy direction, e.g. line peaksare brighter as δy increases. As a consequence model predictionsfit better the δy = 30 ′′ cut than the δy = 0 ′′ one. Besides,larger gas phase sulfur abundances are obtained if the bulk ofthe gas in the PDR edge is warmer, i.e. minimum gas temperaturesof ∼100 K (Fig. 9, right panel). This may be an indicationof larger temperatures at the cloud edge and lower sulfur dep<strong>le</strong>tions.Note that an accurate estimation of the CS abundance athigh resolution from a sing<strong>le</strong> PdBI line is not straightforward.Such determination requires aperture synthesis observations ofadditional CS lines to have a minimum idea of the CS excitationin different positions.In addition, since C 34 S observations at the same high-angularresolution were not availab<strong>le</strong>, we could not estimate additionalopacity effects in previous PdBI CS models (τ 2−1> ∼ 2). In thefollowing we have tried to estimate the worse possib<strong>le</strong> scenarioaffecting the CS lines in the line-of-sight, i.e. the presence ofa surrounding low density halo. Of course, the greatest effectcan appear in the shielded regions where the gas column densityis largest. Therefore we model<strong>le</strong>d a typical position where CSis well spatially resolved with the following parameters: l depth =0.1 pc, T k = 30 K, n(H 2 ) = 10 5 cm −3 , v turb = 0.35 km s −1 andχ(CS) = 7 × 10 −9 , (the averaged CS abundance obtained fromthe detai<strong>le</strong>d CS and C 34 S excitation analysis of previous section).We consider in addition that a low density halo of diffusegas with the same χ(CS) surrounds the region. We take T k =10 K, v turb = 0.7 km s −1 and densities in the interval n(H 2 ) =(5–10) × 10 3 cm −3 . The same modeling was carried out for C 34 S.Figure 13 shows model results. As expected, a low density haloefficiently self-absorbs CS line photons in the most opaque lines,i.e. the low-J CS lines. As a result, the observed CS line intensitiesare attenuated and abundances can be easily underestimated.However, this effect can be different at different positions, sincethe line opacity also changes. Apart from uncertainties in sulfurchemistry or instrumental effects in interferometric observations,diffuse gas can also contribute to explain differences betweenmodels and observations in Figs. 11 and 12. Since, optically


J. R. Goicoechea et al.: Low sulfur dep<strong>le</strong>tion in the Horsehead PDR 575<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Fig. 9. Photochemical models using a unidimensional PDR code for two different sulfur gas phase abundances, (S/H = 2 × 10 −5 ; <strong>le</strong>ft) andtheminimum value found for the Horsehead (S/H = 2 × 10 −6 ; right). The predicted normalized population of the H 2 v = 1, J = 3<strong>le</strong>velisshownin the upper panel and is used to place the δx-axis origin for the models. The peak of this curve is placed at the maximum of the observedH 2 1–0 S (1) 2.12 µm line emission (δx ∼ 10 ′′ ; Habart et al. 2005). Next panel shows the density profi<strong>le</strong> (n H = n(H) + 2n(H 2 )incm −3 )usedinthePDR calculations that better fits the CS and C 18 O IRAM-PdBI observations. Next panel shows the gas temperature (in K) consistently computed inthermal balance until reaches a minimum value of 30 K. Lower panels show the spatial variation of C 18 O/CO/C/C + and CS/HCS + /S/S + abundances(relative to n H ) across the PDR. The far-UV radiation field is χ = 60 times the Draine field. Chemical rates are those of the Ohio State University(osu) gas-phase chemical network (September 2005 re<strong>le</strong>ase) plus several modifications (see text). Bottom <strong>le</strong>ft panel shows the effect of using theolder rate and branching ratios for the HCS + dissociative recombination on the CS and HCS + abundances (dashed curves). Bottom right panelshows the effect of using a minimum gas temperature of 100 K in the chemistry. Lower CS abundances and thus larger S/H values are possib<strong>le</strong> asthe temperature increases (dashed curves).thick lines are affected by this effect (Fig. 13), only the observationof 13 CS or C 34 S isotopologues can help to provide more accurateabundance determinations. In the following, the CS chemistryis analyzed in more detail.5.3. CS chemistry and S-abundancePredicted C 18 O/CO/C/C + and CS/HCS + /S/S + structures fora unidimensional PDR with Horsehead standard conditions areshown in Fig. 9 (see Sect. 4.1). Variation of the sulfur e<strong>le</strong>mentalabundance almost does not affect the CO or C 18 O abundanceprofi<strong>le</strong>s, but it slightly modifies the predicted C/C + abundanceprofi<strong>le</strong>s because charge transfer reactions between C + and S, andbetween C and S + are c<strong>le</strong>arly altered by the sulfur dep<strong>le</strong>tion. Thefollowing results are of course determined by our present know<strong>le</strong>dgeand uncertainties on S-chemistry, and on reaction rates atdifferent temperatures. According to the latest ion storage ringexperiments (Montaigne et al. 2005), only 19% of the HCS +dissociative recombination results in CS + H whi<strong>le</strong> the fractureof the C-S bond dominates the dissociation (81%). Since theseexperiments can not separate the contribution of the CH + Sor SH + C channels in the latter process, we have adopted thesame branching ratio (0.405) for both channels. The reaction ratecoefficient is k DR (HCS + ) fast = 9.7 × 10 −7 (T/300) −0.57 cm 3 s −1 .We have also included the latest OCS + dissociative recombinationrates from Montaigne et al. (2005). The CS + O productionchannel now occurs at a rate 3 times slower than in previouschemical networks. All these modifications c<strong>le</strong>arly influencethe amount of CS formed from a given sulfur abundance, andthus the sulfur dep<strong>le</strong>tion estimations. Figure 9 (<strong>le</strong>ft panel) alsoshows the effect of adopting the older HCS + and OCS + dissociativerecombination rates and branching ratios. In particular,k DR (HCS + ) slow = 5.8 × 10 −8 (T/300) −0.75 cm 3 s −1 .However,since HCS + + e − → CS + H was the only channel consideredand the OCS + + e − → CS + O process was faster, smal<strong>le</strong>r sulfurabundances were required to obtain the same CS abundances.


576 J. R. Goicoechea et al.: Low sulfur dep<strong>le</strong>tion in the Horsehead PDRFig. 10. IRAM-PdBI C 18 O J = 2–1 spectra along the direction of the exciting star at δy = 0 ′′ (histograms). Radiative transfer models using the outputof PDR models for C 18 O (blue curve) for a density gradient and physical conditions discussed in the text. Lower panel shows inclination effectsassuming that the PDR is inclined relative to the line of sight by a ϕ = 5 ◦ ang<strong>le</strong>. Mode<strong>le</strong>d line profi<strong>le</strong>s have been convolved with an appropriateGaussian beam corresponding to each synthesized beam. Intensity sca<strong>le</strong> is in brightness temperature and abscissa in LSR velocity.<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Fig. 11. IRAM-PdBI CS J = 2–1 spectra along the direction of the exciting star at δy = 30 ′′ (upper panel) andδy = 0 ′′ (lower panel). Radiativetransfer models using the output of PDR models for CS (red curve) for a density gradient and physical conditions discussed in the text (assumingthat the PDR is not inclined relative to the line of sight). Mode<strong>le</strong>d line profi<strong>le</strong>s have been convolved with an appropriate Gaussian beamcorresponding to each synthesized beam. Intensity sca<strong>le</strong> is in brightness temperature and abscissa in LSR velocity.In the most external layers of the cloud, still dominatedby the FUV radiation field, CS is predominantly formed byHCS + dissociative recombination and principally destroyed byphotodissociation and charge transfer with H + . Once the gas isshielded, OCS + dissociative recombination and reaction of Cwith SO also contributes to CS formation, whi<strong>le</strong> its destruction isnow governed by ion-mo<strong>le</strong>cu<strong>le</strong> reactions, mainly with HCO + butalso with H 3 O + . These last two reactions with abundant mo<strong>le</strong>cularions return HCS + again. The peak abundance of HCS + occurat A V< ∼ 2 mag, where it is formed by reaction of CS + with H 2 anddestroyed by dissociative recombination. For this reason, an orderof magnitude change in k DR (HCS + ) c<strong>le</strong>arly modifies its peakabundance in the outer PDR layers. In the more shielded regions,HCS + destruction is dominated by dissociative recombinationand reaction with atomic oxygen to form HCO + and OCS + .Since the predicted CS abundance sca<strong>le</strong>s with S/H, and CS formationis dominated by HCS + dissociative recombination, wehave used our CS/C 34 S/HCS + observations and modeling to estimateS/H.Figure 14 shows results of a grid of photochemical modelsfor different sulfur e<strong>le</strong>mental abundances from S/H = 10 −8to 2 × 10 −5 , using the latest HCS + and OCS + dissociative recombinationrates. CS and HCS + abundances with respect to H 2are shown as a function of S/H attwodifferent PDR positions(A v ∼ 10 and ∼2 mag respectively; see Fig. 9). Densities at thesepositions are the same, n(H 2 ) = 10 5 cm −3 , but we have takendifferent PDR positions in order to plot the HCS + maximumabundance and to get the CS/HCS + ratio closer to observations.Inside the cloud, the predicted maximum HCS + abundances area factor ∼3 lower than observed. Horizontal shaded regions markthe CS and HCS + abundances derived from observations and radiativetransfer modeling. For clarity, HCS + abundances havebeen multiplied by a factor of 1000. Finally, the vertical shadedregion shows the estimated sulfur e<strong>le</strong>mental abundance in theHorsehead derived from the overlap region between observedand predicted abundances. We derive S/H ∼ (3.5 ± 1.5) × 10 −6as the mean value for the PDR. Note that CS is used for the upperlimit and HCS + for the lower limit. However, according tothe inferred HCS + abundance, larger sulfur abundances are stillpossib<strong>le</strong>.6. DiscussionOur multi-transition sing<strong>le</strong>-dish and aperture synthesis observationsand modeling of CS and related species allow us to


J. R. Goicoechea et al.: Low sulfur dep<strong>le</strong>tion in the Horsehead PDR 577Fig. 12. IRAM-PdBI CS J = 2–1 spectra along the direction of the exciting star at δy = 30 ′′ (upper panel) andδy = 0 ′′ (lower panel). Radiativetransfer models using the output of PDR models for CS (red curve) for a density gradient and physical conditions discussed in the text (assumingthat the PDR is inclined relative to the line of sight by a ϕ = 5 ◦ ang<strong>le</strong>). Mode<strong>le</strong>d line profi<strong>le</strong>s have been convolved with an appropriate Gaussianbeam corresponding to each synthesized beam. Intensity sca<strong>le</strong> is in brightness temperature and abscissa in LSR velocity.<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Fig. 13. CS and C 34 S synthetic line profi<strong>le</strong>s for a cloud with a depthof 0.1 pc, T k = 30 K, n(H 2 ) = 10 5 cm −3 and χ(CS) = 7 × 10 −9 (thickcurves). Thin curves show the resulting spectra if the same cloud is surroundedby different diffuse halos (3: n(H 2 ) = 5 × 10 3 cm −3 ,2:n(H 2 ) =8 × 10 3 cm −3 and 1: n(H 2 ) = 1 × 10 4 cm −3 ). The CS abundance in thecloud is determined more precisely from CS high-J and C 34 Slow-J observations,otherwise it is underestimated. Note that the intensity <strong>le</strong>velsare comparab<strong>le</strong> to those observed in the Horsehead.constrain the sulfur gas phase chemistry in the Horsehead PDRand it also gives some insights on the dense gas properties.6.1. DensitiesThe densities found in this work, n(H 2 ) ≃ 10 5 cm −3 ,arelargerto those inferred from previous studies based on sing<strong>le</strong>-dishCO observations (Abergel et al. 2003; Teyssier et al. 2004). Thismay be the indication of an inhomogeneous medium characterizedby a interclump medium (well traced by CO) and a denserclump medium (better traced by high dipo<strong>le</strong> mo<strong>le</strong>cu<strong>le</strong>s). Bothhigh densities and inhomogeneous medium are common in otherPDRs such as the Orion Bar (Lis & Schilke 2003). In particular,we have shown that unresolved gas components up to n(H 2 ) ≃(2–6) × 10 5 cm −3 are required to explain the CS J = 5–4 lineFig. 14. Photochemical model predictions for the physical and FUV illuminatingconditions prevailing in the Horsehead PDR showing the CSand HCS + abundance as a function of the sulfur gas phase abundance.Horizontal shaded regions show the CS and HCS + abundances derivedfrom the sing<strong>le</strong>-dish observations and radiative transfer modeling. Notethat for clarity HCS + abundances have been multiplied by a factorof 1000. The shaded vertical region shows the estimated sulfur abundancein the Horsehead nebula derived from the constrained fits of CSand HCS + abundances.emission in the Horsehead. However, Abergel et al. (2003) didnot find inhomogeneities in analysing ISOCAM images of theHorsehead. Neverthe<strong>le</strong>ss, they noted that clumpiness at sca<strong>le</strong>ssmal<strong>le</strong>r than the upper limit of the FUV penetration depth(∼0.01 pc) could not be excluded. Our best models of the CS J =5–4 line emission require an unresolved component with a radiusof ∼5 × 10 −3 pc. This component can of course be furtherfragmented itself. Neverthe<strong>le</strong>ss, it is difficult to distinguish betweenclumpiness at sca<strong>le</strong>s below ∼0.01 pc and the presence ofa lower density envelope surrounding the cloud. Since CO J =1–0 and 2–1 line opacities easily reach large values, their observedprofi<strong>le</strong>s are formed in the very outer layers of the cloudand thus they can arise from the most diffuse gas (n(H 2 ) ∼ 5 ×10 3 cm −3 ). Interferometric observations of intermediate-J linesof high dipo<strong>le</strong> species such as CS or HCO + will help to clarifythe scenario.The high angular resolution provided by PdBI CS andC 18 O observations reveals that the Horsehead PDR edge is


578 J. R. Goicoechea et al.: Low sulfur dep<strong>le</strong>tion in the Horsehead PDR<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012characterized by steep density gradient rising from ambient densitiesto n(H 2 ) ∼ 10 5 cm −3 in a <strong>le</strong>ngth of ∼0.01 pc and keptroughly constant up to ∼0.05 pc, where the density decreasesagain at <strong>le</strong>ast a by factor 2. The exact density values still dependon the assumed cloud depth and temperatures. In anycase, the inferred shell of dense mo<strong>le</strong>cular gas has high thermalpressures ∼(5–10) × 10 6 Kcm −3 and this can be the signatureof the processes driving the slow expansion of the PDR.Therefore, the most shielded clumps undergo effective line coolingand the regions of lower density should be compressed dueto their lower internal pressure. Recent hydrodynamical simulationsof the expansion of ionization and dissociation frontsaround massive stars also predict that a high density mo<strong>le</strong>cularshell (10–100 times the ambient density) will be swept upbehind the ionization front (Hosokawa & Inutsuka 2005a,b).The density, pressure and temperature profi<strong>le</strong>s and values predictedby these simulations at ∼0.5 Myr (the Horsehead formationtimesca<strong>le</strong> derived from its velocity gradients by Pound et al.2003 and Hily-Blant et al. 2005) qualitatively reproduce the valuesinferred from our mo<strong>le</strong>cular line observations and modeling.Hence, a shock front driven by the expansion of the ionizedgas is probably compressing the cloud edge to the highdensities observationally inferred in this work. Specific hydrodynamicalsimulations for the particular source physical conditionsand comparison with observations will be appreciated. Asnoted by Hosokawa & Inutsuka (2005), the dynamical expansionof a HII region, PDR and mo<strong>le</strong>cular shell in a cloud witha density gradient has not been studied well. We suggest theHorsehead PDR as a good target.6.2. TemperaturesMo<strong>le</strong>cular excitation, radiative transfer and chemical models areused to derive realistic abundances. The gas temperature impactsmany aspects of these computations (e.g. chemical reaction ratesand collisional excitation), and thus, the density and abundanceuncertainties also ref<strong>le</strong>cts our incomp<strong>le</strong>te know<strong>le</strong>dge of the thermalstructure. The prob<strong>le</strong>m is not straightforward, since a steeptemperature gradient is also expected in PDRs, and also becausethe most appropriate tracers of the warm gas lie at higher frequencies.The Horsehead PDR may not be an extreme case, sinceits FUV radiation field is not very high and photoe<strong>le</strong>ctric heatingalone will not heat the gas to high temperatures as long as the gasis FUV-shielded. Neverthe<strong>le</strong>ss, our thermal balance calculationsquickly <strong>le</strong>ad to T k ≃ 10 K. According to observations, this temperatureis too low, especially in the first δx ∼ 30 ′′ representingthe PDR edge. In this work we have (observationally) adoptedT k = 30 K as the minimum gas temperature in our PDR calculations.In forthcoming works we will concentrate on the thermalstructure of the PDR. Here we only note that either the coolingis not so effective and/or extra heating mechanisms needto be considered. The cosmic ray ionization rate was also increasedby a factor ∼5 but it only modifies the gas temperatureby ∆T k ∼ 4K.Under these circumstances we have to conclude that the gas,or at <strong>le</strong>ast a fraction of it, is likely to be warmer than predicted.We note that this prob<strong>le</strong>m is not new. Again, high-J13 CO and NH 3 observations have previously probed the existenceof warm gas (∼150 K) in regions where standard heatingmechanisms fail to predict those values (Graf et al. 1990;Batrla & Wilson 2003). More recently, Falgarone et al. (2005)reported ISO observations of H 2 in the lowest five pure rotationallines S (4) to S (0) (8 µmto28µm) toward diffuse ISM gas.The observed S (1)/S (0) and S (2)/S (0) line ratios are too largeto be compatib<strong>le</strong> with the PDR models. These authors suggestedthat MHD shocks (Flower & Pineau des Forets 1998) or magnetizedvortices, which are natural dissipative structures of the intermittentdissipation of turbu<strong>le</strong>nce (Joulain et al. 1998), locallyheat the gas at temperatures up to ≈1000 K. These structuresadd two heating sources: i) viscous heating through large velocityshear localized in tiny regions and ii) ion-neutral drift heatingdue to the presence of magnetic fields (ambipolar diffusion).As shown by Falgarone et al. (2006), these dissipative structuresare also ab<strong>le</strong> to trigger a hot chemistry, that is not accessib<strong>le</strong> tomodels that do not take into account the gas dynamics. These resultssuggest that additional mechanical heating processes are atwork. We propose that the shock waves driven by the expansionof the HII region and PDR compress the mo<strong>le</strong>cular gas in thecloud edge and provide it with an additional heating source.6.3. CS and HCS + chemistryAccording to the last (but not <strong>le</strong>ast) mo<strong>le</strong>cular data affectingCS chemistry and excitation, the mean CS abundance in theHorsehead PDR, χ(CS) = (7 ± 3) × 10 −9 , implies a gas sulfurabundance of S/H ∼ (3.5 ± 1.5) × 10 −6 , only a factor < ∼ 4 smal<strong>le</strong>rthan the solar value (Asplund et al. 2005). Even lower sulfurdep<strong>le</strong>tion values are possib<strong>le</strong> if the gas is significantly warmerthan 30 K. Thus, the gas phase sulfur abundance is very close tothe undep<strong>le</strong>ted value observed in the diffuse ISM and not to thedep<strong>le</strong>ted value invoked in dense mo<strong>le</strong>cular clouds (e.g. Millar& Herbst 1990). However, the observed CS/HCS + ≃ 175 abundanceratio can only be reproduced by photochemical modelsby considering the HCS + peak abundance, otherwise, larger ratios(∼10 3 ) are predicted. Therefore, either the observed HCS +only traces the surface of the cloud where its abundance peaks,or chemical models underestimate the HCS + production rate.In any case, the predicted CS/HCS + abundance ratio sca<strong>le</strong>swith the gas phase sulfur abundance. The largest ratios are expectedat the lowest sulfur dep<strong>le</strong>tions. However, the observedCS/HCS + ∼ 10 ratio in the diffuse ISM (Lucas & Listz 2002)is even lower than in the Horsehead. Thus, we have to concludethat present chemical models still fail to reproduce theobserved CS/HCS + abundance ratio, at <strong>le</strong>ast in the stationaryregime. Time-dependent photochemical computations may alsohelp to understand the dynamical expansion of the dissociationfront and the evolving mo<strong>le</strong>cular abundances. Besides, Gerinet al. (1997) noted that larger HCS + abundances are expectedif the gas is in a high ionization phase. We have computed thatif the cosmic ray ionization rate is increased by a factor of ∼5,the predicted HCS + abundance inside the cloud (A V = 10 mag)interestingly matches our inferred value and the CS/HCS + abundanceratio gets much closer to the observed ratio without theneed of taking the HCS + abundance peak.For the physical and FUV illuminating conditions prevailingin the Horsehead PDR, most of the gas phase sulfur is lockedin S + for A V< ∼ 2 mag and χ(HCS + ) reaches its maximum value.Besides, the derived gas phase sulfur abundance is large enoughto keep χ(e − ) > 10 −7 for A V< ∼ 3.5 mag. HCS + and S ii recombinationlines trace the skin of mo<strong>le</strong>cular clouds where S + is stillthe dominant form of sulfur. In the scenario proposed by Ruff<strong>le</strong>et al. (1999), these S + layers will be responsib<strong>le</strong> of the sulfurdep<strong>le</strong>tion due to more efficient sticking collisions on negativelycharged dust grains than in the case of neutral atoms such asoxygen. Even in these regions, still dominated by photodissociation,CS and HCS + abundances are quickly enhanced comparedto other sulfur mo<strong>le</strong>cu<strong>le</strong>s. In fact, we predict that CS is the mostabundant S-bearing mo<strong>le</strong>cu<strong>le</strong> in the external layers where S + is


J. R. Goicoechea et al.: Low sulfur dep<strong>le</strong>tion in the Horsehead PDR 579<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012still more abundant than neutral sulfur. These results are consistentwith our PdBI detection of CS close to the PDR edge andshow that CS is a PDR tracer. These findings are consistent withobservations of S-bearing species in the diffuse ISM where CSis more abundant than SO 2 ,H 2 S and SO (Lucas & Listz 2002).Between A V ∼ 2and∼8magtheS + abundance smoothly decreases.Since S + is a good source of e<strong>le</strong>ctrons, the e<strong>le</strong>ctronicfractionation also decreases accordingly. HCS + , and thus CS,present an abundance minimum in these layers. Neutral atomicsulfur is now the most abundant S-bearing species. Therefore,observations of the [S i]25 µm fine structure line will basicallytrace these intermediate layers of gas where S-bearing mo<strong>le</strong>cu<strong>le</strong>shave not reached their abundance peak. However, the exctitationenergy of the [S i]25 µm line (the upper <strong>le</strong>vel energy is ∼570 K)is too high compared to the thermal energy availab<strong>le</strong> in the regionswhere the neutral sulfur abundance peaks (T k ≃ 30 K) andno detectab<strong>le</strong> emission is expected. In fact, no Spitzer/IRS linedetection has been reported in the Horsehead (L. Verstraete, privatecom.). However, since most of the neutral atomic sulfurwill remain in the ground-state, the presence of a backgroundIR source (e.g. in face-on PDRs) may allow, with enough spectralresolution and continuum sensitivity, the detection of the[S i]25 µm line in absorption.On the other hand, sulfur in diffuse ionized gas outside themo<strong>le</strong>cular cloud is in the form of sulfur ions. Mid-IR [S iii]fine structure lines have been detected around the Horseheadwith IRS/Spitzer (L. Verstraete, private com.). In the shieldedgas, sulfur is mostly locked in S-bearing mo<strong>le</strong>cu<strong>le</strong>s togetherwith a smal<strong>le</strong>r fraction in atomic form. Our models predictthat species such as SO will be particularly abundant. Jansenet al. (1995) also noted that the low gas phase sulfur abundanceneeded to explain the CS abundance in the Orion Bar PDR wasincompatib<strong>le</strong> with the observed high H 2 S/CS ∼ 0.5 abundanceratio. Therefore, a comp<strong>le</strong>te understanding of the sulfur chemistrywill only be achieved when all the major sulfur mo<strong>le</strong>cu<strong>le</strong>scan be explained. In a forthcoming paper we analyse the photochemistry,excitation and radiative transfer of several S-bearingmo<strong>le</strong>cu<strong>le</strong>s detected by us in the Horsehead PDR.7. Summary and conclusionWe have presented interferometric maps of the Horsehead PDRin the CS J = 2–1 line at a 3.65 ′′ × 3.34 ′′ resolution together withsing<strong>le</strong>-dish observations of several rotational lines of CS, C 34 Sand HCS + . We have studied the CS photochemistry, excitationand radiative transfer using the latest HCS + and OCS + dissociativerecombination rates (Montaigne et al. 2005) and CS collisionalcross-sections (Lique et al. 2006). The main conclusionsof this work are as follows:1. CS and C 34 S rotational line emission reveals mean densitiesaround n(H 2 ) = (0.5–1.0) × 10 5 cm −3 .TheCSJ = 5–4 linesshow narrower line widths than the low-J CS lines and requirehigher density gas components, ∼(2–6) × 10 5 cm −3 ,not resolved by a ∼10 ′′ beam. These values are larger thanprevious estimates based on CO observations. It is likely thatclumpiness at sca<strong>le</strong>s below ∼0.01 pc and/or a low density envelopeplay a ro<strong>le</strong> in the CS line profi<strong>le</strong> formation.2. Nonlocal, non-LTE radiative transfer models of opticallythick CS lines and optically thin C 34 S lines provide an accuratedetermination of the CS abundance, χ(CS) = (7 ± 3) ×10 −9 . We show that radiative transfer and opacity effects playa ro<strong>le</strong> in the resulting CS line profi<strong>le</strong>s but not in C 34 S lines.Assuming the same physical conditions for the HCS + mo<strong>le</strong>cularion, we find χ(HCS + ) = (4 ± 2) × 10 −11 .3. According to photochemical models, the gas phase sulfurabundance required to reproduce these CS and HCS + abundancesis S/H = (3.5 ± 1.5) × 10 −6 , only a factor ∼4 <strong>le</strong>ssabundant than the solar e<strong>le</strong>mental abundance. Larger sulfurabundances are possib<strong>le</strong> if the gas is significantly warmer.Thus, the sulfur abundance in the PDR is very close to theundep<strong>le</strong>ted value observed in the diffuse ISM. The predictedCS/HCS + abundance ratio is close to the observed valueof ∼175, especially if predicted HCS + peak abundances areconsidered. If not, the HCS + production is underestimatedun<strong>le</strong>ss the gas is in a higher ionization phase, e.g. if the cosmicray ionization rate is increased by ∼5.4. High angular resolution PdBI maps reveal that the CS emissiondoes not follow the same morphology shown by thesmall hydrocarbons emission in the PDR edge. In combinationwith previous PdBI C 18 O observations we have mode<strong>le</strong>dthe PDR edge and confirmed that a steep density gradientis needed to reproduce CS and C 18 O observations. The resultingdensity profi<strong>le</strong> qualitatively agrees to that predictedin numerical simulations of a shock front compressing thePDR edge to high densities, n(H 2 ) ≃ 10 5 cm −3 , and high thermalpressures, ≃(5–10) × 10 6 Kcm −3 .5. Conventional PDR heating and cooling mechanisms fail toreproduce the temperature of the warm gas observed in theregion by at <strong>le</strong>ast a factor ∼2. Additional mechanical heatingmechanisms associated with the gas dynamics may beneeded to account for the warm gas. The thermal structureof the PDR edge is still not fully constrained from observations.This fact adds uncertainty to the abundances predictedby photochemical models.We have shown that many physical and chemical variations inthe PDR edge occur at small angular sca<strong>le</strong>s. In addition, themo<strong>le</strong>cular inventory as a function of the distance from the illuminatingsource can only be obtained from millimeter interferometricobservations. High angular resolution observations containdetai<strong>le</strong>d information about density, temperature, abundanceand structure of the cloud, but only detai<strong>le</strong>d radiative transfer andphotochemical models for each given source are ab<strong>le</strong> to extractthe information. A minimum description of the source geometryis usually needed. Future observations with ALMA will allowus to characterize in much more details many energetic surfacessuch as PDRs.Acknow<strong>le</strong>dgements. We are grateful to the IRAM staff at Plateau de Bure,Grenob<strong>le</strong> and Pico Ve<strong>le</strong>ta for the remote observing capabilities and competenthelp with the observations and data reduction. We also thank BASECOL, for thequality of data and information provided, and F. Lique for sending us the CScollisional rates prior to publication. JRG thanks J. Cernicharo, F. Daniel andI. Jiménez-Serra for fruitful discussions. We finally thank John Black, our referee,for useful and encouraging comments. JRG was supported by the frenchDirection de la Recherche and by a Marie Curie Intra-European IndividualFellowship within the 6th European Community Framework Programme, contractMEIF-CT-2005-515340.ReferencesAbergel, A., Bernard, J. P., Boulanger, F., et al. 2002, A&A, 389, 239Abergel, A., Teyssier, D., Bernard, J. P., et al. 2003, A&A, 410, 577Anthony-Twarog, B. J. 1982, A&J, 87, 1213Asplund, M., Grevesse, N., & Sauval, A. J. 2005, in Cosmic Abundances asRecords of S<strong>tel</strong>lar Evolution and Nuc<strong>le</strong>osynthesis, ed. F. N. Bash, & T. G.Barnes, ASP Conf. Ser., 336, 25Batrla, W., & Wilson, T. L. 2003, A&A, 408, 231Bernes, C. 1979, A&A, 73, 67Bogey, M., Demuynck, C., & Destombes, J. L. 1981, Chem. Phys. Lett., 81, 256


580 J. R. Goicoechea et al.: Low sulfur dep<strong>le</strong>tion in the Horsehead PDR<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Boogert, A. C. A., Tie<strong>le</strong>ns, A. G. G. M., Ceccarelli, C., et al. 2000, A&A, 360,683Cernicharo, J., & Guelin, M. 1987, A&A, 176, 299Dartois, E. 2005, Space Sci. Rev., 119, 293Draine, B. T. 1978, ApJS, 36, 595Draine, B. T., & Lee, H. M. 1984, ApJ, 285, 89Emerson, D. T., & Graeve, R. 1988, A&A, 190, 353Falgarone, E., Verstraete, L., Pineau Des Forets, G., & Hily-Blant, P. 2005, A&A,433, 997Falgarone, E., Pineau Des Forets, G., Hily-Blant, P., & Schilke, P. 2006, A&A,452, 511Flower, D. R., & Pineau des Forets, G. 1998, MNRAS, 297, 1182Flower, D. R. 2001, JPhB, 34, 2731Frerking, M. A., Wilson, R. W., Linke, R. A., & Wannier, P. G. 1980, ApJ, 240,65García-Rojas, J., Esteban, C., Peimbert, M., et al. 2006, MNRAS, 368, 253Gerin, M., Falgarone, E., Joulain, K., et al. 1997, A&A, 318, 579Gibb, E. L., Whittet, D. C. B., Boogert, A. C. A., & Tie<strong>le</strong>ns, A. G. G. M. 2004,ApJS, 151, 35Goicoechea, J. R. 2003, Ph.D. Thesis, Universidad Autonoma de Madrid,September 2003Goldsmith, P. F., & Langer, W. D. 1999, ApJ, 517, 209Gonzá<strong>le</strong>z-Alfonso, E., & Cernicharo, J. 1993, A&A, 279, 506Graedel, T. E., Langer, W. D., & Frerking, M. A. 1982, ApJS, 48, 321Graf, U. U., Genzel, R., Harris, A. I., et al. 1990, ApJ, 358, L49Gueth, F., Guilloteau, S., & Bachil<strong>le</strong>r, R. 1996, A&A, 307, 891Habart, E., Abergel, A., Walms<strong>le</strong>y, C. M., Teyssier, D., & Pety, J. 2005, A&A,437, 177Hily-Blant, P., Teyssier, D., Philipp, S., & Gusten, R. 2005, A&A, 440, 909Hosokawa, T., & Inutsuka, S. 2005a, ApJ, 623, 917Hosokawa, T., & Inutsuka, S. 2005b [arXiv:astro-ph/0511165]Howk, J. C., Sembach, K. R., & Savage, B. D. 2006, ApJ, 637, 333Irvine, W. M., Schloerb, F. P., Hjalmarson, A., & Herbst, E. 1985, Protostars andplanets II (A86-12626 03-90), Tucson, AZ, University of Arizona Press, 579Jansen, D. J., Spaans, M., Hogerheijde, M. R., & van Dishoeck, E. F. 1995, A&A,303, 541Joulain, K., Falgarone, E., Pineau des Forets, G., & Flower, D. 1998, A&A, 340,241Le Bourlot, J., Pineau Des Forets, G., Roueff, E., & Flower, D. R. 1993, A&A,267, 233Le Petit, F., Nehmé, C., Le Bourlot, J., & Roueff, E. 2005, ApJS, preprint,doi:10.10861/503252Lique, F., Spielfiedel, A., & Cernicharo, J. 2006, A&A, 451, 1125Lis, D. C., & Schilke, P. 2003, ApJ, 597, L145Lucas, R., & Liszt, H. 1998, A&A, 337, 246Lucas, R., & Liszt, H. 2002, A&A, 384, 1054Martín-Hernández, N. L., Peeters, E., Morisset, C., et al. 2002, A&A, 381, 606Martín, S., Martín-Pintado, J., Mauersberger, R., Henkel, C., & García-Burillo,S. 2005, ApJ, 620, 210Millar, T. J., & Herbst, E. 1990, A&A, 231, 466Montaigne, H., Geppert, W. D., Semaniak, J., et al. 2005, ApJ, 631, 653Monteiro, T. 1984, MNRAS, 210, 1Neufeld, D. A., Wolfire, M. G., & Schilke, P. 2005, ApJ, 628, 60Ohishi, M., & Kaifu, N. 1998, Chemistry and Physics of Mo<strong>le</strong>cu<strong>le</strong>s and Grainsin Space, Faraday Discussions No. 109, The Faraday Division of the RoyalSociety of Chemistry, London, 205Ossenkopf, V., & Henning, Th. 1994, A&A, 291, 943Palumbo, M. E., Gebal<strong>le</strong>, T. R., & Tie<strong>le</strong>ns, A. G. G. M. 1997, ApJ, 479, 839Pankonin, V., & Walms<strong>le</strong>y, C. M. 1978, A&A, 64, 333Penzias, A. A., & Burrus, C. A. 1973, ARA&A, 11, 51Pety, J., Teyssier, D., Fossé, D., et al. 2005a, A&A, 435, 885Pety, J. 2005b, in SF2A-2005: Semaine de l’Astrophysique Francaise, 721Pound, M. W., Reipurth, B., & Bally, J. 2003, A&J, 125, 2108Reipurth, B., & Bouchet, P. 1984, A&A, 137, 1Ruff<strong>le</strong>, D. P., Hartquist, T. W., Caselli, P., & Williams, D. A. 1999, MNRAS,306, 691Tieftrunk, A., Pineau des Forets, G., Schilke, P., & Walms<strong>le</strong>y, C. M. 1994, A&A,289, 579Teyssier, D., Fossé, D., Gerin, M., et al. 2004, A&A, 417, 135Turner, B. E., Chan, K. W., Green, S., & Lubowich, D. A. 1992, ApJ, 399, 114van der Tak, F. F. S., Boonman, A. M. S., Braakman, R., & van Dishoeck, E. F.2003, A&A, 412, 133van Dishoeck, E. F. 1988, Rate Coefficients in Astrochemistry, ed. T. J.Millar, & D. A. Williams (Dordrecht, Boston: Publisher, Kluwer AcademicPublishers), 49van Zadelhoff, G.-J., Dul<strong>le</strong>mond, C. P., van der Tak, F. F. S., et al. 2002, A&A,395, 373Wakelam, V., Caselli, P., Ceccarelli, C., Herbst, E., & Castets, A. 2004, A&A,422, 159Wannier, P. G. 1980, ARA&A, 18, 399Zhou, S., Jaffe, D. T., Howe, J. E., et al. 1993, ApJ, 419, 190


J. R. Goicoechea et al.: Low sulfur dep<strong>le</strong>tion in the Horsehead PDR, Online Material p 1Online Material<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012


<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012J. R. Goicoechea et al.: Low sulfur dep<strong>le</strong>tion in the Horsehead PDR, Online Material p 2Appendix A: Nonlocal, non-LTE radiative transferRadiative transfer in a medium dominated by gas phasemo<strong>le</strong>cu<strong>le</strong>s and dust grains requires the solution of the radiativetransport (RT) equation for the radiation field together with theequations governing the relative <strong>le</strong>vel populations of the consideredspecies. In the case of rotational line emission (far-IR to mmdomain), scattering from dust grains can be usually neg<strong>le</strong>ctedfrom the RT equation and steady state statistical equilibrium canbe assumed for mo<strong>le</strong>cular populations. However, physical conditionsin ISM clouds are such that mo<strong>le</strong>cular excitation is usuallyfar from LTE. Therefore, a minimum treatment of the nonlocalcoupling between line+continuum radiation and <strong>le</strong>vel populationsis required. In this appendix we describe in more detail thesimp<strong>le</strong> model developed for this work.A.1. Monte Carlo methodology for gas and dust radiativetransfer in plane-paral<strong>le</strong>l geometryThe Monte Carlo methodology or its modifications is a simp<strong>le</strong>and widely adopted approach when one has to deal with modera<strong>tel</strong>ythick lines and f<strong>le</strong>xibility to explore different geometries isrequired (see van Zadelhoff et al. 2002, and references therein).In this work, the classical description of the Monte Carlo approachfor non-LTE line transfer (Bernes 1979) has been extendedto include the dust emission/absorption and their effecton the source function. The code was originally developed in fortran90for spherical symmetry (Goicoechea 2003) and has beenenlarged to semi-infinite plane-paral<strong>le</strong>l geometry (from face- toedge-on). Thus, numerical discretization is transformed fromspherical shells to slabs. The model includes illumination fromthe cosmic background at both surfaces.The variation of the radiation field intensity along any photonpath s is related to the emission and absorption properties of themedium (scattering neg<strong>le</strong>cted) throughdI νds = j ν − α ν I ν(A.1)where α ν [cm −1 ]and j ν [erg s −1 cm −3 Hz −1 sr −1 ]arethetotal(gas+dust) absorption and emissivity coefficients at a givenfrequency ν. The normal path to any plane-paral<strong>le</strong>l slab is thusdz = µ ds, with µ = cos θ and where θ is the ang<strong>le</strong> between zand s (see Fig. A.1). Equation (A.1) is thus written asµ dI νdτ = S ν − I ν(A.2)where the differential optical depth is given by gas and dust contributions,dτ = α ν dz,andS ν = j ν /α ν is referred to as the sourcefunction. Continuum emissivity from dust is assumed to be thermaland given byj dustν= α dustν B ν (T d ) (A.3)where B ν is the Planck function at a given dust temperature,T d ,andανdust is computed from any of the dust mass absorptioncross-sections availab<strong>le</strong> in the literature (e.g. Draine & Lee1984; Ossenkopf & Henning 1994). For practical purposes, thedust absorption coefficient is assumed to be constant in all thepassband around each line frequency. Hence, the number of dustcontinuum photons emitted per second in a given cell of materialis (4π/hc) jνdust V m ∆v where V m is the cell volume and ∆v theconsidered passband in velocity units. Although the inclusion ofdust almost does not affect mo<strong>le</strong>cular excitation in our work, itis included for consistency and for making predictions of higherfrequency lines where it has larger effects.cosmic backgroundsθscosmic backgroundFig. A.1. Plane-paral<strong>le</strong>l geometry for a cloud isotropically illuminatedby the cosmic microwave background at both surfaces.Mo<strong>le</strong>cular lines occur at discrete frequencies, ν ij ,whereiand j refer to upper and lower energy <strong>le</strong>vels with n i and n j[cm −3 ] populations respectively. Gas emission and absorptioncoefficients, as a function of velocity, are defined asj gasν= hc4π n i A ij φ ; ανgas = hc4π (n j B ji − n i B ij ) φz(A.4)where B ji , B ij ,andA ij are the transition probabilities, or Einsteincoefficients, for absorption, and for induced and spontaneousemission respectively. We have assumed the same line Dopp<strong>le</strong>rprofi<strong>le</strong> (in velocity units) for emission and absorptionφ = 1 (b √ π exp − u + u f · s) 2(A.5)band thus considered Gaussian Dopp<strong>le</strong>r microturbu<strong>le</strong>nt and thermalbroadening characterized by the broadening parameter b 2 =v 2 turb + v2 th . Note that any arbitrary velocity field u f can be included.Here we take the possibility of having a velocity fieldnormal to the slabs, i.e. u f = v f (z).Generally speaking, the relative <strong>le</strong>vel populations of a consideredmo<strong>le</strong>cu<strong>le</strong> m are determined by collisions with othermo<strong>le</strong>cu<strong>le</strong>s, and/or by radiative effects caused by the cosmicbackground and/or by the dust continuum emission. The particularphysical conditions, type of mo<strong>le</strong>cu<strong>le</strong> and spectral domainwill determine the dominant processes through the steady statestatistical equilibrium equations∑∑n i [R ij + C ij ] = n j [R ji + C ji ] ; n tot =jijirot∑<strong>le</strong>velsJ=1n J(A.6)where C ij and R ij [s −1 ] are the collisional and radiative transitionrates between i and j <strong>le</strong>vels. For the collisional rates of species m(CS, C 34 S, C 18 OandHCS + ) we have consideredC ij = γij m (H 2) n(H 2 ) + γij m (He) n(He) + γm ij (H) n(H) (A.7)where γij m [cm 3 s −1 ] are the temperature dependent collisionalde-excitation rate coefficients of m with collisional partners H 2or He. If unknown, excitation rate coefficients are computedthrough detai<strong>le</strong>d balance. For consistency with the PDR modelingwe have estimated the collisional rates with H atoms (simplyby scaling from the He rates), since H may be the dominantpartner in the diffuse regions. Radiative rates areR ij = A ij + B ij J¯ij ; R ji = B ji J¯ji(A.8)where J¯ij is the intensity of the radiation field integrated oversolid ang<strong>le</strong>s and over the line profi<strong>le</strong>. External illumination bycosmic background, dust continuum emission and line photons


J. R. Goicoechea et al.: Low sulfur dep<strong>le</strong>tion in the Horsehead PDR, Online Material p 3Fig. A.2. Thermalization tests for a plane-paral<strong>le</strong>l cloud illuminated by the cosmic background at both surfaces (z/z max = 0,1).In order to benchmark the spatial distribution of the PDR codeabundance predictions with our interferometric line observations,we now can use the simp<strong>le</strong> model described above to computethe synthetic spectrum of a required mo<strong>le</strong>cu<strong>le</strong>. To do that,the PDR code output was used as an input for the RT calculation.In particular, the density profi<strong>le</strong> (both n(H 2 )andn(H)), temperatureprofi<strong>le</strong> (both T k and T d ) and species abundance are carefullyinterpolated from the PDR spatial grid output. In practice,the slab discretization for the RT calculation has to be preciseenough to samp<strong>le</strong> the abundance, density and temperature varia<strong>tel</strong>-<strong>00726959</strong>,version 1 - 31 Aug 2012from different spatial regions contribute to J¯ij . Hence, the solutionof mo<strong>le</strong>cular excitation implicitly depends on the nonlocalradiation field, which obviously depends on <strong>le</strong>vel populationsin many cloud points. J¯ij is explicitly computed in theMonte Carlo approach, and thus, the RT-excitation prob<strong>le</strong>m issolved iteratively until desired convergence in some physical parameter(generally the <strong>le</strong>vel populations) is achieved. LTE <strong>le</strong>velpopulations at a constant fictitious T ex were used for the first iteration.In the case of CS modeling, T rot from the observationalrotational-diagrams (Fig. 5) was used.The RT prob<strong>le</strong>m is then simulated by the emission of a determinednumber of model photons (both sides external illumination,continuum and line photons) in a similar way to thatoriginally described by Bernes (1979). Model photons representa large quantity of real photons randomly distributed over theline profi<strong>le</strong> A.5 and emitted at random cloud positions and directions.Each model photon is followed through the differentslabs until it escapes the cloud or until the number of representedreal photons become insignificant. Note that the ang<strong>le</strong> θ betweenthe photon direction and the normal to the slabs remains constantin all the photon path. In spherical geometry the θ ang<strong>le</strong>between the photon direction and the radial direction changesin each photon step and thus has to be computed repeatedly.In addition, model photons sent in the cos θ ≃ 0 direction insemi-infinite plane-paral<strong>le</strong>l geometry will almost never escapethe cloud. Thus, a minimum number of represented real photonsis defined otherwise the photon is not followed anymore.In this way, the Monte Carlo simulation explicitly computes theinduced emissions caused by the different types of model photonsin all the slabs. At the end of the simulation, an averagedvalue for the B ij J¯ij that independently accounts for external illumination,continuum emission and line emission is stored forevery slab ( ∑ S ij,m in Bernes formalism). Populations are thenobtained in each slab by solving:∑ [ ∑ ] ∑n i Aij + S ij,m + C ij =jijin j[gig j∑S ij,m + C ji]. (A.9)A reference field for all types of model photons was included toreduce the inherent random fluctuations (i.e. the variance) of anyMonte Carlo simulation (see Bernes 1979, for details). Whena prescribed convergence in <strong>le</strong>vel the populations is reached, thetotal (gas+dust) source function is comp<strong>le</strong><strong>tel</strong>y determined andthe emergent intensity can be easily computed by integratingEq. (A.2).For spherical geometry, the code was successfully benchmarkedagainst two test prob<strong>le</strong>ms, the Bernes’ CO cloud (Bernes1979) and the HCO + collapsing cloud, prob<strong>le</strong>m 2a of the 1999Leiden benchmark (van Zadelhoff et al. 2002). In the caseof plane-paral<strong>le</strong>l geometry, several thermalization tests for theldepthδxinclination ang<strong>le</strong> ϕinterferometerFig. A.3. Adopted geometry for a plane-paral<strong>le</strong>l PDR inclined byan small ang<strong>le</strong> ϕ relative to the line of sight s. In this sketch, z denotesthe normal direction to the slabs and also the UV illumination direction.CS excitation (without dust emission) were successfully performed.Excitation temperatures as a function of the normal coordinateto slabs z are shown for CS J = 1–0, 2–1, 3–2 and5–4 transitions in Fig. A.2. Model parameters are T k = 20 K,n(H 2 ) = 10 5 cm −3 and χ(CS) = 7 × 10 −9 .Different excitationconditions are considered. Upper model: A ij /C ij = 0andT exis correctly thermalized to T kin (LTE). Midd<strong>le</strong> model: collisionalrates from Lique et al. (fil<strong>le</strong>d squares; 2006) and Turneret al. (empty circ<strong>le</strong>s; 1992) and resulting non-LTE excitation(see Sect. 5.1). As noted by Lique et al., their new collisionalrates produce larger excitation temperatures, especially as J increases.For the Horsehead physical conditions this implies thatthe estimated densities and/or abundances with Turner et al. collisionalrates are ∼10% larger. Lower model: collisional excitationneg<strong>le</strong>cted and T ex is radiatively thermalized to the cosmicbackground temperature at T bg = 2.7 K.A.2. A model for an edge-on cloud with inclinationϕUV illuminationsz


J. R. Goicoechea et al.: Low sulfur dep<strong>le</strong>tion in the Horsehead PDR, Online Material p 4tions at the edge of the PDR (where most of the changes occur).In most RT computations, ∼50 slabs were judged to give satisfactorysampling of the PDR variations. For an edge-on configuration,after a Monte Carlo simulation, RT Eq. (A.2) wasintegrated in a grid of different lines of sight (similar to impactparameters in spherical geometry) as depicted in Fig. A.3.Lines of sight can be inclined by an ang<strong>le</strong> ϕ respect to the slabsnormal (ds = dz/ sin ϕ). Therefore, the maximum integrationpath is l depth / cos ϕ where l depth is the assumed cloud spatialdepth. To produce a synthetic map, results are then convolvedin a grid of cloud points with an angular resolution characterizedby a Gaussian with hpbw equal to that of the synthesizedinterferometric beam.<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012


A&A 464, L41–L44 (2007)DOI: 10.1051/0004-6361:20067009c○ ESO 2007Astronomy&AstrophysicsLetter to the EditorDeuterium fractionation in the Horsehead edge ⋆J. Pety 1,2 , J. R. Goicoechea 2 , P. Hily-Blant 1 ,M.Gerin 2 , and D. Teyssier 31 IRAM, 300 rue de la Piscine, 38406 Grenob<strong>le</strong> Cedex, Francee-mail: [pety;hilyblan]@iram.fr2 LERMA, UMR 8112, CNRS, Observatoire de Paris and Éco<strong>le</strong> Norma<strong>le</strong> Supérieure, 24 rue Lhomond,75231 Paris Cedex 05, Francee-mail: [javier;gerin]@lra.ens.fr3 European Space Astronomy Centre, Urb. Villafranca del Castillo, PO Box 50727, Madrid 28080, Spaine-mail: dteyssier@sciops.esa.intReceived 22 December 2006 / Accepted 22 January 2007ABSTRACT<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Context. Deuterium fractionation is known to enhance the [DCO + ]/[HCO + ] abundance ratio over the D/H ∼ 10 −5 e<strong>le</strong>mental ratio inthe cold and dense gas typically found in pre-s<strong>tel</strong>lar cores.Aims. We report the first detection and mapping of very bright DCO + J = 3−2 andJ = 2−1 lines (3 and 4 K respectively) towardsthe Horsehead photodissociation region (PDR) observed with the IRAM-30 m <strong>tel</strong>escope. The DCO + emission peaks close to theilluminated warm edge of the nebula (


L42J. Pety et al.: Deuterium fractionation in the Horsehead edgeTab<strong>le</strong> 1. Observation parameters. The projection center of all the data is α 2000 = 05 h 40 m 54.27 s , δ 2000 = −02 ◦ 28 ′ 00 ′′ .Mo<strong>le</strong>cu<strong>le</strong> Transition Frequency Instrument # Pix. a aF effaB eff Resol. Resol. Int. Time a,b Noise c Obs. date aGHz arcsec km s −1 hours KH 13 CO + J = 3−2 260.255339 30 m/HERA 9 0.90 0.46 13.5 ′′ 0.20 5.9/11.3 0.06 Mar. 2006H 13 CO + J = 1−0 86.754288 30 m+PdBI 2 0.95 0.78 6.7 ′′ 0.20 2.6/4.5 0.10 Sep. 2006DCO + J = 3−2 216.112582 30 m/HERA 9 0.90 0.52 11.4 ′′ 0.11 1.5/2.0 0.10 Mar. 2006DCO + J = 2−1 144.077289 30 m/CD150 2 0.93 0.69 18.0 ′′ 0.08 5.9/8.7 0.18 Sep. 2006C 18 O J = 2−1 219.560319 30 m/HERA 9 0.91 0.55 11.2 ′′ 0.11 – 0.26 May 2003Continuum at 1.2 mm 30 m/MAMBO 117 – – 11.7 ′′ – – – –a Those columns apply to the 30 m data but not to the PdBI data for the H 13 CO + J = 1−0 line. b Two values are given for the integration time: theon-source time and the <strong>tel</strong>escope time. c Noise values estimated at the position of the DCO + peak.<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012scanning direction. This ensured Nyquist sampling between therows except at the edges of the map. The DCO + J = 2−1 was observedduring 11.3 h using the C150 and D150 sing<strong>le</strong>-side bandreceivers of the IRAM-30 m under ∼8.5 mm of water vapor. Weused the frequency-switched, on-the-fly observing mode over a160 ′′ × 170 ′′ portion of the sky. Scanned lines and rows wereseparatedby8 ′′ ensuring Nyquist sampling. A detai<strong>le</strong>d descriptionof the C 18 O J = 2−1 and 1.2 mm continuum observationsand data reductions can be found in Hily-Blant et al. (2005). Weestimate the absolute position accuracy to be 3 ′′ .We also use a small part of the H 13 CO + (J = 1−0 andJ = 3−2) data, which were obtained with the IRAM PdBIand 30 m <strong>tel</strong>escopes. The who<strong>le</strong> data set will be comprehensivelydescribed in a forthcoming paper studying the fractional ionizationacross the Horsehead edge (Hily-Blant et al. 2007, in prep.).In short, the H 13 CO + J = 3−2 line was observed under averagedwinter weather (∼3.5 mm of water vapor) in rasters along thedirection of the exciting star using the first polarization of theunrotated HERA. Each pointing of the rasters was observed infrequency-switched mode. This resulted in a 140 ′′ × 75 ′′ map,Nyquist samp<strong>le</strong>d along the direction of the exciting star butslightly undersamp<strong>le</strong>d in the orthogonal direction (i.e. rows separatedby 6 ′′ instead of 4.75 ′′ ). The noise increases quickly atthe map edges which were seen only by a fraction of the HERApixels. We finally used a frequency-switched, on-the-fly map ofthe H 13 CO + J = 1−0 line, obtained at the IRAM-30 m usingthe A100 and B100 3 mm receivers (∼7 mm of water vapor) toproduce the short-spacings needed to comp<strong>le</strong>ment a 7-field mosaicacquired with the 6 PdBI antennae in the CD configuration(baseline <strong>le</strong>ngths from 24 to 176 m).The data processing was done with the GILDAS 1 softwares(Pety 2005). The IRAM-30 m data were first calibratedto the TA ∗ sca<strong>le</strong> using the chopper wheel method (Penzias &Burrus 1973), and finally converted to main beam temperatures(T mb ) using the forward and main beam efficiencies (F effand B eff ) displayed in Tab<strong>le</strong> 1. The resulting amplitude accuracyis ∼10%. Frequency-switched spectra were folded using thestandard shift-and-add method, after baseline subtraction. Theresulting spectra were finally gridded through convolution by aGaussian.2. Results and discussionFigure 1 presents the DCO + J = 2−1 andJ = 3−2 andtheC 18 O J = 2−1 integrated intensity maps, together with 1.2 mmcontinuum emission. All maps are presented in a coordinate systemadapted to the source geometry, as described in the figure1 See http://www.iram.fr/IRAMFR/GILDAS for more informationabout the GILDAS softwares.Fig. 1. IRAM-30 m integrated intensity maps. Maps have been rotatedby 14 ◦ counter-clockwise around the projection center, shown as thegreen cross at (δx,δy) = (20 ′′ , 0 ′′ ), to bring the exciting star direction inthe horizontal direction and the horizontal zero has been set at the PDRedge, delineated by the dashed blue vertical line. The spatial resolutionis plotted in the bottom <strong>le</strong>ft corner. Values of contour <strong>le</strong>vels are shownon each image lookup tab<strong>le</strong>. The emission of all lines is integrated between10.1 and 11.1 km s −1 .caption. The DCO + emission is concentrated in a narrow, arclikestructure, delineating the <strong>le</strong>ft edge of the dust continuumemission. A second maximum is found at the extreme <strong>le</strong>ft of themap, associated with a smal<strong>le</strong>r dust continuum peak. Figure 2shows the H 13 CO + and DCO + spectra in a cut along the directionof the exciting star at δy = 15 ′′ (horizontal dashed line of Fig. 1).This cut intersects the DCO + emission peak which is close to theilluminated edge of the nebula (


J. Pety et al.: Deuterium fractionation in the Horsehead edge L43Tab<strong>le</strong> 2. Einstein coefficients, upper <strong>le</strong>vel energies and critical densitiesfor the range of temperatures considered in this work.Mo<strong>le</strong>cu<strong>le</strong> Transition A ij E up n crit(s −1 ) (K) (cm −3 )H 13 CO + J = 1−0 3.9 × 10 −5 4.2 ∼2 × 10 5H 13 CO + J = 3−2 1.3 × 10 −3 25.0 ∼3 × 10 6DCO + J = 2−1 2.1 × 10 −4 10.4 ∼6 × 10 5DCO + J = 3−2 7.7 × 10 −4 20.7 ∼2 × 10 6<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Fig. 2. Cut along the direction of the exciting star at δy = 15 ′′ .coexist within the same gas (implying the same physical conditions).This assumption is mainly justified by the spatial coincidenceof the H 13 CO + and { DCO + emission peaks (i.e. whereT mb {DCO + (2 − 1)} /T mb H 13 CO + (1 − 0) } ≃ 1). Besides, weused the H 13 CO + lines to determine the line-of-sight HCO + columndensity. Indeed, the direct determination of the HCO + columndensity from its rotational line emission is hampered by thelarge HCO + line opacities and their propensity to suffer fromself-absorption and line scattering effects (Cernicharo & Guelin1987). In addition, large critical densities for HCO + (and its isotopologues)are expected even for the lowest-J transitions dueto its high dipo<strong>le</strong> moment: ∼4 D (Tab<strong>le</strong> 2). Hence, thermalizationwill only occur at very high densities. For lower densities,n < n crit , subthermal excitation dominates as J increases.Therefore, in order to accura<strong>tel</strong>y determine the mean physicalconditions and the [DCO + ]/[H 13 CO + ] ratio at the DCO + peak,we have used a nonlocal, non-LTE radiative transfer code includingline trapping, collisional excitation and radiative excitationby cosmic background photons (Goicoechea 2003; Goicoecheaet al. 2006). Collisional rates of H 13 CO + and DCO + with H 2and He have been derived from the HCO + –H 2 rates of Flower(1999).Assuming a maximum extinction depth of A V ≃ 50 along theline-of-sight where DCO + peaks (Ward-Thompson et al. 2006),the observed DCO + J = 2−1 andJ = 3−2 line intensities arewell reproduced (with line opacities ∼1.5) only if the gas is cold(10−20 K) and dense (n(H 2 ) ≥ 2 × 10 5 cm −3 ). This high densityis consistent with the one required to reproduce the CS J = 5−4excitation (Goicoechea et al. 2006) and with the value derivedfrom dust submm continuum emission (Ward-Thompson et al.2006). The weakness of the H 13 CO + J = 3−2 line compared tothe DCO + J = 3−2 line is caused in part by its larger Einsteincoefficient (a factor ∼1.7 larger) and its higher energy <strong>le</strong>vel(see Tab<strong>le</strong> 2). This implies that the H 13 CO + J = 3−2 line ismore subthermally excited than the analogous DCO + line forthe derived densities and temperatures. Note that we have notincluded collisions with e<strong>le</strong>ctrons in this excitation analysis. Infact, the expected ionization fraction in such a cold and densecondensation is usually low,


L44J. Pety et al.: Deuterium fractionation in the Horsehead edgephotoe<strong>le</strong>ctric heating, to the coldest and shielded gas wherestrong deuterium fractionation is taking place. Therefore, theHorsehead edge is the kind of source needed to serve as a referencefor PDR models (Pety et al. 2006) and offers a realistictemplate to analyze more comp<strong>le</strong>x galactic or extragalacticsources.Acknow<strong>le</strong>dgements. We thank M. Guelin for useful comments and theIRAM PdBI and 30 m staff for their support during the observations. J.R.G. wassupported by an individual Marie Curie fellowship, contract MEIF-CT-2005-515340.<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Fig. 3. Chemical models for different minimum gas temperatures: 15,20, 30 and 60 K. The density is n H = 4 × 10 5 cm −3 and the illuminatingradiation field is χ = 60. Temperature profi<strong>le</strong>s and predicted[H 2 D + ]/[H + 3 ]and[DCO+ ]/[HCO + ] abundance ratios are shown as afunction of A V .The[DCO + ]/[HCO + ] ratios inferred from observationsin the cold condensation at δx ∼ 40−45 ′′ and in the warm PDR gas atδx ∼ 10−15 ′′ are shown respectively with the blue and red arrows.Caselli et al. 1999). The C 18 O J = 2−1 emission shown in Fig. 2substantially decreases at the DCO + peak. This behavior is reminiscentof CO dep<strong>le</strong>tion but it could also come from a combinationof lower excitation and of opacity effects. Future observationsof mo<strong>le</strong>cular tracers of gas dep<strong>le</strong>tion are needed toconstrain the dominant scenario.The DCO + lines stay undetected in the warm gas whereHCO + (not shown here) and H 13 CO + still emit. Indeed, DCO +can not be abundant in the photodissociation front, where thelarge photoe<strong>le</strong>ctric heating rate implies warm temperatures(T k > 50 K), because the reaction of H 2 D + with H 2 dominatesand implies a low H 2 D + abundance ([H 2 D + ]/[H + 3 ] ≃2 × 10 −4 ). From the upper limit of the DCO + emission atδx = 10−15 ′′ (A V ∼ 1), we estimate a low abundance ratio[DCO + ]/[HCO + ] < 10 −3 in the far-UV photodominated gas, inagreement with the model predictions.The small distance to the Horsehead nebula (∼400 pc),its low FUV illumination and its high gas density imply thatmany physical and chemical processes, with typical gradient<strong>le</strong>ngthsca<strong>le</strong>s ranging between 1 ′′ and 10 ′′ , can be probed in asmall field-of-view (<strong>le</strong>ss than 50 ′′ ). The Horsehead edge thusoffers the opportunity to study in great detail the transition fromthe warmest gas, dominated by photodissociation processes andReferencesAbergel, A., Teyssier, D., Bernard, J. P., et al. 2003, A&A, 410, 577Brown, P. D., & Millar, T. J. 1989, MNRAS, 237, 661Caselli, P., Walms<strong>le</strong>y, C. M., Tafalla, M., Dore, L., & Myers, P. C. 1999, ApJ,523, L165Cernicharo, J., & Guelin, M. 1987, A&A, 176, 299Flower, D. R. 1999, MNRAS, 305, 651Flower, D. R., Pineau Des Forêts, G., & Walms<strong>le</strong>y, C. M. 2006, A&A, 449, 621Gerlich, D., Herbst, E., & Roueff, E. 2002, Planet. Space Sci., 50, 1275Goicoechea, J. R. 2003, Ph.D. Thesis, Universidad Autonoma de MadridGoicoechea, J. R., Pety, J., Gerin, M., et al. 2006, A&A, 456, 565Guelin, M., Langer, W. D., & Wilson, R. W. 1982, A&A, 107, 107Guilloteau, S., Piétu, V., Dutrey, A., & Guélin, M. 2006, A&A, 448, L5Habart, E., Abergel, A., Walms<strong>le</strong>y, C. M., Teyssier, D., & Pety, J. 2005, A&A,437, 177Hatchell, J., Millar, T. J., & Rodgers, S. D. 1998, A&A, 332, 695Hily-Blant, P., Teyssier, D., Philipp, S., & Güsten, R. 2005, A&A, 440, 909Le Bourlot, J., Pineau Des Forets, G., Roueff, E., & Flower, D. R. 1993, A&A,267, 233Le Petit, F., Nehmé, C., Le Bourlot, J., & Roueff, E. 2006, ApJS, 164, 506Leurini, S., Rolffs, R., Thorwirth, S., et al. 2006, A&A, 454, L47Linsky, J. L., Draine, B. T., Moos, H. W., et al. 2006, ApJ, 647, 1106Milam,S.N.,Savage,C.,Brewster,M.A.,Ziurys,L.M.,&Wyckoff, S. 2005,ApJ, 634, 1126Penzias, A. A., & Burrus, C. A. 1973, ARA&A, 11, 51Pety, J. 2005, in SF2A-2005: Semaine de l’Astrophysique Française, ed.F. Casoli, T. Contini, J. M. Hameury, & L. Pagani, 721Pety, J., Goicoechea, J. R., Gerin, M., et al. 2006, in SF2A-2006: Semaine del’Astrophysique Française [arXiv:astro-ph/0612588]Pety, J., Teyssier, D., Fossé, D., et al. 2005, A&A, 435, 885Philipp, S. D., Lis, D. C., Güsten, R., et al. 2006, A&A, 454, 213Roberts, H., & Millar, T. J. 2000a, A&A, 364, 780Roberts, H., & Millar, T. J. 2000b, A&A, 361, 388Roueff, E., Tiné, S., Coudert, L. H., et al. 2000, A&A, 354, L63Smith, D., Adams, N. G., & Alge, E. 1982, ApJ, 263, 123Solomon, P. M., & Woolf, N. J. 1973, ApJ, 180, L89Turner, B. E. 1990, ApJ, 362, L29van Dishoeck, E. F., Thi, W.-F., & van Zadelhoff, G.-J. 2003, A&A, 400, L1Walms<strong>le</strong>y, C. M., Flower, D. R., & Pineau des Forêts, G. 2004, A&A, 418, 1035Ward-Thompson, D., Nutter, D., Bontemps, S., Whitworth, A., & Attwood, R.2006, MNRAS, 369, 1201Watson, W. D. 1974, ApJ, 188, 35


A&A 498, 771–783 (2009)DOI: 10.1051/0004-6361/200811496c○ ESO 2009Astronomy&AstrophysicsThe ionization fraction gradient across the Horsehead edge:an archetype for mo<strong>le</strong>cular clouds ⋆J. R. Goicoechea 1 ,J.Pety 2,3 , M. Gerin 3 , P. Hily-Blant 4 , and J. Le Bourlot 5<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 20121 Laboratorio de Astrofísica Mo<strong>le</strong>cular. Centro de Astrobiología. CSIC-INTA. Carretera de Ajalvir, Km 4. Torrejón de Ardoz,28850 Madrid, Spaine-mail: goicoechea@damir.iem.csic.es2 IRAM, 300 rue de la Piscine, 38406 Grenob<strong>le</strong> Cedex, Francee-mail: pety@iram.fr3 LERMA - LRA, UMR 8112, CNRS, Observatoire de Paris and Éco<strong>le</strong> Norma<strong>le</strong> Supérieure, 24 rue Lhomond, 75231 Paris, Francee-mail: maryvonne.gerin@lra.ens.fr4 Laboratoire d’Astrophysique, Observatoire de Grenob<strong>le</strong>, BP 53, 38041 Grenob<strong>le</strong> Cedex 09, Francee-mail: pierre.hilyblant@obs.ujf-grenob<strong>le</strong>.fr5 LUTH, UMR 8102 CNRS, Université Paris 7 and Observatoire de Paris, Place J. Janssen, 92195 Meudon, Francee-mail: Jacques.Lebourlot@obspm.frReceived 10 December 2008 / Accepted 11 February 2009ABSTRACTContext. The ionization fraction (i.e., the e<strong>le</strong>ctron abundance) plays a key ro<strong>le</strong> in the chemistry and dynamics of mo<strong>le</strong>cular clouds.Aims. We study the H 13 CO + ,DCO + and HOC + line emission towards the Horsehead, from the shielded core to the UV irradiatedcloud edge, i.e., the photodissociation region (PDR), as a template to investigate the ionization fraction gradient in mo<strong>le</strong>cular clouds.Methods. We analyze an IRAM Plateau de Bure Interferometer map of the H 13 CO + J = 1–0 line at a 6.8 ′′ × 4.7 ′′ resolution, comp<strong>le</strong>mentedwith IRAM-30 m H 13 CO + and DCO + higher-J line maps and new HOC + and CO + observations. We compare self-consistentlythe observed spatial distribution and line intensities with detai<strong>le</strong>d depth-dependent predictions of a PDR model coup<strong>le</strong>d with a nonlocalradiative transfer calculation. The chemical network includes deuterated species, 13 C fractionation reactions and HCO + /HOC +isomerization reactions. The ro<strong>le</strong> of neutral and charged PAHs in the cloud chemistry and ionization balance is investigated.Results. The detection of the HOC + reactive ion towards the Horsehead PDR proves the high ionization fraction of the outer UVirradiated regions, where we derive a low [HCO + ]/[HOC + ] ≃ 75–200 abundance ratio. In the absence of PAHs, we reproduce theobservations with gas-phase metal abundances, [Fe+Mg+...], lower than 4 × 10 −9 (with respect to H), and a cosmic-ray ionization rateof ζ = (5± 3)× 10 −17 s −1 . The inclusion of PAHs modifies the ionization fraction gradient and increases the required metal abundance.Conclusions. The ionization fraction in the Horsehead edge follows a steep gradient, with a sca<strong>le</strong> <strong>le</strong>ngth of ∼0.05 pc (or ∼25 ′′ ), from[e − ] ≃ 10 −4 (or n e ∼ 1–5 cm −3 )inthePDRtoafewtimes∼10 −9 in the core. PAH − anions play a ro<strong>le</strong> in the charge balance of thecold and neutral gas if substantial amounts of free PAHs are present ([PAH] > 10 −8 ).Key words. astrochemistry – ISM: clouds – radiative transfer – radio lines: ISM – ISM: mo<strong>le</strong>cu<strong>le</strong>s – ISM: abundances1. IntroductionThe e<strong>le</strong>ctron abundance ([e − ] = n e /n H ) plays a fundamentalro<strong>le</strong> in the chemistry and dynamics of inters<strong>tel</strong>lar gas.The degree of ionization determines the preponderance of ionneutralreactions, i.e., the main formation route for most chemicalspecies in mo<strong>le</strong>cular clouds (Herbst & K<strong>le</strong>mperer 1973;Oppenheimer & Dalgarno 1974). In addition, the ionizationfraction constrains the coupling of matter and magnetic fields,which drives the dissipation of turbu<strong>le</strong>nce and the transfer of angularmomentum, thus having crucial implications in protos<strong>tel</strong>larcollapse and accretion disks (e.g., Balbus & Haw<strong>le</strong>y 1991).High-angular resolution observations of inters<strong>tel</strong>lar cloudsreveal steep density, temperature and turbu<strong>le</strong>nce gradients aswell as sharp chemical variations. Accordingly, the e<strong>le</strong>ctron⋆ Based on observations obtained with the IRAM Plateau de Bure interferometerand 30 m <strong>tel</strong>escope. IRAM is supported by INSU/CNRS(France), MPG (Germany), and IGN (Spain).abundance should vary within a cloud depending on the relativeionizing sources and prevailing chemistry.Rotational line emission of mo<strong>le</strong>cular ions such as DCO +and HCO + have been traditionally used to estimate theionization fraction in mo<strong>le</strong>cular clouds because (i) theyare abundant and easily observab<strong>le</strong>; (ii) dissociative recombinationis their main destruction route, and thus theirabundances are roughly inversely proportional to the e<strong>le</strong>ctronabundance (e.g., Guélin et al. 1982; Wootten et al. 1982;de Boisanger et al. 1996; Williams et al. 1998; Caselli et al.1998; Maret & Bergin 2007; Hezareh et al. 2008). On the otherhand, the presence of reactive ions (species such as HOC + orCO + that react rapidly with H 2 ) is predicted to be a sensitiveindicator of high ionization fraction regions, e.g., the UV irradiatedcloud surfaces (e.g., Smith et al. 2002; Fuente et al. 2003).In order to constrain the ionization fraction gradient frommodels, the cloud chemistry and physics cannot be simplifiedmuch because the charge balance depends on parameters suchArtic<strong>le</strong> published by EDP Sciences


772 J. R. Goicoechea et al.: The ionization fraction gradient across the Horsehead edge: an archetype for mo<strong>le</strong>cular cloudsTab<strong>le</strong> 1. Observation parameters of the PdBI maps shown in Fig. 1.Mo<strong>le</strong>cu<strong>le</strong> Transition Frequency Instrument Config. Beam PA Vel. Resol. Int. Time a T sys Noise b,† Obs. dateGHz arcsec ◦ km s −1 hours K KH 13 CO + 1–0 86.754288 PdBI C & D 6.8 × 4.7 13 0.2 6.5 150 0.10 2006-07HCO 1 0,1 3/2, 2–0 0,0 1/2, 1 86.670760 PdBI C & D 6.7 × 4.4 16 0.2 6.5 150 0.09 2006-07a We observed a 7-field mosaic centered on the IR peak at α 2000 = 05 h 40 m 54.27 s , δ 2000 = −02 ◦ 28 ′ 00 ′′ (Abergel et al. 2003) with the followingoffsets: (−5.5 ′′ , −22.0 ′′ ), (5.5 ′′ , −22.0 ′′ ), (11.0 ′′ ,0.0 ′′ ), (0.0 ′′ ,0.0 ′′ ), (−11.0 ′′ ,0.0 ′′ ), (−5.5 ′′ , 22.0 ′′ )and(5.5 ′′ , 22.0 ′′ ). The total field-of-view is80.1 ′′ × 102.1 ′′ and the half power primary beam is 58.1 ′′ . The mosaic was Nyquist samp<strong>le</strong>d in declination at 3.4 mm and largely oversamp<strong>le</strong>d inright ascension. This maximizes the field of view along the PDR edge whi<strong>le</strong> the oversampling in the perpendicular direction eases the deconvolution.On-source time was computed as if the source was always observed with 6 antennae; b the noise values refer to the mosaic phase center(mosaic noise is inhomogeneous due to primary beam correction; it steeply increases at the mosaic edges).Tab<strong>le</strong> 2. Observation parameters of the IRAM-30 m observations.<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Mo<strong>le</strong>cu<strong>le</strong> Transition Frequency Instrument F eff B eff Resol. Resol. Int. Time Noise † Observing Obs. dateGHz arcsec km s −1 hours K ModeHCO + J = 1–0 89.188523 30 m/A100 0.95 0.78 27.6 ′′ 0.20 4.7 0.02 ON-OFF 2008HOC + J = 1–0 89.487414 30 m/A100 0.95 0.78 27.5 ′′ 0.20 4.7 0.02 ON-OFF 2008CO + 2, 5/2–1, 3/2 236.062578 30 m/A230 0.91 0.52 10.4 ′′ 0.20 4.7 0.05 ON-OFF 2008H 13 CO + J = 1–0 86.754288 30 m/AB100 0.95 0.78 28.4 ′′ 0.20 2.6 0.10 OTF map 2006-07H 13 CO + J = 3–2 260.255339 30 m/HERA 0.90 0.46 13.5 ′′ 0.20 5.9 0.06 OTF map 2006DCO + J = 2–1 144.077289 30 m/CD150 0.93 0.69 18.0 ′′ 0.08 5.9 0.18 OTF map 2006DCO + J = 3–2 216.112582 30 m/HERA 0.90 0.52 11.4 ′′ 0.11 1.5 0.10 OTF map 2006† The noise (in T mb sca<strong>le</strong>) refers to the channel spacing obtained by averaging adjacent channels to the velocity resolution given in the tab<strong>le</strong>s.as the penetration of UV radiation, the cosmic-ray ionizationrate (ζ) and the abundance of key species (e.g., metals and PAH).Compared to other works, in this paper we determine theionization fraction gradient by direct comparison of H 13 CO +and DCO + high-angular resolution maps and HOC + pointed observations,with detai<strong>le</strong>d depth-dependent chemical and radiativetransfer models covering a broad range of cloud physicalconditions. Indeed, the observed field-of-view contains the famousHorsehead PDR (the UV illuminated edge of the cloud)and a dense and cold core discovered by us from its intenseDCO + line emission (Pety et al. 2007). Due to its simp<strong>le</strong> geometryand moderate distance (d ≃ 400 pc), the Horsehead PDRand associated core are good templates to study the steep gradientsexpected in mo<strong>le</strong>cular clouds (e.g., Pety et al. 2005, 2007;Goicoechea et al. 2006; Gerin et al. 2009).The paper is organized as follows. The observations are presentedin Sect. 2 and the models used to interpret them are describedinSect.3.The chemistry of H 13 CO + ,DCO + and HOC +(our observational probes of the ionization fraction) is analyzedin Sect. 4. In Sect. 5 we investigate the ro<strong>le</strong> of metals, PAHsand ζ on the e<strong>le</strong>ctron abundance determination. The main resultsand constrains are presented in Sect. 6 and discussed in Sect. 7.2. Observations2.1. Observations and data reductionTab<strong>le</strong>s 1 and 2 summarize the observation parameters of the dataobtained with the PdBI and the IRAM–30 m <strong>tel</strong>escope that weshall study in this work. The H 13 CO + J = 1–0 line emission mapwas first presented in Gerin et al. (2009). Frequency-switched,on-the-fly maps (OTF) obtained at the IRAM-30 m were used toproduce the short-spacings needed to comp<strong>le</strong>ment a 7-field mosaicacquired with the 6 PdBI antennae in the CD configuration(baseline <strong>le</strong>ngths from 24 to 176 m). Correlator backends wereused (VESPA for IRAM-30 m observations). The high angularresolution PdBI H 13 CO + J = 1–0 map comp<strong>le</strong>ments our previousH 13 CO + J = 3–2 and DCO + J = 2–1 and 3–2 maps takenwith the IRAM-30 m <strong>tel</strong>escope and first presented in Pety et al.(2007).In this work we present new IRAM–30 m deeper integrationsin the HOC + ,H 13 CO + and HCO + J = 1–0 lines, and an upperlimit for the CO + emission towards the PDR (defined here asthe HCO emission peak; Gerin et al. 2009). The position switchingobserving mode was used. The on-off cyc<strong>le</strong> duration was1mnandtheoff-position offsets were (Δα, Δδ) = (−100 ′′ , 0 ′′ ),i.e., the H ii region ionized by σOri and free of mo<strong>le</strong>cular gasemission. Position accuracy is estimated to be ∼3 ′′ for the 30 mdata and better than 0.5 ′′ for the PdBI data. The data processingwas done with the GILDAS 1 softwares (e.g., Pety 2005b).TheIRAM-30mdatawerefirstcalibratedtotheTA ∗ sca<strong>le</strong> usingthe chopper wheel method (Penzias & Burrus 1973), and finallyconverted to main beam temperatures T mb using the forwardand main beam efficiencies F eff and B eff displayed in Tab<strong>le</strong> 2(e.g., Greve et al. 1998). The amplitude accuracy for heterodyneobservations with the IRAM–30 m <strong>tel</strong>escope is ∼10%. PdBI dataand short-spacing data were merged before imaging and deconvolutionof the mosaic, using standard techniques of GILDAS andused in our previous works (see e.g., Pety et al. 2005).2.2. DCO + and H 13 CO + spatial distribution, HOC + detectionFigure 1 shows H 13 CO + J = 1–0, HCO 1 0,1 -0 0,0 (PdBI) andDCO + J = 2–1, 3–2 integrated line intensity maps (IRAM-30 m;Pety et al. 2007), as well as the aromatic infrared band emission(AIB, observed with ISOCAM, Abergel et al. 2003) thattraces the UV illuminated edge of the cloud, i.e., the PDR. TheDCO + emission is concentrated in a narrow, arclike structure ofdense and cold gas behind the PDR (Pety et al. 2007). Hence,it shows a very different spatial distribution than the emissionof “PDR tracers” such as C 2 H, C 4 H, c-C 3 H 2 (Pety et al. 2005),HCO radicals (Gerin et al. 2009), vibrationally excited H 2(Habart et al. 2005) or the AIB emission (Compiègne et al.2008). The H 13 CO + J = 1–0 emission follows the DCO +1 See http://www.iram.fr/IRAMFR/GILDAS


J. R. Goicoechea et al.: The ionization fraction gradient across the Horsehead edge: an archetype for mo<strong>le</strong>cular clouds 773<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Fig. 1. DCO + J = 3–2 and 2–1 (IRAM-30 m; from Pety et al. 2007), H 13 CO + J = 1–0 (PdBI) and 3–2 (IRAM-30 m) line integrated intensitymaps, aromatic infrared band emission (ISOCAM, from Abergel et al. 2003) and HCO (PdBI, from Gerin et al. 2009). Maps have been rotatedby 14 ◦ counter–clockwise around the projection center, located at (δx,δy) = (20 ′′ , 0 ′′ ), to bring the illuminated star direction in the horizontaldirection. The horizontal zero has been set at the cloud edge (δx = 0 ′′ ). The H 13 CO + ,DCO + and HCO emission is integrated between 10.1 and11.1 km s −1 . Integrated intensities are expressed in the T mb sca<strong>le</strong>. Contour <strong>le</strong>vels are displayed on the grey sca<strong>le</strong> lookup tab<strong>le</strong>s. The red verticalline shows the PDR edge and the green crosses shows two representative positions: the “shielded core” (the DCO + emission peak at δx ∼ 45 ′′ ;Pety et al. 2007) andthe“PDR” (the HCO emission peak at δx ∼ 15 ′′ ; Gerin et al. 2009). The dashed blue line shows the horizontal cut analyzedin this work.distribution and it mostly delineates the dense core that coincideswith the DCO + emission peak. Neverthe<strong>le</strong>ss, whi<strong>le</strong> DCO +is not detected in the illuminated edge, H 13 CO + does show afaint emission in the PDR. Therefore, the small field-of-viewshowninFig.1 contains two different environments: a warmPDR and a cold core shielded from the external UV radiationfield. In the following sections we analyze these emission mapsto determine the ionization fraction gradient in the region.Figure 2 shows long integration spectra of the HOC + ,H 13 CO + and HCO + J = 1–0 lines towards the PDR. Thisis the first detection of the HOC + reactive ion towards theHorsehead, and adds to previous detections in inters<strong>tel</strong>lar environmentswith high e<strong>le</strong>ctron abundances (Woods et al. 1983;Ziurys & Apponi 1995; Fuente et al. 2003; Rizzo et al. 2003;Savage & Ziurys 2004; Liszt et al. 2004). H 12 CO + lines are opticallythick, as shown by the low H 12 CO + /H 13 CO + J = 1–0 lineintensity ratio (∼7), much lower than the expected 12 C/ 13 C ≃60 abundance ratio (Langer & Penzias 1990; Savage et al. 2002)and references therein). The high opacity of H 12 CO + lines eventowards the PDR justifies the use of H 13 CO + lines as tracers ofthe HCO + abundance.Tab<strong>le</strong> 3. Main spectroscopic parameters of the studied lines.Species Transition Frequency A ij E uppJ upp −J low (GHz) (s −1 ) (K)HCO + 1–0 89.188523 4.2 × 10 −5 4.3HOC + 1–0 89.487414 2.2 × 10 −5 4.3H 13 CO + 1–0 86.754288 3.9 × 10 −5 4.2CO + 2(5/2)–1(3/2) 236.062578 4.7 × 10 −4 17.2H 13 CO + 3–2 260.255339 1.3 × 10 −3 25.0DCO + 2–1 144.077289 2.1 × 10 −4 10.4DCO + 3–2 216.112582 7.7 × 10 −4 20.73. Analysis: modelsIn this work we coup<strong>le</strong> the depth-dependent abundances predictedby a PDR model (for the varying physical conditions prevailingin the Horsehead edge) with detai<strong>le</strong>d excitation and radiativetransfer calculations adapted to the cloud geometry. Thistechnique allows us to analyze different chemical models by directcomparison with observed line intensities. This methodologywas introduced to study our interferometric CS and C 18 O


774 J. R. Goicoechea et al.: The ionization fraction gradient across the Horsehead edge: an archetype for mo<strong>le</strong>cular cloudsδx ≃ 23 ′′ in the maps). The resulting density gradient used in thephotochemical and radiative transfer models is shown in Fig. 4.In the next sections we constrain the ionization fraction gradientin the cloud by comparing synthetic and observed H 13 CO + andDCO + spectra along the same cut.3.2. Photochemical modelsWe have updated the Meudon PDR code to model our observationsof the Horsehead. The code has been described in detai<strong>le</strong>lsewhere (e.g., Le Bourlot et al. 1993; Le Petit et al. 2006;Goicoechea & Le Bourlot 2007) and benchmarked against otherPDR codes by Röllig et al. (2007). In this section we summarizethe most re<strong>le</strong>vant upgrades and model features for this work.3.2.1. UV radiative transfer and dust properties<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Fig. 2. HOC + and H 13 CO + J = 1–0 lines towards the Horsehead PDR(upper and midd<strong>le</strong> panels) observed with the IRAM-30 m <strong>tel</strong>escope.Solid lines are radiative transfer models with T k = 60 K, n(H 2 ) =5 × 10 4 cm −3 , n(H) = 500 cm −3 and [e − ] = 5 × 10 −5 . Three differentabundances are shown, thick-grey line: [HOC + ] = 4.0 × 10 −12 and[H 13 CO + ]= 1.5 × 10 −11 ; red dashed line: abundances ×2; blue thin line:abundances ÷2. For comp<strong>le</strong>teness, the HCO + J = 1–0 line towards thePDR is also shown (lower panel). This transition is very opaque, asshown by the low H 12 CO + /H 13 CO + J = 1–0 line intensity ratio (∼7).The resulting line profi<strong>le</strong> is thus broadened and it suffers from scatteringby low-density foreground gas that we do not model here.maps of the Horsehead edge (Goicoechea et al. 2006). It enab<strong>le</strong>sus to observationally benchmark the abundance gradients predictedby chemical models, even if it does not produce perfectfits to line profi<strong>le</strong>s in all cloud positions. In this paper, we analyzea horizontal cut of the H 13 CO + and DCO + line emission alongthe direction of the illuminating star (δy = 15 ′′ ). Figure 1 showsthat this cut (blue dashed line) goes across the DCO + emissionpeak (δx ∼ 45 ′′ ), which we identify as the “shielded core”, andacross the HCO emission peak, the “PDR” (δx ∼ 15 ′′ ).3.1. Geometry and density gradientThe Horsehead edge has an almost edge-on geometry with aline-of-sight depth of l depth ≃ 0.1 pc(e.g.,Habart et al. 2005)and a spatial sca<strong>le</strong> in the plane of the sky of ≃0.002 pc arcsec −1 .We determine the density profi<strong>le</strong> from observations by fittingthe 1.2 mm dust continuum emission (IRAM-30 m/MAMBO)along the δy = 15 ′′ direction (Hily-Blant et al. 2005). In this fit,we adopt a dust opacity per unit (gas+dust) mass column densityof κ 1.2 = 0.003 cm 2 g −1 at 1.2 mm (computed for “MRNgrains”: Mathis et al. 1977, see below), our best know<strong>le</strong>dge ofthe dust grains temperature (from ∼15 K in the core to ∼30 Kin the PDR; e.g., Ward-Thompson et al. 2006) andapower-lawdensity profi<strong>le</strong> n H (r) = n(H)+2n(H 2 ) ∝ r −p ,wherer is the distancefrom the shielded core towards the illuminated edge of thecloud. Best fits are obtained for a steep density gradient in thecloud edge (p ≃ 3) and a flatter one towards the core (p ≃ 0.5).The turnover point occurs at a core radius of r ≃ 0.04 pc (orThe code solves the UV radiative transfer prob<strong>le</strong>m takinginto account dust scattering and gas absorption. Anisotropicscattering of UV photons by dust grains is included by explicitycalculating the wave<strong>le</strong>ngth-dependent grain albedo andg-asymmetry parameters (Goicoechea & Le Bourlot 2007). Thisenab<strong>le</strong>s the specific computation of the UV radiation field (continuum+lines)and thus, the direct integration of consistentphotoionization and photodissociation rates. We use two typesof dust populations: (i) a mixture of graphite+silicate grains;and (ii) PAHs (see next paragraph). More precisely, we adopta power-law size distribution (n(a) ∝ a −3.5 ) with minimumand maximum radius of ∼5 and∼250 nm respectively (forgraphite+silicate grains). Wave<strong>le</strong>ngth-dependent optical properties(Q efficiencies and g factors) are interpolated from Laor &Draine (1993) tabulations. With a standard gas-to-dust mass ratio(∼100), this grain mixture (“MRN grains”) reproduces themain characteristics of the standard inters<strong>tel</strong>lar extinction curvewith N H /A V = 1.9 × 10 21 cm −2 and R V = 3.1.In order to comp<strong>le</strong>te our description of the dust populations,in this work we have also added smal<strong>le</strong>r aromaticgrains. Observationally, the AIB emission towards theHorsehead (produced by free PAHs according to the mostaccepted theory; Léger & Puget 1984; Allamandola et al. 1985)c<strong>le</strong>arly separates the H ii region and PDR (where the emissionis bright) from the regions shielded from UV radiation,where no AIB emission is detected (Abergel et al. 2003;Habart et al. 2005; Compiègne et al. 2007; 2008). However, thesize distribution and PAH abundance in dense regions shieldedfrom UV radiation are uncertain. It may vary from “negligib<strong>le</strong>”,if PAHs coagulate into larger PAH aggregates(Boulanger et al. 1990; Rapacioli et al. 2006) to “high” abundances(though they will not be detected in the mid–IR due tothe lack of UV photons to excite them). We used the followingPAH properties: a size distribution with ∼0.4 and ∼1.2 nmradii limits (Desert et al. 1990) and optical parameters from Li& Draine (2001). This size distribution is compatib<strong>le</strong> with PAHshaving a mean radius of ∼0.6 nm and N C ∼ 100 carbonatoms assuming N C ≃ 500 a 3 (Bakes & Tie<strong>le</strong>ns 1994). Theextinction curve and the efficiency of the photoe<strong>le</strong>ctric heatingmechanism depend on the mass fraction put into PAHs(Bakes & Tie<strong>le</strong>ns 1994). Depending on the PAH abundance,they contribute to the total dust mass by ∼1% for [PAH] = 10 −7and ∼10% for [PAH] = 10 −6 .


J. R. Goicoechea et al.: The ionization fraction gradient across the Horsehead edge: an archetype for mo<strong>le</strong>cular clouds 775<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Tab<strong>le</strong> 4. Key chemical reaction rates † adopted in this work.Reaction Rate [cm 3 s −1 ]HCO + + e − → CO + H2.4 × 10 −7 (300 K/T) 0.69 aHCO + + PAH − → PAH + CO + H 1.4 × 10 −8 (300 K/T) 0.50 bM + + e − → M + hν 3.7 × 10 −12 (300 K/T) 0.65M + + PAH − → M + PAH 1.0 × 10 −8 (300 K/T) 0.50 bC + + H 2 O → HCO + + H 8.9 × 10 −10 (300 K/T) 0.50C + + H 2 O → HOC + + H 1.8 × 10 −9 (300 K/T) 0.50CO + + H 2 → HCO + + H7.5 × 10 −10CO + + H 2 → HOC + + H7.5 × 10 −10HOC + + H 2 → HCO + + H 2 3.8 × 10 −10 c† Rates are from the UDFA and OSU databases un<strong>le</strong>ss indicated;a cited in the text as α(HCO + ), it also applies to DCO + and H 13 CO + ;brate is from (Flower & Pineau des Forêts 2003);crate is from(Smith et al. 2002).3.2.2. Chemical network and e<strong>le</strong>mental abundancesOnce the UV field is determined at each cloud position,steady-state chemical abundances are computed for a givennetwork of chemical reactions. The model also computesthe temperature profi<strong>le</strong> by solving the thermal balance betweenthe most important gas heating and cooling mechanisms(Le Petit et al. 2006). Our chemical network contains∼160 species and ∼2000 reactions. It includes deuteration, 13 Cfractionation (Graedel et al. 1982) and HCO + /HOC + isomerizationreactions. When availab<strong>le</strong>, we used the photodissociationrates given by van Dishoeck (1988), which are explicitlycalculated for Draine’s inters<strong>tel</strong>lar radiation field (ISRF).The most critical reaction rates for our determination of theionization fraction are listed in Tab<strong>le</strong> 4. Most reactions werechecked against OSU (Herbst and co-workers) and UDFA(Woodall et al. 2006) networks. Also, we benchmarked our networkwith more extended ones by comparing the predicted abundancesof simp<strong>le</strong> species such as CO and DCO + .Following Flower & Pineau des Forêts (2003), we havealso included interactions (∼60 reactions) of gas phase specieswith very small aromatic grains (neutral PAH and singlycharged PAH ± ). In particular, we take into account PAHgasprocesses such as neutralization reactions of atomic andmo<strong>le</strong>cular cations on PAH − , PAH e<strong>le</strong>ctron attachment andphotodetachment of PAH − and PAH by UV photons. Suchprocesses can play a significant ro<strong>le</strong> in the ionization balanceof dense mo<strong>le</strong>cular clouds (e.g., Lepp & Dalgarno 1988;Bakes & Tie<strong>le</strong>ns 1998; Flower et al. 2007, Wakelam & Herbst2008; Wolfire et al. 2008). We have not included larger grainsin the network in order to isolate the ro<strong>le</strong> of PAHs in the gasphasechemistry. We thus assume that recombinations of ionswith grains are much <strong>le</strong>ss frequent than recombinations withe<strong>le</strong>ctrons and PAH − . This is partially justified by the fact that,according to their size and mass, the fractional abundance of“MRN grains” is low: n g /n H ≈ 10 −10 and their effective crosssection per H nuc<strong>le</strong>us is (n g /n H )πa 2 ≈ 10 −21 cm −2 (the productof the grain abundance and the mean grain cross section). Graingrowth towards the denser parts the cloud will result in evenlower grain abundances and smal<strong>le</strong>r effective cross sections if thegas-to-dust mass ratio has to be preserved: e.g., (n g /n H ) ≈ 10 −13and (n g /n H )πa 2 ≈ 10 −22 cm −2 if the grain radii a increase by∼10. Therefore, the resulting lower abundance of charged grainsand their smal<strong>le</strong>r effective cross section for ion-grain recombinationswill not alter our estimations of the ionization fractionmuch.Tab<strong>le</strong> 5. Standard conditions and gas-phase e<strong>le</strong>mental abundances.Mo<strong>le</strong>cular, atomic and e<strong>le</strong>ctron abundances, noted [x], refer to H.ParameterValueRadiation field χ60 (Draine units)Density n H (r) = n(H) + 2n(H 2 ) ∝ r −3 ,upto∼2 × 10 5 cm −3Line of sight depth l depth0.1 pc[He] = n(He)/n H1.00 × 10 −1[O]3.02 × 10 −4[ 12 C] 1.38 × 10 −4[N]7.95 × 10 −5[D]1.60 × 10 −5[S]3.50 × 10 −6[ 13 C]=[ 12 C]/60 2.30 × 10 −6[PAH]variab<strong>le</strong>: 0–10 −7[metals] ≡ [M] ≡ [Fe + Mg + ...] variab<strong>le</strong>: 10 −11 –10 −5Cosmic-ray ionization rate ζ variab<strong>le</strong>: 10 −18 –10 −15 s −1The adopted e<strong>le</strong>mental abundances are shown in Tab<strong>le</strong> 5.Low ionization potential heavy metals (8eV;Fe + ,Mg + or Na + )are all represented by a sing<strong>le</strong> e<strong>le</strong>ment, “M + ”. In our model,such metals slowly recombine with e<strong>le</strong>ctrons (through radiativerecombinations), can be photoionized and can exchange chargewith ions and neutrals (including PAHs). However, they are assumedto be chemically inert and thus do not form metallicmo<strong>le</strong>cu<strong>le</strong>s (e.g., Oppenheimer & Dalgarno 1974).Once the physical and geometrical parameters of the cloudare constrained, the only free parameters in the model are thecosmic-ray ionization rate and the metal and PAH abundances.3.3. From abundances to spectra: mm radiative transferWe use the PDR model predictions (mo<strong>le</strong>cular abundance,n(H 2 ), n(H), gas temperature and ionization fraction gradients)as input for a nonlocal radiative transfer calculation ab<strong>le</strong> to computeDCO + and H 13 CO + line intensities as a function of cloudposition. Our radiative transfer code hand<strong>le</strong>s edge-on planeparal<strong>le</strong>lgeometry, and accounts for line trapping, collisiona<strong>le</strong>xcitation 2 , and radiative excitation by absorption of continuumphotons. After the <strong>le</strong>vel populations are determined in eachmode<strong>le</strong>d slab, emergent line intensities along each line of sightare computed and convolved with the <strong>tel</strong>escope angular resolutionat each frequency. A more detai<strong>le</strong>d description is givenin Goicoechea et al. (2006; Appendix). Since typical densitiesin the Horsehead (∼10 4 –10 5 cm −3 ) are below the critical densitiesof the observed high-dipo<strong>le</strong> moment mo<strong>le</strong>cular ions (a few∼10 5 –10 6 cm −3 for the studied transitions) our approach allowsus to properly take into account non-LTE excitation effects (e.g.,subthermal excitation), as well as opacity and line profi<strong>le</strong> formation.4. Chemistry of the ionization fraction probes4.1. H 13 CO + and DCO + chemistry in the UV shielded coreThe detection of very bright DCO + emission towards theshielded core (Pety et al. 2007) implies cold gas temperatures(T k ≃ 10–20 K) and thus efficient HCO + deuterium fractionation(i.e., [DCO + ]/[HCO + ] ≫ D/H). From our observations we2 PDR-like environments require us to consider inelastic collisionswith H 2 ,H,Heande − .H 13 CO + ,DCO + and HOC + collisional rateswith H 2 , H and He have been sca<strong>le</strong>d from those of Flower (1999), whi<strong>le</strong>collisional rates with e − were kindly provided by Faure and Tennyson(see e.g., Faure & Tennyson 2001).


776 J. R. Goicoechea et al.: The ionization fraction gradient across the Horsehead edge: an archetype for mo<strong>le</strong>cular clouds<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012infer [DCO + ] ≃ 8.0 × 10 −11 ,[H 13 CO + ] ≃ 6.5 × 10 −11 and thus a[DCO + ]/[HCO + ] ≃ 0.02 abundance ratio towards the core peak.Such gas-phase DCO + enhancement is achieved via the reaction:H + 3 + HD ⇄ H 2D + + H 2 +ΔE (1)which is endothermic by ∼232 K in the right-to-<strong>le</strong>ft direction(Gerlich et al. 2002), followed byCO + H 2 D + → DCO + + H 2 (2)which dominates the DCO + formation in the cold and dense gas.The absence of significant DCO + line emission in the PDR isconsistent with the higher temperatures (>60 K) expected in theilluminated edge of the cloud.The detection of intense H 13 CO + emission towards theshielded core and its vicinity (see Fig. 1) implies low ionizationfractions. In terms of excitation and opacity effects,H 13 CO + is a much more reliab<strong>le</strong> tracer of HCO + columndensity than H 12 CO + itself (as the latter suffers from verylarge opacities and line photon scattering by low-density halos;e.g., Cernicharo & Guélin 1987). In terms of its chemistry, twomain processes dominate the formation of H 13 CO + in the lowtemperature shielded gas:13 CO + H + 3 → H13 CO + + H 2 (3)and isotopic fractionation through13 CO + H 12 CO + ⇄ H 13 CO + + 12 CO +ΔE (4)which is endothermic by only ∼9 K in the right-to-<strong>le</strong>ft direction(Langer et al. 1984) and competes with dissociative recombinationin the destruction of H 13 CO + where the abundance ofe<strong>le</strong>ctrons is low. For the physical conditions prevailing in theshielded core, we predict [H 12 CO + ]/[H 13 CO + ] abundance ratiosdown to ∼0.7 times lower than the e<strong>le</strong>mental [ 12 C]/[ 13 C] isotopicratio. Since both H 13 CO + and DCO + are mainly destroyedby fast dissociative recombination with e<strong>le</strong>ctrons:H 13 CO + + e − → 13 CO + H (5)DCO + + e − → CO + D (6)their abundances inversely sca<strong>le</strong> with that of e<strong>le</strong>ctrons. In thiswork we have used a “standard” HCO + dissociative recombinationrate (i.e., α(HCO + ) = 2.4 × 10 −7 (300/T) 0.69 cm 3 s −1 )recommended in most astrochemical databases. We note, however,that there is a certain discrepancy among different theoreticalcalculations and measurements of this key chemical rate(see discussion by Florescu-Mitchell & Mitchell 2006, and referencestherein). In Sect. 7 we discuss the influence of adoptinga smal<strong>le</strong>r, “non standard” α ′ (HCO + ) rate on our results.4.2. HOC + and H 13 CO + chemistry in the PDRIn order to extract the [HOC + ]and[H 13 CO + ] abundances towardsthe Horsehead PDR, we have mode<strong>le</strong>d the observedlines (Fig. 2) using our best know<strong>le</strong>dge of the prevailing physicalconditions: T k = 60–120 K, n(H 2 ) = 5 × 10 4 cm −3 ,n(H) = 500 cm −3 ,[e − ] = 5 × 10 −5 and a 0.1 pc line-of-sightdepth (or N H ≃ 3.1 × 10 22 cm −2 ) all accurate within a factor ∼2.From the observed lines we derive the following column densities:N(HOC + ) = (1.2–2.5) × 10 11 cm −2 and N(H 13 CO + ) = (4.7–7.8) × 10 11 cm −2 , which translates into [HOC + ]=(0.4–0.8) ×10 −11 and [H 13 CO + ] = (1.5–2.5) × 10 −11 . This computation assumesthat the HOC + and H 13 CO + emission fills the IRAM-30 m beam. However, HOC + has not been mapped and itsFig. 3. Predicted H 13 CO + , HOC + and CO + peak abundances in the PDR(A V ≃ 0.5–1.5) as a function of gas temperature. H 13 CO + and HOC +abundances (and CO + abundance upper limit) derived from observationstowards the PDR position are shown with horizontal thin lines.emission could well arise from the same ∼12 ′′ –width filamentwhere the emission of small hydrocarbons and HCO radical isconcentrated (Pety et al. 2005; Gerin et al. 2009). In this case,[HOC + ] increases by a factor ∼3. Therefore, we conclude thatthe [HOC + ]/[H 13 CO + ] abundance ratio towards the PDR lies inthe range ≃0.3–0.8. These values are orders of magnitude higherthan the value expected in the UV shielded gas.Our chemical models (see next section) reproduce the[HOC + ]/[H 13 CO + ] abundance ratio towards the PDR but theabsolute abundances derived from observations are larger thanthose predicted by the model. The discrepancies between observedand mode<strong>le</strong>d abundances for HOC + and H 13 CO + likelyhave a common origin. In particular, the formation of HOC + inUV irradiated gas is driven by reactions involving C + and speciessuch as H 2 OandCO + (from C + + OH reaction) that efficientlyform at high temperatures, that is:C + + H 2 O → HCO + /HOC + + H (7)CO + + H 2 → HCO + /HOC + + H (8)where reaction 7 predominantly produces HOC + whereas reaction8 has similar branching ratios for the HCO + and HOC +formation (e.g., Scott et al. 1997; Savage & Ziurys 2004). TheHOC + destruction is governed by the isomerization reaction:HOC + + H 2 → HCO + + H 2 . (9)Laboratory experiments show that the reaction rate is lowerthan previously thought (Smith et al. 2002), allowing inters<strong>tel</strong>larHOC + to exist at detectab<strong>le</strong> amounts.The intensity peak of the CO J = 2–1 optically thick linesobserved with the PdBI (T mb ≃ 60 K ≈ T ex ; Pety et al. 2005),together with the observed CO J = 4–3/2–1 line ratio(Philipp et al. 2006), provide a lower limit to the gas temperaturein the PDR (T k ≃ 60–120 K). Temperatures in thisrange are predicted by the PDR model but are not enoughto overcome the activation energy barriers of the neutralneutralreactions <strong>le</strong>ading to the formation of abundant H 2 O,OH and CO + (e.g., Neufeld et al. 1995; Cernicharo et al. 2006).Therefore, our models predict HOC + and H 13 CO + abundanceslower than observed because their precursor mo<strong>le</strong>cu<strong>le</strong>s have lowabundances, and reactions 7 and 8 are not efficient enough.We have computed that gas temperatures around ∼350 Kare needed to reproduce the observed HOC + and H 13 CO + abundancesin the PDR through the previous scheme (see Fig. 3). Ourmodels of the Horsehead (low UV radiation field) include photoe<strong>le</strong>ctricheating from PAHs and grains but do not predict such awarm gas component even if the PAH abundance is significantly


J. R. Goicoechea et al.: The ionization fraction gradient across the Horsehead edge: an archetype for mo<strong>le</strong>cular clouds 777<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012increased. However, we do not model the PDR gas dynamics andthus processes such as shock waves, driven by the expansion ofthe H ii region that compress the cloud edge, may provide additionalgas heating sources to trigger this warm chemistry. Thisreasoning is partially consistent with the non detection of CO +lines, at <strong>le</strong>ast at the sensitivity <strong>le</strong>vel of our long integration observation(rms ∼ 50 mK in a 0.20 km s −1 velocity width channelor [CO + ] ≤ 5 × 10 −13 ).If the gas in the PDR has not gone through such a warmphase, reaction 8 has to be ru<strong>le</strong>d out as the main chemical pathwayfor HOC + formation and an alternative formation scenariois required. In this case, we propose that the enhanced HOC +abundance in the PDR can still be related to the high abundanceof C + (and thus high ionization fraction), but also to grain photodesorptionof water-ice mant<strong>le</strong>s formed in earlier evolutionarystages of the cloud.In this picture, the low χ/n ratio in the Horsehead(∼10 −3 ) will allow water-ices to be photodesorbed closeto the illuminated edge of the cloud (see predictions byHol<strong>le</strong>nbach et al. 2009), increasing the water vapor abundancewell above the pure gas phase predictions. Reaction 7 will thendominate the HOC + formation in the PDR. Taking into accountthat isomerization, dissociative recombination and photodissociationcontribute to HOC + destruction, we estimate that the requiredwater vapor abundance needed to explain the inferredHOC + abundance in the PDR is [H 2 O] ≃ 1800 × [HOC + ] ≃(0.7−2.2) × 10 −8 . Herschel Space Observatory observations wil<strong>le</strong>nab<strong>le</strong> the detection of C + and H 2 O lines in a large samp<strong>le</strong> ofPDRs, confirming whether or not water vapor is abundant at theedges of mo<strong>le</strong>cular clouds (e.g., Cernicharo et al. 2006).5. Determination of the ionization fractionFigure 4 presents depth–dependent predictions of several photochemicalmodels across the Horsehead edge. Each model showsthe main physical parameters (density and temperature), the ionizationfraction gradient, the DCO + ,H 13 CO + and HOC + abundances(our observational probes of the ionization fraction) andthe abundances of key chemical species for the charge balancein the cloud: CO/C/C + ,M/M + ,PAH − /PAH/PAH + .Four sets of models are displayed. Top/bottom models usea low (ζ = 3 × 10 −17 s −1 )andhigh (ζ = 3 × 10 −16 s −1 )cosmicrayionization rate respectively. Left/right models exclude and includethe effects of PAHs. In the latter case, we include PAHs inthe UV radiative transfer (as a source of absorption and scatteringof UV photons), in the photoe<strong>le</strong>ctric heating and in the chemicalnetwork. We start the chemistry computation by includingneutral PAHs alone with an initial abundance of [PAH] = 10 −7 .In each set of models (each panel), the only parameter that variesis the abundance of metals: high metallicity with [M] = 10 −6(dashed curves) and low metallicity with [M] = 10 −9 (solidcurves). The low metallicity case implies a large metal dep<strong>le</strong>tionfrom the gas phase.In terms of the chemical species observed in this work,a salient feature of all models is the constancy of theDCO + /H 13 CO + abundance ratio once the gas is shielded fromUV radiation (A V 6). This feature agrees with the almostidentical spatial distribution of DCO + and H 13 CO + emission observedbeyond the PDR (see Fig. 1). This similarity was alreadynoticed in the lower resolution DCO + and H 13 CO + pioneeringmaps of several mo<strong>le</strong>cular clouds (e.g., Guélin et al. 1982).Also, the predicted [HOC + ]/[H 13 CO + ] abundance ratio towardsthe PDR is in good agreement with the value inferred fromobservations. In this UV irradiated region where the C + ande<strong>le</strong>ctron abundances are very high, the HCO + destruction ratebecomes comparab<strong>le</strong> to the isomerization rate (reaction 9). Thisimplies that the [HOC + ]/[H 13 CO + ] abundance ratio in the cloudachieves the highest value in the PDR.5.1. The ro<strong>le</strong> of ionized carbon and metalsAccording to the ionization fraction gradient all models showtwo differentiated environments separated by a transition region:the “PDR” (A V ≃ 0–2) and the “shielded core” (A V 6). Thee<strong>le</strong>ctron density at every cloud position is given by the differenceof cations and anions densities;∑∑n e = n i (cations + ) − n j (anions − ). (10)ijIn the PDR, carbon, the most abundant heavy e<strong>le</strong>ment with aionization potential below 13.6 eV, provides most of the charge:n(e − ) ≃ n(C + ). Therefore, the ionization fraction in the PDRis high, [e − ] ∼ 10 −4 , and independent of e<strong>le</strong>mental abundancesother than carbon.As A V increases inwards the cloud, the C + abundance decreasesby several orders of magnitude and so does the abundanceof e<strong>le</strong>ctrons. In the shielded core (A V 6), low ionizationheavy metal ions (e.g., Fe + ,Mg + or Na + ) determine muchof the ionization fraction (Oppenheimer & Dalgarno 1974;Guélin et al. 1982). In the absence of PAHs, abundant mo<strong>le</strong>cularions m + transfer charge rapidly to heavy metal atoms M throughm + + M → m + M + reactions. Metal ions recombine orders ofmagnitude slower than mo<strong>le</strong>cular ions (Tab<strong>le</strong> 4), and thus a largefraction of them is kept ionized (higher [M] implies higher e<strong>le</strong>ctronabundances). Therefore, the ionization fraction in the coreis highly dependent on the adopted metallicity, and varies fromafew×10 −9 for [M] = 10 −9 ,toafew×10 −7 for [M] = 10 −6 .5.2. The ro<strong>le</strong> of PAHsDepending on their abundances, the presence of PAHs can alterthe chemistry and the ionization balance in dense clouds(e.g., Lepp & Dalgarno 1988). For our adopted abundance of[PAH] = 10 −7 the right and <strong>le</strong>ft panels in Fig. 4 shows thatthe presence of PAHs most modifies the ionization fraction atA V 2. Hence, if not all PAHs accrete onto bigger grains or coagulatetowards cloud interiors, PAH − can be abundant throughthe cloud because the radiative e<strong>le</strong>ctron attachment ratePAH + e − → PAH − + hν (11)is high (≥10 −7 cm 3 s −1 ), although probably dependenton the PAH size (Omont 1986; Allamandola et al. 1989;Flower et al. 2007; Wakelam & Herbst 2008). In the shieldedcore PAH − is destroyed by recombination with atomic (M + ,...)and mo<strong>le</strong>cular cations (HCO + ,H 3 O + ,...) which are orders ofmagnitude <strong>le</strong>ss abundant than the availab<strong>le</strong> cations in the PDR(C + ,S + ,...). Negative PAH ions thus reach high abundances([PAH − ] ≃ 2 × 10 −8 ). For our choice of PAH parameters,this means that PAH − can be the most abundant negativelycharged species, more than e<strong>le</strong>ctrons for A V ≥ 5. In addition,recombination of atomic ions on PAH − is by far more efficientthan the slow radiative recombination on e<strong>le</strong>ctrons. This is avery important point since heavy metal ions and mo<strong>le</strong>cularions are now neutralized at similar rates. As a result, both theabundance of metal cations and the ionization fraction decreaseswhen PAHs are included, whi<strong>le</strong> mo<strong>le</strong>cular ions such as H 13 CO +and DCO + increase their abundances (see Fig. 4 right panels).


778 J. R. Goicoechea et al.: The ionization fraction gradient across the Horsehead edge: an archetype for mo<strong>le</strong>cular clouds<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012No PAHs; low CR rateNo PAHs; high CR rateWith PAHs; low CR rateWith PAHs; high CR rateFig. 4. Grid of chemical models for 2 different metal abundances, low-metallicity with [M] = 10 −9 (strong metal dep<strong>le</strong>tion case, solid curves) andhigh-metallicity with [M] = 10 −6 (weak metal dep<strong>le</strong>tion case, dashed curves). “Low CR rate” refers to models with ζ = 3 × 10 −17 s −1 whi<strong>le</strong> modelswith “high CR rate” refer to ζ = 3 × 10 −16 s −1 . Models “with PAH” include PAH-gas interactions in the chemical network (with [PAH] = 10 −7 )whi<strong>le</strong> models with “no PAH” are pure gas-phase models. The black empty square represents the [HOC + ]/[H 13 CO + ] abundance ratio inferredtowards the PDR from observations. The blue and red empty squares represent the DCO + and H 13 CO + abundances derived towards the core.


J. R. Goicoechea et al.: The ionization fraction gradient across the Horsehead edge: an archetype for mo<strong>le</strong>cular clouds 779<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Fig. 5. Left: H 13 CO + and DCO + spectra along the direction of the exciting star at δy = 15 ′′ (histograms). Radiative transfer models using theoutput of PDR models for a fixed cosmic-ray ionization rate (ζ = 3 × 10 −17 s −1 ) and varying metallicities. Thin blue curves for [M] = 5 × 10 −8and no PAHs; thick grey curves for [M] = 10 −9 and no PAHs; dashed red curves for [M] = 10 −6 and [PAH] = 10 −7 . Mode<strong>le</strong>d line profi<strong>le</strong>s havebeen convolved with the appropriate Gaussian beam at each observed frequency (the angular resolution for each line are quoted in Tab<strong>le</strong>s 1 and 2).Right: same as <strong>le</strong>ft but for a fixed metal abundance ([M] = 10 −9 ), no PAHs and varying cosmic-ray ionization rate ζ. Thin blue curves for a modelwith ζ = 5 × 10 −18 s −1 ; thick grey curves for ζ = 3 × 10 −17 s −1 ; dashed red curves for ζ = 10 −16 s −1 .At the illuminated edge of the cloud, PAH − is predominantlydestroyed by UV photons through e<strong>le</strong>ctron detachment,PAH − + hν → PAH + e − (12)and through recombination with atomic cations which arevery abundant in the PDR (e.g., Bakes & Tie<strong>le</strong>ns 1998;Wolfire et al. 2008). As a consequence, the abundance of ionssuch as S + in the PDR decreases with respect to models withoutPAHs. This effect is important to determine the e<strong>le</strong>mental abundancesand dep<strong>le</strong>tion factors. Despite the higher PAH − destructionrates in the PDR, the high e<strong>le</strong>ctron density and relativelylow UV field in the Horsehead allows PAH − to form efficientlythrough e<strong>le</strong>ctron attachment (reaction 11). Hence the resultingPAH − abundance is also high in the PDR. On the other hand, thepredicted abundance of positively charged PAH + in our modelsis ∼500 times smal<strong>le</strong>r than the abundance of PAH − (due to fas<strong>tel</strong>ectronic recombination) and therefore PAH + do not seem toplay a major ro<strong>le</strong> in the ionization balance inside the cloud (seealso Lepp & Dalgarno 1988; Wakelam & Herbst 2008).5.3. The ro<strong>le</strong> of the cosmic-ray ionization rateCosmic rays affect the ionization state and the physics of mo<strong>le</strong>cularclouds, being the dominant source of heating and ionizationin the gas shielded from inters<strong>tel</strong>lar radiation fields. Indeed, secondaryUV photons are created in cloud interiors by H 2 e<strong>le</strong>ctroncascades following H 2 excitation by collisions with cosmicrays (Prasad & Tarafdar 1983). Therefore, cosmic rays maintaina certain ionization degree in the shielded gas and play a fundamentalro<strong>le</strong> in the ion-neutral chemistry by setting the abundanceof key ions (Herbst & K<strong>le</strong>mperer 1973).Most studies based on the interpretation of observedmo<strong>le</strong>cular ions set a range of a few 10 −17 to a few10 −16 s −1 for the cosmic-ray ionization rate (Le Petit et al. 2004;van der Tak 2006; Dalgarno 2006 and references therein).However, it is still debated whether or not ζ depends on environmentalconditions (e.g., galactic center vs. disk clouds) orif it varies from source to source (e.g., from dense mo<strong>le</strong>cularcores to more translucent clouds). In many ways, PDRs offer aninteresting intermediate medium to analyze the transition betweentranslucent and dark clouds.In terms of our observations, the DCO + and H 13 CO + abundancesdirectly sca<strong>le</strong> with ζ in the UV shielded gas. Indeed, theseions are direct products of the H + 3destruction (through reactions2 and 3), and the H + 3 formation is proportional to ≃ζ n H.However, ζ and the metal abundance cannot be constrained independentlyfrom the inferred DCO + and H 13 CO + abundancessince both parameters control the ionization fraction, and thusthe destruction of these ions through reactions 5 and 6.6. Results: observational constraintsIn this section we compare the synthetic and observed H 13 CO +and DCO + spectra as a function of cloud position. We then explorethe range of metallicities and cosmic-ray ionization ratescompatib<strong>le</strong> with the H 13 CO + and DCO + inferred abundances(see Tab<strong>le</strong> 6). The influence of PAHs is also investigated. We finallycompare the [HOC + ]/[H 13 CO + ] ratio obtained towards theHorsehead with the values derived in other PDRs.6.1. Constraints to the metals abundanceFigure 5 <strong>le</strong>ft shows the spectra along the direction of the excitingstar (histograms) and radiative transfer models using theoutput of several PDR models for a fixed ionization rate (ζ = 3 ×10 −17 s −1 ) and varying metallicities. In particular, the model with[M] = 10 −9 (and no PAHs) displays a notab<strong>le</strong> agreement withboth the DCO + and H 13 CO + spatial distribution and with the inferredpeak abundances towards the core (Tab<strong>le</strong> 6). In addition,Fig. 6 <strong>le</strong>ft shows the predicted ionization fraction and [H 13 CO + ]and [DCO + ] abundances at the core peak (A V > 10) as a functionof [M] (blue-solid curves). These models (no PAHs, fixed ζ)show that the upper limit metallicity compatib<strong>le</strong> with observationsis [M] ≤ 4 × 10 −9 , which implies an ionization fraction of[e − ] = (7 ± 1) × 10 −9 at the core peak. Higher metal abundancesincrease the ionization fraction (see Fig. 6 <strong>le</strong>ft), which translatesinto weaker lines than observed (Fig. 5 <strong>le</strong>ft: thin-blue curves).Therefore, the gas-phase metal abundance is dep<strong>le</strong>ted by ∼4


780 J. R. Goicoechea et al.: The ionization fraction gradient across the Horsehead edge: an archetype for mo<strong>le</strong>cular clouds<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Fig. 6. Left: model predictions for the shielded core (the “DCO + peak” at A V > 10). The ionization rate due to cosmic rays is fixed to ζ =3 × 10 −17 s −1 . The different panels show (upper): the ionization fraction, (midd<strong>le</strong>): the H 13 CO + abundance and (lower): the DCO + abundanceas a function of gas phase metallicity. Blue-solid curves for models without PAHs, and red-dotted curves for models with neutral and chargedPAHs ([PAH] = 10 −7 ). Horizontal shaded regions show the H 13 CO + and DCO + abundances derived from observations towards the core, whi<strong>le</strong>vertical shaded regions show the parameter space compatib<strong>le</strong> with observations. Right: same as previous figure but for a fixed low metallicity of[M] = 10 −9 (no PAH; blue-solid curves) and a fixed high metallicity of [M] = 10 −6 ([PAH] = 10 −7 ; red-dotted curves). The different panels show(upper): the ionization fraction, (midd<strong>le</strong>): the H 13 CO + abundance and (lower): the DCO + abundance as a function of the ionization rate due tocosmic rays.Tab<strong>le</strong> 6. Inferred abundances [x]=N(x)/N H where N H =N(H)+2N(H 2 ).Species Shielded core PDRA V ≥ 6 A V = 0–2δx ≃ 45 ′′ δx ≃ 15 ′′N H (cm −2 ) 5.8 × 10 22 3.1 × 10 22[H 13 CO + ] 6.5 × 10 −11 1.5 × 10 −11[H 12 CO + ] 3.9 × 10 −9 9.0 × 10 −10[DCO + ] 8.0 × 10 −11 (–)[HOC + ] (–) 0.4 × 10 −11 †[CO + ] (–) ≤5.0 × 10 −13[e − ] (1−8) × 10 −9 10 −6 −10 −4† Assuming extended emission. It would be 1.2 × 10 −11 if HOC + arisesfrom a 12 ′′ –width filament as HCO (Gerin et al. 2009).orders of magnitude with respect to the Sun ([M] ≃ 8.5 × 10 −5 ,Anders & Grevesse 1989). This range of dep<strong>le</strong>tion is similarto that obtained in other pres<strong>tel</strong>lar cores such as Barnard 68(Maret & Bergin 2007). We shall refer it as the strong metal dep<strong>le</strong>tioncase.The inclusion of PAH interactions implies lower ionizationfractions and enhanced mo<strong>le</strong>cular ion abundances (seeFig. 6 <strong>le</strong>ft) which result in overestimated H 13 CO + and DCO + lineintensities towards the core. Therefore, the abundance of metals(e.g., indirectly the ionization fraction) has to be increased tomatch the observed intensities. In particular, Fig. 5 <strong>le</strong>ft showsthat a model with [PAHs] = 10 −7 and [M] = 10 −6 (red-dashedcurves) displays only a factor


J. R. Goicoechea et al.: The ionization fraction gradient across the Horsehead edge: an archetype for mo<strong>le</strong>cular clouds 781a) b) c)Fig. 7. Derived abundance profi<strong>le</strong>s for the most significant ions studied in this work for different PAH and sulfur e<strong>le</strong>mental abundances. Anenhanced UV radiation field 60 times the mean ISRF illuminates the cloud from the right. The metal abundance ([M] = 10 −9 ) and the cosmic-rayrate (ζ = 3 × 10 −17 s −1 ) are fixed in all models. a) Model with [PAH]=0and[S]= 3.5 × 10 −6 (low sulfur dep<strong>le</strong>tion). b) Model with [PAH] = 0and[S] =3.5 × 10 −8 (high sulfur dep<strong>le</strong>tion). c) Model with [PAH] = 10 −7 and [S] = 3.5 × 10 −6 .<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012particular, Fig. 6 right shows the predicted [e − ], [H 13 CO + ]and[DCO + ] abundances at the core peak (A V > 10) as a functionof ζ, and suggests that in the absence of PAHs, the cosmic rayionization rate range compatib<strong>le</strong> with the observations of theHorsehead edge is ζ = (5 ± 3) × 10 −17 s −1 (solid-blue curves).If PAHs are included in the chemistry, the metal abundance hasto be increased accordingly to reproduce the observations. Forour [PAH] = 10 −7 model case, the required metal abundanceneeds to be above [M] ≃ 10 −6 to obtain ionization rates aboveζ ≃ 10 −17 s −1 (Fig. 6 right; red-dotted curves).Note that given the fact that the H 13 CO + formation in thePDR is not dominated by the 13 CO + H + 3 reaction, the H13 CO +abundance in the UV illuminated gas does not sca<strong>le</strong> with ζ.Therefore, we cannot further investigate if ζ varies significantlyin the transition from diffuse regions to the shielded core(e.g., McCall et al. 2003; Padoan & Scalo 2005).6.3. High ionization fraction in the PDRThe bright [C ii]158 μm (Zhou et al. 1993) and[Ci]492 GHz(Philipp et al. 2006) fine structure line emission towards theHorsehead PDR, together with subt<strong>le</strong> chemical effects suchas the large [l-C 3 H 2 ]/[c-C 3 H 2 ] linear-to-cyclic abundance ratio(Teyssier et al. 2005) all show observationally that the ionizationfraction is higher in the UV illuminated edge than towardsthe cloud interior. Neverthe<strong>le</strong>ss, all those studies lackedthe angular resolution to properly measure the ionization fractiongradient.The abundances of reactive ions such as HOC + are alsopredicted to be enhanced in the UV illuminated gas, wherewe have shown that the ionization fraction is high, up to[e − ] ∼ 10 −4 , and that the HOC + formation is linked tothe availability of C + . On the other hand, the H 13 CO + abundanceincreases as the e<strong>le</strong>ctron abundance decreases towards theshielded core. Therefore, we predict that the [HOC + ]/[H 13 CO + ]abundance ratio sca<strong>le</strong>s with the ionization fraction gradient,reaching the highest values in the PDR (Fig. 4). In particular,we derive a high [HOC + ]/[H 13 CO + ] = 0.3–0.8 ratio(or a low [HCO + ]/[HOC + ] ≃ 75–200 ratio) towards the PDR,similar to that observed in other PDRs such as NGC 7023(Fuente et al. 2003).7. Discussion7.1. The ionization fraction gradientStar forming clouds display different environments dependingon the dominant physical and chemical processes. These environmentsare, to a first approximation, similar to those studiedhere: (i) a low density cloud edge directly exposed to a UV radiationfield from nearby stars; (ii) a transition region or ridgewhere the H 2 density increases as the gas temperature decreasesdue to the attenuation of the external radiation field. UV photonscan still play a significant ro<strong>le</strong> depending on their penetrationdepths (e.g., cloud clumpiness, grain properties, etc.); and(iii) the denser shielded cores that may be externally triggeredto form a new generation of stars depending on their stabilityagainst gravitational collapse (e.g., Goicoechea et al. 2008).Assuming that the observed field-of-view in the Horseheadnebula is representative of the above 3 environments, our mapsand chemical models reveal that the ionization fraction follows asteep gradient in mo<strong>le</strong>cular clouds: from [e − ] ≃ 10 −4 at the edgeof the cloud (the “C + dominated” region) to a few times ∼10 −9 inthe shielded cores. The prevailing chemistry and the abundanceof atomic ions such as C + and S + determine the “slope” of theionization fraction gradient in the transition regions. In particular,sulfur (with a ionization potential of ∼10.36 eV) is a goodsource of charge behind the “C + dominated” region. Advectionand time-dependent effects may also modify the ionization fractiongradient with time. However, Morata & Herbst (2008) haveshown models for (uniform) physical conditions similar to thosein the Horsehead where [HCO + ](and[e − ] presumably) does notchange with time appreciably.Figure 7 shows the predicted ionization fraction gradient,with a sca<strong>le</strong> <strong>le</strong>ngth of ∼0.05 pc (or ∼25 ′′ ), and themain charge carriers for 3 representative models with fixedstandard metal abundance (our strong metal dep<strong>le</strong>tion case)and standard cosmic-ray rate. Panel 7a shows a model withoutPAHs and high gas-phase sulfur abundance ([S] = 3.5 ×10 −6 ; Goicoechea et al. 2006). The ionization fraction gradientin the core / transition / edge zones, is mainly determined bythe [HCO + +S + +M + +...] / [S + ] / [C + ] abundances respectively.Sulfur ions control the charge balance in the transition layers,and due to their high abundance and slow radiative recombinationrate with e<strong>le</strong>ctrons, the ionization fraction is high, a fewtimes 10 −7 , and the gradient is smooth. This model qualitativelyagrees with the observed more extended emission and narrower


782 J. R. Goicoechea et al.: The ionization fraction gradient across the Horsehead edge: an archetype for mo<strong>le</strong>cular clouds<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012line-widths of sulfur recombination lines compared to carbonrecombination lines in dark clouds, as well as with the relativelylow ( 6)and edge (A V < 2) are nearly the same as in the previous highsulfur abundance model. However, the lack of abundant S + inthe transition layers decreases the e<strong>le</strong>ctron abundance considerably,and makes the ionization fraction gradient much steeper.Observational constraints to the atomic and ionic S abundancesfrom far-IR fine structure lines or recombination lines, and acareful treatment of the sulfur chemistry (i.e., which are the mostabundant S-bearing species as a function of cloud depth?) arethus required to quantify the S + abundance at large A V and itsimpact on the charge balance.Panel 7c shows a model with high sulfur abundance but includingPAHs (with [PAH] = 10 −7 ). As presented in Sect. 5.2,negatively charged PAH − efficiently form by radiative e<strong>le</strong>ctronattachment and their abundance remains high through the cloud.Given the much higher recombination rates of atomic ions onPAH − than on e<strong>le</strong>ctrons, the abundance of atomic ions such asS + in the transition zone,orM + in the shielded cores, quickly decreases.Hence, lower ionization fractions (and a much weakerdependence on the assumed metal e<strong>le</strong>mental abundance) are predictedby the model with PAHs. These results agrees with theoreticalpredictions for UV shielded gas (Lepp & Dalgarno 1988;Flower et al. 2007; Wakelam & Herbst 2008).In summary, a high abundance of PAHs throughout themo<strong>le</strong>cular cloud (not only in the PDR) plays a ro<strong>le</strong> in the ionizationbalance and in the abundance of mo<strong>le</strong>cular ions, whichaffects the determination of e<strong>le</strong>mental abundances (e.g., S) fromfractional mo<strong>le</strong>cular abundances (e.g., HCS + /CS, SO + /SO, etc.).7.2. The PAH abundance in UV shielded gasThe PAH abundance in the dense and UV shielded gas isfar from being well constrained. Different approaches to analyzeISO and Spitzer mid-IR observations towards severalPDRs all argue in favor of an evolution of dust grain sizes:from the illuminated cloud edge where the emission of PAHbands dominates, to the shielded interiors where the continuumemission from bigger grains dominates (Rapacioli et al. 2005;Berné et al. 2007; Compiègne et al. 2008). It is not trivial todisentang<strong>le</strong> whether this is a physical effect (i.e., free PAHsare not present in the shielded regions) or an excitation effect(i.e., lack of UV photons). Even if the PAH abundance drasticallydecreases towards cloud interiors, a chemically significantfraction of them may survive. Unfortuna<strong>tel</strong>y, whi<strong>le</strong> the effectsof grain growth in the UV extinction curve have been model<strong>le</strong>dby us (Goicoechea & Le Bourlot 2007), including PAH coagulation/accretionin the chemistry is beyond the scope of this work.All we can say at this point is that a better description of thecloud chemistry may be a decreasing PAH abundance gradientor an increasing PAH size distribution towards the cloud interior.In any case, we have shown that the presence of free PAHsin mo<strong>le</strong>cular clouds modifies the prevailing chemistry. As a result,the predicted high abundance of PAH − can dominate therecombination of metal ions and reduce the ionization fraction.The presence of abundant free PAHs, or large mo<strong>le</strong>cu<strong>le</strong>sto which e<strong>le</strong>ctron attach (Lepp & Dalgarno 1988), can thus becrucial in determining the coupling of the gas with magneticfields in mo<strong>le</strong>cular clouds, but also in collapsing cores or in the“dead” zones of protoplanetary disks (magnetically inactive regionswhere accretion cannot occur if the ionization fraction isvery low). According to our models, the PAH abundance thresholdrequired to affect the metal and e<strong>le</strong>ctron abundance determinationin the UV shielded gas is [PAH] > 10 −8 . Herschelobservations might allow the identification of specific PAHcarriers through their far-IR ske<strong>le</strong>tal modes (Joblin et al. 2002;Mulas et al. 2006), thus providing clues to their composition andabundance variations in different environments.7.3. “Non standard” HCO + dissociative recombination rateWe conclude by discussing the sensitivity of our determinationof the ionization fraction from H 13 CO + and DCO + abundances.In particular, we have checked the effects of adoptinga smal<strong>le</strong>r, “non standard” HCO + dissociative recombinationrate, α ′ (HCO + ) = 0.7 × 10 −7 (300/T) 0.50 cm 3 s −1 (Sheehan 2000,Florescu-Mitchell & Mitchell 2006). For models without PAHs,the predicted H 13 CO + and DCO + abundances increase by a factorof ∼3 with respect to models using the “standard” α(HCO + )rate (Tab<strong>le</strong> 4), but the metallicity required to fit the observedlines has to be increased to [M] ≃ 5 × 10 −8 and the predictedionization fraction increases to [e − ] ≃ 5 × 10 −8 in the core. Thisvalue should be regarded as the upper limit of our determination.On the other hand, the influence of α ′ (HCO + ) in modelswith PAHs is <strong>le</strong>ss important. It also requires high metallicities tofit the observed intensities (weak metal dep<strong>le</strong>tion case), but thepredicted [e − ] in the shielded core remains low (below ∼10 −8 ).8. Summary and conclusionsWe have presented the first detection of HOC + reactive ion towardsthe Horsehead PDR. Combined with our previous IRAM-PdBI H 13 CO + J = 1–0 (Gerin et al. 2009) and IRAM-30 mH 13 CO + and DCO + higher-J lines maps (Pety et al. 2007) weperformed a detai<strong>le</strong>d analysis of their chemistry, excitation andradiative transfer to constrain the ionization fraction as a functionof cloud position. The observed field contains 3 differentenvironments: (i) the UV illuminated cloud edge; (ii) a transitionregion or ridge; and (iii) a dense and cold shielded core.Wehave presented a study of the ionization fraction gradient in theabove environments, which can be considered as templates formost mo<strong>le</strong>cular clouds. Our main conclusions are the following:1. The ionization fraction follows a steep gradient, with a sca<strong>le</strong><strong>le</strong>ngth of ∼0.05 pc (∼25 ′′ ), from [e − ] ≃ 10 −4 (n e ∼ 1–5 cm −3 )at the cloud edge (the “C + dominated” regions) to a fewtimes ∼10 −9 in the shielded core (with ongoing deuteriumfractionation). Sulfur, metal and PAH ions play a key ro<strong>le</strong> inthe charge balance at different cloud depths.2. The detection of HOC + towards the PDR, and the high[HOC + ]/[H 13 CO + ] ≃ 0.3–0.8 abundance ratio inferred,proves the high ionization fraction in the UV irradiated gas.However, the H 13 CO + and HOC + abundances derived fromobservations are larger than the PDR model predictions. Wepropose that either the gas is/was warmer than predicted orthat significant water ice-mant<strong>le</strong> photodesorption is takingplace and HOC + is mainly formed by the C + + H 2 O reaction.3. The ionization fraction in the shielded core depends onthe metal abundance and on the cosmic-ray ionization rate.Assuming a standard rate of ζ = 3 × 10 −17 s −1 and pure gasphasechemistry (no PAHs), the metal abundance has to be


J. R. Goicoechea et al.: The ionization fraction gradient across the Horsehead edge: an archetype for mo<strong>le</strong>cular clouds 783<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012lower than 4 × 10 −9 (strong metal dep<strong>le</strong>tion). Conversely, assuminga standard metal abundance of [M] = 10 −9 , our observationscan only be reproduced with ζ = (5±3)×10 −17 s −1 .4. The inclusion of PAHs modifies the ionization fraction gradientand decreases the metal dep<strong>le</strong>tion required to reproducethe observations if [PAH] > 10 −8 (i.e., if not allPAHs coagulate/accrete onto bigger grains). In such a case,PAH − acquire large abundances also in the shielded gas.Recombination of atomic ions on PAH − is much more efficientthan on e<strong>le</strong>ctrons and thus metal ions and mo<strong>le</strong>cularions are neutralized at similar rates. For [PAH] = 10 −7 ,themetal abundance consistent with observations increases to[M] = (3 ± 1) × 10 −6 (still below the heavy metals abundancein the diffuse ISM).Acknow<strong>le</strong>dgements. We thank the IRAM staff for their support during observationsand D. Talbi and B. Godard for useful advice regarding the HCO + dissociativerecombination rate. Inelastic collisional rates of HCO + with e<strong>le</strong>ctrons werekindly provided by A. Faure and J. Tennyson. We also thank M. Walmsely forseveral interesting comments. We acknow<strong>le</strong>dge the use of OSU (http://www.physics.ohio-state.edu/~eric/research.html) andUDFA (http://www.udfa.net/) chemical reaction databases. We finally acknow<strong>le</strong>dge financialsupport from CNRS/INSU research programme PCMI. JRG is supported bya Ramón y Cajal research contract from the Spanish MICINN and co-financedby the European Social Fund.ReferencesAbergel, A., Teyssier, D., Bernard, J. P., et al. 2003, A&A, 410, 577Allamandola, L. J., Tie<strong>le</strong>ns, A. G. G. M., & Barker, J. R. 1985, ApJ, 290, L25Allamandola, L. J., Tie<strong>le</strong>ns, A. G. G. M., & Barker, J. R. 1989, ApJS, 71, 733Anders, E., & Grevesse, N. 1989, Geochim. Cosmochim. Acta, 53, 197Bakes, E. L. O., & Tie<strong>le</strong>ns, A. G. G. M. 1994, ApJ, 427, 822Bakes, E. L. O., & Tie<strong>le</strong>ns, A. G. G. M. 1998, ApJ, 499, 258Balbus, S. A., & Haw<strong>le</strong>y, J. F. 1991, ApJ, 376, 214Berné, O., Joblin, C., Devil<strong>le</strong>, Y., et al. 2007, A&A, 469, 575Boulanger, F., Falgarone, E., Puget, J. L., & Helou, G. 1990, ApJ, 364, 136Caselli, P., Walms<strong>le</strong>y, C. M., Terzieva, R., & Herbst, E. 1998, ApJ, 499, 234Caselli, P., Walms<strong>le</strong>y, C. M., Tafalla, M., Dore, L., & Myers, P. C. 1999, ApJ,523, L165Cernicharo, J., & Guélin, M. 1987, A&A, 176, 299Cernicharo, J., Goicoechea, J. R., Pardo, J. R., & Asensio-Ramos, A. 2006, ApJ,642, 940Compiègne, M., Abergel, A., Verstraete, L., et al. 2007, A&A, 471, 205Compiègne, M., Abergel, A., Verstraete, L., & Habart, E. 2008, A&A, 491, 797Dalgarno, A. 2006, Proceedings of the National Academy of Science, 103, 33,12269de Boisanger, C., Helmich, F. P., & van Dishoeck, E. F. 1996, A&A, 310, 315Desert, F.-X., Boulanger, F., & Puget, J. L. 1990, A&A, 237, 215.Falgarone, E., Cesarsky, D. A., Encrenaz, P. J., & Lucas, R. 1978, A&A, 65, L13Faure, A., & Tennyson, J. 2001, MNRAS, 325, 443Florescu-Mitchell, A. I., & Mitchell, J. B. A. 2006, Phys. Rep., 430, 277Flower, D. R. 1999, MNRAS, 305, 651Flower, D. R., & Pineau des Forêts, G. 2003, MNRAS, 343, 390Flower, D. R., Pineau des Forêts, G., & Walms<strong>le</strong>y, C. M. 2007, A&A, 474, 923Fuente, A., Rodríguez-Franco, A., García-Burillo, S., Martín-Pintado, J., &Black, J. H. 2003, A&A, 406, 899Fuente, A., García-Burillo, S., Usero, A., et al. 2008, A&A, 492, 675Gerin, M., Goicoechea, J. R., Pety, J., & Hily-Blant, P. 2009, A&A, in pressGerlich, D., Herbst, E., & Roueff, E. 2002, Planetary and Space Science, 50, 12,1275Goicoechea, J. R., & Le Bourlot, J. 2007, A&A, 467, 1Goicoechea, J. R., Pety, J., Gerin, M., et al. 2006, A&A, 456, 565Goicoechea, J. R., Berné, O., Gerin, M., Joblin, C., & Teyssier, D. 2008, ApJ,680, 466Graedel, T. E., Langer, W. D., & Frerking, M. A. 1982, ApJS, 48, 321Greve, A., Kramer, C., & Wild, W. 1998, A&AS, 133, 271Guélin, M., Langer, W. D., & Wilson, R. W. 1982, A&A, 1982, 107, 107Habart, E., Abergel, A., Walms<strong>le</strong>y, C. M., Teyssier, D., & Pety, J. 2005, A&A,437, 177Herbst, E., & K<strong>le</strong>mperer, W. 1973, ApJ, 185, 505Hezareh, T., Houde, M., McCoey, C., Vas<strong>tel</strong>, C., & Peng, R. 2008, ApJ, 684,1221Hily-Blant, P., Teyssier, D., Philipp, S., & Güsten, R. 2005, A&A, 440, 909Hol<strong>le</strong>nbach, D., Kaufman, M. J., Bergin, E. A., & Melnick, G. J. 2009, ApJ, 690,1497Howk, J. C., Sembach, K. R., & Savage, B. D. 2006, ApJ, 637, 333Joblin, C., Toublanc, D., Boissel, P., & Tie<strong>le</strong>ns, A. G. G. M. 2002, Mol. Phys.,100, 3595Kaufman, M. J., Wolfire, M. G., & Hol<strong>le</strong>nbach, D. J. 2006, ApJ, 644, 28Langer, W. D., & Penzias, A. A. 1990, ApJ, 357, 477Langer, W. D., Graedel, T. E., Frerking, M. A., & Armentrout, P. B. 1984, A&A,277, 581Laor, A., & Draine, B. T. 1993, 402, 441Le Bourlot, J., Pineau Des Forets, G., Roueff, E., & Flower, D. R. 1993, A&A,267, 233Leger, A., & Puget, J. L. 1984, A&A, 137, L5Le Petit, F., Roueff, E., & Herbst, E. 2004, A&A, 417, 993Le Petit, F., Nehmé, C., Le Bourlot, J., & Roueff, E. 2006, ApJS, 64, 506Lepp, S., & Dalgarno, A. 1988, ApJ, 324, 553Li, A., & Draine, B. T. 2001, ApJ, 554, 778Liszt, H., Lucas, R., & Black, J. H. 2004, A&A, 428, 117LMarconi, A., Testi, L., Natta, A. & Walms<strong>le</strong>y, C. M. 1998, A&A, 330, 696Maret, S., & Bergin, E. A. 2007, ApJ, 664, 956Mathis, J. S., Rumpl, W., & Nordsieck, K. H. 1977, ApJ, 217, 425McCall, B. J., Huneycutt, A. J., Saykally, R. J., et al. 2003, Nature, 422, 500Morata, O., & Herbst, E. 2008, MNRAS, 390, 1549Mulas, G., Malloci, G., Joblin, C., & Toublanc, D. 2006, A&A, 460, 93Neufeld, D. A., Lepp, S., & Melnick, G. J. 1995, ApJS, 100, 132Omont, A., 1986, A&A, 164, 159Oppenheimer, M., & Dalgarno, A. 1974, ApJ, 192, 29Padoan, P., & Scalo, J. 2005, ApJ, 624, L97Pankonin, V., & Walms<strong>le</strong>y, C. M. 1978, A&A, 67, 12Penzias, A. A., & Burrus, C. A. 1973, ARA&A, 11, 51Pety, J., Teyssier, D., Fossé, D., et al. 2005, A&A, 435, 885Pety, J. 2005, Semaine de l’Astrophysique Française, meeting held in Strasbourg,France, ed. F. Casoli, T. Contini, J. M. Hameury, & L. Pagani (EDP Sciences),SF2A-2005, 721Pety, J., Goicoechea, J. R., Hily-Blant, P., Gerin, M., & Teyssier, D. 2007, A&A,464, L41Philipp, S. D., Lis, D. C., Güsten, R., Kasemann, C., K<strong>le</strong>in, T., & Phillips, T. G.2006, A&A, 454, 213Prasad, S. S., & Tarafdar, S. P. 1983, ApJ, 267, 603Rapacioli, M., Joblin, C., & Boissel, P. 2005, A&A, 429, 193Rapacioli, M., Calvo, F., Joblin, C., et al. 2006, A&A, 460, 519Rizzo, J. R., Fuente, A., Rodríguez-Franco, A., & García-Burillo, S. 2003, ApJ,597, L153Röllig, M., Abel, N. P., Bell, T., et al. 2007, A&A, 467, 187Savage, C., & Ziurys, L. M. 2004, ApJ, 616, 966Savage, C., Apponi, A. J., Ziurys, L. M., & Wyckoff, S. 2000, ApJ, 578, 211Scott, G. B. I., Fair<strong>le</strong>y, D. A., Freeman, C. G., et al. 1997, J. Chem. Phys., 106,3982Sheehan, C. H. 2000, Ph.D. Thesis, the University of Western Ontario, London,CanadaSmith, M. A., Sch<strong>le</strong>mmer, S., von Richthofen, J., & Gerlich, D. 2002, ApJ, 578,L87Teyssier, D., Fossé, D., Gerin, M., et al. 2004, A&A, 417, 135Teyssier, D., Hily-Blant, P., Gerin, M., et al. 2005, in Proceedings of the dustyand mo<strong>le</strong>cular universe: a prelude to Herschel and ALMA, ed. A. Wilson,ESA SP-577 (Noordwijk, Netherlands: ESA Publications Division), 423Timmermann, R., Bertoldi, F., Wright, C. M., et al. 1996, A&A, 315, L281van der Tak, Floris, F. S. 2006, Royal Soc. London Trans. Ser. A, 364, 1848,3101van Dishoeck, E. F. 1988, Rate Coefficients in Astrochemistry, ed. T. J. Millar,& D. A. Williams (Dordrecht, Boston: Kluwer Academic Publishers), 49Wakelam, V., & Herbst, E. 2008, ApJ, 680, 371Ward-Thompson, D., Nutter, D., Bontemps, S., Whitworth, A., & Attwood, R.2006, MNRAS, 369, 1201Williams, J. P., Bergin, E. A., Caselli, P., Myers, P. C., & Plume, R. 1998, ApJ,503, 689Wolfire, M. G., Hol<strong>le</strong>nbach, D., McKee, C. F., Tie<strong>le</strong>ns, A. G. G. M., & Bakes,E. L. O. 1995, ApJ, 443, 152Wolfire, M. G., Tie<strong>le</strong>ns, A. G. G. M., Hol<strong>le</strong>nbach, D., & Kaufman, M. J. 2008,ApJ, 680, 384Woodall, J., Agúndez, M., Markwick-Kemper, A. J., & Millar, T. J. 2006, A&A,466, 1197Woods, R. C., Gudeman, C. S., Dickman, R. L., et al. 1983, ApJ, 270, 583Wootten, A., Loren, R. B., & Snell, R. L. 1982, ApJ, 255, 160Zhou, S., Jaffe, D. T., Howe, J. E., et al. 1993, ApJ, 419, 190Ziurys, L. M., & Apponi, A. J. 1995, J, 455, 73


A&A 494, 977–985 (2009)DOI: 10.1051/0004-6361:200810933c○ ESO 2009Astronomy&AstrophysicsHCO mapping of the Horsehead: tracing the illuminateddense mo<strong>le</strong>cular cloud surfaces ⋆,⋆⋆M. Gerin 1 , J. R. Goicoechea 1,⋆⋆⋆ ,J.Pety 2,1 , and P. Hily-Blant 31 LERMA–LRA, UMR 8112, CNRS, Observatoire de Paris and Éco<strong>le</strong> Norma<strong>le</strong> Supérieure, 24 Rue Lhomond, 75231 Paris, Francee-mail: maryvonne.gerin@lra.ens.fr; jrgoicoechea@fis.ucm.es2 IRAM, 300 rue de la Piscine, 38406 Grenob<strong>le</strong> cedex, Francee-mail: pety@iram.fr3 Laboratoire d’Astrophysique, Observatoire de Grenob<strong>le</strong>, BP 53, 38041 Grenob<strong>le</strong> Cedex 09, Francee-mail: pierre.hilyblant@obs.ujf-grenob<strong>le</strong>.frReceived 8 September 2008 / Accepted 14 November 2008ABSTRACT<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Context. Far-UV photons (FUV) strongly affect the physical and chemical state of mo<strong>le</strong>cular gas in the vicinity of young massivestars.Aims. Finding mo<strong>le</strong>cular tracers of the presence of FUV radiation fields in the millimeter wave<strong>le</strong>ngth domain is desirab<strong>le</strong> becauseIR diagnostics (for instance PAHs) are not easily accessib<strong>le</strong> along high extinction line-of-sights. Furthermore, gas phase diagnosticsprovide information on the velocity fields.Methods. We have obtained maps of the HCO and H 13 CO + ground state lines towards the Horsehead edge at 5 ′′ angular resolutionwith a combination of Plateau de Bure Interferometer (PdBI) and the IRAM-30 m <strong>tel</strong>escope observations. These maps have beencomp<strong>le</strong>mented with IRAM-30 m observations of several excited transitions at two different positions.Results. Bright formyl radical emission delineates the illuminated edge of the nebula, with a faint emission remaining towards theshielded mo<strong>le</strong>cular core. Viewed from the illuminated star, the HCO emission almost coincides with the PAH and CCH emission. HCOreaches a similar abundance to HCO + in the photon dissociation region (PDR), ≃1–2×10 −9 with respect to H 2 . To our know<strong>le</strong>dge, thisis the highest HCO abundance ever measured. Pure gas-phase chemistry models fail to reproduce the observed HCO abundance by∼2 orders of magnitude, except if reactions of atomic oxygen with carbon radicals abundant in the PDR (i.e., CH 2 ) play a significantro<strong>le</strong> in the HCO formation. Alternatively, HCO could be produced in the PDR by non-thermal processes such as photo-processing ofice mant<strong>le</strong>s and subsequent photo-desorption of either HCO or H 2 CO, and further gas phase photodissociation.Conclusions. The measured HCO/H 13 CO + abundance ratio is large towards the PDR (≃50), and much lower toward the gas shieldedfrom FUV radiation (1). We propose that high HCO abundances (10 −10 ) together with large HCO/H 13 CO + abundance ratios (1)are sensitive diagnostics of the presence of active photochemistry induced by FUV radiation.Key words. astrochemistry – ISM: clouds – ISM: mo<strong>le</strong>cu<strong>le</strong>s – ISM: individual objects: Horsehead nebula – radiative transfer –radio lines: ISM1. IntroductionPhotodissociation region (PDR) models are used to understandthe evolution of far-UV (FUV; hν


978 M. Gerin et al.: HCO mapping of the Horsehead: tracing the illuminated dense mo<strong>le</strong>cular cloud surfacesTab<strong>le</strong> 1. Observation parameters for the maps shown in Figs. 1 and 5. The projection center of all the maps is α 2000 = 05 h 40 m 54.27 s , δ 2000 =−02 ◦ 28 ′ 00 ′′ .Mo<strong>le</strong>cu<strong>le</strong> Transition Frequency Instrument Config. Beam PA Vel. Resol. Int. Time a T sys Noise b Obs. dateGHz arcsec◦km s −1 h K KH 13 CO + 1–0 86.754288 PdBI C & D 6.76 × 4.65 13 0.2 6.5 150 0.10 2006–2007HCO 1 0,1 3/2, 2–0 0,0 1/2, 1 86.670760 PdBI C & D 6.69 × 4.39 16 0.2 6.5 150 0.09 2006–2007CCH 1, 3/2 (2)–0, 1/2 (1) 87.316925 PdBI C & D 7.24 × 4.99 54 0.2 6.9 130 0.07 2002–2003a On-source time computed as if the source were always observed with 6 antennae. b The noise values quoted here are the values at the mosaicphase center (Mosaic noise is inhomogeneous due to primary beam correction; it steeply increases at the mosaic edges).Mo<strong>le</strong>cu<strong>le</strong> Transition Frequency Instrument # Pix. F eff B eff Resol. Resol. Int. Time a T sys Noise Obs. dateGHz arcsec km s −1 h K mKH 13 CO + J = 1–0 86.754288 30 m/AB100 2 0.95 0.78 28.4 0.2 2.6/5.0 133 69 2006–2007HCO 1 0,1 3/2, 2−0 0,0 1/2, 1 86.670760 30 m/AB100 2 0.95 0.78 29.9 0.2 2.6/5.0 133 63 2006–2007HCO 1 0,1 3/2, 1−0 0,0 1/2, 0 86.708360 30 m/AB100 2 0.95 0.78 29.9 0.2 2.6/5.0 133 63 2006–2007HCO 1 0,1 1/2, 1−0 0,0 1/2, 1 86.777460 30 m/AB100 2 0.95 0.78 29.9 0.2 2.6/5.0 133 66 2006–2007HCO 1 0,1 1/2, 0−0 0,0 1/2, 1 86.805780 30 m/AB100 2 0.95 0.78 29.9 0.2 2.6/5.0 133 66 2006–2007a Two values are given for the integration time: the on-source time and the <strong>tel</strong>escope time.<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Tab<strong>le</strong> 2. Observation parameters for the HCO deep integrations shown in Fig. 1. Associated transitions can be found in Tab<strong>le</strong> 3. The RA and Decoffsets are computed with reference to α 2000 = 05 h 40 m 54.27 s , δ 2000 = −02 ◦ 28 ′ 00 ′′ . The positions are also given in the coordinate system used todisplay the maps in Figs. 1 and 5. In this coordinate system, maps are rotated by 14 ◦ counter-clockwise around the projection center, located at(δx,δy) = (20 ′′ , 0 ′′ ), to bring the illuminated star direction in the horizontal direction and the horizontal zero has been set at the PDR edge.Position name (δRA, δDec) (δx,δy)arcsec arcsec“DCO + peak” (20 ′′ , 22 ′′ ) (44.7 ′′ , 16.5 ′′ )“HCO peak” (−5, 0 ′′ ) (15.1 ′′ , 1.2 ′′ )Position Frequency Line area a Instrument F eff B eff Resol. Resol. Int. Time b T sys Noise Obs. dateGHz K km s −1 arcsec km s −1 h K mK“DCO + peak” 86.670760 0.23 ± 0.009 30 m/B100 0.95 0.78 28.4 0.27 0.75/1.5 134 11 200886.708360 0.12 ± 0.009 30 m/B100 0.95 0.78 28.4 0.27 0.75/1.5 134 11 2008“HCO peak” 86.670760 0.52 ± 0.008 30 m/B100 0.95 0.78 28.4 0.27 0.75/1.5 127 10 200886.708360 0.31 ± 0.007 30 m/B100 0.95 0.78 28.4 0.27 0.75/1.5 127 10 2008173.3773770 0.47 ± 0.023 30 m/C150 0.93 0.65 14.2 0.067 2.0/4.0 667 66 2008173.4060816 0.26 ± 0.018 30 m/C150 0.93 0.65 14.2 0.067 2.0/4.0 667 66 2008173.4430648 0.23 ± 0.020 30 m/C150 0.93 0.65 14.2 0.067 2.0/4.0 667 66 2008260.0603290 0.16 ± 0.019 30 m/C270 0.88 0.46 9.5 0.18 3.0/6.0 740 59 2008260.0821920 0.14 ± 0.020 30 m/C270 0.88 0.46 9.5 0.18 3.0/6.0 740 59 2008260.1335860 0.12 ± 0.017 30 m/C270 0.88 0.46 9.5 0.18 3.0/6.0 740 59 2008260.1557690 0.06 ± 0.016 30 m/C270 0.88 0.46 9.5 0.18 3.0/6.0 740 59 2008a Values obtained from Gaussian fits performed on the spectra using the main beam temperature sca<strong>le</strong>. b Two values are given for the integrationtime: the on-source time and the <strong>tel</strong>escope time.sharply peaked in the Orion Bar PDR, confirming earlier suggestionsthat HCO is a tracer of the cloud illuminated interfacesde Jong et al. (1980). García-Burillo et al. (2002) have mappedHCO and H 13 CO + in the nearby galaxy M 82. HCO, CO andthe ionized gas present a nested ring morphology, with the HCOpeaks being located further out compared to CO and the ringof H ii regions. The chemistry of HCO is not well understood.Schilke et al. (2001) concluded that it is extremely difficult to understandthe observed HCO abundance in PDRs with gas phasechemistry alone. As a possib<strong>le</strong> way out, they tested the productionof HCO by the photodissociation of formaldehyde. In thismodel, H 2 CO is produced in grain mant<strong>le</strong>s, and re<strong>le</strong>ased by nonthermalphoto-desorption in the gas phase in the PDR. However,even with this favorab<strong>le</strong> hypothesis, the model cannot reproducethe abundance and spatial distribution of HCO because thephoto-production is most efficient at an optical depth of a fewmagnitudes where the photodissociation becomes <strong>le</strong>ss effective.In this paper, we present maps of the formyl radical groundstate lines at high angular resolution towards the Horsehead nebula,and the detection of higher energy <strong>le</strong>vel transitions towardstwo particular lines of sights, one in the PDR region and the otherin the associated dense core. These observations enab<strong>le</strong> us to accura<strong>tel</strong>ystudy the HCO spatial distribution and abundance. Wepresent the observations and data reduction in Sect. 2, whi<strong>le</strong> theresults and HCO abundance are given in Sect. 3, and the discussionof HCO chemistry and PDR modeling is given in Sect. 4.2. Observations and data reductionTab<strong>le</strong>s 1 and 2 summarize the observation parameters for thedata obtained with the IRAM PdBI and 30 m <strong>tel</strong>escopes. TheHCO ground state lines were observed simultaneously withH 13 CO + and SiO. Frequency-switched, on-the-fly maps of theH 13 CO + J = 1–0 and HCO ground state lines (see Fig. 5), obtainedat the IRAM-30 m using the A100 and B100 3 mmreceivers (∼7 mm of water vapor) were used to produce theshort-spacings needed to comp<strong>le</strong>ment a 7-field mosaic acquiredwith the 6 PdBI antennae in the CD configuration (baseline<strong>le</strong>ngths from 24 to 176 m). The who<strong>le</strong> PdBI data set will becomprehensively described in a forthcoming paper studying the


M. Gerin et al.: HCO mapping of the Horsehead: tracing the illuminated dense mo<strong>le</strong>cular cloud surfaces 979Fig. 1. High angular resolution maps of the integrated intensity of H 13 CO + , HCO, CCH and vibrationally excited H 2 emission. H 13 CO + and HCOhave been observed simultaneously, both with the IRAM-30 m and IRAM-PdBI. Maps have been rotated by 14 ◦ counter-clockwise around theprojection center, located at (δx,δy) = (20 ′′ , 0 ′′ ), to bring the illuminated star direction in the horizontal direction and the horizontal zero has beenset at the PDR edge. The emission of all lines is integrated between 10.1 and 11.1 km s −1 . Displayed integrated intensities are expressed in themain beam temperature sca<strong>le</strong>. Contour <strong>le</strong>vels are displayed on the grey sca<strong>le</strong> lookup tab<strong>le</strong>s. The red vertical line shows the PDR edge and thegreen crosses show the positions (DCO + and HCO peaks) where deep integrations have been performed at IRAM-30 m (see Fig. 2). The H 2 mapis taken from Habert et al. (2005).<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012fractional ionization across the Horsehead edge (Goicoecheaet al. 2009). The CCH data shown in Fig. 1 have been extensivelydescribed in Pety et al. (2005). The high resolutionHCO 1 0,1 −0 0,0 data are comp<strong>le</strong>mented by observations of the2 0,2 −1 0,1 and 3 0,3 −2 0,2 multip<strong>le</strong>ts with the IRAM 30 m <strong>tel</strong>escopecentered on the PDR and the dense core. To obtain those deepintegration spectra, we used the position switching observingmode. The on-off cyc<strong>le</strong> duration was 1 min and the off-positionoffsets were (δRA,δDec) = (−100 ′′ , 0 ′′ ), i.e. the H ii region ionizedby σOri and free of mo<strong>le</strong>cular emission. Position accuracyis estimated to be about 3 ′′ for the 30 m data and <strong>le</strong>ss than 0.5 ′′for the PdBI data.The data processing was done with the GILDAS 1 softwares(Pety 2005b).TheIRAM-30mdatawerefirstcalibratedto the TA ∗ sca<strong>le</strong> using the chopper wheel method (Penzias &Burrus 1973), and finally converted to main beam temperatures(T mb ) using the forward and main beam efficiencies (F eff& B eff ) displayed in Tab<strong>le</strong> 2. The resulting amplitude accuracyis ∼10%. Frequency-switched spectra were folded usingthe standard shift-and-add method, after baseline subtraction.The resulting spectra were finally gridded through convolutionby a Gaussian. Position-switched spectra were co-added beforebaseline subtraction. Interferometric data and short-spacing datawere merged before imaging and deconvolution of the mosaic,using standard techniques of GILDAS (see e.g. Pety et al. 2005,for details).3. Results and discussion3.1. Spatial distributionFigure 1 shows a map of the integrated intensity of the strongestHCO line at 86.671 GHz, of the H 13 CO + J = 1–0 line and ofthe strongest CCH line at 87.317 GHz. Figure 2 displays highsignal-to-noise ratio spectra of several hyperfine componentsof three HCO rotational transitions towards the HCO and theDCO + emission peaks.Most of the formyl radical emission is concentrated in anarrow structure, delineating the edge of the Horsehead nebula.1 See http://www.iram.fr/IRAMFR/GILDAS for more informationabout the GILDAS softwares.Low <strong>le</strong>vel emission is however detected throughout the nebula,including towards the dense core identified by its strong DCO +and H 13 CO + emission Pety et al. (2007a). The HCO emissionis resolved by our PdBI observations. From 2-dimensionalGaussian fits of the image, we estimate that the emission widthis ∼13 ± 4 ′′ in the plane of the sky. The H 13 CO + emission showsadifferent pattern: most of the signal is associated with the densecore behind the photodissociation front, and faint H 13 CO + emissiondetected in the illuminated edge. The CCH emission patternis <strong>le</strong>ss extreme than HCO, but shows a similar enhancement inthe PDR.In summary, the morphology of the HCO emission is reminiscentof the emission of the PDR tracers, either the PAH emission(Abergel et al. 2002) or the emission of small hydrocarbons,which is strongly enhanced towards the PDR (Teyssieret al. 2004; Pety et al. 2005). In contrast, the HCO emissionbecomes very faint where the gas is dense and shielded fromFUV radiation. These regions are associated with bright DCO +and H 13 CO + emission (Pety et al. 2007a). Our maps thereforeconfirm that HCO is a PDR species.3.2. Column densities and abundances3.2.1. Radiative transfer models of HCO and H 13 CO +Einstein coefficients and upper <strong>le</strong>vel energies of the studied HCOand H 13 CO + lines are given in Tab<strong>le</strong> 3. As no collisional crosssectionswith H 2 nor He have been calculated for HCO so far,we have computed the HCO column densities assuming a sing<strong>le</strong>excitation temperature T ex for all transitions. Neverthe<strong>le</strong>ssour calculation takes into account thermal, turbu<strong>le</strong>nt and opacitybroadening as well as the cosmic microwave backgroundand line opacity Goicoechea et al. (2006). For H 13 CO + ,detai<strong>le</strong>dnon-local and non-LTE excitation and radiative transfercalculations have been performed using the same approach as inour previous PdBI CS and C 18 O line analysis (see Appendix inGoicoechea et al. 2006). H 13 CO + -H 2 collisional rate coefficientswere adapted from those of Flower (1999) for HCO + ,andspecificH 13 CO + -e<strong>le</strong>ctron rates where kindly provided by Faure &Tennyson (in prep.).


980 M. Gerin et al.: HCO mapping of the Horsehead: tracing the illuminated dense mo<strong>le</strong>cular cloud surfaces<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Fig. 2. IRAM-30 m observations (histograms) of several HCO hyperfine components of the 1 01 –0 00 ,2 02 –1 01 and 3 03 –2 02 rotational transitionstowards the PDR (“HCO peak”) and towards the dense core (“DCO + peak”) Pety et al. (2007a). Solid lines are sing<strong>le</strong>-T ex radiative transfer modelsof the PDR-filament (red curves) and line-of-sight cloud surface (blue curves). A sketch of the HCO rotational energy <strong>le</strong>vels is also shown (rightcorner).Tab<strong>le</strong> 3. Einstein coefficients and upper <strong>le</strong>vel energies.Mo<strong>le</strong>cu<strong>le</strong> Transition Frequency A ij E upJ, F−J ′ , F ′ GHz (s −1 ) (K)HCO 1 01 −0 003/2, 2−1/2, 1 86.670760 4.69 × 10 −6 4.23/2, 1−1/2, 0 86.708360 4.60 × 10 −6 4.21/2, 1, 1/2, 0 86.777460 4.61 × 10 −6 4.21/2, 0−1/2, 1 86.805780 4.71 × 10 −6 4.22 02 −1 015/2, 3−3/2, 2 173.3773770 4.51 × 10 −5 12.55/2, 2−3/2, 1 173.4060816 4.43 × 10 −5 12.53/2, 2−1/2, 1 173.4430648 3.39 × 10 −5 12.53 03 −2 027/2, 4−5/2, 3 260.0603290 1.63 × 10 −4 25.07/2, 3−5/2, 2 260.0821920 1.61 × 10 −4 25.05/2, 3−3/2, 2 260.1335860 1.45 × 10 −4 25.05/2, 2−3/2, 1 260.1557690 1.37 × 10 −4 25.0H 13 CO + J = 1–0 86.754288 3.2 × 10 −5 4.2J = 3–2 260.2553390 1.3 × 10 −3 25.0The line frequencies and intensities were extracted from the JPL Pickettet al. (1998) andCDMS(Mül<strong>le</strong>r et al. 2001, 2005) mo<strong>le</strong>cular spectroscopydata bases for HCO and H 13 CO + respectively.3.2.2. Structure of the PDR in HCO and H 13 CO +For more insight into the spatial variation of the HCO andH 13 CO + column densities and abundances, we have analyzed acut through the PDR, centered on the “HCO peak” at δy = 0 ′′(see Fig. 3). The cut c<strong>le</strong>arly shows that HCO is brighter thanH 13 CO + in the PDR and vice-versa in the dense core. Takinginto account the different <strong>le</strong>vel degeneracies of both transitions(a factor of 2.4) and the fact that the associated EinsteinFig. 3. Observations along a horizontal cut through “the HCO peak”(histograms). The H 13 CO + J = 1–0 and HCO 1 01 −0 00 lines weremapped with the PdBI at an angular resolution of 6.8 ′′ , whereas theH 13 CO + J = 3–2 line was mapped with HERA-30 m (and smoothed toa spatial resolution of 13.5 ′′ ). Radiative transfer models of an edge-oncloud with a line of sight extinction of A V = 20, inclined 5 ◦ relativeto the line of sight for HCO (red curve), and H 13 CO + (blue curves) areshown. The sing<strong>le</strong>-T ex HCO model assumes a 12 ′′ width filament witha column density of 3.2 × 10 13 cm −2 , whi<strong>le</strong> N(HCO) is 4.6 × 10 12 cm −2behind the filament. The H 13 CO + model assumes a constant density ofn(H 2 ) = 5×10 4 cm −3 with T k = 60 K and N(H 13 CO + ) = 5.8×10 11 cm −2for δx < 35 ′′ ;andT k = 10 K and N(H 13 CO + ) = 7.6 × 10 11 cm −2 forδx > 35 ′′ . Mode<strong>le</strong>d line profi<strong>le</strong>s have been convolved with an appropriateGaussian beam corresponding to each PdBI synthesized beam or30 m main beam resolution.coefficients A ij differ by a factor ∼8 (due to the different permanentdipo<strong>le</strong> moments, see Tab<strong>le</strong> 3), N(H 13 CO + ) must be significantlylower than N(HCO) towards the PDR.We mode<strong>le</strong>d the PDR as an edge-on cloud inclined by∼5 ◦ relative to the line-of-sight. We have chosen a cloud depth


M. Gerin et al.: HCO mapping of the Horsehead: tracing the illuminated dense mo<strong>le</strong>cular cloud surfaces 981<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012of ∼0.1 pc, which implies an extinction of A V ≃ 20 mag for theconsidered densities towards the “HCO peak”. These parametersare the best geometrical description of the Horsehead PDR-edge(e.g., Habart et al. 2005) and also reproduce the observed 1.2 mmcontinuum emission intensity. The details of this modeling willbe presented in Goicoechea et al. (2009). In the following, wedescribe in detail the determination of the column densities andabundances for two particular positions, namely the “HCO peak”and the “DCO + peak” (offsets relative to the map center can befound in Tab<strong>le</strong> 2).3.2.3. HCO column densitiesWe used the three detected rotational transitions of HCO (eachwith several hyperfine components, see Fig. 2) to estimate theHCO column densities in the direction of the “HCO” peak. Wehave taken into account the varying beam dilution factors of theHCO emission at the “HCO peak” by modeling the HCO emissionas a Gaussian filament of ∼12 ′′ widthintheδx direction,and infinite in the δy direction. The filling factors at 260, 173and 87 GHz are thus ∼0.8, 0.6 and 0.4, respectively.A satisfactory fit of the IRAM–30 m data towards the “HCOpeak” is obtained for T ex ≃ 5 K and a turbu<strong>le</strong>nt velocity dispersionof σ = 0.225 km s −1 (FWHM = 2.355 × σ). Line profi<strong>le</strong>sare reproduced for N(HCO) = 3.2 × 10 13 cm −2 (see redsolid curves in Fig. 2). The most intense HCO lines at 86.67 and173.38 GHz become marginally optically thick at this columndensity (τ 1). Therefore, opacity corrections need to be takeninto account. We checked that the low value of T ex (subtherma<strong>le</strong>xcitation as T k ≃ 60 K) is consistent with detai<strong>le</strong>d excitationcalculations carried out for H 13 CO + in the PDR which are describedbelow.Because the HCO signals are weaker towards the“DCO + peak”, we only detected 2 hyperfine components of the1 01 −0 00 transition. Assuming extended emission and the sameexcitation temperature as for the “HCO peak”, 5 K, we fit theobserved lines with a column density of 4.6 × 10 12 cm −2 (bluesolid lines in Fig. 2). Both HCO lines are optically thin at this position.This simp<strong>le</strong> analysis shows that the HCO column densityis ∼7 times larger at the “HCO peak” in the PDR, than towardsthe dense cold core.3.2.4. H 13 CO + column densitiesBoth the H 13 CO + J = 3–2 and 1–0 line profi<strong>le</strong>s at the “HCOpeak” are fitted with n(H 2 ) ≃ 5 × 10 4 cm −3 , T k ≃ 60 K ande − /H ≃ 5 × 10 −5 (as predicted by the PDR models below). Therequired column density is N(H 13 CO + ) = 5.8 × 10 11 cm −2 .Forthose conditions, the excitation temperature, T ex ,oftheJ = 3–2transition varies from ≃4 to 6 K, which supports the sing<strong>le</strong>-T exmodels of HCO. Both H 13 CO + lines are optically thin towardsthe “HCO peak”.The H 13 CO + line emission towards the “DCO + peak” hasbeen studied by Pety et al. (2007a). Both H 13 CO + lines are modera<strong>tel</strong>yoptically thick towards the core, and the H 13 CO + columndensity is N(H 13 CO + ) ≃ 5.0×10 12 cm −2 , which represents an enhancementof nearly one order of magnitude relative to the PDR.According to our 1.2 mm continuum map, the extinction towardsthe core is A V 30 mag compared to 20 mag in the PDR. TheH 13 CO + column density enhancement therefore corresponds toa true abundance enhancement.Tab<strong>le</strong> 4. Inferred column densities and abundances with respect tomo<strong>le</strong>cular hydrogen, e.g. χ(X) = N(X)/N(H 2 ).Mo<strong>le</strong>cu<strong>le</strong> Method HCO peak DCO + peakN(H 2 )[cm −2 ] 1.2 mm cont. 1.9 × 10 22 2.9 × 10 22N(HCO) [ cm −2 ] T ex = 5K 3.2 × 10 13 4.6 × 10 12N(H 13 CO + )[cm −2 ] Full excitation 5.8 × 10 11 5.0 × 10 12 ∗N(HCO + )[cm −2 ] 12 C/ 13 C = 60 3.5 × 10 13 3.0 × 10 14χ(HCO) 1.7 × 10 −9 1.6 × 10 −10 †χ(H 13 CO + ) 3.1 × 10 −11 1.7 × 10 −10χ(HCO + ) 1.8 × 10 −9 1.0 × 10 −8∗ Pety et al. (2007a).† 1.7 × 10 −9 if HCO arises only from the cloud surface (A V ≃ 3).3.2.5. Comparison of HCO and H 13 CO + abundancesTab<strong>le</strong> 4 summarizes the inferred HCO and H 13 CO + columndensities and abundances towards the 2 se<strong>le</strong>cted positions: the“HCO peak” in the PDR and the “DCO + peak” in the FUVshieldedcore. Both species exhibit strong variations of their columndensities and abundances relative to H 2 between the PDRand the shielded region. In the PDR, we found that both theHCO abundance relative to H 2 (χ(HCO) ≃ 1–2 × 10 −9 )andtheHCO/H 13 CO + column density ratio (≈50) are high. These figuresare higher than all previously published measurements (atlower angular resolution). Besides, the formyl radical and HCO +reach similar abundances in the PDR.The situation is reversed towards the “DCO + peak”, i.e. theobserved HCO/H 13 CO + column density ratio is lower (≈1) thantowards the “HCO peak”. Neverthe<strong>le</strong>ss, whi<strong>le</strong> the bulk of the observedH 13 CO + emission arises from cold and shielded gas, theorigin of HCO emission is <strong>le</strong>ss c<strong>le</strong>ar. HCO could either (i) coexistwith H 13 CO + or (ii) arise predominantly from the line-ofsightcloud surface. In the former case, our observations showthat the HCO abundance drops by one order of magnitude betweenthe PDR and the dense core environment. However, it ispossib<strong>le</strong> that the abundance variation is even more pronounced,if the detected HCO emission arises from the line of sight cloudsurface. We have estimated the depth of the cloud layer, assumingthat HCO keeps the “PDR abundance” in this foregroundlayer: a cloud surface layer of A V ≃ 3 (illuminated by the meanFUV radiation field around the region) also reproduces the observedHCO lines towards the cold and dense core (blue solidlines in Fig. 2).In this case, both the HCO abundance and the HCO/H 13 CO +abundance ratio in the dense core itself will be even lowerthan listed in Tab<strong>le</strong> 4. We have tried to discriminate betweenthe scenarios by comparing the HCO 1 01 −0 00 (J = 3/2–1/2,F = 2–1) and H 13 CO + J = 1–0 line profi<strong>le</strong>s towards this position.Both lines have been observed simultaneously with theIRAM-30 m <strong>tel</strong>escope. Because of their very similar frequencies(∼86.7 GHz), the beam profi<strong>le</strong> and angular resolution is effectivelythe same. In this situation, any difference in the measuredlinewidths ref<strong>le</strong>cts real differences in the gas kinematicsand turbu<strong>le</strong>nce of the regions where the line profi<strong>le</strong>s are formed.Gaussian fits of the HCO and H 13 CO + lines towards “the DCO +peak” provides line widths of Δv(HCO) = 0.81 ± 0.06 km s −1and Δv(H 13 CO + ) = 0.60 ± 0.01 km s −1 . Therefore, even if theH 13 CO + J = 1–0 lines are slightly broadened by opacity and donot represent the true line of sight velocity dispersion, HCOlines are broader at the 3σ <strong>le</strong>vel of confidence. This remarkab<strong>le</strong>difference supports the scenario (ii) where the H 13 CO + line


982 M. Gerin et al.: HCO mapping of the Horsehead: tracing the illuminated dense mo<strong>le</strong>cular cloud surfaces<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Fig. 4. Photochemical models of a unidimensional PDR. Upper panels show the density gradient (n H = n(H) + 2n(H 2 )incm −3 )usedinthecalculation. Midd<strong>le</strong> panels show the predicted HCO and H 13 CO + abundances (relative to n H ). The H 13 CO + abundance inferred from observationsin the cold core (“the DCO + peak”, see the offsets in Tab<strong>le</strong> 2) is shown with blue lines. The HCO abundance inferred from observations in thePDR (“the HCO peak”, see the offsets in Tab<strong>le</strong> 2) is shown with red lines. Lower panels show the HCO/H 13 CO + abundance ratio predicted bythe models whereas the HCO/H 13 CO + column density ratio inferred from observations is shown as blue arrows and red lines (for the cold coreand PDR respectively). Each panel compares two different models: <strong>le</strong>ft-side models show a standard chemistry (dashed curves) versus the samenetwork upgraded with the addition of the H 2 CO + photon → HCO + H photodissociation (solid curves). Right-side models show the previousupgraded standard model (solid curves) versus a chemistry that adds the O + CH 2 → HCO + H reaction with a rate of 5.01 × 10 −11 cm 3 s −1 (dottedcurves). The inclusion of the O + CH 2 reaction has almost no effect on H 13 CO + for the physical conditions prevailing in the Horsehead, but triggersan increases of the HCO abundance in the PDR by two orders of magnitude.emission towards the “the DCO + peak” arises from the quiescent,cold and dense core, whereas HCO, in the same line ofsight, arises predominantly from the warmer and more turbu<strong>le</strong>ntouter cloud layers. We note that the presence of a foregroundlayerofmorediffuse material (A V ∼ 2 mag) was already introducedby Goicoechea et al. (2006) to fit the CS J = 2–1 scatteredline emission. The analysis of CO J = 4–3 and CI 3 P 1 − 3 P 0 maps<strong>le</strong>d Philipp et al. (2006) to propose the presence of a diffuse envelope,with A V ∼ 2 mag, and which contributes to about halfthe mass of the dense filament traced by C 18 O and the dust continuumemission. The hypothesis of a surface layer of HCO istherefore consistent with previous modeling of mo<strong>le</strong>cular emissionof the Horsehead.We conclude 1) that HCO and HCO + have similar abundancesin the PDR; and 2) that the HCO abundance drops by at<strong>le</strong>ast one order of magnitude between the dense and warm PDRregion and the cold and shielded DCO + core.4. HCO chemistry4.1. Gas-phase formation: PDR modelsIn order to understand the HCO and H 13 CO + abundances andHCO/H 13 CO + column density ratio inferred from observations,we have mode<strong>le</strong>d the steady state gas phase chemistry at theHorsehead edge. The density distribution in the PDR is wellrepresented by a density gradient n H (δx) ∝ δx 4 ,whereδxis the distance from the edge towards the cloud interior andn H = n(H) + 2n(H 2 ) (see the top panels of Fig. 4). The densityreaches a constant n H value of 2 × 10 5 cm −3 in an equiva<strong>le</strong>nt<strong>le</strong>ngth of ∼10 ′′ Habart et al. (2005); Goicoechea et al. (2006).The cloud edge is illuminated by a FUV field 60 times the meaninters<strong>tel</strong>lar radiation field (G 0 = 60 in Draine units). We usedthe Meudon PDR code 2 , a photochemical model of a unidimensionalPDR (see Le Bourlot et al. 1993; Le Petit et al. 2006;Goicoechea & Le Bourlot 2007, for a detai<strong>le</strong>d description). Ourstandard chemical network is based on a modified version of theOhio State University (osu) gas-phase network, updated for photochemicalstudies (see Goicoechea et al. 2006). It also includes13 C fractionation reactions Graedel et al. (1982) and specificcomputation of the 13 CO photodissociation rate as a function ofdepth. The ionization rate due to cosmic rays in the models isζ = 5 × 10 −17 s −1 . Following our previous work, we chose thefollowing e<strong>le</strong>mental gas phase abundances: He/H = 0.1, O/H =3 × 10 −4 ,C/H = 1.4 × 10 −4 ,N/H = 8 × 10 −5 ,S/H = 3.5 × 10 −6 ,13 C/H = 2.3 × 10 −6 ,Si/H = 1.7 × 10 −8 and Fe/H = 1.0 × 10 −9 .In Fig. 4, we investigate the main gas-phase formation routesfor HCO in a series of models “testing” different pathways <strong>le</strong>adingto the formation of HCO. HCO and H 13 CO + predictions areshown in Fig. 4 (midd<strong>le</strong> panels). In all models the HCO abundancepeaks near the cloud surface at A V ≃ 1.5 (δx ≃ 14 ′′ )where the ionization fraction is high (e − /H ∼ 5 × 10 −5 ). Dueto the low abundance of metals in the model (as represented bythe low abundance of Fe), the ionization fraction in the shielded2 Publicly availab<strong>le</strong> at http://aristote.obspm.fr/MIS/


M. Gerin et al.: HCO mapping of the Horsehead: tracing the illuminated dense mo<strong>le</strong>cular cloud surfaces 983<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012regions is low (e − /H 10 −8 ), and therefore the H 13 CO + predictionsmatches the observed values (Goicoechea et al. 2009).Besides, a low metalicity reduces the efficiency of charge exchangereactions of HCO + with metals, e.g.,Fe + HCO + → HCO + Fe + (1)which are the main gas-phase formation route of HCO in theFUV-shielded gas in our models. Hence, the HCO abundance remainslow inside the core. Neverthe<strong>le</strong>ss, even though such modelsdo reproduce the observed HCO distribution, which c<strong>le</strong>arlypeaks at the PDR position, the predicted absolute HCO abundancescan vary by orders of magnitude depending of the dominantformation route.In our standard model (<strong>le</strong>ft-side models: dashed curves), theformation of HCO in the PDR is dominated by the dissociativerecombination of H 2 CO + , whi<strong>le</strong> its destruction is dominatedby photodissociation. Even if the predicted HCO/H 13 CO + abundanceratio satisfactorily reproduces the value inferred from observations,the predicted HCO abundance peak is ∼3 ordersofmagnitude lower than observed. In order to increase the gasphaseformation of the HCO in the PDR we have added a newchannel in the photodissociation of formaldehyde, the productionHCO, in addition to the normal channel producing CO:H 2 CO + photon → HCO + H. (2)This channel is generally not included in standard chemical networksbut very likely exists Troe (2007); Yin et al. (2007). Weincluded this process with an unattenuated photodissociationFig. 5. Medium angular resolution maps of theintegrated intensity of the 4 hyperfine componentsof the fundamental transition of HCO.These lines have been observed simultaneouslyat IRAM-30 m. Maps have been rotated by14 ◦ counter-clockwise around the projectioncenter, located at (δx,δy) = (20 ′′ , 0 ′′ ), to bringthe illuminated star direction in the horizontaldirection and the horizontal zero has been set atthe PDR edge. The emission of all lines is integratedbetween 9.6 and 11.4 km s −1 . Displayedintegrated intensities are expressed in the mainbeam temperature sca<strong>le</strong>. Contour <strong>le</strong>vels are displayedon the grey sca<strong>le</strong> lookup tab<strong>le</strong>s. The redvertical line shows the PDR edge and the greencrosses show the positions (DCO + and HCOpeaks) where deep integrations have been performedat IRAM-30 m (see Fig. 2).rate of κ diss (H 2 CO) = 10 −9 s −1 and a depth dependence givenby exp(−1.74 A V ). This is the same rate as the one given byvan Dishoeck (1988) for the photodissociation of H 2 CO producingCO, which is explicitly calculated for the Draine (1978) radiationfield. Model results are shown in Fig. 4 (<strong>le</strong>ft-side models:solid curves). The inclusion of Reaction 2, which becomes thedominant HCO formation route, increases the HCO abundancein the PDR by a factor of ∼5. But the HCO production rate isstill too low to reproduce the abundance determined from observations.Another plausib<strong>le</strong> possibility to increase the HCO abundancein the PDR by pure gas-phase processes is to include additionalreactions of atomic oxygen with carbon radicals that reach highabundances only in the PDR. Among the investigated reactions,the most critical one,O + CH 2 → HCO + H (3)is known to proceed with a relatively fast rate at high temperatures(5.01 × 10 −11 cm 3 s −1 at T k = 1200–1800K; Tsuboi& Hashimoto 1981). This is the rate recommended by NISTMallard et al. (1994) and UMIST2006 Woodall et al. (2007)andthat we adopt for our lower temperature domain (∼10–200 K).Model predictions are shown in Fig. 4 (right-side models: dottedcurves). Whi<strong>le</strong> the predicted HCO abundance in the shieldedgas remains almost the same, the HCO abundance is dramaticallyincreased in the PDR (by a factor of ∼125) and the O +CH 2 reaction becomes the HCO dominant production reaction.Therefore, such a pure gas-phase model adding reactions 2 and 3not only reproduces the H 13 CO + abundance in the shielded core,


984 M. Gerin et al.: HCO mapping of the Horsehead: tracing the illuminated dense mo<strong>le</strong>cular cloud surfaces<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012but also reproduces the observed HCO absolute abundances inthe PDR. In this picture, the enhanced HCO abundance that weobserve in the Horsehead PDR edge would be fully determinedby the gas-phase chemical path:C + −→ H2 CH + 2−→H 2CH + −→3 e − CH 2−→ O HCO. (4)The validity of the rate of Reaction 3 used in our PDR model remains,of course, to be confirmed theoretically or experimentallyat the typical ISM temperatures (10 to 200 K).4.2. Other routes for HCO formation: Grain photodesorptionIf Reaction 3 is not included in the chemical network, the predictedHCO abundance is ∼2 orders of magnitude below the observedvalue towards the PDR. As a consequence, the presenceof HCO in the gas-phase should be linked to grain mant<strong>le</strong> formationroutes, and subsequent desorption processes (not takeninto account in our modeling). In particular, Schilke et al. (2001)proposed that HCO could result from H 2 CO photodissociation,if large quantities of formaldehyde are formed on grain mant<strong>le</strong>sand then re<strong>le</strong>ased in the gas phase. Even with this assumption,their model could not reproduce the observed HCO abundancein highly illuminated PDRs such as the Orion Bar. The weakerFUV-radiation field in the Horsehead, but high density, preventdust grains from acquiring high temperatures over large spatialsca<strong>le</strong>s. In fact, both gas and grains cool down below ∼30 K in≃10 ′′ –20 ′′ (or A V ≃ 1−2) as the FUV-radiation field is attenuated.Therefore, thermal desorption of dust ice-mant<strong>le</strong>s (presumablyformed before σ-Orionis ignited and started to illuminatethe nebula) should play a negligib<strong>le</strong> ro<strong>le</strong>. Hence a non-thermaldesorption mechanism should be considered to produce the highabundance of HCO observed in the gas phase. This mechanismcould either produce HCO directly or a precursor mo<strong>le</strong>cu<strong>le</strong> suchas formaldehyde.Since high HCO abundances are only observed in thePDR, FUV induced ice-mant<strong>le</strong> photo-desorption (with rates thatroughly sca<strong>le</strong> with the FUV-radiation field strength) seems thebest candidate (e.g., Willacy & Williams 1993; Bergin et al.1995). Laboratory experiments have shown that HCO radicalsare produced in irradiated, methanol containing, ice mant<strong>le</strong>sBernstein et al. (1995); Moore et al. (2001); Bennett & Kaiser(2007). The formyl radical could be formed through the hydrogenationof CO in the solid phase. It is an important intermediateradical in the synthesis of more comp<strong>le</strong>x organic mo<strong>le</strong>cu<strong>le</strong>s suchas methyl formate or glycolaldehyde Bennett & Kaiser (2007).However, the efficiency of the production of radicals in FUV irradiatedices remains uncertain, and very likely depends on theice-mant<strong>le</strong> composition. The formation of species like formaldehydeand methanol in CO-ice exposed to H-atom bombardmenthas been reported by different groups Hiraoka et al. (1994);Watanabe et al. (2002); Linnartz et al. (2007), further confirmingthe importance of HCO as an intermediate product in the synthesisof organic mo<strong>le</strong>cu<strong>le</strong>s in ices. Indeed, hydrogenation reactionsof CO-ice, which form HCO, H 2 CO, CH 3 OandCH 3 OH in grainmant<strong>le</strong>s (e.g., Tie<strong>le</strong>ns & Whittet 1997; Charn<strong>le</strong>y et al. 1997), areone important path which warrants further studies.To compare with our observations, we further need to understandhow the radicals are re<strong>le</strong>ased in the gas phase, eitherdirectly during the photo-processing, or following FUV inducedphoto-desorption. Recent laboratory measurements have startedto shed light on the efficiency of photo-desorption, which dependson the ice composition and mo<strong>le</strong>cu<strong>le</strong> to be desorbed.For species such as CO, the rate of photo-desorbed mo<strong>le</strong>cu<strong>le</strong>sper FUV photon is much higher than previously thought(e.g., Öberg et al. 2007). Similar experiments are required toconstrain the formation rate of the various species that can formin inters<strong>tel</strong>lar ices and to determine their photo-desorption rates.We can use the measured gas phase abundance of HCO toconstrain the efficiency of photo-desorption. We assume that thePDR is at steady state, and that the main HCO formation mechanismis non thermal photo-desorption from grain mant<strong>le</strong>s (with aF HCO rate), whi<strong>le</strong> the main destruction mechanism is gas-phasephotodissociation (with a D HCO rate), therefore:D HCO = G 0 κ diss (HCO) χ(HCO) n(H 2 ) [cm −3 s −1 ] (5)F HCO = G 0 κ pd (HCO) χ(HCO ice ) n(H 2O ice )n(H 2 )[cm −3 s −1 ](6)n(H 2 )where χ(HCO) is the gas phase abundance of HCO relativeto H 2 , χ(HCO ice ) is the solid phase abundance relative to waterice, and n(H 2 O ice )/n(H 2 ) is the fraction of water in the solidphase relative to the total gas density. κ diss (HCO) and κ pd (HCO)are the HCO photodissociation and photo-desorption rates respectively.By equaling the formation and destruction rates, we get:κ pd (HCO) = κ diss (HCO)orκ pd (HCO)s −1χ(HCO)χ(HCO ice )n(H 2 )n(H 2 O ice )[s −1 ] (7)≈ 10 −12 κ diss(HCO) χ(HCO)/10 −9 10 −4 n(H 2 )10 −9 χ(HCO ice )/10 −2 n(H 2 O ice )where we have used typical figures for the HCO abundance inthe gas phase (∼10 −9 , see above) and solid phase (∼10 −2 see e.g.Bennet & Kaiser 2007) and for the amount of oxygen present aswater ice in grain mant<strong>le</strong>s.Assuming standard ISM grains with a radius of 0.1 μm therequired photodesorption efficiency (or yield) Y pd (HCO):κ pd (HCO)Y pd (HCO) ≃[mo<strong>le</strong>cu<strong>le</strong>s photon −1 ] (9)G 0 exp(−2A V ) πa 2(see e.g., d’Hendecourt et al. 1985; Bergin et al. 1995)convertsto Y pd (HCO) ≈ 10 −4 mo<strong>le</strong>cu<strong>le</strong>s per photon (for the FUV radiationfield in the Horsehead and A V ≃ 1.5, where HCO peaks).Therefore, the production of HCO in the gas phase from photodesorptionof formyl radicals could be a valid alternative to gasphase production, if the photo-desorption efficiency is high andHCO abundant in the ice mant<strong>le</strong>s. This mechanism also requiresfurther laboratory and theoretical studies.Because the formyl radical is closely related to formaldehydeand methanol and the three species are likely to coexist inthe ice mant<strong>le</strong>s, a combined analysis of the H 2 CO, CH 3 OH andHCO line emissions towards the Horsehead nebula (PDR andcores) is needed to provide more information on the relative efficienciesof gas-phase and solid-phase routes in the formation ofcomp<strong>le</strong>x organic mo<strong>le</strong>cu<strong>le</strong>s in environments dominated by FUVradiation.This will be the subject of a future paper.5. Summary and conclusionsWe have presented interferometric and sing<strong>le</strong>-dish data showingthe spatial distribution of the formyl radical rotational linesin the Horsehead PDR and associated dense core. The HCOemission delineates the illuminated edge of the nebula and coincideswith the PAH and hydrocarbon emission. HCO and HCO +reach similar abundances (≃1−2 × 10 −9 ) in these PDR regions(8)


M. Gerin et al.: HCO mapping of the Horsehead: tracing the illuminated dense mo<strong>le</strong>cular cloud surfaces 985<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012where the chemistry is dominated by the presence of FUV photons.For the physical conditions prevailing in the Horseheadedge, pure gas-phase chemistry is ab<strong>le</strong> to reproduce the observedHCO abundances (high in the PDR, low in the shielded core) ifthe O + CH 2 → HCO + H reaction is included in the models.This reaction connects the high abundance of HCO, through itsformation from carbon radicals, with the availability of C + inthe PDR.The different linewidths of HCO and H 13 CO + in the line ofsight towards the “DCO + peak” suggest that the H 13 CO + lineemission arises from the quiescent, cold and dense gas comp<strong>le</strong><strong>tel</strong>yshielded from the FUV radiation, whereas HCO predominantlyarises from the outer surface of the cloud (its illuminatedskin). As a result we propose the HCO/H 13 CO + abundance ratio,and the HCO abundance itself (if 10 −10 ), as sensitive diagnosticsof the presence of FUV radiation fields. In particular,regions where the HCO/H 13 CO + abundance ratio (or intensityratio if lines are optically thin) is greater than ≃1 should ref<strong>le</strong>ctongoing FUV-photochemistry.Given the rich HCO spectrum and the possibility of mappingits bright millimeter line emission with interferometers, wepropose HCO-H 2 as a very interesting mo<strong>le</strong>cular system for calculationsof the ab initio inelastic collision rates.Acknow<strong>le</strong>dgements. We thank the IRAM PdBI and 30 m staff for their supportduring the observations. We thank A. Faure and J. Tennyson for sending us theH 13 CO + -e − collisional rates prior to publication, B. Godard for useful discussionson the chemistry of carbon ions in the diffuse ISM, and A. Bergeat and A.Canosa for interesting discussions on radical-atom chemical reactions. J.R.G. issupported by a Ramón y Cajal research contract from the Spanish MICINN andco-financed by the European Social Fund. This research has benefitted from thefinancial support of the CNRS/INSU research programme, PCMI. We acknow<strong>le</strong>dgethe use of the JPL (Pickett et al. 1998) and Cologne (Mül<strong>le</strong>r et al. 2001,2005) spectroscopic data bases, as well as the UMIST chemical reaction database Woodall et al. (2007).ReferencesAbergel, A., Bernard, J. P., Boulanger, F., et al. 2002, A&A, 389, 239Bennett, C. J., & Kaiser, R. I. 2007, ApJ, 661, 899Bergin, E. A., Langer, W. D., & Goldsmith, P. F. 1995, ApJ, 441, 222Bernstein, M. P., Sandford, S. A., Allamandola, L. J., Chang, S., & Scharberg,M. A. 1995, ApJ, 454, 327Charn<strong>le</strong>y, S. B., Tie<strong>le</strong>ns, A. G. G. M., & Rodgers, S. D. 1997, ApJ, 482, L203d’Hendecourt, L. B., Allamandola, L. J., & Greenberg, J. M. 1985, A&A, 152130Draine, B. T. 1978, ApJS, 36, 595de Jong, T., Boland, W., & Dalgarno, A. 1980, A&A, 91, 68Flower, D. R. 1999, MNRAS, 305, 651García-Burillo, S., Martín-Pintado, J., Fuente, A., Usero, A., & Neri, R. 2002,ApJ, 575, L55Goicoechea, J. R., & Le Bourlot, J. 2007, A&A, 467, 1Goicoechea, J. R., Pety, J., Gerin, M., et al. 2006, A&A, 456, 565Goicoechea, J. R., Pety, J., Gerin, M., et al. 2009, A&A, in pressGonzá<strong>le</strong>z-García, M., Le Bourlot, J., Le Petit, F., & Roueff, E. 2008, A&A, 485,127Graedel, T. E., Langer, W. D., & Frerking, M. A. 1982, ApJS, 48, 321Habart, E., Abergel, A., Walms<strong>le</strong>y, C. M., Teyssier, D., & Pety, J. 2005, A&A,437, 177Hiraoka, K., Ohashi, N., Kihara, N., et al. 1994, Chem. Phys. Lett., 229, 408Landsberg, B. M., Merer, A. J., & Oka, T. 1977, J. Mol. Spec., 67, 459Le Bourlot, J., Pineau Des Forets, G., Roueff, E., & Flower, D. R. 1993, A&A,267, 233Le Petit, F., Nehmé, C, Le Bourlot, J., & Roueff, E. 2006, ApJS, 64, 506Linnartz, H., Acharyya, K., Awad, Z., et al. 2007, Mo<strong>le</strong>cu<strong>le</strong>s in Space andLaboratory, ed. J. L. Lemaire, & F. CombesMallard, et al. 1994, NIST Chemical Kinetics Database, NIST, Gaithersburg,MDMoore, M. H., Hudson, R. L., & Gerakines, P. A. 2001, Spec. Acta part A, 57,843Mül<strong>le</strong>r, H. S. P., Thorwirth, S., Roth, D. A., & Winnewisser, W. 2001, A&A,370, L49Mül<strong>le</strong>r, H. S. P., Schlöder, F., Stutzki, J., & Winnewisser, W. 2005, J. Mol. Struct.,742, 215Öberg, K. I., Fuchs, G. W., Awad, Z., et al. 2007, ApJ, 662, L23Penzias, A. A., & Burrus, C. A. 1973, ARA&A, 11, 51Pety, J., Teyssier, D., Fossé, D., et al. 2005, A&A, 435, 885Pety, J. SF2A-2005: Semaine de l’Astrophysique Française, meeting held inStrasbourg, France, ed. F. Casoli, T. Contini, J. M. Hameury, & L. Pagani(EDP Sciences, Conf. Ser.), 721Pety, J., Goicoechea, J. R., Hily-Blant, P., Gerin, M., & Teyssier, D. 2007a, A&A,464, L41Pety, J., Goicoechea, J. R., Gerin, M., et al. 2007b, Proceedings of the Mo<strong>le</strong>cu<strong>le</strong>sin Space and Laboratory conference, ed. J. L. Lemaire, & F. CombesPhilipp, S. D., Lis, D. C., Güsten, R., et al. 2006, A&A, 454, 213Pickett, H. M., Poynter, R. L., Cohen, E. A., et al. 1998, J. Quant. Spectrosc.Rad. Transfer, 60, 883Röllig, M., et al. 2007, A&A, 467, 187Schilke, P., Pineau des Forets, G., Walms<strong>le</strong>y, C. M., & Martín-Pintado, J. 2001,A&A, 372, 291Snyder, L. E., Hollis, J. M., & Ulich, B. L. 1976, ApJ, 208, L91Snyder, L. E., Schenewerk, M. S., & Hollis, J. M. 1985, ApJ, 298, 360Teyssier, D., Fossé, D., Gerin, M., et al. 2004, A&A, 417, 135Tie<strong>le</strong>ns, A. G. G. M., & Whittet, D. C. B. 1997, in Mo<strong>le</strong>cu<strong>le</strong>s in astrophysics:probe and processes, ed. E. F. van Dishoeck (Dordrecht: Kluwer), 45Troe, J. 2007, J. Phys. Chem., 111, 3868Tsuboi, T., & Hashimoto, K. 1981, J. Combust. Flame, 42van Dishoeck, E. F. 1988, Rate Coefficients in Astrochemistry, ed. T. J. Millar,& D. A. Williams (Dordrecht, Boston: Kluwer Academic Publishers), 49Watanabe, N., & Kouchi, A. 2002, ApJ, 571, L173Willacy, K., & Williams, D. A. 1993, MNRAS, 260, 635Woodall, J., Agúndez, M., Markwick-Kemper, A. J., & Millar, T. J. 2007, A&A,466, 1197Yin, H. M., Rowling, S. T., Büll, A., & Kab<strong>le</strong>, S. H. 2007, J. Chem. Phys., 064302


A&A 534, A49 (2011)DOI: 10.1051/0004-6361/201117257c○ ESO 2011Astronomy&AstrophysicsH 2 CO in the Horsehead PDR:photo-desorption of dust grain ice mant<strong>le</strong>sV. Guzmán 1,2 ,J.Pety 2,1 , J. R. Goicoechea 3 , M. Gerin 1 , and E. Roueff 41 LERMA – LRA, UMR 8112, Observatoire de Paris and Éco<strong>le</strong> Norma<strong>le</strong> Supérieure, 24 rue Lhomond, 75231 Paris, Francee-mail: [viviana.guzman;maryvonne.gerin]@lra.ens.fr2 IRAM, 300 rue de la Piscine, 38406 Grenob<strong>le</strong> Cedex, Francee-mail: pety@iram.fr3 Departamento de Astrofísica, Centro de Astrobiología, CSIC-INTA, Carretera de Ajalvir, Km 4, Torrejón de Ardoz,28850 Madrid, Spaine-mail: jr.goicoechea@cab.inta-csic.es4 LUTH UMR 8102, CNRS and Observatoire de Paris, Place J. Janssen, 92195 Meudon Cedex, Francee-mail: evelyne.roueff@obspm.frReceived 13 May 2011 / Accepted 22 August 2011<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012ABSTRACTAims. For the first time we investigate the ro<strong>le</strong> of the grain surface chemistry in the Horsehead photo-dissociation region (PDR).Methods. We performed deep observations of several H 2 CO rotational lines toward the PDR and its associated dense-core in theHorsehead nebula, where the dust is cold (T dust ≃ 20−30 K). We comp<strong>le</strong>mented these observations with a map of the p-H 2 CO 3 03 −2 02line at 218.2 GHz (with 12 ′′ angular resolution). We determine the H 2 CO abundances using a detai<strong>le</strong>d radiative transfer analysis andcompare these results with PDR models that include either pure gas-phase chemistry or both gas-phase and grain surface chemistry.Results. The H 2 CO abundances (≃2–3 × 10 −10 ) with respect to H-nuc<strong>le</strong>i are similar in the PDR and dense-core. In the dense-core thepure gas-phase chemistry model reproduces the observed H 2 CO abundance. Thus, surface processes do not contribute significantly tothe gas-phase H 2 CO abundance in the core. In contrast, the formation of H 2 CO on the surface of dust grains and subsequent photodesorptioninto the gas-phase are needed in the PDR to explain the observed gas-phase H 2 CO abundance, because the gas-phasechemistry alone does not produce enough H 2 CO. The assignments of different formation routes are strengthen by the different measuredortho-to-para ratio of H 2 CO: the dense-core displays the equilibrium value (∼3) whi<strong>le</strong> the PDR displays an out-of-equilibriumvalue (∼2).Conclusions. Photo-desorption of H 2 CO ices is an efficient mechanism to re<strong>le</strong>ase a significant amount of gas-phase H 2 CO into theHorsehead PDR.Key words. astrochemistry – ISM: clouds – ISM: mo<strong>le</strong>cu<strong>le</strong>s – ISM: individual objects: Horsehead nebula – radiative transfer –radio lines: ISM1. IntroductionPhoto-dissociation region (PDR) models are used to understandthe evolution of the far-UV illuminated matter both in ourGalaxy and in external galaxies. The spectacular instrumentalimprovements, which happen in radioastronomy with the adventof Herschel, ALMA and NOEMA, call for matching progressesin PDR modeling. In particular, the physics and chemistry of thedust grains and of the gas-phase are intrica<strong>tel</strong>y intertwined. It iswell known that the formation of ice grain mant<strong>le</strong>s <strong>le</strong>ads to theremoval of chemical reservoirs like CO, O, and other abundantspecies from the gas phase, enabling new chemical routes to beopened and others to be closed. Despite their low temperature,the mant<strong>le</strong>s are chemically active. Hydrogenation/deuterationreactionsare known to be efficient, because hydrogen (or deuteriumatoms) can migrate on the surfaces, but reactions withO, N, and C must also be considered. Comp<strong>le</strong>x mo<strong>le</strong>cu<strong>le</strong>s maytherefore be formed before they are re<strong>le</strong>ased into the gas phase.Moreover, the re<strong>le</strong>ase of the products into the gas phase happenseither through thermal processes (evaporation) or non-thermalones (cosmic ray or far-UV photon-induced desorption). Recentphoto-desorption experiments on water and CO ices show thatthis mechanism is much more efficient than previously thought(Öberg et al. 2009b,a; Muñoz Caro et al. 2010). These results<strong>le</strong>d various groups to include photo-desorption into PDR models(see the results on H 2 OandO 2 by Hol<strong>le</strong>nbach et al. 2009; Walshet al. 2010; Hassel et al. 2010). The availability of well-definedobservations is essential here to distinguish between chemicalassumptions about the significant grain surface processes, i.e.,adsorption, desorption, and diffusion. It is now confirmed thatsome inters<strong>tel</strong>lar species are mostly formed in the gas-phase (COfor instance), others on grains (CH 3 OH, Garrod et al. 2007),whi<strong>le</strong> the chemical routes for other comp<strong>le</strong>x species such asformaldehyde, are still debated because it is likely that solid andgas-phase processes are both needed.Formaldehyde (H 2 CO) was the first organic mo<strong>le</strong>cu<strong>le</strong> discoveredin the inters<strong>tel</strong>lar medium (Snyder et al. 1969). It is arelatively simp<strong>le</strong> organic mo<strong>le</strong>cu<strong>le</strong> that can be formed in the gasphaseand on the surface of dust grains. In the warm gas, H 2 COcan trigger the formation of more comp<strong>le</strong>x organic mo<strong>le</strong>cu<strong>le</strong>s(Charn<strong>le</strong>y et al. 1992). It is one of the most popular mo<strong>le</strong>cu<strong>le</strong>sused for studying the physical conditions of the gas in astrophysicalsources. Indeed, it is a good probe of the temperatureand density of the gas (Mangum & Wootten 1993). Owing to itsArtic<strong>le</strong> published by EDP Sciences A49, page 1 of 9


Tab<strong>le</strong> 1. Observation parameters for the maps shown in Fig. 1.A&A 534, A49 (2011)Mo<strong>le</strong>cu<strong>le</strong> Transition Frequency Instrument Beam PA Vel. resol. Int. time T sys Noise Obs. date◦GHz arcsec km s −1 hours K (T ∗ A ) K(T mb)Continuum at 1.2 mm 30m/MAMBO 11.7 × 11.7 0 – – – – –DCO + 3–2 216.112582 30m/HERA 11.4 × 11.4 0 0.11 1.5/2.0 a 230 0.10 2006 Mar.p-H 2 CO 3 03 −2 02 218.222190 30m/HERA 11.9 × 11.9 0 0.05 2.1/3.4 a 280 0.32 2008 Jan.HCO 1 0,1 3/2, 2−0 0,0 1/2, 1 86.670760 PdBI/C&D 6.69 × 4.39 16 0.20 6.5 b 150 0.09 c 2006–2007Notes. The projection center of all maps is α 2000 = 05 h 40 m 54.27 s , δ 2000 = −02 ◦ 28 ′ 00 ′′ . (a) Two values are given for the integration time: theon-source time and the <strong>tel</strong>escope time. (b) On-source time computed as if the source were always observed with six antennae. (c) The noise valuesquoted here are the noises at the mosaic phase center (mosaic noise is inhomogeneous because of the primary beam correction; it steeply increasesat the mosaic edges).Tab<strong>le</strong> 2. Observation parameters of the deep integrations of the o-H 2 CO and p-H 2 CO lines toward the PDR and the dense-core.<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Position Mo<strong>le</strong>cu<strong>le</strong> Transition ν Line area Instrument F eff B eff Int. time T peak rms S/N[GHz] K km s −1 hours K (T mb ) Ko-H 2 CO 2 12 −1 11 140.839 1.75 ± 0.02 30-m/C150 0.93 0.70 1.9 1.87 0.061 31p-H 2 CO 2 02 −1 01 145.603 1.32 ± 0.02 30-m/D150 0.93 0.69 1.9 1.61 0.047 34o-H 2 CO 2 11 −1 10 150.498 1.41 ± 0.02 30-m/C150 0.93 0.68 1.4 1.52 0.053 29PDR o-H 2 CO 3 13 −2 12 211.211 1.24 ± 0.03 30-m/B230 0.91 0.57 1.1 1.46 0.096 15p-H 2 CO 3 03 −2 02 218.222 0.77 ± 0.01 30-m/B230 0.91 0.55 3.9 1.11 0.052 21p-H 2 CO 3 22 −2 21 218.476 0.17 ± 0.01 30-m/B230 0.91 0.55 2.0 0.27 0.055 5o-H 2 CO 3 12 −2 11 225.698 0.84 ± 0.02 30-m/A230 0.91 0.54 6.5 1.12 0.079 14o-H 2 CO 2 12 −1 11 140.839 2.56 ± 0.01 30-m/C150 0.93 0.70 3.7 3.46 0.036 96p-H 2 CO 2 02 −1 01 145.603 1.75 ± 0.02 30-m/D150 0.93 0.69 1.9 2.62 0.044 60o-H 2 CO 2 11 −1 10 150.498 1.89 ± 0.01 30-m/C150 0.93 0.68 1.5 2.52 0.052 49o-H 2 CO 3 13 −2 12 211.211 1.93 ± 0.02 30-m/B230 0.91 0.57 2.0 3.02 0.065 47p-H 2 CO 3 03 −2 02 218.222 1.03 ± 0.01 30-m/B230 0.91 0.55 3.0 1.83 0.057 32p-H 2 CO 3 22 −2 21 218.476 0.04 ± 0.01 30-m/B230 0.91 0.55 4.5 0.06 0.037 2Dense-core o-H 2 CO 3 12 −2 11 225.698 1.27 ± 0.02 30-m/A230 0.91 0.54 8.4 1.96 0.073 27o-H 132 CO 2 12−1 11 137.450 0.09 ± 0.02 30-m/D150 0.95 0.70 2.0 0.11 0.063 2p-H 132 CO 2 02−1 01 141.984 0.10 ± 0.01 30-m/D150 0.95 0.70 1.5 0.11 0.060 2HDCO 2 11 −1 10 134.285 0.13 ± 0.01 30-m/C150 0.94 0.71 2.0 0.32 0.042 8HDCO 3 12 −2 11 201.341 0.05 ± 0.01 30-m/A230 0.91 0.59 3.5 0.13 0.032 4p-D 2 CO 2 12 −1 11 110.838 0.04 ± 0.01 30-m/A100 0.95 0.75 4.9 0.08 0.031 3o-D 2 CO 4 04 −3 03 231.410 0.04 ± 0.01 30-m/A230 0.91 0.53 4.5 0.09 0.068 1large dipo<strong>le</strong> moment (2.3 Debye), its rotational lines are easy todetect from ground-based observations. It is present in a varietyof environments, such as Galactic HII regions (e.g., Downeset al. 1980), proto-s<strong>tel</strong>lar cores (e.g., Young et al. 2004; Maretet al. 2004), young s<strong>tel</strong>lar objects (e.g., Araya et al. 2007), PDRs(e.g., Leurini et al. 2010), starburst galaxies (e.g., Mangum et al.2008)andcomets(e.g.,Snyder et al. 1989; Milam et al. 2006).The Horsehead PDR is particularly well-suited to investigategrain surface chemistry in a UV irradiated environment. Itis viewed nearly edge-on (Habart et al. 2005) at a distance of400 pc (implying that 10 ′′ correspond to 0.02 pc). Thus, it ispossib<strong>le</strong> to study the interaction of far-UV radiation with denseinters<strong>tel</strong>lar clouds and the transition from warm to cold gas in aPDR with a simp<strong>le</strong> geometry, very close to the prototypical kindof source needed to serve as a reference to chemical models. Itsrelatively low UV illumination (χ = 60 in Draine units, Draine1978) and high density (n H ∼ 10 4 −10 5 cm −3 ) implies low dustgrain temperatures, from T dust ∼ 30 K in the PDR to T dust ∼ 20 Kdeeper inside the cloud (Goicoechea et al. 2009a). The re<strong>le</strong>aseof the grain mant<strong>le</strong> products into the gas phase is consequentlydominated by photo-desorption, whi<strong>le</strong> regions with warmer dust(the Orion bar or the star-forming cores) provide mixed informationon the thermal and non-thermal processes (e.g., Bisschopet al. 2007).In this paper we present deep observations of severalformaldehyde lines toward two particular positions in theHorsehead nebula: the PDR, corresponding to the peak of theHCO emission (Gerin et al. 2009), where the gas is warm (T kin ∼60 K); and the dense-core, a cold (T kin ≤ 20 K) condensation located<strong>le</strong>ss than 40 ′′ away from the PDR edge, where HCO + ishighly deuterated (Pety et al. 2007). We present the observationsand data reduction in Sect. 2, whi<strong>le</strong> the results and abundancesare given in Sect. 3. In Sect. 4 we present the H 2 CO chemistryand PDR modeling. A discussion is given in Sect. 5 and we concludein Sect. 6.2. Observations and data reductionTab<strong>le</strong>s 1 and 2 summarize the observation parameters forthe data obtained with the IRAM-30 m and PdBI <strong>tel</strong>escopes.Figure 1 displays the p-H 2 CO, HCO, DCO + and 1.2 mm continuummaps. The p-H 2 CO line was mapped during 3.3 h of goodwinter weather (∼1 mm of water vapor) using the first polarization(i.e. nine of the eighteen availab<strong>le</strong> pixels) of the IRAM-30m/HERA sing<strong>le</strong>-sideband multi-beam receiver. We used thefrequency-switched, on-the-fly observing mode. We observedalong and perpendicular to the direction of the exciting star inzigzags (i.e. ± the lambda and beta scanning direction). Themulti-beam system was rotated by 9.6 ◦ with respect to the scanningdirection. This ensured Nyquist sampling between the rowsexcept at the edges of the map. The fully samp<strong>le</strong>d part of the mapcovered a 150 ′′ × 150 ′′ portion of the sky. A detai<strong>le</strong>d descriptionA49, page 2 of 9


V. Guzmán et al.: H 2 CO in the Horsehead PDR: photo-desorption of dust grain ice mant<strong>le</strong>sTab<strong>le</strong> 3. Spectroscopic parameters of the observed lines obtained fromthe CDMS data base (Mül<strong>le</strong>r et al. 2001).Mo<strong>le</strong>cu<strong>le</strong> Transition ν E u A ul g u[GHz] [K] [s −1 ]o-H 2 CO 2 12 −1 11 140.839 21.92 5.3 × 10 −5 15p-H 2 CO 2 02 −1 01 145.603 10.48 7.8 × 10 −5 5o-H 2 CO 2 11 −1 10 150.498 22.62 6.5 × 10 −5 15o-H 2 CO 3 13 −2 12 211.211 32.06 2.3 × 10 −4 21p-H 2 CO 3 03 −2 02 218.222 20.96 2.8 × 10 −4 7p-H 2 CO 3 22 −2 21 218.476 68.09 1.6 × 10 −4 7o-H 2 CO 3 12 −2 11 225.698 33.45 2.8 × 10 −4 21o-H 132 CO 2 12−1 11 137.450 10.51 4.9 × 10 −5 15p-H 132 CO 2 02−1 01 141.984 2.37 7.2 × 10 −5 5HDCO 2 11 −1 10 134.285 17.63 4.6 × 10 −5 5HDCO 3 12 −2 11 201.341 27.29 2.0 × 10 −4 7o-D 2 CO 2 12 −1 11 110.838 13.37 2.6 × 10 −5 5p-D 2 CO 4 04 −3 03 231.410 27.88 3.5 × 10 −4 18<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Fig. 1. Integrated intensity maps of the Horsehead edge. The intensitiesare expressed in the main-beam temperature sca<strong>le</strong>. Maps were rotatedby 14 ◦ counter-clockwise around the projection center, located at(δx,δy) = (20 ′′ , 0 ′′ ), to bring the exciting star direction in the horizontaldirection and the horizontal zero was set at the PDR edge, delineatedby the red vertical line. The crosses show the positions of the PDR(green) and the dense-core (blue), where deep integrations were performedat IRAM-30m (see Fig. 3). The spatial resolution is plotted inthe bottom <strong>le</strong>ft corner. Values of contour <strong>le</strong>vels are shown on each imagelookup tab<strong>le</strong>. The emission of all lines is integrated between 10.1and 11.1 kms −1 .of the HCO, DCO + and 1.2 mm continuum observations anddata reductions can be found in Gerin et al. (2009), Pety et al.(2007), and Hily-Blant et al. (2005).We performed deep integrations of o-H 2 CO and p-H 2 COlow-energy rotational lines (see Figs. 2 and 3) centered on thePDR and the dense-core. To obtain these deep integration spectra,we used the position-switching observing mode. The on-offcyc<strong>le</strong> duration was 1 min and the off-position offsets were (δ RA,δ Dec) = (−100 ′′ ,0 ′′ ), i.e. the H ii region ionized by σOri andfree of mo<strong>le</strong>cular emission. From our know<strong>le</strong>dge of the IRAM-30 m <strong>tel</strong>escope we estimate the absolute position accuracy tobe 3 ′′ .The data processing was made with the GILDAS 1 softwares(Pety 2005). The IRAM-30m data were first calibratedto the TA ∗ sca<strong>le</strong> using the chopper-wheel method (Penzias &Burrus 1973), and finally converted to main-beam temperatures(T mb ) using the forward and main-beam efficiencies (F eff andB eff ) displayed in Tab<strong>le</strong> 2. The resulting amplitude accuracy is∼ 10%. Frequency-switched spectra were folded using the standardshift-and-add method before baseline subtraction. The resultingspectra were finally gridded through convolution with aGaussian to obtain the maps.3. Results3.1. H 2 CO spatial distributionThe 218.2 GHz p-H 2 CO integrated line-intensity map is shownin Fig. 1 together with the 86.7 GHz HCO, 216.1 GHz DCO +1 See http://www.iram.fr/IRAMFR/GILDAS for more informationabout the GILDAS softwares.Fig. 2. Lower energy rotational <strong>le</strong>vels of para- (<strong>le</strong>ft) and ortho-H 2 CO(right). The energy above para ground-state is shown at the <strong>le</strong>ft of each<strong>le</strong>vel. The arrows indicate the transitions detected in the Horsehead.integrated line-intensity maps and the 1.2 mm continuumemissionmap. Formaldehyde emission is extended throughoutthe Horsehead with a relatively constant intensity. The H 2 COspatial distribution ressemb<strong>le</strong>s the 1.2 mm continuum emission:it follows the top of the famous Horsehead nebula from its frontto its mane. It also delineates the throat of the Horsehead. Thepeak of the H 2 CO emission spatially coincides with the peakof the DCO + emission, which arises from a cold dense-core.However, H 2 CO emission is also c<strong>le</strong>arly present along the PDR,which is traced by the HCO emission. The PDR and dense-core,namely the peaks of the HCO and DCO + emission are shownwith green and blue crosses respectively. Gaussian fits of theH 2 CO lines at the HCO peak result in broader line widths than atthe DCO + peak. That the lines are broader in the PDR confirmsthat H 2 CO lines toward the DCO + peak arise from the densecorerather than from the illuminated surface of the cloud. Thereis a peak in the H 2 CO emission toward the north-west region ofthe nebula, near the edge of the PDR, where two protostars havebeen identified (B33-1 and B33-28, Bow<strong>le</strong>r et al. 2009). Theseprotostars heat the dust around them, so it is likely that H 2 COhas been evaporated from the grain ice mant<strong>le</strong>s.3.2. H 2 CO column densityWe computed the column densities of H 2 CO at the PDR and thedense-core positions. For this we first used the H 132CO lines toA49, page 3 of 9


A&A 534, A49 (2011)<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Fig. 3. Radiative transfer modeling of H 2 CO lines for two positions toward the Horsehead. Two <strong>le</strong>ft columns: the PDR position (T kin = 60 K,n(H 2 ) = 6 × 10 4 cm −3 , N(o-H 2 CO) = 7.2 × 10 12 cm −2 )andtwo right columns: the dense-core position (T kin = 20 K, n(H 2 ) = 10 5 cm −3 ,N(o-H 2 CO) = 9.6 × 10 12 cm −2 ). The two top rows display the ortho lines, for which we varied the column density around the best match (redcurve) by a factor of 1.5 (blue curve) and 1/1.5 (green curve). The two bottom rows display the para lines, for which we kept the column densityof the best match for o-H 2 CO (red curves) constant and varied the ortho-to-para ratio of H 2 CO: o/p = 1.5 (dashed blue), o/p = 2 (dashed red) ando/p = 3 (dashed green).estimate the optical depth of the H 2 CO lines. Then, we made a where β is the escape probability function, which in the case ofused rotational diagram analysis (Goldsmith & Langer 1999).F H2 CO= [12 C]F H132 CO [ 13 C] β (1) To do this, we assume that the gas is under LTE, and thereforeall excitation temperatures are the same, and the energy <strong>le</strong>velsfirst estimate of the column densities and excitation temperatures a homogeneous slab of gas (de Jong et al. 1980) is equal toas an input for a detai<strong>le</strong>d nonlocal non-LTE excitation and radiativetransfer analysis to compute the H 2 CO abundances. Thespectroscopic parameters for the detected transitions (shown inusing rotational diagrams. Finally, we used these first estimatesβ = 1 − exp(−3τ) ·3τ(2)Fig. 2) aregiveninTab<strong>le</strong>3. We assumed that the emission is The isotopic abundance ratio 12 C/ 13 C ≃ 60 (Langer & Penziasextended and fills the 30 m beam, as shown by the map of the 1990; Savage et al. 2002) is almost twice the line intensity ratio3 03 −2 02 transition (see Fig. 1).between formaldehyde and its isotopologue, and therefore theH 2 CO lines have moderate opacities. From the observations we3.2.1. Opacity of the H 2 CO linesWe detected two transitions of the formaldehyde isotopologueestimate τ 212 −2 11∼ 1.6andτ 202 −1 01∼ 1.9forH 2 CO in the densecore.H 132CO in the dense-core position (see upper panels in Fig. 4).By comparing the flux between H 2 CO and H 132CO for the same 3.2.2. Rotational diagram analysistransition it is possib<strong>le</strong> to estimate the opacity of the H 2 CO line,assuming that the H 132CO line is optically thin, as follows: First-order estimates of the beam-averaged column densities andthe rotational temperatures can be found by means of the widelyA49, page 4 of 9


V. Guzmán et al.: H 2 CO in the Horsehead PDR: photo-desorption of dust grain ice mant<strong>le</strong>s<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Fig. 4. H 132 CO and deuterated H 2CO lines detected toward the densecore.Gaussian fits are shown with red lines. For HDCO and D 2 CO theline width was fixed to the width of the HDCO (2 11 −1 10 ) line, becauseit has the best signal-to-noise ratio.are populated following Boltzmann’s law. We built rotational diagramscorrected for line-opacity effects throughln Nthin u+ ln C τ = ln N g u Z − E u, (3)kT rotwhere N is the total column density of the mo<strong>le</strong>cu<strong>le</strong>, g u is the<strong>le</strong>vel degeneracy, E u /k is the energy of the upper <strong>le</strong>vel in K,Z is the partition function at the rotational temperature T rot ,τC τ =1−e≤ 1 is a line-opacity correction factor, where τ is−τthe opacity of the line, and Nuthin is the column density of the upper<strong>le</strong>vel for an optically thin line when the source fills the beam.This last parameter is given byN thinu= 8πkν2 Whc 3 A ul, (4)where k is the Boltzmann constant, ν is the line frequency, Wis the integrated line intensity, h is the Planck constant, c is thespeed of light and A ul is the Einstein coefficient for spontaneousemission.Ortho- and para forms of H 2 CO are treated as differentspecies because radiative transitions between them are forbidden.Resulting rotational diagrams are shown in Fig. 5 forthree different o-H 2 CO (2 12 −1 11 ) and p-H 2 CO (2 02 −1 01 ) lineopacities(τ = 0, 1 and 5). We find column densities of N ∼10 12 −10 13 cm −2 , depending on the opacity. We infer very differentrotational temperatures for o-H 2 CO (T rot ∼ 4−8 K)andp-H 2 CO (T rot ∼ 10−30 K), which are also lower than the wellknownconditions in the PDR (T kin ∼ 60 K) and in the densecore(T kin ∼ 20 K). This suggests that the gas is far from thermalization,and therefore we used these column densities androtational temperatures as an input for a more comp<strong>le</strong>x analysisto derive the H 2 CO column densities.Fig. 5. H 2 CO rotational diagrams corrected for line-opacity effects atthe PDR and dense-core position. Rotational temperatures are shownfor each considered opacity.Tab<strong>le</strong> 4. H 2 CO critical densities (cm −3 )forthreedifferent collidingpartners computed for T kin = 60 K.J KaK cp-H 2 o-H 2 He2 02 7.2 × 10 5 3.6 × 10 5 1.3 × 10 63 03 1.6 × 10 6 9.9 × 10 5 4.2 × 10 63 22 5.8 × 10 5 4.7 × 10 5 2.5 × 10 62 12 3.7 × 10 5 2.5 × 10 5 8.1 × 10 52 11 4.3 × 10 5 2.2 × 10 5 8.7 × 10 53 13 9.7 × 10 5 7.0 × 10 5 2.3 × 10 63 12 1.3 × 10 6 7.9 × 10 5 3.2 × 10 63.2.3. Radiative transfer modelsThe critical density of a given collisional partner correspondsto the density at which the sum of spontaneous radiative deexcitationrates is equal to the sum of collisional de-excitationrates (γ) ofagiven<strong>le</strong>veln cr (J Ka K c, T kin ) =∑J ′ A(JK a ′ Ka K c→ J K′ K ′ ′ caK )c ′∑J ′ γ(JK a ′ Ka K c→ J ′ K′ K ′ caK , T kin)· (5)c ′Formaldehyde lines have high critical densities (∼10 6 cm −3 ,see Tab<strong>le</strong> 4) compared to the H 2 density in the Horsehead(∼10 4 −10 5 cm −3 ). Because we expect subthermal emission(T ex ≪ T kin ) for transitions with high critical densities comparedto the H 2 density, we used a nonlocal non-LTE radiativetransfer code adapted to the Horsehead geometry to model theobserved H 2 CO line intensities (Goicoechea et al. 2006). Weused a nonlocal code to take into account the radiative couplingbetween different cloud positions that might affect the populationof the energy <strong>le</strong>vels. The code is ab<strong>le</strong> to predict the lineA49, page 5 of 9


A&A 534, A49 (2011)<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Tab<strong>le</strong> 5. Column densities and abundances.Column densities[cm −2 ]Abundances[X] =N(X)(N(H)+2 N(H 2 ))Mo<strong>le</strong>cu<strong>le</strong> PDR Dense-coreN H 3.8 × 10 22 6.4 × 10 22N(o-H 2 CO) 7.2 × 10 12 9.6 × 10 12N(p-H 2 CO) 3.6 × 10 12 3.2 × 10 12N(HCO) a 3.2 × 10 13 50 K), so the deuterium chemistry is drivenmainly by CH 2 D + , as opposed to colder regions (20 K) like theHorsehead dense-core, where H 2 D + is the main actor. Owing tothe low temperature in the core it is likely that a non-negligib<strong>le</strong>fraction of CO is frozen on the dust grains, enhancing the deuteriumfractionation.Another way to form deuterated mo<strong>le</strong>cu<strong>le</strong>s in cold environmentsis trough D addition or H-D substitution reactions on thesurface of dust grains (Hidaka et al. 2009). In the Horsehead corethough, desorption from the grain mant<strong>le</strong>s is not efficient in re<strong>le</strong>asingproducts into the gas-phase (see Sect. 4). It is then morelikely that the gas-phase HDCO and D 2 CO mo<strong>le</strong>cu<strong>le</strong>s detectedhere are formed in the gas-phase. Neverthe<strong>le</strong>ss, there can still bea considerab<strong>le</strong> amount of deuterated H 2 CO trapped in the icesaround dust grains.4. H 2 CO chemistryWe used a one-dimensional, steady-state photochemical model(Le Bourlot et al. 1993; Le Petit et al. 2006) to study the H 2 COchemistry in the Horsehead. The physical conditions have alreadybeen constrained by our previous observational studiesand we keep the same assumptions for the density profi<strong>le</strong> (displayedin the upper panel of Fig. 6), radiation field (χ = 60in Draine units), e<strong>le</strong>mental gas-phase abundances (see Tab<strong>le</strong> 6in Goicoechea et al. 2009b) and cosmic ray ionization rate(ζ = 5 × 10 −17 s −1 ).Unlike other organic mo<strong>le</strong>cu<strong>le</strong>s like methanol, which canonly be efficiently formed on the surface of grains (Tie<strong>le</strong>ns &Whittet 1997; Woon 2002; Cuppen et al. 2009), formaldehydecan be formed in both the gas-phase and on the surface of grains.Next, we investigate these two different scenarios.4.1. Pure gas-phase chemistry modelsWe used the Ohio State University (osu) pure gas-phase chemicalnetwork upgraded to photochemical studies. We included the


V. Guzmán et al.: H 2 CO in the Horsehead PDR: photo-desorption of dust grain ice mant<strong>le</strong>s<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Fig. 6. Photochemical model of the Horsehead PDR. Upper panel:PDRdensity profi<strong>le</strong> (n H = n(H) + 2n(H 2 )in cm −3 ). Midd<strong>le</strong> panel: predictedabundance (relative to n H )ofH 2 CO (blue) and HCO (red). Lower panel:predicted HCO/H 2 CO abundance ratio. In the two bottom panels, modelsshown as solid lines include pure gas-phase chemistry and modelsshown as dashed lines include gas-phase as well as grain surface chemistry.The horizontal bars show the measured H 2 CO abundances andabundance ratios.photo-dissociation of HCO and of H 2 CO (<strong>le</strong>ading to CO and H 2 )with rates of 1.1×10 −9 exp(−0.8A V ) and 10 −9 exp(−1.74A V )s −1 ,respectively (van Dishoeck 1988). We also included the H 2 COphoto-dissociation channel that <strong>le</strong>ads to HCO and H (see e.g.,Yin et al. 2007; Troe 2007) with the same rate of the one that<strong>le</strong>ads to CO and H 2 , and the atomic oxygen reaction with themethy<strong>le</strong>ne radical (CH 2 ) to explain the high abundance of HCOin the PDR (Gerin et al. 2009).The predicted HCO and H 2 CO abundance profi<strong>le</strong>s and theHCO/H 2 CO abundance ratio are shown as solid lines in Fig. 6(midd<strong>le</strong> and lower panel, respectively). The formation of H 2 COin the PDR and dense-core is dominated by reactions betweenoxygen atoms and the methyl radical (CH 3 ). The destruction ofH 2 CO in the PDR is dominated by photo-dissociation, whi<strong>le</strong> it isdominated by reactions with ions in the dense-core. The pure-gasphase model satisfactorily reproduces the observed H 2 CO abundancein the dense-core (δx ∼ 35 ′′ ) but it predicts an abundancein the PDR (δx ∼ 15 ′′ ) that is at <strong>le</strong>ast one order of magnitudelower than the observed value.4.2. Grain chemistry modelsWe considered the surface chemistry reactions introduced byStantcheva et al. (2002), which include the following sequenceof hydrogen addition reactions on CO to form formaldehyde andmethanolCO −→HHCO −→HH 2 CO −→HH 3 CO −→HCH 3 OH.We also introduce water formation via hydrogenation reactionsof O, OH until H 2 O.Adsorption, desorption and diffusive reactions were introducedin the Meudon PDR code in the rate equations approach.The corresponding imp<strong>le</strong>mentation will be described in a specificpaper (Le Bourlot et al., to be submitted) and we simplymention the main processes included in the present study. Wedistinguish between mant<strong>le</strong> mo<strong>le</strong>cu<strong>le</strong>s, which may accumulatein several layers (e.g., H 2 O, H 2 CO, CH 3 OH), and light species(e.g., H, H 2 ), which stay on the external layer. Photo-desorptioncan be an efficient mechanism to re<strong>le</strong>ase mo<strong>le</strong>cu<strong>le</strong>s to the gasphase in regions exposed to strong radiation fields, as shown recentlyin laboratory studies (Öberg et al. 2009b,a; Muñoz Caroet al. 2010). Thermal desorption is also introduced. It criticallydepends on the desorption barrier values, which are somewhatuncertain. Diffusive reactions occur on grain surfaces and thediffusion barriers are assumed to be 1/3 of the desorption energyvalues. Photodesorption efficiencies have been measured in thelaboratory for CO, CO 2 ,H 2 OandCH 3 OH. These experimentshave shown that all common ices have photodesorption yieldsof a few 10 −3 mo<strong>le</strong>cu<strong>le</strong>s per incident UV photon (Öberg et al.2007, 2009a,b,c). Therefore, we also take a photo-desorption efficiencyof 10 −3 for those species that have not been studied inthe laboratory. We assume in addition that for formaldehyde thetwo branching ratios toward H 2 CO and HCO+H channels areidentical, i.e. 5 × 10 −4 . Given the high density in the dense-core,the grains are assumed to be strongly coup<strong>le</strong>d to the gas in theinner region, so that their temperatures become equal to 20 K inthe dark region, whereas the illuminated dust grains reach temperaturevalues of about 30 K.The predicted HCO and H 2 CO abundances are shown asdashed lines in Fig. 6. This model reproduces the observedH 2 CO abundance in the dense-core and predicts a similar abundanceas the pure gas-phase model. This way, formation on grainsurfaces does not contribute significantly to the observed gasphaseH 2 CO abundance in the dense-core. This is because of thelow photo-desorption rates in the core caused by the shieldingfrom the external UV field. On the other hand, the H 2 CO abundancecan increase by up to three orders of magnitude in theilluminated part of the cloud (A V 4) when including the grainsurface reactions. The H 2 CO abundance now even peaks in thePDR, whi<strong>le</strong> it peaked in the dense-core in the pure gas-phasemodel. The model predicts a H 2 CO abundance peak in the PDRthat is higher than the observed abundance averaged over the30 m (∼16 ′′ ). This limited resolution prevents us from resolvingthe predicted abundance peak. Interferometric observations areneeded to prove the existence of this peak in the PDR.5. DiscussionH 2 CO has been detected in a variety of different astrophysica<strong>le</strong>nvironments, with a wide range of gas temperatures and densities.It has been detected in diffuse clouds with high abundances(∼10 −9 ), observed in absorption against bright HII regions(e.g., Liszt & Lucas 1995; Liszt et al. 2006). It is not wellunderstood how H 2 CO can be formed and survive in such harshenvironments, because gas-phase process cannot compete withthe photo-dissociation and dust grain temperatures are too highfor mo<strong>le</strong>cu<strong>le</strong>s to freeze on their surfaces. Roueff et al. (2006)detected absorption lines of H 2 CO at 3.6 μm toward the highmassprotostar W33A, and estimated an H 2 CO abundance of∼10 −7 where the gas has a temperature of ∼100 K. Recently,Bergman et al. (2011) found H 2 CO abundances ∼5 × 10 −9 in theρ Ophiuchi A cloud core. Abundances of H 2 CO and other morecomp<strong>le</strong>x mo<strong>le</strong>cu<strong>le</strong>s toward hot cores and protostars are high. Inthese regions the gas is dense and hot, so the dust grains alsoA49, page 7 of 9


A&A 534, A49 (2011)<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012have high temperatures (>100 K). Therefore, the ice mant<strong>le</strong>s,formed in the cold pre-s<strong>tel</strong>lar phase, are comp<strong>le</strong><strong>tel</strong>y evaporated.Once these mo<strong>le</strong>cu<strong>le</strong>s are in the gas-phase, they trigger an activechemistry in the hot gas, forming even more comp<strong>le</strong>x mo<strong>le</strong>cu<strong>le</strong>s(Charn<strong>le</strong>y et al. 1992).H 2 CO has also been observed in other PDRs. Leurini et al.(2010) detected H 2 CO in the Orion Bar PDR toward boththe clump (n H ∼ 10 6 cm −3 ) and the inter-clump (n H ∼10 4 cm −3 ) gas components. They found higher H 2 CO abundances(∼10 −9 −10 −7 ) than the ones inferred in this work for theHorsehead (∼10 −10 ). Mo<strong>le</strong>cu<strong>le</strong>s trapped in the ice mant<strong>le</strong>s canbe thermally desorbed when the dust grains are warm enough.The dust temperature at which a significant amount of H 2 COevaporates can be estimated by equating the flux of desorbingmo<strong>le</strong>cu<strong>le</strong>s from the ices to the flux of adsorbing mo<strong>le</strong>cu<strong>le</strong>s fromthe gas (see Eq. (5) in Hol<strong>le</strong>nbach et al. 2009). Taking an H 2 COdesorption energy of 2050 K (Garrod & Herbst 2006), we obtainan evaporation temperature of ∼41 K. In the Orion Bar thedust grains have temperatures of T dust > 55−70 K, so mo<strong>le</strong>cu<strong>le</strong>scan be desorbed from the icy mant<strong>le</strong>s both thermally and nonthermally.But in the Horsehead PDR dust grains are colder(T dust ∼ 20−30 K), therefore mo<strong>le</strong>cu<strong>le</strong>s can only be desorbednon-thermally. Hence, the main desorption mechanism in thePDR is photo-desorption. In this respect, the Horsehead PDRoffers a c<strong>le</strong>aner environment to isolate the ro<strong>le</strong> of FUV photodesorptionof ice mant<strong>le</strong>s. In the Horsehead dense-core dustgrains are also cold (∼20 K), but photo-desorption is not efficientbecause the dust is shielded from the external UV field.Cosmic rays can desorb mo<strong>le</strong>cu<strong>le</strong>s from the ice mant<strong>le</strong>s, butthis contribution is not significant because the desorption ratesare too low compared to the H 2 CO formation rates in the gasphase.Both the measured H 2 CO abundance and ortho-to-pararatio agree with the scenario in which H 2 CO in the dense-coreis formed in the gas phase with no significant contribution fromgrain surface chemistry.We have shown that photo-desorption is an efficient mechanismto form gas-phase H 2 CO in the Horsehead PDR. But, tounderstand the importance of grain surface chemistry over gasphasechemistry in the formation of comp<strong>le</strong>x organic mo<strong>le</strong>cu<strong>le</strong>s,a similar analysis of other mo<strong>le</strong>cu<strong>le</strong>s, such as CH 3 OH andCH 2 CO, is needed. In particular, CH 3 OH is one of final productsin the CO hydrogenation pathway on grain surfaces. It can alsoform H 2 CO when it is photo-dissociated. Therefore, their gasphaseabundance ratios will help us to constrain their dominantformation mechanism and the relative contributions of gas-phaseand grain surface chemistry. Similar studies in different environmentswill also bring additional information about the relativeefficiencies of the different desorption mechanisms.6. Summary and conclusionsWe have presented deep observations of H 2 CO lines toward theHorsehead PDR and a shielded condensation <strong>le</strong>ss than 40 ′′ awayfrom the PDR edge. We comp<strong>le</strong>mented these observations withap-H 2 CO emission map. H 2 CO emission is extended throughoutthe Horsehead with a relatively constant intensity and resemb<strong>le</strong>sthe 1.2 mm dust continuum emission. H 2 CO beam-averagedabundances are similar (≃2–3 × 10 −10 ) in the PDR and densecorepositions. We infer an equilibrium H 2 CO ortho-to-para ratioof ∼3 in the dense-core, whi<strong>le</strong> in the PDR we find a nonequilibriumvalue of ∼2.For the first time we investigated the ro<strong>le</strong> of grain surfacechemistry in our PDR models of the Horsehead. Pure gas-phaseand grain surface chemistry models give similar results of theA49, page 8 of 9Fig. A.1. Radiative-transfer modeling of H 2 CO lines for the core positionin the Horsehead. The two top rows display the ortho lines and thebottom row displays the para lines. The best-match models are given incolors (T kin = 20 K, n(H 2 ) = 10 5 cm −3 , N(o-H 2 CO) = 9.6 × 10 12 cm −2 ,N(p-H 2 CO) = 3.2 × 10 12 cm −2 ), taking a H 2 ortho-to-para ratio of 3(red lines) and of 0 (green lines).H 2 CO abundance in the dense-core, both consistent with the observations.This way, the observed gas-phase H 2 CO in the coreis formed mainly trough gas-phase reactions, with no significantcontribution from surface process. In contrast, photo-desorptionof H 2 CO ices from dust grains is needed to explain the observedH 2 CO gas-phase abundance in the PDR, because gas-phasechemistry alone does not produce enough H 2 CO. These differentformation routes are consistent with the inferred H 2 CO ortho-topararatios. Thus, photo-desorption is an efficient mechanism toproduce comp<strong>le</strong>x organic mo<strong>le</strong>cu<strong>le</strong>s in the PDR. Because thechemistries of H 2 CO and CH 3 OH are closely linked, we willcontinue this investigation in a next paper by studying the chemistryof CH 3 OH in detail.Acknow<strong>le</strong>dgements. We thank A. Faure and N. Troscompt for sending us thep-H 2 CO – o-H 2 and p-H 2 CO – p-H 2 collisional rates prior to publication. Wethank the referee for a careful reading of the manuscript and interesting comments.V.G. thanks support from the Chi<strong>le</strong>an Government through the BecasChi<strong>le</strong> scholarship program. This work was also funded by grant ANR-09-BLAN-0231-01 from the French Agence Nationa<strong>le</strong> de la Recherche as part ofthe SCHISM project. J.R.G. thanks the Spanish MICINN for funding supportthrough grants AYA2009-07304 and CSD2009-00038. J.R.G. is supported by aRamón y Cajal research contract from the Spanish MICINN and co-financed bythe European Social Fund.Appendix A: H 2 ortho-to-para ratioWe investigated the influence of the H 2 ortho-to-para ratioadopted in the excitation and radiative transfer models. InFig. A.1 we show the best-match models for the H 2 CO lines towardthe core position in the Horsehead assuming two differentvalues for the H 2 ortho-to-para ratio. We show models for an H 2


V. Guzmán et al.: H 2 CO in the Horsehead PDR: photo-desorption of dust grain ice mant<strong>le</strong>s<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012ortho-to-para ratio of 3 in red (high temperature limit), and weshow models for the extreme case where the H 2 ortho-to-para ratiois 0 in green (low temperature limit). The difference betweenthe models is <strong>le</strong>ss than 10%, which is within the observationaluncertainties and therefore not significant.ReferencesAraya, E., Hofner, P., Goss, W. M., et al. 2007, ApJS, 170, 152Bergman, P., Parise, B., Liseau, R., & Larsson, B. 2011, A&A, 527, A39Bisschop, S. E., Jørgensen, J. K., van Dishoeck, E. F., & de Wachter, E. B. M.2007, A&A, 465, 913Bow<strong>le</strong>r, B. P., Wal<strong>le</strong>r, W. H., Megeath, S. T., Patten, B. M., & Tamura, M. 2009,AJ, 137, 3685Charn<strong>le</strong>y, S. B., Tie<strong>le</strong>ns, A. G. G. M., & Millar, T. J. 1992, ApJ, 399, L71Cuppen, H. M., van Dishoeck, E. F., Herbst, E., & Tie<strong>le</strong>ns, A. G. G. M. 2009,A&A, 508, 275de Jong, T., Boland, W., & Dalgarno, A. 1980, A&A, 91, 68Dickens, J. E., & Irvine, W. M. 1999, ApJ, 518, 733Downes, D., Wilson, T. L., Bieging, J., & Wink, J. 1980, A&AS, 40, 379Draine, B. T. 1978, ApJS, 36, 595Garrod, R. T., & Herbst, E. 2006, A&A, 457, 927Garrod, R. T., Wakelam, V., & Herbst, E. 2007, A&A, 467, 1103Gerin, M., Goicoechea, J. R., Pety, J., & Hily-Blant, P. 2009, A&A, 494, 977Goicoechea, J. R., Pety, J., Gerin, M., et al. 2006, A&A, 456, 565Goicoechea, J. R., Compiègne, M., & Habart, E. 2009a, ApJ, 699, L165Goicoechea, J. R., Pety, J., Gerin, M., Hily-Blant, P., & Le Bourlot, J. 2009b,A&A, 498, 771Goldsmith, P. F., & Langer, W. D. 1999, ApJ, 517, 209Green, S. 1991, ApJS, 76, 979Habart, E., Abergel, A., Walms<strong>le</strong>y, C. M., Teyssier, D., & Pety, J. 2005, A&A,437, 177Habart, E., Abergel, A., Boulanger, F., et al. 2011, A&A, 527, A122Hassel, G. E., Herbst, E., & Bergin, E. A. 2010, A&A, 515, A66Hidaka, H., Watanabe, M., Kouchi, A., & Watanabe, N. 2009, ApJ, 702, 291Hily-Blant, P., Teyssier, D., Philipp, S., & Güsten, R. 2005, A&A, 440, 909Hol<strong>le</strong>nbach, D., Kaufman, M. J., Bergin, E. A., & Melnick, G. J. 2009, ApJ, 690,1497Jørgensen, J. K., Schöier, F. L., & van Dishoeck, E. F. 2005, A&A, 437, 501Kahane, C., Lucas, R., Frerking, M. A., Langer, W. D., & Encrenaz, P. 1984,A&A, 137, 211Langer, W. D., & Penzias, A. A. 1990, ApJ, 357, 477Le Bourlot, J., Pineau Des Forets, G., Roueff, E., & Flower, D. R. 1993, A&A,267, 233Le Petit, F., Nehmé, C., Le Bourlot, J., & Roueff, E. 2006, ApJS, 164, 506Leurini, S., Parise, B., Schilke, P., Pety, J., & Rolffs, R. 2010, A&A, 511, A82Linsky, J. L., Draine, B. T., Moos, H. W., et al. 2006, ApJ, 647, 1106Liszt, H., & Lucas, R. 1995, A&A, 299, 847Liszt, H. S., Lucas, R., & Pety, J. 2006, A&A, 448, 253Mangum, J. G., & Wootten, A. 1993, ApJS, 89, 123Mangum, J. G., Darling, J., Menten, K. M., & Henkel, C. 2008, ApJ, 673, 832Maret, S., Ceccarelli, C., Caux, E., et al. 2004, A&A, 416, 577Milam, S. N., Remijan, A. J., Womack, M., et al. 2006, ApJ, 649, 1169Muñoz Caro, G. M., Jiménez-Escobar, A., Martín-Gago, J. Á., et al. 2010, A&A,522, A108Mül<strong>le</strong>r, H. S. P., Thorwirth, S., Roth, D. A., & Winnewisser, G. 2001, A&A, 370,L49Öberg, K. I., Fuchs, G. W., Awad, Z., et al. 2007, ApJ, 662, L23Öberg, K. I., Garrod, R. T., van Dishoeck, E. F., & Linnartz, H. 2009a, A&A,504, 891Öberg, K. I., Linnartz, H., Visser, R., & van Dishoeck, E. F. 2009b, ApJ, 693,1209Öberg, K. I., van Dishoeck, E. F., & Linnartz, H. 2009c, A&A, 496, 281Parise, B., Leurini, S., Schilke, P., et al. 2009, A&A, 508, 737Penzias, A. A., & Burrus, C. A. 1973, ARA&A, 11, 51Pety, J. 2005, in SF2A-2005: Semaine de l’Astrophysique Francaise, ed.F. Casoli, T. Contini, J. M. Hameury, & L. Pagani, 721Pety, J., Goicoechea, J. R., Hily-Blant, P., Gerin, M., & Teyssier, D. 2007, A&A,464, L41Roueff, E., Dartois, E., Gebal<strong>le</strong>, T. R., & Gerin, M. 2006, A&A, 447, 963Savage, C., Apponi, A. J., Ziurys, L. M., & Wyckoff, S. 2002, ApJ, 578, 211Snyder, L. E., Buhl, D., Zuckerman, B., & Palmer, P. 1969, Phys. Rev. Lett., 22,679Snyder, L. E., Palmer, P., & de Pater, I. 1989, AJ, 97, 246Stantcheva, T., Shematovich, V. I., & Herbst, E. 2002, A&A, 391, 1069Tie<strong>le</strong>ns, A. G. G. M., & Whittet, D. C. B. 1997, in IAU Symp. 178, ed. E. F. vanDishoeck, 45Troe, J. 2007, J. Phys. Chem. A, 111, 3868Troscompt, N., Faure, A., Wiesenfeld, L., Ceccarelli, C., & Valiron, P. 2009,A&A, 493, 687Tudorie, M., Cacciani, P., Cosléou, J., et al. 2006, A&A, 453, 755van Dishoeck, E. F. 1988, in Rate Coefficients in Astrochemistry, Proceedingsof a Conference held in UMIST, Manchester, United Kingdom, September21–24, 1987. ed. T. J. Millar, & D. A. Williams (Dordrecht, Boston: KluwerAcademic Publishers), 49Walsh, C., Millar, T. J., & Nomura, H. 2010, ApJ, 722, 1607Woon, D. E. 2002, ApJ, 569, 541Yin, H.-M., Rowling, S. J., Büll, A., & Kab<strong>le</strong>, S. H. 2007, J. Chem. Phys., 127,064302Young, K. E., Lee, J., Evans, II, N. J., Goldsmith, P. F., & Doty, S. D. 2004, ApJ,614, 252A49, page 9 of 9


<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Chapitre 6Copyright: Rogelio Bernal Andreo (Deep Sky Colors)Le projet SCHISM, financé par l’Agence Nationa<strong>le</strong>de la Recherche6.1 RésuméL’astrochimie a connu un fort développement ces 20 dernières années. C’est maintenant undomaine scientifique reconnu, prêt à tirer parti des capacités sans précédent des nouveaux instrumentsde l’IRAM, puis d’ALMA et d’Herschel pour la spectroscopie et l’imagerie à hauterésolution. Les instruments et <strong>le</strong>s modes d’observations seront-ils suffisamment f<strong>le</strong>xib<strong>le</strong>s pours’adapter à des besoins toujours plus variés ? Les observations s’adosseront-el<strong>le</strong>s à des méthodesd’analyse puissantes et à des modè<strong>le</strong>s exploitant l’évolution des connaissances des processusfondamentaux ? Le projet ANR SCHISM, que je coordonne depuis <strong>le</strong> 1er septembre 2009 pourune durée de 4 ans, explore plusieurs facettes de ces questions, dont <strong>le</strong> couplage de la chimieen phase gazeuse à cel<strong>le</strong> à la surface des grains, et <strong>le</strong> couplage de la chimie avec la turbu<strong>le</strong>ncemagnéto-hydrodynamique (MHD) (phénomènes de transport, structures dissipatives, chocs). Sapertinence vient du lien fort entre développements numériques pointus et observations utilisant<strong>le</strong>s instruments <strong>le</strong>s plus performants du domaine : <strong>le</strong> sa<strong>tel</strong>lite Herschel et <strong>le</strong>s interféromètresmillimétriques (Plateau de Bure et ALMA).Alors que la chimie en phase gazeuse est de mieux en mieux comprise, la chimie en phasesolide est encore balbutiante, malgré <strong>le</strong> rô<strong>le</strong> majeur de <strong>tel</strong>s processus pour la formation de H 2et d’autres espèces (par exemp<strong>le</strong> H 2 CO et CH 3 OH). De plus, l’activité chimique est intimementcouplée à la dynamique du gaz, et par conséquent à son évolution. La chimie affecte <strong>le</strong>smouvements du gaz via <strong>le</strong> rayonnement des molécu<strong>le</strong>s polaires qui constitue <strong>le</strong> principal agent de


146 LE PROJET SCHISM, FINANCÉ PAR L’AGENCE NATIONALE DE LA RECHERCHErefroidissement du gaz dans de nombreux <strong>milieu</strong>x : ces molécu<strong>le</strong>s contrô<strong>le</strong>nt l’équation d’état dugaz et donc sa dynamique. En retour, la dynamique du gaz affecte la chimie parce que <strong>le</strong>s écou<strong>le</strong>mentssont turbu<strong>le</strong>nts, supersoniques et plus ou moins couplés au champ magnétique. Combinerdes codes chimiques sophistiqués avec des observations de raies moléculaires est à la fois uneétape capita<strong>le</strong> pour exploiter p<strong>le</strong>inement la richesse des observations de raies moléculaires etun formidab<strong>le</strong> défi du fait de la non-linéarité 1) de la dynamique des fluides et 2) des réactionschimiques. Le but du projet est, d’une part, de rassemb<strong>le</strong>r des théoriciens et des observateurs 1pour développer et tester <strong>le</strong>s modè<strong>le</strong>s numériques décrivant l’interaction des gaz moléculairesavec <strong>le</strong> rayonnement (<strong>le</strong> code PDR de Meudon), et avec une perturbation supersonique (code dechoc MHD), et, d’autre part, d’apporter <strong>le</strong>s jeux de données appropriés pour tester <strong>le</strong>s codes etune nouvel<strong>le</strong> méthode améliorant l’efficacité des observations en interférométrie pour <strong>le</strong>s sourcesétendues.<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 20121 Le projet SCHISM comporte trois partenaires : 1) l’IRAM (PI : J. Pety, participants : S. Bardeau, P. Gratier,V. Guzman, E. Reynier, N. Rodriguez-Fernandez), 2) <strong>le</strong> LERMA/LRA (PI : M. Gerin, participants : S. Cabrit,M. De Luca, E. Falgarone, B. Goddard, A. Gusdorf, P. Lesaffre), 3) <strong>le</strong> LUTH/ISM (PI : F. Le Petit, participants :J. Le Bourlot, S. Myake, E. Roueff) et des participants extérieurs (J.R. Goicoechea, P. Hily-Blant, H. Liszt, R. Lucas,G. Pineau des Forêts).


<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012 ¡ ¢£¤¥¢¦§¦§¨©£¤© ¡¢¢¤¤¥¢§¨¦£§¦ ¡¢¦¤¤¢¤¤¡¤§¥¨¦§¨¨£¦ ¡¢¦¤¤¢£§££¡¥¢§¨¤¨£¦§¦§¨¦¨§¤ ¡¢¢£¤¥¢§¨¤¨£¦§¦§¤ !!"!#!!" $% $&%&% $& % % ¢ ¡£ ¢ ¤¥¦¤¤¥¥¥¦§¤¨¤¥¥¦¤¤¥¥¥¤©¦§¤¦¤ §¦¤¥¥©¥¥©¥¥§¦¤¥ §¤§¥©¥!¤§¥¤¥¦§¤¨¥©¥¥¦§¤§!¦§¤¨¥¥ "# $% $ & $'(') $*'+'% $,*'+)+*+'+' $$+'+'*+*) ¡


<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012 ¡¢¢¡££¤¥¦§ ¡¢¡¢ £¤¥¤¦§§¦¤£¨£©¤©§¦§¦¦§£¦¦§§


<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012 ¡¢£¢¤¥¦¡¢¤£§¨©¤¡¤¡¥¡©¡¢¤¥§¨¢¥¥¡¤¡©¢¡¤©¡¤¥¤¢¡¢ ¡¡ ¢ ¢££ ¤¥¦¤§¤¤ ¨¨©©¨¨ ¡¢£¢¡¤ ¡¢


<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012 ¡¡ ¡¢ £¤¥¦¥§¥§¤¦¨§¥¤§©¤¥£§¥¥¤¤ ¡¡ ¢ ¡¢£¤¥£¥¦¥¦§¦¥¢¥¨©¢¥¦¡©¢§§


<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012 ¡¢£¤¢¥ ¦§¨§©¨§§©¨§§§©¦§¨¨©§ ¡ ¡¢£¤¤¥¦¤§¨¨¤©¨¤¢§¤¥¨¥¤¨¥§§¥¤¥¨§§¨¨¥¤ ¡¢¢£¢¤¥¢¤ ¦§¦§¨©¦¤¨¢££¤£¢©¢£¤ ¡¢£¤¢¡¥¢¢¢¤¥¦¦¦§¢¨¢¤¡©¢¥¥¤¥¢§©


<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012 ¡¢£¡¤¤¥¦§¨£§£¥¦£¨£¤§£¥©¤£¢£¤¤¥¨¨¥£¥¤¢ ¡¢ £¤¥¢¤¦§¤¥¢¥¤£¤¢¨¥¢£¥£©¤¢ §¦¤¥££¥¢¥¤¡§¡§¡§¥¥¤¢


<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012 ¡¢£¡ ¤£¡¥¢¥¢¥¥£¦¡£ §¨©¨¡¤¥¥¤£¤¡§§¡¥¥¡ ¡¢ £¤ ¥¦ §¨© ¡¡ ¢£¤¢


<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012 ¡¢¢ £¤¥¤¤¦§ ¡¢ ¢¢¡ £ ¤ ¢¡ ¦¤¤¤¤¡¢ ¢¡ ¦¤¤¤¤¡¢ ¢ £¤¤¡¢ ¨ ¢©¢¢£¥¤¢§ ¤¤ ¤¤¦¦¤§¥¢©¦ ¤ ¦¤¤¤ ¤¤¢¤¦¢¦ ¦ © ¢ ¤§¤§¡ £ ¤ ¢¢£¥ ¤§ ¥¦¢¤¢ ¤¤ ¦¢¤ ¢¨¤ ¤¤¦¢¤ ¡¢¢£¤¥¦¤¤¥ ¡¢¢£¤§¦¤¤¥ © ¨¨¨ ¨¨©¨ ¨¨ ¨©©© ¡ ¢££ ¤


<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012 ¡¢¢ £¤¤ ¥ ¦ ¡¢¢ £¤¤ ¥¦¥ ¡¢¢ £


<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012 ¡¡¢ £ ¤¤ ¤ ¥ ¦ § § ¨ © !"# $ ¡¢¢¢£ ¤ ¥¦¥§¨¥ © ¡¢ £¤ ¤¥ ¦§ ¨ ©©


¡¢£¤¥¢¦¢ §¨ ©¨¨ ¡¢¡¡¢ ¤ ¥¡¦ ¥¡¦ ¦ ¡ ¦ ¦¥ ¡¢¡¡¢¥ ¡¥ ¡§§¨§¨§¨¨¨§§¨§¨§¨¨¨¡¡¡¡£§£§¡ ¤ ¥¡¤ £ £§ £¢£¤¦©¤¦©¤£¢£¤¤ ¦ ¥¡¤ £ £§ ¥ ¤ ¥¡© ££§<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012


<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012


<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Chapitre 7Copyright: Jérôme Pety (IRAM/30m)Spectro-imagerie grand-champ enradio-astronomie (sub)-millimétriqueLes questions scientifiques posées ci-dessus requièrent des observations fiab<strong>le</strong>s sur des champsde vue suffisamment larges à la meil<strong>le</strong>ure résolution angulaire possib<strong>le</strong>. Les notions de champsde vue et de résolution dépendent fortement du type d’instrument employé : un té<strong>le</strong>scope unique<strong>tel</strong> que <strong>le</strong> 30m de l’IRAM à Pico Ve<strong>le</strong>ta près de Grenade ou un interféromètre comme celui duPlateau de Bure.7.1 Mode té<strong>le</strong>scope uniqueUn té<strong>le</strong>scope comme l’IRAM-30m a une résolution angulaire typique de 11 ′′ à 1 mm de longueurd’onde. L’instrumentation actuel<strong>le</strong> permet d’imager 1 ◦2 en 50 heures avec une sensibilitétypique d’environ 0.5 K (T ∗ A) dans des canaux de 0.25 km s −1 . Pour obtenir ce résultat, il faut acquérirenviron 10 6 spectres bruts qui donnent après réduction un cube d’environ 200 000 spectres(si on suppose un échantillonnage critique, c.-à-d. un spectre toutes <strong>le</strong>s 5 ′′ ). Chaque spectre a 512canaux correspondant typiquement soit à une bande passante de 1 GHz (∼ 1300 km s −1 à 1 mm)avec une résolution spectra<strong>le</strong> de 2 MHz (∼ 2.6 km s −1 à 1 mm), soit à une bande passante de10 MHz à 20 kHz de résolution.L’imagerie grand-champ a fait des progrès spectaculaires sur <strong>le</strong>s antennes uniques grâce àdeux révolutions successives. A la fin des années 1990, nous sommes passés d’une techniqued’observation dite “raster mapping”, où <strong>le</strong>s données sont acquises en posant indépendammentsur chaque position indépendante du champ de vue à observer, à la technique d’observation dite“On-The-Fly” (OTF), où <strong>le</strong>s données sont acquises de manière continue en même temps que


160SPECTRO-IMAGERIE GRAND-CHAMP ENRADIO-ASTRONOMIE (SUB)-MILLIMÉTRIQUE<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012FIG. 7.1 – La célèbre galaxie du tourbillon (M51) observée grâce à l’émission de la raie de 12 COJ=1–0 avec l’antenne du 30m à gauche et l’interféromètre du Plateau de Bure à droite. L’imageinterféromètrique a été obtenue dans <strong>le</strong> cadre d’un grand projet IRAM, nommé PdBI ArcsecondWhirlpool Survey [C6]. Les 8 kpc centraux sont imagés avec une résolution exceptionnel<strong>le</strong> de45 pc (∼ 1 ′′ ), équiva<strong>le</strong>nte à la résolution d’un té<strong>le</strong>scope de 700 m de diamètre ! Le facteur dezoom entre <strong>le</strong>s deux images est environ 25.l’antenne se déplace sur <strong>le</strong> ciel. La deuxième révolution a eu lieu dans <strong>le</strong>s années 2002–2003avec l’arrivée d’HERA à l’IRAM-30m, un récepteur hétérodyne de 18 pixels échantillonnant <strong>le</strong>plan focal du té<strong>le</strong>scope.Ces deux révolutions ont conduit à une augmentation du nombre de spectres à traiter d’environ3 ordres de grandeur en moins de 10 ans. Pour répondre à ce défi, j’ai entrepris à partir de2003, avec S. Guilloteau (Obs. de Bordeaux/LAB), P. Hily-Blant (post-doc à l’IRAM puis maîtrede conférence à l’IPAG) et S. Bardeau (ingénieur logiciel à l’IRAM), une refonte complète de laréduction des données d’imagerie à l’IRAM [M1, M7, M13], allant du format de données auxalgorithmes de réduction en passant par la visualisation des données brutes et réduites avec l’introductionde nouveaux concepts dans la gestion des données : tab<strong>le</strong>s de contenus, sé<strong>le</strong>ction fined’un sous-ensemb<strong>le</strong> de données, outils interactifs de visualisation, etc... Cet effort soutenu a permisde donner une deuxième jeunesse à CLASS qui continue aujourd’hui à être <strong>le</strong> logiciel <strong>le</strong>aderpour la réduction et l’analyse des données spectroscopiques en radio-astronomie : des astronomesdu monde entier l’utilisent pour traiter des données d’Herschel/HIFI, de SOFIA/GREAT,d’APEX, de NANTEN, du CSO, du JCMT, du GBT, d’Effelsberg...7.2 Mode interférométriqueDe nombreux objectifs scientifiques 1 requièrent à la fois une haute résolution angulaire(mieux que 1 ′′ ), que seuls <strong>le</strong>s interféromètres peuvent fournir aujourd’hui, et un champ de vue1 Par exemp<strong>le</strong>, la mesure du contraste bras/interbras dans <strong>le</strong>s galaxies proches, la turbu<strong>le</strong>nce du <strong>milieu</strong> inters<strong>tel</strong>laire,la formation des enveloppes proto-s<strong>tel</strong>laires, <strong>le</strong>s flots moléculaires des objets s<strong>tel</strong>laires jeunes, etc...


7.2 MODE INTERFÉROMÉTRIQUE 161<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012suffisemment large, au moins quelques minutes d’arc au carré. La figure 7.1 montre un exemp<strong>le</strong>récent spectaculaire, à savoir l’imagerie avec l’interféromètre du Plateau de Bure d’une surfacede 5 ′ × 3 ′ au centre de la célèbre galaxie spira<strong>le</strong> M51 à une résolution typique de 1 ′′ [C6]. Or, <strong>le</strong>santennes de 12m de l’interféromètre d’ALMA donnent un champ de vue instantané relativementpetit : 27 ′′ à 230 GHz et 9 ′′ à 690 GHz. L’interférométrie grand-champ est donc un enjeu essentielpour ALMA.Historiquement, <strong>le</strong>s interféromètres (sub)-millimétriques actuels (PdBI, CARMA, SMA) ontété construits pour démontrer la viabilité et la nécessité scientifique de l’interférométrie (sub)-millimétrique. L’importance de <strong>le</strong>urs résultats a conduit à la réalisation du projet ALMA. Encontre-partie, l’imagerie grand-champ n’a été un objectif important qu’une dizaine d’annéesaprès <strong>le</strong>ur mise en service. A l’inverse, l’imagerie grand-champ a été un objectif prioritaired’ALMA dès sa phase de conception. Durant <strong>le</strong>s années 2001 et 2002, j’ai étudié l’ajout auconcept initial (50 antennes de 12m) d’un réseau 12 antennes de 7m (dit ACA, Atacama CompactArray) pour améliorer des performances d’imagerie grand-champ de l’instrument [M20,M21, M22]. En effet, comme tout interféromètre multiplicatif, ALMA filtre <strong>le</strong>s fréquences spatia<strong>le</strong>sinférieures à environ 1.5 fois <strong>le</strong> diamètre des antennes (ici 18m) et l’utilisation des antennesen mode puissance tota<strong>le</strong> (auto-corrélation) ne permet de récupérer que la fréquence spatia<strong>le</strong> à0m. L’objectif du réseau ACA est de comb<strong>le</strong>r <strong>le</strong> manque de mesures des fréquences spatia<strong>le</strong>s auxa<strong>le</strong>ntours de 10m. Ces études réalisées en collaboration avec F. Gueth (IRAM) et S. Guilloteau(alors “Project Scientist” d’ALMA) ont été essentiel<strong>le</strong>s dans la décision de l’ajout d’ACA au projetde base pour un coût estimé entre 100 et 150 Meuros. Les outils que nous avons développésont été par la suite utilisés par nos collègues japonais pour affiner <strong>le</strong> design d’ACA [M14].Par ail<strong>le</strong>urs, l’imagerie grand-champ en interférométrie millimétrique est aujourd’hui obtenueavec une technique classique, dite “stop-and-go mosaicing”. Cette technique est comparab<strong>le</strong>au “raster mapping” avec une antenne unique. Bien qu’el<strong>le</strong> permette de faire de l’imagerie grandchamp,cette technique limite à la fois l’efficacité 2 et <strong>le</strong> champ de vue observab<strong>le</strong>. L’imageriegrand-champ est ainsi aujourd’hui au même point en mode interférométrique qu’el<strong>le</strong> l’était enmode té<strong>le</strong>scope unique au début des années 1990. Nous sommes donc potentiel<strong>le</strong>ment à la veil<strong>le</strong>d’une révolution dans ce domaine avec l’introduction du mode d’observation OTF en interférométrie.Hormis <strong>le</strong>s problèmes techniques (synchronisation d’antennes en mouvement simultané,augmentation importante du débit de données, etc...), l’absence d’algorithmes d’imagerie et dedéconvolution dédiés est une des raisons principa<strong>le</strong>s pour <strong>le</strong>squel<strong>le</strong>s <strong>le</strong> mode d’observation OTFn’a, à notre connaissance, jamais été utilisé auparavant sur un interféromètre millimétrique. Dans<strong>le</strong> traitement d’observations classiques (“stop-and-go mosaicing”), <strong>le</strong>s visibilités sont imagéesindépendamment champ par champ avant que <strong>le</strong>s images produites ne soient combinées linéairement.La quantité de données produites par <strong>le</strong>s observations OTF exclut une <strong>tel</strong><strong>le</strong> approche.Je propose avec N. Rodriguez-Fernandez un traitement dans <strong>le</strong>quel <strong>le</strong>s visibilités observées surdiverses positions du ciel sont rééchantillonnées sur une gril<strong>le</strong> régulière à la fois dans <strong>le</strong> plandu ciel et dans <strong>le</strong> plan uv 3 avant d’être imagées et déconvoluées [A7]. Cette inversion des opérationspermet de traiter <strong>le</strong> problème par une réduction de la quantité de données d’au moinsun ordre de grandeur. Plus fondamenta<strong>le</strong>ment, nous montrons qu’el<strong>le</strong> introduit aussi un changementconceptuel important dans la manière de penser l’imagerie grand-champ en interférométriemillimétrique.2 Car <strong>le</strong> signal n’est pas intégré lorsque <strong>le</strong>s antennes passent d’une position à une autre.3 Le plan uv est l’espace où sont mesurées <strong>le</strong>s visibilités interférométriques. Ce plan est lié au plan de Fourier.


162SPECTRO-IMAGERIE GRAND-CHAMP ENRADIO-ASTRONOMIE (SUB)-MILLIMÉTRIQUECe travail a été réalisé dans <strong>le</strong> cadre d’un contrat européen (6ème PCRD) “ALMA Enhancement”conduit par l’ESO de 2006 à 2011, contrat dans <strong>le</strong>quel l’IRAM était responsab<strong>le</strong> (pourun budget de 900 keuros) du commissionning du mode d’observation OTF à l’interféromètre duPlateau de Bure avant de transférer l’expertise au projet ALMA. En 2011, l’équipe comprenaitdeux ingénieurs logiciels (M. Lonjaret, J.C. Roche), un post-doc (N. Rodriguez-Fernandez) etdeux astronomes (F. Gueth et moi-même). Dans ce projet de recherche, deux objectifs sur troisont été réalisés : 1) la réalisation d’observations OTF au Plateau de Bure, et 2) la livraison auprojet ALMA d’un nouvel algorithme d’imagerie [M2]. Il reste la mise au point d’un algorithmede déconvolution adapté que l’IRAM va continuer de développer sous ma direction au-delà ducontrat initial pour ses propres besoins.7.3 Le futur de la radio-astronomie (sub-)millimétrique<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Conscient du potentiel des récepteurs multi-pixels pour l’imagerie grand-champ, l’IRAM aune politique de recherche et développement offensive dans ce domaine depuis plus de 10 ans.Cela a conduit à la réalisation d’HERA à l’IRAM-30m. Des programmes de R&D sont aujourd’huien cours tant au niveau des récepteurs pour miniaturiser <strong>le</strong>s mélangeurs (FP7 AMSTAR+)qu’au niveau des spectromètres pour obtenir de grandes résolutions spectra<strong>le</strong>s sur l’ensemb<strong>le</strong> desbandes passantes délivrées par <strong>le</strong>s récepteurs.Ces projets vont déboucher dans <strong>le</strong>s 5 ans à venir par une nouvel<strong>le</strong> génération de récepteursmulti-pixels à l’IRAM-30m : un récepteur de 50 pixels à 3 mm (<strong>le</strong>s éléments de base étant soitdes mélangeurs SIS soit des amplificateurs HEMT) et un successeur d’HERA de 98 pixels à1 mm (à base de mélangeurs SIS). Le remplacement des auto-corrélateurs par des spectromètresà transformée de Fourier a permis de gagner un ordre de grandeur sur <strong>le</strong> nombre de canaux parspectre permettant de couvrir soit 16 GHz pour <strong>le</strong>s récepteurs monopixels (EMIR) soit 1 GHzpour HERA de bande passante par pixel à 200 kHz de résolution. Ces développements conduisentà un nouvel accroissement de la quantité de données par un facteur environ 50, auquel l’équipedes développeurs de CLASS fait face par de nouvel<strong>le</strong>s modifications en profondeur du logiciel.En ce qui concerne <strong>le</strong> Plateau de Bure, la priorité dans <strong>le</strong>s 5 prochaines années va au projetNOEMA, qui consiste à– doub<strong>le</strong>r <strong>le</strong> nombre d’antennes de 15 m (de 6 à 12, impliquant un doub<strong>le</strong>ment de la surfacecol<strong>le</strong>ctrice) ;– doub<strong>le</strong>r la plus grande ligne de base (de 800 à 1600 m), et donc à doub<strong>le</strong>r la résolutionangulaire actuel<strong>le</strong> ;– utiliser une instrumentation innovante, en particulier une nouvel<strong>le</strong> génération de récepteursqui quadrup<strong>le</strong> la bande passante tota<strong>le</strong> (de 8 GHz à 32 GHz), impliquant une sensibilité4 fois plus grande en continuum et la possibilité d’observer simultanément 4 fois plus deraies.L’imagerie grand-champ bénéficiera directement de ces améliorations grâce au quadrup<strong>le</strong>mentdu nombre de lignes de base, ce qui permettra une bien meil<strong>le</strong>ure qualité d’images à tempsd’observation égal. Le budget acquis en ce moment (33 Meuros) permet de financer 4 antennessupplémentaires, <strong>le</strong> remplacement de tous <strong>le</strong>s récepteurs et un corrélateurs pour 12 antennes.L’addition de 2 antennes supplémentaires ainsi que <strong>le</strong> doub<strong>le</strong>ment de la plus grande ligne debase sont soumises à la contribution d’un partenaire exterieur aux pays fondateurs de l’IRAM.


7.3 LE FUTUR DE LA RADIO-ASTRONOMIE (SUB-)MILLIMÉTRIQUE 163Dans ce projet, j’ai été nommé mi-2011 responsab<strong>le</strong> de l’ensemb<strong>le</strong> des logiciels scientifiques 4 .La réalisation de récepteurs multi-pixels pour l’interféromètre du Plateau de Bure sera unesuite logique au projet NOEMA que <strong>le</strong>s actions de R&D entreprises aujourd’hui permettront demener à bien, d’autant plus que la loi de Moore permet de gagner un ordre de grandeur tous<strong>le</strong>s 6 ans dans la corrélation numérique des signaux. De plus, la tail<strong>le</strong> des cabines des antennesde Bure permet d’abriter à la fois des récepteurs mono-pixels, multi-fréquences, et un récepteurmulti-pixel, mono-fréquence, donnant une f<strong>le</strong>xibilité scientifique similaire à cel<strong>le</strong> de l’IRAM-30m d’aujourd’hui. Au niveau algorithmique, <strong>le</strong>s développements actuels que nous menons pourmettre en œuvre <strong>le</strong> mode d’observation interférométrique grand-champ, dit On-The-Fly, sont unpréalab<strong>le</strong> à l’utilisation de récepteurs multi-pixels en interférométrie. Un autre défi algorithmiquesera <strong>le</strong> développement des méthodes de calibration en amplitude et en phase de ces récepteursmulti-pixels.<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 20124 Le projet NOEMA est divisé en 8 packages : 1) suivi logistique, 2) construction des antennes, 3) récepteurs, 4)corrélateur, 5) logiciels de contrô<strong>le</strong>, 6) logiciels scientifiques (acquisition, réduction, analyse), 7) commissioning, 8)réseaux et archivage.


IRAM Memo 2005-1CLASS evolution: I. Improved OTF supportP. Hily-Blant 1 , J. Pety 1,2 , S. Guilloteau 31. IRAM (Grenob<strong>le</strong>)2. LERMA, Observatoire de Paris3. L3AB, Observatoire de BordeauxDec, 20th 2005Version 1.0<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012CLASS evolution: I. Improved OTF supportChange RecordRevision Date Section/ RemarksPage affected1 2005-12-20 All Initial versionCLASS evolution: I. Improved OTF supportContents1Contents1 CLASS internal data format 41.1 Pointed observation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.2 On–The–Fly observation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Limitations, ease of use and efficiency 62.1 Philosophy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62.2 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62.2.1 New OTF data format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62.2.2 Memory limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62.3 Warning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Large dataset processing 73.1 Basic idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73.2 Listing and Tab<strong>le</strong> of Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73.3 Index consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93.4 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93.5 Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103.6 Baseline fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103.7 Interactive data exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Miscellaneous changes 154.1 New defaults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154.2 Command names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154.3 Griding and spectra cube visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154.4 PLAIT algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 CLASS90 for beta testers 1623


CLASS evolution: I. Improved OTF support1. class internal data formatCLASS evolution: I. Improved OTF support1. class internal data format<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012AbstractCLASS is a GILDAS 1 software for reduction and analysis of (sub)–millimeter spectroscopic data.It is daily used to reduce spectra acquired with the IRAM 30m <strong>tel</strong>escope. CLASS is currently usedin many other facilities (e.g. CSO, HHT, Effelsberg) and it is considered for use by Herschel/HIFI.CLASS history started in 1983. As a consequence, it was written in FORTRAN 77 and tailored toreduce pointed observations. On–The–Fly support was added in the 90s but it showed limitation asthe quantity of OTF data increased quickly. One year ago, we decided to fully rewrite CLASS inFORTRAN 90 with the 3 following goals: 1) clarifying satisfying features with backward compatibilityin mind, 2) improving code readability to simplify maintenance and 3) easing reduction of large OTFdata sets. This memo is describing the current state of affair with a particular emphasis on changesin the program behavior. Future foreseen changes (linked to the increase of receiver instantaneousbandwidth like an improved conversion from frequency to velocity axis) will be described in a futurememo.1 CLASS internal data formatObservations with a sing<strong>le</strong> dish <strong>tel</strong>escope may be divided in two categories:1. Pointed observation: The <strong>tel</strong>escope beam is pointed toward a fixed position of the source duringthe signal integration. In its simp<strong>le</strong>st form, the scan is composed of a spectrum whose intensity isaccumulated during the scan duration. Nothing prevents more comp<strong>le</strong>x scan definitions, e.g. a scancomposed of several shorter integrations, all at the same position on the sky.2. On-The-Fly (OTF) observation: The <strong>tel</strong>escope beam continuously drifts on source during the integrationto make a map of the source. The scan is then composed of set of spectra regularly dumped(typically every 1 second) during a contiguous portion of time (typically 10 minutes). Each dumpedspectra corresponds to a different position on the sky.1.1 Pointed observationOnly two minor changes happened into the data format of a scan containing a sing<strong>le</strong> spectra. The data isstored as a header (divided in independent sections) and the data. We have added: 1) the three parametersassociated to the descriptive coordinate system (2 parameters for the system center + the system positionang<strong>le</strong>) to be ab<strong>le</strong> to go from this descriptive coordinate system to a standard (e.g. equatorial) coordinatesystem and 2) a subscan number. This subscan number is foreseen to always be greater than 1. Thereis one exception: when CLASS90 read data in old format, the subscan number is zero and a warning isissued.1.2 On–The–Fly observationIn CLASS77, an OTF scan is stored as a header and a 2 dimensional array containing the intensities ofdumped spectra as a function of time plus a given number of columns (named DAPS for Data AssociatedParameters) containing header parameters whose values vary during the scan (e.g. the position on the sky,date from beginning of scan). Therefore, all the dumped spectra share the same header in CLASS77.In CLASS90, each dumped spectra of an OTF scan is stored as a pointed observation with its ownheader and data. The concept of scan is kept, as all dumped spectra inside an OTF scan share the samescan number. They are tagged by a subscan number whose value is incremented for each new OTF line(both to enab<strong>le</strong> easy se<strong>le</strong>ction of a sing<strong>le</strong> line inside one OTF scan, and to ensure consistency with the30m numbering). The dumped spectra are also tagged by a unique observation number. This new OTFdata format has several advantages:1 http://www.iram.fr/GILDASCLASS evolution: I. Improved OTF support2 Limitations, ease of use and efficiency2.1 Philosophy42. limitations, ease of use and efficiencySeveral qualities are desirab<strong>le</strong> for a reduction software: portability, stability, ease of maintenance, easeof use, short <strong>le</strong>arning curve, good documentation, time and storage efficiency, best functionalities, noarbitrary limitations and last but not <strong>le</strong>ast backward compatibility. As we are manpower limited, itis impossib<strong>le</strong> to get the perfect software. We thus have to make some compromises to get the closestpossib<strong>le</strong> to perfect. For instance, we rewrote CLASS in FORTRAN 90 although this may bring shortterminstability because this clarifies the program structure and it thus eases future maintenance (key tolong term stability). We also favor functionalities over efficiency with the idea that CLASS users will behappier to be ab<strong>le</strong> to do something a bit inefficiently than to be stuck. Obviously, we always keep storageand time efficiency in mind and we are willing to improve the situation when a widely used feature is tooinefficient. Finally, if we make all our effort to have a 100% backward compatibility in data format so thatusers will be ab<strong>le</strong> to do something useful even with even very old data, we can not ensure full backwardcompatibility on defaults and command names. The easiest way to imp<strong>le</strong>ment new features (required byimproved instrumentation) is sometimes to change defaults and command names though we try to refrainfrom making those kind of changes without good reasons.2.2 Implications2.2.1 New OTF data formatOne of the major change in CLASS90 is the new way OTF data are stored. Whi<strong>le</strong> advantages havealready been described, the main inconvenient is an increase of the size of the data on disk and RAMmemory by at most 20-30%, due to the new individual headers (Note that this increase becomes negligib<strong>le</strong>for spectra with a large number of channels).Data access time is <strong>le</strong>ss prob<strong>le</strong>matic as the data has always been buffered by CLASS. In fact, wechoose this OTF data format to have a much more user-friendly approach to OTF processing. Indeed,it maybe (but still has to be proven...) that the CPU time will be a bit larger with CLASS90 thanwith CLASS77 for perfect data. However, our main goal is to decrease the human time spent on datareduction to deal with the unavailab<strong>le</strong> prob<strong>le</strong>ms.2.2.2 Memory limitationsAlmost all processing steps are availab<strong>le</strong> spectrum per spectrum because this is a very powerful way towork around the limitation of your computer RAM memory. There are two main exceptions:• When opening a fi<strong>le</strong>, CLASS is buffering information (source name, line name, <strong>tel</strong>escope name, scannumber, offset, etc...) on each observations of the fi<strong>le</strong> to speed next find commands. This bufferhas a fixed sized to avoid code comp<strong>le</strong>xity. This limits the number of observations that CLASS90can read/write during one session. The default maximum number of observations is currently setto 100 000 which amounts to about 5 MB of RAM memory. This number can be set to a largervalue through the CLASS_IDX_SIZE logical variab<strong>le</strong> in your $HOME/.gag.dico configuration fi<strong>le</strong> as itis probab<strong>le</strong> that the default value is too small with the largest maps observed today.• In CLASS90, it is also possib<strong>le</strong> to load a who<strong>le</strong> index as a sing<strong>le</strong> 2D array for further visualizationand processing (see below). There is no limitation on the number of dumped spectra loadab<strong>le</strong>, apartfrom the previous limitation and the RAM memory of your computer.Except from the index buffer, all other CLASS90 buffers are now dynamically allocated, in particularthe buffer R & T containing the spectra data. This means that the number of channels of a spectrum isnow unlimited which is a useful feature for line surveys.Figure 1: Fi<strong>le</strong> conversion tool to convert from CLASS77 to CLASS90 data format. The action of thiswidget is equiva<strong>le</strong>nt to “go class-convert infi<strong>le</strong>name outfi<strong>le</strong>name” command at prompt <strong>le</strong>vel.• It considerably simplifies the source code, as operations on OTF scan are not a special case anymore.Whi<strong>le</strong> some operations need the information that a dumped spectra is part of an OTF scan, OTFscans may be seen as a col<strong>le</strong>ction of independent spectra for many basic operations.• The granularity of operations is much finer. For instance, access and work on any dumped spectrais now obvious. Moreover, it is obvious in this framework to store the windows used for baselinefitting for every dumped spectra.• The scan/subscan organization can be generalized to other kind of observation (rasters, cross scans,...)For backward compatibility, CLASS90 will be ab<strong>le</strong> to read the old OTF data format. Neverthe<strong>le</strong>ss,it will then stubbornly refuse to do anything else with it than to rewrite the data in the new OTF dataformat. This is easily done with the following commands:LAS90> fi<strong>le</strong> in 12co21-oldfmt.30mLAS90> fi<strong>le</strong> out 12co21-newfmt.30m newLAS90> set line 12co(2-1)LAS90> findLAS90> for ientry 1 to foundLAS90> get nLAS90> writeLAS90> nextFor the user’s convenience, CLASS90 proposes a widget that imp<strong>le</strong>ments this conversion with severaladditional safeguards (as avoiding to convert again data already written in new format). Fig. 1 shows thiswidget availab<strong>le</strong> in the main CLASS90 menu. This widget is just a front-end to a procedure launched bythe “go class-convert infi<strong>le</strong>name outfi<strong>le</strong>name” command. This procedure can be used in scripts toautomate conversion.Since the advent of the New Control System (NCS) of the 30m in fall 2005, the reading of raw data andthe chopper calibration is done by MIRA (developed by H. Wiesemeyer) which directly writes data in theCLASS90 format. For data acquired previously (with the Old Control System), the conversion step ismandatory. Indeed, the reading of raw data format and the chopper calibration were done by OTFCAL(maintained by A. Sievers), which still writes OTF scans using the CLASS77 data format.CLASS evolution: I. Improved OTF support2.3 Warning53. large dataset processingWhen processing a small number of spectra, CLASS90 will be quick on whatever kind of computer.Now, if CLASS90 users needs to process 300 000 dumped spectra, they should then be prepared to usea powerful computer (with lot’s of RAM to avoid swapping) and to wait during processing, whicheversoftware (in particular whichever version of CLASS) they are using.Moreover, f<strong>le</strong>xibility is favored in CLASS90. This means that the same things may be done in manydifferent, more or <strong>le</strong>ss efficient ways. It will take time to the CLASS90 community to <strong>le</strong>arn what shouldbe or not be done to ensure efficiency. For instance, loading 300 000 with the LOAD command (see below) ona laptop is probably going to take a whi<strong>le</strong> (if possib<strong>le</strong> at all due to limitation in RAM memory). However,this possibility does not even exist within CLASS77.3 Large dataset processingIt is today possib<strong>le</strong> with the IRAM–30 m to map a square degree field in 12 CO (J=2–1). As an order ofmagnitude, this gives a final spectra cube of about 10 6 spectra with a slight oversampling of 4 ′′ .3.1 Basic ideaAn observer who has just spent a few hours doing OTF observation of the same source may want tovisualize all the dumped spectra at once even though they do not belong to the same scan. This wasimpossib<strong>le</strong> in CLASS77. In CLASS90, it is now possib<strong>le</strong> to load all the individual spectra currently inthe index as a 2D array for future work, in particular visualization.3.2 Listing and Tab<strong>le</strong> of ContentBefore visualizing, the user needs to know what kind of data is availab<strong>le</strong>. The LIST command is commonlyused to easily see the content of the current index. However, this command outputs one line perobservation in CLASS90 which is use<strong>le</strong>ss when dealing with thousands of observations. The LIST /SCANcommand reintroduces the CLASS77 way of listing an index, i.e. one line per scan and setup (i.e. uniquecombination of source, line and <strong>tel</strong>escope names). LIST /SCAN /BRIEF lists the scan with the number ofassociated observations. These three possibilities respectively giveLAS90> listI-LISTE, Current index:197; 3 B0355+508 12CO(1-0) 30M-V01-A100 -109.1 -100.0 Eq 9608; 1198; 3 B0355+508 12CO(1-0) 30M-V01-A100 -106.1 -100.0 Eq 9608; 1199; 3 B0355+508 12CO(1-0) 30M-V01-A100 -103.0 -100.0 Eq 9608; 1200; 3 B0355+508 12CO(1-0) 30M-V01-A100 -100.5 -100.0 Eq 9608; 1201; 3 B0355+508 12CO(1-0) 30M-V01-A100 -97.5 -100.0 Eq 9608; 1...270; 3 B0355+508 12CO(1-0) 30M-V02-B100 -109.1 -100.0 Eq 9608; 1271; 3 B0355+508 12CO(1-0) 30M-V02-B100 -106.1 -100.0 Eq 9608; 1272; 3 B0355+508 12CO(1-0) 30M-V02-B100 -103.0 -100.0 Eq 9608; 1273; 3 B0355+508 12CO(1-0) 30M-V02-B100 -100.5 -100.0 Eq 9608; 1274; 3 B0355+508 12CO(1-0) 30M-V02-B100 -97.5 -100.0 Eq 9608; 1...343; 3 B0355+508 12CO(2-1) 30M-V03-A230 -109.1 -100.0 Eq 9608; 1344; 3 B0355+508 12CO(2-1) 30M-V03-A230 -106.1 -100.0 Eq 9608; 1345; 3 B0355+508 12CO(2-1) 30M-V03-A230 -103.0 -100.0 Eq 9608; 1346; 3 B0355+508 12CO(2-1) 30M-V03-A230 -100.5 -100.0 Eq 9608; 1347; 3 B0355+508 12CO(2-1) 30M-V03-A230 -97.5 -100.0 Eq 9608; 167


CLASS evolution: I. Improved OTF support3. large dataset processingCLASS evolution: I. Improved OTF support3. large dataset processing<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012...416; 3 B0355+508 12CO(2-1) 30M-V04-B230 -109.1 -100.0 Eq 9608; 1417; 3 B0355+508 12CO(2-1) 30M-V04-B230 -106.1 -100.0 Eq 9608; 1418; 3 B0355+508 12CO(2-1) 30M-V04-B230 -103.0 -100.0 Eq 9608; 1419; 3 B0355+508 12CO(2-1) 30M-V04-B230 -100.5 -100.0 Eq 9608; 1420; 3 B0355+508 12CO(2-1) 30M-V04-B230 -97.5 -100.0 Eq 9608; 1...661; 3 B0355+508 12CO(1-0) 30M-V01-A100 -109.8 -90.0 Eq 9609; 1662; 3 B0355+508 12CO(1-0) 30M-V01-A100 -106.7 -90.0 Eq 9609; 1663; 3 B0355+508 12CO(1-0) 30M-V01-A100 -103.6 -90.0 Eq 9609; 1664; 3 B0355+508 12CO(1-0) 30M-V01-A100 -101.2 -90.0 Eq 9609; 1665; 3 B0355+508 12CO(1-0) 30M-V01-A100 -98.1 -90.0 Eq 9609; 1...734; 3 B0355+508 12CO(1-0) 30M-V02-B100 -109.8 -90.0 Eq 9609; 1735; 3 B0355+508 12CO(1-0) 30M-V02-B100 -106.7 -90.0 Eq 9609; 1736; 3 B0355+508 12CO(1-0) 30M-V02-B100 -103.6 -90.0 Eq 9609; 1737; 3 B0355+508 12CO(1-0) 30M-V02-B100 -101.2 -90.0 Eq 9609; 1738; 3 B0355+508 12CO(1-0) 30M-V02-B100 -98.1 -90.0 Eq 9609; 1...807; 3 B0355+508 12CO(2-1) 30M-V03-A230 -109.8 -90.0 Eq 9609; 1808; 3 B0355+508 12CO(2-1) 30M-V03-A230 -106.7 -90.0 Eq 9609; 1809; 3 B0355+508 12CO(2-1) 30M-V03-A230 -103.6 -90.0 Eq 9609; 1810; 3 B0355+508 12CO(2-1) 30M-V03-A230 -101.2 -90.0 Eq 9609; 1811; 3 B0355+508 12CO(2-1) 30M-V03-A230 -98.1 -90.0 Eq 9609; 1...880; 3 B0355+508 12CO(2-1) 30M-V04-B230 -109.8 -90.0 Eq 9609; 1881; 3 B0355+508 12CO(2-1) 30M-V04-B230 -106.7 -90.0 Eq 9609; 1882; 3 B0355+508 12CO(2-1) 30M-V04-B230 -103.6 -90.0 Eq 9609; 1883; 3 B0355+508 12CO(2-1) 30M-V04-B230 -101.2 -90.0 Eq 9609; 1884; 3 B0355+508 12CO(2-1) 30M-V04-B230 -98.1 -90.0 Eq 9609; 1LAS90> list /scanI-LISTE, Current index:B0355+508 12CO(1-0) 30M-V01-A100 -109.1:+108.2 -100.0 Eq 9608; 73B0355+508 12CO(1-0) 30M-V02-B100 -109.1:+108.2 -100.0 Eq 9608; 55B0355+508 12CO(2-1) 30M-V03-A230 -109.1:+108.2 -100.0 Eq 9608; 73B0355+508 12CO(2-1) 30M-V04-B230 -109.1:+108.2 -100.0 Eq 9608; 73B0355+508 12CO(1-0) 30M-V01-A100 -109.8:+107.5 -90.0 Eq 9609; 73B0355+508 12CO(1-0) 30M-V02-B100 -109.8:+107.5 -90.0 Eq 9609; 73B0355+508 12CO(2-1) 30M-V03-A230 -109.8:+107.5 -90.0 Eq 9609; 73B0355+508 12CO(2-1) 30M-V04-B230 -109.8:+107.5 -90.0 Eq 9609; 73LAS90> list /scan /briefI-LISTE, Current index:9608; 274 9609; 292It is also useful to get all the availab<strong>le</strong> setups of a fi<strong>le</strong> at a glance. This is availab<strong>le</strong> through the “list in/toc” commandLAS90> fi<strong>le</strong> in 12co21-newfmt.30mLAS90> list in /tocI-LIST, Input index:Number of sources...... 1B0355+508 17210Number of Lines........ 2CLASS evolution: I. Improved OTF support3.5 SortingLAS90> lut rainbow3LAS90> fi<strong>le</strong> in 12co21-newfmt.30mLAS90> findLAS90> loadLAS90> set mode y -2 15LAS90> plot /index83. large dataset processingIn the previous visualization, the dumped spectra were order according to their observation number, whichmost often corresponds to the observing time sequence. However, it often happens that two sequentialOTF scans belongs to 2 far-away part of the same source. It is thus desirab<strong>le</strong> to be ab<strong>le</strong> to sort dumpedspectra in the index by coordinates. In CLASS90, the “set sort keyword” command defines the sortingthat will be applied when the index will be built by the next find command. In particular, the keywordmay be lambda or beta. Fig. 3 shows the results of the following commandsLAS90> set mode y 0 8LAS90> set ang<strong>le</strong> secondLAS90> set sort betaLAS90> for ilambda -470 to -260 by 30LAS90> find /range ’ilambda’ ’ilambda+10’ * *LAS90> if (found.ne.0) thenLAS90> loadLAS90> plot /indexLAS90> g\draw text 0 1 ’ilambda’"‘ < lambda < "’ilambda+10’"‘" 5 /char 8LAS90> listLAS90> pauseLAS90> endifLAS90> nextwhich enab<strong>le</strong>s to view the dumped spectra with a good continuity in intensity.3.6 Baseline fittingOther operations than visualization may benefit from the definition of the 2D array. The first coming inmind is baseline fitting. It is well known that this requires the separation of the spectrum channels betweensignal and baseline, in other words the definition of baseline windows. When dealing with a small numberof spectra, the windows are often defined separa<strong>tel</strong>y on each spectrum. When dealing with thousands ofspectra, we still need to define windows adapted to each individual spectrum as large velocity gradients(e.g. in galaxies) may quickly move in frequency the separation between signal and baseline from onespectrum to another. However, defining windows on each individual spectrum is both impractical andinefficient as this does not take into account spatial homogeneity (really useful in case of modera<strong>tel</strong>y weaklines). We thus enab<strong>le</strong> the definition of spectral windows directly on the 2D plot with polygons.The following set of commands are used to define the polygon and to fit the baselinesLAS90> fi<strong>le</strong> out 12co21-newfmt-base.30m newLAS90> plot /indexLAS90> set window /polygonLAS90> for iobs 1 to foundLAS90> get nextLAS90> baseLAS90> writeLAS90> nextFigure 2: Time series of the intensity as a function of velocity of 9000 dumped spectra part of 200 OTFscans. Only 7 commands are needed to obtain this result, 4 of which are mandatory and 2 of which justthere to improve the visual aspect.12CO(1-0) 859612CO(2-1) 8614Number of backends..... 430M-V01-A100 430730M-V02-B100 428930M-V03-A230 430730M-V04-B230 4307Number of setups....... 4B0355+508 12CO(1-0) 30M-V01-A100 4307B0355+508 12CO(1-0) 30M-V02-B100 4289B0355+508 12CO(2-1) 30M-V03-A230 4307B0355+508 12CO(2-1) 30M-V04-B230 43073.3 Index consistencyLoading a who<strong>le</strong> index as a 2D array implies that all the spectra are consistent (basically the samecoordinate system and the same frequency axis) to obtain meaningful results. A new command, namedLAS\CONSISTENCY, was introduced to check the consistency of all the spectra of the current index. Thesource name, the source position, the line name and the frequency axis are checked by default. It is possib<strong>le</strong>to avoid one or several of those checks with the NOCHECK option. The commands which work on the who<strong>le</strong>index (e.g. LOAD or TABLE) automatically trigger the check of the index consistency, if this check was notalready done previously.3.4 VisualizationThe following list of commands is all you need to plot as a sing<strong>le</strong> image (see Fig. 2) 9000 dumped spectrapart of 200 OTF scans observed in ∼ 4 hours.CLASS evolution: I. Improved OTF support93. large dataset processingFigure 3: Beta sorted series of dumped spectra intensities as a function of the velocity. For each panel,only the spectra with a lambda offset belonging to the same spatial resolution bin is shown. This is theway to ensure the best possib<strong>le</strong> intensity continuity from one to another dumped spectra.1011


CLASS evolution: I. Improved OTF support3. large dataset processingCLASS evolution: I. Improved OTF support3. large dataset processingFigure 4: Beta sorted series of dumped spectra intensities as a function of the velocity. All the lambdaoffsets are shown here, implying the presence of horizontal stripes in the image. This representation of thedata neverthe<strong>le</strong>ss enab<strong>le</strong> a very quick (even though not optimal) first data reduction by the definition ofbaseline windows through a polygon drawing.<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Up to 21 independent polygons may be defined. The polygon boundaries are directly converted to individualwindows for each dumped spectra. Those windows are stored in the set%window SIC array whichis then used by the base and write commands. In the end, each spectrum will have its own baselinewindow stored in its header. Each polygon is also stored in a separate fi<strong>le</strong> for the user’s convenience.3.7 Interactive data explorationScripting is important for memory and/or for automating data processing. However, repeatedly typingthe same commands quickly becomes cumbersome in particular when discovering new data. Interactiveexploration of data is now availab<strong>le</strong> through the following set of commandsLAS90> fi<strong>le</strong> in 12co21-newfmt-base.30mLAS90> set source YOUR-SOURCELAS90> set line 12CO(2-1)LAS90> set <strong>tel</strong>e 30M-V03-A230LAS90> go explore“go explore” enab<strong>le</strong>s loop visualization of data scan by scan or by offset range (as in section 3.5). Itis possib<strong>le</strong> to visualize a 2D image or the average of the observations. Zoom are easily accessib<strong>le</strong> as wellas popups of spectra and drifts. An up-to-date summary of the possibility is availab<strong>le</strong> by typing inputexplore. “go explore” is best used in conjunction with the possibility to easily se<strong>le</strong>ct a consistent setup.To do this (i.e. exploring a subset of its input data fi<strong>le</strong>), the user must se<strong>le</strong>ct this setup through the setcommand because the “go explore” script issues many intermediate find commands. Both functionalities(se<strong>le</strong>ction and exploration) are merged in the Explore Data Fi<strong>le</strong> widget of the CLASS90 main menu.Examp<strong>le</strong>s are given in Figs. 5 to 7.CLASS evolution: I. Improved OTF support123. large dataset processingFigure 6: Data exploration by scan. Left: 2D image of all dumped spectra of the scan. Right: Averagedspectrum computed on all dumped spectra of the scan.Figure 5: Data exploration by se<strong>le</strong>cting Explore Data Fi<strong>le</strong> from the CLASS90 main menu or by typinggo explore at the CLASS90 prompt. Upper right: The 73 dumped spectra of scan 9608. Upper <strong>le</strong>ft:Intensity as a function of entry number, in ten contiguous velocity channels centered on the channel shownas the vertical line of the upper right panel. Bottom right: Spectrum corresponding to entry number19 defined as the horizontal line of the upper right panel. Bottom <strong>le</strong>ft: On-line documentation of thisinteractive tool.CLASS evolution: I. Improved OTF support4 Miscellaneous changes4.1 New defaults134. miscellaneous changesA few defaults has been changed CLASS77 and CLASS90. They are summarized in Tab<strong>le</strong> 1. We areDefault kind Old names New namesExtension .bur .30mAngular unit arcminute arcsecondEpoch 1950.00 2000.00Tab<strong>le</strong> 1: Correspondence between changed defaults in CLASS77 and CLASS90.distribution a CLASS procedure named old-set-defaults.class which reset the set default in theCLASS77 way.4.2 Command namesDue to its long history, CLASS77 command name were sometimes awkward, e.g. the GAUSS commandwhich was launching a fit even though the fitting function was not Gaussian! We made the minimumnumber of changed to avoid disturbing too much long standing habits of CLASS users. We are alsofurnishing a CLASS procedure named old-command-names.class which aliases new and old namesthrough the use of GILDAS symbols. This is distributed for maximum backward compatibility, e.g. toenab<strong>le</strong> use of CLASS77 within CLASS90 (this is not foolproof though). However, it is c<strong>le</strong>ar that oldcommand names are obso<strong>le</strong>te and we advise users against the use of the aliases. In particular, users’ newprocedures should use new command names. Tab<strong>le</strong> 2 displays an exhaustive list of correspondence betweenold and new names. The fit–related commands have been gathered into a separate language named FIT.The GAUSS and FIT commands have been replaced by the more explicit MINIMIZE and VISUALIZE names.For logical reasons, SUM has been replaced by the AVERAGE. Due to the new way of dealing with OTF data,the RECORD command is now obso<strong>le</strong>te and will disappear soon. The GRID command is also obso<strong>le</strong>te as itsfunctionalities have been redistributed and extended in the TABLE and XY_MAP commands (cf. section 4.3).Finally, the CFITS language has been replaced by a sing<strong>le</strong> LAS\FITS command. Indeed, most of the CFITScommands were customized for tapes which are an obso<strong>le</strong>scent storage medium.Old namesANALYSE\GRIDANALYSE\DISPLAYANALYSE\FITANALYSE\GAUSSANALYSE\ITERATEANALYSE\KEEPANALYSE\LINESANALYSE\METHODANALYSE\RESIDUALLAS\SUMLAS\RECORDNew namesObso<strong>le</strong>te (replaced by ANALYSE\TABLE and MAP\XY_MAP)FIT\DISPLAYFIT\VISUALIZEFIT\MINIMIZEFIT\ITERATEFIT\KEEPFIT\LINESFIT\METHODFIT\RESIDUALLAS\AVERAGEObso<strong>le</strong>te (not useful anymore)Figure 7: Same as Fig 6 except that the displayed data belong to a beta offset range.Tab<strong>le</strong> 2: Correspondence between command names in CLASS77 and CLASS90.4.3 Griding and spectra cube visualizationThe functionalities of the old ANALYSE\GRID command has been redistributed and extended in severalcommands:1415


CLASS evolution: I. Improved OTF support5. class90 for beta testersCLASS evolution: I. Improved OTF support5. class90 for beta testers• ANALYSE\TABLE creates a tab<strong>le</strong> containing the offsets, weights and intensities of all the dumpedspectra. A check of the consistency of the observations in the current index is performed at thisstep, if not already done before.• MAP\XY_MAP grids the dumped spectra from the tab<strong>le</strong> to an lmv cube. An image of the associatedweights is also produced for further processing like optimal combination of several data cubes.• Moreover, all the plotting capabilities of GREG program has been imported inside CLASS so thatthe user can directly visualize the data cube of the gridded spectra. For instance, Fig. 8 has beenobtained with the following sequence of commands:LAS90> fi<strong>le</strong> in 12co21-newfmt.30mLAS90> findLAS90> tab<strong>le</strong> 12co21 newLAS90> xy_map 12co21LAS90> <strong>le</strong>t name 12co21LAS90> <strong>le</strong>t type lmvLAS90> go viewThe “go view” scripts enab<strong>le</strong>s interactive visualization of a spectra cube. Channel maps may beproduced through the go bit command and position-velocity diagrams through the go xv and govy commands.<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 20124.4 PLAIT algorithmThe PLAIT algorithm “combine” two spectra cubes resulting from OTF observation with orthogonal scanningdirections into a sing<strong>le</strong> spectra cube. It works in the Fourier plane and it reduces the striping dueto receiver and atmospheric instabilities which inevitably show up in OTF maps. A version of this algorithmhas been imp<strong>le</strong>mented as a GILDAS task named PLAIT from a previous version by C.Nieten (itselfelaborated on original ideas from the NOD2 package).5 CLASS90 for beta testersThe current default version of CLASS is CLASS77. Soon enough, the default version will swap toCLASS90, i.e. users will have access directly to CLASS90 when calling CLASS from the shell prompt.There will be a warning that this is a new CLASS with modified features and that the old CLASS isstill availab<strong>le</strong> through the CLASS77 name in case of a prob<strong>le</strong>m with CLASS90. CLASS77 will stayabout one year after the swap to ensure good stability of CLASS90. However, no support will be givenanymore to CLASS77.Before the swap happens, you can become beta testers of CLASS90 if you are interested by the newfeatures. Beta testers should be ab<strong>le</strong> to quickly get bug fixes in their version. We thus recommend theyuse anonymous CVS in the following way:1 shell-prompt> export CVSROOT=:pserver:anonymous@netsr<strong>v1</strong>.iram.fr:/CVS/GILDAS2 shell-prompt> cvs co -r feb06 -d gildas-src-feb06 gildas3 shell-prompt> cd gildas-src-feb064 shell-prompt> source admin/gildas-env.sh5 shell-prompt> make6 shell-prompt> make install7 shell-prompt> cd packages/class908 shell-prompt> cvs up -r class90-stab<strong>le</strong>9 shell-prompt> make c<strong>le</strong>anCLASS evolution: I. Improved OTF support10 shell-prompt> make11 shell-prompt> make install165. class90 for beta testersLine 1 and 2 create a directory name gildas-src-feb06 with the feb06 “stab<strong>le</strong>” monthly re<strong>le</strong>ase. Lines3 to 6 are the standard way to install GILDAS. As CLASS90 is evolving quickly, the CLASS90version shipped in a GILDAS monthly re<strong>le</strong>ase may be unstab<strong>le</strong>. We thus recommend that you go to theCLASS90 directory (line 7), update it to a “stab<strong>le</strong>” version (line 8), compi<strong>le</strong> and install it (lines 9 to 11).Beta testers also refer to the manual which is being fully updated. Bug reports and suggestions ofimprovements should be send to gildas@iram.fr. We will try to fix bugs quickly. We will considerthe feasibility of all suggestions on longer timesca<strong>le</strong>s. When a bug is fixed, here are the steps to updateCLASS90:1 shell-prompt> export CVSROOT=:pserver:anonymous@netsr<strong>v1</strong>.iram.fr:/CVS/GILDAS2 shell-prompt> cd gildas-src-feb063 shell-prompt> source admin/gildas-env.sh4 shell-prompt> cd packages/class905 shell-prompt> cvs up -r class90-stab<strong>le</strong>6 shell-prompt> make7 shell-prompt> make installLine 5 is the line which will update the class90 directory. Be sure to type it only in thegildas-src-feb06/packages/class90 directory to ensure that only CLASS90 is updated because nothingensure that other parts of GILDAS are “stab<strong>le</strong>” between 2 monthly re<strong>le</strong>ases.Have fun!Figure 8: Screen-shot of result of the go view command. The top,<strong>le</strong>ft panel is the channel map correspondingto velocity shown as a vertical red line in the top,right panel. The top,right panel displays thespectrum at the position localized on the top,right panel. The bottom,<strong>le</strong>ft panel shows the line emissionintegrated over the velocity range appearing in yellow on the bottom,right panel. This last panel displaysthe spectrum averaged over the who<strong>le</strong> map. go view is an interactive command with many more features.P<strong>le</strong>ase, type h to display the comp<strong>le</strong>te help.1718


A&A 526, A47 (2011)DOI: 10.1051/0004-6361/201015487c○ ESO 2010Astronomy&AstrophysicsWeeds: a CLASS extension for the analysis of millimeterand sub-millimeter spectral surveysS. Maret 1 , P. Hily-Blant 1 ,J.Pety 2,3 , S. Bardeau 2 , and E. Reynier 21 Laboratoire d’Astrophysique de Grenob<strong>le</strong>, Observatoire de Grenob<strong>le</strong>, Université Joseph Fourier, CNRS, UMR 571 Grenob<strong>le</strong>,Francee-mail: sebastien.maret@obs.ujf-grenob<strong>le</strong>.fr2 Institut de Radioastronomie Millimétrique, 300 rue de la Piscine, 38406 Saint Martin d’Hères, France3 LERMA, UMR 8112, CNRS and Observatoire de Paris, 61 avenue de l’Observatoire, 75014 Paris, FranceReceived 28 July 2010 / Accepted 6 December 2010ABSTRACT<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012The advent of large instantaneous bandwidth receivers and high spectral resolution spectrometers on (sub-)millimeter <strong>tel</strong>escopes hasopened up the possibilities for unbiased spectral surveys. Because of the large amount of data they contain, any analysis of thesesurveys requires dedicated software tools. Here we present an extension of the widely used CLASS software that we developed tothat purpose. This extension, named Weeds, allows for searches in atomic and mo<strong>le</strong>cular lines databases (e.g. JPL or CDMS) thatmay be accessed over the internet using a virtual observatory (VO) compliant protocol. The package permits a quick navigationacross a spectral survey to search for lines of a given species. Weeds is also capab<strong>le</strong> of modeling a spectrum, as often needed forline identification. We expect that Weeds will be useful for analyzing and interpreting the spectral surveys that will be done with theHIFI instrument onboard Herschel, but also observations carried-out with ground based millimeter and sub-millimeter <strong>tel</strong>escopes andinterferometers, such as IRAM-30 m and Plateau de Bure, CARMA, SMA, eVLA, and ALMA.Key words. ISM: mo<strong>le</strong>cu<strong>le</strong>s – ISM: lines and bands – line: identification – methods: data analysis – virtual observatory tools1. IntroductionA spectral survey consists in a series of spectra covering a significantspectral domain. At (sub-)millimeter wave<strong>le</strong>ngths, a spectralsurvey typically covers several tens of GHz. Spectral surveysare generally referred to as unbiased if they provide a comp<strong>le</strong>tecoverage with a uniform sensitivity. As such, they allow for acomp<strong>le</strong>te census of the species emitting in that band, and sometimesfor discovery of new inters<strong>tel</strong>lar species. In addition, becausea given band often contains many transitions of the samespecies, the simultaneous analysis of all these lines providesstringent constraints on the physical conditions in the emittinggas, such as the density and temperature. Therefore spectral surveysare very useful for characterizing both the chemical compositionand physical condition in the observed objects.Ever since the pioneering work of Johansson et al. (1984),who carried-out an unbiased spectral survey of the Orion KLstar-forming region and IRC +10216 carbon-rich star between72 and 91 GHz with the Onsala <strong>tel</strong>escope, many spectral surveyshave been carried-out at millimeter and sub-millimeterwave<strong>le</strong>ngths using ground-based <strong>tel</strong>escopes (see Herbst &van Dishoeck 2009, for a review). Because of the limited sensitivityof the instruments availab<strong>le</strong> at that time, early spectralsurveys were targeted at bright star-forming regions, such asOrion KL and Sgr B2 in the millimeter range. Thanks to the increasingsensitivity of heterodyne receivers and the availabilityof sub-millimeter <strong>tel</strong>escopes, these surveys were later extendedto higher frequencies (e.g. Schilke et al. 1997, 2001; Comitoet al. 2005) and carried-out towards fainter young s<strong>tel</strong>lar objects(e.g. NGC 1333 IRAS4 or IRAS16292-2422; Blake et al. 1994;van Dishoeck et al. 1995; Blake et al. 1995). A few spectralsurveys have been carried with millimeter and sub-millimeterinterferometers, such as OVRO or the SMA (e.g. Blake et al.1996; Beuther et al. 2006). The HIFI instrument (de Graauwet al. 2010) onboard the Herschel space observatory (Pilbrattet al. 2010) now allows for a comp<strong>le</strong>te coverage of the almostunexplored 480–1250 and 1410–1910 GHz frequency bands. Itslarge spectral coverage – up to 4 GHz instantaneous bandwidth– and unprecedented sensitivity in this frequency range enab<strong>le</strong>astronomers to carry-out spectral surveys over almost 1.5 THzdown to the line confusion limit in a few tens of hours. The firstspectral surveys with this instrument have already given spectacularresults (Bergin et al. 2010; Ceccarelli et al. 2010). Amongthese, we can cite the richness of the Orion BN-KL spectrum observedat THz frequencies (see Fig. 2, Bergin et al. 2010)orthediscovery of ND in IRAS16293-2422 (Bacmann et al. 2010).Current developments in (sub-)millimeter instruments includean increase in the instantaneous bandwidth of the detectiondevices. During the past decade, the instantaneous bandwidth oftunab<strong>le</strong> heterodyne receivers has increased by more than an orderof magnitude, now routinely reaching ∼10 GHz. Other technologies(e.g. HEMT, FCRAO and IRAM) have already providedseveral tens of GHz, although it is still unc<strong>le</strong>ar whetherthe sensitivity of these receivers can match that of SIS receivers.This increase in bandwidth has been accomplished in paral<strong>le</strong>lwith the advent of digital spectrometers (autocorrelators, fastFourier transform), the versatility of which allow the coverage ofsuch bandwidth with a spectral resolution down to a few hundredkHz. As a result, unbiased spectral surveys of the 3 mm atmosphericwindow (ν = 80−117 GHz) can be done with the IRAM-30 m <strong>tel</strong>escope in ∼10 h, with a 2 mK noise at 1σ in 2 MHz(∼6 kms −1 ) spectral channels. The ALMA interferometer willalso permits coverage of large frequency windows, providingspectral cubes with up to 8 GHz bandwidth (Wootten 2008).Artic<strong>le</strong> published by EDP Sciences A47, page 1 of 5


A&A 526, A47 (2011)<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Thanks to its sensitivity, this instrument will allow, in its compactconfiguration, line surveys to be carried-out down to theconfusion limit toward a large number of sources. Spectral surveysare thus still in their infancy and will very likely becomeroutine observing modes in the coming years.Spectral surveys covering large frequency bands require specifictools to be analyzed efficiently. In this artic<strong>le</strong>, we presenta software that is intended for the analysis of spectral surveys.In Sect. 2, we briefly describe how such surveys are analyzed.In Sect. 3 we detail how our software was designed and imp<strong>le</strong>mentedto carried-out such an analysis. Finally Sect. 4 concludesthis artic<strong>le</strong> and discuss future developments.2. Spectral surveys analysisThe analysis of a spectral survey usually consists in identifyingthe various lines and in deriving the physical and chemicalproperties of the emitting gas (density, temperature and columndensities of the observed species). The main difficulty in suchidentification is that large mo<strong>le</strong>cu<strong>le</strong>s may have hundreds of linesin the (sub-)millimeter range. These species – such as methanol,methyl formate or dimethyl ether – are often named weeds byspectroscopists. If the lines are too broad, they may overlap andb<strong>le</strong>nd together, which makes the identification of weaker linesdifficult. This is the line confusion limit (Schilke et al. 1997):line identification is not limited by the signal-to-noise of the observations,but by the line b<strong>le</strong>nding.Because of this prob<strong>le</strong>m, extreme care must be takenwhen identifying species from a spectral survey. Herbst &van Dishoeck (2009) summarize the criteria for a firm detectionas follows: “(i) rest frequencies are accura<strong>tel</strong>y known to1:10 7 , either from direct laboratory measurements or from ahigh-precision Hamiltonian model; (ii) observed frequencies ofc<strong>le</strong>an, nonb<strong>le</strong>nded lines agree with rest frequencies for a sing<strong>le</strong>well-determined velocity of the source; if a source has a systematicvelocity field as determined from simp<strong>le</strong> mo<strong>le</strong>cu<strong>le</strong>s, anyvelocity gradient found for lines of a new comp<strong>le</strong>x mo<strong>le</strong>cu<strong>le</strong>cannot be a random function of transition frequency; (iii) allpredicted lines of a mo<strong>le</strong>cu<strong>le</strong> based on an LTE spectrum at awell-defined rotational temperature and appropria<strong>tel</strong>y correctedfor beam dilution are present in the observed spectrum at roughlytheir predicted relative intensities. A sing<strong>le</strong> anticoincidence (thatis, a predicted line missing in the observational data) is a muchstronger criterion for rejection than hundreds of coincidencesare for identification. This last criterion is one of the strongestarguments for comp<strong>le</strong>te line surveys rather than targeted linesearches”.The rest frequencies needed to fulfill criterion (i) are usuallytaken from spectral lines catalogs, such as the Cologne Databasefor Mo<strong>le</strong>cular Spectroscopy (CDMS, Mül<strong>le</strong>r et al. 2001) ortheJPL Mo<strong>le</strong>cular Spectroscopy catalog (Pickett et al. 1998). Forcriterion (ii), we need to compare the consistency of the centroidvelocities of all the line candidates. Finally criterion (iii)requires to perform a model of the predicted emission of thegiven species so that it can be compared with the observations.The traditional technique for this consist in building a rotationaldiagram (Goldsmith & Langer 1999) to see if all detected linesagree with a sing<strong>le</strong> rotational temperature and column density.Alternatively, one can compute synthetic spectrum and compareit directly with the observations – a technique cal<strong>le</strong>d forward fitting(Comito et al. 2005). This approach is also extremely usefulwhen one wants to search for weak lines of a specie among hundredsfrom various weeds: a synthetic spectrum of the emissionof the weeds can be constructed to fit the observed transitions inA47, page 2 of 5an iterative fashion. Once the brightest lines have been mode<strong>le</strong>d,one can compare the synthetic spectrum to the observed one tolook for lines from <strong>le</strong>ss abundant species (see Belloche et al.2008, for an examp<strong>le</strong> of this technique). Of course, this also allowsthe physical and chemical properties of the emitting gas tobe derived.Since spectral surveys may contain thousands of lines, theyrequire specific tools to be efficiently analyzed. Two packageshave been developed for that purpose. The first of them,XCLASS (Schilke et al. 2001), is an extension of the widelyused CLASS data reduction software, which is part of Gildas.XCLASS contains a spectral line database which is built fromthe CDMS and JPL catalogs. Technically, it uses the MySQLdatabase server which must be instal<strong>le</strong>d on the user computer.This database may be updated manually, by replacingthe database fi<strong>le</strong> by the one provided by the program authors.XCLASS allows the user to look for lines corresponding to agiven frequency in its catalog, but also to make a model at theLTE of the observed spectra. XCLASS has been successfullyused to reduce several spectral surveys obtained with the CSOand the IRAM-30 m (Schilke et al. 2001; Comito et al. 2005;Belloche et al. 2008). However, XCLASS is based on an obso<strong>le</strong>teversion of CLASS, which is not maintained anymore.Indeed, the CLASS internal structures was largely rewritten in2005–2006 to adapt to the chal<strong>le</strong>nges of data reductions comingwith the recent generation of receivers (Hily-Blant et al.2005). The second package, CASSIS, has been developed primarilyto analyze Herschel-HIFI spectral surveys, although itcan be used to analyze surveys from ground based <strong>tel</strong>escopesas well. CASSIS itself does not have data reduction capabilities;therefore data must first be reduced in another software such asCLASS or HIPE (Ott et al., in prep.) before analysis in CASSIS.CASSIS uses a database which is built from the CDMS and theJPL catalog; in recent CASSIS versions, this database (SQLite)is embedded in the program so that an external database server isno longer required. Like XCLASS, CASSIS allows the forwardfittingof a spectrum, but also the search for the various transitionsof a given specie.3. Weeds design and imp<strong>le</strong>mentation3.1. General designWeeds has been designed specifically to analyze spectral surveys,following the approach presented in Sect. 2. Although itsdevelopment was inspired by the XCLASS and CASSIS packages,it is different in several aspects. Weeds is an extension ofthe current version of the CLASS software, and is mostly writtenin Python language, except for a few command written in theGildas command interpreter (SIC) language. To do this, Weedsuses the new possibility offered by GILDAS to inter<strong>le</strong>ave Pythonand SIC in the same session (Bardeau et al. 2010). In particular,the variab<strong>le</strong> contents are shared between Python and SIC. Pythonhas several advantages over other languages for developing suchextensions. It benefits from a large library of modu<strong>le</strong>s that allowcomp<strong>le</strong>x tasks – such as making a query in a VO-compliantdatabase, see Sect. 3.2 – to be done relatively easily. Although itis interpreted, it is still computationally efficient, because criticalmodu<strong>le</strong>s (e.g. the modu<strong>le</strong> for array computations that we usefor the spectra modeling, see Sect. 3.4) are written in compi<strong>le</strong>dlanguages such as C or Fortran. Weeds is distributed with Gildassince April 2010. The source code is freely availab<strong>le</strong> from theIRAM website 1 . A user manual is also availab<strong>le</strong> on that page.1 http://iram.fr/IRAMFR/GILDAS/


S. Maret et al.: Weeds: a CLASS extension for the analysis of millimeterand sub-millimeter spectral surveys<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Because Weeds is an extension of CLASS, it can be used toanalyze any data format that CLASS supports. In practice, theCLASS data format is used by many ground-based <strong>tel</strong>escopes(e.g. IRAM-30 m, CSO and APEX). Data from other <strong>tel</strong>escopescan be converted to FITS format and imported into CLASS aswell. For examp<strong>le</strong>, Herschel-HIFI can be imported into CLASSthrough the FITS fil<strong>le</strong>r delivered by the HIPE data reductionsoftware (Delforge et al., in prep.). In order to analyze data inWeeds, the data must have been calibrated and reduced first. Thereduction usually consists in flagging the bad channels, averagingthe scan covering the same frequency range together, andremoving a polynomial baseline. If the data were obtained withdoub<strong>le</strong> sideband (DSB) receiver, sideband deconvolution mightbe needed in order to produce a SSB spectrum. This requires aspecial observing technique, i.e. a number of overlapping spectrawith shifted local oscillator frequency. Deconvolution canthen be performed in CLASS using the algorithm developed byComito & Schilke (2002). Thus data reduction and analysis canbe done within the same environment.3.2. Spectral line catalogs queriesAs mentioned above, line identification requires repeated queriesto spectral lines catalogs, such as the CDMS or the JPL. UnlikeXCLASS and CASSIS – who require a custom catalog instal<strong>le</strong>don the user’s computer – Weeds performs queries in spectral linedatabases through the Internet 2 . This has the advantage of not requiringany update of a custom catalog: changes in the database,such as species addition or line frequency corrections or updates,are readily availab<strong>le</strong> in Weeds. In order to make queries inspectral lines catalogs, we have imp<strong>le</strong>mented the VO-compliantSimp<strong>le</strong> Line Access Protocol (SLAP, Salgado et al. 2009) inWeeds. This protocol allows spectral line databases queries tobe made in a standardized way; any database that imp<strong>le</strong>ments theprotocol can be accessed by Weeds. Because it is a VO standard,it is likely that more and more spectral line database will use it inthe future. Nonethe<strong>le</strong>ss, as of this writing only the CDMS is accessib<strong>le</strong>using that protocol, through an interface at the Paris VOObservatory (Moreau et al. 2008). Therefore, in order to accessthe JPL catalog from Weeds, we have imp<strong>le</strong>mented queries inthe specific protocol which is used by this database. The CDMScan be accessed through its own protocol as well.For the moment, only one database can be used at a time; itis not possib<strong>le</strong> to combine the catalogs, i.e. to use species someout the JPL and some out the CDMS. In the future, the VAMDCproject 3 will provide a sing<strong>le</strong>, unified database, including stateof-artspectroscopic data from both the CDMS and the JPL catalogs.We plan on imp<strong>le</strong>menting an access to this database fromWeeds as soon as it it re<strong>le</strong>ased.From the user point of view, Weeds provides a commandto search for lines corresponding to a given frequency rangein a spectral line catalog. The user can se<strong>le</strong>ct a region on thespectrum displayed in CLASS, and the command prints all thelines from the catalog around the region se<strong>le</strong>cted. The lines canbe filtered out on the basis of the species they belong to, theirEinstein coefficient, or their upper <strong>le</strong>vel energy. For doub<strong>le</strong> sidebandspectra, a command option allows the search for lines fromthe image band.2 However, Weeds can make a cache of part or an entire catalog, sothat it can be used later with no Internet connection.3 http://www.vamdc.org/3.3. Lines browsing/identificationTo secure the detection of a species in a spectral survey, oneneeds, according to criterion (ii) to search for all the transitionsof that species in the entire frequency range covered by the survey.One also needs to measure the velocity of each line to checkthat they correspond to a sing<strong>le</strong> velocity. Weeds allows the userto browse through a survey rapidly. For this, Weeds has a commandto search for all the lines of a given specie that fall in thefrequency range covered by the survey. The command prints thelines in the terminal, but also builds an internal index containingall these lines, that we can order either by increasing frequencyor increasing upper <strong>le</strong>vel energy. Another command allow theuser to examine each of the line candidate one by one, to seeif the line is detected or not. This command makes a zoom ona small frequency region around the (expected) line, and alsosets the velocity sca<strong>le</strong> with respect to the rest frequency of theline. A vertical mark is also drawn on the displayed spectrum atthe source velocity, so that we can easily determine if the lineis detected or not. A Gaussian fit of the observed line may beperformed to determine the velocity of each line.3.4. Spectra modelingOnce several transitions of a given specie have been found, oneneeds to check if the relative intensities of these componentsagree with a sing<strong>le</strong> excitation temperature (criterion (iii)). In addition,one needs to make sure that non-detected lines are consistentwith the excitation temperature derived from other species– or in other words, that no lines are “missing”. For this Weedsallows the user to compute a synthetic spectrum that can be compareddirectly with the observations (forward-fitting). Followingthe approach used in XCLASS and described in Comito et al.(2005) the synthetic spectrum is computed assuming that theemission arises from one or several components at the LTE.Although this approximation is simplistic – it is well known thatin the inters<strong>tel</strong>lar medium species are often out of local thermodynamicequilibrium, and many sources are known to havedensity and temperature gradients – yet such a zeroth-order approachis often extremely useful to identify lines, as mentionedabove. Once the lines have been identified, a more realistic modeling,taking into account non-LTE excitation effects as well asthe source structure, can be carried-out.Under these assumptions, and after baseline subtraction, thebrightness temperature of a given species as a function of the restfrequency ν is given by:T B (ν) = η [ ( )] (J ν (T ex ) − J ) ν Tbg 1 − e−τ(ν)(1)where η is beam dilution factor, which, for a source with aGaussian brightness profi<strong>le</strong> and a Gaussian beam, is equal to:θ 2 sη =(2)θs 2 + θt2where θ s and θ t the source and <strong>tel</strong>escope beam FWHM sizes,respectively. For a sake of simplicity, the latter is assumed to begiven by the diffraction limit 4θ t = 1.22 c(3)νD4 (Sub-)millimeter <strong>tel</strong>escopes usually have tapers that limit the powerreceived in side-lobes. Because of this, the <strong>tel</strong>escope beam size maybe different that of a purely diffraction limited antenna of the same diameter.However, the difference between the two is usually small: at100 GHz, the measured FWHM of the IRAM-30 m is 24.6 ′′ , whi<strong>le</strong>Eq. (3) gives 25.2 ′′ .A47, page 3 of 5


A&A 526, A47 (2011)<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Fig. 1. Spectra between 524.2 and 525.5 GHz observed towards Orion-KL with Herschel-HIFI (fil<strong>le</strong>d histogram) and LTE model produced withWeeds (continuous black line). The rest frequencies of several detected methanol lines are indicated.where c is the light speed and D is the diameter of the <strong>tel</strong>escope.T bg is the brightness temperature of the background emission,i.e. the physical temperature that would have a black body producingthe same background continuum emission (e.g. 2.73 Kfor the cosmic microwave background). T ex is the excitation temperature,and the opacity τ (ν) is:τ (ν) =c2 N tot∑(8πν 2 A i g i u e −Ei u /kT ex ehν i 0 /kT ex− 1 ) φ i (4)Q(T ex )iwhere the summation is over each line of the considered species.Here N tot is the total column density of the species considered,Q(T ex ) is the partition function, A i is the Einstein coefficient ofthe i line, g i u and E u are the upper <strong>le</strong>vel degeneracy and energyof the i line, and φ i is the i line profi<strong>le</strong> function. The latter isgiven by:φ i 1=σ √ 0) 2 /2σ 2 (5)2π e−(ν−νiwhere ν i 0the is i line rest frequency and σ the line width in frequencyunits at 1/e. σ can be expressed as a function of the lineFWHM in velocity units ΔV as follows:ν i 0σ =c √ ΔV. (6)8ln2Note that some of the model parameters may be degenerate incertain cases. In the optically thick or thin limits, the source sizeand temperature or the size and column density are degenerate,respectively (see Eqs. (1) and(3)). This degeneracy can be usuallylifted if both thick and thin lines are present in the survey,or if lines from an rare isotopologue are detected together withthe main one (e.g. 13 CH 3 OH and CH 3 OH). The source size mayalso be constrained from interferometric observations.Several components with e.g. different kinetic temperature orcolumn density can be included in the computation. For this, weassume that the various components are not coup<strong>le</strong>d radiatively– that is a photon from one component can not be absorbed bya another, foreground component – in which case the emergingspectrum is simply the sum of the brightness temperature ofeach components given by Eq. (1). Each of these component canbe Dopp<strong>le</strong>r-shifted with respect to each other, which is usefulwhen modeling sources with several components at different velocities.It is also possib<strong>le</strong> to compute the spectra from severalspecies; this is done by a summation of Eq. (1) over each specie.The column densities, kinetic temperatures, Dopp<strong>le</strong>r widthand source sizes for each species and components are read froma text fi<strong>le</strong>. Einstein coefficients, upper <strong>le</strong>vel degeneracy and energiesas well as the partition functions are taken from spectralline catalogs. Because these catalogs usually give the partitionfunctions at a few temperatures only, the partition function atthe user temperature is computed from a linear interpolation (orextrapolation if the user given temperature is outside the rangeof temperature provided in the catalog). When computing thesynthetic spectrum, a frequency sampling corresponding to theminimum ΔV divided by 10 is taken (or a frequency samplingequal to that of the observed spectra, if it smal<strong>le</strong>r than the minimumΔV divided by 10). This ensures that the sampling at allfrequencies and for all species and components is sufficient. Atthe end of the computation, the synthetic spectrum is re-samp<strong>le</strong>dto the same channel spacing than the observed spectrum in orderto take the channel dilution factor into account. This allows fora direct comparison between the synthetic and observed spectra.In Fig. 1, we show an examp<strong>le</strong> of such a modeling. The figureshows a spectrum between 524.2 and 525.2 GHz observedtowards Orion-KL with Herschel-HIFI as part of the HEXOSguaranteed time key program (Bergin et al. 2010). These datahave been already presented by Wang et al. (2010). SeveralA47, page 4 of 5


S. Maret et al.: Weeds: a CLASS extension for the analysis of millimeterand sub-millimeter spectral surveys<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012methanol lines are detected. On this figure we show model predictionscomputed with a Weeds for a sing<strong>le</strong> component sourcewith N(CH 3 OH) = 2 × 10 17 cm −2 , θ S = 18 ′′ , T = 80 Kand ΔV = 4kms −1 , and using the JPL database. Overall, themodel predictions are in good agreement with the observations– in particular, we reproduce successfully the relative intensityof the brightest lines. On the other hand, this simp<strong>le</strong> model underestimatesthe small line at 524 620 MHz and the shoulder at524 880 MHz, maybe suggesting several emitting componentsand/or non-LTE excitation. Note that for the given parametersthe emission is predicted to be optically thin, so that the columndensity and source size can not be constrained independently.A comp<strong>le</strong>te analysis of the methanol emission in this sourceis c<strong>le</strong>arly beyond the scope of this paper; however this examp<strong>le</strong>demonstrates how a simp<strong>le</strong> LTE model is useful to identifylines in a spectral survey. Finally, we have crossed-checked thesemodel predictions with CASSIS and two packages were foundto be in excel<strong>le</strong>nt agreement.4. Conclusions and prospectsWe have presented an extension of the CLASS data reductionsoftware for analyzing spectral surveys. This extension allowsthe user to make queries in spectral line databases using a VOcompliant protocol. It also allows the user to quickly search forthe various transitions of a given specie. Finally it can computemodel predictions at the LTE, as often needed to identify linesin spectra close to the confusion limit. Weeds has already beensuccessfully used to analyze part of the IRAS 16293-2422survey obtained with Herschel-HIFI (Bacmann et al. 2010;Hily-Blant et al. 2010), and we expect that it will be usefulfor future spectral surveys with this instrument as well. Wethink that it will become a standard tool for analyzing spectralsurveys obtained with sing<strong>le</strong> dish ground based <strong>tel</strong>escopes suchas the IRAM-30 m. Yet, Weeds is not limited to the analysisof sing<strong>le</strong> dish observations. It may be used to analyze spectralsurveys obtained with interferometers as well, such as theIRAM Plateau de Bure, CARMA, the SMA, and the upcomingALMA and eVLA interferometers. In fact, since Weeds iswritten in Python, it could be used from the Python basedCASA software, that will be used by the eVLA and ALMA.However, analyzing ALMA data will be chal<strong>le</strong>nging, becausethese data will consist in large spectral cubes, i.e. essentially aspectral survey on large number of pixels. In fact, doing suchan analysis by hand, i.e. identifying the various lines/specieson each spectrum of map is probably impossib<strong>le</strong>; this willrequire some automatic fitting tools to extract the re<strong>le</strong>vantinformation (column densities and excitation temperature of thevarious species) as a function of position. Such tools require efficientminimization algorithms to fit a model with a large numberof free parameters to the data. The development of such tools isalready in progress (e.g. in XCLASS using the MAGIX minimizationframework), and imp<strong>le</strong>menting these automatic fittingtools in Weeds would be desirab<strong>le</strong> in the future.Acknow<strong>le</strong>dgements. The authors would like to thank Peter Schilke andEmmanuel Caux for fruitful discussions on the analysis of spectral surveys. Weare also grateful to Charlotte Vas<strong>tel</strong> for helping us testing the LTE modeling donein Weeds against CASSIS, and to Shyia Wang for providing us the Orion-KLspectrum prior to publication. Finally, we wish to thank the persons in charge ofmaintaining and the CDMS, JPL and Paris VO databases; without their continuousefforts, the development of analysis software such as Weeds would not bepossib<strong>le</strong>. We are especially grateful to Holger Mül<strong>le</strong>r, Brian Drouin and NicolasMoreau for their help in imp<strong>le</strong>menting access to these databases in Weeds.ReferencesBacmann, A., Caux, E., Hily-Blant, P., et al. 2010, A&A, 521, L42Bardeau, S., Reynier, E., Pety, J., & Guilloteau, S. 2010, PYGILDAS:Inter<strong>le</strong>aving Python and GILDAS, Tech. Rep., IRAMBelloche, A., Menten, K. M., Comito, C., et al. 2008, A&A, 482, 179Bergin, E., Phillips, T., Comito, C., et al. 2010, A&A, 521, L20Beuther, H., Zhang, Q., Reid, M. J., et al. 2006, ApJ, 636, 323Blake, G. A., van Dishoek, E. F., Jansen, D. J., Groesbeck, T. D., & Mundy, L. G.1994, ApJ, 428, 680Blake, G. A., Sandell, G., van Dishoeck, E. F., et al. 1995, ApJ, 441, 689Blake, G. A., Mundy, L. G., Carlstrom, J. E., et al. 1996, ApJ, 472, L49Ceccarelli, C., Bacmann, A., Boogert, A., et al. 2010, A&A, 521, L22Comito, C., & Schilke, P. 2002, A&A, 395, 357Comito, C., Schilke, P., Phillips, T. G., et al. 2005, ApJS, 156, 127de Graauw, T., Helmich, F., Phillips, T., et al. 2010, A&A, 518, L6Goldsmith, P. F., & Langer, W. D. 1999, ApJ, 517, 209Herbst, E., & van Dishoeck, E. F. 2009, ARA&A, 47, 427Hily-Blant, P., Pety, J., & Guilloteau, S. 2005, CLASS Evolution: I. ImprovedOFT support, Tech. Rep., IRAMHily-Blant, P., Walms<strong>le</strong>y, M., Pineau Des forêts, G., & Flower, D. 2010, A&A,513, A41Johansson, L. E. B., Andersson, C., Ellder, J., et al. 1984, A&A, 130, 227Mül<strong>le</strong>r, H. S. P., Thorwirth, S., Roth, D. A., & Winnewisser, G. 2001, A&A, 370,L49Moreau, N., Dubernet, M. L., & Mül<strong>le</strong>r, H. 2008, in Astronomical Spectroscopyand Virtual Observatory, ed. M. Guainazzi, & P. Osuna, 195Pickett, H. M., Poynter, R. L., Cohen, E. A., et al. 1998, JQSRT, 60, 830Pilbratt, G. L., Riedinger, J. R., Passvogel, T., et al. 2010, A&A, 518, L1Salgado, J., Osuna, P., Osuna, M., et al. 2009, Simp<strong>le</strong> Line Access Protocol,Tech. Rep., International Virtual Observatory AllianceSchilke, P., Groesbeck, T. D., Blake, G. A., & Phillips, T. G. 1997, ApJS, 108,301Schilke, P., Benford, D. J., Hunter, T. R., Lis, D. C., & Phillips, T. G. 2001, ApJS,132, 281van Dishoeck, E. F., Blake, G. A., Jansen, D. J., & Groesbeck, T. D. 1995, ApJ,447, 760Wang, S., Bergin, E., Crockett, N., et al. 2010, A&A, submittedWootten, A. 2008, Ap&SS, 313, 9A47, page 5 of 5


IRAM Memo 2009-1IRAM-30m EMIR time/sensitivity estimatorJ. Pety 1,2 , S. Bardeau 1 , E. Reynier 11. IRAM (Grenob<strong>le</strong>)2. Observatoire de ParisFeb, 18th 2010Version 1.1AbstractThis memo describes the equations used in the IRAM-30m EMIR time/sensitivity estimator availab<strong>le</strong>in the GILDAS/ASTRO program. A large part of the memo aims at deriving sensitivity estimate forthe case of On-The-Fly observations, which is not c<strong>le</strong>arly documented elsewhere (to our know<strong>le</strong>dge).Numerical values of the different parameters used in the time/sensitivity estimator are grouped inappendix A.History:Version 1.0 (Feb, 04th 2009).Version 1.1 (Feb, 18th 2010) Simplified.<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012IRAM-30m EMIR time/sensitivity estimatorContentsContents1 Generalities 31.1 The radiometer equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.2 System temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.3 Elapsed <strong>tel</strong>escope time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.4 The number of polarizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.5 Switching modes and observation kinds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Tracked observations 42.1 Frequency switched . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42.2 Position switched . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 On-The-Fly observations 53.1 Additional notions and notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53.2 Frequency switched . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63.3 Position switched . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63.3.1 Two key points: 1) Sharing OFF among many ONs and 2) system stability timesca<strong>le</strong> 63.3.2 Relation between tonoff and t beamsig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73.3.3 Time/Sensitivity estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Acknow<strong>le</strong>dgement 10A Numerical values 11A.1 Overheads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11A.2 Atmosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11A.3 Te<strong>le</strong>scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11A.4 Frontends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11A.5 Backends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11A.6 On-The-Fly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12B Optimal number of ON per OFF measurements 13IRAM-30m EMIR time/sensitivity estimator1 Generalities1.1 The radiometer equationThe radiometer equation for a total power measurement reads11. generalitiesTsysσ = √ , (1)ηspec dν twhere σ is the rms noise obtained by integration during t in a frequency resolution dν with a system whosesystem temperature is given by Tsys and spectrometer efficiency is ηspec. However, total power measurementincludes other contributions (e.g. the atmosphere emission) in addition to the astronomical signal. Theusual way to remove most of the unwanted contributions is to switch, i.e. to measure alternatively onsourceand off-source and then to subtract the off-source from the on-source measurements. It is easy toshow that the rms noise of the obtained measurement is√σ = σon 2 + σoff 2 = Tsyston toff√ with tsig = , (2)ηspec dν tsig ton + toffwhere σon and σoff are the noise of the on and off measurement observed respectively during the ton andtoff integration time. tsig is just a useful intermediate quantity.1.2 System temperatureThe system temperature is a summary of the noise added by the system. This noise comes from 1) thereceiver and the optics, 2) the emission of the sky, and 3) the emission picked up by the secondary sidelobes of the <strong>tel</strong>escope. It is usual to approximate it (in the Ta⋆ sca<strong>le</strong>) with(1 + Gim) exp {τs A}Tsys = [Feff Tatm (1 − exp {−τs A}) + (1 − Feff) Tcab + Trec] , (3)Feffwhere Gim is the receiver image gain, Feff the <strong>tel</strong>escope forward efficiency, A = 1/ sin(e<strong>le</strong>vation) theairmass, τs the atmospheric opacity in the signal band, Tatm the mean physical atmospheric temperature,Tcab the ambient temperature in the receiver cabine and Trec the noise equiva<strong>le</strong>nt temperature of thereceiver and the optics. All those parameters are easily measured, except τs, which is depends on theamount of water vapor in the atmosphere and which is estimated by comp<strong>le</strong>x atmospheric models.1.3 Elapsed <strong>tel</strong>escope timeThe goal of a time estimator is to find the elapsed <strong>tel</strong>escope time (t<strong>tel</strong>) needed to obtain a given rms noise,whi<strong>le</strong> a sensitivity estimator aims at finding the rms noise obtained when observing during t<strong>tel</strong>. If tonoff isthe total integration time spent both on the on-source and off-source observations, thentonoff = η<strong>tel</strong> t<strong>tel</strong>, (4)where η<strong>tel</strong> is the efficiency of the observing mode, i.e. the time needed 1) to do calibrations (e.g. pointing,focus, temperature sca<strong>le</strong> calibration), and 2) to s<strong>le</strong>w the <strong>tel</strong>escope between useful integrations.The tuning of the receivers is not proportional to the total integration time but it should be added tothe elapsed <strong>tel</strong>escope time. A time estimator can hardly anticipate the total tuning time for a project.Indeed, one project (e.g. faint line detection) can request only one tuning to be used during many hoursand another (e.g. line survey) can request a tuning every few minutes. In our case, we thus request thatthe estimator user add by hand the tuning time to the elapsed <strong>tel</strong>escope time estimation.23


IRAM-30m EMIR time/sensitivity estimator2. tracked observationsIRAM-30m EMIR time/sensitivity estimator3. on-the-fly observations<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 20121.4 The number of polarizationsHeterodyne mixers are coup<strong>le</strong>d to a sing<strong>le</strong> linear polarization of the signal. Hence, heterodyne receivershave at <strong>le</strong>ast two mixers, each one sensitive to one of the two linear polarization of the incoming signal.Both mixers are looking at the same sky position. This implies that we have to distinguish between thetime spent on a given position of sky and the human elapsed time. Indeed, we will use the time spent ona given position of the sky when estimating the sensitivity, whi<strong>le</strong> we will give human elapsed time for the<strong>tel</strong>escope and the on and off times.If the mixers are tuned at the same frequency, the times spent on and off in the same direction ofthe sky will be twice the human elapsed time. We thus have to introduce the number of polarizationsimultaneously tuned at the same frequency, npol, which can be set to 1 or 2. It happens that for EMIR,the two polarizations are always tuned at the same frequency, i.e. npol = 2. The simp<strong>le</strong>st way to take intoaccount the distinction between human time and sky time is to slightly modify the radiometer equationto take into account the number of polarizationTsysσ =ηspec√dν npol tsigThis equation implies that ton, toff, tonoff and t<strong>tel</strong> will be human times.1.5 Switching modes and observation kindsSwitching is done in two main ways.ton toffwith tsig = . (5)ton + toffPosition switch where the off-measurement is done on a close-by sky position devoid of signal. Wobb<strong>le</strong>rswitching is a particular case.Frequency switch where the <strong>tel</strong>escope always points towards the the source and the switching is donein the frequency (velocity) space.Moreover, there are two main observation kinds.Tracked observations where the <strong>tel</strong>escope track the source, i.e. it always observes the same position inthe source referential. The result is a sing<strong>le</strong> spectra.On-The-Fly observations where the <strong>tel</strong>escope continuously s<strong>le</strong>w through the source with time to mapit. The result is a cube of spectra.In the following, we will work out the equations needed by the time/sensitivity estimator for eachcombination.2 Tracked observations2.1 Frequency switchedIn this case, all the time is spent in the direction of the source. However, the frequency switching alsoimplies that all this times can be counted as on-source and off-source times. ThusandIRAM-30m EMIR time/sensitivity estimatortonoff = ton = toff, (6)tsig = ton2 = toff2 = tonoff2 , (7)√2 Tsysσfsw =. (8)ηspec√dν npol η<strong>tel</strong> t<strong>tel</strong>43. on-the-fly observationsIn addition, we must ensure that the user does not try to scan faster than the <strong>tel</strong>escope can s<strong>le</strong>w. To dothis, we need to introduce• The linear scanning speed, v linear , and its maximum value, v maxlinear .• The area scanning speed, v area , and its maximum value, v maxarea. When the scanning pattern is linear,then v area and v linear are linked throughv area = v linear ∆θ, (16)where ∆θ is the separation between consecutive rows. To avoid nasty signal and noise aliasingprob<strong>le</strong>ms, we must ensure a Nyquist sampling, i.e.3.2 Frequency switched∆θ =θ2.5 . (17)In frequency switched observations, the switching happens as the <strong>tel</strong>escope is s<strong>le</strong>wed. This is correct aslong as the switching time is much smal<strong>le</strong>r than the time needed to s<strong>le</strong>w a significant fraction of the<strong>tel</strong>escope beam.It is easy to understand thattonoff = t toton = t totoff , (18)andt beamsigThe velocity check can then be written as3.3 Position switchedt beamon = t beamoff = tonoffnbeam= tbeam on2, (19)= tbeam off = tonoff , (20)2 2nbeam√ 2 nbeam Tsysσfsw =. (21)ηspec√dν npol η<strong>tel</strong> t<strong>tel</strong>Amap≤ varea. max(22)tonoff3.3.1 Two key points: 1) Sharing OFF among many ONs and 2) system stability timesca<strong>le</strong>When the stability of the system is long enough, we can share the same off for several independent onpositionsmeasured in a row (e.g. ON-ON-ON-OFF-ON-ON-ON-OFF...). The first key point here is thefact that the on-positions must be independent. The OTF is an observing mode where the sharing ofthe off can be used because the goal is to map a given region of the sky made of independent positionsor resolution e<strong>le</strong>ments. When sharing the off-position between several on, Ball (1976) showed that theoptimal off integration time ist optimaloff = √ n on/off ton (23)where n on/off is the number of on measurements per off. Replacing toff by its optimal value in eq. 5, weobtain√tonTsys1tsig =1 and σ =1 + √ . (24)1 + √ non/offηspec√dν npol ton non/offWe thus see that the rms noise decreases when the number of independent on per off increases. It seemstempting to have only one off for all the on positions of the OTF map. However, the second key point ofthe method is that the system must be stab<strong>le</strong> between the first and last on measurement. To take thispoint into account we must introduce2.2 Position switchedIn this case, only half of the time is spent in the direction of the source. Thusand2.3 Comparisonton = toff = tonoff2 , (9)tsig = ton2 = toff2 = tonoff4 , (10)σpsw =2 Tsys. (11)ηspec√dν npol η<strong>tel</strong> t<strong>tel</strong>For tracked observations, position switched observations results in a noise rms √ 2 larger than frequencyswitched observations for the same elapsed <strong>tel</strong>escope time. In other words, frequency switched observationsare twice as efficient in time to reach the same rms noise than position switched observations.However, time efficiency is not the only criteria of choice. Indeed, with the current generation ofreceivers (before march 2009), the IF bandpass is much c<strong>le</strong>aner in position switched than in frequencyswitched observations. Frequency switched is thus really useful only when the lines are narrow so that theIF bandpass can be easily c<strong>le</strong>aned out through baselining with low order polynomials.3 On-The-Fly observations3.1 Additional notions and notationsThe On-The-Fly (OTF) observing mode is used to map a given region of the sky. The time/sensitivityestimator will have to link the elapsed <strong>tel</strong>escope time to cover the who<strong>le</strong> mapped region to the sensitivityin each independent resolution e<strong>le</strong>ment. To do this, we need to introduce• Amap and Abeam, which are respectively the area of the map and the area of the resolution e<strong>le</strong>ment.The map area is a user input whi<strong>le</strong> the resolution area is linked to the <strong>tel</strong>escope full width at halfmaximum (θ) byηgrid π θ2Abeam =4 ln(2)where ηgrid comes from the fact that the OTF data is gridded by convolution. When the convolutionkernel is a Gaussian of FWHM equal to θ/3 (the default inside the GILDAS/CLASS software), it iseasy to show that(12)ηgrid = 1 + 1 ≃ 1.11. (13)9• The number of independent measurement (nbeam) in the final map which is given by• The on and off time spent per independent measurement, t beamonthen be writtennbeam = Amap . (14)Abeamt beamsig = tbeam on t beamofft beam on + t beamoff• The on and off time spent to map the who<strong>le</strong> map, t toton and t totoffin a way which depends on the switching scheme.IRAM-30m EMIR time/sensitivity estimator5and t beamoff. The associated t beamsig can. tonoff is deduced from ttot on(15)and t totoff3. on-the-fly observations• The concept of submap, which is a part of a map observed between two successive off measurements.• Asubmap, which is the area covered by the <strong>tel</strong>escope in each submap.• nsubmap the number of such submaps needed to cover the who<strong>le</strong> map area.• tstab<strong>le</strong>, the typical time where the system is stab<strong>le</strong>. This time will be the maximum time betweentwo off measurements, which is noted tsubmap.• ncover, the number of coverages needed either to reach a given sensitivity or to exhaust the acquisitiontime.• t coveroncoverage.and t coveroff are the times spent respectively on and off per independent measurement and perWe note that the number of on per off (n on/off) is a purely geometrical quantity. This implies that the timespent off is linked to the time spent on by Eq. 23 both in each individual coverage and when averaging allthe coverages.3.3.2 Relation between tonoff and t beamsigBy construction• The number of submaps is the area of the map divided by the area of a submapnsubmap =Amap . (25)Asubmap• The number of on per off is the number of independent resolution e<strong>le</strong>ments in each submapn on/off = Asubmap . (26)Abeam• The number of independent resolution e<strong>le</strong>ments in the map is the product of number of submaps bythe number of on per offnbeam = nsubmap n on/off. (27)• The submap area is the product of the area velocity by the time to cover itAsubmap = v area tsubmap. (28)• The time to scan a submap is the sum of the n on/off independent on integration timetsubmap = n on/off t coveron . (29)• The relations between times per coverage and times integrated over all the coverages aret beamon = ncover t coveron and t beamoff = ncover t coveroff with t coveroff = √ n on/off t coveron . (30)• Using the last two points, it is easy to derivet beamsig = ncover t coversig =ncover tsubmapn on/off + √ . (31)n on/off67


IRAM-30m EMIR time/sensitivity estimator3. on-the-fly observationsIRAM-30m EMIR time/sensitivity estimator3. on-the-fly observations• Finally, the total time spent on and off is given byStep #3: Computation of derived quantities<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012tonoff = ncover nsubmap (n on/off t coveron + t coveroff ). (32)Using Eqs. 23 and 29, we derive()1tonoff = ncover tsubmap nsubmap 1 + √ . (33)non/offBoth t beamsig and tonoff are proportional to ncover tsubmap (cf. Eqs. 31 and 33). It is thus easy to derive thattonoff = t beamsigUsing Eq. 27, we can replace n on/off and obtainUsing Eqs. 5, 4 and 35, we obtain( √ ) 2nsubmap 1 + non/off . (34)tonoff = t beam (√sig nsubmap + √ ) 2nbeam . (35)(√ nbeam + √ )nsubmap Tsysσpsw = √ηspec dν npol η<strong>tel</strong> t<strong>tel</strong>. (36)The last equation in theory enab<strong>le</strong>s us to find the rms noise as a function of the elasped <strong>tel</strong>escope time(sensitivity estimation) and vice-versa (time estimation). However, it is not fully straightforward becausewe must enforce that ncover and nsubmap have an integer value.3.3.3 Time/Sensitivity estimationThis paragraph describes the algorithm to do a time/sensitivity estimation for a position-switched On-The-Fly observation.Step #1: Computation of nbeam and nsubmapnbeam is just computed as the ratio Amap/Abeam. Using Eqs. 28 and 25, we obtainnsubmap =Amap. (37)v area tsubmapUsing this equation, we start to compute nsubmap for tsubmap = tstab<strong>le</strong> and v area = v maxarea. We want toenforce the integer character of nsubmap in a way which decreases the product tsubmap v area . To dothis, we usensubmap = 1 + int(nsubmap). (38)Eq. 38 ensures that tsubmap v area < tstab<strong>le</strong> v maxarea. The value of v area must be decreased so that Eq. 37is enforced.Step #2: Computation of t<strong>tel</strong> or σ We use the following equations in descending order to computethe elapsed <strong>tel</strong>escope time and in ascending order to compute the rms noise <strong>le</strong>vel:IRAM-30m EMIR time/sensitivity estimator1. t beamsigTsys2 , (39)=ηspec 2 σ 2 dν npol2. tonoff = t beam (√sig nsubmap + √ ) 2nbeam , (40)3. η<strong>tel</strong> t<strong>tel</strong> = tonoff. (41)84. acknow<strong>le</strong>dgementMoreover, σpsw/σfsw ≃ 0.84 for n on/off = 30, and ≃ 0.78 for n on/off = 100. Using eqs. 28 and 26, we seethat the limit on the maximum number of on per off is set bytstab<strong>le</strong>n on/off =Abeam/vareamax , (50)i.e. the ratio of the maximum system stability time by the minimum time required to map a <strong>tel</strong>escopebeam.As for tracked observations, there are other considerations to be taken into account. For extra-galacticobservations, the lines are large which excludes the use of frequency switched observations. For Galacticobservations, the intrinsic sensitivity of the receivers may make it difficult to find a closeby position devoidof signal. We can still use the position switched OTF observing mode. But we then have to observethe off position in frequency switched track observing mode long enough to be ab<strong>le</strong> to add back the offastronomical signal.4 Acknow<strong>le</strong>dgementThe author thanks M. Guélin, S. Guilloteau, C. Kramer and C. Thum for useful discussions.ReferencesBall, J. A., in Meth. Exper. Phys., Vol. 12, Part C, Astrophysics: Radio Observations, Chap. 4.3, p. 46,ed. M. L. Meeks1. n on/off = nbeam , (42)nsubmap2. ncover = tbeam sigtsubmap(non/off + √ n on/off), (43)3. t beam ncover tsubmapon =n on/off(44)3. t beamoff= t beamon√ non/off. (45)Step #4: Is ncover an integer number? The interpretation of the above equation to compute ncoverhas two cases.1. ncover < 1. This means that either the user tries to cover a too large sky area in the given<strong>tel</strong>escope elasped time (sensitivity estimation) or the <strong>tel</strong>escope need a minimum time to coverAmap at the maximum velocity possib<strong>le</strong> with the <strong>tel</strong>escope and this minimum time implies amore sensitive observation than requested by the user (time estimation).2. ncover ≥ 1. ncover will generally not be an integer, we can think to decrease tsubmap from tstab<strong>le</strong>to obtain an integer value. However, this must be done at constant Asubmap(= v area tsubmap).Decreasing tsubmap thus implies increasing v area . It is not c<strong>le</strong>ar that this is possib<strong>le</strong> because ofthe constraint v area < varea. max Another way to deal with this is to keep tsubmap to its maximumvalue and to adjust t<strong>tel</strong> (sensitivity estimation) or tsig and thus σ (time estimation) to obtain aninteger value of ncover. However, this implies a change in the wishes of the user. The programcan not make such a decision alone and we will only warn the user. Indeed, the worst case iswhen ncover is changing from 1 to 2 because this can decrease the sensitivity by a factor 1.4(sensitivity estimation) or doub<strong>le</strong> the elapsed <strong>tel</strong>escope time (time estimation). The larger thevalue of ncover the <strong>le</strong>ss harm it is to enforce the integer character of ncover.3.4 ComparisonContrary to tracked observations, the position switched observing mode can be more efficient than thefrequency switched observing mode. Indeed, in frequency switch, the same time is spent in the on and offspectrum. When subtracting them, the off brings as much noise as the on. In position switch, the sameoff can be shared between many ons, in which case the optimal integration time on the off is much largerthan on each independent on spectrum. Hence, the noise brought by the off spectrum can be much smal<strong>le</strong>rthan the noise brought by the on spectrum.For frequency switched observations,√ 2 nbeam Tsysσfsw =, (46)ηspec√dν npol η<strong>tel</strong> t<strong>tel</strong>whi<strong>le</strong> for position switched observations,(√ nbeam + √ )nsubmap Tsysσpsw = √ηspec dν npol η<strong>tel</strong> t<strong>tel</strong>. (47)We thus haveσpsw= 1 √ nsubmap√(1 +σfsw 2 nbeamPosition switched OTF is more efficient than frequency switched OTF forIRAM-30m EMIR time/sensitivity estimatorANumerical values). (48)nbeam1= n on/off ≥nsubmap3 − 2 √ ∼ 6. (49)29A. numerical valuesThis appendix groups all the numerical values used in the time/sensitivity estimator. We made conservativechoices for two reasons: 1) time/sensitivity estimators tend to be too optimistics and 2) EMIR is a newgeneration of receivers which had not yet been tested at the <strong>tel</strong>escope.A.1 Overheads• η<strong>tel</strong> = 0.5.• After estimating the number of tunings needed to comp<strong>le</strong>te the project, the user has to add to the<strong>tel</strong>escope time 30 minutes per tuning (this includes the observation of a line calibrator).A.2 Atmosphere• Tatm = 250 K.• The opacities at signal frequencies are computed with a recent version of the ATM program (maintainedby J.R. Pardo).• They are computed for 3 different amount of water vapor per season (1, 2 and 4 mm for the winterseason and 2, 4 and 7 mm for the summer season).A.3 Te<strong>le</strong>scope• Tcab = 290 K.• Feff = 0.95 at 3 mm, 0.93 at 2 mm, 0.91 at 1 mm and 0.88 at 0.8 mm.A.4 FrontendsWarning: P<strong>le</strong>ase do not quote these values in your papers. You should refer to the publications whichfully describe the receivers.• The receiver temperature is the sum of– The mixer temperature: Typically 50 K below 260 GHz and 70 K above;– The mirror losses: Typically 10 K;– The dichroic losses: Typically 15 K. Nota Bene: Dichroics enab<strong>le</strong> dual frequency observationby frequency separation of the sky signal.We end up with Trec = 75 K below 260 GHz and T rec = 95 K above 260 GHz.• Gim = 0.1.A.5 Backends• ηspec = 0.87 because of the 2 bit quantization at the input of the correlators.• The noise equiva<strong>le</strong>nt bandwidth of our correlators is almost equal to the channel spacing. So we donot take this into account in our estimation.1011


IRAM-30m EMIR time/sensitivity estimatorA. numerical valuesIRAM-30m EMIR time/sensitivity estimatorB. optimal number of on per off measurementsA.6 On-The-Fly• tstab<strong>le</strong> = 2 minutes.• θ = 2460′′ν GHz .• The maximum linear velocity is limited by the maximum dumping rate of fdump = 2 Hz. We knowthat in order to avoid beam elongation along the scanning direction, we need to samp<strong>le</strong> at <strong>le</strong>ast 4points per beam in the scanning direction. We thus end up withandv maxarea = fdumpv maxlinear = fdumpθarcsec/s (51)4θ θ2.5 4 arcsec2 /s or varea max θ 2= fdump10 arcsec2 /s (52)BOptimal number of ON per OFF measurementsThis section is just a reformulation of the original demonstration by Ball (1976).Let’s assume that we are measuring n on/off independent on-positions for a sing<strong>le</strong> off. The same integrationtime (ton) is spent on each on-position and the off integration time istoff = α ton, (53)where α can be varied. Using eq. 2 and tonoff = n on/offton + toff = (n on/off + α) ton, it can be shown thanT 2 (systonoff =ηspec 2 σ 2 dνDifferenciating with respect to α, we obtain1 + n on/off + α + n on/offα). (54)dtonoffdα∝ 1 − n on/offα 2 (55)Setting the result to zero then gives that the minimum elapsed time to reach a given rms noise is obtainedforα = √ n on/off or t optimaloff = √ n on/off ton. (56)<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 20121213


IRAM-30m HERA time/sensitivity estimatorJ. Pety 1,2 , M. Gonzá<strong>le</strong>z 3 , S. Bardeau 1 , E. Reynier 11. IRAM (Grenob<strong>le</strong>)2. Observatoire de Paris3. IRAM (Granada)Feb., 18th 2010Version 1.0AbstractThis memo describes the equations used in the IRAM-30m HERA time/sensitivity estimator availab<strong>le</strong>on the IRAM-30m web page. A large part of the memo aims at describing the peculiarities oftime/sensitivity estimation of the On-The-Fly observing mode with a multi-pixel like HERA. It explainshow to generalize the equations of the sing<strong>le</strong> pixel case, so that the same code can be used inboth cases (sing<strong>le</strong> and multi-pixel).<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012IRAM-30m HERA time/sensitivity estimatorIn these formulas2. generalization to a multi-pixel receiver• η<strong>tel</strong> is the efficiency of the <strong>tel</strong>escope. It includes the time needed 1) to do calibrations (e.g. pointing,focus, temperature sca<strong>le</strong> calibration), and 2) to s<strong>le</strong>w the <strong>tel</strong>escope between useful integrations, etc...Its value is decided by IRAM: It should not be changed by the PI.• ηspec is the spectrometer efficiency.• dν is the frequency resolution.• npol is the number of polarizations tuned at the same frequency (1 or 2).• Tsys is the system temperature, which is a summary of the noise added by the system. It is usual toapproximate it (in the Ta⋆ sca<strong>le</strong>) with(1 + Gim) exp {τs A}Tsys = [Feff Tatm (1 − exp {−τs A}) + (1 − Feff) Tcab + Trec] , (3)Feffwhere Gim is the receiver image gain, Feff the <strong>tel</strong>escope forward efficiency, A = 1/ sin(e<strong>le</strong>vation)the airmass, τs the atmospheric opacity in the signal band, Tatm the mean physical atmospherictemperature, Tcab the ambient temperature in the receiver cabine and Trec the noise equiva<strong>le</strong>nttemperature of the receiver and the optics.• nbeam is the number of independent measurement in the map observed in the OTF mode. It is givenbynbeam = A mapAbeamwithηgrid π θ2Abeam =4 ln(2) . (4)where A map is the map area, Abeam is the area of the resolution e<strong>le</strong>ment in the map, ηgrid is thesmoothing factor due to gridding and θ is the <strong>tel</strong>escope full width at half maximum.• nsubmap the number of submaps needed to cover the who<strong>le</strong> map area, a submap being the areacovered between two successive off measurements. nsubmap is computed withnsubmap =A mapAsubmapwith Asubmap = θ2.5 v linear tstab<strong>le</strong> (5)where v linear is the <strong>tel</strong>escope scanning speed and tstab<strong>le</strong> is the typical timesca<strong>le</strong> of stability of theobserving system.The demonstrations and additional subt<strong>le</strong>ties for the OTF case are fully described in Pety et al. (2009).2 Generalization to a multi-pixel receiver2.1 Description of HERA, the IRAM-30m multi-pixelsHERA is a multi-pixel receiver working at 1 mm of wave<strong>le</strong>ngth. Each pixel is an heterodyne mixer usinga SIS junction. There are nine pixels per polarization. The pixels of one polarization follow a 3 × 3 squarepattern, the distance between two pixels being ∆ = 24 ′′ . Both polarizations are aligned. Hence, HERAhas 18 pixels in total looking at 9 different sky position simultaneously. The polarizations of HERA cansimultaneously be tuned at two different frequencies.The number of used polarization, npol can thus be set to 1 or 2 and the number of pixels per polarizationis npix = 9.1 Summary of the formulas for a sing<strong>le</strong> pixel receiverWe summarize here the relations between the rms noise (σ) and the elapsed <strong>tel</strong>escope time (t<strong>tel</strong>) derivedby Pety et al. (2009) in the case of a sing<strong>le</strong>-pixel heterodyne receiver. The results depends on a combinationof• The observation kind:Tracked observations where the <strong>tel</strong>escope track the source, i.e. it always observes the sameposition in the source referential. The result is a sing<strong>le</strong> spectra.On-The-Fly observations where the <strong>tel</strong>escope continuously s<strong>le</strong>w through the source with time tomap it. The result is a cube of spectra.• and of the switching mode:Position switch where the off-measurement is done on a close-by sky position devoid of signal.Wobb<strong>le</strong>r switching is a particular case.Frequency switch where the <strong>tel</strong>escope always points towards the the source and the switching isdone in the frequency (velocity) space. In this case,The formulas are• for tracked observationsσpsw track 2 Tsys=ηspec√dν npol η<strong>tel</strong> t<strong>tel</strong>• for OTF observations(√σpsw otf nbeam + √ )nsubmap Tsys= √ηspec dν npol η<strong>tel</strong> t<strong>tel</strong>IRAM-30m HERA time/sensitivity estimator2.2 An average pixel, and σ trackfsw =1, and σ otffsw =√2 Tsys. (1)ηspec√dν npol η<strong>tel</strong> t<strong>tel</strong>√ 2 nbeam Tsys. (2)ηspec√dν npol η<strong>tel</strong> t<strong>tel</strong>2. generalization to a multi-pixel receiverThe scatter of the mixer performances, which translate into a scatter of receiver temperatures, is the firstthing to deal with. Instead of computing the sensitivity associated with each mixer, we introduce anaverage pixel, which will represent all the other ones. In Eqs. 1 and 2, the caracteristics of the mixersare hidden into the system temparature, Tsys. We will thus define an average system temperature, T sys,which will represent the receiver average pixel.Among the different ways to define such an average system temperature, we privi<strong>le</strong>dge the one whichwill give the right sensitivity in the case where the same point of the sky is seen by all the differentpixels. This choice is made because 1) the same point of the sky is at <strong>le</strong>ast seen by two pixels (one perpolarization) and 2) it is a good idea when mapping to try to cover the mapped area as many time aspossib<strong>le</strong> with sligthly different observing configuration of HERA (e.g. rotations by 90deg) to homogenizethe noise distribution and to ensure that bad pixels see different part of the mapped area.It is well-known that the optimal way to combine (e.g. to average or to grid) spectra is to weight themby w = 1/σ 2 before combination, where σ is their rms noise. In this case, it can be shown that the weightof the combination is the linear sum of the weights. From this, it is easy to define T sys as2.3 Impact on tracked observations∑npol npix1T 2 =T 2 . (6)sys i=1,npol, sys j=1,npix ijDuring tracked observations, each pixel of one polarization will look at a different position of the sky, butalways the same position with time. We thus simply have to change Tsys by T sys in Eqs. 1, i.e.σpsw track =√2 T sys2 T, and σηspec√ sysfsw =. dν npol η<strong>tel</strong> t<strong>tel</strong>ηspec√dν npol η<strong>tel</strong> t<strong>tel</strong>(7)2.4 Imaging with HERAHERA has a derotator, which ensures that the pixels do not rotate on the sky. The sky can thus bemapped by scanning along e.g. the right ascension or the declination axis in equatorial coordinates. Weaim at obtaining a fully samp<strong>le</strong>d map, implying a distance between the rows of ∆ = θ/2.5, where θ is thebeam full width at half maximum: At 1 mm, this corresponds typically to 4 ′′ . However, the pixels aretypically separated by ∆ ≃ 2θ. We thus have to find the best scanning strategy which will fill the ho<strong>le</strong> ofthe instantaneous footprint of the multi-pixel. To do this, we will use a property of the deroratator, i.e.it can be configured so that one of the main axes of the multi-pixel is rotated by an ang<strong>le</strong> (α) from thescanning direction. Indeed, we can ask what is the value of α needed so that the distance between therows of two adjacent pixels is exactly ∆. For a receiver of √ npix × √ npix pixels, we end up with √ npixgroups of lines, the distance between two group of lines being noted δ ′ . A bit of geometry givesIf we now impose thatwe obtainδ = ∆ sin α and δ ′ = ∆ cos α. (8)δ ′ = nsubscan√ npix δ, (9)1tan α = √ . (10)nsubscan npixWe can fully samp<strong>le</strong> without redundancy a given fraction of the sky in a sing<strong>le</strong> subscan (nsubscan = 1) orin two paral<strong>le</strong>l subscans (zigzag, nsubscan = 2).For HERA, √ npix = 3 and the ∆ value is fixed to 4 ′′ by the observing wave<strong>le</strong>nght ∼ 1 mm. nsubscan = 1gives α = 18.4 ◦ , ∆ ∼ 12 ′′ and nsubscan = 2 gives α = 9.5 ◦ , ∆ ∼ 24 ′′ . Current optical design implies aminimum distance between the pixels which is only compatib<strong>le</strong> with the nsubscan = 2 solution.23


IRAM-30m HERA time/sensitivity estimator 2. generalization to a multi-pixel receiverIRAM-30m HERA time/sensitivity estimator2. generalization to a multi-pixel receiver<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012In summary, by setting an ang<strong>le</strong> of 9.5 ◦ between one of the main axes of a 3 × 3 multi-pixels and thescanning direction, we can sweep in a fully samp<strong>le</strong>d mode a given portion of the sky with two paral<strong>le</strong>lscans separated by 3δ = 12 ′′ . The region of the sky fully samp<strong>le</strong>d will then be rectangular: the <strong>le</strong>ngth ofthe rectangular side perpendicular to the scanning direction is then d⊥ = nsubscannpixδ, whi<strong>le</strong> the <strong>le</strong>ngth ofthe rectangular size paral<strong>le</strong>l to the scanning direction, d ‖, will depend on the observing strategy. However,there is an edge effect, due to the rotation of the array from the scanning direction. Indeed, the edges ofthe maps are not fully samp<strong>le</strong>d: Thus must thus be considered as overheads. The area of the scanned skymust thus be larger than the targeted area, which must be fully samp<strong>le</strong>d. Let’s assume that the targetedarea (Atarget) is swept as a succession of n⊥ rectang<strong>le</strong>s of size d⊥ × d ‖. We getAtarget = n⊥ d⊥ d ‖. (11)The area swept in the under-samp<strong>le</strong>d edges (Aedge) is just the area of the rectang<strong>le</strong> whose side sizes aren⊥ d⊥ and the scanning size of multi-pixel rotated by α, i.e.dedge = ( √ npix − 1) ∆ (cos α + sin α) (12)Indeed, the geometry of the edges show that half this area is covered on each size of the targeted area.Using Eqs. 8 and 9, we obtainWe now define the mapping efficiency ηedge asηedge =dedge = ( √ npix − 1) (1 + nsubscan√ npix)δ (13)Atarget,Atarget + Aedgewith Aedge = n⊥ d⊥ dedge. (14)Replacing Atarget and Aedge by their expressions 11 and 14, we derive=1ηedge =1. (15)1 + dedged ‖1 + dedgea n⊥ d⊥This expression indicates that the most efficient mapping strategy is to observe very wide scans. However,avoiding the edge overheads is only one aspect of wide-field mapping with a multi-pixels. In particular, weaim at having the most homogeneous map as possib<strong>le</strong>. To achieve this, we need to scan as fast as possib<strong>le</strong>so that the observing conditions are as comparab<strong>le</strong> as possib<strong>le</strong> on the who<strong>le</strong> map. We can then repeat themap as many time as possib<strong>le</strong> so that the data affected by technical prob<strong>le</strong>ms or bad weather happeningduring one coverage can just be discarded. In any case, at <strong>le</strong>ast two coverages obtained in perpendicularscanning direction is always advise to be ab<strong>le</strong> to use destriping algorithms (e.g. plait algorithms). Stripeshappen because the system stability (weather, <strong>tel</strong>escope, receiver and backend) evolves from one row tothe other. Getting stripes is all the more probab<strong>le</strong> than the time to scan a row is long. So this arguesagainst making very wide scans, which are at the same time required to decrease the relative time spentin the edge overheads. A compromise is thus to map area chunks which are as close as possib<strong>le</strong> to squares.A way to parametrize this is to introduce the map aspect ratio, defined asa =d ‖n⊥ d⊥with a > 1 and n⊥ integer. (16)A given area A map will be mapped in chunks whose area (Achunk) is defined by the linear scanningspeed and the time of stability of the system (tchunk). This givesUsing 16 to replace d ‖ by a n⊥ d⊥, we yieldn⊥ d⊥ (d ‖ + dedge) = Achunk with Achunk = v linear d⊥ tchunk. (17)n 2 dedge⊥ + n⊥a d⊥IRAM-30m HERA time/sensitivity estimatorStep #2: Computation of n⊥ and aCase Atarget < η minedge4− Achunka d 2 = 0. (18)⊥2. generalization to a multi-pixel receiverdedge = ( √ npix − 1) (1 + nsubscan√ npix)δ, (25)t pswchunk = 2 minutes and tfsw chunk = 10 minutes. (26)Achunk = θ 4 fdumpd⊥tchunk. (27)nsubscanAchunk with ηminedge = 0.8[√ ]Atarget1. n⊥ = floord⊥, (28)2. if n⊥ = 0, then send an error message: “Area too small, use raster mapping.”, (29)3. a = Atarget(n⊥ d⊥) 2 . (30)Case Atarget ≥ η minedge Achunk{ [√]}1 dedge1. n⊥ = floor1 + 4Achunk2 d⊥d 2 − 1 , (31)edge2. if n⊥ = 0, then send an error message: “Area too small, use raster mapping.”, (32)3. a = Achunk(n⊥ d⊥) 2 − dedge . (33)n⊥ d⊥Step #3: Computation of ηedge1ηedge =. (34)1 + dedgea n⊥ d⊥Step #4: Recomputation of Achunk and tchunk when Atarget < η minedge Achunk1. A newchunk = Atarget , (35)ηedge2. t new A newchunkchunk = tchunk , (36)Achunk3. Achunk = A newchunk newchunk. (37)and tchunk = tIf tchunk < 1 minute, the targeted area is too small and the PI should use raster mapping instead ofOTF mapping.2.5 Impact on OTF observationsFor OTF observations, there are several effects to take into account.1. We will use the average system temperature to take into account the different mixer performances.2. Edges result in inhomogeneous noise, which depends on the exact observing setup. We here try toestimate a sing<strong>le</strong> noise value for the who<strong>le</strong> map. The area swept in edges are thus considered asoverheads. If the total targeted area is A map , the receiver will then have to map A map + Aedge. Asdiscussed above, we can write the previous sum as a product of the targeted area times an efficiencyfactor, i.e.ηedge (A map + Aedge) = A map . (38)Tab<strong>le</strong> 1: Mapping strategy to minimize edge effects.tchunk n⊥ a ηedgemin.1 1 3.7 0.832 2 1.9 0.835 4 1.2 0.8610 6 1.1 0.90This equation of the 2nd order has only one physical solution[√]n⊥ = 1 dedge 4a Achunk1 +2 a d⊥d 2 − 1 . (19)edgeWe note that this yieldswitha Achunkd 2 edge= θ [(4δ √nsubscannpix −1ηedge =21 + √1+ 4a A chunkd 2 edge1√ nsubscan npix−1(20)a fdumptchunk) ( )] 2 . (21)√nsubscan 1− − √ nsubscanThis expression can be used to understand how to get the highest mapping effiency (ηedge). This impliesto get the largest value of the (a Achunk)/d 2 edge ratio. We see that the larger the multi-pixel array, thesmal<strong>le</strong>r this ratio. Increasing the chunk area, either by increasing the linear velocity (i.e. increasing thedump rate, fdump) or by increasing the stability time (tchunk) will increase the efficiency. The dump rateis fixed by the peak data rate, which gives typically fdump = 2 Hz. The stability time depends on theswitching mode: It is the time between two off measurements in position switch (typically 1 or 2 minutes)and the time between two calibrations in frequency switch (typically 10 to 15 minutes).Previous equations give the impression that the aspect ratio is a free parameter. This is not fully truebecause, n⊥ must be an integer. The following algorithm ensures that we get an integer value for n⊥ withthe value of a > 1 and closest to 1. Starting with a = 1, Eq. 18 gives a value of n⊥. We enforce the integernature of n⊥ withn⊥ = floor(n⊥), (22)and we recompute the associated aspect ratio witha =Achunk(n⊥ d⊥) 2 − dedge . (23)n⊥ d⊥Tab<strong>le</strong> 1 gives the resulting values of n⊥, a and ηedge as a function of the stability time (tchunk). We seethat edge efficiencies are quite high. However, it is easier to have square chunks when the stability time islarger.In summary, the time spent in edges is counted as overheads. It translates into a multiplicativeefficiency (ηedge) because we enforce a mapping pattern through rectangular chunks. Although it is notintuitive (edge sizes are in general unrelated to area), this is not a big assumption because the use of asquare multi-pixel anyway enforces mapping in rectangular chunks. We now summarize the algorithm tocompute ηedge:Step #1: Computation of input quantitiesIRAM-30m HERA time/sensitivity estimatord⊥ = nsubscan npix δ, (24)5ReferencesWe thus have to remplace A map by A map /ηedge in Eqs 4 and 5 to compute nbeam and nsubmap. Now,if edge area is considered overheads when estimating the sensitivity, the spectra acquired in the edgeswill neverthe<strong>le</strong>ss be used to form the final image. We must thus ensure that enough time is observedon the off position when estimating the sensitivity in the position switch mode. This comes naturallyif we consider the edge area as part of the submap between two off positions. This implies that thechange on the total mapped area, expressed above, is the only one needed in the equations to takethe edges into account.3. A multi-pixel can cover npix times as fast the same area of the sky with the same sensitivity as asing<strong>le</strong>-pixel of similar T sys. Another way to look at this, is to assume that each identical (average)pixel will cover an independent part of the sky during a given observing time (i.e. η<strong>tel</strong> t<strong>tel</strong>). Thisimplies that the area seen by each pixel will beThis finally givesσ otfpsw =(√ √ )n pixbeam + n pixsubmap T sysηspec√dν npol η<strong>tel</strong> t<strong>tel</strong>where n pixbeam and npixsubmap are computed withn pixbeam = A mapηedge npix AbeamwithA pixmap = A map/ηedge. (39)npixand, and σ otffsw =The times spent on and off and in the edges per pixel are thenn pixsubmap = A mapηedge npix A pixsubmap√2 n pixbeamηspec√ T sys , (40)dν npol η<strong>tel</strong> t<strong>tel</strong>(41)A pixsubmap = vpix area tstab<strong>le</strong> and v pixarea = δ v linear . (42)t pixonoff = ηedge η<strong>tel</strong> t<strong>tel</strong> and tpixedge = (1 − ηedge) η<strong>tel</strong> t<strong>tel</strong>. (43)The algorithm to derive the time/sensitivity estimation in the case of OTF can thus be applied withthe following modifications in the input parameters : tonoff, v area , nsubmap, nbeam must be replaced byt pixonoff , vpix area, n pixsubmap , npix beam .ReferencesPety, J., Bardeau, S. and Reynier, E., 2009, IRAM-30m EMIR time/sensitivity estimator, IRAM Memo2009-167


MPraiFY%[yxzq{v+efG4xLj>xLKN[yM&t[y|y|][yKNEHeJGJ[y}~w>MGJw>M&Y>M&|yiNOA[]vJ\Z[]j>MFT>Vo L‚„ƒ…€L† d%iF[]j…eatBiFG4eJ[yj1Y©‡ˆba‰HGJMHvF€L€‚ TW €L€ Ž ŠsxŒ‹LMZKMHG_Žs‘%’4“+”–•˜—“Œ¡+¢˜£¥¤+¦Z§©¨«ª¬¤J­¤4¦H§®W§¯›˜¤7œˆ£±°³²Hœˆ¦«²­œ´£¢«µ´°³§¬œ´ ¦«¨„¤4ª­· Hª¬£¥¤JŸc°–§©¸º¹m»o¼½§¬ 8º§¯¢«ŸŒ¾¥§¬›«¤š©›˜œžŸŒæäçèéÛê3èéÛëí–î%ï³ðHñXò©ó.ô˜ïõ]ñ%î öìøXõÑù¤ó©ú]ûLï³ñÛðUüpýÛþ«ðHý.õyþ˜ÿ ö÷¥§¦©¨¤ !"¨"# #$¡%¡¡&¡%¡&¡%¡&¡%¡&¡¡%¡&¡%¡&¡%¡&¡&¡%¡¡%¡&¡%¡&¡&¡%¡&¡%¡¡ '¢¡¤£¥§¦©¨¤ *)+, ¨-/.0!"¨1¡%¡¡&¡%¡&¡%¡&¡%¡&¡¡%¡&¡%¡&¡%¡&¡&¡%¡¡%¡&¡%¡&¡&¡%¡&¡%¡¡ 2¢¡(¾£¨-c#fÉ`¨Q¡ V©¡–³ÃÎ6¢#¦©¨"#fÉÔ!"6ÓA¨f# ¨†6¢¤ ¨"!-¤q«¦©¨"# Ẅ;@#¤b¤¤¤¨"#79Ò:fqI.B#H¤‡,#r# ¨-©#¤¤;


¬þ«ðZñÛùþ˜ï³þ«ðWMõÑù¤óúyûLïõyñÛîífî%ï³þ„𡤩¨"#‡ ¨\©# ¨"6Š ‹#¤ ¨B7*„l[]7š`79_`7b©#:¨-;©#&ƒG¤qA¦©¨\¤4¥§¦©¨B#:A¨9¨- #H6¢ÌØo¨-Žˆt¡ª©H#¤r4¤!-¤+q¡#:Ð


¨- #8.橨# ¤Ÿ©6g¦©¨Ï¤ ¨-A¨"6¢ ¨T ¨"#¤ #8 ¨Ï# ¨"6g¤¥§¦©¨Ï¤4†4c:A¨-¦ ẗw0T4c&.`¦©¨r#¤ ©# ¤V†4 ¨-;©#¤qÏ!"r4 ¨"6 6©:¢ÉË©¨"#fÉo¦,©#¤fÈǤV8©¨‹¨Q¡lÈǤ¦©# :¤VE.G ¦©¨r;


¨-A¨-, #f¡§¨\¤qŠ’‹¼€(ÌVÍ‹­“Gê§!ÎA—LaBsÉÈǦ! ¦E¤fÈ郣4cNˆv4c¦¨-VQ¦E!" ¨"!-E¨-;


kTø5ùøÓ/ý


¤H F!";


²_ðHðZû2zàoû2Ûñ%óW輻#¦©”ÈÇr¤AªF¤V©¡¢¡F¥§¦©¨Ç79_`7g:"qr!"¢w¥§¦©¨‡:"qr!"¢Ë©VQ:©#Ô©#:¨"6.uX¦©¨Ç#¤©#v#F.O£f*–³ÃÎ@ ¨-c#X©# ¨"6‹#X¤ ¨-/.G¨- A¨- ¨-T¢'ãf ÃÎ@ ¨-c#Ô ¨§#¤¤:©¨"©# ¤q©# ¨"6##¦A¨f# ¨-A¨-, #f¡B)+9#B# #A¨"6E¦c*¦©¨"# Ẅ£f 2\'¦ ¨-c#& ¨!" ¨- ¨"6 w.G%¤VQẗwxC\#¥ ¤¤ ¨f8 QeQe¢£ÃÕ( Ö£ˆt¡Xz*4c!-Ç4¤r¤“”E4 @!"¨"# #V


#O.u\J0$!&%©ÉQ©6¦©¨-.u& (HÌ>/C0?¤@}¡F79r4¤¤©6¨§¨- #O¦c";


üŠñøoÿòWi‹ýQ3


¨*.G©6E¦cǦ©¨&ẗØn¨"!-‡.F45¤¤VŠ¨- #‡6¢©¨B A©H©#\ ẗ.G:!-E#§©!:¦8¨"# #'©¡§—¨"!-vẗØo¨"!-Ô.o4¦c# ¨‡¨- #ÔŠ¦©¨Ç;@#¤b¤¤¤¨"#ÈǦ©¨-W#:©6© 6]ƒ£0¡ ¨Q¡#¤VQÌËc!f,`¦cA¦©¨\6¢¤@!"¨"# #¤Vr ¨-H¤©#*#¤r4¨QÉc©686¨"#9©‡ ¨"•,¤ ¨,q†#¤VQÌËc!f,%66¢¤c2¢¡Ç¥§¦©¨&6©:r4!"r4¤VH4nfÈ`¨-f¡¨"#¤ #‡ ¨*bc# ¨"6¦8_`„l?7*z‡w0bc#:¨"6W6¨"!";


e5#VFOEF,.(-L2EFJ$LIk¥+TI(-VFEg'A9BDEGO@#_%6?'¥!5#zO$#d')(2EKVF#OO@#P?NEFL2Jo0-im%6/%#*EgeI*35(27)(2,4#d'¥#7)?z(2J5O[7)#I#*¦'z')!$#?¥#.7¥#P?NT5Vg'£?zEKJ|'¥!$#O$#?¥EKL+J|02it'¥!5#%6/%l?N9@?N'¥#,k?NEF,nT$VG(v')EK0+J5?r'¥0')#?N'n?N3B#.(2O@0+3@'¥#POc')0M0+VF?rT5?¥#O[HR9–#d'A9c#d'&(2V(2J5Ociw0+VKVF0vBDEFJ$L?¥EF,EFVG(-7r35(v')!5?{(2?>'¥!5#9O@EGOŽk$027z0+T$7{?NEF,nT$VG(v')EK0+J5?†027¥'802T$7DEFJRp2#P?A')EKLM(v'¥EF02J0-im'AB0EF,43I0+7N'£(-JM'6(2?¥3 #*¦'£?DBD!$EG*£!,EFL2!M'8EFJ¨5T$#J5*d#nEK,.(-L+EKJ5L‘ƒJo')!$EG?8,4#,405†5B1#{7)#3*d02J$e5L2T$7£(v')EK0+J¨†-(r7)(-'¥EF0>02iI*dVF0+?¥#"35(2*£uREFJ$L5†v#')*P=j(2J5On'¥!$#"EF,4(2L2EFJ$L{*(235(-H$EFVFEg'A9¥+TI(-VFEg'A9j(27¥7£(:9z*£!5(-7£(2*d'¥#7)EG?A')EF*?1;(2J5Oc(v'),40+?¥3$!$#7)EG*T$J5O@#76pv(-7)EK0+T5?D#7¥7)027£?k$0+7D'¥!$#VF(-'¥#7†IB1#&?N'¥T5O$EK#PO'¥!$#n##*¦'£?602i3I0+EKJM'¥EFJ$LI†I(-,43$VFEK'¥T5O@#+†|#6iw0R*T5?¥#O.0+J.EK,.(-L+EKJ5L{3I#7Niw0+7¥,.(-JI*d#DEFJ7¥#P(-VFEF?N'¥EG*"#7)7)027t*02J5O@EK'¥EF02JI?„?N0(2?')0&L2EFp2#"iw##O@HI(2*£u3$!5(2?¥#8#7¥7)027£?k"!$#D?¥EK,T$VF(-'¥0+7mB"(2?O@#p2#Vg_|#DT5?¥#On'¥!5#6‹r‘AXZ’8%r•%>XZY%)(r%6/%f?NEF,nT$VG(v')EK0+Jn')0R02VG?miw02702T57mEFJRp2#P?A')EKLM(v'¥EF02JZkj#OEFJ'¥!$#n‹r‘AXj’8%>•cO5(v')(47)#O$T5*¦')EK0+J?¥0-i 'AB"(-7)#z#JRpREK7)02J5,#JM'"HR9o'¥!$#{‘A”6%6Y L+7¥0+T$3W; –#d'A9o#d'>(2V k"y-25x(5†023†5y225x*=t')0?A')T5O@9BDEFO@#_ eI#VGOoEF,.(-L+EKJ$L43 #7¥iw027),.(-J5*#{0-i%6XZY[% HR9o(2O5O@EKJ5L4'¥!$#n%6/% 0+H5?¥#7)p:(-'¥EF02J5?y-25xḦ\2^-_s#VF#,4#JM'6(27¥7£(:9.02H5?¥#7)pv(v')EK0+J5?k*$0+76O@#')(-EFVF#OcO@#P?¥*7¥EF3@'¥EF02Jc02i'¥!$#n?¥EF,nT$VG(v')027P†$02J$#?N!$0+T$VGO'¥0.')!$#n%6XjY%y-+$xP*=¦kŒ6#7)#rB#{O@#?)*d7)EFHI#r'¥!5#{H5(2?¥EF*r3$7)0@*d#PO@T$7)#?"0-ij'¥!$#&?¥EF,nT$VG(v')027Pk7¥#iw#7"'¥0.–#'A9#d'6(2V„;"!$#{?NEF,nT$VG(v')0278?¥EK,T$VG(v'¥#P?"02H5?¥#7)pREKJ5L?¥#¦¥MT$#JI*d#?D(2J5OL2#J$#7£(v')#?1'¥!$#&?¥EF,nT$VG(v')#OopMEG?¥EKH$EFVFEg'A9QO5(v')(iw0+7"'¥!$#%6/% (-7)7)(:9@?;w‘ƒJf')!$EG?,4#,405†"B#c0-i ')#J 7)#diw#7)7)#O '¥!$#Wq:_`, (-7)7)(:9a02i&%6/% (2?%6/%6EG=\-^-_s#VF#,4#J+'(2J5OL+EKp+#J EKJ53$T@'n35(27)(2,4#d'¥#7)?k+$0+7n?¥EKJ$L+VK#O$EF?¥! ; •@’z={O$(-')(5†m(3 02EFJM'¥#OW0+H5?N#7¥pv(-'¥EF02J (v'&')!$#*d#J+')#7H5(2?¥#OW02JeI#VGOfEF??¥EF,nT$VG(v')#OfBD!$#J Eg'QEG?Q*02,H$EKJ5#OhBDEg')! '¥!5#[\-^2_`#VK#,#JM'.(27¥7£(:9bpREG?NEFH$EFVKEK'¥EF#?'¥0a3$7)0@O@T5*d#0-i{#(+*£!"!5#0+J@_`'¥!$#_,59[,4(23$3$EFJ$LEF?{?¥EF,nT$VG(v')#O['¥0cO@#7)EFp2#4?N!$0+7N'&?¥35(2*EKJ5LoEFJ@iw027),.(v')EK0+J[T$3W'¥0%6XZY[%(z•@’CO5(v')(5k;såoåoRUæAçAçAèé3êfëÂìÂí¥îïd쿲¿ ñ;±‘­)®´¸;¿Zò3ª†À;¿²«ˆ®´ÁI¸'®ÓóºZ±‘¸;ºÂ¿—¹dàAª†À;¿—ôEªQ±dºZ±‘­3±ÇõN¹d­)¼±dº ª§ô§ÒˆÒQ±Âß+ö€ôõEô…÷N®´ḩÃU®Úò'¿yø€ó¿y³°òϮڭ3±‘ÁI®´¸;ÁðÒQ±‘ª†¿¹dàXô…ùAúÉôcª†À'Ò†¹d¬;ÁIÀ¡®´­3±dÁd®´¸;Á3«ˆ®´­Š¬;³Ú±¥ª†®Ú¹d¸;«Âµ…ûEÀ;¿a¼;¬rÒ†¼¹I«ˆ¿a¹dàÖª†À;¿—«ˆ®´­Š¬'³°±¥ª†®´¹I¸;«²±‘Ò†¿—ª†¹Ü®°÷§ò'¿Â­)¹d¸;«•â®´«§®´¸'ºÂ³´¬ò'¿ÂòB½rºZ±dḩþ¿—±dºQÀ;®´¿£ ^¿ZòÜ®Óàfª†À;¿²ºÂ¬rÒˆÒ†¿ÂުU«ˆ¼¿ÂºÂ®ÓóºÂ±‘ª†®´¹I¸'«…±¥Ò†¿{­)¿yªZµ"!$#&%')(+*(-,.(./102,435(+*¦'6%87)7£(:9;="?¥9@?A')#,CBD!5EF*£!EG?"HI#EKJ$L.357¥0+3I0M?N#POQHR9QSM(-35(2JQ')04T5?N#"UA0+EKJM')VK9BDEK'¥!"!$#[%6/%'¥!$#W%6XZY[%]\-^2_`#VK#,#JM'Q(-7)7)(:9a')0b#J5!5(-J5*#c'¥!5#BDEFO$#d_`e5#VGOfEK,.(2L2EFJ$Lb*(235(-H$EFVFEg'A9h0-i&%6XjY%&kx-_ƒy2 £=¦k |#T5?¥#O iw02T$7.,40@O@#VDEK,.(-L+#?;iw0+7'¥!5#6%6XjY%(r%6/%(-JIO %6/%8E.(z•@’ EK,.(-L+#?o(-7)#[*d0+,nH$EFJ$#O EKJ ')!$# @‚O@0+,4(2EKJ HR9 ?¥#VF#*¦')EKJ5Lb'¥!5#|%6/% O5(v')(%6XZY[%(z•@’O$(-')(ciw0+7nVF02J$L+#7o@‚O@EG?N')(-JI*d#?&'¥!5(2Ja'¥!5#'¥7£(-JI?NEK'¥EF02Jb7£(2O$EKT5?T$3a'¥0W(c')7)(2J5?NEK'¥EF02Ja7£(2O$EKT5?(-J5Oa'¥!$#%6XZY[%#@3I0+J$#JM')EF(2V„iwT$J5*d'¥EF02JbEG?T5?N#POW'¥0|#J5?¥T$7)#Q?N,40R0-')! '¥7£(-J5?¥EK'¥EF02Jb(-7)02T5J5OW'¥!$#Q'¥7£(-J5?¥EK'¥EF02Ja7£(2O@EFT5?£=¦k["!$#;XZY% BDEKVFVHI#o,4(+O@#3 0+?)?NEFH$VF#HR9W(+O$O@EFJ$L')!$#Q%6/%Œ80vB#p2#7†j!$EFL2!aeIO$#VFEg'A9BDEK'¥! EK')?z?¥,4(2VKVF#7z!$EFL2!|3$7)#*dEG?¥EK0+J|(-JM')#J$J5(+?r3$7¥0vpREGO@EFJ$Lo?¥!$027¥'{?N35(+*dEFJ$LQEFJ@iw0+7¥,.(v')EK0+J|(+?>B#VFV„(2?rEK')??N9@?N'¥#,#?iw027D#7)0?¥35(+*dEFJ$L4EKJ@iw0+7¥,.(-'¥EF02J¨kO@#O@EG*(-'¥#PO?¥EFJ$L2VF#d_ƒO@EG?N!o'¥#VK#P?¥*023EFJ.')!$#6BDEGO@#d_`e5#VFO.EF,.(-L+EKJ$L&*(-35(2H$EFVKEK'A902i•R#p+#7£(-V$EF,.(-L2EFJ$L&?¥EK,T$VG(v'¥EF02J?N'¥TIO@EK#P?„iw0+7„')!$#6EF,435(2*d't0-iZ%6/%##J|*02J5O@TI*¦'¥#POŽk„T$Jh; y22$x:=8(2J5O[Yc0+7¥EK')(|; y22$x:=DT5?¥#O[,.(@EK,T$, #JM')7¥0+3M9,4#d')!$0@O$?>iw027%6XZY[%}!I(:p2#nHO@#*02JRp20+VKT@')EK0+J{0-iI(6,40+?)(-EG*„EF,4(2L2#+kj "!$#1H5(2?¥EF*1%6/%*02J@eIL2T$7£(v')EK0+J{B(+?j?N'¥T5O$EK#PO&HR9„T$J(2J5OziwT$7¥'¥!5#7(-J5(2Vg_02EFJ+')EKJ5L#7)7¥0+7"##*¦'>B1#7¥#&*02J5O@TI*¦'¥#POHR9oYc0+7¥EK')(5k1–#d'A9+†I‹rT$#'¥![(2J5Oc‹rT$EKVFVF0-'¥#P(-Tb;`y-25x(5†9R?¥EG?DEKJI*dVFT5O@EFJ$L3†5y225x*=1T5?¥EFJ$L/X1%8_`H5(+?N#POoO$#*d0+JRp202VFT@')EK0+Joiw0+78,40+?)(-EG*dEFJ$L5†5EKJRp2#P?A')EKLM(v')#OoEK,.(-L+EKJ5L*(-3I(-H$EFVKEK'A9Q02iy-25xḦ%6/%}T5J5O@#7{pv(27¥EF02T5?>#7)7)027£?k&%6VKV')!$#.(-T@')!$027£?z*d02JI*dVFT5O@#O'¥!$#.EF,43I0+7N'£(-J5*#02i„'¥!5#4%6/%?¥9@?A')#,]EFJ|!5EKL+!?N9@?N'¥#,l*02J5?¥EF?N')?10-im(-JQ(27¥7£(:9nBDEK'¥!o'AB1#VKp+#rqP_s,l(-JM'¥#J$J5(+?tEFJo*VK0M?N#VK9435(+*£u2#O.*02J@eIL2T$7£(v')EK0+J(-J5Oiw02T$7rxPyv_`,(-JM'¥#J$J5(2?z(+?>?¥EKJ5L2VF#O@EG?¥!$#?>iw027r')0-')(2V3I0vB#7r,4#(2?¥T$7)#,4#JM'{(-J5O|*(2VKEFH$7£(v'¥EF02JZk&%6/%}7)#*0vp2#7)?"')!$#.?N!5027¥'¥#7H5(2?¥#VFEKJ5#nEFJ@iw027),.(v'¥EF02J')!5(v'rEF?>,4EF?)?¥EKJ$Liw7¥0+,~')!$#O5(v')(')(2u2#JcHR9'¥!5#%6XjY%€\-^-_s#VF#,4#J+'6(27¥7£(:9o(2VK0+J$#&HR9pREK#Bfiw027„')!$#z%6XZY[%…xPy-,l\-^-_s#VF#,4#J+'t(27¥7£(:92†+BD!$EG*£!O@EK7)#*d'¥VF9.?¥(2,35VKEFJ$Ln?¥!$027¥'>@‚¥_ƒ?N35(+*dEFJ$L5km%6?t'¥!$#>e5#VFO.02ïˆ(v'8‰-^RŠ‹zŒ6z(2J5Ocqvˆ ˆŽ(v'D‡+Š2‹zŒ62†5(27¥#>7¥#VF(-'¥EFp2#VF9?¥,4(2VKV`†@EK'"EG?D(-JM')EF*EK35(-'¥#PO')!5(v'DBDEGO@#d_`e5#VGOoEK,.(-L+EKJ5LEF?zxP‡2ˆ*D02H5?¥#7)pv(v')EK0+J5?„T5?¥EFJ$Ln%6XjY%&†R35(27N')EF*T$VG(-7)VK9(v'?¥T$H@_s,4EKVFVFEK,4#d')#7HM94,40+?)(-EG*D!5(+?t({VG(-7)L2#>O@#,.(-JIO.EKJo?¥*EK#J+')EgeB(:p+#VF#J$L2'¥!5?kZ‘ƒJ4')!$#87)#*d#JM't7¥#3I0+7N'„02i'¥!$#6%>XZY%“’6#P?NEFL2J.”D#iw#7)#J5*#>•@*EK#J5*d#6–tVF(2Jc;5kKx:Š!$7&(2J5O" r$k \Q!$7ziw0+7r'¥!$#0-i10+H5?¥#7)p:(-'¥EF02J5?>')0H†27)#?¥3I#P*¦'¥EFp2#VK9+k15027m'¥!$#8\2^-_s#VF#,4#JM'(-7)7)(:9+†P'¥!$#D,40+?N'„*d0+,3I(2*¦'*d0+J@e5L+T$7)(-'¥EF02J¨†\-^-_s#VF#,4#J+'(-7)7£(:9z(2J5O%6/%8È"!$#6*d0+J@e5L+T$7)(-'¥EF02J4O$(v'£({*dT$7)7)#JM'¥VF9n(:pv(-EFVF(2H$VF#1')0&T5?EG?„HI(2?¥#O02J.\2r#VK#,#JM')?k"!RT5?„B1#8(+O@023@'/>xDEF?tT5?N#POŽk'¥!$EG?8O$(-')('¥0.7)#3$7)#?¥#JM''¥!$#&\2^-_s#VF#,4#JM'D*d0+J@e5L2T57)(-'¥EF02J¨k|#Qiw02T$J5Ob'¥!5(-'!$EFL2!5#7nEF,.(-L+#.eIO@#VKEK'A9aB(+?&0+H@')(2EKJ$#POWiw027"!$#QJRT$,HI#7n0-iDeI#VGO$?&iw0+7,40M?¥(2EF*.EG?ox$#$k'A9R3$EG*(2VKVF92†I'¥!$#eIO@#VKEK'A9x$#v_`e5#VFO,40+?)(-EG*?8'¥!5(2Jciw027>'¥!5#4qP_`e5#VFO0+J$#?r(2?6B1#7¥#&TI?N#POcHR9–#'A9o#'r(2V;`y-25x*P={;EG?')(2uMEFJ$L4?N!I(-3 #?"J$0vB{†REK'"EG?"p2#7¥9.EF,43I0+7N'£(-JM''¥047¥#_`EFJRp2#P?A')EKLM(v'¥#6'¥!$#P?N#;3 #7¥iw027),4#OŽk


¢¡¤£¦¥¨§ P© ¡ £¦¥¨§ P© !#"%$& "&'()*£+)-, !#" $ ¡ £¦)-, !&" $* !#"%$& "&'(#7¥#J5*d#+kr"!$#,4#O@EG(-JeIO@#VFEK'¥EF#?'¥!$#J'¥!5#o@‚>eIO@#VKEK'¥EF#?z(-7)#*02,43$T@')#OcHR9O@EFpREFO$EKJ$LQ'¥!$#,40@O@#VHR9'¥!$#4O@E-Š-,†M‰RqRk Š:_Nq-Šv,†5q-Šv_)x:Š-2,.=t(-7)#z#pv(-VFT5(v')#OŽk(v'D'¥!5#ziw02T$7DVF#p+#VG?"0-i1@‚67)(2J$L2#4; EK7£(-,=>MEF?t'¥!$#r02J5#6T5?¥#O.HR9–#'A9#'"(2Vm;`y-25x*P=EKJQ'¥!$#EK7"?¥EK,T$VF(-'¥EF02J5?(-JIO‰$k"!$#02J$#&VG(-H #VF#Oc(+?@> ,nB6y222‰A>@EF?8iw7¥0+, W7)EKL+!+'; y-+2‰M=¦†$BD!$EG*£!EG?8L+#J$#7)(-'¥#OHR9EF?6L2#J5#7£(v'¥#PO7)(2J5O@02,4VF92kD”D#T$VF#(2T¨c'¥7)EG(-J$L+VK#P?>BDEK'¥! 0+3@'¥EF,4EKP(v'¥EF02JI?>TI?NEFJ$L'¥!$#.*0RO$#4O$#p2#VK0+3I#PO[HR9CB0R02J5#;`y-25xP=dk 80'AB10J$#?N'¥#POk "!$#.02H5?¥#7)pREKJ5L023@')EK,4EF(v')EK0+J5?{B#7)#43I#7Niw0+7¥,4#O[iw027&'¥!$#02'¥!$#7z'AB10c*02J@e5L+T$7£(v'¥EF02JI?r'¥!5(-'&B1#.L+#J$#7)(-'¥#Ö¥+T5#J5*9b0-i&y-‰+W‹zŒ6EG?(+?¥?¥T$,4#O iw0274')!$EF?43I(-7¥'402iz?¥EF,nT$VG(v')EK0+J5?k "!$#c?¥EK,T$VG(v'¥EF02JI?4B1#7¥#3I#7Niw0+7¥,4#POiw7¥# 7FHG ¨ ¦¤ JI'¡! E#?02iŽ'¥!$#z*d0+J@e5L2T57)(-'¥EF02J4iw027"%6/%"!$#6iw0+T$71'A9M30vp2#z')!$#{')!$7¥#P?N!502VGOVKEG?A'£?D')!$#&,4#O@EG(-JcEF,.(-L+#{eIO@#VKEK'A9O$#d'¥#7¥,4EFJ$#Oiw7)02,~'¥!5#&3$E-R#VF?6BDEg')!'¥!$#EK7>EKJM')#J5?¥Eg'A9(-H#7£*d#J+'£(-L+#r02ij3 #(2uEKJM')#J5?¥Eg'A9o0-im027)EKL+EKJ5(2VŽEK,.(2L2#?kp:(2VKT5#{L2EFp2#JoEKJ3^"!5#{7)(-'¥EF002ije O@#VFEg')EK#P?802i%>XZY%)(r%6/%8E.(z•@’ 0vp2#7"'¥!$0M?N#z02i%>XZY%)(z•@’ ;XZY%…HI#P(-,k1‘ƒJ')!$#@‚jEFL2T57¥#.xxP22,C(-7)#z?¥!$0vBDJ¨kO@EF?N'¥7)EFH$T@'¥EF02J3$VF0-'£?†@0+J$VF9.'¥!$#&O5(v')(4BDEK'¥!')!$#{T$pQO@EG?N')(-JI*d#/.¢¡ ¢¡ ¦¤‘ƒJ'¥!$#‹r‘AXj’8%>•?NEF,nT$VG(v')027P†5(.3$7)EF,4(27¥9QEKJ5O$EF*(v'¥0+7D'¥0o(2?)?N#P?¥?"')!$#¤¥MT5(2VKEK'A9Q02i?¥EF,nT$VG(v')#OEF,4(2L2#P?DEF?DeIO@#VFEK'A92kO@#VFEg'A9EG?t*d0+,43$T@'¥#PO(v'1#(2*£!43$E-@#VI02J4'¥!5#6EF,4(2L2#"iw0+VKVF0vBDEKJ5L&Eg'£?tO@#e5J$EK'¥EF02J[; –#d'A9#d'(2VIy-+$xP*= "!$#8EF,4(2L2#De£¥¤§¦©¨¤§¢Ž;¤R=;¦©¨N;¤§M=¥=¤R="!$#¤§%'&( )¨*¦ ;¤§M=¥=;¦¨N;O@#VFEg'A9|EKJ ')!$#?¥EK,T$VF(-'¥0+7{EKJRp20+VKp+#4#$*dVFT5?¥EK0+JW02i1')!$##M')7¥#,4#VF9!$EFL2! eIO@#VKEK'A9%6*¦')T5(-V1*(-VG*dT5VF(-'¥EF02J5?z02ie="'¥0#JI?NT$7)#'¥!5(-'>')!$#O$#d'¥#7¥,4EFJ$#OeIO@#VKEK'¥EF#?z7)#5#P*¦'r,#P(-J|EK,.(-L+# ¥MT5(2VKEK'A92k3I0+EKJM')?4;,4¥MJ¨k{^5kzEFJ|–#'A9#'&(-V"!$#4,#PO@EG(-JEK,.(2L2#eIO@#VFEK'¥EF#?{(v'{')!$#iw02T$7&O$E #7)#JM'{3$E-R#VEKJM')#J5?¥Eg'A9|*dT@')0 “; $k ‰$†„x+†Z‰$†„xP £~02it'¥!5#.3I#P(-u0-iD')!$#Q0+7¥EFL2EFJ5(2VtEF,4(2L2#:={(-7)#Q*d0+,43$T@'¥#PO iw7)02, '¥!$#QeIO@#VKEK'A9 ,4(23¨k|%6VF?¥05†')!$#e O@#VFEg'A9 EFJb')!$#[@‚EKJM'¥#J5?¥Eg'A9"!$#n,0@O@#VZ(-JIOcO@E #7)#JI*d#{EF,4(2L2#P?8(-7)#$02T57¥EF#7¥_ ')7)(2J5?Niw027),#PO.')0.'¥!$#.@‚rO@02,.(2EKJc(-JIO3$VF(2J$#{EG?802H$')(-EFJ$#POŽk1;AxP=mEFL2T$7)#&ÿ ‘ƒJ$3$T$'6Yc0@O@#VG?&;


‡- ¨ £F69 - :¦1¤; 8§ ¥¦+,¡*¦ ¨ ¨ £ £¡§4¨ - 5 1- . . .., , ¢¤£¥¦£§¨¥ ©¥¦¤ §!!"#$%!#&('/#) 0 0!!"#$%!#&('#) !!"#$%!#&('#) 1 !!"#. 1 . . . , 121 .3 $%!#&('#)0 1 02 3 , 1,1 1 121 .3 .0 /3 03/ 362 *¤76 ¨ §GHI ¦ £ ¦ ¡4¨ £ ¨ £ ¨ £ ¨ -¨ -¨ -§4¨ - §4¨ - §4¨ - @F5 15 15 1,.,.,.,.2 2 2 2202020 202 ,22200 ,1 002 22 , 2 .1 / .2 3 00 123 2 ,, 222, 11 1 1 1 1 1 1 / ,1 .2/, 21 /2/. 0, 11 11 , 1 .222/. 0, 1 1 13, 2. 13, 2/ 2/ 0 1 . / 0 0 /1 .1 . 0 . . 0, 1 1. 0, . 20 3 3 1 /1 201 3 1 1 1 . 1 21 , 0 31 11 11 110 0 21 31 ,. 1 ,1 1 11 0/ 10 , 01 12. 2. 2. / / / / / / / /2. 31 3. 1 301 ,1 , 11 111 10 0 31 ,1 ,1 11 1 0-¨ §£. ,6 ¦ ¤§¦4 -?¨ £ - ¥ ¨ @ 21ACB/ED ¦ MN ¦!!¦¦£ ¥- -©G¨ £ § ¦ D¨ § B@¥ ¦, D ¦¦£ .¥- -©5 ¨¥¥ ¦¡§©¥¦ §8 § ¨ £ ¥ ¦ ©§ -JKL J#8VK#p2#VF?EFJ5?¥EFO@#>(z7)(+O@EKTI?0-iŽ‰%6/%jEFL2T57¥#6Š6j”D#VF(-'¥EF02J5?¥!$EF3.HI#'AB1##J4EK,.(2L2#"eIO@#VKEK'A9(2J5O'¥!5#D7¥,.?„?¥EFO$#VF02HHI#P(-,k: ¨ ¦- ¨ B§¥ £9 ¦ ¦-¦ ¨¥ © §'¥!$#8EF,.(-L+#8,4#O@EG(-J4eIO$#VFEg'A9EF?tEKJ4i'¥!5(-'{*02,435(27¥EG?N0+J[H #d'AB##J#pv(-VFT5(v')#O|BDEg')!$EFJH #(2,4?k'¥!$#zeIO$#VFEg')EK#P?8(-J5O?¥EFO@#VK0+HI#{VF#p+#VG?"0-ij'¥!$#&%6/%#d'AB##JbEF,4(2L2#.e O@#VFEg'A9a(2J5O '¥!5#QJRT$,nH #70-i8pREG?NEFH$EFVKEK'A9 BDEg')!$EKJ“@‚O@EG?N')(-JI*d#Q02ijEFL2T57¥#^¡.”D#VG(v')EK0+J5?N!5EK3bH"!$#{T$pO@#JI?NEK'A9B#7)#rJ5027),4(2VKEF#PO.')04'¥!5(-'80-iZ')!$#{EF7)(2,_`'A9R3I#{*02J@e5L+T$7£(v'¥EF02JZkxPŠv,kE ¡ £¢¥¤!¦¤ GD¢¡eIO@#VKEK'A9.02Jo7)(-'¥EF0+?„02ij*dVF0+?¥#r35(2*£uREFJ$LQ;w,4EFJ$EF,nT$,CHI(2?¥#VFEKJ$#§¦v(2J+')#J$JI(|#{(-VG?¥0&#$(-,4EFJ$#O'¥!$#{O@#3I#J5O@#J5*d9.02ï(z•$’l*(2?¥#?>(-7)#?¥!$0vBDJEFJ[H$VFT$#VKEFJ$#P?k$0+7>7)#diw#7¥#J5*d#+†5')!$#eIO@#VFEK'¥EF#?r0-i1%>XZY%)(z•@’'¥EF02J¨k{%6XjY%(r%6/%6E*(2?¥#?D(27¥#rEFJ5O@EG*(v')#OEFJ7)#OoVFEKJ$#P?k¥¢¨§ §¡ ©¨ ¥ ¢¡DD¢¡D#7)#JM'{(-7)7)(:9*d0+J@e5L2T57)(-'¥EF02J*£!5(27)(+*¦'¥#7¥EG?N'¥EG*?k6 "!$#JMT5,nH #7r0-itpREG?NEFH$EFVKEK'A9BDEg')!$EKJW*d#7N'£(-EFJ|##$(-,4EFJ$#O[O@E#D0-i')!$#(27¥7£(:92k* !$EFVK#n'¥!$#7¥#(-7)#&?N0+,4#&pv(-7)EF(-'¥EF02J5?8(2,402J$L.')!$#?¥02T57)*#{,0@O@#VF?† Eg'35(2*£u+#OŽ†I027¥EF?L2#J$#7£(-VFVF9n')7¥T$#>'¥!I(v'8(-JQ(27¥7£(:9BDEg')!o!$EFL2!5#7"O@#L+7¥##60-im*d02,435(+*¦')J$#?)?>;^+‰(-J5OoY[Š@xPŒ%W,40RO$#VG?†M'¥!5#>e‰25kr•REFJ5*d#'¥!5#(27¥7£(:9QEG?>?)*(2VK#PO(2?6BD!$02VF#2† ')!$#0+H5?¥#7)p2#OcO$#3 #J5O@#J5*d9cEG?>J$0-'r02J$VF9c*(-TI?N#POL27)#(v')#76'¥!5(2Jbx2kH5(+?N#VKEFJ$#zH$T@'6(2VF?¥04Eg'8EG?"7¥#VF(-'¥#PO')0.!$0vB“O@#J5?¥#VF935(2*£u+#OŽkHM9Qp:(27¥EG(v')EK0+JoEFJ,4EKJ$EF,nT5,jEFL2T57¥#{\6t/10+,3I(-7)EF?¥02Jo0-iZe O@#VFEg')EK#P?"EKJcO@E-#7)#JM'8*dVF0+?¥#r3I(2*£uREKJ5L7£(v')EK00-ij'¥!$#&?¥3$EF7)(2Vg_`'A9R3I#z%6/%*d0+J@e5L2T57)(-_@‚>7£(2O@EFT5?;wEFJ'¥!5EF?z?N'¥T5O@9+†7 xPŠ-,.=8(-J5O*VK0M?N#n35(2*£uREFJ$L7£(v'¥EF0Q(27¥#7¥#VF(-'¥#O')0Q!$0vB')!$#(27¥7£(:9QEG?rO@#J5?¥#VF9xPx+x


'¥0vB"(-7£O.'¥!5#&(-7)7)(:9.*d#JM'¥#78(2J5Oo'¥!$#{!5EKL+!$#78*VK0M?N#r35(2*£uREFJ$L47)(-'¥EF0M=1L2EFp2#P?HI#'N'¥#78EF,4(2L2EFJ$L43I#7Niw0+7¥,.(2J5*d#+k0vp2#DB#DT5?¥#O')!$#6,40+?N't*d0+,435(2*d'1*d0+J@e5L2T57)(-_'>J$#DB10+7)O02iŽ*(-T@')EK0+J4EF?„'¥!5(-'„iw027t'¥!$#87)#?¥T$VK')?357¥#P?N#J+')#O4(-H"!RT5?'¥!$#{@‚7)#?¥3I0+J5?¥#02iI')!$#8\-^2_`#VK#,4#JM'„(-7)7)(:9z#R')#J5O$?t?N!$0+7N'¥_`B"(-7£O'¥EF02Jc;`/>x:=jiw027'¥!5#8\-^-_s#VF#,4#J+'„(27¥7£(:92kZL&EFJ'¥!5#>pREG?NEFH$EFVKEK'¥EF#?0-iZ'¥!$#{\-^2_`#VK#,4#JM'1(-7)7£(:9ne5VFVF#OHR94')!$0+?¥#>02ij%6/%“EF?0-iZT$pO$EF?N')(2J5*d#P?1(2J5O.')!$#=K@‚L+(-3#7£(v'¥EF02JI?†M'¥!5#n\-^2_`#VK#,#JM'"(27¥7£(:94BDEKVFV¨H #{EKJ[/>x{02J5VK9EFJc(7¥#VF(-'¥EFp2#VF9H$7)EF#dimO$T$7)(-'¥EF02JEKJVK#P(2?N'k‘ƒJc(2*d'¥T5(2VŽ023'¥!$#&BD!502VF#&*d02J$e5L2T$7£(v')EK0+J*9@*dVF#&0-im'¥!$#\-^-_s#VF#,4#J+'8(27¥7£(:9Q(-JIOQ')!$#n%6/%…O5(v')(4EG?8(2J+')EF*EK3I(v'¥#PO'¥0*02,nH5EKJ$#')!$#o\2^-_s#VF#,4#JM'n(27¥7£(:9EFJb*d02JM')EKJRT$0+T5?{7)#*d0+J@e5L+T$7)(-'¥EF02J¨†j3$7)02H5(2H$VK9+†jT53 '¥0[(2JBDEg')!a'¥!$#oO$(v'£(')(2u2#JaBDEK'¥!(-7)7)(:9+kh"!$#*02JM'¥7)EFH$T@'¥EF02Jh0-iz%6/% EKJ ?¥T5*£!f*(2?¥#?4B02T5VFO HI#cL+7¥#P(v')#7.?NEFJ5*#?¥(2,35VKEFJ$L 0-iz?N35(-'¥EG(-Vxd_suM,¥+T5#J5*9 .8‰22, B10+T$VFO|H #357¥#PO@02,4EFJ5(-JM'¥VF9ciw7)02, %6/%nkŽ‘ƒJa?NT5*£!W*(+?N#P?†Ž')!$#.*d0+,3I(2*¦')J$#?)?z0-i1'¥!$#.%6/%iw7¥##QO@E-#7)#JM'k(-7)7)(:9EFJMp+#?N'¥EFL+(-'¥#O|!$#7¥#4,.(:9J$02'n(-3$3$VF92†j027&(-'zVF#(+?A'P†¨')!$#*d7)Eg')#7)EF(02i*d0+,435(2*d'¥J$#P?¥?{*02T$VGO[H\2^-_s#VF#,4#JM'.(-7)7)(:9 > ??¥35(-7£?¥#74*d02J$e5L2T$7£(v')EK0+J5?4(-7)#oJ5##O$#O HI#iw027)#(2J 0+3@'¥EF,.(-V•REK,T$VG(v'¥EF02JI?4BDEg')!f%>XZY%(27¥7£(:9.*d0+J@e5L2T57)(-'¥EF02JQEG?DO@#P*dEGO@#OŽkO@#?¥EKL+Jo02i%6/%EFJRp2#P?A')EKLM(v'¥EF02Ja0+JbBD!$EG*£!b#7)7)027n!I(2?,0+7¥#QEKJ¨IT$#J5*#o0+J ¥MT5(-VFEK'A9W02i8e5J5(2V1EF,.(-L+#?&0+H@')(2EKJ5#OaBDEK'¥! '¥!$#%8J027¥')(2J+'?NEFJ5*d#>Eg'BDEKVFV`†+EFJ.'¥T57¥J¨†RL+EKp+#Diw##PO@H5(2*£u02J4')!$#>O$#?¥EKL+J%6XZY[%(r%6/%8E.(z•@’“,40RO$#8'¥!I(-J02'¥!$#7)?tEF?1EK,43%>XZY%)(r%6/%&†-EK'„*(2J0-i5')!$#8%6/%f?N9@?N'¥#,kB9n(2O5O@7¥#P?¥?¥EFJ$L6#7¥7)027mH$T5O@L+#d''¥!I(v'„EFJ¨5T$#J5*d#"EF,4(2L2#$¥MT5(-VFEK'A9{0-i#n0+3@'¥EF,.(-VO@#?¥EFL2J5?6'¥0oH$7¥EFJ$L.')!$#,0M?A'r02T@'z0-i')!$#4%6/% ?¥9R?N'¥#,k2 W#*02J5?¥EGO@#7>!$#7)#n3 02EFJM'¥EFJ$L5†!$#VF3|?¥!5(-3(-,43$VFEg')T5O@#{L+(2EKJZ†$(-J5O(v'),40+?¥3$!$#7)EG*63$!I(2?¥#r#7¥7)027£?k#"BDEg')!(z*dVF0+?¥#3I(2*£uREKJ5Lr7£(v')EK0z02imx+k y+Š$027')!$#8?¥EK,T$VF(-'¥EF02J47)#?¥T$Vg'£?7¥#3I0+7N')#OEFJ')!$EG?„?N#P*¦')EK0+J¨†+(z?¥3$EK7£(-VK_`'A9M3Z07)#357¥#P?N#J+'>HI02'¥![,4EFVKVFEF,#'¥#7r(2J5O?¥T$H$,4EKVFVFEK,4#d')#7zB"(:p2#VF#J5L-'¥!I?B(+?8T5?¥#Oiw0+76')!$#%6/%€*d0+J@e5L+T$7)(-'¥EF02J¨k>35(-7£(-,4#d')#7£?rVKEG?A')#O|EKJ*d02JIO@Eg')EK0+J¨†¨'AB002H5?¥#7)pREKJ5LQiw7)#¦¥MT$#J5*dEF#?†jy-‰+(-J5OW‡+Š2‹zŒ6B1#7¥#T5?¥#OŽko/10+,4,0+Jj(2H$VK#4x{02i•R#P*¦'¥EF02JyB#7)#rTI?N#POo(2L+(-EFJoiw027"'¥!5#&?NEF,nT$VG(v')EK0+J5?3$7)#?¥#JM'¥#POQEFJ'¥!$EG?8?¥#*¦')EK0+J¨k'¥!$EG?4?N#P*¦'¥EF02JZ†B1#oiw0@*dT5?02J '¥!$#,4#O@EG(-Jae O@#VFEg')EK#P?4O@#d')#7),EFJ$#POaiw7)02,$027'¥!5#o7)#?N'02i6O@EF?)*dTI?¥?¥EK0+J5?EKJ@#VF?1BDEg')!.'¥!5#>EFJM'¥#JI?NEK'A9L+7¥#P(v')#7t0+7t# ¥+TI(-V$')0Qx£…02iŽ'¥!$#>3I#P(-u4EFJ+')#J5?¥EK'A9EFJ')!$#60+7¥EFL2EFJ5(-V5EK,.(-L+#>(+?¥?¥T$,4EKJ5L3$E#!I(:pMEF027£?0-imEK,.(-L+EKJ5L©¥MT5(2VKEK'A92k'¥!5(-'D'¥!$#P?N#{7)#3$7)#?¥#JM'D(:p2#7)(2L2#6H#OoEKJc–#'A9.#d'6(-V„;`y-+$x*P=¦k0 W#{L2EFp2#z?N0+,#Z7)#(-'¥,4#JM')?02impv(-7)EF02T5?#7)7)027£?tEFJ'¥!$#&?¥EK,T$VG(v'¥0+7D(-7)#zO$#?)*d7)EKH,40@O@#VG?02i #7¥7)027£?¨iw0+7„02T57„?NEF,nT$VG(v')EK0+J5?EFJ')!$#Diw0+VKVF0vBDEKJ5L*d02,4,4#JM'£?02J!$0vBhB1#",.(2O@#D3I(-7¥'¥EG*dT$VG(-7„*£!$0+EF*#?02i\2^-_s#VF#,4#JM'D(-7)7)(:94(-J5O%6/% ?N3 #*Ege *(v')EK0+J5?BD!$EG*£!?N#P*¦'¥EF02JI?102ijEFJ5O@EFpREFO@TI(-VŽ#7)7)027£?k•R02,4#z7¥#VK#pv(-JM'"%>XZY%m(-H5VK#&‰5kB1#z,.(-u+#z*02,435(27¥EG?N0+JQBDEK'¥!c(-7)#zVKEG?N'¥#OEFJO@#VFEg'A9|BDEFO$#d_`e5#VGOWEK,.(-L+EKJ5L5†¨L+0M0@O|3I0+EKJM')EKJ$L(+**T$7)(+*d9cEG?{*d7)Eg')EF*(-Vt(+?z3I0+EKJM')#OW02T@'&HR9W/10+7¥JRB#VFV †‘ƒJW!5EKL+!|e¢ />?N0+J|;Ax # #+‰+=1(-J5OŒ80+VFO$(:B"(:9c;Ax # #Mq2=¦k–#d'A9.#'D(2V„; y22$xP*=t(-J5OYc027)EK')(; y-+$x:=t?¥!$0vB#O4')!5(v'Œ802VGO$(:B"(:92†y-ˆ ˆ?¥02T57)*#D,0@O@#V k "!$#rŒr/!'>^M‰{,40RO$#V5BD!5EF*£!!I(2?t(&7¥#VF(-'¥EFp2#VF94?NEF,43$VK#(-VG?N0nO$#3mEFL2T$7)#y$†5EG?6?¥!$0vBDEKJ5LL27)#(-'¥#7DEF,43$7)0vp2#,4#J+'8BDEK'¥!?A')7¥T5*d'¥T$7)#n(+?6?¥!$0vBDJEKJEF,.(-L+#&(-J5Oa@‚rO@EG?A')7¥EFH$T@')EK0+JcEKJy2ˆ ˆ


z=dk "!$#L27)##Jh?N0+VKEGObVFEFJ$# iw0274')!$#c%6/%D_£xPy-, ?NEFJ$L2VF#cO@EG?N!h3I0+EKJM')EKJ$L #7¥7)0270-iz$k \2ˆ ˆ /"')!$#c027£(-J$L+#;¤£§iw027"')!$#&%6/% xPyv_`,C3 02EFJM'¥EFJ$L4#7)7¥0+7"0-i"x2k y-ˆ ŵkO$(2?¥!$#OoVFEKJ$#\+‰ y2Š+Š ^5kFx*VKT5?N'¥#7ŠMq #MŠ x2k¡q‰‰2^ ‰+‡ x2kFxxP# # y2y+y y@k yY‰5xxP # x+ $k #‰^@q ^Ry $k #xPO@7)Egi 'D')#7), 0+J$VK9‡MŠ-M‹zŒ8,4#O@EG(-JeIO@#VKEK'A9(-,43$VFEK'¥T5O@#, £ . ¢¡¤£¥(§¦©¨ ,40@O@#VŒz/!'>^+‰ ‡ xMŠ x^5k‡ ‡+‰ x$k ‡‰‡ Š2 \$k yxPy # xPŠ2\ Š@k ^Y[Š@xPŒ%yMq x‰+‡ Š@kFx‰y2\ #Rq ‰$k ‡xP\+‰ y2Š+Š ^5kFx*VKT5?N'¥#7‡+ y2y$x y@k ‡‰‡+\ x+\ x2k yxP# # y2y+y y@k yY‰5xx:y+q x$#Rq x2k \‰xvq-Š x+\ $k \xPn‘ƒ,.(-L+#4eIO@#VKEK'A9|,4#PO@EF(2J5?&(-'‡+Š2+‹zŒ8.(+?&(iwT$J5*d'¥EF02Ja02i"(2,35VKEK'¥T5O$#QL+(2EKJ #7¥7)027£?rL2EFp2#J HR9')EK,4#j(2H$VK#‡#J5O$#JM'6O@7)Egi 'D')#7),kO@#3?¥#d'BD!$EG*£!EF?1*d0+J5?A'£(-JM'tEFJ.'¥EF,4#2†@(-JIO%8,43$VFEg')T5O@#rL+(-EFJ.#7)7)027£?(-7)#6?NEF,nT5VF(-'¥#OHM94*d0+J5?¥EFO@#7¥EFJ$Lz'AB0{'¥#7¥,.?¦j0'nBD!$EG*£!apv(-7)EK#P?zBDEg')!a'¥EF,4#2kY(-EFJb?¥02T$7£*d#P?z0-i8(-,43$VFEg')T5O@#LM(-EFJ #7)7¥0+7z(27¥#.pv(27¥EG(v')EK0+J5?z0-i8(v'),40+?¥3$!$#7)EG*O@7¥EKiL+(2EKJ“p:(27¥EG(v')EK0+J5?*(-TI?N#PO HR9 O@#diw0@*T5?c(-J5O“O@EG?N! O@EF?N'¥0+7N')EK0+J¨†z(-J5O 7¥#P*d#EFp2#7QLM(-EFJ'¥7£(-J5?¥,4EF?)?NEF02JZ†>(-JM')#J$J5((-JIO O@7¥EKi 'k B0-'¥! '¥#7),.?Q(27¥#[*02J5?¥EGO@#7)#O '¥0 HI#|7)(2J5O@0+, 7)#?¥EFO$T5(-V8#7¥7)027£?(-i '¥#7(-,43$VFEg')T5O@#5T5*¦')T5(v')EK0+J"!5#pv(-VFT$#P?6B#7)#n7)#?¥#d'r7)(2J5O@02,4VF9Qiw0+7z#(2*£!(2JM'¥#J5J5(2?k3¥MT5(-Vm7¥,.?*(-VFEFH$7)(-'¥EF02JO@0+J$##p2#7¥9WxPŠ,4EKJRT@')#?kzp:(2VKT5#?10-ij(2,35VKEK'¥T5O$#>#7¥7)027£?„B#7)#8#JM')#7)#O0+J#(+*£!0-iZ'¥!$#z\-^2_`#VK#,#JM'1(-J5Oo%6/%“(27¥7£(:9@?†+(-J5O•@’nk@%'8y-‰+'D'¥#7¥,~EF?D*02J5?¥EGO@#7)#OŽk%'6‡MŠ-4‹zŒ82†IB1#{(+?¥?¥T$,4#r'¥!5(-'D'¥!$#z'AB0n')#7),.?D!5(:p2#r#¦¥MT5(2VŽB1#EKL+!M'kJ$0.O@7¥EKi#7¥7)027£?r0-iD$†tx+†j‰5†j(-JIO xP £ 7¥,.?&(-'y-‰2‹zŒ8QEF?’6#L27£(2O$(-'¥EF02J[02i1')!$#.eIO$#VFEg'A9|BDEg')!b(-,43$VFEg')T5O@#.L+(2EKJj(2H$VF#r\(-J5O mEKL+T$7¥#z‡$k%1(2*£!.eIO$#VFEg'A9.EG?D(-J(:p2#7£(-L+#Opv(-VFT$#r0-i1xPn?¥EK,T$VG(v'¥EF02JI?t3 #7¥iw027),4#OBDEK'¥!?N!$0vBDJoEKJ35(27)(2,4#d'¥#7)?k15027(-VFV$'¥!5#6,40@O@#VG?†R(-,43$VFEK'¥T5O@#>L+(2EKJ.#7¥7)027£?0-iZ‰ £ 7)#?¥T$VK'tEKJoO@#L+7)(+O$(v')EK0+J02i'¥!$#r?¥(2,#>?N#'t0-ïmEKL+T$7)# #$†+'¥!$#r*(2?¥#802i0 ?¥#d'"(-,43$VFEg')T5O@#>#7)7¥0+7)?(-'‡+Š2&‹zŒ8>EF?'¥!$#6eIO@#VFEK'A9HR94({7)02T$L+!$VK9ni02ij#7¥7)027(2?"?N##JEKJY‰5xy2‰2M‹zŒ8(-,43$VFEK'¥T5O@#,4#O@EG(-JeIO@#VKEK'A9L+(2EKJ#7)7¥0+7(¤¢¦¨¤§¢¥¤ö §G¸˜ª†¿y¸;«ˆ®ÓªÄß)ª†ÀrÒ†¿Â«ˆÀ;¹d³°ò¥¤§¦Ç÷<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 201202EFJM'¥EFJ$Lc#7)7)027£?>EFJa3$7)#?¥#J5*#40-i'¥!$#jEFL2T57¥#oq¨{‘ƒ,4(2L2#4eIO$#VFEg'A9|,#PO@EG(-J5?&(+?{(iwT$J5*d'¥EF02Ja0-i'¥!5#Q%6/%D_Nq:,]33 02EFJM'¥EFJ$L #7¥7)02702i$k \2ˆ ˆ ;A ¥ ¥§ ¥¤ =o(-J5O 0-iQx+k y2ˆ ˆ ; ¤ ¢¡© ¥§ ¥¤ =o(v'cy-‰2 ; @=o(-JIO ‡+Š2 ‹zŒ8%6XZY[%0 Ž?¥#d'D'¥#7¥, 02J$VF9‡MŠ-M‹zŒ8,4#O@EG(-JeIO@#VKEK'A9(-,43$VFEK'¥T5O@#L+(2EKJ#7)7¥0+7, £ . ¢¡¤£¥(§¦©¨ ,40@O@#V xP\ö §G¸˜ª†¿y¸;«ˆ®ÓªÄß)ª†ÀrÒ†¿Â«ˆÀ;¹d³°ò¥¤§¦Ç÷(¤¢¦¨¤§¢¥‡ xMŠ x^5kŒz/!'>^+‰‡ Š2\ qRk Š‰‡ y$x y@k \xPy # xPŠ2\ Š@k ^Y[Š@xPŒ%‰+ q2Š y@k Š‰y2\ y-^ $k #xP¤"!5#n(-,43$VFEg')T5O@#j(2H$VK#\6‘ƒ,4(2L2#zeIO$#VFEg'A9,4#O@EG(-JI?6(v'zy-‰2M‹zŒ8&(+?8(4iwT$J5*d'¥EF02J02i„(-,43$VFEg')T5O@#nLM(-EFJ#7)7¥0+7)?k0 Ž?N#')?kL+(-EFJ#7)7¥0+7)?1!$#7)#{(-7)#z,0@O@#VKVF#O(+?"7)(2J5O@02,xvqj(2H$VK#.q D‘ƒ,.(-L+#{eIO@#VKEK'A9,4#O@EG(-J5?r(v'z‡+Š2+‹zŒ8(2?r(4iwT$J5*d'¥EF02J[02it(-,43$VFEg')T5O@#L+(2EKJc#7¥7)027£?DL2EFp2#JcHR9;w'¥EF,4#d_EKJ5O$#3 #J5O@#JM'£="7£(-J5O$02,C0 ?¥#d'£?kL+(2EKJ#7)7¥0+7(¤¢¦¨¤§¢¥¤ö §G¸˜ª†¿y¸;«ˆ®ÓªÄß)ª†ÀrÒ†¿Â«ˆÀ;¹d³°ò¥¤§¦Ç÷xP‡x #


¥¤¡ b@‚¥_ƒO@02,.(-EFJbe O@#VFEg'A9 EKJ '¥!5#a@‚.7)(2J$L2#0-i{v_£xPŠ-,kh"!$#c7)#O VKEFJ$#?¦c%6XjY%(z•@’ /')!$#cH$VFT$#cVKEFJ$#P?HR9Q'¥!$#{!R9RH$7)EFOo,4#d'¥!50RÖ k%6XZY[%(r%6/%8E.(z•@’*d027)7)#*¦'>3$!5(2?¥#nO@#L27£(2O$(-'¥EF02Jiw027>'¥!5#%6/%…HI(2?¥#VFEKJ$#P?k2$0276'¥!$#H5(+?N#VKEFJ$#?6VK#P?¥?8'¥!5(2J[\22,†5')!$#7)#nEG?>(VKEK'N')VK##7)#JI*d#EKJ|3$!5(2?¥#J$02EG?N#P?6H #d'AB##J|(-i '¥#7z(-353$VK9REFJ$LO@E #7)#JM'{*(2VKEFH$7£(v'¥EF02J[,#'¥!$0@O$?4; —>”€*(-VFEFH$7)(-'¥EF02J¨†O@EH 0-')!I=t(2J5OBDEK'¥!502T@'"(-JR9.*(-VFEFH$7)(-'¥EF02J(+?1?¥!$0vBDJ.EFJ mEKL+T$7)#>‰&02iZ–#d'A9#d'iXZY%)(r%6/%(z•@’ HR9c!R9RH$7)EFOc,4#'¥!$0@OŽkn "!5#O$(+?N!5#OcVFEKJ5#?rEKJIO@EF*(v')#4y+Š £%6XZY[%(z•@’£ ;y2‰24‹zŒ8:=0276Š<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012#6 ’>#L+7)(+O$(v')EK0+J 0-i&eIO$#VFEg'A9 HR9 (-,43$VFEg')T5O@# L+(2EKJ #7)7¥0+7)?*02J5?¥EGO@#7)EKJ5L 0 Ž?¥#d'Q')#7), 02J$VF9 (v'c‡+Š2jEFL2T57¥# ¥§ ¤¡ ‘ƒ,.(2L2#{eIO$#VFEg'A9,4#O@EG(-J5?6(2?6(iwT5J5*¦')EK0+J0-i(-,43$VFEg')T5O@#L+(-EFJ#7)7¥0+7)?"EFJc3 #7£*d#JM'Pk ¤ ¡©‹zŒ82kz¦ ¡D "§ ¡ ¦ ¢ ¢ § %'¥,40+?¥3$!$#7¥EG*83$!I(2?¥#8#7)7¥0+7)?t(-7)#6?NEF,nT5VF(-'¥#OT5?NEFJ$Ln(y:_ƒ’y23$!I(2?¥#>?)*d7)##J.,40@O@#VIL+#J$#7)(-'¥#O4BDEK'¥!(nyvJIO.027£O@#7$0+7402T$7?¥EK,T$VG(v'¥EF02JI?†1B1#(2?)?NT5,#POb')!5(v'4')!$#c3I0vB#7402i6'¥!5#cy-J5O 027£O@#7.?N'¥7)T5*¦')T$7¥#?A')7¥T5*d'¥T$7)#iwT$J5*d'¥EF02J¨k\$x2†5BDEKJ5Op2#VF0@*dEK'A9Q02i"xP-, ¦v?6(v'>(2Vg')Eg')T5O@#n02iDx2+-,k" "!$#n(-J5L2T$VG(-76?¥#3I(-7£(v'¥EF02JH #d'AB##JiwT$J5*¦')EK0+Jc'¥0QHI#$k#y.O$#L27)##P?kD"!$#?A'£(-J5O5(-7£O*(-VFEKH57)(-'¥EF02JEF?>#,43$VF0v92#PO(*(2VKEFH$7£(v'¥0+76(-JIOc(4')(27¥L+#d'6?¥02T$7£*d#&B#7)#z')(2u2#J'¥0Hy-?¥#*o02J '¥!$#*(2VKEFH$7£(v')0274(-J5Ohy-2?¥#*Q02J '¥!$#o')(27¥L+#d'£=HM9aEFJM'¥#7¥p+#J$EFJ$L')!$#c*(2VKEFH$7£(v'¥0+7(2J5Oa'£(-7)L2#d'.?¥02T$7£*d#W;EKJfy-\v_ƒ?¥#*d0+J5O*d9@*dVF#?kb/(-VFEKH$7£(v')EK0+JaHR9WB"(v')#7p:(23I0+77£(2O$EK0+,#'¥7)9h; —>”6=EG?(2VF?¥0[(23$3$VFEK#POŽkW’>T$#o'¥0['¥!$#0-i>'¥!$#c?¥EK,T$VF(-'¥0+7†')!$#?¥#c*(-VFEFH$7)(-'¥EF02J5?(-7)#(-3$3$VFEF#Oa')0 HI02'¥! '¥!$#c\-^2_`#VK#,4#JM'(2J5O %6/%*dT$7)7¥#JM'4O@#P?NEFL2J¥+TI(-VFEg'A9(-J5O#p2#J[(2O5O(-7)7)(:9@?k'$027z%6/%&†I'¥!5#?¥#*(2VKEFH$7£(v')EK0+J?¥*£!$#,4#?rO@0QJ$02'>!$#VK3'¥0EK,43$7)0vp2#{EF,.(-L2EFJ$L?N0+,#4J$0+EF?¥#?zEFJM'¥7)0@O@T5*d#PO[HR9W*(-VFEFH$7)(-'¥EF02J|#7)7¥0+7)?k "!5#i” EG?oJ$0-'o?¥#JI?NEK'¥EFp2##J$02T5L2!f'¥0(-7)7)(:9bEFJjEFL2T57¥#zx m•@(2,4#"(+?%mEKL+T$7¥#8‡rH$T$'t*d02JI?NEGO@#7)EFJ$L{O@7¥EKi ''¥#7¥,02J$VF9(-'‡MŠ-{‹zŒ8+k1 ¥§ ¤¡ ‘ƒ,4(2L2#eIO@#VKEK'A9¤ ¢¡© ¥¤¡ D@‚¥_ƒO@02,.(-EFJ.eIO$#VFEg'A94EFJ'¥!5#@‚,#PO@EG(-J5?(2?({iwT$JI*¦'¥EF02Jo0-iZ(2,35VKEK'¥T5O$#>LM(-EFJ#7)7¥0+7)?„EKJo3I#7)*#JM'k"!$#{7)#OoVKEFJ$#P?„%>XZY%)(z•@’ /$'¥!$#{H$VFT$#{VFEKJ5#?¦„%6XZY[%(r%6/%8E.(z•@’ HR9o!M9RH$7)EGOQ,4#d')!$0@OŽk7)(2J$L2#r0-iv_£xPŠ-,ky$x7¥#P?N3 #*d'¥EFp2#VF9$=¦†I'¥!$#&eIO@#VFEK'A9EF,43$7)0vp2#OHR9(4i,0+7¥#{HR9c(2O5O@EKJ5LQ%6/%#$*#3@'zY‰$x&,40@O@#V k(¤§¦©¨¤§¢ ¤j(2H$VK##6¨‘ƒ,.(-L+#eIO@#VKEK'A9z,#PO@EG(-J5?j(2?Z(DiwT$J5*¦')EK0+J&0-i5(-'¥,40+?¥3$!$#7¥EG**d0+J5O@EK'¥EF02Jn(-'¨'¥!5#1?¥Eg')#tL2EFp2#JzEKJ&3 #7£*d#JM'¥EFVK#P?ky+yy2‰


j067)#I#*¦'m,4027)#‘ƒJ{'¥!$#3$7)#pREF02T5?j?N#P*¦'¥EF02JI?†:B#t?NEF,nT5VF(-'¥#O&HM9{?¥#VF#*d'¥EFJ$L802J5#1*d0+,43I0+J$#JM'j02i$#7)7¥0+7)?Z(v'm(D'¥EF,#+kmZ0.7)#3$7)#?¥#JM''A9R3$EF*(-V7¥#P(-VFEF?N'¥EG*z?NEK'¥T5(-'¥EF02J5?†@B#&(-VG?N03I#7Niw0+7¥,4#PO')!$#&?NEF,nT5VF(-'¥EF02J5?"EFJ5*dVFT5O@EFJ$L(2VKV')!$#&#7)7)027£?km02EFJM'¥EFJ$LQ#7¥7)027£?†¨x £ ;w0 ?¥#d'r'¥#7¥,=8(-'ry-‰+Q‹zŒ8(-J5O[‰ £ ;w0 Ž?¥#d'r(2J5OO@7)EKi '6'¥#7¥,.?r*d0+,nH$EFJ$#OI=8(v'7¥,.?Diw0+7>3"!$#z?NEF,nT$VG(v')EK0+J5?1B1#7¥#>7)(2Jiw0271'¥!5#>'AB0*(2?¥#?10-ij(-'¥,40+?¥3$!$#7¥EG*6*02J5O$Eg')EK0+J‡+Š-‹zŒ8>iw027D(-,43$VFEK'¥T5O@#r#7)7)027£?k‰5k(2?"EFJc•@#*¦')EK0+Jo^IkxPy (-J5O x‰ ?¥!$0vB ')!$# EK,.(2L2#|(2J5O…@‚eIO$#VFEg')EK#P?a;^M‰Q,40@O@#V`†Z(Qi ¥ ¥¤¡ 1‘ƒ,4(2L2#zeIO$#VFEg'A9o,#PO@EG(-J5?jEFL2T57¥#.x:ÿ¤ ¢¡© ¥§ ¤ c@‚¥_sO@0+,.(-EFJ|e O@#VFEg'A9W,4#O@EG(-JI?&EFJ @‚n7£(-J$L+#40-i6v_£xPŠ-,k"!$#Q7¥#POEKJ5*VKTIO@EKJ5L[(-VFV„')!$#Q#7¥7)027£?kO@#VFEg'A9 ,4#PO@EF(2JQe?NEK'¥#{*d0+J5O@EK'¥EF02J ;^M‰£ # ^+‰ Š$kKxy2Š£ # ‰2‰ ‰5k qŠ-£ ;


02J$#J+'10-ï 3 02EFJ+')EKJ5L5†R(-,43$VFEg')T5O@#8LM(-EFJ¨†M(2J5O.(v'),40+?¥3$!$#7)EG*|#>#$(-,4EFJ$#O47)#VG(v')EKp+#8*d02JM')7¥EFH$T@')EK0+J.0-iŽ#(+*£!4*02,43\2^-_s#VF#,4#JM'8(-7)7£(:96(r%6/%“?N9@?N'¥#,k3$!5(2?¥#z#7)7¥0+7)?EFJO$#L27£(2O$EKJ$L'¥!5#{EK,.(-L+#¥+TI(-VFEg'A9EFJ'¥!$#&%>XZY%0-')!iw7¥# ¥+T5#J5*EK#P?8EFJ5O@EG*(v')#OcHR9o'¥!$#P?N#$027>?NEFL2J$EKeI*(-JM'6EFJ¨5T$#J5*d#&02it(v'),0M?N35!$#7)EF*z35!5(2?¥#&#7)7)027£?D(v'8')!$#nH—r” (-7)#8EFJ$##*d'¥EFp2#>EKJ.')!$#z*dT$7)7¥#JM'1?N3 #*Ege *(v')EK0+J5?„02i?NEF,nT$VG(v')EK0+J5?†2')!$#>*(-VFEKH$7£(v')EK0+J.HR9ni%>XZY%}(-J5Oc(Q?N3$EF7£(-V¨iw0+7>%6/%r=D3$7)02H5(2H$VF9QL2EFp2#P?8(.VF0vB1#78VFEK,4EK'>0-i')!$#&e\2^-_s#VF#,4#JM'"(-7)7)(:94BDEK'¥!o'¥!$#&%6/% ?¥9R?N'¥#,C?N!502T$VGOQ7)02T$'¥EFJ$#VF9(2*£!$EF#p+#r(,4#O@EG(-JoeIO@#VKEK'A9 ¤6y2'¥!5(-'D%>XZY%¡ .8‰2^MŠr‹zŒ82†R(-JIO&')!$#6?¥EK,4EFVF(27VK#p2#V@02iIe O@#VFEg'A9EKJi%6/%~02J '¥!$#–#'A92†„SIkK†1‹rT5#d'¥!Z†3kK†(-J5Oh‹rT$EFVKVF0-')#(-TZ†1•kty-+$xP*-†%6XjY%mEK#VFO‘ƒ,.(-L+EKJ5L./(235(-H$EFVFEg')EK#P?"0-i%6XZY[% LEGO@#d_’>EG?N!$0R#P*£u 8k kK†$ W0R0-'¥'¥#JZ†6%&kF†8(-J5O ‹rT5EKVFVK02'¥#P(-T¨†6•kDy-+2‰5† K) "!$#%6XjY% ’>#?¥EKL+J ”D#diw#7¥#J5*d#pv(-JLo;B#7)##{,4(+O@#{J$#P(-7"#J$Eg')!¨†5(2J5Oo'¥!$#{# #P*¦'80-i?N!I(2O@0vBDEFJ$LB1#7¥#zJ$02'8#@3$VF027)#OŽk(+?¥?¥T$,4#OQ'¥04H02J$VF94BDEg')!'¥!5#6,40+?N'*02,435(2*d'*02J@e5L+T$7£(v'¥EF02J402ï '¥!$#r\-^2_`#VK#,#JM'1(-7)7)(:9%'8y-‰+n‹zŒ8+†@7¥#VF(-'¥EFp2#>*02JM'¥7)EFH$T@'¥EF02JI?t02iZ3I0+EKJM')EKJ$L(-J5Oo(-,43$VFEg')T5O@#rL+(2EKJo#7)7¥0+7)?EFJQEF,.(-L+#2¥MT5(-VFEK'A9(-7)#¢02EFJ+')EKJ5L#7¥7)027£?10-i$k \2ˆ ˆ;w0+7{x2k y-ˆ ˆK=7)#?¥T$VK')?"EFJ?¥EF,EFVG(-7eIO@#VKEK'A9o(+?'¥!$#&*(2?¥#(2HI0+T@'"'¥!$#&?)(-,4#2kŒ>(:pMEFJ$L43;w0+7{‰ £=¦k‘ƒJW?¥T5*£! *(+?N#P?†¨(-'¥,40+?¥3$!$#7¥EG*n35!5(2?¥##7¥7)027£?r(-7)#02i1!5(:pREFJ$Lo(2,35VKEK'¥T5O$#.L+(-EFJ[#7¥7)027£?>0-i>x£T$VG(v')EK0+J5?„B#>*02,H$EKJ5#O%6/%¢ •REF,nT5VF(-'¥EF02J5?BDEK'¥!?N35(27)?¥#7"\-^2_`#VK#,4#JM'"(27¥7£(:94*d02J$e5L2T$7£(v')EK0+J5?(-7)#>J$##O@#POo?¥EFJ5*d#zEFJQ')!$#{*dT$7)7¥#JM'"?¥EK,_;s/>xP=¦k')!$#&O@02,4EFJ5(-JM'"i‹zŒ62k '>T$7„?NEF,nT5VF(-'¥EF02J5??¥T$3$3 027¥''¥!5(-''¥!$#P?N#"7)#¦¥MT$EF7¥#,#JM')?(-7)#7¥#P(2?¥02J5(2H$VK9z,4#d'„357¥0vpREGO@EKJ5L6')!5(v'?N9@?N'¥#,~*d02,43$VF9QBDEK'¥!')!$#EF78?N3 #*Ege *(v')EK0+J5?kYc#,40.x:qv‡5† K #P*¦')?„0-iŽ–02EFJ+')EKJ5L)t7¥7)027£?m02J.Yc0M?¥(2EF*‘ƒ,.(-L+#?BDEK'¥!‡-,†HI02'¥!'¥!$#&\2^-_s#VF#,4#JM'8(-7)7£(:94(2J5O%6/%Œ602VGO$(:B(:9+†-Yak$x # #Mq@†2%6XjY%x:yv,†$(-J5O|xPŠ-,’>EF?¥!$#? L£ 3€' &d & &¥¤co%#§¦ n©¨ &')!$#%')(+*(2,4(Xj(-7)L2#.YcEFVg_Yc0+7¥EK')(5†¢¡4k _`‘¦kjy225x2†Z%>XZY%lYc#,40‰Mq:^I† K EGO@# mEF#VGOW‘ƒ,4(2L2EFJ$L+?zBDEK'¥!VFEK,4#'¥#7 ¦-•@T$H$,4EKVFVFEK,4#d')#78%67¥7£(:9LYc0+7¥EK')(5†£¡4k _s‘¦†$(-J5OŒ602VGO$(:B(:9+†@Yak$%&kIy222^5†@%6XjY%Yc#,40.EFJ3$7¥#35(-7£(v')EK0+J¨k–#'A92†S5kF†¨‹rT$#d')!¨† kK†¨(2J5O|‹rT$EFVFVK02'¥#(2T¨†¨•k¨y-+$x(5†I%>XZY%€Yc#,40‰ #2\5† K)%6XjY%(r%6/%•REF,nT$VG(v')EK0+J/"6BAC!57D?/)E/%&!#.) F7-/$09HG/$9.!5¡(6IG?"J?/KGLL)=¡M!5G"$ GFA,-.?N!5$7-O!#.!-6)/$ @!5$0/$ $!Q78¡?RA !57DL¡$GQ.!#¡S?


A&A 517, A12 (2010)DOI: 10.1051/0004-6361/200912873c○ ESO 2010Astronomy&AstrophysicsRevisiting the theory of interferometric wide-field synthesisJ. Pety 1,2 and N. Rodríguez-Fernández 11 IRAM, 300 rue de la Piscine, 38406 Grenob<strong>le</strong> Cedex, Francee-mail: [pety;rodriguez@iram.fr]2 LERMA, UMR 8112, CNRS and Observatoire de Paris, 61 avenue de l’Observatoire, 75014 Paris, FranceReceived 13 July 2009 / Accepted 16 March 2010ABSTRACT<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Context. After several generations of interferometers in radioastronomy, wide-field imaging at high angular resolution is today amajor goal for trying to match optical wide-field performances.Aims. All the radio-interferometric, wide-field imaging methods currently belong to the mosaicking family. Based on a 30 years old,original idea from Ekers & Rots, we aim at proposing an alternate formalism.Methods. Starting from their ideal case, we successively evaluate the impact of the standard ingredients of interferometric imaging,i.e. the sampling function, the visibility gridding, the data weighting, and the processing of the short spacings either from sing<strong>le</strong>-dishantennas or from heterogeneous arrays. After a comparison with standard nonlinear mosaicking, we assess the compatibility of theproposed processing with 1) a method of dealing with the effect of ce<strong>le</strong>stial projection and 2) the elongation of the primary beamalong the scanning direction when using the on-the-fly observing mode.Results. The dirty image resulting from the proposed scheme can be expressed as a convolution of the sky brightness distributionwith a set of wide-field dirty beams varying with the sky coordinates. The wide-field dirty beams are locally shift-invariant as they donot depend strongly on position on the sky: their shapes vary on angular sca<strong>le</strong>s typically larger or equal to the primary beamwidth.A comparison with standard nonlinear mosaicking shows that both processing schemes are not mathematically equiva<strong>le</strong>nt, thoughthey both recover the sky brightness. In particular, the weighting scheme is very different in both methods. Moreover, the proposedscheme naturally processes the short spacings from both sing<strong>le</strong>-dish antennas and heterogeneous arrays. Finally, the sky gridding ofthe measured visibilities, required by the proposed scheme, may potentially save large amounts of hard-disk space and cpu processingpower over mosaicking when handling data sets acquired with the on-the-fly observing mode.Conclusions. We propose to call this promising family of imaging methods wide-field synthesis because it explicitly synthesizesvisibilities at a much finer spatial frequency resolution than the one set by the diameter of the interferometer antennas.Key words. methods: analytical – techniques: interferometric – methods: data analysis – techniques: image processing1. IntroductionThe instantaneous field of view of an interferometer is naturallylimited by the primary beam size of the individual antennas. Forthe ALMA 12 m-antennas, this field of view is ∼9 ′′ at 690 GHzand ∼27 ′′ at 230 GHz. The astrophysical sources in the (sub)-millimeter domain are often much larger than this, but still structuredon much smal<strong>le</strong>r angular sca<strong>le</strong>s. Interferometric wide-fieldtechniques enab<strong>le</strong> us to fully image these sources at high angularresolution. These techniques first require an observing modethat in one way or another scans the sky on spatial sca<strong>le</strong>s largerthan the primary beam. The most common observing mode inuse today, known as stop-and-go mosaicking, consists in repeatedlyobserving sky positions typically separated by half the primarybeam size. The improvement of the tracking behavior ofmodern antennas now <strong>le</strong>ads astronomers to consider on-the-flyobservations, with the antennas s<strong>le</strong>wing continuously across thesky. The improvements in correlator and receiver technologiesare also <strong>le</strong>ading to techniques that could potentially samp<strong>le</strong> theantenna focal planes with multi-beam receivers instead of thesing<strong>le</strong>-pixel receivers instal<strong>le</strong>d on current interferometers.The ideal measurement equation of interferometric widefieldimaging isV ( u p ,α s)=∫α pB ( α p − α s)I(αp)e−i2πα p u pdα p , (1)where V is the visibility function of 1) u p (the spatial frequencywith respect to the fixed phase center) and 2) α s (the scanned skyang<strong>le</strong>), I is the sky brightness, and B the antenna power patternor primary beam of an antenna of the interferometer (Thompsonet al. 1986, Chap. 2). For simplicity, 1) we assume that the primarybeam is independent of azimuth and e<strong>le</strong>vation, and 2) weuse one-dimensional notation without loss of generality. We donot deal with polarimetry (see e.g. Hamaker et al. 1996; Saultet al. 1996a, 1999) because it adds another <strong>le</strong>vel of comp<strong>le</strong>xityover our first goal here, i.e. wide-field considerations. Severalaspects make Eq. (1) peculiar with respect to the ideal measurementequation for sing<strong>le</strong>-field observations. First, the visibility isa function not only of the uv spatial frequency (u p ) but also of thescanned sky coordinate (α s ). Second, Eq. (1) is a mix between aFourier transform and a convolution equation. It can be regarded,for examp<strong>le</strong>, as the Fourier transform along the α p dimensionof the function, B(α p − α s ) I(α p ), of the (α p , α s ) variab<strong>le</strong>s. ButEq. (1) can also be written as the convolution:V ( u p ,α s)=∫α pB ( α s − α p)I(αp , u p)dαp , (2)whereB ( ) ( )α s − α p ≡ B αp − α s (3)andI ( ) ( )α p , u p ≡ I αp e−i2πα p u p. (4)Artic<strong>le</strong> published by EDP Sciences Page 1 of 21


A&A 517, A12 (2010)<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012For each u p kept constant, V(u p , α s ) is the convolution of Band I. Indeed, I(α p , u p = 0) = I(α p ), so we deriveV ( u p = 0,α s)=∫α pB(α s − α p ) I(α p )dα p , (5)i.e., the convolution equation for sing<strong>le</strong>-dish observations.Ekers & Rots (1979) were the first to show that the measurementequation (Eq. (1)) enab<strong>le</strong>s us to recover spatial frequenciesof the sky brightness at a much finer uv resolution than theuv resolution set by the diameter of the interferometer antennas.Interestingly enough, the goal of Ekers & Rots (1979) was “just”to find a way to produce the missing short spacings of a multiplyinginterferometer. However, Cornwell (1988) realized thatEkers & Rots’ scheme has a much stronger impact, because itexplains why an interferometer is ab<strong>le</strong> to do wide-field imaging.Cornwell (1988) also demonstrated that on-the-fly scanning isnot absolu<strong>tel</strong>y necessary to interferometric wide-field imaging.Indeed, the large-sca<strong>le</strong> information can be retrieved in mosaicsof sing<strong>le</strong>-field observations, provided that the sampling of thesing<strong>le</strong> fields follows the sky-plane Nyquist sampling theorem.As a result, all the information about the sky brightnessis coded in the visibility function. From a data-processingviewpoint, all the current radio-interferometric wide-field imagingmethods (see, e.g., Gueth et al. 1995; Sault et al. 1996b;Cornwell et al. 1993; Bhatnagar & Cornwell 2004; Bhatnagaret al. 2008; Cotton & Uson 2008) belong to the mosaicking family1 pioneered by Cornwell (1988). In this family, the processingstarts with Fourier transforming V(u p , α s ) along the u p dimension(i.e. at constant α s ) to produce a set of sing<strong>le</strong>-field dirty imagesbefore linearly combining them and forming a wide-fielddirty image. In this paper, we propose an alternate processing,which starts with a Fourier transform of V(u p , α s ) along the α sdimension (i.e. at constant u p ). We show how this explici<strong>tel</strong>ysynthesizes the spatial frequencies needed to do wide-field imaging,which are linearly combined to form a “wide-field uv plane”,i.e., one uv-plane containing all the spatial frequency informationmeasured during the wide-field observation. Inverse Fouriertransform will produce a dirty image, which can then be deconvolvedusing standard methods. The existence of two differentways to extract the wide-field information from the visibilityfunction raises several questions: are they equiva<strong>le</strong>nt? What aretheir relative merits?We thus aim at revisiting the mathematical foundations ofwide-field imaging and deconvolution. Sections 2 to 7 proposethe new algorithm, which we call wide-field synthesis: Sect. 2first defines the notations and it then lays out the basic conceptsused throughout the paper. Section 3 states the steps needed togo beyond the Ekers & Rots scheme and explores the consequencesof incomp<strong>le</strong>te sampling of both the uv and sky planes.Section 4 discusses the effects of gridding by convolution andregular resampling. Section 5 describes how to influence thedirty beam shapes and thus the deconvolution. Section 6 stateshow to introduce short spacings measured either from a sing<strong>le</strong>dishantenna or from heterogeneous interferometers. Section 7compares the proposed wide-field synthesis algorithm with standardnonlinear mosaicking. Some detai<strong>le</strong>d demonstrations arefactored out in Appendix A to enab<strong>le</strong> an easier reading of themain paper, whi<strong>le</strong> ensuring that interested readers can followthe demonstrations. Appendices B and C then explain how thewide-field synthesis algorithm can cope with non-ideal effects:Appendix B discusses how at <strong>le</strong>ast one standard way to cope1 In the rest of this paper, stop-and-go mosaicking refer to the observingmode, whi<strong>le</strong> mosaicking alone refer to the imaging family.Page 2 of 21with sky projection prob<strong>le</strong>ms is compatib<strong>le</strong> with the wide-fieldsynthesis algorithm. Appendix C explores the consequences ofusing the on-the-fly observing mode. Finally, we assume goodfamiliarity with sing<strong>le</strong>-field imaging in various places. We referthe reader to well-known references: e.g. Chap. 6 of Thompsonet al. (1986)andSramek & Schwab (1989).2. Notations and basic concepts2.1. NotationsIn this paper, we use the Bracewell (2000)’s notation to displaythe relationship between a function I(α) and its direct Fouriertransform I(u), i.e.,I (α) ⊃ I (u) , (6)where (α, u) is the coup<strong>le</strong> of Fourier conjugate variab<strong>le</strong>s. Wealso use the following sign conventions for the direct and inverseFourier transforms∫I (u) ≡ I (α) e −i2παu dα (7)αand∫I (α) ≡ I (u) e +i2πuα du. (8)uAs V is a function of two independent quantities (u p and α s ),the Fourier transform may be applied independently on each dimension,whi<strong>le</strong> the other dimension stays constant. Several additionalconventions are used to express this. First, we introducea specific notation to state that either the first or the second dimensionstays constant:V up (α s ) ≡ V ( u p = const., α s), (9)and( ) (up ≡ V up ,α s = const. ) . (10)V α sSecond, we use a bottom/top line to derive the notation of theFourier transform along the first/second dimension from the notationof the original function. Third, on the Fourier transformsign (i.e. ⊃), we explicitly state the dimension along which theFourier transform is computed. For instance, if D is a function of(α p , α s ), then the Fourier transform of D along the first dimensionis expressed asD ( ) α pα p ,α s ⊃ D ( )uu p ,α s , (11)pwhi<strong>le</strong> the Fourier transform of D along the second dimension isexpressed asD ( α p ,α s) α s⊃usD ( α p , u s). (12)We also use a more compact notation when doing the Fouriertransform on both dimensions simultaneously, i.e.,D ( ) (α p,α s)α p ,α s⊃ D ( )u(u p ,u s) p , u s . (13)Finally, the convolution of two functions G and V is noted anddefined as∫{G ⋆ V}(u) ≡ G(u − v) V(v)dv. (14)v


J. Pety and N. Rodríguez-Fernández: Revisiting the theory of interferometric wide-field synthesisTab<strong>le</strong> 1. Definition of the symbols used to expose the wide-field synthesisformalism.Symbol & DefinitionPlane(s) aα s Scanned ang<strong>le</strong> skyu s Scanned spatial frequency uvα p Phased ang<strong>le</strong> skyu p Phased spatial frequency uvI Sky brightness skyB Primary beam skyV Visibility function uv &skyS Sampling function uv &skyΔ Set of sing<strong>le</strong>-field dirty beams sky & skyD Set of wide-field dirty beams sky & skyΩ Sky-plane weighting function sky & skyW uv-plane weighting function (Ω ⊃ W) uv & uvG Gridding function (=gγ) uv &skyg uv-plane gridding function uvγ Sky-plane gridding function skyI dirty Wide-field dirty image skyNotes. (a) Planes of definition of the associated symbols.Fig. 1. Visualization of the different angular sca<strong>le</strong>s re<strong>le</strong>vant to widefieldinterferometric imaging. The notion of anti-aliasing sca<strong>le</strong> (θ alias )isintroduced and discussed in Sect. 4.2.<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Tab<strong>le</strong> 2. Definition of the uv and sky sca<strong>le</strong>s re<strong>le</strong>vant to wide-field interferometricimaging.Symbol[λ,rad] ad max ,θ synd prim ,θ primd alias ,θ aliasd field ,θ fieldd image ,θ imageDefinitionConjugate uv and angular sca<strong>le</strong>Maximum baseline <strong>le</strong>ngth & Synthesized beamAntenna diameter & Primary beamwidthMinimum image size for to<strong>le</strong>rab<strong>le</strong> aliasingTargeted field of viewFinal image sizeNotes. (a) The chosen units (radians for θ and wave<strong>le</strong>ngth for d) implythat the conjugate sca<strong>le</strong>s are linked through θ = 1/d, instead of the usualθ = λ/d.For reference, Tab<strong>le</strong> 1 summarizes the definitions of the symbolsused most throughout the paper. With the one-dimensional notationused throughout the paper, the number of planes quoteddirectly gives the number of associated dimensions of the symbols.Generalization to images would require a doubling of thenumber of planes/dimensions. Tab<strong>le</strong> 2 defines the uv and angularsca<strong>le</strong>s that are re<strong>le</strong>vant to wide-field interferometric imaging,and Fig. 1 sketches the different angular sca<strong>le</strong>s. Each angularsca<strong>le</strong> (θ) is related to a uv sca<strong>le</strong> (d) through θ = 1/d, whereθand d are measured in radians and in units of λ (the wave<strong>le</strong>ngthof the observation). In the rest of the paper, we explici<strong>tel</strong>y distinguishbetween θ prim ≡ 1/d prim , the angular sca<strong>le</strong> associated tothe diameter of the interferometer antennas, and θ fwhm ,thefullwidth at half maximum of the primary beam. The relation betweenθ prim and θ fwhm depends on the illumination of the receiverfeed by the antenna optics. In radio astronomy, we typically haveθ fwhm ∼ 1.2 θ prim (see e.g. Goldsmith 1998, Chap. 6). Finally, thenotion of anti-aliasing sca<strong>le</strong> (θ alias ) is introduced and discussedin Sect. 4.2.comp<strong>le</strong>xity without loss of generality. The top row displays thesky plane. The midd<strong>le</strong> row represents the 4-dimensional measurementspace at different stages of the processing. As it is difficultto display a 4-dimensional space on a sheet of paper, thebottom row shows 2-dimensional cuts of the measurement spaceat the same processing stages.2.2.1. Observation setup and measurement spacePanel a) displays the sky region for which we aim for estimatingthe sky brigthness, I(α). The field of view of an interferometerobserving in a given direction of the sky has a typical size set bythe primary beam shape. In our examp<strong>le</strong>, this is illustrated by anyof the circ<strong>le</strong>s whose diameter is θ prim . As we aim at observing awider field of view, e.g. θ field , the interferometer needs to scan thetargeted sky field. We assume that we scan through stop-and-gomosaicking, ending up with a 7-field mosaic.After calibration, the output of the interferometer is a visibilityfunction, V(u p , α s ), whose relation to the sky brightness isgiven by the measurement equation (Eq. (1)). Panel b.1) showsthe measurement space as a mosaic of sing<strong>le</strong>-field uv planes:the uv plane coverage of each sing<strong>le</strong>-field observation is displayedas a blue sub-panel at the sky position where it has beenmeasured and which is featured by the red axes. We assume1) that the interferometer has only 3 antennas and 2) that onlya sing<strong>le</strong> integration is observed per sky position. This impliesonly 6 visibilities per sing<strong>le</strong>-field uv plane. In panel b.2), the uvplanes at constant α s are displayed as the blue vertical lines. Themeasured spatial frequencies belong to the [−d max , −d min ]and[+d min , +d max ] ranges, where d min and d max are respectively theshortest and longest measured baseline <strong>le</strong>ngth. d min is related tothe minimum to<strong>le</strong>rab<strong>le</strong> distance between two antennas to avoidcollision. Here, we chose d min ∼ 1.5 d prim . The grey zone between−d min ,and+d min displays the missing short spacings.2.2. Basic conceptsFigure 2 illustrates the princip<strong>le</strong>s underlying 1) the setup to getinterferometric wide-field observations and 2) our proposition toprocess them. For simplicity, we display the minimum possib<strong>le</strong>2.2.2. Processing by explicit synthesis of the wide-fieldspatial frequenciesAll the information about the sky brightness, I(α), is somehowcoded in the visibility function, V(u p , α s ). The high spatialPage 3 of 21


A&A 517, A12 (2010)<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Fig. 2. Illustration of the princip<strong>le</strong>s of wide-field synthesis, which enab<strong>le</strong>s us to image wide-field interferometric observations. The top row displaysthe sky plane. The midd<strong>le</strong> row displays the 4-dimensional visibility space and the bottom row shows 2-dimensional cuts of this space at differentstages of the processing. In panels b) to d), the scanned dimensions (α s and u s ) are displayed in blue whi<strong>le</strong> the phased spatial sca<strong>le</strong> dimensions (u p )are displayed in red and the spatial sca<strong>le</strong> dimensions (u) of the final wide-field uv plane are displayed in black. The grey zones of panels b.2) andc.2) show the regions of the visibility space without measurements (missing short-spacings). In detail, panel a) shows a possib<strong>le</strong> scanning strategyof the sky to measure the unknown brightness distribution at high angular resolution: for simplicity it is here just a 7-field mosaic. Panels b.1) andb.2) sketch the space of measured visibilities: the uv plane at each of the 7 measured sky positions is displayed as a blue square box in panel b.1)and a blue vertical line in panel b.2). For simplicity, only 6 visibilities are plotted in panel b.1). Panels c.1) and c.2) sketch the space of synthesizedvisibilities after Fourier transform of the measured visibilities along the scanned coordinate (α s ): at each measured spatial frequency u p (displayedon the blue axes) is associated one space of synthesized wide-field spatial frequencies displayed as one of the red squares in panel c.1) and thered vertical lines in panel c.2). The wide-field spatial sca<strong>le</strong>s are synthesized 1) on a grid whose cell size is related to the total field of view ofthe observation and 2) only inside circ<strong>le</strong>s whose radius is the primary diameter of the interferometer antennas. Panels d.1) and d.2) display thefinal, wide-field uv plane. This plane is built by application of the shift-and-average operator along the black lines on panel c.2), lines that displaythe region of constant u spatial frequency in the (u p , u s ) space. Standard inverse Fourier transform and deconvolution methods then produce awide-field distribution of sky brightnesses as shown in panel e).Page 4 of 21


J. Pety and N. Rodríguez-Fernández: Revisiting the theory of interferometric wide-field synthesis<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012frequencies (from d min to d max ) are c<strong>le</strong>arly coded along the u pdimension. The uncertainty relation between Fourier conjugatequantities also implies that the typical spatial frequencyresolution along the u p dimension is only d prim because the fieldof view of a sing<strong>le</strong> pointing has a typical size of θ prim .However,wide-field imaging implies measuring all the spatial frequencieswith a finer resolution, d field = 1/θ field . The missing informationmust then be hidden in the α s dimension.In Sect. 3, we show that Fourier transforming the measuredvisibilities along the α s dimension (i.e. at constant u p ) can synthesizethe missing spatial frequencies, because the α s dimensionis samp<strong>le</strong>d from −θ field /2to+θ field /2, implying a typicalspatial-frequency resolution of the u s dimension equal tod field .Conversely,theα s dimension is probed by the primarybeams with a typical angular resolution of θ prim , implying thatthe u s spatial frequencies will only be synthesized inside the[−d prim , +d prim ] range. Panels c.1) and c.2) illustrate the effectsof the Fourier transform of V(u p , u s ) along the α s dimension, in4 and 2 dimensions, respectively. The red subpanels or verticallines display the u s spatial frequencies around each constant u pspatial frequency.In panels d.1) and d.2) (i.e. after the Fourier transform alongthe α s dimension), V(u p , u s ) contains all the measured informationabout the sky brightness in a spatial frequency space.However, the information is ordered in a strange and redundantway. Indeed, we show that V(u p , u s ) is linearly related toI(u p + u s ). To first order, the information about a given spatialfrequency u is stored in all the values of V(u p , u s )whichverifiesu = u p + u s (black lines on panel c.2).A shift operation will reorder the spatial sca<strong>le</strong> informationand averaging will compress the redundancy (illustrated by thehalving of the number of the space dimensions). The use of ashift-and-average operator thus produces a final uv plane containingall the spatial sca<strong>le</strong> information to image a wide fieldin an intuitive form. We thus call this space the wide-field uvplane. Panels d.1) and d.2) display this space, where the minimumre<strong>le</strong>vant spatial frequency is related to the total field ofview, whi<strong>le</strong> the maximum one is related to the interferometerresolution.Sections 3 and 4 show that applying the shift-and-averageoperator to V produces the Fourier transform of a dirty image,which is a local convolution of the sky brightness by a slowlyvarying dirty beam. As a result, inverse Fourier transform of 〈 V 〉and deconvolution methods will produce a wide-field distributionof sky brightness as shown in panel e) at the top right ofFig. 2.3. Beyond the Ekers & Rots schemeIn the real world, the visibility function is not only samp<strong>le</strong>d, butthis sampling is incomp<strong>le</strong>te for two main reasons. 1) The instrumenthas a finite spatial resolution, and the scanning of thesky is limited, implying that the sampling in both planes has afinite support. 2) The uv coverage and the sky-scanning coveragecan have ho<strong>le</strong>s caused either by intrinsic limitations (e.g.lack of short spacings or small number of baselines) or by acquisitionprob<strong>le</strong>ms (implying data flagging). The incomp<strong>le</strong>te samplingmakes the mathematics on the general case comp<strong>le</strong>x. Wethus start with the ideal case where we assume that the visibilityfunction is continuously samp<strong>le</strong>d along the u p and α s dimension.We then look at the general case.3.1. Ideal case: infinite, continuous samplingStarting from the measurement Eq. (1), Ekers & Rots (1979)firstdemonstrated (see Sect. A.1)that 2∀ ( u p , u s), Vup (u s ) = B (−u s ) I ( u p + u s). (15)For each constant u p spatial frequency, the Fourier transformthus synthesizes a function, V up (u s ), which is simply related toI(u p + u s ), the Fourier components of the sky brightness aroundu p . V(u p , u s ) is only defined in the [−d prim , +d prim ] interval alongthe u s dimension because B(−u s ) is itself only defined inside thisinterval, since B(−u s ) is the autocorrelation of the antenna illumination.We search to derive a sing<strong>le</strong> estimate of the Fourier componentsI(u) of the sky brightness. Equation (15) indicates that thefraction V(u p , u s )/B(−u s ) gives us an estimate of I(u) for eachcoup<strong>le</strong> (u p , u s ) that satisfies u = u p + u s . However, the informationabout I is strangely ordered. There are two possib<strong>le</strong> ways tolook at this ordering. 1) Starting from the measurement space,the Ekers & Rots scheme synthesizes frequencies around eachu p measure inside the interval [u p − d prim , u p + d prim ]atthed fieldspatial frequency resolution. 2) Starting from our goal, we wantto estimate I at a given spatial frequency u with a d field spatialfrequency resolution. We thus search for all the coup<strong>le</strong>s (u p , u s )satisfying u = u p + u s , which are displayed in panel c.2) of Fig. 2as the diagonal black lines. It immedia<strong>tel</strong>y results that 1) thereare several estimates of I for each spatial frequency u and 2) thenumber of estimates varies with u. We can average them to get abetter estimate of I(u).This last viewpoint thus suggests averaging in the (u p , u s )space along linepaths defined by u = u p + u s . Such an operatorcan mathematically be defined as∫∫〈F〉(u) ≡ δ [ u − (u p + u s ) ] W ( ) ( )u p , u s F up , u s dup du s , (16)u p u swhere F is the function to be averaged and W is a normalizedweighting function. Using the properties of the Dirac function,we can reduce the doub<strong>le</strong> integral to∫〈F〉(u) = W ( ) ( )u p , u − u p F up , u − u p dup . (17)u pIn this equation, we easily recognize a shift-and-average operator.The normalized weighting function plays a critical ro<strong>le</strong> inthe following formalism, and we propose c<strong>le</strong>ver ways to defineW in Sect. 5. In the ideal case studied here, W can be defined asW(u p , u s ) ≡ 1/(2 √ 2 d prim )foru s in [−d prim , +d prim ],W(u p , u s ) ≡ 0 for other values of u s .In other words, we have just normalized the integral by the constant<strong>le</strong>ngth (2 √ 2 d prim ) of the averaging linepath.2 The convolution theorem, which states that the Fourier transform ofthe convolution of two functions is the product of the Fourier transformof both individual functions, is a special case for Eq. (15): it canbe recovered by setting u p = 0. Indeed, as already mentioned in theintroduction, the ideal measurement Eq. (1) can be interpreted as a convolutionwith an additional phase term. By Fourier transforming alongthe α s dimension, the convolution translates into a product of Fouriertransforms B and I, whi<strong>le</strong> the phase term translates into a shift of coordinates:u p + u s .Page 5 of 21


A&A 517, A12 (2010)<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 20123.1.1. Wide-field dirty image, dirty beam and image-planemeasurement equationSection 3.2 shows that the incomp<strong>le</strong>te sky and uv samplingforbid us to apply the shift-and-average operator to theV(u p , u s )/B(−u s ) function. To guide us in this general case, wethus explore the consequences of applying this operator to Vin the ideal case. It is easy to demonstrate that the result is theFourier transform of a dirty image, i.e.,I dirty (u) = 〈 V 〉 (u). (18)Indeed, substituting 〈V〉(u) with the help of Eqs. (17) and(15)and taking the inverse Fourier transform, we getI dirty (u) = D(u) I(u), (19)with∫D(u) ≡ W ( ) (u p , u − u p B up − u ) du p . (20)u pHere, I dirty conforms to the usual idea of dirty image, i.e., theconvolution of a dirty beam by the sky brightness:I dirty (α) = {D ⋆ I}(α) . (21)In contrast to the usual situation for sing<strong>le</strong>-field observations, themix between a Fourier transform and a convolution of Eq. (1),associated with the specific processing 3 changes the image-planemeasurement equation from a convolution of a dirty beam withthe product BIto a convolution of a dirty beam with I. The dependencyon the primary beam is still there. It is just transferredfrom a product of the sky brightness distribution into the definitionof the dirty beam.3.1.2. Summary and interpretationIn summary, a theoretical imp<strong>le</strong>mentation of wide-field synthesisimplies1. the possibility of Fourier transforming the visibility functionalong the α s dimension (i.e. at constant u p ), which gives us aset of synthesized uv planes;2. the possibility of shifting-and-averaging these synthesized uvplanes to build the final, wide-field uv plane containing allthe availab<strong>le</strong> information.Using those tools, we are ab<strong>le</strong> to write the wide-field imageplanemeasurement equation as a convolution of a wide-fielddirty beam (D) by the sky brightness (I), i.e.,∫I dirty (α) = D ( α − α ′) I ( α ′) dα ′ . (22)α ′We can write a convolution equation in this ideal case becausethe wide-field response of the instrument is shift-invariant; i.e.,D only depends on differences of the sky coordinates.It is well-known that for a sing<strong>le</strong>-field observation, the dirtybeam is the inverse Fourier transform of the sampling function.The shape of this sampling function is due to the combinationof aperture synthesis (the interferometer antennas give a limited3 I.e. direct Fourier transform along the α s dimension, shift-andaverageto define a final wide-field uv plane, and inverse Fourier transform.Page 6 of 21number of independent baselines) and Earth-rotation synthesis(the rotation of the Earth changes the projection of the physicalbaselines onto the plane perpendicular to the instantaneous lineof sight). By analyzing via a Fourier transform, the evolution ofthe visibility function with the sky position, the Ekers & Rotsscheme synthesizes visibilities at spatial frequencies needed toimage a larger field of view than the interferometer primarybeam. We thus propose to call this specific processing: wide-fieldsynthesis.3.2. General case: incomp<strong>le</strong>te samplingReality imposes limitations on the synthesis of spatial frequencies.Indeed, we have already stated that the visibility function isincomp<strong>le</strong><strong>tel</strong>y samp<strong>le</strong>d both in the uv and sky planes. To take thesampling effects into account, we introduce the sampling functionS (u p , α s ), which is a sum of Dirac functions at measuredpositions 4 . The sampling function cannot be factored into theproduct of two functions, each only acting on one plane. Indeed,the Earth rotation happening during the source scanning impliesa coupling of both dimensions of the sampling function. In otherwords, the uv coverage will vary with the scanned sky coordinate.This <strong>le</strong>ads us to a shift-dependent situation, precluding usfrom writing the wide-field image-plane measurement equationas a true convolution. We neverthe<strong>le</strong>ss search for a wide-fieldimage-plane measurement equation as close as possib<strong>le</strong> to a convolutionbecause all the inversion methods devised in the pastthree decades in radioastronomy are tuned to deconvolve images.The simp<strong>le</strong>st mathematical way to generalize Eq. (22)toashift-dependent situation is to write it as∫I dirty (α) = D ( α − α ′ ,α ) I ( α ′) dα ′ . (23)α ′In this section, we show how the linear character of the imagingprocess allows us to do this. Section 3.2.1 derives the impactof incomp<strong>le</strong>te sampling on the Ekers & Rots equation, andSect. 3.2.2 derives the wide-field measurement equation in theuv plane. Section 3.2.3 interprets these results.3.2.1. Effect on the Ekers & Rots equationThe samp<strong>le</strong>d visibility function, SV, is defined as the product ofS and V and SV its Fourier transform along α s , i.e.,SV ( ) ( ) ( )u p ,α s ≡ S up ,α s V up ,α s , (24)andSV ( ) α su p ,α s ⊃usSV ( )u p , u s . (25)Because SV up is the product of two functions of α s , we can usethe convolution theorem to show that SV up is the convolution ofS up by V up , i.e.,∫SV up (u s ) = S up (u s − u ′ s ) V u p(u ′ s )du′ s . (26)u ′ sBy replacing V up with the help of the Ekers & Rots relation(Eq. (15)), we derive∫(SV up (u s ) = S up us − u ′ (s) B −u′) (s I up + u s) ′ du′s . (27)u ′ s4 Loosely speaking, the sampling function can be thought as a functionwhose value is 1 where there is a measure and 0 elsewhere.


J. Pety and N. Rodríguez-Fernández: Revisiting the theory of interferometric wide-field synthesis<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012As B is bounded inside the [−d prim , +d prim ]interval,SV up (u s )isa local average, weighted by S up (u s − u ′ s ) B(−u′ s ), of I(u p+u ′ s )around the u p spatial frequency.As expected, we recover Eq. (15) for the ideal case (i.e., infinite,continuous visibility function) because then S up (u s − u ′ s) =δ(u s −u ′ s). A more interesting case arises when the visibility functionis continuously samp<strong>le</strong>d over a limited sky field of view, i.e.,∀u p , S ( u p ,α s)= 1 if |αs |≤θ field /2, (28)∀u p , S ( u p ,α s)= 0 if |αs | >θ field /2. (29)After Fourier transform this gives∀u p , S ( u p , u s)=1d fieldsinc(usd field)· (30)In this case, the local average of the sky brightness Fourier componentshappens on a typical uv sca<strong>le</strong> equal to d field .However,the sinc function is known to decay only slowly. Some observingstrategy (e.g. quickly observing outside the edges of the targetedfield of view to provide a bandguard) could be consideredto apodize the sky-plane dependence of the sampling function,resulting in faster decaying S functions, hence in <strong>le</strong>ss mixing ofthe wide-field spatial frequencies.3.2.2. uv-plane wide-field measurement equationBecause we aim at estimating the Fourier component of I, weintroduce the following change of variab<strong>le</strong>s u ′ ≡ u p + u ′ s anddu ′ = du ′ s ,toderive∫(SV up (u s ) = S up up + u s − u ′) B ( u p − u ′) I ( u ′) du ′ . (31)u ′We then shift-and-average SV(u p , u s ) to build the Fourier transformof a wide-field dirty imageI dirty (u) ≡ 〈 SV 〉 (u) , with u = u p + u s . (32)Substituting the shift-and-average operator by its definition andusing Eq. (31) to replace SV up (u s ), we deriveI dirty (u) =∫∫W ( ) (u p , u−u p S up , u−u ′) B ( u p −u ′) I ( u ′) du p du ′ . (33)u p u ′This uv-plane wide-field measurement equation can be written as∫I dirty (u) = D ( u ′ , u − u ′) I ( u ′) du ′ , (34)u ′if we enforce the following equalityD ( u ′ , u−u ′) ∫≡ W ( ) (u p , u−u p S up , u−u ′) B ( u p −u ′) du p . (35)u pThis is one way to define D, which is convenient though unusual.It is implicit in this definition that we need to make a change ofvariab<strong>le</strong> (u ′′ = u − u ′ )toderiveD ( u ′ , u ′′) ∫≡ W ( ) (u p , u ′ +u ′′ −u p S up , u ′′) B ( u p −u ′) du p . (36)u pIn the following, we use either one or the other definition of D,depending on convenience.3.2.3. InterpretationAppendix A.2 demonstrates that the image and uv-plane widefieldmeasurement equations (Eqs. (23) and(34)) are equiva<strong>le</strong>ntifD ( ) (α p,α s)α p ,α s⊃ D ( )u(u p ,u s) p , u s . (37)The image-plane wide-field measurement equation (Eq. (23))can be written asI dirty (α) = {D α ⋆ I}(α) . (38)Its interpretation is straightforward: the sky brightness distributionis convolved with a dirty beam, D(α ′ , α ′′ ), which varies withthe sky coordinate α ′′ . This raises the question of the rate ofchange of the dirty beam with the sky coordinate. This questionis addressed in Sects. 4.2 and 5.4. Gridding by convolution and regular resamplingWe want to Fourier transform the raw visibilities along the skydimension (α s ) at some constant value in the u p dimension. Theraw data, however, is samp<strong>le</strong>d on an irregular grid in both the uvand sky planes. We need to grid the measured visibilities in boththe uv and the sky planes before Fourier transformation for differentreasons. First, the gridding in the uv plane will hand<strong>le</strong> thevariation in the spatial frequency as the sky is scanned, i.e., thedifficulty and perhaps the impossibility of Fourier-transformingat a comp<strong>le</strong><strong>tel</strong>y constant u p value. Second, the gridding alongthe sky dimension allows the use of Fast Fourier Transforms. Asusual, we grid through convolution and regular resampling.4.1. Convolution4.1.1. DefinitionsWe first define a gridding kernel that depends on both dimensions,G(u,α s ). This gridding kernel can be chosen as the productof two functions, simplifying the following demonstrations:G ( u p ,α s)≡ g(up)γ (αs ) . (39)We then define the samp<strong>le</strong>d visibility function gridded in boththe uv and sky planes asSV ( ) ( )G u p ,α s ≡{G⋆ SV} up ,α s (40)∫∫= g ( u p − u p) ′ ( (γ αs − α ′ s) SV u′p ,α s) ′ du′p dα ′ s. (41)u ′ pα ′ sFinally, when assessing the impact of the gridding on the measurementEq. (34), a new function,Σ ( ) ( )u p ,α s ,α ′′(s ≡ S up ,α s B α′′ )s − α s , (42)and its Fourier transforms naturally appear in the equations.Defining the following Fourier transform relationshipsΣ ( )u p ,α s ,α ′′ α ss ⊃usΣ ( )u p , u s ,α ′′s , (43)andΣ ( u p , u s ,α ′′s) α ′′s⊃u ′′sΣ ( )u p , u s , u ′′s , (44)Page 7 of 21


A&A 517, A12 (2010)<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012we easily deriveΣ ( ) ( )u p ,α s , u ′′(s = S up ,α s B u′′) s e−i2πu ′′s α s, (45)andΣ ( ) ( )u p , u s , u ′′s = S up , u s + u ′′ (s B u′′) s . (46)Using these notations, we have before gridding,SV ( u p ,α s)=∫α pΣ ( u p ,α s ,α p)I(αp)e−i2πα p u pdα p , (47)andD ( u ′ , u−u ′) ∫= W ( ) (u p , u−u p Σ up , u−u p , u p −u ′) du p . (48)u p4.1.2. Conservation of the wide-field measurement equationAppendix A.3 demonstrates that the wide-field dirty image ishere again the convolution of the sky brightness I by a widefielddirty beam D α or, in the Fourier plane,I G dirty〈SV (u) ≡ G〉 ∫(u) = D G ( u ′ , u − u ′) I ( u ′) du ′ (49)u ′withD G ( u ′ , u−u ′) ∫≡ W ( ) Gu p , u − u ( p Σ u p , u − u p , u ′) du p , (50)u pwhereΣ G ( u p ,α s , u ′) ≡∫∫g ( u p − u p) ′ ( (γ αs − α ′ s) Σ u′p ,α ′ s , u′ p − u′) du ′ p dα′ s . (51)u ′ pα ′ sWe thus have equations that resemb<strong>le</strong> those containing the samplingfunction alone, except for 1) the replacement of the generalizedsampling function Σ by its gridded version Σ G and 2) theway the variab<strong>le</strong>s are linked together both in the gridding of Σ(i.e., Eq. (51)) and in the averaging of Σ G (i.e., Eq. (50)).4.2. Regular resamplingIt is well known that too low a resampling rate in one spaceimplies power aliasing in the conjugate space (see e.g. Bracewell2000; Press et al. 1992). Aliasing must be avoided as much aspossib<strong>le</strong> because it folds power outside the imaged region backinto it. Tab<strong>le</strong> 3 defines the intervals of definition of the differentfunctions we are dealing with (i.e., visibilities, primary beam,dirty image, and dirty beam), as well as the associated samplingrates needed to enforce Nyquist sampling. The boundary valuesof the definition intervals (|u| max and |α| max ) are related to thesampling rates (∂α and ∂u, respectively) through|u| max · ∂α = |α| max · ∂u = 1 , (52)n sampwhere n samp is an integer characterizing the sampling. Nyquistsampling implies n samp = 2. However, slight oversampling (e.g.n samp = 3) is often recommended because the measures sufferfrom errors and the deconvolution is a nonlinear process. In thissection, we examine the properties of the different functions todefine their associated sampling rates.Page 8 of 21Tab<strong>le</strong> 3. Interval ranges of definition and associated sampling rates forthe used functions.Functions Intervals SamplingsVisibilities∣∣∣u ∣∣p ≤ dmax ∂u p = 2 d alias /n samp∣∣∣α ∣∣p ≤ θalias /2 ∂α p = θ syn /n samp|u s |≤d prim ∂u s = 2 d image /n samp|α s |≤θ image /2 ∂α s = θ prim /n sampPrimary beam ∣ ∣∣u′ ∣∣s ≤ dprim ∂u ′ s = 2 d alias/n samp∣∣α ′ s∣ ≤ θ alias /2 ∂α ′ s = θ prim/n samp∣∣u ′′s∣ ≤ d prim ∂u ′′s = 2 d alias /n samp∣∣α ′′s∣ ≤ θ alias /2 ∂α ′′s = θ prim /n sampDirty image |u| ≤d max ∂u = 2 d image /n samp|α| ≤θ image /2 ∂α = θ syn /n sampDirty beam |u ′ |≤d max ∂u ′ = 2 d image /n samp|α ′ |≤θ image /2 ∂α ′ = θ syn /n samp|u ′′ |≤d prim ∂u ′′ = 2 d image /n samp|α ′′ |≤θ image /2 ∂α ′′ = θ prim /n samp4.2.1. The α s sampling rate of the visibility functionWhen Fourier transforming the measurement Eq. (1) along theα s axis, we derive the Ekers & Rots Eq. (15). This equation impliesthat V(u p , u s ) is bounded inside the [−d prim , +d prim ]spatialfrequency interval along the u s axis. As a result, the visibilityfunction needs to be regularly resamp<strong>le</strong>d at a rate of only0.5/d prim to satisfy the Nyquist theorem. This was first pointedout by Cornwell (1988). This sampling rate is equal to θ prim /2or∼θ fwhm /2.4. The “usual, wrong” habit of sampling at θ fwhm /2isindeed undersampling with aliasing as a consequence. Mangumet al. (2007) discuss the consequences of undersampling indepthin the framework of sing<strong>le</strong>-dish imaging.4.2.2. The U p sampling rate of the visibility functionNow, the Fourier transform of the measurement Eq. (1) along theu p axis givesV ∼(αp ,α s)= B(αp − α s)I(αp), (53)where( ) α pV αp ∼,α s ⊃ V ( )uu p ,α s . (54)pWe use the tilde sign under V to denote the inverse Fourier transformof V along its first dimension. A well-known Fourier transformproperty implies that B has infinite support because B isbounded. The resampling rate along the u p axis therefore dependson the properties of the product of B(α p −α s ) times I(α p )asa function of α p . Whi<strong>le</strong> no unique answer exists, three facts helpus to find the right sampling rate: 1) B falls off relatively quickly;2) the result depends on the spatial distribution of the sky brightnessand in particular on the dynamic range in brightness neededto accura<strong>tel</strong>y image it; 3) the measure of V(α p , α s ) has a limited∼accuracy owing to thermal noise, phase noise, and other possib<strong>le</strong>systematics (e.g. pointing errors). For simplicity, we quantifythe measurement accuracy by a sing<strong>le</strong> number, namely themaximum instrumental fidelity measured in the image plane asdefined in Pety et al. (2001). There are two cases:1. the maximum instrumental fidelity limits the dynamic rangein brightness. For instance, Pety et al. (2001) showed that the


J. Pety and N. Rodríguez-Fernández: Revisiting the theory of interferometric wide-field synthesisTab<strong>le</strong> 4. Minimum sizes of the dirty beam images to get an imagefidelity or a dynamic range greater than a given value.Minimum fidelityaθ alias /θ fwhmor dynamic range ( f b = 0) b ( f b = 0.0625) ( f b = 0.1)10 2 2.2 2.2 2.210 3 3.5 3.7 6.610 4 8.4 13.4 13.710 5 19.8 >20.0 >20.0Notes. (a) The image sizes are expressed in units of the primary beamfull width at half maxium. (b) The computation is done for 3 differentratios of the secondary-to-primary diameters (i.e. f b , the antenna blockagefactors). The values are derived from the modeling of the antennapower patterns shown in Fig. 3.<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012fidelity of interferometric imaging at (sub)-millimeter wave<strong>le</strong>ngthswill be limited to a few hundred. In this case, V ∼(α p ,α s ) aliasing can be to<strong>le</strong>rated when the amplitude of B is <strong>le</strong>ssthan a fraction of the inverse of the maximum instrumentalfidelity;2. the maximum instrumental fidelity is much greater than theimage fidelity, as can be the case at centimeter wave<strong>le</strong>ngths.In this case, V ∼(α p , α s ) aliasing can only be to<strong>le</strong>rated whenthe amplitude of B is <strong>le</strong>ss than a fraction of the inverse of thedynamic range of the image.The criterion derived in each case gives a typical image size(θ alias ), which can be converted into the desired u p sampling rate.To be more quantitative, Fig. 3 models the normalized antennapower patterns of an antenna illuminated by a Gaussian beamof 12.5 dB edge taper and with a given blockage factor (ratio ofthe secondary-to-primary diameters). The top panel presents anideal case without secondary miror, whi<strong>le</strong> the midd<strong>le</strong> and bottompanels present simp<strong>le</strong> models of the ALMA and PdBI antennas.The largest angular sizes at which the power patterns are<strong>le</strong>ss than a given value, P 0 , is a first-order estimate of θ alias /2toget a fidelity or dynamic range higher than 1/P 0 .Tab<strong>le</strong>4 givesthe values of θ alias /θ fwhm as a function of the searched fidelityor dynamic range. This condition is sufficient but not necessary.Indeed, the aliasing properties also depend on the brightness distributionof the source.4.2.3. The u sampling rate of I dirty (u)We have no garantee that the sky outside the targeted field ofview is devoid of signal, so the only way to ensure a given dynamicrange inside the targeted field of view is to choose theimage size large enough so that the aliasing of potential outsidesources is negligib<strong>le</strong>. This means that the dirty image size mustbe equal to the field-of-view size plus the to<strong>le</strong>rab<strong>le</strong> aliasing sizeθ image = θ field + θ alias . (55)The conjugate uv distance and associated uv sampling then ared image =d fieldand ∂u = d image· (56)1 + d fieldn sampd alias4.2.4. The u ′ and u ′′ sampling rates of D(u ′ ,u ′′ )Fig.The u ′′ axis must thus be samp<strong>le</strong>d at the same rate as the seconddimension of the definition space of S , i.e., as u s .Moreover,u ′ has in this equation a behavior (u ′ = u p + u ′′s ) similar to3. Simp<strong>le</strong> models of the antenna power patterns as a function ofthe sky ang<strong>le</strong> in units of half the primary beam FWHM (θ fwhm ). Inthe 3 cases shown, the illumination is Gaussian with an edge taperof 12.5 dB but 3 different ratios of the secondary-to-primary diameters(i.e. f b , the antenna blockage factors) are considered (see e.g.Goldsmith 1998, Chap. 6). The midd<strong>le</strong> and bottom panels respectivelymodel ALMA and PdBI antennas. The red lines define the minimumangular sizes for which the antenna power pattern is <strong>le</strong>ss than a givenfraction.u (=u p + u s ). It must thus have the same sampling behavior as u.This sampling rate (∂u ′ = d image /n samp ) is quite high. Some deconvolutionmethods (see below) allow us to relax this samplingrate.4.3. Absence of gridding “correction”Imaging of sing<strong>le</strong>-field observations goes through the followingsteps: 1) convolution by a gridding kernel; 2) regular resampling;3) fast Fourier transform; and 4) gridding “correction”. The socal<strong>le</strong>dgridding “correction” is a division of the dirty beam anddirty image by the Fourier transform of the gridding kernel usedin the initial convolution. This step is mandatory when imagingsing<strong>le</strong>-field observations to keep the image-plane measurementequation as a simp<strong>le</strong> convolution equation (see e.g. Sramek &Schwab 1989). When imaging wide-field observations, as proposedhere, the Fourier transform along the α s dimension, followedby the shift-and-average operation, freeze the convolutionkernel into the dirty beam of the wide-field measurement equation.This is why the gridding “correction” step is irre<strong>le</strong>vant here.Page 9 of 21


A&A 517, A12 (2010)<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 20125. Dirty beams, weighting, and deconvolutionIn radioastronomy, the dirty beam is the response of the interferometerto a point source. In the wide-field synthesis framework,the response of the interferometer to a point source, D, aprioridepends on the source position on the sky. D(α ′ , α ′′ ) can thus beinterpreted as a set of dirty beams, with each dirty beam referredto by its fixed α ′′ sky coordinate. These simp<strong>le</strong> facts raise severalquestions. What are the properties of the convolution kernel? Isit possib<strong>le</strong> to modify these properties? How do we deconvolvethe dirty image?5.1. A set of wide-field dirty beamsWith the wide-field synthesis framework proposed here,Appendix A.6 shows thatD ( α ′ ,α ′′) =∫∫B ( α ′′ −α ′ ) ( ) ( )−α s Ω α ′ −α p ,α ′′ −α s Δ αp ,α s dαp dα s , (57)α p α swhereΔ ( ) α pα p ,α s ⊃ S ( )uu p ,α s , (58)pandΩ ( α ′ ,α ′′) (α′ ,α ′′ )⊃ W ( u ′ , u ′′) . (59)(u ′ ,u ′′ )Δ(α p , α s ) is the sing<strong>le</strong>-field dirty beam, associated with the uvsampling at the sky coordinate α s .AndΩ(α ′ , α ′′ ) will be cal<strong>le</strong>dthe image plane weighting function, whi<strong>le</strong> W(u ′ , u ′′ )istheuvplane weighting function. The set of wide-field dirty beams D isthen the doub<strong>le</strong> convolution of the image plane weighting functionand the sing<strong>le</strong>-field dirty beams, apodized by the primarybeam at the current sky position α s .Whi<strong>le</strong> the shape of the sing<strong>le</strong>-field dirty beam is directlygiven by the Fourier transform of the sampling function, theshape of the wide-field dirty beam depends, directly or throughFourier transforms, on the sampling function (S ), the primarybeam shape (B), and the weighting function (W). Moreover,the wide-field dirty beam shape a priori varies slowly with thesky position, since it is basically constant over the primarybeamwidth as stated in Sect. 4.2. It neverthe<strong>le</strong>ss varies, implying,for instance, a “slow” variation of the synthesized resolutionoverthewho<strong>le</strong>fieldofview.Whi<strong>le</strong> the sing<strong>le</strong>-field and wide-field dirty beam expressionsseem very different, they share the same property of expressingthe way the interferometer is used to synthesize a <strong>tel</strong>escope oflarger diameter in the image plane. In other words, the samplingfunction for sing<strong>le</strong>-field imaging and D for wide-field imagingexpress the sensitivity of the interferometer to a given spatialfrequency. These uv space functions are cal<strong>le</strong>d the transfer functionsof the interferometer (Thompson et al. 1986, Chap. 5).Modifying the transfer function has a direct impact on the measuredquantity. Once the interferometer is designed and the observationsare done, the only way to change this transfer functionis data weighting.An ideal set of wide-field dirty beams, D(α ′ , α ′′ ), would havethe following properties. All the wide-field dirty beams shouldbe identical (i.e., independent of the α ′′ sky coordinate) andequal to a narrow Gaussian (its FWHM giving the image resolution).This would give the product of a wide Gaussian of u ′ bya Dirac function of u ′′ , as the ideal wide-field transfer function,D(u ′ ,u ′′ ).Page 10 of 215.2. Dirty beam shapes and weightingWhen imaging sing<strong>le</strong>-field observations, giving a multiplicativeweight to each visibility samp<strong>le</strong> is an easy way to modify theshape of the dirty beam and thus the properties of the dirtyand deconvolved images. Natural weighting (which maximizessignal-to-noise ratio), robust weighting (which maximizes resolution),and tapering (which enhances brightness sensitivity atthe cost of a lower resolution) are the most popular weightingtechniques (see e.g. Sramek & Schwab 1989).In the case of wide-field synthesis, a multiplicative weightcan also be attributed to each visibility samp<strong>le</strong> before anyprocessing. However, the weighting is also at the heart of thewide-field synthesis because it is an essential part of the shiftand-averageoperation. No constraint has been set on the weightingfunction up to this point, which indicates that the weightingfunction (W) gives us a degree of freedom in the imaging process.We look in turn at both kinds of weighting. In both cases, anobvious issue is the definition of the optimum weighting functions.As in the case of sing<strong>le</strong>-field imaging, there is no sing<strong>le</strong>answer to this question. It depends on the conditions of the observationand on the imaging goals.5.2.1. Weighting the measured visibilitiesNatural weighting consists of slightly changing the definitionof the sampling function. It is now set to a normalized naturalweight where there is a measure and 0 elsewhere. The naturalweight is usually defined as the inverse of the thermal noisevariance, computed from the radiometric equation, i.e., from thesystem temperature, the frequency resolution, and the integrationtime. Using this weighting scheme before computing thefirst Fourier transform along the α s sky dimension makes sensebecause the observing conditions (and thus the noise) vary fromvisibility to visibility.We propose to generalize this weighting scheme to otherobserving conditions than just the system noise. Indeed, criticallimitations of interferometric wide-field imaging are pointingerrors, tracking errors, atmospheric phase noise (in the(sub)-millimeter domain), etc. Whi<strong>le</strong> techniques exist for copingwith these prob<strong>le</strong>ms (e.g., water vapor radiometer, directiondependentgains: Bhatnagar et al. 2008), they are not perfect.The usual way to deal with the remaining prob<strong>le</strong>ms is to flag thesource data based on a priori know<strong>le</strong>dge of the prob<strong>le</strong>ms, e.g.,pointing measurement, tracking errors, rms phase noise on calibrators,etc. However, flagging involves the definition of thresholds,whi<strong>le</strong> reality is never black and white. It can thus be askedwhether some weighting scheme could be devised to minimizethe effect of pointing errors, tracking errors or phase noise onthe resulting image. We propose to modulate natural weightingbased on the a priori know<strong>le</strong>dge of the observing conditions.5.2.2. Weighting the synthesized visibilitiesRobust weighting or tapering the measured visibilities do notmake sense in wide-field synthesis because the dirty image ismade from the synthesized visibilities after the first Fouriertransform along the α s sky dimension. A weighting function Wthen appears naturally as part of the shift-and-average operator.Its optimum value depends on the properties of the measuredsampling function. Here are a few examp<strong>le</strong>s.Infinite, continuous sampling. This is the ideal case studied inSect. 3.1. Knowing that the Ekers & Rots Eq. (15) links the


J. Pety and N. Rodríguez-Fernández: Revisiting the theory of interferometric wide-field synthesis<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012quantity we want to estimate, i.e., I, to many noisy 5 measurements,V(u p , u s ), via a product by B (assumed to be perfectlydefined), we can invoke a simp<strong>le</strong> <strong>le</strong>ast-squares argument (seee.g. Bevington & Robinson 2003) to demonstrate that the optimumweighting function isW ( u p , u − u p)=w ( u p , u − u p)B(up − u )∫u pw ( u p , u − u p)B2 ( u p − u ) du p, (60)with w(u p , u s ) the weight computed from the inverse of thenoise variance of V(u p , u s ). Using Eq. (20), it is then easyto demonstrate that D(u) = 1, and then I dirty (α) = I(α). Thedirty image is a direct estimate of the sky brightness; i.e.,deconvolution is superfluous.Comp<strong>le</strong>te sampling. The signal is Nyquist-samp<strong>le</strong>d, but it has afinite support in both the uv and sky planes, implying a finitesynthesized resolution and a finite field of view. In contrastto the previous case, this one may have practical applications,e.g., observations done with ALMA in its compactconfiguration. Indeed, the large number of independent baselinescoup<strong>le</strong>d to the design of the ALMA compact configurationensure a comp<strong>le</strong>te, almost Gaussian, sampling for eachsnapshot. In this case, the best choice may be to choose theweighting function so that all the dirty beams are identical tothe same Gaussian function. In this case, the deconvolutionwould also be superfluous.Incomp<strong>le</strong>te sampling. This is the more general case studied inSect. 3.2. The signal not only has a finite support but it alsois undersamp<strong>le</strong>d (at <strong>le</strong>ast in the uv plane). The deconvolutionis mandatory. The choice of the weighting function thus willdepend on imaging goals.If the user needs the best signal-to-noise ratio, some kindof natural weighting will be needed. It is tempting to useEq. (60) as a natural weighting scheme. However, the maincondition for derivation of this weighting function, i.e., theEkers & Rots Eq. (15), is not valid anymore, as the noisymeasured quantity (SV) is now linked to the quantity wewant to estimate (I) by a local average (see Eq. (31)). Thisis why it was more appropriate to try to get a Gaussian dirtybeam shape in the comp<strong>le</strong>te sampling case.If the signal-to-noise ratio is high enough, the user has twochoices. Either he/she wants to maximize angular resolutionpower and needs some kind of robust weighting, or he/shewants to get the more homogeneous dirty beam shape overthe who<strong>le</strong> field of view. This requirement cannot always befully met. The Ekers & Rots scheme enab<strong>le</strong>s us to recoverunmeasured spatial frequencies only in regions near to measuredones, because B has a finite support.5.3. DeconvolutionWriting the image-plane measurement equation in aconvolution-like way is very interesting because all thedeconvolution methods developed in the past 30 years areoptimized to treat deconvolution prob<strong>le</strong>ms (see e.g. Högbom1974; Clark 1980; Schwab 1984; Narayan & Nityananda 1986).For instance, it should be possib<strong>le</strong> to deconvolve Eq. (23) withjust slight modifications to the standard CLEAN algorithms.Indeed, Eq. (23) can be interpreted as the convolution of the5 The noise is assumed to have a Gaussian probability distributionfunction.sky brightness by a set of dirty beams, so that the only change,once a CLEAN component is found, would be the need to findthe right dirty beam in this set in order to remove the CLEANcomponent from the residual image.Following Clark (1980)andSchwab (1984), most algorithmstoday deconvolve in alternate minor and major cyc<strong>le</strong>s. During aminor cyc<strong>le</strong>, a solution of the deconvolution is sought with a simplified(hence approximate) dirty beam. During a major cyc<strong>le</strong>,the current solution is subtracted either from the original dirtyimage using the exact dirty beam or from the measured visibilities,implying a new gridding step. In both cases, the major cyc<strong>le</strong>sresult in greater accuracy. The iteration of minor and majorcyc<strong>le</strong>s enab<strong>le</strong>s one to find an accurate solution with better computingefficiency. In our case, the approximate dirty beams usedin the minor cyc<strong>le</strong> could be 1) dirty beams of a much smal<strong>le</strong>r sizethan the image; or 2) a reduced set of dirty beams (i.e., guessingthat the typical variation sizesca<strong>le</strong> of the dirty beams with thesky coordinate is much larger than the primary beamwidth); or3) both simultaneously. The model would be subtracted from theoriginal visibilities before re-imaging at each major cyc<strong>le</strong>. Thetrade-off is between the memory space needed to store a full setof accurate dirty beams and the time needed to image the data ateach major step. Some quantitative analysis is needed to knowhow far the dirty beams can be approximated in the minor cyc<strong>le</strong>.It is worth noting that the accuracy of the deconvolved imagewill be affected by edge effects. Indeed, the dirty brightnessat the edges of the observed field of view is attenuated by the primarybeam shape. When deconvolving these edges, the deconvolvedbrightness will be <strong>le</strong>ss precise, because the primary beamhas a low amplitude there. This only affects the edges, becauseinside the field of view, every sky position should be observed afraction of the time with a primary beam amplitude between 0.5and 1. This edge effect is neverthe<strong>le</strong>ss expected to be much <strong>le</strong>sstroub<strong>le</strong>some than the inhomogeneous noise <strong>le</strong>vel resulting fromstandard mosaicking imaging (see Sect. 7.1).6. Short spacings6.1. The missing flux prob<strong>le</strong>mRadio interferometers are bandpass instruments; i.e., they filterout not only the spacings longer than the largest baseline <strong>le</strong>ngthbut also the spacings shorter than the shortest baseline <strong>le</strong>ngth,which is typically comparab<strong>le</strong> to the diameter of the interferometerantennas. In particular, radio interferometers do not measurethe visibility at the center of the uv plane (the so-cal<strong>le</strong>d “zerospacing”), which is the total flux of the source in the measuredfield of view.The lack of short baselines or short spacings has strong effectsas soon as the size of the source is more than about 1/3 to1/2 of the interferometer primary beam. Indeed, when the sizeof the source is small compared to the primary beam of the interferometer,the deconvolution algorithms use, in one way oranother, the information of the flux at the lowest measured spatialfrequencies for extrapolating the total flux of the source. Theextreme case is a point source at the phase center for which theamplitude of all the visibilities is constant and equal to the totalflux of the source: extrapolation is then exact. However, thelarger the size of the source, the worse the extrapolation, whichthen underestimates the total source flux. This is the well-knownprob<strong>le</strong>m of the missing flux that observers sometimes note whencomparing a source flux measured by a mm interferometer withthe flux observed with a sing<strong>le</strong>-dish antenna.Page 11 of 21


A&A 517, A12 (2010)<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Fig. 4. Length of the averaging linepaths displayed as black lines inpanel c.2) of Fig. 2, as a function of the spatial sca<strong>le</strong> in the final, widefielduv plane. In the case of a continuous sampling of u p between d minand d max , these quantities can be interpreted as the number of measuresthat contribute to the estimate of I(u).Wide-field synthesis does not recover the full short spacings.Let us assume that the visibility function is continuouslysamp<strong>le</strong>d from d min to d max , with d min ∼ 1.5 d prim . The <strong>le</strong>ngth ofthe averaging linepath 6 ), L(u), can be interpreted as the numberof measures that contribute to the estimation of I(u). Figure 4shows the variations of L(u) function when starting from a visibilityfunction continuously defined in the [d min , d max ]intervalalong the u p dimension. We can expect to recover I(u) onlyinside the [d min − d prim , d max + d prim ] interval. In particular, informationon short spacings lower than d min − d prim (e.g. thecrucial zero spacing) cannot be recovered when using a homegeneousinterferometer, and the short spacings in the interval[d min − d prim , d min ] are recovered with increasing accuracy fromd min − d prim to d min .Botheffects imply the need for comp<strong>le</strong>mentaryinstruments to accura<strong>tel</strong>y measure the missing shortspacings.6.2. Usual hardware and software solutionsTo derive the correct result for larger source sizes, it is necessaryto comp<strong>le</strong>ment the interferometer data with additionaldata, which contain the missing short-spacing information. TheIRAM-30 m sing<strong>le</strong>-dish <strong>tel</strong>escope is used to comp<strong>le</strong>ment thePlateau de Bure Interferometer. Short-spacing information canalso be in part recovered with a secondary array of smal<strong>le</strong>r antennasand shorter baselines (e.g. the CARMA interferometer).In the ALMA project, the short-spacing information will be derivedby a combination of four 12 m-sing<strong>le</strong>-dish antennas andan interferometer of 12 antennas of 7 m cal<strong>le</strong>d ACA (AtacamaCompact Array).From the software point-of-view, two main families of algorithmsexist in the standard processing of mosaics. Either theshort-spacing information is combined on the deconvolved image(i.e., the interferometer data is imaged and deconvolved separa<strong>tel</strong>y)through a hybridization in the Fourier plane (see e.g.Pety et al. 2001), or the long and short-spacing informationis imaged and/or deconvolved jointly. In this category, we findthe pseudo-visibility technique, which produces interferometriclikevisibilities from sing<strong>le</strong>-dish maps (see e.g. Pety et al. 2001;Rodríguez-Fernández et al. 2008, and references therein), andthe multi-resolution deconvolution algorithms, which work onimages containing different spatial frequency ranges.In the next two sections, we show how wide-field synthesisnaturally processes the short-spacing information either fromsing<strong>le</strong>-dish or from heterogeneous arrays.6 The notion of averaging linepath has been introduced in Sect. 3.1(see in particular Eq. (16)).Page 12 of 216.3. Processing short spacings from sing<strong>le</strong>-dishmeasurementsThe sing<strong>le</strong>-dish measurement equation can be written as∫(I sd (α) = S sd (α) B sd α ′ − α ) I ( α ′) dα ′ , (61)α ′where I sd is the measured sing<strong>le</strong>-dish intensity, S sd the sing<strong>le</strong>dishsampling function, and B sd the sing<strong>le</strong>-dish antenna powerpattern. As already stated in the introduction, the above integralis identical to the ideal measurement equation of interferometricwide-field imaging taken in u p = 0. If we define a sing<strong>le</strong>-dishvisibility function as(V sd up = 0,α ) ∫(≡ B sd α ′ − α ) I ( α ′) dα ′ , (62)α ′we can thus write the measured sing<strong>le</strong>-dish intensity asI sd (α) = S sd (α) V sd(up = 0,α ) . (63)The recognition that the sing<strong>le</strong>-dish measurement equation isa particular case of the interferometric wide-field measurementequation opens the way to treating both the sing<strong>le</strong>-dish and interferometricdata sets through exactly the same processing steps.We just have to define a hybrid sampling function, S hyb ,asS hyb(up 0,α ) = S ( u p ,α ) (64)S hyb(up = 0,α ) = S sd (α) , (65)the Fourier transform of the hybrid primary beam, B hyb ,asB hyb(up 0, u ′) = B ( u p − u ′) (66)B hyb(up = 0, u ′) = B sd( −u′ ) , (67)and a hybrid weighting function, W hyb ,asW hyb(up 0, u ′ + u ′′ − u p)= Whyb(up , u ′ + u ′′ − u p), (68)W hyb(up = 0, u ′ + u ′′) = W sd( u ′ + u ′′) . (69)All the processing steps described in the previous sections (includinga potential gridding step of sing<strong>le</strong>-dish, on-the-fly data)can then be directly applied to the hybrid data set. Using thewide-field synthesis formalism, we can easily write∫(I hyb (u) = D hyb u ′ , u − u ′) I ( u ′) du ′ , (70)u ′withI hyb (u) = I dirty (u) + W sd (u) I sd (u) (71)andD hyb( u ′ , u ′′) = D ( u ′ , u ′′) +W sd( u ′ +u ′′) S sd( u′′ ) B sd( −u′ ) . (72)We thus see that I hyb is a linear combination of the informationmeasured by the sing<strong>le</strong>-dish (I sd ) and by the interferometer(I dirty ). There, W sd (u) plays a particular ro<strong>le</strong> for two reasons.First, its dependency on the spatial frequency (u) enab<strong>le</strong>s us tofilter out the highest spatial frequencies that are measured by thesing<strong>le</strong>-dish antenna with low accuracy. Second, it is well-knownthat the relative weight of the sing<strong>le</strong>-dish to interferometric datais a critical parameter in the processing of the short spacingsfrom sing<strong>le</strong>-dish data (see e.g. Rodríguez-Fernández et al. 2008).


J. Pety and N. Rodríguez-Fernández: Revisiting the theory of interferometric wide-field synthesisTab<strong>le</strong> 5. Definition of the symbols used to expose the processing of theshort spacings.Symbol & DefinitionPlane(s)I sd Measured sing<strong>le</strong>-dish intensity skyB sd Sing<strong>le</strong>-dish antenna power pattern skyS sd Sing<strong>le</strong>-dish sampling function skyV sd Sing<strong>le</strong>-dish visibility function skyW sd Sing<strong>le</strong>-dish uv-plane weighting function uvb i Voltage pattern of antenna i skyB ij Power pattern of antenna i and j (=b i b ⋆ j ) skyV ij Visibility between antenna i and j uv &skyI hyb Hybrid dirty image skyB hyb Hybrid antenna power pattern skyS hyb Hybrid sampling function uv &skyW hyb Hybrid uv-plane weighting function uv & uvD hyb Set of hybrid dirty beams sky & skyNotes. This tab<strong>le</strong> uses similar conventions as Tab<strong>le</strong> 1. The top part definessymbols related to sing<strong>le</strong>-dish measurements. The midd<strong>le</strong> part definessymbols related to heterogeneous-array measurements. The bottompart defines hybrid symbols, which results from combinations ofsing<strong>le</strong>-dish and heterogeneous-array measurements.<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012This relative weight is a free parameter within the restrictionsset by the noise <strong>le</strong>vel (i.e., we want the sing<strong>le</strong>-dish data to bringinformation and not just noise to the interferometric data), anda criterion must therefore be defined to adjust it to an optimalvalue. We refer the reader to the discussion of Sect. 5, whichalso applies here.6.4. Processing short spacings from heterogeneous arraysA heterogeneous array is an interferometer composed with antennasof different diameters. ALMA and CARMA are two suchexamp<strong>le</strong>s. The measurement equation for a heterogeneous arrayisV ij(up ,α s)=∫α pb i(αp −α s)b⋆j(αp −α s)I(αp)e−i2πα p u pdα p , (73)where b i and b j are the voltage reception patterns of the antennapair that forms the ijbaseline and the asterisk denotes the comp<strong>le</strong>xconjugate (Thompson et al. 1986, Chap. 3). The formalismdeveloped in the previous sections holds as long as we redefineB ij (α) ≡ b i (α) b ⋆ j(α) . (74)A simp<strong>le</strong> application of the correlation theorem implies that∫(B ij (u) = b i u + u′ ) (b j u′ ) du ′ . (75)u ′The use of the baseline indices ijmust be generalized throughoutthe equations because the know<strong>le</strong>dge of the antenna type must beattached to each individual data point (visibility). As a result, thewide-field synthesis formalism can be easily adapted to heterogeneousarrays at the price of additional bookkeeping.6.5. Two textbook cases: IRAM-30 m + PdBI and ALMA +ACAFigure 5 sketches why wide-field synthesis naturally hand<strong>le</strong>sthe short spacings in two textbook cases. In the ideal case, theFourier transform along the α s dimension produces visibilities,which are related to the wide-field spatial frequencies of theFig. 5. Sketches of the natural weighting of the synthesized wide-fieldvisibilities. Each measured spatial frequency will produce wide-fieldspatial frequencies apodized by the transfer function (B) centered on themeasured spatial frequency. The used transfer function depends on the<strong>tel</strong>escopes used, explaining why wide-synthesis naturally hand<strong>le</strong>s theshort spacing either from a sing<strong>le</strong>-dish antenna or from a heterogeneousarray. The synthesized visibilities in the overlapping regions will thenbe averaged. Two textbook examp<strong>le</strong>s are illustrated: 1) the combinationof data from the IRAM-30 m sing<strong>le</strong>-dish (red transfer function) andfrom the Plateau de Bure Interferometer (black transfer functions) at thetop; and 2) the combination of data from ALMA 12 m-antennas used eitherin sing<strong>le</strong>-dish mode (red transfer function), in interferometric mode(black transfer functions) and of data from the ACA 7 m-antennas (bluetransfer functions) at the bottom. The minimum uv distances measuredby each interferometer were set from the minimum possib<strong>le</strong> distancebetween antennas (24 m for PdBI, 15 m for ALMA and 9 m for ACA).source brightness weighted by the transfer function of the interferometer.In this sense, Fig. 5 displays the natural weightingof the synthesized wide-field visibilities at the position of eachmeasured visibility. Handling visibilities from antenna of differentsizes just implies that the natural weighting function of thesynthesized visibilities will have a different shape.The top panel of Fig. 5 displays how the IRAM-30 m sing<strong>le</strong>dishis used to comp<strong>le</strong>ment the Plateau de Bure interferometervisibilities. The bottom panel displays how ACA is used to producethe short spacing information for ALMA. The four 12 m-antennas will provide the sing<strong>le</strong>-dish information, whi<strong>le</strong> the 12additional 7 m-antennas will form with ALMA a heterogeneousarray. In the first design, ACA and ALMA form two independentinterferometers; i.e., they are not cross-correlated. The sing<strong>le</strong>dishantennas, ACA and ALMA, thus appear as three differentinstruments. It is thus possib<strong>le</strong> to decompose the hybrid set ofwide-field dirty beams obtained by processing the 3 sets of datatogether in 3 different sets of dirty beamsD hyb( u ′ , u ′′) = D 12 m( u ′ , u ′′) + D 7m( u ′ , u ′′) + D sd( u ′ , u ′′) , (76)Page 13 of 21


A&A 517, A12 (2010)<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012withD hyb( u ′ , u ′′) ≡∫( ) (W hyb up , u ′ +u ′′ −u p S hyb up , u ′′) (B hyb up , u ′) du p . (77)u pFor a multiplying interferometer,∀ ∣ ∣ ∣up∣ ∣∣ < dprim , S ( u p ,α s)= 0 and S(up , u s)= 0. (78)This implies that D sdcontributes at u p = 0inthesumoveru p inEq. (77), D 7mcontributes for 9 m < u p< ∼ 40 m and D 12 m(u ′ ,u ′′ ) contributes for 15 m < u p < 150 m in the most compactconfiguration of ALMA.7. Comparison with standard nonlinear mosaicking7.1. Mosaicking in a nutshellSeveral excel<strong>le</strong>nt descriptions of the mosaicking imaging and deconvolutionalgorithms can be found (see e.g. Cornwell 1988;Cornwell et al. 1993; Sault et al. 1996b). Here, we summarizethe approach imp<strong>le</strong>mented in the gildas/mapping softwareused to image and deconvolve the data from the Plateaude Bure Interferometer. This approach is based on original ideasby F. Vial<strong>le</strong>fond in the early 90s (Gueth et al. 1995).The basic ideas of nonlinear mosaicking are 1) imaging thedifferent fields of the mosaic independently; 2) linearly addingthe sing<strong>le</strong>-field dirty images into a dirty mosaic; and 3) jointlydeconvolving the dirty mosaic.7.1.1. Sing<strong>le</strong>-field imagingFor simplicity, we skip the gridding convolution in the followingequations because the gridding step does not change the natureof the equations. Imaging the fields individually means that wewill work at constant α s . We first define the sing<strong>le</strong>-field dirtyimage of the α s -field as( ) α p ( )I sfd αp ,α s ⊃ Iu sfd up ,α s , (79)pwhere the Fourier transform of the sing<strong>le</strong>-field dirty image isthe product of the sampling function S (u p ,α s ) and the visibilityfunction V(u p ,α s ):I sfd(up ,α s)≡ SV(up ,α s). (80)From the previous equations, it is easily demonstrated that( )∫I sfd αp ,α s = Δ ( )[ ( ) ( )]α p − α ′ p,α s B α′p − α s I α′p dα′p , (81)α ′ pwhere the sing<strong>le</strong>-field dirty beam is defined asΔ ( ) α pα p ,α s ⊃ S ( )uu p ,α s . (82)pWe can rewrite the previous equation asI α ssfd(αp)= {Δα s⋆ (B α sI)} ( α p), (83)meaning that the sing<strong>le</strong>-field dirty images can be written as alocal convolution of B α sI and Δ α s, the sing<strong>le</strong>-field dirty beamassociated to the currently imaged field.Page 14 of 217.1.2. Mosaicking the dirty imagesIn gildas/mapping 7 , the sing<strong>le</strong>-field dirty images are formedon the same grid (in particular the same pixel size and the sameimage size covering about twice the mosaic field of view). Thesesing<strong>le</strong>-field dirty images are then linearly averaged asI mos(αp)≡∫α sΩ mos(αp ,α s)Isfd(αp ,α s)dαs , (84)whereΩ mos(αp ,α s)≡w (α s ) B ( α p − α s)∫α sw (α s ) B 2 ( α p − α s)dαs(85)and w(α s ) is the sky plane weighting function, i.e.,∑w (α s ) = δ (α s − α i ) 1 · (86)σ 2 iiIn the previous equation, the α i are the positions of each skyplanemeasurement, and σ i is the rms noise associated with I α isfd .Cornwell et al. (1993) demonstrates that the noise in the mosaicimage naturally varies across the field as( ) 1N mos αp = √ ∫w (αα s ) B ( ) · (87)2 α p − α s dαssIn particular, it rises sharply at the edges of the mosaic.7.1.3. Joint deconvolutionStandard algorithms of sing<strong>le</strong>-field deconvolution must beadapted to the mosaicking case because both the dirty beamand the noise vary across the mosaic field of view. We describehere the adaptations made in gildas/mapping of the simp<strong>le</strong>stCLEAN deconvolution method, described in Högbom (1974).Adaptations of more evolved CLEAN deconvolution methodsare also imp<strong>le</strong>mented following the same basic ru<strong>le</strong>s.1. We first initialize the residual and signal-to-noise maps fromthe dirty and noise mapsR 0(αp)= Imos(αp)(88)andSNR 0(αp)=I mos(αp)N mos(αp) · (89)2. The kth CLEAN component is sought on the SNR k−1 map insteadof the R k−1 map to ensure that noise peaks at the edgesof the mosaic are not confused with the true signal of thesame magnitude.3. Using that the kth CLEAN component is a point source ofintensity I k at position α k , the residual and signal-to-noisemaps are then upgraded as follows:R k(αp)= Rk−1(αp)−γI k∫α sΩ mos(αp ,α s)Δ(αp −α k ,α s)B (αk −α s ) dα s , (90)7 See http://www.iram.fr/IRAMFR/GILDAS for more informationabout the GILDAS software.


J. Pety and N. Rodríguez-Fernández: Revisiting the theory of interferometric wide-field synthesis<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012andSNR k(αp)=R k(αp)N mos(αp) · (91)Here γ(∼0.2) is the usual loop gain that ensures convergenceof the CLEAN algorithms.4. Steps 2 and 3 are iterated as long as the stopping criterion isnot met.7.1.4. Wide-field measurement equationTo help the comparison between mosaicking and wide-field synthesis,we now go one step further than is usually done in thedescription of mosaicking; i.e., we write the image-plane measurementequation as a wide-field measurement equation of thesame kind as Eq. (23). Substituting Eq. (81) into Eq. (84) andreordering the terms after inverting the order of the sum over α sand α p , one obtains( )∫(I mos αp = D mos αp − α ′ p ,α ( )p)I α′p dα′p , (92)withα ′ pD mos( α ′ ,α ′′) =∫B ( α ′′ − α ′ ) (− α s Ωmos α ′′ ) (,α s Δ α ′ ),α s dαs . (93)α sTaking the inverse Fourier transforms of D mos ,wegetthemosaickingtransfer functionD mos( u ′ , u − u ′) =∫∫(W mos u−up , u s −u ′) S ( ) (u p , u p −u s B up −u ′) du p du s , (94)u p u swith(Ω mos α ′ ,α ′′) (α′ ,α ′′ )⊃ W ((u ′ ,u ′′ )mos u ′ , u ′′) . (95)7.2. ComparisonWhi<strong>le</strong> both mosaicking and wide-field synthesis produce imageplanemeasurement equations of the same kind (see Eqs. (23)and (92)), the comparison of the dirty beams (Eqs. (57)and(93))and of the transfer functions (Eqs. (35) and(94)) immedia<strong>tel</strong>yshows the different dependencies on the primary beams (B), thesing<strong>le</strong>-field dirty beams (Δ), the image-plane weighting functions(Ω), and their respective Fourier transforms (B, S and W).This means that mosaicking is not mathematically equiva<strong>le</strong>ntto wide-field synthesis, though both methods recover the skybrightness. These differences come directly from the differencesin the processing. If we momentarily forget the gridding steps,mosaicking starts with a Fourier transform along the u p dimensionof the visibility function, and most of the processing thushappens in the sky plane, whi<strong>le</strong> wide-field synthesis starts with aFourier transform along the α s dimension, and most of the processingthus happens in the uv plane.Moreover, both methods are irreducib<strong>le</strong> to each other. Widefieldsynthesis gives a more comp<strong>le</strong>x dirty beam formulationin the image plane, which could give the impression that it isa generalization of mosaicking. Indeed, the wide-field imageplaneweighting function can be chosen as the product of a Diracfunction of α ′ times a function ω of α ′′ ,i.e., Ω ( α ′ ,α ′′) = δ ( α ′) ω ( α ′′) . (96)This implies a wide-field uv-plane weighting function independentof u ′ ; i.e., W(u ′ , u ′′ ) = ω(u ′′ ). This choice is a c<strong>le</strong>ar limitationbecause it enab<strong>le</strong>s us to influence the transfer functiononly locally (around each measured u p spatial frequency), whi<strong>le</strong>weighting is generally intended to globally influence the transferfunction (see Sect. 5). Eitherway, in this case, the wide-fielddirty beam can easily be simplified toD ( α ′ ,α ′′) ∫= B ( α ′′ −α ′ ) (−α s ω α ′′ ) (−α s Δ α ′ ),α s dαs . (97)α sWhi<strong>le</strong> this simplified formulation of the wide-field dirty beamis closer to the mosaicking formulation, they still differ in amajor way: ω(α ′′ – α s ) is a shift-invariant function contrary toΩ mos (α ′′ , α s ). This is the shift-dependent property of Ω mos (α ′′ ,α s ), which implies the additional comp<strong>le</strong>xity (integral over u s inaddition to the integral over u p ) of the mosaicking transfer function(Eq. (94)) over the wide-field one (Eq. (35)).One main difference between the two processing methods isthat standard mosaicking prescribes a precise weighting function,whi<strong>le</strong> we argue that the wide-field weighting functionshould be defined according to the context (see Sect. 5). Anotherimportant difference is the treatment of the short spacings, whichare naturally processed in the wide-field synthesis methods, butwhich needs a very specific treatment in mosaicking (see Sect. 6and references therein). Finally, whi<strong>le</strong> mosaicking implies agridding only of u p dimension of the measured visibilities, widefieldsynthesis naturally requires a gridding of both the u p and α sdimensions. As the Nyquist sampling along the α s dimension isonly 0.5/d prim , the gridding of the sky plane can result in a largereduction of the data storage space and cpu processing cost whenprocessing on-the-fly and/or multi-beam observations.8. SummaryInterferometric wide-field imaging implies scanning the sky inone way or another (e.g. stop-and-go mosaicking, on-the-flyscanning, sampling of the focal plane by multi-beams). This producessamp<strong>le</strong>d visibilities SV, which depends both on the uvplaneand sky coordinates (e.g., u p and α s ).BasedonabasicideabyEkers & Rots (1979), we proposed anew way to image the interferometric wide-field samp<strong>le</strong>d visibilities:SV(u p , α s ). After gridding the measured visibilities both inthe uv and sky planes, the gridded visibilities SV G are Fouriertransformedalong the α s sky dimension, yielding synthesizedvisibilities SV G samp<strong>le</strong>donauv grid whose cell size is relatedto the total field of view; i.e., it is much finer than the diameterof the interferometer antennas. We thus proposed calling thisprocessing scheme “wide-field synthesis”.The Fourier transform is performed for each constant u pvalue. As many independent estimates of the uv plane areproduced as independent values of u p measured. A shift-andaverageoperator is then used to build a final, wide-field uvplane, which translates into a wide-field dirty image after inverseFourier transform, i.e.,I G dirty (u) ≡ ∫u pW ( u p , u − u p)SVG ( u p , u − u p)dup , (98)Page 15 of 21


A&A 517, A12 (2010)<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012where W is a normalized weighting function. Using these tools,we demonstrated that:1. The dirty image (I G dirty) is a convolution of the sky brightnessdistribution (I) with a set of wide-field dirty beams (D G )varying with the sky coordinate α, i.e.,I G dirty (α) = ∫α ′ D G ( α − α ′ ,α ) I ( α ′) dα ′ . (99)Compared to sing<strong>le</strong>-field imaging, the dependency on theprimary beam is transferred from a product of the sky brightnessdistribution into the definition of the set of wide-fielddirty beams.2. The set of gridded dirty beams (D G ) can be computed fromthe ungridded sampling function (S ), the transfer function(B, the inverse Fourier transform of the primary beam),and the gridding convolution kernel (see Eqs. (42), (50)and (51)).3. The dependence of the wide-field dirty beams on the skyposition is slowly-varying, with their shape varying on anangular sca<strong>le</strong> typically larger than or equal to the primarybeamwidth.Adaptations of the existing deconvolution algorithms should bestraightforward.A comparison with standard nonlinear mosaicking showsthat it is not mathematically equiva<strong>le</strong>nt to the wide-field synthesisproposed here, though both methods do recover the skybrightness. The main advantages of wide-field synthesis overstandard nonlinear mosaicking are1. Weighting is at the heart of the wide-field synthesis becauseit is an essential part of the shift-and-average operation.Indeed, not only can a multiplicative weight be attributedto each visibility samp<strong>le</strong> before any processing, but the uvplaneweighting function (W, seeEq.(98)) is also a degreeof freedom, which should be set according to the conditionsof the observation and the imaging goals, e.g. highest signalto-noiseratio, highest resolution, or most uniform resolutionover the field of view. The W weighting function thus enab<strong>le</strong>sus to modify the wide-field response of the instrument.On the other hand, mosaicking requires a precise weightingfunction in the image plane, which freezes the wide-field responseof the interferometer.2. Wide-field synthesis naturally processes the short spacingsfrom both sing<strong>le</strong>-dish antennas and heterogeneous arraysalong with the long spacings. Both of them can then bejointly deconvolved.3. The gridding of the sky plane dimension of the measuredvisibilities, required by the wide-field synthesis, may potentiallysave large amounts of hard-disk space and cpuprocessing power relative to mosaicking when handling datasets acquired with the on-the-fly observing mode. Wide-fieldsynthesis could thus be particularly well suited to process onthe-flyobservations.The wide-field synthesis algorithm is compatib<strong>le</strong> with the uvwunfacetingtechnique devised by Saultetal.(1996a) to dealwith the ce<strong>le</strong>stial projection effect, known as non-coplanar baselines(see Appendix B). Finally, on-the-fly observations implyan elongation of the primary beam along the scanning direction.These effects can be decreased by an increase in the primarybeam sampling rate. However, it may limit the dynamic rangeof the image brightness if the primary beam sampling rate is toocoarse (see Appendix C).Page 16 of 21Acknow<strong>le</strong>dgements. This work has mainly been funded by the European FP6“ALMA enhancement” grant. This work was also funded by grant ANR-09-BLAN-0231-01 from the French Agence Nationa<strong>le</strong> de la Recherche as part ofthe SCHISM project. The authors thank F. Gueth for the management of the onthe-flyworking package of the “ALMA enhancement” project. They also thankS. Guilloteau, R. Lucas and J. Uson for useful comments at various stages ofthe manuscript and D. Downes for editing their English. They finally thank thereferee, B. Sault, for his insightful comments, which chal<strong>le</strong>nged us to try to writea better paper.Appendix A: DemonstrationsA.1. Ekers & Rots schemeFourier-transforming the visibility function along the α s dimensionat constant u p , we derive with simp<strong>le</strong> replacements∫V up (u s ) = V up (α s ) e −i2πα su sdα s(A.1)α∫∫ s= B ( ) ( )α p − α s I αp e−i2π(α p u p +α s u s) dαs dα p . (A.2)α s α pWe then use the following change of variab<strong>le</strong>s β ≡ α p − α s anddβ = −dα s ,toget∫∫V up (u s ) = B (β) I ( [ ( ) ])−i2π αp up +uα p e s −βusdα p dβ (A.3)α p β[∫∫= B (β) e dβ] ⎡⎢⎣−i2πβ(−us) I ( )α p e−i2πα p(u p +u s) dαp⎤⎥⎦ (A.4)βα p= B (−u s ) I ( )u p + u s . (A.5)A.2. Incomp<strong>le</strong>te samplingWe here demonstrate that Eqs. (23) and(34) are equiva<strong>le</strong>nt. Todo this, we take the direct Fourier transform of I dirty (α)∫∫I dirty (u) = D ( α − α ′ ,α ) I ( α ′) e −i2παu dαdα ′ , (A.6)αα ′and we replace I(α ′ ) by its formulation as a function of itsFourier transformI ( α ′) ∫= I ( u ′) e +i2πu′ α ′ du ′ .(A.7)u ′We thus deriveI dirty (u) =[∫∫D∫u ( α − α ′ ,α ) ]e −i2π(αu−α′ u ′) dαdα ′ I ( u ′) du ′ . (A.8)′ αα ′Using the following change of variab<strong>le</strong>s α ′′ ≡ α−α ′ , α ′ = α−α ′′and dα ′′ = −dα ′ , the innermost integral can be written as∫∫D ( α − α ′ ,α ) e −i2π(αu−α′ u ′) dαdα ′ =αα ′ ∫Dα[∫α ( α ′′ ,α ) ]e −i2πα′′ u ′ dα ′′ e −i2πα(u−u′) dα (A.9)∫′′= D ( u ′ ,α ) e −i2πα(u−u′) dα(A.10)α= D ( u ′ , u − u ′) . (A.11)In the last two steps, we have simply recognized two differentsteps of Fourier transforms of D. Finally,∫I dirty (u) = D ( u ′ , u − u ′) I ( u ′) du ′ .(A.12)u ′


J. Pety and N. Rodríguez-Fernández: Revisiting the theory of interferometric wide-field synthesis<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012A.3. GriddingThe gridding kernel can be defined as the product of two functions,each one operating in its own dimension. We use this tostudy separa<strong>tel</strong>y the effect of gridding in the uv and sky planes.We then use the intermediate results to get the effect of griddingsimultaneously in both planes.A.4. Gridding in the uv planeWe define the samp<strong>le</strong>d visibility function gridded in the uvplane asSV ( ) g u p ,α s ≡{g⋆SVα s} ( )u p∫= g(u p − u ′ p ) SVα s(u ′ p )du′ p .(A.13)u ′ pUsing that the gridding is here applied on the u p dimension,whi<strong>le</strong> the Fourier transform is applied on the α s dimension, it iseasy to show that the gridding and Fourier-transform operationscommute:SV g u p(u s ) =∫∫g ( ( ) ( )u p − u p) ′ S u′p ,α s V u′p ,α s e−i2πα s u sdα s du ′ p (A.14)α s u ′ p∫= g ( u p − u p) ′ SVu ′ p(u s ) du ′ p. (A.15)u ′ pDefining the Fourier transform of the uv gridded dirty image, wederiveI g dirty (u) ≡ 〈 SV g〉 (u)(A.16)∫∫= W ( ) ( ( )u p , u−u p g up −u p) ′ SVu ′ p u−up dup du ′ p. (A.17)u p u ′ pUsing Eq. (31) to replace SV u ′ p(u − u p ), we can write the Fouriertransform of the uv gridded dirty image asI g dirty (u) = ∫u ′ D g ( u ′ , u − u ′) I ( u ′) du ′ , (A.18)withD g ( u ′ , u−u ′) ∫≡ W ( ) gu p , u−u ( p Σ u p , u−u p , u ′) du pu pand(A.19)Σ g ( u p , u s , u ′) ≡∫g ( ( (u p − u p) ′ S u′p , u s − u ′ + u p) ′ B u′p − u ′) du ′ p . (A.20)Usingu ′ pS ( u ′ p , u s − u ′ + u ′ p)=[∫α sS u ′ p(α s ) e −i2πα su sdα s]e −i2π(u′ p−u ′ )α s,and(A.21)Σ g ( u p ,α s , u ′) α s⊃usΣ g ( u p , u s , u ′) , (A.22)we deriveΣ g ( u p ,α s , u ′) =∫g(u p − u ′ p) S ( ) (u ′ p,α s B u′p − u ′) e −i2π(u′ p −u′ )α sdu ′ p,u ′ porΣ g ( u p ,α s , u ′) ∫=u ′ p(A.23)g ( u p − u ′ p)Σ(u′p ,α s , u ′ p − u′) du ′ p . (A.24)Thus, Σ g is the uv gridded version of the generalized samplingfunction Σ.A.4.1. Gridding in the sky planeWe define the samp<strong>le</strong>d visibility function gridded in the skyplane asSV ( ) { } γ u p ,α s ≡ γ⋆SVup (αs )∫= γ(α s − α ′ s) SV up (α ′ s)dα ′ s.α ′ s(A.25)(A.26)Applying the convolution theorem on the Fourier transformalong the α s dimension, we deriveSV γ u p(u s ) = γ (u s ) SV up (u s ) .(A.27)Defining the Fourier transform of the sky-gridded dirty image,we deriveI γ dirty (u) ≡ 〈 SV γ〉 (u)(A.28)∫= W ( ) ( ) ( )u p , u−u p γ u−up SVup u−up dup . (A.29)u pUsing Eq. (31) to replace SV up (u − u p ), we can write the Fouriertransform of the sky-gridded dirty image asI γ dirty (u) = ∫u ′ D γ ( u ′ , u − u ′) I ( u ′) du ′ (A.30)withD γ ( u ′ , u − u ′) ≡∫W ( ) γu p , u − u ( p Σ u p , u − u p , u p − u ′) du pu pandΣ γ ( )u p , u s , u ′′s ≡ γ (us ) S ( )u p , u s + u ′′ (s B u′′) s ,(A.31)(A.32)or, with the definition of Σ (i.e., Eq. (45)),Σ γ ( )up , u s , u ′′s ≡ γ (us ) Σ ( )u p , u s , u ′′s . (A.33)UsingΣ γ ( )up ,α s , u ′′ α ss ⊃usΣ γ ( )up , u s , u ′′s , (A.34)and the convolution theorem when taking the inverse Fouriertransform of Σ γ ,wederiveΣ γ ( )∫u p ,α s , u ′′s = γ ( α s − α ′ ) ( )s Σ up ,α ′ s, u ′′s dα′s . (A.35)α ′ sThus, Σ γ is the sky gridded version of the generalized samplingfunction Σ.Page 17 of 21


A&A 517, A12 (2010)<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012A.5. Gridding in both planesStarting from the definition of SV G (Eq. (41)), we Fouriertransformit along the sky dimension at constant u p .Usingthatthe gridding along the u p dimension can be factored out of theFourier transform, we derive∫SV G u p(u s ) = g ( )u p − u ′ γp SV u (u ′ ps) du ′ p.(A.36)u ′ pUsing Eq. (A.27), we now replace SV γ u (u ′ ps) in the previous equationto get∫SV G u p(u s ) = γ (u s ) g ( u p − u p) ′ SVu ′ p(u s ) du ′ p, (A.37)oru ′ pSV G u p(u s ) = γ (u s ) SV g u p(u s ) .From this relation, it is easy to deduce thatΣ G ( u p , u s , u ′) = γ (u s ) Σ g ( u p , u s , u ′) .(A.38)(A.39)Using the convolution theorem when taking the inverse Fouriertransform of Σ G along the u s dimension and replacing Σ g (u p , α ′ s,u ′ ) with Eq. (A.24), we finally deriveΣ G ( u p ,α s , u ′) ≡∫∫g ( u p − u p) ′ ( (γ αs − α ′ s) Σ u′p ,α ′ s , u′ p − u′) du ′ p dα′ s . (A.40)u ′ pα ′ sA.6. Wide-field vs. sing<strong>le</strong>-field dirty beamsThe notation (59) yields W(u ′ , u ′′ ) = Ω(u ′ , u ′′ ). Using this inEq. (35)givesD ( u ′ , u ′′) =∫Ω ( ) (u p , u ′ + u ′′ − u p S up , u ′′) B ( u p − u ′) du p . (A.41)u pTaking the inverse Fourier transform along the u ′′ axis ofEq. (A.41) and reordering the integral to factor out the termindependent of u ′′ , we can writeD ( u ′ ,α ′′) ∫= B ( u p − u ′) FT 1 (u p , u ′ ,α ′′ )du p , (A.42)u pwhereFT 1 (u p , u ′ ,α ′′ ) ≡∫Ω ( ) (u p , u ′ + u ′′ − u p S up , u ′′) e +i2πu′′ α ′′ du ′′ . (A.43)u ′′We now introduce the following definitionS ( u p , u ′′) ∫≡ S ( )u p ,α s e−i2πα s u ′′ dα s ,(A.44)α sto deriveFT 1 (u p , u ′ ,α ′′ ) =∫α sS ( u p ,α s) [∫ u ′′ Ω ( u p , u ′ + u ′′ − u p)e+i2πu ′′ (α ′′ −α s ) du ′′ ]dα s .Page 18 of 21Using the following change of variab<strong>le</strong>s v ≡ u ′′ + u ′ − u p , u ′′ =v − u ′ + u p and dv = du ′′ on the innermost integral, we getFT 1 (u p , u ′ ,α ′′ ) =∫S ( ) ( )u p ,α s Ω up ,α ′′ − α s e+i2π(u p −u ′ )(α ′′ −α s ) dα s .α sSubstituting this result into Eq. (A.42) and taking the inverseFourier transform along the u ′ axis, we can writeD ( α ′ ,α ′′) =∫∫Ω ( ) ( )u p ,α ′′ −α s S up ,α s FT2 (u p ,α s ,α ′ ,α ′′ )du p dα s , (A.45)u p α swhereFT 2 (u p ,α s ,α ′ ,α ′′ ) ≡∫B(u p − u ′ )e +i2πu p(α ′′ −α s ) e +i2πu′ (α ′ −α ′′ +α s ) du ′ .u ′Using the following change of variab<strong>le</strong>s v ≡ u p − u ′ , u ′ = u p − vand dv = du ′ ,wegetFT 2 (u p ,α s ,α ′ ,α ′′ ) = B ( α ′′ − α ′ − α s) e+i2πu p α ′ .(A.46)Substituting this result into Eq. (A.45) and re-ordering the terms,we can writeD ( α ′ ,α ′′) ∫= B ( α ′′ − α ′ )− α s FT3 (α s ,α ′ ,α ′′ )dα s , (A.47)α swhere∫FT 3 (α s ,α ′ ,α ′′ ) ≡ Ω ( ) ( )u p ,α ′′ − α s S up ,α s e+i2πu p α ′ du p .u pA simp<strong>le</strong> application of the convolution theorem gives∫FT 3 (α s ,α ′ ,α ′′ ) ≡ Ω ( ) ( )α ′ − α p ,α ′′ − α s Δ αp ,α s dαp ,α pwhereΔ ( α p ,α s) α p⊃u pS ( u p ,α s). (A.48)Substituting this result into Eq. (A.47), we finally derive the desiredexpression, i.e., Eq. (57).Appendix B: From the ce<strong>le</strong>stial sphereonto a sing<strong>le</strong> tangent planeEquation (1) neg<strong>le</strong>cts projection effects, known as non-coplanarbaselines. Any method which deals with interferometric widefieldimaging must take this prob<strong>le</strong>m into account. After a shortintroduction to the prob<strong>le</strong>m, we show how wide-field synthesisis compatib<strong>le</strong> with at <strong>le</strong>ast one method, namely the uvwunfacetingof Saultetal.(1996b). This method tries to builda final wide-field uv plane from different pieces, just as ourwide-field synthesis approach does. Another promising methodis the w-projection, based on original ideas of Frater & Docherty(1980) and first successfully imp<strong>le</strong>mented by Cornwell et al.(2008). We did not look yet at its compatibility with wide-fieldsynthesis.


J. Pety and N. Rodríguez-Fernández: Revisiting the theory of interferometric wide-field synthesis<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012B.1. w-axis distortionWhen projection effects are taken into account, the measurementequation readsV ( )w, u p ,α s =∫B ( ) I ( )[α p√ )]α p − α s √ e −i2π α p u p +w(1−α 2 p −1dα p .α p1 − α 2 p(B.1)In this equation, we continue to work in 1 dimension for the skycosine direction (α p ), but we explicitly introduce the dependencealong the direction perpendicular to the sky plane. This dependenceappears in two ways,√which is hand<strong>le</strong>d in very differentways. First, the factor 1 − α 2 p can be absorbed into a generalizedsky brightness functionI ( ) I ( )α pα p ≡ √ · (B.2)1 − α 2 pAfter imaging and deconvolution, I(α p ) can be easily restoredfrom the deconvolved I(α p ) image. The second dependence appearsas an additional phase, which is written as)P ( α p ,w ) ( √≡ e −i2πw 1−α 2 p −1. (B.3)Thompson et al. (1986, Chap. 4) shows that this additional phasecan be neg<strong>le</strong>cted only if 8π θfield2 ≪ 1 or π λd max≪ 1.(B.4)4 θ syn dfield2The first form of the criterion indicates that the approximationgets worse at high spatial dynamic range (i.e., θ field /θ syn ≪ 1)whi<strong>le</strong> the second form indicates that the approximation getsworse at long wave<strong>le</strong>ngths.B.2. uvw-unfacetingFor stop-and-go mosaicking, it is usual to delay-track at the centerof the primary beam for each pointing/field of the mosaic.This phase center is also the natural center of projection of eachpointing/field. Stop-and-go mosaicking thus naturally paves thece<strong>le</strong>stial sphere with as many tangent planes as there are pointings/fields;i.e., this observing scheme is somehow enforcing auvw-faceting scheme. In the framework of on-the-fly observationswith ALMA, D’Addario & Emerson (2000) indicate thatthe phase center will be modified between each on-the-fly scanwhi<strong>le</strong> it will stay constant during each on-the-fly scan. This is acompromise between loss of coherence and technical possibilitiesof the phase-locked loop. Using this hypothesis, the maximumsky area covered by the on-the-fly scan must take intoaccount the maximum to<strong>le</strong>rab<strong>le</strong> w-axis distortion.The easiest way to deal with such data is to image each pointing/fieldaround its phase center and then to reproject this imageonto the mosaic tangent plane as displayed in Fig. 5 of Saultet al. (1996b). These authors point out that this scheme impliesa typical w-axis distortion ɛ <strong>le</strong>ss thanɛ ≤ (1 − cos θ alias ) sin θ center ∼ 1 2 θ center θ 2 alias ,(B.5)8 In contrast to the convention used in this paper, the d max and d field unitis meter instead of unit of λ in the second form of the criterion, in orderto explici<strong>tel</strong>y show the dependence on the wave<strong>le</strong>ngth.where θ center is the ang<strong>le</strong> from the pointing/field center and θ aliasis the anti-aliasing sca<strong>le</strong> defined in Sect. 4.2. In particular, ɛ is0 at the phase center of each pointing/field. In other words, thisscheme limits the magnitude of the w-axis distortion to its magnitudeon a size equal to the anti-aliasing sca<strong>le</strong> (i.e., a few timethe primary beamwidth) instead of a size equal to the total mosaicfield of view. This scheme thus solves the projection effectas long as the w-axis distortion is negligib<strong>le</strong> at sizes smal<strong>le</strong>r thanor equal to the anti-aliasing sca<strong>le</strong>. A natural name for this processingscheme is uvw-unfaceting because it is the combinationof a faceting observing mode (i.e., regular change of phase center)and a linear transform of the uv coordinates to derive a sing<strong>le</strong>sine projection for the who<strong>le</strong> field of view.Saultetal.(1996b) also demonstrate that the reprojectionmay be done much more easily and quickly in the uvw space beforeimaging the visibilities because it is then just a simp<strong>le</strong> transformationof the uv coordinates, followed by a multiplicationof the visibilities by a phase term. Finally, Sault et al. (1996b)note that it is the linear character of this uv coordinate transformwhich preserves the measurement Eq. (1). As the change of coordinateshappens before any other processing, it also conservesall the equations derived in the previous sections to imp<strong>le</strong>mentthe wide-field synthesis.Appendix C: On-the-fly observing modeand effective primary beamUsual interferometric observing modes (including stop-and-gomosaicking) implies that the interferometer antennas observe afixed point of the sky during the integration time. Conversely,the on-the-fly observing mode implies that the antennas s<strong>le</strong>w onthe sky during the integration time. This implies that the measurementEq. (1) must be written as (Holdaway & Foster 1994;Rodríguez-Fernández et al. 2009):V ( )û p , ˆα s =∫1t0⎡+δt/2 ∫⎢⎣ B { α p − α s (t) } I ( )α p e−i2πα p u p (t) dα p⎤⎥⎦ dt, (C.1)δt t 0 −δt/2 α pwhere δt is the integration time and û p and ˆα s are the mean spatialfrequency and direction cosine, defined as∫ t0 +δt/2∫ t0 +δt/2û p ≡ 1 u p (t)dt and ˆα s ≡ 1 α s (t)dt. (C.2)δt t 0 −δt/2δt t 0 −δt/2In this section, we analyze the consequences of the antenna s<strong>le</strong>wingon the accuracy of the wide-field synthesis.C.1. Time averagingIn all interferometric observing modes, it is usual to adjust theintegration time so that u p (t) can be approximated as û p .Todothis, it is enough to ensure that u p (t) always varies <strong>le</strong>ss than the uvdistance associated with to<strong>le</strong>rab<strong>le</strong> aliasing (d alias , see Sect. 4.2)during the integration time (δt)d aliasδt ≪d max ω earthordt1s ≪ 6900 ,θ alias /θ syn(C.3)where d max is the maximum baseline <strong>le</strong>ngth, ω earth is the angularvelocity of a spatial frequency due to the Earth rotation(7.27×10 −5 rad s −1 ), θ alias and θ syn are respectively the minimumfield of view giving a to<strong>le</strong>rab<strong>le</strong> aliasing and the synthesized beamangular values.Page 19 of 21


Tab<strong>le</strong> C.1. Definition of the symbols used to explore the influence ofon-the-fly scanning on the measurement equation.A&A 517, A12 (2010)<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Symbol & Definitionδt Integration timeˆα s Scanned ang<strong>le</strong> averaged during δtû p Spatial frequency averaged during δtδα s Angular distance scanned during δtv s<strong>le</strong>w S<strong>le</strong>w angular velocity of the <strong>tel</strong>escopeA Primary beam apodizing functionB eff Effective primary beam resultingfrom OTF scanning: B eff (α) = {B ⋆ A}(α)ω earth Angular velocity of a spatial frequencydue to Earth rotationC.2. Effective primary beamAssuming that condition (C.3) is ensured, we can write Eq. (C.1)with the same form as Eq. (1) by the introduction of an effectiveprimary beam (B eff ); i.e.,V ( û p , ˆα s)=∫α pB eff(αp − ˆα s)I(αp)e−i2πα p û pdα p , (C.4)where∫ t0 +δt/2( ) 1B eff αp − ˆα s ≡ B { α p − α s (t) } dt.δt t 0 −δt/2Using the following change of variab<strong>le</strong>sβ ≡ α s (t) − ˆα s , dβ = dα s(t)dβdt or dt =dtv s<strong>le</strong>w (β) ,we derive( )∫B eff αp − ˆα s = B {( ) }α p − ˆα s − β A (β) dβwithA (β) ≡andδα s ≡( )1 βv s<strong>le</strong>w (β) δt Π δα s∫ t0 +δt/2t 0 −δt/2βv s<strong>le</strong>w (t)dt.(C.5)(C.6)(C.7)(C.8)(C.9)In these equations, v s<strong>le</strong>w (β) is the s<strong>le</strong>w angular velocity of the<strong>tel</strong>escope as a function of the sky position, δα s is the angulardistance covered during δt, A is an apodizing function, and Π(β)is the usual rectang<strong>le</strong> function, which reproduces the finite characterof the time integration.C.3. InterpretationThe form of the measurement equation is conserved when averagingthe visibility function over a finite integration time, aslong as the true primary beam is replaced by an effective primarybeam, which is the convolution of the true primary beamby an apodizing function. To go further, it is important to returnto the two dimensional case. Indeed, the convolution mustbe done along the s<strong>le</strong>wing direction, resulting in an effective primarybeam elongated in a particular direction.In princip<strong>le</strong>, the equations derived in Sect. 3 can be accommodatedjust by replacing the true primary beam by its effectivePage 20 of 21Fig. C.1. Assessement of the relative error implied by the use of thetrue primary beam instead of the effective primary beam when analyzinginterferometric on-the-fly data sets. Left: inverse Fourier transformof interferometer primary beam, B (i.e. the autocorrelation of the antennaillumination). Right: relative error as a function of sampling rateof the primary beam. The curves of different colors show the results atdifferent normalized uv distances (u/d prim ) from the center of B.associate. In practice, the probability to take into account the effectiveprimary beam is low because its shape varies with time.Indeed, it is often assumed that the sky is s<strong>le</strong>wed along a straightline at constant angular velocity. Even in this simp<strong>le</strong>st case, it isadvisab<strong>le</strong> to s<strong>le</strong>w along at <strong>le</strong>ast two perpendicular directions toaverage systematic errors, implying two different effective primarybeams. However, practical reasons may/will <strong>le</strong>ad to comp<strong>le</strong>xscanning patterns: 1) the limitation of the acce<strong>le</strong>ration whentrying to image a square region <strong>le</strong>ads to spiral or Lissajous scanningpatterns; 2) the probab<strong>le</strong> absence of derotators in futuremulti-beam receivers (B. Lazareff, private communication) impliesthe need to take into account the Earth rotation in the scanningpatterns of the off-axis pixels.C.4. Approximation accuracyIn the following, we thus ask what is the trade-off accuracy of usingthe true primary beam instead of the effective primary beam.The first point to mention is that using different scanning patternssomehow helps because the averaging process then makesthe bias <strong>le</strong>ss systematic. Following Holdaway & Foster (1994),we quantify the accuracy lost in the Fourier plane. Indeed, theEkers & Rots scheme tries to estimate missing sky brightnessFourier components from their measurements apodized by theFourier transform of the primary beam. In the Fourier space,the above convolution just translates into a product. The Fouriertransform of the apodizing function thus degrades the sensitivityof the measured visibility, V(u p , α s ), to spatial frequencies at theedges of the interval [u p − d prim , u p + d prim ]. To guide us in ourquantification of the accuracy lost, we now explore the simp<strong>le</strong>stcase of linear scanning at constant velocity, where v s<strong>le</strong>w (β) is constantand δα s = v s<strong>le</strong>w δt. The Fourier transform of the apodizingfunction is then a sinc function:A (u) = sinc (u δα s ) .(C.10)The relative error implied by the use of the true primary beaminstead of the effective primary beam is thenB eff (u) − B (u)= 1 − 1B eff (u) A (u) = 1 − 1sinc (u δα s ) · (C.11)Figure C.1 shows this relative error as a function of the numberof samp<strong>le</strong>s per primary beam FWHM in the image plane (i.e.,


J. Pety and N. Rodríguez-Fernández: Revisiting the theory of interferometric wide-field synthesis<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012θ fwhm /δα s ) for different uv distances (in units of d prim ). We seethat we derive a 1% accuracy at all u when we samp<strong>le</strong> the imageplane at a rate of 5 dumps per primary beam. However getting a0.1% accuracy needs quite high sampling rates (about 15). Thismust be compared with the accuracy of know<strong>le</strong>dge of B.We note that if a better accuracy is needed than the oneachievab<strong>le</strong> with the highest sampling rate, it is in theory possib<strong>le</strong>to replace in the correlator software the rectang<strong>le</strong> apodizingfunction by another function which falls more smoothly. Toavoid the loss of sensitivity inherent to the use of such an apodizingfunction (by throwing away data at the edges of the time intervalof integration), would require, for instance, to half-overlapthe integration intervals. This would imply more book-keepingin the correlator software and some noise correlation betweenthe measured visibilities.ReferencesBevington, P. R., & Robinson, D. K. 2003, Data Reduction and Error AnalysisFor the Physical Sciences, 3rd edn. (McGraw-Hill)Bhatnagar, S., & Cornwell, T. J. 2004, A&A, 426, 747Bhatnagar, S., Cornwell, T. J., Golap, K., & Uson, J. M. 2008, A&A, 487, 419Bracewell, R. N. 2000, The Fourier Transform and its Applications, 3rd edn.(McGraw-Hill)Clark, B. G. 1980, A&A, 89, 377Cornwell, T. J. 1988, A&A, 202, 316Cornwell, T. J., Holdaway, M. A., & Uson, J. M. 1993, A&A, 271, 697Cornwell, T. J., Golap, K., & Bhatnagar, S. 2008, IEEE Journal of Se<strong>le</strong>ctedTopics in Signal Processing, 2, 647Cotton, W. D., & Uson, J. M. 2008, A&A, 490, 455D’Addario, L. R., & Emerson, D. T. 2000, On-The-Fly Fringe Tracking, ALMAmemo, 331Ekers, R. D., & Rots, A. H. 1979, in Image Formation from Coherence Fucntionsin Astronomy, ed. C. van Schoonedveld (D. Reidel), IAU Proc., 49, 61Frater, R. H., & Docherty, I. S. 1980, A&A, 84, 75Goldsmith, P. F. 1998, Gaussian Beam, Quasioptical Propagation andApplications (IEEE Press)Gueth, F., Guilloteau, S., & Vial<strong>le</strong>fond, F. 1995, in The XXVIIth YoungEuropean Radio Astronomers Conference, ed. D. A. Green, & W. Steffen,8Hamaker, J. P., Bregman, J. D., & Sault, R. J. 1996, A&AS, 117, 137Högbom, J. A. 1974, A&AS, 15, 417Holdaway, M. A., & Foster, S. M. 1994, On-The-Fly Mosaicing, ALMA memo,122Mangum, J. G., Emerson, D. T., & Greisen, E. W. 2007, A&A, 474, 679Narayan, R., & Nityananda, R. 1986, ARA&A, 24, 127Pety, J., Gueth, F., & Guilloteau, S. 2001, Impact of ACA on the Wide-FieldImaging Capabilities of ALMA, ALMA memo, 398Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 1992,Numerical Recipes in C, 2nd edn. (Cambridge University Press)Rodríguez-Fernández, N. J., Pety, J., & Gueth, F. 2008, Sing<strong>le</strong>-dish observationand processing to produce the short-spacing information for a millimeterinterferometer, IRAM memo, 2008-2Rodríguez-Fernández, N. J., Pety, J., & Gueth, F. 2009, Imaging ofinterferometric On-The-Fly observations: Context and discussion of possib<strong>le</strong>methods, IRAM memo, 2009-2Sault, R. J., Hamaker, J. P., & Bregman, J. D. 1996a, A&AS, 117, 149Sault, R. J., Stave<strong>le</strong>y-Smith, L., & Brouw, W. N. 1996b, A&AS, 120, 375Sault, R. J., Bock, D. C.-J., & Duncan, A. R. 1999, A&AS, 139, 387Schwab, F. R. 1984, AJ, 89, 1076Sramek, R. A., & Schwab, F. R. 1989, Synthesis Imaging in Radio Astronomy,Conf. Ser. (ASP), 117Thompson, A. R., Moran, J. M., & Swenson, G. W. J. 1986, Interferometry andSynthesis in Radio Astronomy (John Wi<strong>le</strong>y & Sons)Page 21 of 21


IRAM Memo 2011-2WIFISYN:The GILDAS imp<strong>le</strong>mentation of anew wide-field synthesis algorithm ∗J. Pety 1,2 , N. Rodriguez-Fernandez 11. IRAM (Grenob<strong>le</strong>)2. Observatoire de ParisJan, 19th 2011Version 0.1AbstractThe usual way to image wide-field interferometric observations is known as mosaicking.Different variants of mosaicking exist (e.g. Cornwell, 1988; Sault et al., 1996), including aninteresting recent imp<strong>le</strong>mentation of mosaicking in the uv plane (golap et al., priv. comm.).Pety & Rodríguez-Fernández (2010) revisited the theory of wide-field imaging to propose adifferent algorithm to image interferometric wide-field observations, based on the well-knownEkers & Rots’ scheme. This algorithm is named wide-field synthesis because it explici<strong>tel</strong>ysynthesizes the wide-field spatial frequencies throughout the uv plane. This memo describesthe current state of the imp<strong>le</strong>mentation of this algorithm in a new package, named WIFISYN,of the GILDAS software suit.<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012WIFISYNContentsContents1 Introduction 32 Theory 32.1 Observation setup and measurement space . . . . . . . . . . . . . . . . . . . . . . . 32.2 Processing by explicit synthesis of the wide-field spatial frequencies . . . . . . . . . 53 Practice 53.1 Simulating a wide-field observation . . . . . . . . . . . . . . . . . . . . . . . . . . . 53.2 Fourier transform along αs and βs . . . . . . . . . . . . . . . . . . . . . . . . . . . 73.2.1 Gridding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73.2.2 Reordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83.2.3 Wide-field synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93.3 Shifting and averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113.4 Getting the dirty image through inverse Fourier transform . . . . . . . . . . . . . . 114 Conclusion 12A Imp<strong>le</strong>mentation plan 14B WIFISYN Language Internal Help 17B.1 Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17B.2 COMPLEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17B.3 FFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17B.4 LOAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18B.5 READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18B.6 SETUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18B.7 UVBEAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18B.8 UVGRID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18B.9 UVMAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18B.10 UVSYMMETRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19B.11 VARIABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19B.12 WIFI2VISI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19B.13 WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192∗ This work was mainly funded by the European FP6 “ALMA enhancement” grant. It was also partially fundedby the grant ANR-09-BLAN-0231-01 from the French Agence Nationa<strong>le</strong> de la Recherche as part of the SCHISMproject.WIFISYN1 Introduction11. introductionThe usual way to image wide-field interferometric observations is known as mosaicking. Differentvariants of mosaicking exist (e.g. Cornwell, 1988; Sault et al., 1996), including an interestingrecent imp<strong>le</strong>mentation of mosaicking in the uv plane (golap et al., priv. comm.). Pety &Rodríguez-Fernández (2010) revisited the theory of wide-field imaging to propose a different algorithmto image interferometric wide-field observations, based on the well-known Ekers & Rots’scheme. This algorithm is named wide-field synthesis because it explici<strong>tel</strong>y synthesizes the widefieldspatial frequencies throughout the uv plane. This memo describes the current state of theimp<strong>le</strong>mentation of this algorithm in a new package, named WIFISYN, of the GILDAS software suit.The first section summarizes the ideas underlying the proposed algorithm. The second sectiondemonstrates the different steps taken to imp<strong>le</strong>ment the algorithm (i.e. simulation, gridding,Fourier transform along the scanned sky coordinates to synthesize the wide-field visibilities, applicationof a shift-and-average operator to obtain the wide-field uv plane and inverse Fouriertransform to yield the dirty image). We conclude on the additional needed steps to use thisnew algorithm on a daily basis. Appendix A includes the imp<strong>le</strong>mentation plan written beforecoding WIFISYN. Appendix B includes the document of the current user interface of the WIFISYNpackage.2 TheoryFigure 1 illustrates the princip<strong>le</strong>s underlying 1) the setup to get interferometric wide-field observationsand 2) our proposition to process them. For simplicity, we display the minimum possib<strong>le</strong>comp<strong>le</strong>xity without loss of generality. The top row displays the sky plane. The midd<strong>le</strong> rowrepresents the 4-dimensional measurement space at different stages of the processing.2.1 Observation setup and measurement spacePanel a) displays the sky region for which we aim for estimating the sky brigthness, I(α). Thefield of view of an interferometer observing in a given direction of the sky has a typical size set bythe primary beam shape. In our examp<strong>le</strong>, this is illustrated by any of the circ<strong>le</strong>s whose diameteris θprim. As we aim at observing a wider field of view, e.g. θfield, the interferometer needs to scanthe targeted sky field. We assume that we scan through stop-and-go mosaicking, ending up witha 7-field mosaic.After calibration, the output of the interferometer is a visibility function, V (up,αs), whoserelation to the sky brightness is given by the measurement equation∫V (up, αs) = B(αp − αs) I(αp) e −i2παpup dαp, (1)αpwhere V is the visibility function of 1) up (the spatial frequency with respect to the fixed phasecenter) and 2) αs (the scanned sky ang<strong>le</strong>), I is the sky brightness, and B the antenna powerpattern or primary beam of an antenna of the interferometer. Panel b.1) shows the measurementspace as a mosaic of sing<strong>le</strong>-field uv planes: The uv plane coverage of each sing<strong>le</strong>-field observationis displayed as a blue sub-panel at the sky position where it has been measured and which isfeatured by the red axes. We assume 1) that the interferometer has only 3 antennas and 2)that only a sing<strong>le</strong> integration is observed per sky position. This implies only 6 visibilities persing<strong>le</strong>-field uv plane.3


WIFISYN2. theoryWIFISYN3. practice<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Figure 1: Illustration of the princip<strong>le</strong>s of wide-field synthesis, which enab<strong>le</strong>s us to image widefieldinterferometric observations. The top row displays the sky plane. The bottom row displaysthe 4-dimensional visibility space at different stages of the processing. In panels b) to d), thescanned dimensions (αs and us) are displayed in blue whi<strong>le</strong> the phased spatial sca<strong>le</strong> dimensions(up) are displayed in red and the spatial sca<strong>le</strong> dimensions (u) of the final wide-field uv plane aredisplayed in black. In detail, panel a) shows a possib<strong>le</strong> scanning strategy of the sky to measurethe unknown brightness distribution at high angular resolution: For simplicity it is here just a7-field mosaic. Panel b.1) and b.2) sketch the space of measured visibilities: The uv plane at eachof the 7 measured sky positions is displayed as a blue square box in panel b.1) and a blue verticalline in panel b.2). For simplicity, only 6 visibilities are plotted in panel b.1). Panels c.1) andc.2) sketch the space of synthesized visibilities after Fourier transform of the measured visibilitiesalong the scanned coordinate (αs): At each measured spatial frequency up (displayed on the blueaxes) is associated one space of synthesized wide-field spatial frequencies displayed as one of thered squares in panel c.1) and the red vertical lines in panel c.2). The wide-field spatial sca<strong>le</strong>sare synthesized 1) on a grid whose cell size is related to the total field of view of the observationand 2) only inside circ<strong>le</strong>s whose radius is the primary diameter of the interferometer antennas.Panels d.1) and d.2) display the final, wide-field uv plane. This plane is built by application of ashift-and-average operator. Inverse Fourier transform and deconvolution methods then producea wide-field distribution of sky brightnesses as shown in panel e).WIFISYN43. practiceFigure 2: Sky and uv coverage of a simulated interferometric on-the-fly observation with thePlateau de Bure interferometer. Left: Each cross display the average sky position attributed toa set of visibilities recorded during one integration time. The center of the coordinate system isthe phase center. Right: Each cross display the uv position of a measured visibilities whateverthe associated sky position. The black crosses are measured. The red ones are deduced from theHermitian symmetry of the visibilities.2.2 Processing by explicit synthesis of the wide-field spatial frequenciesAll the information about the sky brightness, I(α), is somehow coded in the visibility function,V (up,αs). The high spatial frequencies (from dmin to dmax) are c<strong>le</strong>arly coded along the up dimension.The uncertainty relation between Fourier conjugate quantities also implies that the typicalspatial frequency resolution along the up dimension is only dprim because the field of view of asing<strong>le</strong> pointing has a typical size of θprim. However, wide-field imaging implies measuring all thespatial frequencies with a finer resolution, dfield = 1/θfield. The missing information must then behidden in the αs dimension.Pety & Rodríguez-Fernández (2010) show that Fourier transforming the measured visibilitiesalong the αs dimension (i.e. at constant up) can synthesize the missing spatial frequencies,because the αs dimension is samp<strong>le</strong>d from −θfield/2 to +θfield/2, implying a typical spatialfrequencyresolution of the us dimension equal to dfield. Conversely, the αs dimension is probedby the primary beams with a typical angular resolution of θprim, implying that the us spatialfrequencies will only be synthesized inside the [−dprim, +dprim] range. Panel c) illustrates theeffects of the Fourier transform of V (up,us) along the αs dimension. The red subpanels displaythe us spatial frequencies around each constant up spatial frequency.In panel d) (i.e. after the Fourier transform along the αs dimension), V (up,us) contains allthe measured information about the sky brightness in a spatial frequency space. However, theinformation is ordered in a strange and redundant way. Indeed, we show that V (up,us) is linearlyrelated to I(up+us). To first order, the information about a given spatial frequency u is storedin all the values of V (up,us) which verifies u = up + us.A shift operation will reorder the spatial sca<strong>le</strong> information and averaging will compress theredundancy (illustrated by the halving of the number of the space dimensions). The use of a shiftand-averageoperator thus produces a final uv plane containing all the spatial sca<strong>le</strong> informationto image a wide field in an intuitive form. We thus call this space the wide-field uv plane. Paneld) displays this space, where the minimum re<strong>le</strong>vant spatial frequency is related to the total fieldof view, whi<strong>le</strong> the maximum one is related to the interferometer resolution.Applying the shift-and-average operator to V produces the Fourier transform of a dirty image,which is a local convolution of the sky brightness by a slowly varying 〈 〉 dirty beam (Pety &Rodríguez-Fernández, 2010). As a result, inverse Fourier transform of V and deconvolutionmethods will produce a wide-field distribution of sky brightness as shown in panel e) at the topright of Fig. 1.3 PracticeIn the real world, the visibility function is not only samp<strong>le</strong>d, but this sampling is incomp<strong>le</strong>te fortwo main reasons. 1) The instrument has a finite spatial resolution, and the scanning of the skyis limited, implying that the sampling in both planes has a finite support. 2) The uv coverageand the sky-scanning coverage can have ho<strong>le</strong>s caused either by intrinsic limitations (e.g. lack ofshort spacings or small number of baselines) or by acquisition prob<strong>le</strong>ms (implying data flagging).3.1 Simulating a wide-field observationIn order to test the imp<strong>le</strong>mentation, we need a control<strong>le</strong>d data set. We simulated the simp<strong>le</strong>stmeaningful case, i.e., a point source at the phase center (at the position of the famous HorseheadWIFISYN53. practiceduring 9 consecutive hours alterning beta and lambda coverage in a loop with 5 minutes calibrationmeasurements intersperse every 20 minutes. Each lambda or beta coverage lasts about 16minutes. There were thus 47 coverages observed in total. Taking into account various overheads(e.g., s<strong>le</strong>w time between rows) and shadowing (about 13% of the visibilities lost), we estimatethe observing efficiency to be about 60%, i.e. 60% of the time is spent on-source. We end upwith a data set of 148 147 visibilities. If the data was imaged through standard mosaicking, itwould imply between 500 and 10 000 actual fields depending on the acquisition system. Indeed,it is difficult to ensure that each scanning line always starts at exactly the same position on-skyfor each coverage as it is ideally assumed in this simulation.Fig. 2 separa<strong>tel</strong>y displays the sky and uv coverage, each cross representing one measure. Inreality, the uv coverage a priori depends on the position of the sky because of the Earth rotation.Fig. 3 thus display the uv coverage as a function of the position on the sky through a chessboarddisplay. Each case of the chessboard displays the all the uv measures which falls in a 20 ′′ -rangearound the marked sky coordinate. The uv coverage is qualitatively similar over the full fieldof view as a result of the observing strategy. The <strong>le</strong>ft panel of Fig. 3 is a zoom of one of theuv coverages shown on the chessboard. The uv coverage displayed on Fig. 2 is much denselypopulated than any of the individual uv coverages.Figure 3: Chessboard display of the uv planes. Left: Each panel display the uv coverage of allthe visibilities whose position on the sky falls in a 20 ′′ -range around the displayed sky coordinate.Right: Typical zoom of one of the uv coverages displayed <strong>le</strong>ft.nebula in the Orion mo<strong>le</strong>cular cloud). We choose to simulate observations with the Plateau deBure Interferometer because it allows us to c<strong>le</strong>arly test the effect of incomp<strong>le</strong>te instantaneous uvsampling due to the limited number of availab<strong>le</strong> antennas. The most compact configuration (Dconfiguration)was se<strong>le</strong>cted offering baseline <strong>le</strong>ngth up to about 120 m. We simulated observationsat the frequency of the 13 CO (J=1–0) line, i.e. 110.201 GHz or 2.72 mm. At this frequency, theprimary beamwidth of 15m-antenna is 44.9 ′′ .We simulated On-The-Fly observations covering a total field of view of 300 ′′ × 100 ′′ , whichconverts into the observation of about 17 independent fields. The field of view is rectangular toexplore the effect of non-square pixels in the uv planes. We scanned the source along two perpendiculardirection, named hereafter lambda and beta. The distance between two consecutiverows ensures Nyquist sampling, i.e., λ/D = 18.7 ′′ . We samp<strong>le</strong>d along the scanning directionat 5 points per primary beamwidth along the scanning direction to decrease the effect of beamelongation. We dumps at a rate of 0.5 Hz, i.e., one dump every two seconds. These two lastconsiderations implies a scanning velocity of 4.5 ′′ per second. We observed one full track, i.e.,3.2 Fourier transform along αs and βsWe want to Fourier transform the raw visibilities along the sky dimension (αs and βs) at someconstant value of up and vp. The raw data, however, is samp<strong>le</strong>d on an irregular grid in boththe uv and sky planes. We need to grid the measured visibilities in both the uv and the skyplanes before Fourier transformation for different reasons. First, the gridding in the uv plane willhand<strong>le</strong> the variation in the spatial frequency as the sky is scanned, i.e., the difficulty and perhapsthe impossibility of Fourier-transforming at a comp<strong>le</strong><strong>tel</strong>y constant (up,vp) values. Second, thegridding along the sky dimension enab<strong>le</strong>s the use of Fast Fourier Transforms.3.2.1 GriddingAs usual, we grid through convolution and regular resampling. The visibilities must be convolvedin 4 dimensions (αs, βs, up and vp). For simplicity sake’s, the convolution kernel is just theproduct of 4 one-dimensional functions along each convolution dimension. We used the standardspheroidal functions (cf. Fig. 4), whose Fourier transforms die off as quickly as themselves. Thisis a desirab<strong>le</strong> mathematical property in processing interferometry data because it limits aliasing.Fig. 5 displays the amplitude of the grided 4D visibility cube using a chessboard display, i.e.a set of uv images positionned at their right place in the (δRA,δDec) sky coordinate system.The first obvious visual impression when the color sca<strong>le</strong> is linear is that the visibility amplitudedecreases isotropically as the distance from the point source position (at the center of the coordinatesystem) increases. Indeed, the decrease in amplitude mimic the primary beam shape whichwas used to similate the visibilities, i.e. a Gaussian of 44.9 ′′ -beamwidth. The same chessboardis also displayed with a logarithmic color sca<strong>le</strong> to emphasize edge effects. The gridded visibilities“abruptly” go to zero following an almost rectangular pattern. This is just the consequence ofgridding along rectangular axes a limited field of view (the observed one) whi<strong>le</strong> the Gaussianprimary beam has an unlimited support.67


WIFISYN3. practiceWIFISYN3. practiceFigure 4: Convolution kernels used to grid the visibilities along the up (first column), vp (secondcolumn), αs (third column) and βs (fourth column) dimension. The top row displays the usedkernels whi<strong>le</strong> the bottom row displays their Fourier transform. The vertical red lines show thesize of the support over which the kernels are computed and used.The <strong>le</strong>ft panel is a zoom of the image displayed at the point source position on the chessboard.The visibility amplitude results here from the combination of the true visibility function(i.e., a Gaussian for a point source at the phase center) and of the density and quality of themeasurements at the considered position on the sky (because we grid the weighted visibilities,wV , and not just the visibilities themselves, V ). The images on the chessboard ressemb<strong>le</strong>s eachother to first order because the uv coverage is similar over the who<strong>le</strong> field of view.<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 20123.2.2 ReorderingThe chessboards in Fig. 5 display the up and vp visibility planes at constant values of αs and βs.However, we want to Fourier transform the grided visibilities along the sky dimensions (αs andβs) at constant value of up and vp. We thus reorder in Fig. 6 the chessboards so that they displaythe αs and βs visibility planes at constant values of up and vp. Nothing is actually done on thevisibility cube itself, it is just a change in the way it is displayed. We note that we now recognizeon the chessboard display the footprint of the uv plane sampling. Each image of the chessboardslooks like the two zooms, which c<strong>le</strong>arly show the Gaussian shape of the beam centered on thepoint source position. In particular, the images of the chessboards here are rectangular 1 (to keepthe ratio aspect of the αsβs planes).1 This is better seen on the chessboard with a logarithmic color sca<strong>le</strong>.WIFISYN83. practiceFigure 5: Chessboard display of the visibility amplitudes after the 4-dimensional gridding. Theamplitudes were arbitrarily normalized to get a maximum value of 1 because this allows thereader to easily quantify the dynamic at which potential artifacts arise. Left: Each panel displaythe image of the visibility amplitude at constant value of the sky coordinates (αs,βs) and asa function of the uv coordinates (up,vp). Right: Typical zoom of one of visibility amplitudeimages. Top: The color sca<strong>le</strong> is linear. Bottom: The color sca<strong>le</strong> is logarithmic.3.2.3 Wide-field synthesisThe chessboards in Fig. 9 display the visibility amplitude after Fourier transform along the (αs,βs)dimensions at constant (up,vp). We thus obtain a chessboards of (us,vs) planes at their positionsWIFISYN3.3 Shifting and averaging93. practiceFigure 6: Same as Fig. 5 after reordering of the axes, i.e. each panel display the image of thevisibility amplitude at constant value of the uv coordinates (up,vp) and as a function of the skycoordinates (αs,βs).Figure 7: Chessboard display of the amplitudes of the synthesized wide-field visibilities afterdirect Fourier transform along the αs and βs axes at constant (up,vp) values. The amplitudeswere arbitrarily normalized to get a maximum value of 1. Left: Each panel display the imageof the visibility amplitude at constant value of the wide sca<strong>le</strong> uv coordinates (us,vs) and as afunction of the narrow sca<strong>le</strong> uv coordinates (up,vp). Right: Typical zoom of one of visibilityamplitude images. Top: The color sca<strong>le</strong> is linear. Bottom: The color sca<strong>le</strong> is logarithmic.in the (up,vp) plane. The Fourier transform of a Gaussian is a Gaussian. The zoom panels thusdisplay to first order a Gaussian shape of full width at half maximum of about 15 m (i.e. thebure antenna diameter). The zoom panel using a logarithmic color sca<strong>le</strong> c<strong>le</strong>arly shows departurefrom the Gaussian shapes at the edges of the image because of the presence of “abrupt” edgesin Fig. 6. This is at this step that the wide-field visibility are synthesized, although they areordered in an unnatural way.Figure 8: Wide-field 2D uv plane after shifting-and-averaging the wide-field 4D uv plane displayedin Fig. 7. The amplitudes were arbitrarily normalized to get a maximum value of 1. Right: Thecolor sca<strong>le</strong> is linear. Left: The color sca<strong>le</strong> is logarithmic.After the wide-field synthesis step, we obtain a 4D wide-field visibility cube for which eachfinal uv spatial frequency (u,v) is measured for every (up,vp,us,vs) such that u = up + us andv = vp + vs. The use of a shift-and-average operator allows us to get an intuitive wide-fielduv plane because this first reorders the spatial frequencies at their right place and this thencompresses them.Fig. 8 display the wide-field uv plane, which results from this operation. It can be shown thatthe properties of the measurement equations imply that this wide-field uv plane must comply withthe Hermitian symmetry, i.e. V (u, v) = V ⋆ (−u, −v). This is equiva<strong>le</strong>nt to state that the dirtyimage must be real. However, this Hermitian symmetry is only approxima<strong>tel</strong>y enforced when theshift-and-average operator is used blindly over the 4D wide-field visibility cube, probably due torounding errors. We thus enforces the Hermitian symmetry through 1) computation of only halfof the wide-field uv plane (the one with negative values of v) and 2) deduction of the other halfusing the Hermitian symmetry.3.4 Getting the dirty image through inverse Fourier transformOnce the wide-field uv plane is availab<strong>le</strong>, the dirty image is obtained by taking the real part ofthe 2D Fourier transform of this plane. The top panel of Fig. 9 displays this dirty image, whichc<strong>le</strong>arly shows a point source at the phase center. As this image is the response of the wide-fieldsynthesized interferometer to a point source located at the phase center, it can be interpreted atthe dirty beam at the phase center. In this framework, the side-lobes peaks at about 10% andthere is a negative bowl surrounding it because of the missing zero-spacing. The bottom panelshows the absolute value of the dirty image with a logarithmic color sca<strong>le</strong> to display the <strong>le</strong>velsat which appear different kind of artefacts. Aliasing replications appear between 10 −2 and 10 −51011


WIFISYN4. conclusionWIFISYNReferencesof the peak (yellow-red replications of the main blob along the two main axes) and they becomepronounced between 10 −5 and 10 −7 of the peak (green strips).to process the large datasets produced by the on-the-fly interferometric observing mode. Thecurrent imp<strong>le</strong>mentation does not yet include deconvolution, a mandatory step to get c<strong>le</strong>an imagescompatib<strong>le</strong> with the sky brightness distribution of the observed source. As a first step in this direction,we computed the sets of wide-field dirty beams associated with the observation. Indeed,the dirty beam slowly varies with the position of the sky because of the shift-variant nature ofinterferometric wide-field observations. Using these dirty beams, standard CLEAN deconvolutionalgorithms will be adapted to our imaging algorithm.Acknow<strong>le</strong>dgments. The authors thank S. Guilloteau for useful discussions at early stages of theWIFISYN imp<strong>le</strong>mentation.ReferencesCornwell, T. J. 1988, A&A, 202, 316Pety, J. & Rodríguez-Fernández, N. 2010, A&A, 517, A12+Sault, R. J., Stave<strong>le</strong>y-Smith, L., & Brouw, W. N. 1996, A&AS, 120, 375<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Figure 9: Dirty image after inverse Fourier transform of the wide-field 2D uv plane displayed inFig. 8. The images were arbitrarily normalized to get a maximum value of 1. Top: The dirtyimage is displayed with a linear color sca<strong>le</strong>. Bottom: The absolute value for the dirty image isdisplayed with a logarithmic color sca<strong>le</strong>.4 ConclusionThis memo describes the first imp<strong>le</strong>mentation in the GILDAS software suit of the wide-field synthesisimaging algorithm, proposed in Pety & Rodríguez-Fernández (2010). It shows good promiseWIFISYNAImp<strong>le</strong>mentation plan12A. imp<strong>le</strong>mentation planThis appendix displays the imp<strong>le</strong>mentation plan written when the GILDAS prototype was started.* Step #1: Reading the uv and the xy (short-spacings) tab<strong>le</strong>s- Substeps (READ OTF)+ Read uv if availab<strong>le</strong>, results:o Measured uv and sky positions (4 columns: up,vp,as,bs)o Measured weights (nf columns)o Measured visibilities (2*nf columns)+ Read xy if availab<strong>le</strong>, results:o Measured sky positions (2 real columns: as,bs2 virtual columns: up=0,vp=0)o Measured weights (nf columns)o Measured brightness (2*nf columns)+ If uv and xy availab<strong>le</strong> theno Check consistency (spatial and frequency coordinates)of UV and XY tab<strong>le</strong>so Crop XY tab<strong>le</strong> to a reasonab<strong>le</strong> sizeo Convert XY into janskyo Merge both tab<strong>le</strong>s (The origin of the data must be kept asadditional columns)- Results+ Measured uv and sky positions (4 columns: up,vp,as,bs)+ Measured weights (nf columns)+ Measured visibilities (2*nf columns)- Comments+ We probably want to read several uv tab<strong>le</strong> coming from differentinstruments (e.g. ALMA + ACA). The difficulty is not so much inreading and merging the tab<strong>le</strong>s but in assigning the correcttransfer function to the correct visibilities.* Step #2: Analysis of the data and definition of the tasks- Substeps:+ Sorting the visibilities in 3D if not already done+ Definition of the grid axes+ Definition of the kernels- Results:+ Sorted uv tab<strong>le</strong>+ Grided uv and sky axes (4 axes: upg,vpg,asg,bsg)+ Gridding Kernels (spheroidals)- Comments:+ The gridding function should depend on the kind of antennas* Step #3: Gridding- Substeps:14WIFISYN+ Convolution of weighted visibilities+ Convolution of weights- Results:+ Grided weights (5D cube: upg,vpg,asg,bsg,nu)+ Grided visibilities (5D cube: upg,vpg,asg,bsg,nu)- Comments:+ No gridding correction13A. imp<strong>le</strong>mentation plan* Step #4: 2D DFFT along sky dimensions- Substeps:+ 2D DFFT of grided visibilities+ Transformed weights (Hyp: independent weights before 2D FFT)- Results:+ Synthesized visibilities (5D cube: upg,vpg,usg,vsg,nu)+ Transformed weights (5D cube: upg,vpg,usg,vsg,nu)* Step #5: Shift-and-average- Substeps:+ Definition of the weighting function (using the transformedweights, 5D cube: upg,vpg,usg,vsg,nu)+ Shift-and-average data- Results:+ Wide-field visibilities (3D cube: u,v,nu)* Step #6: 2D IFFT- Substeps:+ 2D IFFT of wide-field visibilities- Results:+ Dirty image (3D cube: a,b,nu)* Step #7: Computation of the dirty beams- Substeps:+ Computation of the transfer functions of the sing<strong>le</strong>-dish andinterferometer antennas+ Computation of a uv tab<strong>le</strong> corresponding to point sources atposition where the dirty beams must be computedSft(up,vp,as,bs,us",vs",nu) = S(up,vp,as,bs,nu).T(us",vs",nu).exp-(i.2.pi.us".as)Results: A set of uv tab<strong>le</strong>s+ Loop over steps 3 to 6 on each tab<strong>le</strong> and store the dirty beams+ Fit of c<strong>le</strong>an beams on the dirty beams- Results:+ Set of dirty beams (5D cube: a’,b’,a",b",nu)+ Set of c<strong>le</strong>an beams (4D cube: (major,minor,ang<strong>le</strong>),a",b",nu)- Comments:+ If only the width of the beam and not its shape varies withthe frequency, then we can apply a dilatation of the coordinates15


WIFISYNA. imp<strong>le</strong>mentation planWIFISYNB. wifisyn language internal helpas a function of frequency, implying the computation of a sing<strong>le</strong>dirty beam for all the frequencies.BWIFISYN Language Internal HelpThis appendix describes the user interface of the WIFISYN package.<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012WIFISYNaxes.B.4 LOAD[WIFISYN\] LOAD Buffer Varname16B. wifisyn language internal helpLoad the specified internal buffer (VISI, WEIGHT, BEAM, DIRTY) into thespecified SIC variab<strong>le</strong> (Varname).B.5 READ[WIFISYN\]READ Buffer Fi<strong>le</strong> [/PLANE First Last]Read the specified internal buffer (UV, BEAM, DIRTY) from the specifiedinput Fi<strong>le</strong>. Default extensions are respectively .tuv, .beam, .lmv. Arange of channels can be specified using the /PLANE option.B.6 SETUP[WIFISYN\]SETUPSetup and display the imaging parameters for the internal uvxy tab<strong>le</strong>.B.7 UVBEAM[WIFISYN\]UVBEAMCompute the dirty beams associated to the internal uvxy tab<strong>le</strong>.B.8 UVGRID[WIFISYN\]UVGRID [/NOCONV]Grid the internal uvxy tab<strong>le</strong> into a wificube. The /NOCONV option createsthe wificube of the right dimension and initializes it so that the usercan fill it through the COMPLEX command.B.9 UVMAP[WIFISYN\]UVMAPCompute the dirty image associated to the internal uvxy tab<strong>le</strong>. This commandis equiva<strong>le</strong>nt to the following sequence: SETUP, UVGRID, FFT WIFI/DIRECT /XY, WIFI2VISI, FFT VISI /INVERSE, COMPLEX VISI TO REAL.B.1 LanguageCOMPLEX : Transfer comp<strong>le</strong>x internal buffers into SIC real images andvice-versaFFT : Compute direct or inverse FFT of internal buffersLOAD : Load an internal buffer into a SIC variab<strong>le</strong>READ : Read the input fi<strong>le</strong>s in internal buffersSETUP : Setup and display the imaging parameters for the internaluvxy tab<strong>le</strong>UVBEAM : Compute the dirty beams associated to the internal uvxytab<strong>le</strong>UVGRID : Grid the internal uvxy tab<strong>le</strong>UVMAP : Compute the dirty image associated to the internal uvxytab<strong>le</strong>UVSHIFT : Shift the phase center of the internal uvxy tab<strong>le</strong>(Not working yet)UVSORT : Sort the internal uvxy tab<strong>le</strong>(Not working yet)UVSWAP : Swap the UVT and UVR buffers(Not working yet)UVSYMMETRY : Check the Hermitian symmetry of the internal buffersVARIABLE : Map the imaging internal parameters onto the WIFI% SICstructureWIFI2VISI : Shift-and-average the wide-field hypercube to get a’’standard’’ visibility planeWRITE : Write internal buffers into output fi<strong>le</strong>sB.2 COMPLEX[WIFISYN\]COMPLEX VISICUBE|WIFICUBE TO|FROM AMPLITUDE|PHASE|RE-AL|IMAGINARYTransfer comp<strong>le</strong>x internal buffers (visicube or wificube) into SIC realimages for display. The inverse operation is possib<strong>le</strong> to set or to modifythe comp<strong>le</strong>x internal buffers.B.3 FFT[WIFISYN\]FFT VISICUBE|WIFICUBE /DIRECT|INVERSE /UV|XYCompute the direct or inverse 2D Fast Fourier Transform of internal comp<strong>le</strong>xbuffers (visicube or wificube). When the FFT is applied to thewificube buffer, the 2D FFT can be applied along either the uv or the xyWIFISYNB.10 UVSYMMETRY[WIFISYN\]UVSYMMETRY17B. wifisyn language internal helpCheck the Hermitian symmetry of the wificube (or visicube???) buffer.B.11 VARIABLE[WIFISYN\]VARIABLEMap the imaging internal parameters onto the WIFI% SIC structure.B.12 WIFI2VISI[WIFISYN\]WIFI2VISIShift-and-average the wide-field hypercube to get a ’’standard’’ visibilityUV plane, which can then be FFTed to get the dirty image.B.13 WRITE[WIFISYN\]WRITE Buffer Fi<strong>le</strong> [/PLANE First Last]Write the specified output Fi<strong>le</strong> from the specified internal buffer (UV,BEAM, DIRTY). Default extensions are respectively .tuv, .beam, .lmv. Arange of channels can be specified using the /PLANE option.1819


<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012


<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Chapitre 8Gestion des logiciels GILDASCopyright: IRAM/GILDAS8.1 Présentation et contexteGILDAS (http ://www.iram.fr/IRAMFR/GILDAS) est un ensemb<strong>le</strong> de logiciels(state-of-the-art) orientés vers la réduction de données de radioastronomie (sub)-millimétrique,qu’el<strong>le</strong>s proviennent d’une antenne unique ou d’un interféromètre. GILDAS comprend environ425 000 lignes de code exécutab<strong>le</strong> (c.-à-d. hors commentaires ou documentation) et il est structuréen deux parties : 1) un cœur, nommé GREG, qui délivre 1) <strong>le</strong>s services communs <strong>tel</strong>s qu’unebibliothèque graphique et 2) <strong>le</strong>s logiciels astronomiques proprement dit : ASTRO, CLASS, CLIC,


226 GESTION DES LOGICIELS G I L D A S<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012MAPPING... GILDAS est disponib<strong>le</strong> pour de nombreux systèmes allant de Linux à Windows enpassant par Mac/OSX. Il est ainsi possib<strong>le</strong> de l’utiliser sur un portab<strong>le</strong> ou sur des stations de travailpuissantes suivant <strong>le</strong>s besoins. Il comprend des outils avancés, comme une réduction faci<strong>le</strong>des données d’imagerie grand-champ provenant d’une antenne unique ou d’un interféromètre.L’histoire de GILDAS a commencé en 1983 dans <strong>le</strong> Groupe d’Astrophysique de Grenob<strong>le</strong>.Aujourd’hui, c’est une partie essentiel<strong>le</strong> des instruments de l’IRAM puisque c’est la suite de logicielsutilisée pour réduire <strong>le</strong>s données provenant du té<strong>le</strong>scope de 30m de l’IRAM et de l’interféromètredu Plateau de Bure. En conséquence, GILDAS est aujourd’hui principa<strong>le</strong>ment maintenupar des personnels IRAM avec des contributions de Grenob<strong>le</strong>/IPAG, de Bordeaux/LAB et deParis/LERMA 1 .Par ail<strong>le</strong>urs, des parties de GILDAS sont utilisées ou considérées dans beaucoup d’autrescontextes :– CLASS (<strong>le</strong> logiciel utilisé pour réduire <strong>le</strong>s données spectroscopiques de té<strong>le</strong>scopes uniques)est utilisé de manière courante dans d’autres observatoires (Herschel, SOFIA, APEX,CSO, JCMT, NANTEN, ARO, Effelsberg, etc...).– Le simulateur ALMA, construit en 2000-2001 pendant la phase de conception (voir lasection précédente), est toujours utilisé par de nombreux scientifiques pour simu<strong>le</strong>r la faisabilitéd’observations ALMA à partir de diverses simulations de sources astrophysiques.– Une large partie de l’analyse des caractéristiques des prototypes d’antennes d’ALMA (parexemp<strong>le</strong>, la qualité de la surface des antennes par holographie ou la qualité du pointage) aété réalisée dans GILDAS. Aujourd’hui encore, <strong>le</strong>s holographies des antennes sont réaliséessur <strong>le</strong> site (Atacama) dans GILDAS.Une contrainte importante est ainsi que toute évolution de GILDAS pour servir <strong>le</strong>s besoins del’IRAM doit être pensée en gardant tous <strong>le</strong>s autres utilisateurs à l’esprit.La longue histoire de GILDAS prouve la robustesse de son design. El<strong>le</strong> implique aussi uneimpressionnante accumulation d’expertise en radio-astronomie millimétrique, qui se traduit parune excel<strong>le</strong>nte adéquation entre <strong>le</strong>s services offerts et <strong>le</strong>s besoins des utilisateurs. Les développeurshistoriques de GILDAS (P. Valiron, R. Lucas, S. Guilloteau, G. Duvert,...) se sont en grandepartie tournés vers d’autres tâches au début des années 2000. Cela signifie que 1) l’expertise esttransférée dans de nouveaux contextes et/ou instruments <strong>tel</strong>s qu’ALMA (par exemp<strong>le</strong> R. Lucasest aujourd’hui un des acteurs clés du commissioning d’ALMA) et 2) qu’il a fallu renouve<strong>le</strong>r <strong>le</strong>sdéveloppeurs GILDAS.8.2 Assurer la continuité et la professionnalisationJ’ai ainsi eu deux objectifs principaux depuis que j’ai pris en main l’organisation de GILDASfin 2002 : il s’est agi, en embauchant et en formant graduel<strong>le</strong>ment une nouvel<strong>le</strong> génération dedéveloppeurs, 1) d’assurer la continuité de GILDAS et 2) de professionnaliser <strong>le</strong> développement.C’est dans cette perspective que j’ai encadré <strong>le</strong>s post-doctorats de P. Hily-Blant (actuel<strong>le</strong>ment1 En détail, l’équipe GILDAS est aujourd’hui composée de deux ingénieurs IRAM à temps p<strong>le</strong>in (S. Bardeau etE. Reynier), deux ingénieurs IRAM à temps partiel (J.-C. Roche et M. Lonjaret), d’un ingénieur LERMA à tempspartiel (B. Delforge à 10% jusque fin 2010) et de nombreux astronomes à temps partiel affiliés soit à l’IRAM (J. Pety,R. Zylka, H. Ungerechts, A. Sievers, V. Pietu, F. Gueth, A. Castro-Carrizo) soit à d’autres laboratoires (ESO, Chili :R. Lucas, LAB : S. Guilloteau, IPAG : S. Maret et P. Hily-Blant, Max Planck à Bonn : H. Wiesemeyer).


8.3 PERSPECTIVES 227<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012maître de conférence à Grenob<strong>le</strong>), V. Piétu (actuel<strong>le</strong>ment en CDI à l’IRAM pour s’occuper dulogiciel de calibration des données interférométriques) et que j’encadre aujourd’hui <strong>le</strong> travail dequatre ingénieurs de niveau recherche (S. Bardeau J.-C. Roche, M. Lonjaret et E. Reynier, encontrat avec l’IRAM).Parmi <strong>le</strong>s activités vita<strong>le</strong>s et consommatrices de temps bien qu’essentiel<strong>le</strong>ment invisib<strong>le</strong>s del’extérieur, nous avons 1) introduit l’usage d’outils de développement collaboratifs (par exemp<strong>le</strong>CVS), 2) remis à plat la distribution de GILDAS (par exemp<strong>le</strong> <strong>le</strong> système de compilation) et 3)maintenu ou réécrit <strong>le</strong>s librairies communes pour <strong>le</strong>s porter vers de nouveaux OS (par exemp<strong>le</strong>Mac OSX), pour supporter de nouveaux standards (par exemp<strong>le</strong> Fortran 2003, POSIX), pour introduirede nouvel<strong>le</strong>s technologies (par exemp<strong>le</strong>, <strong>le</strong> multi-threading). L’aide aux utilisateurs estune autre activité consommatrice de temps. Cela comprend l’écriture de documentation (toujoursà compléter), <strong>le</strong> maintien de la page web (http ://www.iram.fr/IRAMFR/GILDAS) et<strong>le</strong>s réponses à gildas@iram.fr où sont traités <strong>le</strong>s commentaires, <strong>le</strong>s questions et <strong>le</strong>s rapportsde bug (<strong>le</strong>s temps médians de première et dernière réponse à une requête sont par exemp<strong>le</strong>11 et 32 heures). La section NEWS de la page web de GILDAS indique <strong>le</strong>s changements intervenusdans chaque distribution mensuel<strong>le</strong> (3110 lignes entre la distribution de nov03 et cel<strong>le</strong>de jan12). El<strong>le</strong> montre en particulier un renouvel<strong>le</strong>ment régulier des différentes parties deGILDAS.Enfin, outre l’organisation du travail d’équipe et ma participation à la maintenance et à l’aideaux utilisateurs, je représente GILDAS tant à l’intérieur de l’IRAM (présentations à la direction,au Scientific Advisory Committee de l’IRAM) qu’à l’extérieur (présentations et démonstrations àdes éco<strong>le</strong>s ou des a<strong>tel</strong>iers). Cela représente 50% de mon activité. La recherche sur <strong>le</strong>s algorithmesd’imagerie grand-champ en interféromètrie (cf. partie 7) a représenté une activité supplémentairede 20% au cours des 5 dernières années.8.3 PerspectivesLa radio-astronomie millimétrique continue de connaître un développement instrumentalconsidérab<strong>le</strong>. Les sensibilités théoriques limites sont presque atteintes. Les bandes passantesinstantanées se mesurent aujourd’hui en GHz et demain en dizaines de GHz. Les plans focauxcommencent à être échantillonnés sur plusieurs minutes d’arc. Les surfaces col<strong>le</strong>ctrices augmententfortement et <strong>le</strong>s techniques radio sont de plus en plus utilisées à petite longueur d’onde.Dans ce contexte, <strong>le</strong>s logiciels de réduction doivent se réinventer en permanence, mais pas forcémentde zéro. L’expertise acquise et la compatibilité arrière sont des atouts considérab<strong>le</strong>s qu’ilfaut savoir faire fructifier. Avec l’avènement d’Herschel et d’ALMA, la question de l’avenir deGILDAS est souvent posée. Plutôt que de choisir un environnement logiciel produit pour unautre instrument, la politique actuel<strong>le</strong> de l’IRAM est de maintenir des logiciels de haute qualitépour ses instruments, tout en restant ouvert au monde extérieur. Cela se traduit par exemp<strong>le</strong> pardes développements précis mais si possib<strong>le</strong> génériques, par la possibilité d’échanger <strong>le</strong>s donnéesavec d’autres environnements logiciels à travers l’utilisation de formats standards et l’adaptationde l’interface à des usages modernes (par exemp<strong>le</strong> la possibilité d’interagir avec GILDAS àtravers python).


IRAM Memo 2011-1Preparing GILDAS for large datasetsI - GREG 2011 ∗S. Bardeau 1 , E. Reynier 1 , J. Pety 1,21. IRAM (Grenob<strong>le</strong>)2. Observatoire de Paris06-apr-2011version 1.3<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012CONTENTS 2Contents1 Why a new imp<strong>le</strong>mentation of the GTV library? 32 The new cool things for the enthousiastic users 33 Requirements 43.1 Widget and graphic library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43.2 Fortran compi<strong>le</strong>rs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Changes for end-users 54.1 Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54.1.1 Removed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54.1.2 Changed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64.1.3 New . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64.2 Commands, variab<strong>le</strong>s, SIC logicals and symbols . . . . . . . . . . . . . . . . . . . . 75 Changes for programmers 115.1 The new GTV overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115.2 Entry points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125.2.1 Removed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125.2.2 New . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13A Exhaustive description of the changes in GTV 14A.1 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14A.1.1 Removed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14A.1.2 Changed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16A.1.3 New . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17A.2 Variab<strong>le</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18A.2.1 Removed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18A.2.2 Changed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19A.2.3 New . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19A.3 SIC logicals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19A.3.1 Removed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19A.3.2 New . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19A.4 Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20A.4.1 Removed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20AbstractThe size of the datasets produced by the IRAM instruments experience a tremendeousincrease (because of multi-beam receivers, wide bandwidth receivers, spectrometers withthousands of channels, and/or new observing mode like the interferometric on-the-fly).Visualizing these datasets in a fluent way is a chal<strong>le</strong>nge, which requires the best use ofthe availab<strong>le</strong> hardware and operating systems (multi-cores processors and multi-windowenvironments). This prompted a large rewriting of the part of the GILDAS kernel (knownas GTV) in charge of the interface between the plotting facilities and the system. The mainguidelines of this rewriting were 1) the backward compatibility when possib<strong>le</strong>, 2) the use ofmodern standards as the multi-threading or the GTK+ toolkit, 3) the factorization of thesource code for different OS (Linux, Mac OSX and MS Windows), 4) the imp<strong>le</strong>mentation ofnew facilities like a PNG output or an interactive <strong>le</strong>ns. This document thoroughly describesthe improvements for the end-users and the programmers.Keywords: multithreading, multiwindowing, the GIMP ToolKit (GTK+), Portab<strong>le</strong> NetworkGraphics (PNG)Related documents: GreG documentation, Programming in GILDAS∗ This work was partially funded by the grant ANR-09-BLAN-0231-01 from the French Agence Nationa<strong>le</strong> de laRecherche as part of the SCHISM project.11 WHY A NEW IMPLEMENTATION OF THE GTV LIBRARY? 31 Why a new imp<strong>le</strong>mentation of the GTV library?The GreG program lies on the so-cal<strong>le</strong>d GTV library, a low <strong>le</strong>vel segment library. This library waswritten two decades ago, and not updated for several years. This was resulting in old-fashiongraphical aesthetics for nowadays users, with some annoying constraints from other ages, e.g.windows which where not refreshed as often as the user would like.For the maintainers point of view, the lack of experts of the source code was a big prob<strong>le</strong>mto fix bugs or improve any feature, especially with an old-fashion source code. Finally the statuswas usual ru<strong>le</strong> in such a case: “If you don’t touch it you don’t break it”.It was decided in 2007 to act before reaching the non-return point. In particular it wastime to cut the dependency with the old widget library Motif (and its various imp<strong>le</strong>mentationsgiving more or <strong>le</strong>ss satisfying results). The choice was made to use GTK instead, a well-knownwidget library for Linux users (but also supported on MS Windows and Mac OSX), and activelydeveloped by the community. This was a first part of the work.Another key piece is that GTV could only do one action at a time. By action one have tounderstand: storing a new plot coming from a user command, or drawing in one window, orplotting an hardcopy, etc. In particular this explains why the windows could not all be refreshedwhen desired. From the developers point of view, it was due to the fact that a large amount ofthe drawings were performed with global variab<strong>le</strong>s (some of them were internal to the library,but some others were the user property!). Thanks to modern Fortran features (namely derivedtypes and pointers), the majority of the variab<strong>le</strong>s are not global anymore, but are passed tothe drawing routines through a small number of structures describing the plot and its destination.Finally, thanks to the above point, it was possib<strong>le</strong> to imp<strong>le</strong>ment GTV as a multi-threadedlibrary: the user can work on its data whi<strong>le</strong> all its X windows are automatically refreshed orupdated.In this new context, the field is open for new and modern graphical tools. For examp<strong>le</strong>, a<strong>le</strong>ns is already availab<strong>le</strong>: a popup window can be opened to zoom and browse a plotting windowwith the cursor. And more tools are already considered for the future.2 The new cool things for the enthousiastic usersWill your life change with the new GTV? Well, not exactly, but consider these points:• the GTV is now multithreaded: this means basically that the drawings and the flowof commands (including the data processing) are done in two different threads. With theefficient rewriting of the code and your multi-core machine, you will experience much morefluid graphics: the drawing events won’t be slowed or postponed by the data processing,and vice-versa.• GTK+ is now used as the widget library. No more old-fashion windows, forms, or fi<strong>le</strong>browsing popups, they will look like what you are used to.• multi-windowing is more user friendly: you can have several plots in several windows, allare refreshed in real time. No more ZOOM REFRESH: windows are always up-to-date. You


3 REQUIREMENTS 44 CHANGES FOR END-USERS 5<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012can also define the windows size and position with much more f<strong>le</strong>xibility. The first windowis not anymore forced to open in the top right corner of your screen: now YOU decide ifyour windows should open or not at a specific position.• zooming is now easier and more interactive: a <strong>le</strong>ns is now availab<strong>le</strong> at any time whencenter-clicking in any plotting window, and zooming/unzooming is done with the mousewheel.• tired of PostScript captures, rotations, and even color conversions? Now you can convert(hardcopy) your plot natively to the PNG image format. In particular, the backgroundtransparency is supported for an enhanced cosmetic of your presentations.There also other things which will ease your life:• Encapsulated PostScripts of landscape-oriented plots are not rotated anymore to portraitorientation. It is assumed that you will include it in another document (Latex source,presentation, etc): you will not have do derotate it back to landscape orientation.• the Look-Up-Tab<strong>le</strong> dynamics has been increased from 128 to 65536 <strong>le</strong>vels. You will notsee anymore staircasing effects on smoothly-varying images.• the so-cal<strong>le</strong>d static Look-Up Tab<strong>le</strong> mode works now: you can use one Look-Up Tab<strong>le</strong>per image in a sing<strong>le</strong> window.• the GTV variab<strong>le</strong>s have been merged under a few SIC structures: this avoids dilutingyour own variab<strong>le</strong>s into a large number of program variab<strong>le</strong>s.• some command and options have been renamed for clarity, and to get rid of obso<strong>le</strong>tenomenclature. Among other things, you will not have anymore to figure out which one ofthe nine CLEAR flavors you need. For a smooth transition, GTV will recognize the old syntaxcommands and <strong>le</strong>t you know what they should be replaced with. Some variab<strong>le</strong>s, SIClogicals, and synbols have also changed for the same reasons: you will find a summaryof all the changes in the tab<strong>le</strong>s 2, 3, 4 and 5.• N 2 algorithms in the source code are fixed. You think that GO SPECTRUM or GO BIT aretaking ages on a big data cube, slowing down at a point you feel they will never finish? Tryagain now!• no more weird error messages like “Not enough colors” or “Too many images plotted”:the internal limitations have been removed and you are now only limited by the physicalmemory of your computer.And more will come in the future!3 Requirements3.1 Widget and graphic libraryThe GIMP ToolKit (GTK+) is now used as the widget library, whi<strong>le</strong> the GIMP Drawing Kit(GDK) is used as the graphic library. This choice ensures portab<strong>le</strong> code and similar renderingon the three major sytems Gildas supports: Linux, Mac OSX, MS Windows. GTK+ and GDKare thus now a requirement in order to compi<strong>le</strong> the Gildas kernel. They are provided together4 CHANGES FOR END-USERS 6• HPGL• REGIS• TEKTROThis includes all the variants which were availab<strong>le</strong> in the Gildas kernel/etc/ sources, but notcompi<strong>le</strong>d by default in the standard Terminal Definition Fi<strong>le</strong>.The device SVG INTERACTIVE is also disab<strong>le</strong>d, at <strong>le</strong>ast as long as its need is not c<strong>le</strong>arlyrequired. The device SVG [LOCAL] is kept for hardcopies.4.1.2 Changed• The EPS (Encapsulated PostScript) hardcopies are not automatically rotated anymore. Thereason is that we assume now that EPS are intended to be included in another documentrather than being printed. The new option /FITPAGE for command HARDCOPY enab<strong>le</strong>sautomatic rotation and scaling (i.e. the historical behavior). The option /PRINT (formerly/PLOT) implici<strong>tel</strong>y activates /FITPAGE. Finally, the standard (non-encapsulated) PostScriptshave not been changed. The tab<strong>le</strong> 1 summarizes the former and new rotation ru<strong>le</strong>s.• The default Look-Up Tab<strong>le</strong> (LUT) is now a continuous variation of colors, from black towhite. It is similar to the LUT which can be loaded from the fi<strong>le</strong> rainbow3.lut, probablythe most popular LUT in GTV. It can be reloaded at any time with the command LUTDEFAULT. The previous default LUT was also a continuous variation of colors (circular huevalue), but from red to red, resulting in confusing low and high <strong>le</strong>vels. It still can be loadedwith the command LUT COLOR.• The so-cal<strong>le</strong>d “LUT static” mode has been fixed and works correctly now. “LUT static”mode can be used to define one LUT per GreG image. See HELP GTVL\CHANGE LUT fordetails.• Now the pen is a global atribute, e.g.:GREG\PEN 0 ! BlackCREATE DIRECTORY SUBCHANGE DIRECTORY SUBGREG\PEN 1 ! RedCHANGE DIRECTORY ..on the system repositories as a unique package. Its presence on your system can be checked withthe following command:pkg-config --exists gtk+-2.0; echo $?If a 0 is returned (i.e. no error), then you will be ab<strong>le</strong> to compi<strong>le</strong> the new Gildas kernel. Ifanother value is returned, you will need first to install the package.The GTK+/GDK package has been tested between versions 2.10 and 2.22. Beyond thisrange, you can encounter GTK warnings or errors. P<strong>le</strong>ase report these to gildas@iram.fr,with your GTK version which you can find in the fi<strong>le</strong> gtk/gtkversion.h instal<strong>le</strong>d on your system.In addition, the support for the old widget library Xforms is removed. Its support was stillpresent but was not tested for years. The support for the MOTIF library (the default used withthe previous kernel) is obso<strong>le</strong>te and is considered for comp<strong>le</strong>te removal soon.3.2 Fortran compi<strong>le</strong>rsAt the time this documentation is written (14-dec-2010), here is the status of the various Fortrancompi<strong>le</strong>rs supported by Gildas:• In<strong>tel</strong> Fortran Compi<strong>le</strong>r (ifort): versions 9.0 and 11.1 have been tested. As far as we knowit seems fine to compi<strong>le</strong> the new kernel with ifort. There is no bug directly related to thenew kernel, but remember there can be prob<strong>le</strong>ms in old version of ifort (e.g. a memory <strong>le</strong>akwith ifort 9.0).• g95: none of the stab<strong>le</strong> versions of g95 (i.e. up to 0.92) is now ab<strong>le</strong> to run correctly thenew Gildas kernel. The Fortran runtime libraries it provides do not seem to be threadsafe,i.e. there are conflictual access to its internal routines. With the imp<strong>le</strong>mentation ofthe Fortran co-arrays, the current development version of g95 (0.93) should be thread-safe.The prob<strong>le</strong>m is that this version is not stab<strong>le</strong> enough to compi<strong>le</strong> the Gildas kernel, anddevelopments seem frozen since August 2010.• the GNU Fortran Compi<strong>le</strong>r (gfortran): recent versions of gfortran are ab<strong>le</strong> to compi<strong>le</strong> andrun correctly the new Gildas kernel. The lower limit 4.3.0 required for the gfortran versionand introduced 2 years ago is kept unchanged. The annoying bug which enforce the userto type RETURN after clicking in a widget is not related to the new kernel. A patch for thisbug has been submitted to the development versions of gfortran, and it will be part of there<strong>le</strong>ases 4.4.6, 4.5.2 and 4.6.0.4 Changes for end-usersAll the obso<strong>le</strong>te, changed or new concepts are exhaustively described in this section and in theappendix A.4.1 Behavior4.1.1 RemovedThere is a number of devices officially supported by GTV which have been removed. In theGTV context, a device is a destination for the plot stored in the GTV tree (e.g. X-Windows orPostScripts). The following ones have been removed, mostly because they are just obso<strong>le</strong>te:4 CHANGES FOR END-USERS 7Tab<strong>le</strong> 1: How the PostScripts and Encapsulated PostScripts are rotated or not depending on theGTV version and the plotting page. Condition1 : Yes if the X range of the drawings is largerthan its Y range, else No. This tab<strong>le</strong> ref<strong>le</strong>cts how the printers or the Latex inclusions behave. Itdoes not ref<strong>le</strong>ct how some viewers can display the PostScript, in particular ghostview.OldNewKind EPS PS EPS PS EPS PS/FITPAGELandscape Yes Yes No Yes Condition1 YesPortrait No No No No Condition1 No• PNG hardcopies: in the context of modern use of figures (e.g. digital presentations,webpages, etc), Greg plots can now be transfered natively to PNG images. See HELPGTVL\HARDCOPY for details. In particular, these images support background transparency4.2 Commands, variab<strong>le</strong>s, SIC logicals and symbolsThere has been an important effort to clarify the names of the various GTV objects, to fix orimprove their behavior, and to c<strong>le</strong>an out the obso<strong>le</strong>te ones. This can imply here and there anaction from the user to make its procedures compatib<strong>le</strong> with the new GTV. The new GTVknows about the old commands: it will detect these and suggest to the user what they shouldbe replaced with. It can run in 2 modes, to<strong>le</strong>rant or strict, which can be togg<strong>le</strong>d with the SICvariab<strong>le</strong> GTV%STRICT2011. All the changes regarding these objects are exhaustively described inthe appendix A. The tab<strong>le</strong>s 2, 3, 4 and 5 summarize these changes.With the above sequence of commands, the next segments created in the first directorywould have been black, since there was a memory of the last pen in use when <strong>le</strong>aving thedirectory. Now, the pen used everywhere is the last pen defined anywhere.4.1.3 New• An interactive “<strong>le</strong>ns” tool: browsing and zooming in your figures is now enhanced thanksto a new tool: i) open the <strong>le</strong>ns with a center-click on any plotting window, ii) zoom in orout with the mouse wheel, iii) enlarge or reduce the <strong>le</strong>ns with CTRL+wheel, iv) close the<strong>le</strong>ns with center-click again.


4 CHANGES FOR END-USERS 84 CHANGES FOR END-USERS 9<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Tab<strong>le</strong> 2: Old GTV and GREG commands which are removed or modified, their purpose, and theirequiva<strong>le</strong>nt with the new GTV syntax. Refer to section A.1 for a detai<strong>le</strong>d description.Old command Behavior Equiva<strong>le</strong>ntCLEAR perform a CLEAR PLOT see CLEAR PLOTCLEAR ALPHAbring the plotting window in not yet definedfrontCLEAR GRAPHIC bring the terminal in front noneCLEAR PLOT perform a CLEAR WHOLE, or DESTROY ALL, orperform a CLEAR TREECHANGE DIRECTORY + CLEAR DIRECTORYCLEAR TREE destroy the current tree CHANGE DIRECTORY + CLEAR DIRECTORYCLEAR WHOLE destroy all the trees DESTROY ALLCLEAR WINDOW [Num] close the active/numbered windowDESTROY WINDOW [Dir [Num]]CHANGE CLEAR TREE|WHOLE set the behavior of CLEAR PLOT noneCHANGE DRAW ON|OFF togg<strong>le</strong> the drawing state to active noneor s<strong>le</strong>epingCHANGE ZOOM NEW|CURRENT togg<strong>le</strong> the default behavior of noneZOOMCREATE DIRECTORY /PIXEL set the window size of a new top CREATE DIRECTORY /GEOMETRYdirectoryCREATE DIRECTORY /SIZE set the plot page of a new top CREATE DIRECTORY /PLOT PAGEdirectoryDISPLAY CLEAR show the CLEAR PLOT behavior noneHARDCOPY /PLOT send the hardcopy to the printer HARDCOPY /PRINTZOOM REFRESHforce the redraw of the active nonewindowZOOM /REGIONdefine the zoom area with the nonecursorZOOM /CURRENTzoom is performed in the current nonewindowZOOM /NEWzoom is performed in a new windowZOOM without argumentGREG1\SET DRAW ON|OFF togg<strong>le</strong> the drawing state to active noneor s<strong>le</strong>epingGREG1\SHOW DRAW display the drawing state none4 CHANGES FOR END-USERS 10Tab<strong>le</strong> 4: SIC logicals in GTV which are modified or added. Refer to section A.3 for a detai<strong>le</strong>ddescription.Old name Equiva<strong>le</strong>nt name UsageLUT DIR: LUT#DIR: where the LUT fi<strong>le</strong>s should be searched innone WINDOW GEOMETRY the default geometry of new windowsnone WINDOW POSITION the position on screen of the first windowTab<strong>le</strong> 3: GTV and GREG variab<strong>le</strong>s which are removed, modified, or added. Their read-write statusis indicated in the third column. Refer to section A.2 for a detai<strong>le</strong>d description.Old name New name Read-Write UsageGTV%SLEEP none RO the active/s<strong>le</strong>eping drawing stateGTV%IMAGES[4,15] none RO internal values associated to thefirst 15 imagesGTV%IDENT none RW the number of the device currentlyin useLUT none RO the hue values of the currentLUT in useREXTR none RO the extrema of the last segmentcreatedREXTR D none RO the extrema of the current workingdirectorynone GTV%PWD RO the current working directoryGTV%LUT STATIC LUT%STATIC RO the dynamic/static LUT stateLUT SIZE LUT%SIZE RO the number of <strong>le</strong>vels of the currentLUTLUT MODE LUT%MODE RW the HSV or RGB mode for theuser-defined LUTHUE LUT%HUE RW the hue values of the currentLUT (input/output)SATURATION LUT%SATURATION RW same for the saturation valuesVALUE LUT%VALUE RW same for the intensity valuesRED LUT%RED RW same for the red intensity valuesGREEN LUT%GREEN RW same for the green intensity valuesBLUE LUT%BLUE RW same for the blue intensity valuesB HUE LUT%BLANKING%HUE RW the hue value of the blankingcolor (input/output)B SATURATION LUT%BLANKING%SATURATION RW same for the saturation valueB VALUE LUT%BLANKING%VALUE RW same for the intensity valueB RED LUT%BLANKING%RED RW same for the red intensity valueB GREEN LUT%BLANKING%GREEN RW same for the green intensity valueB BLUE LUT%BLANKING%BLUE RW same for the blue intensity valueP HUE LUT%PEN%HUE RW the hue values of the user-definedpens (input/output)P SATURATION LUT%PEN%SATURATION RW same for the saturation valuesP VALUE LUT%PEN%VALUE RW same for the intensity valuesP RED LUT%PEN%RED RW same for the red intensity valuesP GREEN LUT%PEN%GREEN RW same for the green intensity valuesP BLUE LUT%PEN%BLUE RW same for the blue intensity valuesLCUT CURIMA%SCALE[1] RO low cut for last image PLOT’tedHCUT CURIMA%SCALE[2] RO high cut for last image PLOT’tedSCALING CURIMA%SCALING RO scaling mode for last imagePLOT’tedEQUAL NLEV CURIMA%EQUAL%NLEV RO number of <strong>le</strong>vels in EQUAL modeEQUAL LEV CURIMA%EQUAL%LEV RO <strong>le</strong>vels in EQUAL modeEQUAL HIST CURIMA%EQUAL%HIST RO values per <strong>le</strong>vel in EQUAL mode5 CHANGES FOR PROGRAMMERS 115 Changes for programmers5.1 The new GTV overviewIn the previous version of the GTV, the metacode describing the plots was stored in several chunksof memory. The current chunk was contiguously fil<strong>le</strong>d with all the incoming data: directorydescriptors, segments descriptors, segment data, or image descriptors. When the current chunkwas (nearly) full, it was copied to a newly allocated chunk, and reset for new use. This had 3major limitations:• it was a permanent worry to make sure that the incoming data will fit in the remainingplace of the current chunk,• the tree size and the numbers of images in the tree were limited by hard coded parametersin the source code,• the various links in the tree between the directories, the segments, and their data, wereremembering the chunk number and the position in the chunk. De<strong>le</strong>ting an object andfreeing its associated memory was just a nightmare: links could not be updated easily.Tab<strong>le</strong> 5: Old GTV symbols which are removed, and the command which can be used to definethem in user’s ∼/.gag.dico . Refer to section A.4 for a detai<strong>le</strong>d description.Old symbol Equiva<strong>le</strong>ntCDSYMBOL CD "GTVL\CHANGE DIRECTORY"PWD SYMBOL PWD "GTVL\DISPLAY DIRECTORY"MKDIR SYMBOL MKDIR "GTVL\CREATE DIRECTORY"Figure 1: The tree and linked lists structure of the metacode storing the plots in the GTV, witha basic examp<strong>le</strong> of top directories, subdirectories, and segments. The relationship presented herebetween the various e<strong>le</strong>ments is not exhaustive.Given these limitations, the choice was made to fully rewrite the way the metacode data isstored in memory. Appropriate Fortran derived types were defined: they describe the variouslinks an object can have with others in the tree. Figure 1 shows an examp<strong>le</strong> of the various kind


5 CHANGES FOR PROGRAMMERS 125 CHANGES FOR PROGRAMMERS 13<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012of data which can be encountered in the metacode.All the links are made with allocatab<strong>le</strong> pointers, which are allocated in real time, on-demand.The tree is thus now growing dynamically in memory. De<strong>le</strong>ting an object is just as easy asdeallocating a pointer to it, after having taken care that the surrounding e<strong>le</strong>ments in the tree arecorrectly updated. Furthermore, deallocation can be delayed (i.e. put in the event stack) afterall the events which need it are done, without altering the normal life of the tree (as ru<strong>le</strong>d by thecommands executed).5.2 Entry points5.2.1 RemovedThe so-cal<strong>le</strong>d “immediate pen” support and associated entry points are removed:• gti where• gti pen• gti out• gti draw• gti relocThe “immediate pen” was used to plot lines directly on the default window, without storingthem in the metacode. This was an unsatisfying mechanism since: i) these drawings (probablyuseful) were lost as soon as the window was redrawn, ii) the window manager could ask for awindow redraw at any time.The S<strong>le</strong>ep and Wake Up modes for gtview are removed. They were intended to delay thedrawing of new segments being added to the metacode. This behavior has been removed becausei) the drawing is performed in another thread i.e. it does not slow down the main thread execution,ii) the drawing routines were speed up to avoid re-reading the who<strong>le</strong> tree in order to search forundrawn segments, iii) user always wants to see the segments being added as soon as possib<strong>le</strong>.As a consequence the following entry points are removed:• gtstat (it was returning the s<strong>le</strong>eping status of the GTV)• gtview(’S<strong>le</strong>ep’) and gtview(’Wake Up’) (they were setting the s<strong>le</strong>eping status of theGTV).The following obso<strong>le</strong>te entry points are removed:• gtpaus• gtg charsiz• gtg openA EXHAUSTIVE DESCRIPTION OF THE CHANGES IN GTV 14AExhaustive description of the changes in GTVA.1 CommandsA choice has been made to clarify the various commands. In particular, there were somekeywords which were refering to some obso<strong>le</strong>te devices (e.g. CLEAR ALPHA and CLEAR GRAPHIC).There was a also a confusion with the behavior command CLEAR. The ru<strong>le</strong> is now: CLEAR FOOerases the content of the object designated by FOO, whi<strong>le</strong> the new command DESTROY kills thisobject.A.1.1Removed• CHANGE CLEAR TREE|WHOLE, DISPLAY CLEAR– commands were controling and displaying the behavior of CLEAR PLOT– reason: associated CLEAR TREE and CLEAR WHOLE are removed.• CHANGE ZOOM NEW|CURRENT– command was controling the default behavior of ZOOM, i.e. if the zoom should beperformed in the main or in a new window.– CHANGE ZOOM is removed since the zoom is now always performed in a new window.• CHANGE DRAW ON|OFF, and GREG1\SET DRAW ON|OFF– commands were both disabling (OFF) the real-time drawing of the new segments beingadded to the metacode, and drawing them (ON) later on.– reason: associed mode is removed in the Fortran API (see comments on gtview atsection 5.2.1.• CLEAR GRAPHIC– command was supposed to bring to front (or focus) the terminal (CLEAR GRAPHICmeans hide the graphic window).– reason: not supported on any known modern window managers + too many keywordsaccepted by CLEAR + keywords have no meaning for those who did not know the olddevices like Tektro.• CLEAR PLOT– reason: there was a confusion between plot c<strong>le</strong>aring and windows destruction.– in the simp<strong>le</strong>st case, you have one window, and you are working in the top directory(probably


A EXHAUSTIVE DESCRIPTION OF THE CHANGES IN GTV 16A EXHAUSTIVE DESCRIPTION OF THE CHANGES IN GTV 17<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012A.1.2– these options are removed since it not possib<strong>le</strong> anymore to zoom in the main window(i.e. /NEW is implicit now)• ZOOM /REGION– reason: not availab<strong>le</strong> on MS Windows, unused, duplicate of the new <strong>le</strong>ns.• ZOOM buttons– ”A” (C<strong>le</strong>ar alphanumeric screen) is removed– reason: same as CLEAR ALPHAChanged• CHANGE WINDOW WinNum• CLEAR– change the active window to the given window number. The active window is the onein which the interactive cursor will appear when it is invoked.– window numbering starts now from 1 (Fortran like) instead of 0 (C like). So in most ofthe cases the main window of the current directory has now number 1, and the zoomwindow (if any) has number 2.– was performing a CLEAR PLOT– now performs a CLEAR ALL (see after).• CLEAR ALPHA– commands is renamed (new name to be defined). It is supposed to bring to front (orfocus) the graphic window (CLEAR ALPHA means hide the alphanumeric terminal).– reason: too many keywords accepted by CLEAR + keywords have no meaning for thosewho did not know the old devices like Tektro.– remark: this feature is poorly supported on Linux window managers (too many applicationsmust have excessively used this, so that the window managers are veryrestrictive now).• CLEAR DIRECTORY [DirName]– the old behavior was to make the directory and its content invisib<strong>le</strong> for later destructionby COMPRESS.– command behaves differently: CLEAR DIRECTORY DirName empties the directorynamed DirName. As a consequence, this c<strong>le</strong>ars the windows seeing this directory.Without argument the content of the current working directory is removed. Segmentsare now really de<strong>le</strong>ted.– reason: need a command which c<strong>le</strong>ars the content of a window i.e. of a top directory(usually). Need also to minimize the number of keywords accepted by CLEAR for clarity.– the old behavior (destruction of the directory) is ensured by the new command DESTROYDIRECTORY DirName.A EXHAUSTIVE DESCRIPTION OF THE CHANGES IN GTV 18– destroys the input directory and its windows attached. Destroying


A EXHAUSTIVE DESCRIPTION OF THE CHANGES IN GTV 20– if defined, these new logicals control respectively the size of any new window, and theposition on the screen of the first window when the device is opened.– user can define (one of) them in its ∼/.gag.dico for all its sessions, or later during asession.– the option /GEOMETRY of the command CREATE DIRECTORY|WINDOW override the valuesin WINDOW GEOMETRY.– see CREATE DIRECTORY|WINDOW above for the syntax to be used.A.4 SymbolsA.4.1• CD• PWD• MKDIRRemoved– reason: should not be provided by GREG– use CHANGE DIRECTORY or define the same symbol instead– reason: unused / should not be provided by GREG– use DISPLAY DIRECTORY or define the same symbol instead– reason: should not be provided by GREG– use CREATE DIRECTORY or define the same symbol instead<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012


<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012


Chapitre 9Copyright: Stéphane Guisard (Los Cielos de America)<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Action Spécifique ALMA (administration dela recherche)9.1 Statut du projet ALMALes deux prochaines années vont voir la mise en service scientifique d’ALMA. Sur <strong>le</strong> site à5000 m d’altitude, <strong>le</strong>s premières franges à deux antennes ont été obtenues fin octobre 2009 et <strong>le</strong>sclôtures d’amplitude et de phase à 3 antennes ont été obtenues début 2010, <strong>le</strong>s premières observationsscientifiques (cyc<strong>le</strong> 0 de la période dite "early science") réalisées à partir d’octobre 2011et il y a actuel<strong>le</strong>ment une vingtaine d’antennes en fonctionnement. Dans <strong>le</strong> ca<strong>le</strong>ndrier actuel, ladate limite pour <strong>le</strong> deuxième appel à observations scientifiques aura lieu début juil<strong>le</strong>t et la fin dela construction d’ALMA est prévue pour 2013. Le passage de la phase de construction à la phased’exploitation scientifique d’un observatoire <strong>tel</strong> qu’ALMA pose de nombreuses questions. Commentpréparer au mieux la phase scientifique d’un instrument extrêmement compétitif car uniqueet ouvrant de nouveaux espaces de paramètres (très haute résolution angulaire, longueurs d’ondesub-millimétriques) ? Comment s’assurer que l’expertise technique (matériel<strong>le</strong> et logiciel<strong>le</strong>) utiliséelors de la construction soit conservée pour permettre de faire d’ALMA un instrument évolutif? Quel est l’avenir des observatoires actuels de radio-astronomie sub-millimétrique ?9.2 Objectifs de l’action spécifiqueJ.-M. Hameury m’a nommé directeur de l’Action Spécifique ALMA (http ://www.graal.univ-modepuis janvier 2008 avec un conseil scientifique entièrement renouvelé 1 pour aider à répondre à1 Il comprend des spécialistes (F. Boone remplacé en 2009 par P. Salomé du LERMA, P.-A. Duc du CEA/Saclay,E. Josselin du GRAAL, V. Piétu de l’IRAM, F. Selsis du LAB et A. Walters du CESR), des membres des programmesnationaux (S. Charlot pour <strong>le</strong> PNCG, E. Dartois pour PCMI, L. Jorda remplacé en 2010 par N. Biver pour<strong>le</strong> PNP, F. Ménard pour <strong>le</strong> PNPS et M. Tallon remplacé en 2011 par O. Chesneau pour l’ASHRA) ainsi que troismembres invités (F. Gueth, membre de l’ALMA Science Advisory Committee, F. Pajot, chargé de mission à l’INSU


236 ACTION SPÉCIFIQUE ALMA (ADMINISTRATION DE LA RECHERCHE)<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012ces questions. Notre premier objectif est d’animer et de structurer la communauté scientifiquenationa<strong>le</strong> en vue de l’exploitation d’ALMA. Il s’agit en effet d’assurer que <strong>le</strong> retour scientifiquefrançais soit à la hauteur des efforts financiers importants de la France dans <strong>le</strong> domaine(sub)-millimétrique tant pour construire ALMA que pour gérer l’IRAM.En particulier, l’ASA est active pour sensibiliser la communauté au sens large aux premiersappels d’offre et à la compétition accrue sur ALMA. Obtenir du temps sur l’interféromètre duPlateau de Bure est déjà diffici<strong>le</strong>. L’effet est amplifié avec ALMA car il s’agit d’un instrumentunique, impliquant une compétition mondia<strong>le</strong> d’autant plus accrue que <strong>le</strong> comité de sé<strong>le</strong>ctiondes propositions est unifié et qu’ALMA devra servir une communauté bien plus grande que lacommunauté radio. Par ail<strong>le</strong>urs, la sensibilité accrue d’ALMA par rapport à l’interféromètre duPlateau de Bure actuel (d’environ un facteur 10) compensera tout juste la difficulté des observationsdemandées sur ALMA dans <strong>le</strong> submillimétrique et à très haute résolution angulaire. Ainsi,lors de l’appel à proposition dit « Early Science Cyc<strong>le</strong> 0 », seu<strong>le</strong> 1 proposition sur 9 a été acceptéeet <strong>le</strong> nombre de propositions acceptées (112 projets pour la 1ère année) sur ALMA a étédu même ordre de grandeur que <strong>le</strong> nombre de propositions acceptées aujourd’hui au Plateau deBure (environ 150 projets par an). Nous essayons donc de promouvoir une structuration scientifiquede la communauté française : 1) en identifiant <strong>le</strong>s thématiques astrophysiques où la Francepeut jouer un rô<strong>le</strong> de premier plan au sein des programmes nationaux de l’INSU ; et 2) en développantl’approche multi-longueurs d’onde. Cette structuration est d’autant plus importantequ’il n’y a pas de temps garanti sur ALMA, et que <strong>le</strong>s études multi-longueurs d’ondes vont sansaucun doute jouer un rô<strong>le</strong> crucial dans l’analyse des données d’ALMA. Le retour scientifiquepour <strong>le</strong> permier appel est bon : 256 français ont répondu en tant que PI ou co-Is ; 7 propositionsacceptées ont un PI français et 34 autres ont au moins un co-I français 2 .9.3 Activités 2008-2011Après une période de présentation du projet ALMA en 2008 (séminaires à l’IAS, à l’IAP,au GRAAL/LUPM, au CESR/IRAP et au CEA/Saclay ainsi qu’une présentation à la semaine dela SF2A), nous avons organisé début avril 2009 <strong>le</strong>s journées ASA à Grenob<strong>le</strong> (co-organisationavec l’IRAM et <strong>le</strong> LAOG/IPAG). Durant ces journées, toute la communauté (une centaine depersonnes présentes) a été invitée à discuter de la manière dont el<strong>le</strong> souhaitait s’organiser scientifiquement.Suite à ces journées, l’ASA a proposé dans un appel d’offre joint 2009-2010 desoutenir financièrement des groupes dont l’objectif à terme est d’obtenir du temps avec ALMA.Cette action a été reconduite dans l’appel d’offre 2011. C’est au total neuf groupes qui aurontété soutenus entre 2009 et 2011 3 .et L. Vigroux, président du conseil de l’ESO).2 En tout 40% des propositions acceptées ont au moins un co-I français, alors que <strong>le</strong> retour « théorique » attenduest 6% (= 18% part de la France dans l’ESO × 33% part de l’ESO dans ALMA).3 Les coordinateurs et <strong>le</strong>s thèmes de ces groupes sont : 1) P. André, phases précoces de la formation des étoi<strong>le</strong>s detoute masse ; D. Bockelée-Morvan, planétologie avec ALMA - Préparation Early Science ; O. Chesneau, enveloppecommune et disques autour des étoi<strong>le</strong>s évoluées ; J. Braine, formation s<strong>tel</strong>laire et <strong>milieu</strong> inters<strong>tel</strong>laire : de la Galaxieaux galaxies ; J.-F .Gonza<strong>le</strong>z, disques protoplanétaires dans <strong>le</strong> (sub)-millimétrique : paver la route vers ALMA ;S. Guilloteau et A. Dutrey, Mass and Ages of Young Stars and Chemistry in Disks ; E. Josselin, Etoi<strong>le</strong>s évoluéesavec ALMA : études chimiques et polarimétriques ; J.-P. Kneib, Distant dusty galaxies <strong>le</strong>nsed by massive clustersat millimeter wave<strong>le</strong>ngth ; B. Rocca-Volmerange, Radio galaxies lointaines du catalogue HzRG avec ALMA.


9.3 ACTIVITÉS 2008-2011 237<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012En 2009, l’ASA s’est aussi investie dans l’effort de prospective INSU. Nous avons eu deuxactions. Nous avons d’abord répondu aux questionnaires du groupe moyen 4 et du groupe de réf<strong>le</strong>xionsur <strong>le</strong>s services d’observation à propos du service SO3/ALMA. Puis, nous avons donnéun avis sur <strong>le</strong>s problèmatiques de la prospective en lien direct avec l’ASA dans un document 5 oùnous avons entre autres défendu la complémentarité entre ALMA et <strong>le</strong> projet NOEMA d’extensionde l’interféromètre millimétrique du Plateau de Bure.En 2010, l’ASA a en plus soutenu <strong>le</strong>s deux évènements organisés par <strong>le</strong> nœud de l’ARC àl’IRAM : 1) l’éco<strong>le</strong> bi-annuel<strong>le</strong> d’interférométrie millimétrique en octobre et 2) un a<strong>tel</strong>ier décrivant<strong>le</strong>s capacités (sensibilité, résolution spatia<strong>le</strong>, réglages des récepteurs et des spectromètres)et <strong>le</strong>s outils "early science" (estimateurs de temps, soumission de proposition, réduction de données)en décembre 2010.En 2011, nous avons organisé de nouvel<strong>le</strong>s journées ASA intitulées « ALMA early sciencecyc<strong>le</strong> 0 : et après ? ». Ces journées ont commencé par une présentation de la situation actuel<strong>le</strong> :montée en puissance des capacités ALMA, statut de l’ARC européen et de son nœud à l’IRAM,complémentarité avec <strong>le</strong> projet NOEMA, bilan et perspectives de l’ASA. Puis, nous avons mis enplace des échanges nouveaux qui décou<strong>le</strong>nt naturel<strong>le</strong>ment des progrès instrumentaux en radioastronomie(sub)-millimétrique : comment transférer l’expertise de la communauté galactiquevers la communauté extragalactique pour bénéficier à p<strong>le</strong>in de l’augmentation de résolution angulaire? comment la communauté galactique peut profiter des environnements nouveaux offertspar la recherche extragalactique (régime sous-métallique, starbursts) pour raffiner <strong>le</strong>s modè<strong>le</strong>s ?quels sont <strong>le</strong>s besoins en données spectroscopiques et de micro-physique pour <strong>le</strong>s études du systèmesolaire, des systèmes extrasolaires, des étoi<strong>le</strong>s en formation, du <strong>milieu</strong> inters<strong>tel</strong>laire (cettepartie a été organisée en coordination avec <strong>le</strong> GDR spectroscopie).En s’appuyant sur <strong>le</strong>s recommandations du groupe de réf<strong>le</strong>xion sur <strong>le</strong>s services d’observationdans l’exercice de prospective, l’ASA a exprimé fin 2010 <strong>le</strong>s besoins en services d’observationALMA pour la période 2011-2014. Dans ce document 6 , trois types de besoins différents sontrecensés : 1) <strong>le</strong> prêt (par mission longue, mise à disposition ou détachement) de personnelsqualifiés au projet ALMA pour participer à l’effort commissioning ; 2) la participation au supportface-à-face dans <strong>le</strong> cadre du nœud de l’ARC à l’IRAM et 3) <strong>le</strong> développement d’outils experts(polarimétrie, imagerie on-the-fly, pipeline alternatif, ...). Parmi ces 3 besoins, <strong>le</strong> support faceà-faceest particulier. Une de ces difficultés est de se tenir au courant du projet (par exemp<strong>le</strong>quel<strong>le</strong>s sont <strong>le</strong>s évolutions du projet ALMA, que s’est-il réel<strong>le</strong>ment passé lors des observations,quel<strong>le</strong>s sont <strong>le</strong>s limitations du logiciel de réduction et comment <strong>le</strong>s contourner ?). Pour réussircela, il faut une équipe soudée qui s’occupe uniquement d’ALMA une large fraction de sontemps. C’est pour cela que l’ASA a jugé nécessaire de localiser l’ensemb<strong>le</strong> du support faceà-faceuniquement à Grenob<strong>le</strong>. Ce document a été largement diffusé à la communauté, ce qui aamené à une (re)définition des tâches de service par l’Observatoire de Grenob<strong>le</strong> 7 et de Bordeaux 8Les prochaines étapes sont l’obtention d’un accord formel entre l’IRAM et l’Observatoire deGrenob<strong>le</strong> ainsi que la labellisation de la tâche par la commission spécialisée astrophysique et4 A propos de la 2nde génération d’instruments pour ALMA et du nœud de l’ALMA Régional Center en coursde constitution à l’IRAM (http ://www.iram.fr/IRAMFR/ARC/).5 Voir http ://paa09.cesr.fr/pub/Main/InfosPubliquesG2/priorites_asa.pdf.6 cf. http ://www.graal.univ-montp2.fr/hosted/alma/asa-so.pdf.7 cf. http ://www-laog.obs.ujf-grenob<strong>le</strong>.fr/Laog/Servobs/so_alma.html.8 cf. http ://www.oasu.u-bordeaux1.fr/index.php ?pg=alma&lg=fr.


238 ACTION SPÉCIFIQUE ALMA (ADMINISTRATION DE LA RECHERCHE)astronomie de l’INSU.Enfin, je maintiens depuis 4 ans une liste d’emails (asa-news@iram.fr) dont <strong>le</strong> but estd’informer la communauté sur <strong>le</strong> statut du projet ALMA et <strong>le</strong>s actions de l’ASA. Par ail<strong>le</strong>urs,j’ai géré pendant 4 ans pour l’INSU l’accueil annuel de 2 étudiants chiliens pour commencer à<strong>le</strong>s former à la radioastronomie (sub)millimétrique, avec l’idée de favoriser la coopération scientifiqueFrance-Chili. Durant la première semaine, ils participaient à l’éco<strong>le</strong> de radioastronomiede l’IRAM. Puis, ils passaient <strong>le</strong>ur deuxième semaine dans un laboratoire français pour travail<strong>le</strong>rsur des données de radioastronomie (sub)-millimétrique, aux frais de l’INSU. Les 8 étudiantschiliens accueillis ainsi que <strong>le</strong>s équipes françaises accueillantes ont tous donné un compte-rendupositif de ces expériences. Cette coopération fructueuse a été l’un des éléments qui ont permis laréalisation d’une Unité Mixte Internationa<strong>le</strong> au Chili dans la deuxième moitié de 2011.9.4 Quel avenir pour l’ASA ?<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Le mandat actuel de l’ASA se termine fin 2012. L’ASA aura alors existé pendant 8 ans. Laquestion de son renouvel<strong>le</strong>ment et de ses objectifs se pose donc. Comme la phase de constructiond’ALMA devrait s’achever en 2013, <strong>le</strong>s prochaines années seront essentiel<strong>le</strong>s pour <strong>le</strong> positionnementde la communauté française dans la compétition scientifique internationa<strong>le</strong>. Garderune action spécifique dédiée à ALMA durant ces années pour accompagner la transition de laphase de construction à la phase d’exploitation semb<strong>le</strong> indispensab<strong>le</strong>. Cela permettrait aussi detransmettre correctement l’organisation scientifique autour d’ALMA aux différents programmesconcernés.Cependant, <strong>le</strong> conseil scientifique de l’ASA souhaite éviter d’instal<strong>le</strong>r une routine de financementrécurrent de quelques groupes demandant du temps d’observation d’ALMA. La demandede renouvel<strong>le</strong>ment doit donc s’accompagner d’objectifs clairs si possib<strong>le</strong> en lien avec une listed’actions concrètes pour au moins 2013 et 2014. Parmi <strong>le</strong>s actions passées, deux ont particulièrementpermis de former et de structurer la communauté française. Il s’agit des financementspour aider à la participation aux éco<strong>le</strong>s d’interféromètrie et des journées de discussion regroupantdiverses communautés (entre autres modélisateurs, observateurs, fournisseurs de donnéesmicro-physiques).Le conseil scientifique a enfin pris note que <strong>le</strong> projet NOEMA d’agrandissement de l’interféromètredu Plateau de Bure est sur <strong>le</strong> point d’être mis en œuvre. Il sera important de mobiliserla communauté française pour qu’el<strong>le</strong> exploite au mieux la complémentarité ALMA/NOEMA.Cela pourra faire partie des nouveaux objectifs de l’ASA.


Contribution de l'Action Spécique ALMAà l'exercice de prospective 2009J. Pety pour <strong>le</strong> conseil scientique de l'ASA10 Juin 2009Les cinq prochaines années vont voir la mise en service scientique d'ALMA. Dans <strong>le</strong> ca<strong>le</strong>ndrier actuel,la phase de "commissioning and science verication" commencera sur <strong>le</strong> site n 2009, <strong>le</strong>s premières observationsscientiques ("early science") auront lieu mi-2011 et la n de la construction d'ALMA est prévuepour 2013. Le passage de la phase de construction à la phase d'exploitation scientique d'un observatoire<strong>tel</strong> qu'ALMA pose de nombreuses questions. Comment préparer au mieux la phase scientique d'un instrumentextrêmement compétitif car unique et ouvrant de nouveaux espaces de paramètres (très hauterésolution angulaire, longueurs d'onde sub-millimétriques) ? Comment s'assurer que l'expertise technique(matériel<strong>le</strong> et logiciel<strong>le</strong>) utilisée lors de la construction soit conservée pour permettre de faire d'ALMA uninstrument évolutif ? Quel est l'avenir des observatoires actuels de radio-astronomie sub-millimétrique ?<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 20121. aspects organisationnelsune communauté bien plus grande que la communauté radio. Par ail<strong>le</strong>urs, la sensibilité accrue d'ALMApar rapport à l'interféromètre du Plateau de Bure actuel (environ un facteur 10) compensera tout jus<strong>tel</strong>a diculté des observations demandées sur ALMA dans <strong>le</strong> submillimétrique et à très haute résolutionangulaire (cf. tab<strong>le</strong> 1). Le nombre de propositions acceptées sur ALMA devrait être du même ordre degrandeur que <strong>le</strong> nombre de propositions acceptées aujourd'hui au Plateau de Bure (environ 150 projetspar an). Une conséquence directe est que la qualité formel<strong>le</strong> (pédagogie, clarté des objectifs, compétencesde l'équipe, etc...) des propositions d'observation devra être irréprochab<strong>le</strong> pour être acceptée par <strong>le</strong> comitédes programmes.L'Action Spécique ALMA est active pour sensibiliser la communauté au sens large à la compétitionaccrue sur ALMA et à l'imminence des premiers appels d'ore. Le bilan des journées ASA 1 indiqueclairement que la communauté française a des cartes à jouer dans de nombreux domaines : cosmologie,formation et évolution des galaxies, formation s<strong>tel</strong>laire, disques circums<strong>tel</strong>laires et protoplanétaires, étoi<strong>le</strong>sévoluées et matière circums<strong>tel</strong>laire, physique et chimie du <strong>milieu</strong> inters<strong>tel</strong>laire, système solaire, etc... Bienque la France soit en pointe sur <strong>le</strong>s thématiques scientiques au coeur d'ALMA, l'internationalisationnécessaire (et déjà visib<strong>le</strong> sur <strong>le</strong>s demandes IRAM) des équipes risque de diluer la visibilité française.Il est donc important que la communauté française se structure au niveau national pourassurer <strong>le</strong> <strong>le</strong>adership français de propositions internationa<strong>le</strong>s ambitieuses sur ALMA. Cettestructuration est d'autant plus importante qu'il n'y a pas de temps garanti sur ALMA, et que <strong>le</strong>s étudesmulti-longueurs d'ondes vont sans aucun doute jouer un rô<strong>le</strong> crucial dans l'analyse des données de ALMA.1.2 Rô<strong>le</strong> des ALMA Regional Center dans l'obtention et la réduction desdonnéesL'ARC (ALMA Regional Center) est la structure qui sert d'interface entre ALMA et la communautéscientique, avant <strong>le</strong>s observations (call for proposals, phase 1, phase 2) et une fois que <strong>le</strong>s données ont étéobtenues (accès à l'archive, support aux utilisateurs, etc). En Europe, l'ARC est organisé sous la formed'un réseau. Le noeud central à l'ESO/Garching est en charge de la gestion des demandes de temps etdes observations, de l'archive, et de la distribution des données de ALMA. Les six noeuds additionnelssont en charge de la formation des utilisateurs en amont, de l'aide directe fournie aux utilisateurs pour lapréparation des projets et la réduction des données (support face-à-face), ainsi que du développement detechniques et d'algorithmes de traitement de données innovants.L'ARC est une structure essentiel<strong>le</strong> pour assurer <strong>le</strong> succès de ALMA : dans une compétition mondia<strong>le</strong>extrêmement forte, il est nécessaire d'avoir des centres d'expertise pouvant fournir un support ecace etrapide à la communauté, notamment pour la réduction des données. Les ARC nord-américains et asiatiquessont localisés à un seul endroit. Le modè<strong>le</strong> européen consistant à impliquer plusieurs laboratoires est justiépar <strong>le</strong> manque d'expertise disponib<strong>le</strong> à l'ESO, mais comporte un risque très fort de dispersion des eorts.La communauté française est dans ce contexte avantagée, car el<strong>le</strong> possède déjà une expertise indéniab<strong>le</strong>en interférométrie millimétrique, grâce notamment à l'IRAM, qui est l'un des noeuds de l'ARC.L'expérience du Plateau de Bure montre qu'un support ecace nécessite des personnes impliquées pourune large fraction de <strong>le</strong>ur temps (au moins 30%), ainsi qu'une masse critique permettant de couvrir toutes<strong>le</strong>s problématiques (instrumenta<strong>le</strong>s, logiciel<strong>le</strong>s, scientiques). La communauté française doit soutenir<strong>le</strong> développement du noeud de l'ARC européen à l'IRAM, qui sera un atout essentiel dansl'exploitation d'ALMA.1.3 Besoins spéciques à l'analyse scientique des donnéesLa communauté s'étonne de la faib<strong>le</strong>sse des moyens consacrés à l'utilisation scientique de nouveauxinstruments en regard de <strong>le</strong>ur coûts de construction et de fonctionnement. Pour obtenir un retour scientiquecomp<strong>le</strong>t d'un instrument <strong>tel</strong> qu'ALMA, il faut un grand nombre de compétences très pointues,incluant entre autres : <strong>le</strong>s développements instrumentaux ; <strong>le</strong> développement et la maintenance de logiciels de traitement des données ;1 Voir http ://www.graal.univ-montp2.fr/hosted/alma/programme.htm<strong>le</strong>t http ://www.graal.univ-montp2.fr/hosted/alma/cs2009a.html.1 Aspects organisationnels1.1 ALMA : <strong>le</strong> premier observatoire mondialisé au solLa pratique de la radio-astronomie évolue d'une pratique individuel<strong>le</strong> à une pratique col<strong>le</strong>ctive. Al'IRAM, parmi <strong>le</strong>s propositions ordinaires, <strong>le</strong>s signataires d'une seu<strong>le</strong> proposition sont souvent nombreux.Cet eet est amplié du fait que l'IRAM propose depuis 1 an un appel à observation spécique grandsprojets (plus de 100 heures par semestre sur 2 ans, <strong>le</strong>s données étant rendues publiques 18 mois après lan des observations). Une raison sous-jacente à ce changement de pratique est que la radio-astronomiemillimétrique est devenue mature : de constatations "simp<strong>le</strong>s" sur quelques objets pas toujours résolus,on est passé soit à des modè<strong>le</strong>s comp<strong>le</strong>xes sur des objets très bien observés, soit à des statistiques sur ungrand nombre d'objets. Ce que l'on pouvait faire seul sur un ou deux spectres demande maintenant des expertisestrès poussées et complémentaires (traitement des données, transfert de rayonnement, modélisationchimique et/ou mhd, etc...) sur une grande quantité de données.L'eet sera amplié avec ALMA car il s'agit d'un instrument unique, signiant une compétition mondia<strong>le</strong>d'autant plus accrue que <strong>le</strong> comité de sé<strong>le</strong>ction des propositions sera unique et qu'ALMA devra servirTab. 1 Sensibilité en brillance à 1mm en fonction de la résolution angulaire et du temps d'intégrationpour l'interféromètre du Plateau de Bure (PdBI) et ALMA. A même résolution angulaire, ALMA estbeaucoup plus rapide que PdBI. Par contre, une augmentation de la résolution angulaire d'un facteur 10 àmême sensibilité en brillance demande une fraction signicative d'une année pour un interféromère commeALMA. Un compromis soit sur la sensibilité soit sur la résolution angulaire est nécessaire pour diminuer<strong>le</strong>s temps d'intégration.Instrument Résolution Sensibilité Temps d'intégration CommentairePdBI 2009 1 ′′ 0.3 K 2 hrsALMA 2013 1 ′′ 0.3 K 3.5 min Même raie, beaucoup d'objetsALMA 2013 0.1 ′′ 0.3 K 575 hrs 6.5% d'une année!ALMA 2013 0.1 ′′ 5 K 2 hrs Compromis en sensibilitéALMA 2013 0.4 ′′ 0.3 K 2 hrs Compromis en résolution12. aspects instrumentaux la fourniture de données de micro-physique ; <strong>le</strong> développements et la maintenance d'outils d'analyse des données (par exemp<strong>le</strong> transfert de rayonnement); <strong>le</strong> développement et la maintenance d'outils de modélisation (modè<strong>le</strong>s physico-chimiques génériques,modè<strong>le</strong>s magnéto-hydrodynamiques génériques, etc...) ;Un souci particulier se situe aux interfaces comme la fourniture de données micro-physiques ab<strong>le</strong>s. Il s'agitde services essentiels pour la communauté astrophysique, mais insusemment valorisés (cités) et soutenussur <strong>le</strong> long terme. En outre, <strong>le</strong> dialogue entre communautés de culture très diérente est <strong>le</strong> seul moyend'obtenir une bonne adéquation entre <strong>le</strong>s besoins astrophysiques et l'expertise disponib<strong>le</strong>. C'est d'autantplus crucial que <strong>le</strong>s problèmes astrophysiques sont plus dici<strong>le</strong>s et plus nombreux à traiter. Un soutienpérenne à ces diérentes communautés et à <strong>le</strong>ur dialogue est donc une priorité.Par ail<strong>le</strong>urs, la possibilité de mobiliser rapidement des post-docs une fois <strong>le</strong> temps d'observation obtenusera éga<strong>le</strong>ment un aspect clé du succès de l'utilisation d'un instrument comme ALMA, et l'ASA s'inquiètedes possibilités restreintes existantes en France. L'Action Spécique ALMA soutient une idée récurrenteavancée pour améliorer la situation : l'attribution à ces tâches d'un pourcentage ducoût de construction d'instruments de classe mondia<strong>le</strong>.1.4 Ressources humainesLa mise en service d'ALMA s'accompagne de besoins assez diérents en ressources humaines. ALMAdevant servir une communauté bien plus large que la communauté des radio-astronomes, il faut encourager<strong>le</strong>s actions de formation des autres communautés. Cela passe par l'organisation d'éco<strong>le</strong>s (par exemp<strong>le</strong> <strong>le</strong>séco<strong>le</strong>s de radio-astronomie et d'interférométrie de l'IRAM ) mais aussi par la formation d'étudiants sur desthématiques scientiques à cheval sur plusieurs longueurs d'ondes. En outre, l'accueil d'étudiants chiliensest un moyen particulièrement ecace de commencer des collaborations avec <strong>le</strong> Chili, qui dispose de 10%du temps ALMA. Il est aussi important d'encourager des personnes à passer du temps au Chili commeastronome résident mis à la disposition de l'ESO pour ALMA. C'est certainement la meil<strong>le</strong>ure manièred'assurer une très bonne connaissance de l'instrument et de la diuser dans la communauté française.Le noeud de l'ARC à l'IRAM est un projet qui s'inscrit dans <strong>le</strong> long terme, puisqu'il devra accompagnerla montée en puissance de ALMA avant sa phase de fonctionnement. L'ASA aura donc une action pour que<strong>le</strong> noeud de l'ARC à l'IRAM soit cité dans la catégorie AA-SO5 : Centres de traitement et d'archivagede données . En plus des besoins précédents, <strong>le</strong> succès scientique d'ALMA dépend d'un grand nombred'activités qui sont autant de services à la communauté (cf. section 1.3). Une diculté dans la dénitiondes tâches de service ALMA est que <strong>le</strong> projet reconnaît dici<strong>le</strong>ment <strong>le</strong>s contributions qu'il ne nance pas.Pour prendre ces diérents aspects en compte et pour s'assurer que l'ensemb<strong>le</strong> de la communauté soitp<strong>le</strong>inement associée à la dénition des tâches de service ALMA, l'ASA propose donc de lancer un appel àidées, <strong>le</strong>s réponses étant classées par l'ASA puis transmises à la CSA pour une demande de labellisation.2 Aspects instrumentaux2.1 L'évolution d'ALMA au-delà de 2013Dans <strong>le</strong> ca<strong>le</strong>ndrier actuel, la construction d'ALMA se terminera en 2013. Dans <strong>le</strong> budget de fonctionnementd'ALMA (environ 65 M$), 10 M$ sont envisagés annuel<strong>le</strong>ment à partir de 2015 pour faire évoluerALMA jusqu'à l'horizon 2020. A l'heure actuel<strong>le</strong>, des discussions préliminaires ont lieu, essentiel<strong>le</strong>mentdans <strong>le</strong> cadre du Science Advisory Committee d'ALMA. Or il est dici<strong>le</strong> d'envisager dès aujourd'hui l'impactscientique de ces possib<strong>le</strong>s améliorations puisqu'il faudra plusieurs années pour ressentir p<strong>le</strong>inementl'impact d'ALMA dans sa conguration actuel<strong>le</strong>. Parmi <strong>le</strong>s options envisagées, on trouve : une amélioration de certains aspects d'ALMA (par exemp<strong>le</strong>, la possibilité de faire du VLBI ou desobservations solaires) ; la complétion de la couverture spectra<strong>le</strong> d'ALMA par la construction des bandes de fréquence actuel<strong>le</strong>mentmanquantes (B11 au-delà du THz, B5 de 163 à 211 GHz, B2 de 67 à 90 GHz, B1 de 31à 45 GHz) ; une augmentation signicative du nombre d'antennes (par exemp<strong>le</strong> de 50 à 64).23


2. aspects instrumentaux2. aspects instrumentaux<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Les budgets et <strong>le</strong>s ca<strong>le</strong>ndriers associés à ces projets sont très diérents et parfois mal déterminés car ilspeuvent demander une phase de recherche et développement importante.Bien que <strong>le</strong>s projets soient en cours de dénition, il est néanmoins important de rappe<strong>le</strong>rqu'ALMA a vocation à évoluer de manière signicative après sa construction. Dans ce cadre, laFrance doit encourager <strong>le</strong>s laboratoires français et l'IRAM à conserver <strong>le</strong>ur importante expertise matériel<strong>le</strong>et logiciel<strong>le</strong> en radio-astronomie millimétrique. En eet, il est important pour la communauté françaised'anticiper sur des bases scientiques et techniques l'évolution d'ALMA. Ceci permettra d'avoir un rô<strong>le</strong>moteur dans cette évolution, ce que l'expertise française a déjà permis pour <strong>le</strong>s phases de conception et deconstruction d'ALMA 2 . Ceci est d'autant plus essentiel que pour la première fois dans <strong>le</strong> projet ALMA, lanotion de temps garanti pourrait éventuel<strong>le</strong>ment être associée aux appels d'ores générés par <strong>le</strong>s évolutionsd'ALMA après 2013 (possibilité mentionnée par L.Testi, European Project Scientist, lors des journées ASAà Grenob<strong>le</strong>).2.2 Le projet NOEMA d'extension de l'interféromètre du Plateau de BureALMA sera un instrument unique de par ses possibilités submillimétriques et de très grande résolutionangulaire (la plus grande ligne de base faisant 14 km). Il est prévu qu'ALMA passera au maximum 25%de son temps d'observation (cad 3 mois par an) dans <strong>le</strong> domaine millimétrique (longueur d'onde entre 3et 1mm) et dans des congurations compactes (cad ayant une ligne de base maximum inférieure à1.6 km) 3 . En considérant la fraction française d'ALMA (environ 6%), on obtient 1.5% ou 6 jours par anpour faire de la science millimétrique à résolution angulaire moyenne (entre 0.2 et 2). Une fractionmajeure du coût d'ALMA ainsi que son plus fort potentiel de découverte scientique vient principa<strong>le</strong>mentde ses capacités submillimétriques (site à très haute altitude, très grande qualité de surface d'antenne) etde ses capacités de très haute résolution angulaire. Cela conduit à penser que <strong>le</strong>s estimations de tempsci-dessus sont des limites largement supérieures car el<strong>le</strong>s extrapo<strong>le</strong>nt la science faite aujourd'hui avec desinstruments principa<strong>le</strong>ment millimétriques aux résolutions angulaires limitées.Le domaine millimétrique est scientiquement crucial car il contient notamment la plupart des transitionsfondamenta<strong>le</strong>s des molécu<strong>le</strong>s observées dans <strong>le</strong> <strong>milieu</strong> inters<strong>tel</strong>laire froid (e.g. disques protoplanétaires,coeurs pré-s<strong>tel</strong>laires, nuages moléculaires dans <strong>le</strong>s galaxies, etc...). Le domaine millimétrique est aussi essentielpour la découverte et l'étude des sources à grand redshift, en continuum de par l'eet de la correctionK inverse, et en raies de par <strong>le</strong> redshift. Par ail<strong>le</strong>urs, il n'y a pas pour l'instant de provision pour des <strong>le</strong>gacy surveys sur ALMA parce que l'ensemb<strong>le</strong> des thématiques scientiques doivent pouvoir bénécierdès <strong>le</strong> début de l'opération du changement de domaine de paramètre exploitab<strong>le</strong> par ALMA (résolution,longueur d'onde). Ces arguments soulignent la nécessité d'avoir, en complémentarité avec ALMA, un instrumentdédié aux études systématiques dans <strong>le</strong> domaine millimétrique avec une sensibilité similaire à cel<strong>le</strong>d'ALMA.L'interféromètre du Plateau de Bure (PdBI) est aujourd'hui <strong>le</strong> meil<strong>le</strong>ur interféromètre millimétriqueau monde. Améliorer un interféromètre peut se faire de quatre façons diérentes : 1) augmenter <strong>le</strong> nombred'antennes, 2) augmenter la longueur de la plus grande ligne de base, 3) augmenter la bande passante tota<strong>le</strong>des récepteurs, 4) passer de récepteurs mono-pixels à des récepteurs multi-pixels. Le projet NOEMA viseà faire de PdBI un instrument complémentaire à ALMA en jouant simultanément sur <strong>le</strong>s trois premièrespossibilités : doub<strong>le</strong>r <strong>le</strong> nombre d'antennes de 15 m (de 6 à 12, impliquant un doub<strong>le</strong>ment de la surface col<strong>le</strong>ctriceet meil<strong>le</strong>ure qualité d'imagerie par quadrup<strong>le</strong>ment du nombre de lignes de base) ; doub<strong>le</strong>r la plus grande ligne de base (de 800 à 1600 m) et donc de doub<strong>le</strong>r la résolution angulaireactuel<strong>le</strong> ;2 Au contraire de NRAO, l'ESO a peu de connaissance en radio-astronomie (sub)-millimétrique. L'essentiel de la constructiond'ALMA en Europe est donc sous-contracté par l'ESO à des instituts spécialisés en radio-astronomie. En France, il s'agitde l'IRAM/Grenob<strong>le</strong>, du LERMA/Paris et du LAB/Bordeaux3 Le Design Science Reference Plan indique en eet qu'ALMA passera environ 55% du temps d'observation à faire desobservations millimétriques(cf. http ://www.eso.org/sci/publications/messenger/archive/no.131-mar08/messenger-no131-46.pdf). Par ail<strong>le</strong>urs, <strong>le</strong>s28 congurations d'ALMA (dont 14 congurations compactes ) tourneront avec une périodicité de 18 mois au rythmetypique d'un changement d'antenne par jour. Il est donc possib<strong>le</strong> d'estimer qu'ALMA passera au plus 50% de son temps dansdes congurations compactes . En multipliant <strong>le</strong>s deux pourcentages, on obtient 27.5%42. aspects instrumentauxEn raie, la sensibilité de NOEMA sera 36% de cel<strong>le</strong> d'ALMA, ce qui implique qu'ALMA sera 8 fois plusrapide pour des raies individuel<strong>le</strong>s. Cependant, pour <strong>le</strong>s surveys de raies, ALMA sera seu<strong>le</strong>ment 4 fois plusrapide parce que la bande passante de NOEMA sera 2 fois plus large que cel<strong>le</strong> d'ALMA et contiendradonc 2 fois plus de raies. Compte tenu de la fraction de temps maximum (25%) passée par ALMA enmillimétrique à résolution moyenne , NOEMA aura donc une production annuel<strong>le</strong> au moins comparab<strong>le</strong>dans ce domaine de paramètres. En pratique, NOEMA sera ainsi l'instrument de choix pour des étudessystématiques (de type "surveys") dans <strong>le</strong>s bandes millimétriques (3, 2 et 1 mm). On peut citer parexemp<strong>le</strong> : la détection et l'étude de populations de galaxies norma<strong>le</strong>s à grand redshift, la détection etl'étude la fonction de masse des proto-naines brunes (origine de l'IMF), l'étude des cyc<strong>le</strong>s de la matière(gaz et poussière) dans diérents environnements (turbu<strong>le</strong>nts, chocs, PDRs, ...).En résumé, <strong>le</strong> projet NOEMA ore donc à la communauté un instrument indispensab<strong>le</strong>,dédié aux longueurs d'onde millimétriques à des résolutions intermédiaires entre une antenneunique (du type IRAM-30m) et ALMA. Par contraste, ALMA est un instrument très exib<strong>le</strong> (8bandes de récepteurs, 28 congurations), devant servir une communauté pratiquement mondia<strong>le</strong>, et dont<strong>le</strong> potentiel de découverte est d'abord déterminé par ses aspects uniques, à savoir <strong>le</strong> submillimétrique etla très haute résolution angulaire. La sensibilité de NOEMA est proche de cel<strong>le</strong> d'ALMA, donnant à lacommunauté française une puissance d'observation millimétrique au moins éga<strong>le</strong> (dans l'hémisphère nord)à résolutions angulaires comprises entre 0.2" et 2". NOEMA est donc un projet qui est un complémentidéal de l'EVLA aux longueurs d'onde centimétriques et d'ALMA aux longueurs d'onde submillimétriques.Enn, c'est un projet qui permet à la communauté française de garder une expertise matériel<strong>le</strong>, logiciel<strong>le</strong>et scientique, mondia<strong>le</strong>ment reconnue aujourd'hui comme l'indique son implication importante dans laconstruction d'ALMA.1001010.10.01TodayPdBINOEMAVitesse relativeMB PdBI(4x4)MBNOEMAALMAContinuum and/ormulti­line mappingSing<strong>le</strong>­line mappingContinuum and/ormulti­line PointingSing<strong>le</strong>­line Pointing(4x4)Fig. 1 Vitesses relatives de diérents instruments dont <strong>le</strong>s caractéristiques sont dénies dans <strong>le</strong> tab<strong>le</strong>auci-dessous, où D est <strong>le</strong> diamètre des antennes, Nant <strong>le</strong> nombre d'antennes, Nbas <strong>le</strong> nombre de lignes debase, Npix <strong>le</strong> nombre de pixels et B la bande passante tota<strong>le</strong> disponib<strong>le</strong>. La vitesse relative est déniecomme l'inverse du temps qu'il faut pour atteindre la même sensibilité par point observé du ciel : en modepointé, el<strong>le</strong> est proportionnel<strong>le</strong> à B Nbas D 4 ; en mode d'imagerie grand champ, el<strong>le</strong> est proportionnel<strong>le</strong> àB Npix Nbas D 2 . Les vitesses ont été normalisées par <strong>le</strong>s performances de NOEMA.Sing<strong>le</strong> beamMulti beamsToday PdBI NOEMA ALMA PdBI (4 × 4) NOEMA (4 × 4)D [m] 15 15 12 15 15Nant 6 12 50 6 12Nbas 15 66 1225 15 66Npix 1 1 1 16 16B [GHz] 8 32 16 8 8 d'utiliser une instrumentation innovante, en particulier une nouvel<strong>le</strong> génération de récepteurs quiquadrup<strong>le</strong> la bande passante tota<strong>le</strong> (de 8 GHz à 32 GHz), impliquant une sensibilité 4 fois plusgrande en continuum et la possibilité d'observer simultanément 4 fois plus de raies.Ces options sont techniquement réalistes : en particulier, des prototypes de <strong>tel</strong>s récepteurs existent déjàaujourd'hui à l'IRAM. NOEMA et ses possib<strong>le</strong>s améliorations sont dans la continuité des développementstechnologiques qui ont conduit l'IRAM à instal<strong>le</strong>r 3 générations de récepteurs et 4 générations de corrélateursà Bure depuis 1990. Le coût total du projet NOEMA est 43 Meuros dont entre 8 et 16 Meurosnancés par la France (suivant <strong>le</strong> résultat de la campagne actuel<strong>le</strong>ment en cours pour obtenir des fondsprivés), cad un coût moindre que <strong>le</strong> budget de fonctionnement d'ALMA pour une seu<strong>le</strong> année.Pour des raisons de design et de site, NOEMA sera dédié à l'étude du domaine de longueur d'ondemillimétrique (3mm, 2mm et 1 mm) à des résolutions angulaires comprises entre 0.2" et 2" avec unerotation rapide entre congurations (de l'ordre de 6 mois). En mode pointé et en continuum, la sensibilitéde NOEMA sera la moitié de cel<strong>le</strong> d'ALMA, ce qui implique qu'ALMA sera 4 fois plus rapide (cf. gure 1).A5A. des multi-pixels à bure : une suite logique au projet noemaAppendiceDes multi-pixels à Bure : une suite logique au projet NOEMALa vitesse d'imagerie grand-champ de NOEMA (dénie comme l'inverse du temps qu'il faut pouratteindre la même sensibilité par point observé du ciel) est aussi commensurab<strong>le</strong> avec cel<strong>le</strong> d'ALMA (cf.gure 1). Pour atteindre la même vitesse d'imagerie grand-champ sans changer <strong>le</strong> nombre d'antennes àBure, il faut remplacer <strong>le</strong>s récepteurs mono-pixels par des récepteurs d'au moins 16 pixels dans <strong>le</strong> planfocal des antennes de l'interféromètre. Outre <strong>le</strong> fait qu'un multi-pixel n'augmente que la vitesse d'imageriegrand-champ et non la vitesse d'imagerie en mode pointé, la dénition de vitesse d'imagerie grand-champdonnée ci-dessus oublie un aspect essentiel en interféromètrie, à savoir la qualité d'imagerie obtenue. Cel<strong>le</strong>ciest directement liée à la couverture du plan uv. La gure 2 compare la couverture du plan uv obtenueen conguration compacte pour <strong>le</strong> Plateau de Bure actuel (6 antennes) et pour NOEMA (12 antennes) en12 heures d'observation. Le quadrup<strong>le</strong>ment du nombre de lignes de base permet à NOEMA d'obtenir unerésolution angulaire deux fois plus ne avec une couverture du plan uv bien plus complète.Conscient du potentiel des récepteurs multi-pixels pour l'imagerie grand-champ, l'IRAM a une politiquede recherche et développement oensive dans ce domaine depuis plus de 10 ans. Cela a conduit à laréalisation d'HERA (récepteur de 18 pixels installé à l'IRAM-30m). Et cela se traduit aujourd'hui par desprogrammes de R&D en cours tant au niveau matériel pour miniaturiser <strong>le</strong>s mélangeurs (FP7 AMSTAR+)qu'au niveau algorithmique pour mettre en oeuvre <strong>le</strong> mode d'observation interféromètrique grand-champ,dit On-The-Fly (FP6 ALMA Enhancement). Par ail<strong>le</strong>urs, la tail<strong>le</strong> des cabines des antennes de Burepermet d'abriter à la fois des récepteurs mono-pixels, multi-fréquences, et un récepteur multi-pixel, monofréquence,donnant une exibilité scientique similaire à cel<strong>le</strong> de l'IRAM-30m d'aujourd'hui. Enn, <strong>le</strong>transport du signal et <strong>le</strong> corrélateur de NOEMA, représentant une fraction majeure du coût de tout projetinterféromètre, permettent de traiter soit 32 GHz de bande passante pour un mono-pixel, soit 32/N GHzde band passante pour un récepteur de N pixels.Le projet NOEMA permet donc de gagner un facteur 16 en vitesse d'observation par rapport au PdBId'aujourd'hui (cad l'équiva<strong>le</strong>nt d'un récepteur de 16 pixels). Le projet NOEMA fournit en plus un gainen sensibilité en mode pointé et en qualité d'imagerie (couverture du plan uv). Tout cela pour un coûtenviron 2 fois plus grand que <strong>le</strong> coût estimé (environ 20 Meuros) de l'installation d'un récepteur de 16pixels et du corrélateur associé sur <strong>le</strong>s 6 antennes déjà existantes à Bure. La réalisation de multi-pixelsest une suite logique au projet NOEMA que <strong>le</strong>s actions de R&D entreprises aujourd'hui permettront demener à bien à terme, d'autant plus que la loi de Moore permet de gagner un ordre de grandeur tous <strong>le</strong>s6 ans dans la corrélation numérique des signaux.67


A. des multi-pixels à bure : une suite logique au projet noema<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Fig. 2 Couverture uv (colonne gauche) et lobe sa<strong>le</strong> associé (colonne droite) pour une source à 45degrés de déclinaison et pour la conguration D de PdBI (haut, 12 heures d'intégration), l'associationdes congurations CD de PdBI (<strong>milieu</strong>, 24 heures d'intégration) et la conguration D de NOEMA (bas,12 heures d'intégration). Le quadrup<strong>le</strong>ment du nombre de lignes de base entre PdBI et NOEMA permetd'augmenter la résolution d'environ un facteur 2 tout en obtenant un lobe sa<strong>le</strong> de bien meil<strong>le</strong>ure qualité.La qualité d'imagerie de NOEMA est même meil<strong>le</strong>ure que la combinaison des congurations C et D dePdBI, combinaison qui requiert un doub<strong>le</strong>ment du temps d'intégration.8


Besoins en services d'observation ALMApour la période 2011-2014Le conseil scientique de l'ASAJ. Pety, S. Charlot, E. Dartois, P. A. Duc, F. Gueth, L. Jorda,E. Josselin, F. Ménard, F. Pajot, V. Piétu, P. Salomé, F. Selsis,M. Tallon, L. Vigroux, A. Walters26 octobre 2010RésuméLa période 2011-2014 verra la montée en puissance scientique du projet ALMA. Ce document décritla redénition des besoins en services d'observation ALMA qu'implique <strong>le</strong> passage de la phase deconstruction à la phase d'exploitation scientique. Etant donné l'importance d'ALMA pour la radioastronomie(sub)-millimétrique dans la décennie à venir, l'ASA recommande d'augmenter <strong>le</strong> nombre depersonnes aectés au service d'observation ALMA de 50%, c'est-à-dire de passer de 11 à 17 chercheurssur la période 2011-2014 : 2 chercheurs supplémentaires seraient aectées au commissionning au Chili,2 chercheurs supplémentaires au soutien face-à-face de la communauté au sein de l'ARC européen, et2 chercheurs supplémentaires à la mise au point d'outils experts.1 IntroductionLes prochaines années vont voir la mise en service scientique d'ALMA. La phase de commissioningand science verication a commencé sur <strong>le</strong> site n 2009, <strong>le</strong>s premières observations scientiques ( earlyscience ) auront lieu n-2011 et la n de la construction d'ALMA est prévue pour 2013. Le passage de laphase de construction à la phase d'exploitation scientique d'un observatoire <strong>tel</strong> qu'ALMA nécessite uneredénition des besoins en services d'observation ALMA.Au moins onze chercheurs (6 CNAP, 3 CNRS, 2 post-docs) travaillaient pour <strong>le</strong> service d'observationALMA lors du recensement fait par <strong>le</strong> groupe ad-hoc de l'exercice de prospective astronomie et astrophysique2009-2010. Etant donné l'importance d'ALMA pour la radioastronomie (sub)-millimétrique dans ladécennie à venir, l'ASA recommande d'augmenter <strong>le</strong> nombre de chercheurs aectés au service d'observationALMA de 50%, c'est-à-dire de passer de 11 à 17 chercheurs sur la période 2011-2014.<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 20123. relation avec <strong>le</strong>s services d'observation iramIl faut bien séparer <strong>le</strong>s activités de recherche des activités de service. Par exemp<strong>le</strong>, la recherche eninstrumentation est considérée comme une activité de recherche (débouchant sur la notion de chercheurinstrumentaliste) alors que la construction (design inclus) d'un instrument résultant de cette recherche estune activité de service. Et ceci même s'il est probab<strong>le</strong> que ce seront en grande partie <strong>le</strong>s mêmes personnesqui s'occuperont de ces deux aspects.2.2 Rô<strong>le</strong> de l'ASA dans la dénition des services d'observation ALMAL'ASA ne peut se substituer aux observatoires qui ont la prérogative d'aecter du personnel et desmoyens sur des services d'observation. Par ail<strong>le</strong>urs, si l'IRAM, un des acteurs dans <strong>le</strong>s services d'observationALMA, n'est pas un observatoire au sens administratif français du terme, une partie de ses personnelssont détachés d'observatoires français.Par contre, l'ASA est aujourd'hui consulté tous <strong>le</strong>s ans par <strong>le</strong> président de la section du CNAP pour <strong>le</strong>spriorités des services d'observation ALMA. Il n'y a pas eu de demande de labellisation de tâche de serviceALMA dans <strong>le</strong>s deux dernières années mais l'ASA a été contacté lors de l'exercice de prospective INSU2009 par <strong>le</strong> groupe de réexion sur <strong>le</strong>s services d'observation pour faire un bilan (y compris humain) desservices d'observation ALMA.L'ASA a donc clairement un rô<strong>le</strong> de correspondant national au niveau des services ALMA. C'est à cetitre que <strong>le</strong> conseil scientique de l'ASA dénit dans ce document, en tant qu'expert, <strong>le</strong>s besoins nationauxen services d'observation ALMA.2.3 Le projet ALMA et <strong>le</strong> rô<strong>le</strong> des ALMA Regional Centers Contrairement aux instruments optiques, ALMA est un projet sans contribution en nature (pour l'instant),ce qui signie qu'un chercheur recruté en France n'a de statut aux yeux du projet ALMA qu'àcondition qu'il participe à un contrat nancé par ALMA.Par ail<strong>le</strong>urs, l'ARC (ALMA Regional Center) est la structure qui sert d'interface entre ALMA et lacommunauté scientique, avant <strong>le</strong>s observations (appels à proposition, phase 1, phase 2) et une fois que<strong>le</strong>s données ont été obtenues (accès à l'archive, soutien aux utilisateurs, etc). L'ARC américain est intégrédans l'ensemb<strong>le</strong> des activités ALMA de NRAO, incluant la construction et la maintenance d'ALMA.En Europe, l'ARC est organisé sous la forme d'un réseau. Le noeud central à l'ESO/Garching est encharge de la gestion des demandes de temps et des observations, de l'archive, et de la distribution desdonnées de ALMA. Les sept noeuds additionnels sont en charge de la formation des utilisateurs en amont,ainsi que de l'aide directe fournie aux utilisateurs pour la préparation des projets et la réduction desdonnées (soutien face-à-face).Ainsi <strong>le</strong> soutien ALMA sera très diérent du soutien actuel aux utilisateurs de l'interferomètre duplateau de Bure (PdBI). En eet, <strong>le</strong>s astronomes assurant <strong>le</strong> soutien aux utilisateurs du PdBI assurent<strong>le</strong> développement de l'instrument ainsi que <strong>le</strong> suivi des observations et la responsabilité des logiciels deréduction de données. Ceci n'est pas <strong>le</strong> cas des astronomes travaillant dans <strong>le</strong>s noeuds de l'ARC européen,ce qui pose la question d'un transfert ecace des informations 1 du projet ALMA à ces noeuds de l'ARCeuropéen. Les besoins en tâches de service ALMA doivent prendre en compte cette diculté et permettred'établir des liens privilégiés avec l'observatoire lui-même au Chili et <strong>le</strong>s équipes (presque exclusivement àNRAO, USA) chargées du développement des logiciels de réduction de données.3 Relation avec <strong>le</strong>s services d'observation IRAMLes services d'observation ALMA et IRAM sont liés. Une très large fraction des personnes aliées àl'un ou l'autre des services travail<strong>le</strong>nt consécutivement ou simultanément dans <strong>le</strong>s deux services. Cela estdû à la similitude et à la très grande technicité des instruments et logiciels employés. Il faut des annéespour monter des équipes à la pointe dans ces domaines.1 Comment avoir plus d'information sur <strong>tel</strong> problème technique intervenu lors des observations ? Comment se tenir aucourant des derniers développements dans <strong>le</strong>s logiciels de réductions presqu'exclusivement développés à NRAO ?2 Contexte2.1 Quelques rappels sur <strong>le</strong>s services d'observationLes services d'observation concernent l'ensemb<strong>le</strong> des personnels CNAP. Il s'agit donc ici de voir quelssont <strong>le</strong>s besoins engendrés par <strong>le</strong> projet ALMA. Satisfaire ces besoins passe aussi bien par la réaectationde personnels que par <strong>le</strong> recrutement.Les services d'observation sont des projets d'envergure. Il n'est pas possib<strong>le</strong> de saupoudrer <strong>le</strong>s ressourcessur l'ensemb<strong>le</strong> de la France car cela entraine un besoin de personnel supplémentaire pour coordonner <strong>le</strong>travail, et donc une perte d'ecacité.La labellisation est un processus 1) qui passe devant <strong>le</strong> comité scientique de l'INSU et 2) qui engage<strong>le</strong>s personnels sur de nombreuses années. C'est pourquoi <strong>le</strong>s demandes de labellisation doivent proposerdes cadres génériques de travail plutôt que se perdre dans des descriptions précises de travail à eectuer àcourt terme (par exemp<strong>le</strong> dans <strong>le</strong>s 6 prochains mois). En pratique, <strong>le</strong>s services seront labellisés pour unepériode prédénie (typiquement 4 ans), renouvelab<strong>le</strong>s plusieurs fois.4 Besoins en services ALMA14. besoins en services almaLe classement d'ALMA dans <strong>le</strong>s services SO2 (instrumentation) et SO3 (soutien aux observatoires) estsusant pour englober <strong>le</strong>s besoins ci-dessous.4.1 Participation au commissioning d'ALMACette tâche est primordia<strong>le</strong> pour avoir un contact direct avec l'instrument et <strong>le</strong>s personnes qui <strong>le</strong>construisent et en assurent <strong>le</strong> fonctionnement. Il s'agit pour l'instant de séjours de 3 à 6 mois sur placepour <strong>le</strong>quel l'ESO ne paie que <strong>le</strong>s frais de mission (<strong>le</strong> salaire reste donc à la charge de l'Observatoire derattachement). L'ESO souhaite des personnels expérimentés car <strong>le</strong>ur but n'est pas de former des gens maisd'aider à la construction d'ALMA. Pour information, l'IRAM envoie en 2010/2011 deux personnes pourun séjour de 3 mois.L'ASA encourage <strong>le</strong>s observatoires français à envoyer des astronomes au Chili, astronomes mis à ladisposition de l'ESO pour ALMA. L'ASA recommande d'assurer la présence de 2 français au Chili sur tou<strong>tel</strong>a période de commissionning. C'est certainement la meil<strong>le</strong>ure manière d'assurer une bonne connaissancede l'instrument et de la diuser dans la communauté française pour la préparer à une utilisation optima<strong>le</strong>d'ALMA.4.2 Soutien face à faceL'ARC est une structure essentiel<strong>le</strong> pour assurer <strong>le</strong> succès de la communauté française dans son utilisationd'ALMA : dans une compétition mondia<strong>le</strong> extrêmement forte, il est nécessaire d'avoir des centresd'expertise pouvant fournir un soutien ecace et rapide à la communauté, notamment pour la réductiondes données. Les ARC nord-américains et asiatiques sont localisés à un seul endroit. Le modè<strong>le</strong> européenconsistant à impliquer plusieurs laboratoires est justié par <strong>le</strong> manque d'expertise disponib<strong>le</strong> à l'ESO, maiscomporte un risque très fort de dispersion des eorts.Pour éviter l'émiettement des ressources françaises et pour couvrir toutes <strong>le</strong>s problématiques (instrumenta<strong>le</strong>s,logiciel<strong>le</strong>s, scientiques) en un même lieu, l'ASA défend l'idée que <strong>le</strong> soutien face à face doit sefaire exclusivement à Grenob<strong>le</strong> dans <strong>le</strong> cadre du noeud de l'ARC européen qui s'y développe. Quel que soit<strong>le</strong> montage administratif retenu, il est important de souligner que pour qu'une petite équipe réussisse àorir un soutien face-à-face de qualité dans un environnement aussi comp<strong>le</strong>xe (car mondialisé) qu'ALMA,il faut un investissement des membres de l'équipe supérieur aux 30% de tâches de service habituel d'unpersonnel CNAP. L'ASA recommande l'aectation de 2 postes supplémentaires à cette tâche sur la période2011-2014.4.3 Mise au point d'outils expertsIl s'agit par exemp<strong>le</strong> d'outils de visualisation de données, d'estimation de la qualité de la calibration,d'imagerie avancée, de polarimétrie, etc... Dans un premier temps (au moins pendant la période dite Early Science ), ALMA va produire des données brutes sans pipeline (sans réduction automatique).La réduction et l'analyse manuel<strong>le</strong> des données se fera à l'aide du logiciel CASA qui est en très grandepartie développé par NRAO. L'existence d'outils experts permettra durant cette période d'identier et/oude résoudre plus rapidement <strong>le</strong>s problèmes qui ne manqueront pas d'arriver. Ces outils auront pour butd'ajouter une meil<strong>le</strong>ure interactivité avec <strong>le</strong>s données et/ou des algorithmes d'étalonnage ou d'imagerienon-standards. A plus long terme, <strong>le</strong>s outils experts devraient permettre de tirer au mieux parti du té<strong>le</strong>scopedans ses limites non-couvertes par <strong>le</strong> pipeline. En eet, assurer <strong>le</strong> développement et <strong>le</strong> suivi d'outils expertsdonnera à la communauté française un avantage dans l'obtention de temps sur cet observatoire unique aumonde et donc très compétitif. L'ASA recommande ici aussi l'aectation de 2 postes supplémentaires àcette tâche sur la période 2011-2014.23


5. besoins en services annexes, bénéfiques entre autres à alma5 Besoins en services annexes, bénéques entre autres à ALMATirer <strong>le</strong> meil<strong>le</strong>ur parti scientique d'ALMA implique d'autres types de besoins qui ne sont pas spéci-ques à ALMA. L'ASA souligne ces besoins pour encourager <strong>le</strong>s observatoires à y répondre.5.1 Mise à disposition de données de micro-physique ab<strong>le</strong>sIl s'agit d'eorts essentiels pour la communauté astrophysique, mais insusamment valorisés (cités)et soutenus sur <strong>le</strong> long terme. En outre, <strong>le</strong> dialogue entre communautés de cultures très diérentes est<strong>le</strong> seul moyen d'obtenir une bonne adéquation entre <strong>le</strong>s besoins astrophysiques et l'expertise disponib<strong>le</strong>.C'est d'autant plus crucial que <strong>le</strong>s problèmes astrophysiques sont plus dici<strong>le</strong>s et plus nombreux à traiter.La partie service concerne ici la mise à disposition de données souhaitées par la communauté ALMA. Celaenglobe 1) la dénition de ces besoins, 2) la standardisation des données, 3) l'évaluation de la qualité etde la zone de validité des données disponib<strong>le</strong>s et 4) la mise en service, la documentation et la maintenancede bases de données de façon à pérenniser <strong>le</strong>s données. En particulier, il faut soutenir <strong>le</strong>s actions ayantune audience mesurab<strong>le</strong> susamment grande.5.2 Mise à disposition d'outils d'analyseLes outils d'analyse <strong>tel</strong>s que <strong>le</strong>s codes de transfert de rayonnement, codes de chimie, codes de MHD,etc... sont des objets de recherches qui s'améliorent sans cesse. Néanmoins, certains d'entre eux ont atteintun degré de maturité qui en font des outils trop comp<strong>le</strong>xes pour être faci<strong>le</strong>ment réécrits tout en répondantà des problèmes précis susamment uti<strong>le</strong>s à une communauté d'utilisateurs. La partie service englobe icila mise en place de benchmarks, la documentation (en particulier la description de <strong>le</strong>urs conditions defonctionnement normal), la mise à disposition (e.g. interface VO) et <strong>le</strong> soutien aux utilisateurs.<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 20124


<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012244 ACTION SPÉCIFIQUE ALMA (ADMINISTRATION DE LA RECHERCHE)


Artic<strong>le</strong>s publiés dans des revues à comité de<strong>le</strong>cture<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012[A1] H. S. Liszt and Pety. Imaging diffuse clouds : Bright and dark gas mapped in CO. A&A,2012. Accepté.[A2] V. Guzmán, J. Pety, J. R. Goicoechea, M. Gerin, and E. Roueff. H 2 CO in the HorseheadPDR : photo-desorption of dust grain ice mant<strong>le</strong>s. A&A, 534 :A49, October 2011.[A3] V. Piétu, F. Gueth, P. Hily-Blant, K.-F. Schuster, and J. Pety. High resolution imaging ofthe GG Tauri system at 267 GHz. A&A, 528 :A81, April 2011.[A4] S. Maret, P. Hily-Blant, J. Pety, S. Bardeau, and E. Reynier. Weeds : a CLASS extensionfor the analysis of millimeter and sub-millimeter spectral surveys. A&A, 526 :A47+,February 2011.[A5] A. Fuente, O. Berné, J. Cernicharo, J. R. Rizzo, M. Gonzá<strong>le</strong>z-García, J. R. Goicoechea,P. Pil<strong>le</strong>ri, V. Ossenkopf, M. Gerin, R. Güsten, M. Akyilmaz, A. O. Benz, F. Boulanger,S. Bruderer, C. Dedes, K. France, S. García-Burillo, A. Harris, C. Joblin, T. K<strong>le</strong>in, C. Kramer,F. Le Petit, S. D. Lord, P. G. Martin, J. Martín-Pintado, B. Mookerjea, D. A. Neufeld,Y. Okada, J. Pety, T. G. Phillips, M. Röllig, R. Simon, J. Stutzki, F. van der Tak, D. Teyssier,A. Usero, H. Yorke, K. Schuster, M. Melchior, A. Lorenzani, R. Szczerba, M. Fich,C. McCoey, J. Pearson, and P. Die<strong>le</strong>man. Herschel observations in the ultracompact HIIregion Mon R2. Water in dense photon-dominated regions (PDRs). A&A, 521 :L23+, October2010.[A6] H. S. Liszt, J. Pety, and R. Lucas. The CO luminosity and CO-H 2 conversion factor ofdiffuse ISM : does CO emission trace dense mo<strong>le</strong>cular gas ? A&A, 518 :A45+, July 2010.[A7] J. Pety and N. Rodríguez-Fernández. Revisiting the theory of interferometric wide-fieldsynthesis. A&A, 517 :A12+, July 2010.[A8] S. Leurini, B. Parise, P. Schilke, J. Pety, and R. Rolffs. H 2 CO and CH 3 OH maps of theOrion Bar photodissociation region. A&A, 511 :A82+, February 2010.[A9] E. Falgarone, J. Pety, and P. Hily-Blant. Intermittency of inters<strong>tel</strong>lar turbu<strong>le</strong>nce : extremevelocity-shears and CO emission on milliparsec sca<strong>le</strong>. A&A, 507 :355–368, November2009.


246 ARTICLES PUBLIÉS DANS DES REVUES À COMITÉ DE LECTURE<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012[A10] P. Boissé, E. Rollinde, P. Hily-Blant, J. Pety, S. R. Federman, Y. Sheffer, G. Pineau DesForêts, E. Roueff, B.-G. Andersson, and G. Hébrard. CO emission and variab<strong>le</strong> CH andCH + absorption towards HD 34078 : evidence for a nascent bow shock ? A&A, 501 :221–237, July 2009.[A11] H. S. Liszt, J. Pety, and K. Tachihara. Imaging galactic diffuse clouds : CO emission,reddening and turbu<strong>le</strong>nt flow in the gas around ζ Ophiuchi. A&A, 499 :503–513, May2009.[A12] J. R. Goicoechea, J. Pety, M. Gerin, P. Hily-Blant, and J. Le Bourlot. The ionizationfraction gradient across the Horsehead edge : an archetype for mo<strong>le</strong>cular clouds. A&A,498 :771–783, May 2009.[A13] M. Gerin, J. R. Goicoechea, J. Pety, and P. Hily-Blant. HCO mapping of the Horsehead :tracing the illuminated dense mo<strong>le</strong>cular cloud surfaces. A&A, 494 :977–985, February2009.[A14] K. Schreyer, S. Guilloteau, D. Semenov, A. Bacmann, E. Chapillon, A. Dutrey, F. Gueth,T. Henning, F. Hersant, R. Launhardt, J. Pety, and V. Piétu. Chemistry in disks. II. Poormo<strong>le</strong>cular content of the AB Aurigae disk. A&A, 491 :821–827, December 2008.[A15] J. Pety, R. Lucas, and H. S. Liszt. Imaging galactic diffuse gas : bright, turbu<strong>le</strong>nt COsurrounding the line of sight to NRAO150. A&A, 489 :217–228, October 2008.[A16] H. S. Liszt, J. Pety, and R. Lucas. Limits on chemical comp<strong>le</strong>xity in diffuse clouds :search for CH 3 OH and HC5N absorption. A&A, 486 :493–496, August 2008.[A17] P. Salomé, Y. Revaz, F. Combes, J. Pety, D. Downes, A. C. Edge, and A. C. Fabian.Observations of CO in the eastern filaments of NGC 1275. A&A, 483 :793–799, June2008.[A18] P. Hily-Blant, E. Falgarone, and J. Pety. Dissipative structures of diffuse mo<strong>le</strong>cular gas.III. Small-sca<strong>le</strong> intermittency of intense velocity-shears. A&A, 481 :367–380, April 2008.[A19] S. Guilloteau, A. Dutrey, J. Pety, and F. Gueth. Resolving the circumbinary dust disksurrounding HH 30. A&A, 478 :L31–L34, February 2008.[A20] J. M. Winters, T. Le Bertre, J. Pety, and R. Neri. Mass loss from dusty, low outflowvelocityAGB stars. II. The multip<strong>le</strong> wind of EP Aquarii. A&A, 475 :559–568, November2007.[A21] J. Pety, J. R. Goicoechea, P. Hily-Blant, M. Gerin, and D. Teyssier. Deuterium fractionationin the Horsehead edge. A&A, 464 :L41–L44, March 2007.[A22] A. Dutrey, T. Henning, S. Guilloteau, D. Semenov, V. Piétu, K. Schreyer, A. Bacmann,R. Launhardt, J. Pety, and F. Gueth. Chemistry in disks. I. Deep search for N 2 H + in theprotoplanetary disks around LkCa 15, MWC 480, and DM Tauri. A&A, 464 :615–623,March 2007.[A23] V. Piétu, A. Dutrey, S. Guilloteau, E. Chapillon, and J. Pety. Resolving the inner dustdisks surrounding LkCa 15 and MWC 480 at mm wave<strong>le</strong>ngths. A&A, 460 :L43–L47,December 2006.[A24] J. Pety, F. Gueth, S. Guilloteau, and A. Dutrey. Plateau de Bure interferometer observationsof the disk and outflow of HH 30. A&A, 458 :841–854, November 2006.


ARTICLES PUBLIÉS DANS DES REVUES À COMITÉ DE LECTURE 247<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012[A25] J. R. Goicoechea, J. Pety, M. Gerin, D. Teyssier, E. Roueff, P. Hily-Blant, and S. Baek.Low sulfur dep<strong>le</strong>tion in the Horsehead PDR. A&A, 456 :565–580, September 2006.[A26] S. Cabrit, J. Pety, N. Pesenti, and C. Dougados. Tidal stripping and disk kinematics inthe RW Aurigae system. A&A, 452 :897–906, June 2006.[A27] H. S. Liszt, R. Lucas, and J. Pety. Comparative chemistry of diffuse clouds. V. Ammoniaand formaldehyde. A&A, 448 :253–259, March 2006.[A28] E. Habart, A. Abergel, C. M. Walms<strong>le</strong>y, D. Teyssier, and J. Pety. Density structure of theHorsehead nebula photo-dissociation region. A&A, 437 :177–188, July 2005.[A29] J. Pety, D. Teyssier, D. Fossé, M. Gerin, E. Roueff, A. Abergel, E. Habart, and J. Cernicharo.Are PAHs precursors of small hydrocarbons in photo-dissociation regions ? TheHorsehead case. A&A, 435 :885–899, June 2005.[A30] J. Pety, A. Bee<strong>le</strong>n, P. Cox, D. Downes, A. Omont, F. Bertoldi, and C. L. Carilli. Atomiccarbon in PSS 2322+1944, a quasar at redshift 4.12. A&A, 428 :L21–L24, December 2004.[A31] A. Bee<strong>le</strong>n, P. Cox, J. Pety, C. L. Carilli, F. Bertoldi, E. Momjian, A. Omont, P. Petitjean,and A. O. Petric. Starburst activity in the host galaxy of the z =2.58 quasar J1409+5628.A&A, 423 :441–447, August 2004.[A32] D. Teyssier, D. Fossé, M. Gerin, J. Pety, A. Abergel, and E. Roueff. Carbon budget andcarbon chemistry in Photon Dominated Regions. A&A, 417 :135–149, April 2004.[A33] J. Pety and E. Falgarone. Non-Gaussian velocity shears in the environment of low massdense cores. A&A, 412 :417–430, December 2003.[A34] P. Cox, A. Omont, S. G. Djorgovski, F. Bertoldi, J. Pety, C. L. Carilli, K. G. Isaak, A. Bee<strong>le</strong>n,R. G. McMahon, and S. Castro. CO and Dust in PSS 2322+1944 at a redshift of 4.12.A&A, 387 :406–411, May 2002.[A35] E. Falgarone, J. Pety, and T. G. Phillips. Filamentary Structure and Helical MagneticFields in the Environment of a Star<strong>le</strong>ss Dense Core. ApJ, 555 :178–190, July 2001.[A36] J. Pety and É. Falgarone. The elusive structure of the diffuse mo<strong>le</strong>cular gas : shocks orvortices in compressib<strong>le</strong> turbu<strong>le</strong>nce ? A&A, 356 :279–286, April 2000.[A37] J. W. Kooi, J. Pety, B. Bumb<strong>le</strong>, C. K. Walker, H. G. Leduc, P. L. Schaffer, and T. G.Phillips. A 850-GHz waveguide receiver employing a niobium SIS junction fabricated on a1-µm Si/sub 3/N/sub 4/ membrane. IEEE Transactions on Microwave Theory Techniques,46 :151–161, February 1998.[A38] D. C. Lis, J. Keene, Y. Li, T. G. Phillips, and J. Pety. Statistical Properties of LineCentroid Velocity Increments in the rho Ophiuchi Cloud. ApJ, 504 :889–+, September1998.[A39] D. C. Lis, J. Pety, T. G. Phillips, and E. Falgarone. Statistical Properties of Line CentroidVelocities and Centroid Velocity Increments in Compressib<strong>le</strong> Turbu<strong>le</strong>nce. ApJ, 463 :623–+, June 1996.[A40] J.-C. Maréchal, J. Pety, Y. Simon, and M. David. Analytical comparison of differenttypes of pulse tubes refrigerators. Cryogenics, 34 :163–166, 1994.


<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012248 ARTICLES PUBLIÉS DANS DES REVUES À COMITÉ DE LECTURE


Mémos IRAM et ALMA<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012[M1] S. Bardeau, J. Pety, and S. Guilloteau. CLASS user section. Technical report, 2011.IRAM Memo 2011-3.[M2] J. Pety and N. Rodriguez-Fernandez. WIFISYN : The GILDAS imp<strong>le</strong>mentation of a newwide-field synthesis algorithm. Technical report, 2011. IRAM Memo 2011-2.[M3] S. Bardeau, E. Reynier, and J. Pety. Preparing gildas for large datasets. i - greg 2011.Technical report, 2011. IRAM Memo 2011-1.[M4] J. Pety, M. Gonza<strong>le</strong>z, S. Bardeau, and E. Reynier. Iram-30m hera time/sensitivity estimator.Technical report, 2010. IRAM Memo 2010-2.[M5] J. Pety, G. Quintana-Lacaci, R. Zylka, S. Bardeau, and E. Reynier. Iram-30m mambotime/sensitivity estimator. Technical report, 2010. IRAM Memo 2010-1.[M6] J. Pety, S. Bardeau, and E. Reynier. Comparison of atm versions : Impact on the calibrationof iram instruments. Technical report, 2009. IRAM Memo 2009-5.[M7] S. Bardeau and J. Pety. Averaging spectra with class. Technical report, 2009. IRAMMemo 2009-4.[M8] N. Rodriguez-Fernandez, F. Gueth, and J. Pety. A simulator of interferometric on-the-flyobservations. Technical report, 2009. IRAM Memo 2009-3.[M9] N. Rodriguez-Fernandez, J. Pety, and F. Gueth. Imaging of interferometric on-the-flyobservations : (1) context and discussion of possib<strong>le</strong> methods. Technical report, 2009.IRAM Memo 2009-2.[M10] J. Pety, S. Bardeau, and E. Reynier. Iram-30m emir time/sensitivity estimator. Technicalreport, 2009. IRAM Memo 2009-1.[M11] N. Rodriguez-Fernandez, J. Pety, and F. Gueth. Sing<strong>le</strong>-dish observation and processingto produce the short-spacing information for a millimeter interferometer. Technical report,2008. IRAM Memo 2008-2.[M12] J. Pety, N. Rodriguez-Fernandez, and S. Guilloteau. Mapping. Technical report, 2007.A GILDAS software documentation.[M13] P. Hily-Blant, J. Pety, and S. Guilloteau. Class evolution : I. improved oft support. Technicalreport, 2005. IRAM Memo 2005-1.


250 MÉMOS IRAM ET ALMA<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012[M14] T. Tsutsumi, K.-I. Morita, T. Hasegawa, and J. Pety. Wide-field imaging of alma withthe atacama compact array : Imaging simulations. Technical report, 2004. ALMA Memo488.[M15] J. Pety, A. Baker, A. Coulais, F. Gueth, D. Shepherd, L. Testi, and C. Wilson. AIPS++reuse analysis test : Report on phase II. Technical report, 2003. ALMA Memo 473.[M16] J. Pety, F. Gueth, S. Guilloteau, P. J. Teuben, and M. C. H. Wright. Case for interoperabilityas alma off–line. Technical report, 2003. ALMA Memo 465 & IRAM Memo2003-4.[M17] J. Pety, F. Gueth, S. Guilloteau, P. J. Teuben, and M. C. H. Wright. Comp<strong>le</strong>mentarity ofthe AIPS++, gildas and miriad packages as seen from evaluations for alma off-line dataprocessing. Technical report, 2003. ALMA Memo 464 & IRAM Memo 2003-3.[M18] F. Gueth, S. Guilloteau, R. Lucas, J. Pety, and M. C. H. Wright. Evaluation of the gildaspackage for alma off-line data processing. Technical report, 2003. BIMA Memo 96 &IRAM Memo 2003-2.[M19] M. C. H. Wright, P. J. Teuben, and J. Pety. Evaluation of the miriad package for almaoff-line data processing. Technical report, 2003. BIMA Memo 95 & IRAM Memo 2003-1.[M20] J. Pety, F. Gueth, and S. Guilloteau. Impact of aca on the wide-field imaging capabilitiesof alma. Alma memo 398, IRAM, 2001.[M21] J. Pety, F. Gueth, and S. Guilloteau. Alma+aca simulation results. Alma memo 387,IRAM, 2001.[M22] J. Pety, F. Gueth, and S. Guilloteau. Alma+aca simulation tools. Alma memo 386,IRAM, 2001.


Actes de colloques nationaux et internationaux<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012[C1] J. Pety, H. S. Liszt, and R. Lucas. The CO-H 2 conversion factor of diffuse ISM : Bright12 CO emission also traces diffuse gas. In M. Röllig, R. Simon, V. Ossenkopf, & J. Stutzki,editor, EAS Publications Series, volume 52 of EAS Publications Series, pages 151–155,November 2011.[C2] P. Pil<strong>le</strong>ri, C. Joblin, M. Gerin, J. Pety, J. Montillaud, F. Boulanger, and A. Fuente. Productionof small hydrocarbons in photo-dissociation regions. In IAU Symposium, volume280 of IAU Symposium, page 300P, May 2011.[C3] V. Guzman, J. Pety, J. R. Goicoechea, M. Gerin, and E. Roueff. H_2CO in the Horseheadnebula. In IAU Symposium, volume 280 of IAU Symposium, page 187P, May 2011.[C4] P. Gratier, J. Pety, M. Gerin, J. Montillaud, V. Guzman, and J. R. Goicoechea. The HorseheadNebula : a template for extragalactic high density tracers studies ? In IAU Symposium,volume 280 of IAU Symposium, page 182P, May 2011.[C5] J. Pety, H. S. Liszt, and R. Lucas. Bright 12 CO emission traces both dense and diffusegas. Memorie della Societa Astronomica Italiana, 82 :872, 2011.[C6] E. Schinnerer, A. Leroy, J. Pety, G. Dumas, S. Meidt, D. Colombo, S. Garcia-Burillo,A. Hughes, C. Kramer, H. Rix, K. Schuster, T. Thompson, A. Weiss, S. Aalto, and N. Scovil<strong>le</strong>.The Mo<strong>le</strong>cular Gas in the Whirlpool Galaxy. In Bul<strong>le</strong>tin of the American AstronomicalSociety, volume 43 of Bul<strong>le</strong>tin of the American Astronomical Society, pages 24611–+,January 2011.[C7] J. R. Goicoechea, J. Pety, M. Gerin, P. Hily-Blant, D. Teyssier, and E. Roueff. Simp<strong>le</strong>Organic Chemistry in the Horsehead Nebula. In K. J. Meech, J. V. Keane, M. J. Mumma,J. L. Siefert, & D. J. Werthimer , editor, Astronomical Society of the Pacific ConferenceSeries, volume 420 of Astronomical Society of the Pacific Conference Series, pages 43–+,December 2009.[C8] E. Falgarone, P. Hily-Blant, and J. Pety. Small-sca<strong>le</strong> Intermittency of the Dissipationof Inters<strong>tel</strong>lar Turbu<strong>le</strong>nce. In D. C. Lis, J. E. Vaillancourt, P. F. Goldsmith, T. A. Bell,N. Z. Scovil<strong>le</strong>, & J. Zmuidzinas, editor, Astronomical Society of the Pacific Conference


252 ACTES DE COLLOQUES NATIONAUX ET INTERNATIONAUX<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Series, volume 417 of Astronomical Society of the Pacific Conference Series, pages 243–+, December 2009.[C9] P. Boissé, E. Rollinde, G. Hébrard, P. Hily-Blant, J. Pety, S. R. Federman, Y. Sheffer,B. G. Andersson, G. Marmin, G. P. Des Forêts, and E. Roueff. A Multiwave<strong>le</strong>ngthStudy of the Close Environment of HD 34078. In M. E. van Steenberg, G. Sonneborn,H. W. Moos, & W. P. Blair , editor, American Institute of Physics Conference Series,volume 1135 of American Institute of Physics Conference Series, pages 107–109, May2009.[C10] J. Pety, J. R. Goicoechea, and M. Gerin. Two prototypical Galactic PDRs : The Orion barand the Horsehead mane. In C. Kramer, S. Aalto, & R. Simon, editor, EAS PublicationsSeries, volume 31 of EAS Publications Series, pages 35–41, 2008.[C11] E. Falgarone, P. Hily-Blant, J. Pety, and G. Pineau Des Forets. Dissipation of turbu<strong>le</strong>ncein a dense core environment : chemical signatures. In Mo<strong>le</strong>cu<strong>le</strong>s in Space and Laboratory,December 2007.[C12] J. Pety, J. R. Goicoechea, M. Gerin, P. Hily-Blant, D. Teyssier, E. Roueff, E. Habart, andA. Abergel. The Horsehead mane : Toward an observational benchmark for chemicalmodels. In Mo<strong>le</strong>cu<strong>le</strong>s in Space and Laboratory, December 2007.[C13] M. Gerin, P. Lesaffre, J. R. Goicoechea, P. Hennebel<strong>le</strong>, J. Pety, J. Le Bourlot, and F. LePetit. Mo<strong>le</strong>cu<strong>le</strong>s in the diffuse and dense inters<strong>tel</strong>lar gas. In Mo<strong>le</strong>cu<strong>le</strong>s in Space andLaboratory, December 2007.[C14] E. Falgarone, P. Hily-Blant, J. Pety, and G. Pineau Desforêts. Small-Sca<strong>le</strong> DissipativeStructures of Diffuse ISM Turbu<strong>le</strong>nce : II – Chemical Diagnostics. In M. Haverkorn &W. M. Goss, editor, SINS - Small Ionized and Neutral Structures in the Diffuse Inters<strong>tel</strong>larMedium, volume 365 of Astronomical Society of the Pacific Conference Series, pages190–+, July 2007.[C15] P. Hily-Blant, J. Pety, and E. Falgarone. Small-Sca<strong>le</strong> Dissipative Structures of DiffuseISM Turbu<strong>le</strong>nce : I – CO Diagnostics. In M. Haverkorn & W. M. Goss, editor, SINS -Small Ionized and Neutral Structures in the Diffuse Inters<strong>tel</strong>lar Medium, volume 365 ofAstronomical Society of the Pacific Conference Series, pages 184–+, July 2007.[C16] E. Falgarone, P. Hily-Blant, J. Pety, and G. Pineau Des Forêts. The turbu<strong>le</strong>nt environmentof low-mass dense cores. In B. G. Elmegreen & J. Palous, editor, IAU Symposium, volume237 of IAU Symposium, pages 24–30, 2007.[C17] J. Pety, J. R. Goicoechea, M. Gerin, P. Hily-Blant, D. Teyssier, E. Roueff, E. Habart,and A. Abergel. Benchmarking PDR models against the Horsehead edge. In D. Barret,F. Casoli, G. Lagache, A. Lecavelier, & L. Pagani , editor, SF2A-2006 : Semaine del’Astrophysique Francaise, pages 247–+, June 2006.[C18] P. Hily-Blant, J. Pety, and E. Falgarone. Small-sca<strong>le</strong> dissipative structures of the diffuseISM : CO diagnostics. In D. Barret, F. Casoli, G. Lagache, A. Lecavelier, & L. Pagani ,editor, SF2A-2006 : Semaine de l’Astrophysique Francaise, pages 239–+, June 2006.[C19] J. R. Goicoechea, J. Pety, M. Gerin, D. Teyssier, E. Roueff, and P. Hily-Blant. Low SulfurDep<strong>le</strong>tion in Photodissociation Regions. In D. Barret, F. Casoli, G. Lagache, A. Lecavelier,& L. Pagani , editor, SF2A-2006 : Semaine de l’Astrophysique Francaise, pages229–+, June 2006.


ACTES DE COLLOQUES NATIONAUX ET INTERNATIONAUX 253[C31] D. Teyssier, J. Pety, M. Gerin, D. Fosse, A. Abergel, E. Roueff, and C. Joblin. Small CarbonChains and Rings in Photo-Dominated Regions. In S. Pfalzner, C. Kramer, C. Staub<strong>tel</strong>-<strong>00726959</strong>,version 1 - 31 Aug 2012[C20] J. Pety. Successes of and Chal<strong>le</strong>nges to GILDAS, a State-of-the-Art RadioastronomyToolkit. In F. Casoli, T. Contini, J. M. Hameury, & L. Pagani, editor, SF2A-2005 : Semainede l’Astrophysique Francaise, pages 721–+, December 2005.[C21] E. Falgarone, P. Hily-Blant, J. Pety, and G. Pineau Des Forêts. Intermittency of inters<strong>tel</strong>larturbu<strong>le</strong>nce : observational signatures in diffuse mo<strong>le</strong>cular gas. In E. M. de Gouveia dalPino, G. Lugones, & A. Lazarian, editor, Magnetic Fields in the Universe : From Laboratoryand Stars to Primordial Structures., volume 784 of American Institute of PhysicsConference Series, pages 299–307, September 2005.[C22] H. Liszt, R. Lucas, and J. Pety. Millimeter-wave Observations of Polyatomic Mo<strong>le</strong>cu<strong>le</strong>sin Diffuse Clouds. In D. C. Lis, G. A. Blake, & E. Herbst, editor, Astrochemistry : RecentSuccesses and Current Chal<strong>le</strong>nges, volume 231 of IAU Symposium, pages 187–196, August2005.[C23] M. Gerin, E. Roueff, J. Le Bourlot, J. Pety, J. R. Goicoechea, D. Teyssier, C. Joblin,A. Abergel, and D. Fossé. Carbon Chemistry in Photodissociation Regions. In D. C. Lis,G. A. Blake, & E. Herbst, editor, Astrochemistry : Recent Successes and Current Chal<strong>le</strong>nges,volume 231 of IAU Symposium, pages 153–162, August 2005.[C24] D. Teyssier, P. Hily-Blant, M. Gerin, J. Cernicharo, E. Roueff, and J. Pety. Variationof the C 3 H 2 cyclic/linear abundance ratio across the Horsehead nebula Photo-DominatedRegion. In A. Wilson, editor, ESA Special Publication, volume 577 of ESA Special Publication,pages 423–424, January 2005.[C25] S. Cabrit, J. Pety, N. Pesenti, and C. Dougados. Disk Kinematics and Tidal Stripping inthe RW Aur System. In Protostars and Planets V, page 8103, 2005.[C26] J. R. Goicoechea, J. Pety, M. Gerin, E. Roueff, D. Teyssier, A. Abergel, E. Habart, andC. Joblin. Sulfur chemistry in the Horsehead PDR : deriving the S abundance from CS.In IAU Symposium, volume 235 of IAU Symposium, pages 75P–+, 2005.[C27] P. Hily-Blant, E. Falgarone, J. Pety, and G. Pineau Des Forêts. The spatial distribution ofoptically thin 12 CO(1 - 0) in diffuse mo<strong>le</strong>cular clouds. In IAU Symposium, volume 235 ofIAU Symposium, pages 61P–+, 2005.[C28] E. Falgarone, P. Hily–Blant, and J. Pety. Intermittent Dissipation of Inters<strong>tel</strong>lar Turbu<strong>le</strong>nce: Observational Signatures. In D. Johnstone, F. C. Adams, D. N. C. Lin, D. A. Neufeeld,& E. C. Ostriker , editor, Star Formation in the Inters<strong>tel</strong>lar Medium : In Honor ofDavid Hol<strong>le</strong>nbach, volume 323 of Astronomical Society of the Pacific Conference Series,pages 185–+, December 2004.[C29] J. Pety, F. Gueth, S. Guilloteau, R. Lucas, P. J. Teuben, and M. C. H. Wright. InteroperatingGILDAS and MIRIAD. In F. Ochsenbein, M. G. Al<strong>le</strong>n, & D. Egret, editor,Astronomical Data Analysis Software and Systems (ADASS) XIII, volume 314 of AstronomicalSociety of the Pacific Conference Series, pages 416–+, July 2004.[C30] J. Pety, F. Gueth, A. Dutrey, and S. Guilloteau. Millimeter Properties of the ProtoplanetaryDisk Surrounding HH 30. In S. Pfalzner, C. Kramer, C. Staubmeier, & A. Heithausen,editor, The Dense Inters<strong>tel</strong>lar Medium in Galaxies, pages 649–+, 2004.


254 ACTES DE COLLOQUES NATIONAUX ET INTERNATIONAUX<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012meier, & A. Heithausen, editor, The Dense Inters<strong>tel</strong>lar Medium in Galaxies, pages 521–+,2004.[C32] D. Teyssier, D. Fossé, M. Gerin, J. Pety, A. Abergel, and E. Habart. Connection BetweenPAHs and Small Hydrocarbons in the Horsehead Nebula PhotoDissociation Region. InC. L. Curry & M. Fich, editor, SFChem 2002 : Chemistry as a Diagnostic of Star Formation,pages 422–+, 2003.[C33] E. Falgarone, G. Pineau Des Forêts, P. Hily-Blant, P. Schilke, and J. Pety. NonequilibriumChemistry in the Dissipative Structures of Inters<strong>tel</strong>lar Turbu<strong>le</strong>nce. InC. L. Curry & M. Fich, editor, SFChem 2002 : Chemistry as a Diagnostic of Star Formation,pages 291–+, 2003.[C34] J. Pety, F. Gueth, S. Guilloteau, and A. Dutrey. The s<strong>tel</strong>lar mass of HH30. In F. Combes& D. Barret, editor, SF2A-2002 : Semaine de l’Astrophysique Francaise, pages 481–+,June 2002.[C35] J. Pety, F. Gueth, and S. Guilloteau. Simulating the wide-field imaging capabilities ofALMA. In F. Combes, D. Barret, & F. Thévenin, editor, SF2A-2001 : Semaine de l’AstrophysiqueFrancaise, pages 569–+, May 2001.[C36] E. Falgarone and J. Pety. Turbu<strong>le</strong>nce in the Environment of two Star<strong>le</strong>ss Dense Cores.In T. Montmer<strong>le</strong> & P. André, editor, From Darkness to Light : Origin and Evolution ofYoung S<strong>tel</strong>lar Clusters, volume 243 of Astronomical Society of the Pacific ConferenceSeries, pages 53–+, 2001.[C37] J. Pety and É. Falgarone. The structure of the cold neutral matter : shocks or vortices ? InYoung European Radio Astronomers’ Conference (YERAC), 2000.[C38] J. Pety and É. Falgarone. Kinematic localization of the dissipative structures of inters<strong>tel</strong>larturbu<strong>le</strong>nce. In Young European Radio Astronomers’ Conference (YERAC), 2000.[C39] D. C. Lis, T. G. Phillips, M. Gerin, J. Keene, Y. Li, J. Pety, and E. Falgarone. CentroidVelocity Increments as a Probe of the Turbu<strong>le</strong>nt Velocity Field in Inters<strong>tel</strong>lar Mo<strong>le</strong>cularClouds. In J. Franco & A. Carraminana, editor, Inters<strong>tel</strong>lar Turbu<strong>le</strong>nce, pages 203–+,1999.[C40] D. C. Lis, J. Pety, T. G. Phillips, and E. Falgarone. PDFs of centroid velocities andcentroid velocity increments in supersonic compressib<strong>le</strong> turbu<strong>le</strong>nce. In W. B. Latter,S. J. E. Radford, P. R. Jewell, J. G. Mangum, & J. Bally, editor, IAU Symposium, volume170 of IAU Symposium, pages 433–+, 1997.[C41] J. W. Kooi, J. Pety, P. L. Schaffer, T. G. Phillips, B. Bumb<strong>le</strong>, H. G. Leduc, and C. K.Walker. A 850 GHz SIS Receiver Employing Silicon Micro-Machining Technology. InE. J. Rolfe & G. Pilbratt, editor, Submillimetre and Far-Infrared Space Instrumentation,volume 388 of ESA Special Publication, pages 163–+, December 1996.


<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012


<strong>tel</strong>-<strong>00726959</strong>, version 1 - 31 Aug 2012Caractériser <strong>le</strong> <strong>milieu</strong> inters<strong>tel</strong>laire : un clé pour comprendre l’UniversQu’ont en commun la détection de carbone atomique à un redshift de 4, la cartographie à 1" de résolutionde l’émission 12 CO J=1–0 de la galaxie du tourbillon (M51), l’étude des avant-plans galactiquesde Planck, et l’étude de la cinématique du disque et du flot moléculaire de la proto-étoi<strong>le</strong> HH30 ? Au-delàdu fait qu’el<strong>le</strong>s sont réalisées dans <strong>le</strong> domaine (sub-)millimétrique, ces observations sont liées aux processusphysiques et chimiques du <strong>milieu</strong> inters<strong>tel</strong>laire. Caractériser ces processus permet de comprendre<strong>le</strong>s objets <strong>le</strong>s plus divers de l’univers, des plus proches au plus lointains, des plus petits au plus grands. Jedécris ici une décennie de travail consacrée à la compréhension du <strong>milieu</strong> inters<strong>tel</strong>laire. Je commence parprésenter deux des approches scientifiques que j’ai prises. La première concerne la caractérisition d’unedes transitions <strong>le</strong>s moins bien comprises du gaz dans son chemin vers la formation des étoi<strong>le</strong>s, à savoir latransition HI vers H 2 . Je montre comment l’interprétation de l’émission 12 CO J=1–0 pointe tout autantvers <strong>le</strong> <strong>milieu</strong> dense et froid que vers <strong>le</strong> <strong>milieu</strong> diffus et tiède. Dans un 2ème temps, je décris la nécessitéet la mise en place d’une référence observationnel<strong>le</strong> (la chevelure de la nébu<strong>le</strong>use de la Tête de Cheval)pour <strong>le</strong>s modé<strong>le</strong>s photochimiques, eux-mêmes utilisés dans tous <strong>le</strong>s contextes évoqués ci-dessus.La décennie qui vient sera aussi féconde grâce à plusieurs événements. Tout d’abord, la communautéqui étudie <strong>le</strong> <strong>milieu</strong> inters<strong>tel</strong>laire se structure rapidement autour de grands projets. A mon niveau, e suisporteur du contrat ANR « Structure and CHemistry of the Inter-S<strong>tel</strong>lar Medium » (SCHISM) qui réunitobservateurs, numériciens et théoréticiens de l’IRAM et de l’Observatoire de Paris. Par ail<strong>le</strong>urs, l’instrumentationradio fait des progrès spectaculaires qui vont déboucher sur la spectro-imagerie grand champ àhaute résolution angulaire et spectra<strong>le</strong>. L’IRAM a un rô<strong>le</strong> prépondérant dans cette aventure et j’y contribueau niveau logiciel et algorithmique. Enfin, je participe à la maturation des nouveaux instruments comme<strong>le</strong>s caméras grand-champs pour <strong>le</strong>s antennes uniques et <strong>le</strong>s projets ALMA et NOEMA en interférométrie(sub-)millimétrique. La conjonction de ces facteurs contribuera à percer à jour l’origine des galaxies, desétoi<strong>le</strong>s, des systèmes planétaires et des molécu<strong>le</strong>s prébiotiques.Mots-c<strong>le</strong>fs : Milieu inters<strong>tel</strong>laire, Radio-astronomie, Spectro-imagerie grand champ, Interféromètrie.Characterizing the inters<strong>tel</strong>lar medium: A key to understand the UniverseWhat is there in common between the detection of atomic carbon at a redshift of 4, 1"-mapping of the12 CO J=1–0 of the whirpool galaxy (M51), the study of the Galactic foreground emission in Planck data,and the kinematic study of the mo<strong>le</strong>cular disk and outflow of the HH30 proto-star? Beyond the fact thatall these observations are done at (sub-)millimeter wave<strong>le</strong>ngths, they are linked through the physical andchemical processes of the inters<strong>tel</strong>lar medium. Characterizing these processes permits us to understandthe most diverse objects of the universe near and far and from smal<strong>le</strong>st to largest. I describe here onedecade of work directed toward understanding of the inters<strong>tel</strong>lar medium. I start with the description oftwo of the approaches I took. The first concerns the characterization of one of the <strong>le</strong>ss well-understoodstep in the gas on its way to form stars, the transition from HI to H 2 . I show how the interpretation of the12 CO J=1–0 emission relates to cold dense gas as well as warm diffuse gas. Second, I present the needfor and the making of an observational benchmark (the Horsehead Mane) for comp<strong>le</strong>x photo-chemicalmodels, which are subsequently used in the contexts mentioned above.The decade to come promises to be as fruitful as the last one, for several reasons. The communitystudying the inters<strong>tel</strong>lar medium increasingly organizes itself around large projects. On my own part, Iam the PI of the SCHISM ANR grant (Structure and CHemistry of the InterS<strong>tel</strong>lar Medium) that bringstogether observers, numerical specialists and theoreticians mainly from IRAM and the Observatoire deParis. Moreover, radio instrumentation is making spectacular progress regarding high angular and spectralresolution spectro-imaging. IRAM has a preponderant ro<strong>le</strong> in these chal<strong>le</strong>nges to which I contributesoftware development and algorithms. Finally, I participate in the maturation of new instruments suchas sing<strong>le</strong>-dish wide-field cameras and the ALMA and NOEMA interferometers. The conjonction of thefactors will contribute to bring to light the origins of the galaxies, stars, planetary systems and pre-bioticmo<strong>le</strong>cu<strong>le</strong>s.Keywords: Inters<strong>tel</strong>lar medium, Radio-astronomy, Wide-field spectro-imaging, Interferometry.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!