13.07.2015 Views

Does weather matter on efficiency? An empirical study of the ...

Does weather matter on efficiency? An empirical study of the ...

Does weather matter on efficiency? An empirical study of the ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<str<strong>on</strong>g>Does</str<strong>on</strong>g> <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> <str<strong>on</strong>g>matter</str<strong>on</strong>g> <strong>on</strong> <strong>efficiency</strong>? <strong>An</strong> <strong>empirical</strong> <strong>study</strong> <strong>of</strong> <strong>the</strong> electricitydistributi<strong>on</strong> market in South AmericaKarim <strong>An</strong>aya 1AbstractThis paper analyses <strong>the</strong> influence <strong>of</strong> <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> variables <strong>on</strong> <strong>the</strong> <strong>efficiency</strong> <strong>of</strong> electricity distributi<strong>on</strong>utilities in Argentina, Brazil, Chile and Peru. The data covers 82 firms that operate in <strong>the</strong> menti<strong>on</strong>edcountries which represent more than 90 per cent <strong>of</strong> <strong>the</strong> distributi<strong>on</strong> market <strong>of</strong> energy delivered, for<strong>the</strong> period 1998-2008. The stochastic fr<strong>on</strong>tier analysis (SFA) is applied with a translog input distancefuncti<strong>on</strong> approach. A combinati<strong>on</strong> <strong>of</strong> cost and cost-quality models is proposed for betterdiscussi<strong>on</strong>s. Wea<strong>the</strong>r data are collected from around 429 meteorological stati<strong>on</strong>s and lightning data(flash rate) is collected from 3423 coordinates provided by NASA. A geographic informati<strong>on</strong> system(GIS) is used for locating <strong>the</strong> firms’ service areas and for allocating <strong>the</strong>ir respective meteorologicalstati<strong>on</strong>s and coordinates. Results suggest that <strong>on</strong> average under cost models <strong>the</strong>re is a significantincrease <strong>on</strong> <strong>efficiency</strong> when <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> is incorporated in <strong>the</strong> producti<strong>on</strong> functi<strong>on</strong>. We observe thatfirms from Brazil and Peru are those which operate in less favourable <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s. Under <strong>the</strong>cost-quality models <strong>the</strong> effect <strong>on</strong> average is much lower. From this appears to be that firms haveinternalised <strong>the</strong> effect <strong>of</strong> <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> and have adapted <strong>the</strong>ir networks c<strong>on</strong>sidering <strong>the</strong> envir<strong>on</strong>ment inwhich <strong>the</strong>y operate. A company-level analysis indicates that across models an important number <strong>of</strong>companies are affected by <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g>. In additi<strong>on</strong>, regulators are advised to make <strong>the</strong> case for <strong>the</strong>proper adjustments <strong>of</strong> <strong>efficiency</strong> scores when specific firms face important <strong>efficiency</strong> changes due to<str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g>.1 PhD student at Judge Business School, University <strong>of</strong> Cambridge, ka272@cam.ac.uk.1


2. The influence <strong>of</strong> <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> <strong>on</strong> electricity networksThe overhead lines, underground cables, transformer and switching stati<strong>on</strong>s are <strong>the</strong> key comp<strong>on</strong>ents in<strong>the</strong> transmissi<strong>on</strong> and distributi<strong>on</strong> network that are more susceptible to <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s. Am<strong>on</strong>g<strong>the</strong>m, <strong>the</strong> overhead lines are <strong>the</strong> <strong>on</strong>es that face <strong>the</strong> str<strong>on</strong>ger external factors such as <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g>. Resultsfrom <strong>the</strong> nati<strong>on</strong>al electric reliability <strong>study</strong> c<strong>on</strong>ducted by <strong>the</strong> US Department <strong>of</strong> Energy, DOE (1981)suggest that most distributi<strong>on</strong> interrupti<strong>on</strong>s are initiated by severe <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> –related interrupti<strong>on</strong>s inwhich <strong>the</strong> inadequate maintenance is <strong>on</strong>e <strong>of</strong> <strong>the</strong> main c<strong>on</strong>tributors 2 . The <strong>study</strong> finds that failures in <strong>the</strong>distributi<strong>on</strong> system are resp<strong>on</strong>sible for 80 per cent <strong>of</strong> all interrupti<strong>on</strong>s.Burke and Lawrence (1983), who perform a four-year <strong>study</strong> for evaluating <strong>the</strong> faults (current) <strong>on</strong>distributi<strong>on</strong> systems in 13 electricity utilities in USA, find that around 40 per cent <strong>of</strong> all permanentfaults happen during periods <strong>of</strong> adverse <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g>. In additi<strong>on</strong>, <strong>the</strong> <strong>study</strong> finds that <strong>the</strong> faults occurring<strong>on</strong> underground distributi<strong>on</strong> systems account <strong>on</strong>ly for 5 per cent <strong>of</strong> all c<strong>on</strong>ductor related faults. Arecent <strong>study</strong> from Yu et al. (2009) suggests that <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> is an important cause <strong>of</strong> electricity blackouts.This accounts for 20 per cent, 14 per cent and 15 per cent <strong>of</strong> <strong>the</strong> total cases analysed in <strong>the</strong> European,Latin America and Asia regi<strong>on</strong>s. The main <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> variables that affect <strong>the</strong> normal functi<strong>on</strong>ing <strong>of</strong> <strong>the</strong>overhead lines are lightning (flashes), wind, extreme temperatures, snow, ice, storms, rain andhumidity.The high energy resulting from lightning strikes can burn <strong>the</strong> protective line isolators whichsubsequently may damage <strong>the</strong> transformers and switching devices. Damages in <strong>the</strong> transmissi<strong>on</strong>network are generally produced when lightning strikes directly <strong>the</strong> line. In <strong>the</strong> distributi<strong>on</strong> network <strong>the</strong>damage can be produced by a direct incidence and also due to <strong>the</strong> overvoltage induced in <strong>the</strong> lineswhen lightning strikes close to <strong>the</strong>se. Pabla (2005) states that lightning is resp<strong>on</strong>sible for about <strong>on</strong>ethird<strong>of</strong> all faults <strong>on</strong> HV and distributi<strong>on</strong> systems during storm days and that around 75-80 per cent <strong>of</strong><strong>the</strong>se faults are temporary. Lightning damages are <strong>on</strong>e <strong>of</strong> <strong>the</strong> main c<strong>on</strong>cerns to many utilities because<strong>the</strong>se cause <strong>the</strong> highest expense in breakdown <strong>of</strong> distributi<strong>on</strong> equipment. Short (2006) summarises <strong>the</strong>fault rates (per 100 circuit mile per year) found in different studies regarding overhead circuits. He2 The Department <strong>of</strong> Energy defines four generic categories <strong>of</strong> outages: (1) <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g>, (2) system comp<strong>on</strong>ents, (3) system operati<strong>on</strong> and (4)miscellaneous. In <strong>the</strong> last category are included those attributable to felling <strong>of</strong> trees, animals, vandalism, o<strong>the</strong>rs.3


etween 10 per cent and 40 per cent. This would suggest that even though <strong>on</strong> average influence is notsignificant, an individual analysis would be recommended for some <strong>of</strong> <strong>the</strong>m.Yu et al. (2008) <strong>study</strong> <strong>the</strong> effect <strong>of</strong> <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> cost and quality performance <strong>of</strong> 12 UK electricitydistributi<strong>on</strong> utilities for <strong>the</strong> period 1995/96 to 2002/03. Ec<strong>on</strong>omic <strong>efficiency</strong> and technical <strong>efficiency</strong>are evaluated. Two-stage data envelopment analysis is used for estimators. Factor analysis is used forcompressing <strong>the</strong> set <strong>of</strong> <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> variables into two composite variables 10 . They find that in general <strong>the</strong>effect <strong>of</strong> <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> <strong>on</strong> <strong>efficiency</strong> performance is small <strong>on</strong> average. The <strong>study</strong> finds that <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> affectsec<strong>on</strong>omic <strong>efficiency</strong> <strong>on</strong>ly under specific models which include in additi<strong>on</strong> to cost and physicalvariables, distributi<strong>on</strong> losses and customer minutes lost. Results suggest that <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> does not affecttechnical <strong>efficiency</strong> however when network length is dropped from <strong>the</strong> models a significant influence<strong>of</strong> <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> is observed. These results suggest that to some extent <strong>the</strong> introducti<strong>on</strong> <strong>of</strong> network lengthinternalizes <strong>the</strong> effect <strong>of</strong> <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> <strong>on</strong> <strong>efficiency</strong> scores.Growitsch et al. (2010) analyse <strong>the</strong> effect <strong>of</strong> geographic and <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> <strong>the</strong> cost andquality performance <strong>of</strong> 128 Norwegian electricity distributi<strong>on</strong> utilities for <strong>the</strong> period 2001-2004 11 .Factor analysis is used for reducing <strong>the</strong> number <strong>of</strong> geographic and <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> variables, which amount t<strong>on</strong>early 100 in <strong>the</strong> respective companies’ service area 12 . Stochastic fr<strong>on</strong>tier analysis under <strong>the</strong> timevaryingin<strong>efficiency</strong> approach is used. Different models are compared based <strong>on</strong> Battese and Coelli(1992, 1995) and Greene (2004, 2005) models. The last <strong>on</strong>es refer to true fixed effects models. On<strong>on</strong>e hand, when comparing Battese and Coelli 1992 and 1995 models <strong>the</strong> <strong>study</strong> finds that <strong>the</strong>incorporati<strong>on</strong> <strong>of</strong> geographic and <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> variables (factors) <strong>on</strong> <strong>the</strong> in<strong>efficiency</strong> term increases <strong>the</strong>average <strong>efficiency</strong> in more than ten percentage points. On <strong>the</strong> o<strong>the</strong>r hand, when comparing Greene2004 and 2005 models, <strong>the</strong> <strong>study</strong> suggests that <strong>the</strong> average <strong>efficiency</strong> does not vary when geographicand <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s (factors) appear <strong>on</strong> <strong>the</strong> in<strong>efficiency</strong> term.10 Composite variable 1 is composed <strong>of</strong>: minimum temperature, airfrost (number <strong>of</strong> days with minimum air temperature below 0 Cdegrees), groundfrost (number <strong>of</strong> days with minimum grass temperature below 0 C degrees), c<strong>on</strong>crete temperature (number <strong>of</strong> days withminimum c<strong>on</strong>crete temperature below 0 C degrees). Composite variable 2 is composed <strong>of</strong>: total rainfall, hail (number <strong>of</strong> days with solidprecipitati<strong>on</strong> with a diameter 5mm or more), thunder (number <strong>of</strong> days when thunder was heard), maximum temperature and gale(number <strong>of</strong> days with wind speed <strong>of</strong> 34 knots (Force 8) or higher.11 In this <strong>study</strong> social cost is preferred. Social costs refer to <strong>the</strong> sum <strong>of</strong> total producti<strong>on</strong> costs (operating and capital expenditures) andexternal quality costs (given by <strong>the</strong> product <strong>of</strong> energy not supplied and <strong>the</strong> estimated customer willingness-to-pay unit <strong>of</strong> energy).12 Seven factors were identified.6


Nillsen and Pollitt (2010) evaluate <strong>the</strong> effect <strong>of</strong> error measurement and envir<strong>on</strong>mental factors 13 <strong>on</strong> USelectricity companies’ performance. The sample covers 109 private utilities and <strong>the</strong> data collectedrefers to 2003. DEA and tobit regressi<strong>on</strong> (two-stage approach) are used for estimati<strong>on</strong>s. The first layer<strong>of</strong> best-practice companies is excluded in order to correct measurement error. The robustness <strong>of</strong> <strong>the</strong>DEA results is dem<strong>on</strong>strated due to <strong>the</strong> low variati<strong>on</strong> <strong>of</strong> <strong>efficiency</strong> scores in comparis<strong>on</strong> with thosecomputed with <strong>the</strong> full sample. Regarding <strong>the</strong> envir<strong>on</strong>mental factors, <strong>the</strong> <strong>study</strong> finds that climatec<strong>on</strong>diti<strong>on</strong>s are not explaining <strong>the</strong> differences in relative <strong>efficiency</strong>. However, after doing somecorrecti<strong>on</strong>s such as comparing firms under <strong>the</strong> sample average envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s, resultssuggest that climate factors have a negative impact <strong>on</strong> <strong>efficiency</strong>.Jamasb et al. (2010) analyse <strong>the</strong> effect <strong>of</strong> <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> costs 14 and service quality <strong>of</strong> 12 UKelectricity distributi<strong>on</strong> networks for <strong>the</strong> period 1995/96 to 2002/03. A parametric approach is used forthis purpose with lineal and quadratic cost functi<strong>on</strong>al forms. Wea<strong>the</strong>r variables are included as costdeterminants. The <strong>study</strong> evaluates <strong>the</strong> c<strong>on</strong>venience <strong>of</strong> grouping (“composite variables”) <strong>the</strong> wholesample <strong>of</strong> <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> variables available. However, results suggest that <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> composites are notstatistically significant and that inappropriate weights can be <strong>on</strong>e <strong>of</strong> <strong>the</strong> reas<strong>on</strong>s. In additi<strong>on</strong> <strong>the</strong> <strong>study</strong>suggests that marginal cost <strong>of</strong> quality improvements cannot be estimated c<strong>on</strong>sistently when <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g>composites are used. Therefore, <strong>the</strong> use <strong>of</strong> variables selecti<strong>on</strong> method is preferred. Under thisapproach results show that minimum air temperature, number <strong>of</strong> days when minimum c<strong>on</strong>cretetemperatures below zero degrees, number <strong>of</strong> days with heavy hail, and number <strong>of</strong> days with heardthunder; are am<strong>on</strong>g <strong>the</strong> <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> factors that affect <strong>the</strong> cost functi<strong>on</strong>.4. MethodsA parametric framework is used for measuring technical <strong>efficiency</strong>. Stochastic Fr<strong>on</strong>tier <strong>An</strong>alysis(SFA) is <strong>the</strong> method selected 15 . SFA was developed simultaneously by Meeusen and van den Broeck13 Represented by (1) Heating degree days (HDD) and (2) <strong>the</strong> average 3-day maximum snowfall.14 Total costs are represented by operating costs, capital costs and energy losses costs.15 Firms <strong>efficiency</strong> is measured mainly using two methods (1) parametric with stochastic and deterministic models, and (2) n<strong>on</strong>-parametricsuch as data envelopment analysis. Some examples <strong>of</strong> <strong>the</strong> first group are Greene (1990), Atkins<strong>on</strong> and Prim<strong>on</strong>t (2002), Estache et a.(2004), Farsi et al (2006), Kumbhakar and Wang (2006), Rossi (2007), Jamasb et a. (2010), Growitsch et al. (2010), Tovar et al. (2011). Thesec<strong>on</strong>d group are represented by Resende (2002), Sahuenza et al. (2004), Giannakis et al. (2005), V<strong>on</strong> Hirschhausen et al. (2006), Yu et. al(2008), Perez-Reyes and Tovar (2009), Nillesen and Pollitt (2010). O<strong>the</strong>r studies make use <strong>of</strong> both approaches, am<strong>on</strong>g <strong>the</strong>m are Pollitt7


(1977) and Aigner et al. (1977). SFA allows to incorporate <strong>the</strong> error term which is composed <strong>of</strong> <strong>the</strong>stochastic comp<strong>on</strong>ent and <strong>the</strong> n<strong>on</strong> negative in<strong>efficiency</strong> term. SFA allows to deal with multiple inputsand outputs in <strong>the</strong> form <strong>of</strong> distance functi<strong>on</strong> which was initially proposed by Shephard (1970). Wefind c<strong>on</strong>venient to adopt an input distance functi<strong>on</strong> in this <strong>study</strong>. In additi<strong>on</strong> this kind <strong>of</strong> functi<strong>on</strong> ismore appropriate when companies have more c<strong>on</strong>trol <strong>on</strong> inputs than <strong>on</strong> outputs. This functi<strong>on</strong> cantake values that are equal or higher than <strong>on</strong>e. A value <strong>of</strong> <strong>on</strong>e means that <strong>the</strong> firm is 100 per centefficient because <strong>the</strong> input vector is located <strong>on</strong> <strong>the</strong> inner boundary <strong>of</strong> <strong>the</strong> input set. Thus, technical<strong>efficiency</strong> is given by <strong>the</strong> reciprocal <strong>of</strong> <strong>the</strong> input distance functi<strong>on</strong>.Due to its flexibility and <strong>the</strong> applicati<strong>on</strong> <strong>of</strong> <strong>the</strong> homogeneity c<strong>on</strong>straints and symmetry assumpti<strong>on</strong>s<strong>the</strong> translog approach was selected 16 . A panel data specificati<strong>on</strong> is adopted due to <strong>the</strong> availability <strong>of</strong>time series data. This relaxes <strong>the</strong> str<strong>on</strong>g distributi<strong>on</strong>al assumpti<strong>on</strong>s made when cross secti<strong>on</strong>al data isused, Kumbhakar and Knox Lovell (2000). The following equati<strong>on</strong> represents a general translog inputdistance functi<strong>on</strong> with K inputs and M outputs, under panel data approach: D = α + + 1 2 + + 1 2 + + + 1 2 + + (1)Where x kit is <strong>on</strong>e <strong>of</strong> <strong>the</strong> k-th input <strong>of</strong> firm i; y mit is <strong>on</strong>e <strong>of</strong> <strong>the</strong> m-th output <strong>of</strong> firm i; α, ϒ, β, δ, and are <strong>the</strong> parameters to be estimated; t is <strong>the</strong> time trend 17 . The impositi<strong>on</strong> <strong>of</strong> homogeneity c<strong>on</strong>straintsand symmetry assumpti<strong>on</strong>s allows to re arranging equati<strong>on</strong> (4). Thus, <strong>the</strong> restricti<strong>on</strong>s required forhomogeneity <strong>of</strong> degree <strong>on</strong>e in inputs are:∑ = 1; ∑ = 0; ∑ = 0, = 1, … , (2)Regarding symmetry for <strong>the</strong> sec<strong>on</strong>d order coefficients:(1995), Mota (2004), Hattori et al. (2005), V<strong>on</strong> Hirschhausen et al. (2006).Producti<strong>on</strong> and costs functi<strong>on</strong>s have been analysed, withpreference <strong>on</strong> Cobb-Douglas and translog functi<strong>on</strong>al forms.16 Am<strong>on</strong>g o<strong>the</strong>r <strong>empirical</strong> studies related to <strong>the</strong> energy market that also made use <strong>of</strong> this functi<strong>on</strong>al form are Atkins<strong>on</strong> and Prim<strong>on</strong>t (2002),Coelli et al. (2003), Estache et al. (2004), Mota (2004), Kumbhakar and Wang (2006), V<strong>on</strong> Hirschhausen et al. (2006), Rossi (2007),Growitsch et al. (2010), Jamasb et al. (2010), Tovar et al. (2011).17 Depending <strong>on</strong> <strong>the</strong> model we have inputs such as: opex, capex, energy losses, total customer hour lost; outputs such as: number <strong>of</strong>customers, energy delivered; and envir<strong>on</strong>mental variables such as: <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g>. See Secti<strong>on</strong> 5.5 for fur<strong>the</strong>r details.8


= , , = 1, … ; = , , = 1, … , (3)Then, <strong>the</strong> functi<strong>on</strong> is normalised based <strong>on</strong> <strong>on</strong>e input and if we adopt <strong>the</strong> approach <strong>of</strong> including <strong>the</strong>envir<strong>on</strong>mental comp<strong>on</strong>ent in <strong>the</strong> producti<strong>on</strong> functi<strong>on</strong>, <strong>the</strong> equati<strong>on</strong> would be as follows:− x = α + + 1 2 + ∗ + 1 2 ∗ ∗ + ∗ + + + 1 2 + ∗ + + − , ∗= x (4)Where, − D it which represents <strong>the</strong> error term was replaced by (v it – u it ), Z jit is <strong>on</strong>e <strong>of</strong> <strong>the</strong> j-<strong>the</strong>nvir<strong>on</strong>mental variables <strong>of</strong> firm i.Time invariant in<strong>efficiency</strong> models and time varying in<strong>efficiency</strong> models are <strong>the</strong> two specificstructures <strong>on</strong> <strong>efficiency</strong> effects when panel data models are adopted. We will c<strong>on</strong>centrate <strong>on</strong> <strong>the</strong>sec<strong>on</strong>d effect due to <strong>the</strong> fact that we want to compute <strong>the</strong> trend <strong>of</strong> <strong>efficiency</strong> over time. Under <strong>the</strong> firsteffect it remains <strong>the</strong> same. Following Battese and Coelli (1992), <strong>the</strong> trend <strong>of</strong> in<strong>efficiency</strong> term overtime can be represented as: = exp (−( − )) (5)where η (eta) is <strong>the</strong> unknown parameter to be estimated, T is <strong>the</strong> last time period <strong>of</strong> i-th firm, isassociated with technical in<strong>efficiency</strong>, is independent and identically distributed and has a truncatednormal distributi<strong>on</strong>, N + (u, σ 2 u ). The eta parameter allocates a comm<strong>on</strong> technical <strong>efficiency</strong> trendam<strong>on</strong>g producers. This is <strong>on</strong>e <strong>of</strong> <strong>the</strong> main disadvantages if this approach. When eta is higher than 0,that means ( − ) > 0, technical <strong>efficiency</strong> improves over time ( > ), similarly when eta islower than 0 technical <strong>efficiency</strong> decreases over time and when eta is equal to 0 technical <strong>efficiency</strong>9


does not vary over time 18 . Envir<strong>on</strong>mental variables are represented by <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> variables and <strong>the</strong>yhave not been expressed in logs due to <strong>the</strong> existence <strong>of</strong> negatives and zero values. On <strong>the</strong> o<strong>the</strong>r hand,if envir<strong>on</strong>mental is included in <strong>the</strong> in<strong>efficiency</strong> term, Kumbhakar et al. (1991); <strong>the</strong> maximumlikelihood estimators would be computed under <strong>the</strong> assumpti<strong>on</strong> that in<strong>efficiency</strong> has a distributi<strong>on</strong> thatvaries with Z and that is not l<strong>on</strong>ger identically distributed. Battese and Coelli (1995) propose a similarmodel but applied to a panel data c<strong>on</strong>text. This last approach is used for computing <strong>the</strong> models whenwe allow that envir<strong>on</strong>ment influences directly <strong>the</strong> error comp<strong>on</strong>ent <strong>of</strong> <strong>the</strong> producti<strong>on</strong> functi<strong>on</strong>.5. Data collecti<strong>on</strong> and models5.1 Data collecti<strong>on</strong>The data c<strong>on</strong>sists <strong>of</strong> an unbalanced panel for 82 electricity distributi<strong>on</strong> utilities for <strong>the</strong> period 1998-2008 19 , 60 <strong>of</strong> <strong>the</strong>m are private-owned companies. The utilities operate in Argentina (18), Brazil (39),Chile (11) and Peru (14) and account for more than 90 per cent <strong>of</strong> <strong>the</strong> total distributi<strong>on</strong> market inthose four countries in terms <strong>of</strong> energy delivered. The service area associated to each company isshowed in <strong>An</strong>nex 2. Am<strong>on</strong>g <strong>the</strong> data that was collected we have (1) cost data (operating costs, capitalcosts), (2) physical data (number <strong>of</strong> customers, energy delivered, length <strong>of</strong> network, number <strong>of</strong>workers, service area), (3) quality variables (losses, interrupti<strong>on</strong>s per customer –durati<strong>on</strong> and number)and (4) <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> variables (maximum absolute temperature, minimum absolute temperature, total rain,flash rate, average humidity, maximum humidity, number <strong>of</strong> days in a year with: gales, storm, hailsand frost days).A significant amount <strong>of</strong> this data was collected during <strong>the</strong> fieldwork. Table 1 shows <strong>the</strong> 2008descriptive statistics for <strong>the</strong> 82 companies across countries. This <strong>study</strong> is c<strong>on</strong>centrated <strong>on</strong> <strong>the</strong>distributi<strong>on</strong> and retail business, thus generati<strong>on</strong> and transmissi<strong>on</strong> costs have been excluded. Table 2summarises <strong>the</strong> main source <strong>of</strong> data for each country. For fur<strong>the</strong>r details regarding <strong>the</strong> collecti<strong>on</strong> <strong>of</strong>cost, physical, quality and <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> data see <strong>An</strong>nex 1.18 Cuesta (2000) proposed a modified versi<strong>on</strong> <strong>of</strong> this approach in which a comm<strong>on</strong> pattern <strong>of</strong> in<strong>efficiency</strong> change is not imposed and <strong>the</strong>pattern can be tested against firm-specific patterns. The equati<strong>on</strong> proposed is as follows: = exp (− ( − )), where are firmspecificparameters that resp<strong>on</strong>se to different patterns <strong>of</strong> temporal variati<strong>on</strong> am<strong>on</strong>g firms. Gauss was <strong>the</strong> tool selected for estimati<strong>on</strong>s. Heapplies this method to <strong>the</strong> Spanish dairy firms.19 In South America annual data means from January to December.10


Table 1: 2008 Descriptive Statistics – Distributi<strong>on</strong> Electricity UtilitiesVariables (2008)Units Argentina Brazil Chile Peru TotalMin. Max. Mean Min. Max. Mean Min. Max. Mean Min. Max. Mean Min. Max. MeanCost variablesOPEX US$ (milli<strong>on</strong>) 15.3 375.8 115.7 14.9 1010.0 191.0 12.86 269.3 73.8 3.1 127.7 34.4 3.1 1010.0 132.31CAPEX US$ (milli<strong>on</strong>) 9.45 228.34 55.68 4.7 583.8 168.8 3.32 175.5 41.1 2.5 122.1 35.4 2.5 583.8 106.40Physical variablesCustomers (residential) milli<strong>on</strong> 0.09 2.24 0.49 0.08 5.48 1.40 0.02 0.97 0.28 0.02 5.48 0.942Customers (total) milli<strong>on</strong> 0.10 2.53 0.66 0.10 6.69 1.64 0.06 1.53 0.44 0.03 1.03 0.33 0.03 6.69 1.1Energy delivered (residential) GWh 252 7738 1353 160 14427 2468 23 2066 445 23 14427 1777Energy delivered (free market) 1/ GWh 40 3700 691 0 19459 2185 12 2687 536 0 929.05 118 0 19459 1178Energy delivered (cooperatives) GWh 0 1728 236 0 1728 236Energy delivered (total) GWh 672 18616 4891 492 41898 9126 218 12535 2545 82 5334 1159 82 41898 5982Lenght <strong>of</strong> network Km (000') 6.0 51.8 17.7 2.9 453.4 75.3 1.0 26.9 11.2 0.9 21.5 10.6 0.9 453.4 43.8N o <strong>of</strong> workers number 85 3130 891 153 8031 1798 57 790 322 26 666 270 26 8031 1132Service Area Km 2 (000') 3.3 203.0 86.9 1.8 1570.8 248.0 2.1 87.4 44.7 2.4 140.9 45.0 1.8 1570.8 72.7Quality variablesTotal losses GWh 57 2247 718 44 6686 1437 20 786 229 9 510 124 9 6686 897Total losses percentage 7.8% 23.8% 12.3% 4.5% 37.2% 15.6% 5.9% 14.7% 9.6% 8.1% 14.1% 11.1% 4.5% 37.2% 13.3%Technical losses percentage 3.6% 23.7% 8.7% 3.6% 23.7% 8.7%N<strong>on</strong>-technical losses percentage 0.2% 25.7% 5.4% 0.2% 25.7% 5.4%Average Frequency <strong>of</strong>interrupti<strong>on</strong>s/customer times/year 5.5 12.5 8.8 5.2 51.6 14.7 5.8 36.5 18.4 5.2 51.6 14.8Average Durati<strong>on</strong> <strong>of</strong>interrupti<strong>on</strong>s /customer hours/year 8.7 21.5 14.9 5.9 77.2 19.9 13.4 148.0 42.2 5.9 148.0 24.3O<strong>the</strong>rsPrivate companies numberTotal16Total29Total11Total4Total60Public companies number 2 10 0 10 22Total companies number 18 39 11 14 82Average companies/period (1998-2008) number 17.1 34.5 9.9 13.6 75.11/In <strong>the</strong> case <strong>of</strong> Chile it refers to 2007 figures.Sources: Companies' annual reports, Nati<strong>on</strong>al and Regi<strong>on</strong>al Energy Regulators, Energy Ministries, Associati<strong>on</strong>s <strong>of</strong> Electricity Distributi<strong>on</strong> Utilities11


Table 2: Summary <strong>of</strong> sources per country – Part 1CountrySource ReportsPhysical variables Quality variablesCPIWea<strong>the</strong>r and geographic c<strong>on</strong>diti<strong>on</strong>sArgentinaDenominati<strong>on</strong>Acr<strong>on</strong>ym<strong>An</strong>nualreportFinancialreportSustainabilityreportO<strong>the</strong>r reports(price)CustomersEnergydeliveredLenght <strong>of</strong>networkAssociati<strong>on</strong> <strong>of</strong>electricitydistributi<strong>on</strong> firms ADEERA x x x x x xElectricity firms x x x x xEnergy regulators (1/) ENRE... x x x xLossesInterrupti<strong>on</strong>indicatorWea<strong>the</strong>r Flash rateDigitalmapGeopoliticaldivisi<strong>on</strong>s (area)BrazilNati<strong>on</strong>al AgriculturalResearch Centre INTA x xNati<strong>on</strong>al institute <strong>of</strong>statistics andcensuses INDEC xNati<strong>on</strong>alMeteorologicalService SMN xNati<strong>on</strong>al securitycommissi<strong>on</strong> CNV x xSecretary <strong>of</strong> Energy x x xSystem operator CAMMESA xAssociati<strong>on</strong> <strong>of</strong>electricitydistributi<strong>on</strong> firms ABRADEE x x x x xBrazilian institute <strong>of</strong>geography andstatistics IBGE xElectricity firms x x x x x x xEnergy regulator ANEEL x x x x x x xEletrobras LibraryxNati<strong>on</strong>al Institute <strong>of</strong>Meteorology INMET xSecurities andexchangecommissi<strong>on</strong> CVM x xSystem operator ONS xUniversity <strong>of</strong> Rio deJaneiro - Ec<strong>on</strong>omicsDivisi<strong>on</strong> URJ-NUCA xWorld Bank WB xNati<strong>on</strong>al Aer<strong>on</strong>auticsAcrosscountriesand SpaceAdministrati<strong>on</strong> NASA x1/The rest <strong>of</strong> regi<strong>on</strong>al energy regulators are: OCEBA, ENRESP Salta, EPRE Entre Rios, EPRE Mendoza, EPRE Rio Negro, EPRE San Juan, EPRE Tucuman, EUCOP La Rioja, SUSEPU Jujuy12


Table 2: Summary <strong>of</strong> sources per country – Part 2CountrySource Reports Physical variables Quality variablesCPIWea<strong>the</strong>r and geographic c<strong>on</strong>diti<strong>on</strong>sDenominati<strong>on</strong>Acr<strong>on</strong>ym<strong>An</strong>nualreportFinancialreportSustainabilityreportO<strong>the</strong>r reports(price)CustomersEnergydeliveredLenght <strong>of</strong>networkLossesInterrupti<strong>on</strong>indicatorWea<strong>the</strong>r Flash rateChile Electricity firms x x x x x xEnergy regulator CNE x x xMeteorologicalDirecti<strong>on</strong> DMC xNati<strong>on</strong>al statisticsinstitute INE xNati<strong>on</strong>al System <strong>of</strong>Coordinati<strong>on</strong> <strong>of</strong>TerritorialInformati<strong>on</strong> SNIT x xDigitalmapGeopoliticaldivisi<strong>on</strong>s (area)Securities andinsurance supervisor SVS x xSuperintendence <strong>of</strong>electricity and fuels SEC x xSystem operator SIC, SING xPeru Electricity firms x x x x x xEnergy regulator OSINERGMIN x x x x x x xNati<strong>on</strong>al Fund for<strong>the</strong> Financing <strong>of</strong> <strong>the</strong>Public SectorEntrepreneurialActivities FONAFE x xNati<strong>on</strong>al GeographicInstitute IGN xNati<strong>on</strong>al Institute <strong>of</strong>Statistics andInformati<strong>on</strong> INEI x xNati<strong>on</strong>al Service <strong>of</strong>Meteorology andHydrology SENAMHI xAcrosscountriesNati<strong>on</strong>al SupervisoryCommissi<strong>on</strong> forCompanies andSecurities CONASEV x xSystem operator COES xWorld Bank WB xNati<strong>on</strong>al Aer<strong>on</strong>auticsand SpaceAdministrati<strong>on</strong> NASA x13


5.2 Selecti<strong>on</strong> <strong>of</strong> variables and model specificati<strong>on</strong>sSix models have been selected for this <strong>study</strong>. The selecti<strong>on</strong> <strong>of</strong> inputs and outputs is based <strong>on</strong> previousstudies 20 and also <strong>on</strong> <strong>the</strong> availability <strong>of</strong> data. The number <strong>of</strong> variables varies across models; <strong>the</strong>maximum number is ten, from which 4 are inputs, 3 are outputs and <strong>the</strong> remaining 3 areenvir<strong>on</strong>mental variables. Two categories <strong>of</strong> models have been defined: (1) cost models and (2) costqualitymodels. Model 1, Model 3 and Model 4 are those in which costs are <strong>on</strong>ly represented by opex.In <strong>the</strong> rest <strong>of</strong> models, capex is added. Model 4 and Model 6 are those in which quality variables arefully included. Customer hour lost (CHL) is defined by <strong>the</strong> product <strong>of</strong> average durati<strong>on</strong> <strong>of</strong> interrupti<strong>on</strong>per customer and total number <strong>of</strong> customers. Table 3 summarises this.Table 3: ModelsVariable Type <strong>of</strong> Cost-quality Cost-quality modelsvariable M1 M2 M3 M4 M5 M6OPEX (x1) M<strong>on</strong>etary I I I I I ICAPEX (x2) I I ICUST (y1) Physical O O O O O OENG (y2) O O O O O OLEN (y3) O O O O O OLOSS (x3) Quality I I I ICHL (x4) I IW1 (rain) Wea<strong>the</strong>r E E E E E EW2 (tmax) E E E E E EW3 (tmin) E E E E E EI: input, O: output, E: envir<strong>on</strong>ment, OPEX: operating costs, CAPEX: capital costs,CUST: Number <strong>of</strong> customers, ENG: energy delivered, LEN: length <strong>of</strong> network,CHL: customer hour lost, W1: total rain, W2: maximun absolute temperatureW3: minimun absolute temperatureFrom Table 3 we observe a total <strong>of</strong> 3 <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> variables, total rain, maximum and minimum absolutetemperature. O<strong>the</strong>r <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> variables were also taken into c<strong>on</strong>siderati<strong>on</strong> such as humidity and flashrate, but <strong>the</strong>y were discarded. Humidity in <strong>the</strong> models does not produce any effect <strong>on</strong> <strong>the</strong> producti<strong>on</strong>functi<strong>on</strong>; its value is very weak and it is not statistically significant ei<strong>the</strong>r 21 .Fur<strong>the</strong>rmore, a20 Number <strong>of</strong> customers and energy delivered are <strong>the</strong> most comm<strong>on</strong> output variables. Regarding length <strong>of</strong> network, <strong>the</strong> c<strong>on</strong>sensus <strong>of</strong> itsinclusi<strong>on</strong> as output or input, is much lower. Some studies support length <strong>of</strong> network as output (Mota (2004); Giannakis et al. (2005); Yu etal. (2009); Jamasb et al. (2010);; and o<strong>the</strong>rs as input (Resende (2002); Sahuenza et al.(2004); Rossi (2007); Tovar et al. (2011)). In this<strong>study</strong>, length <strong>of</strong> network is seen as output. Total losses and customer hour lost are variables that firms attempt to reduce and that areusually seen as inputs, Giannakis et al. (2005), Yu et al. (2009).21 In general we observe across <strong>the</strong> models that <strong>on</strong> average humidity. The inclusi<strong>on</strong> <strong>of</strong> this variable to <strong>the</strong> producti<strong>on</strong> functi<strong>on</strong> was alsoanalysed, due to <strong>the</strong> c<strong>on</strong>cerns that some firms expressed in terms <strong>of</strong> its effect <strong>on</strong> <strong>the</strong> operati<strong>on</strong> and maintenance <strong>of</strong> <strong>the</strong> electricity14


correlati<strong>on</strong> analysis indicates a medium linear relati<strong>on</strong>ship between total rain and flash rate. Thecorrelati<strong>on</strong> coefficient is 0.58 at <strong>the</strong> 1 per cent level. Due to this fact, three scenarios per model wereanalysed:- Scenario 1: includes total rain (rain) , maximum and minimum absolute temperatures (tmax,tmin), flash rate (fr)- Scenario 2: includes total rain, maximum and minimum absolute temperatures- Scenario 3: includes flash rate, maximum and minimum absolute temperaturesAs a result <strong>the</strong> sec<strong>on</strong>d scenario was selected. The next secti<strong>on</strong> provides a better discussi<strong>on</strong> regardingthis selecti<strong>on</strong>.We have assumed that <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> has a direct influence <strong>on</strong> <strong>the</strong> producti<strong>on</strong> functi<strong>on</strong> and that each utilityfaces different producti<strong>on</strong> fr<strong>on</strong>tier. The o<strong>the</strong>r opti<strong>on</strong> is to c<strong>on</strong>sider that <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> variables influencedirectly <strong>the</strong> in<strong>efficiency</strong> term, which means that <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> would impact <strong>on</strong>ly <strong>on</strong> <strong>the</strong> difference givenby <strong>the</strong> deviati<strong>on</strong>s from <strong>the</strong> fr<strong>on</strong>tier. For a better discussi<strong>on</strong>, our results have been compared with <strong>the</strong>sec<strong>on</strong>d approach. Am<strong>on</strong>g <strong>the</strong> studies that add envir<strong>on</strong>mental variables 22 to <strong>the</strong> producti<strong>on</strong> functi<strong>on</strong> arePollitt (1995), Estache et al. (2004), Rossi (2007), Jamasb et al. (2010). On <strong>the</strong> o<strong>the</strong>r side, Mota(2004), Nillesen and Pollitt (2010), Growitsch et al. (2010), assume that envir<strong>on</strong>mental influencedirectly <strong>on</strong> <strong>efficiency</strong>. Coelli et. al (1999) compare and discuss both approaches but regarding <strong>the</strong>airline market.6 Results6.1 Selecti<strong>on</strong> <strong>of</strong> preferred <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> modelBefore proceeding to analyse <strong>the</strong> maximum likelihood estimators for all <strong>the</strong> models: (a) translogwithout <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> 23 , (b) <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> in producti<strong>on</strong> and (c) <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> in in<strong>efficiency</strong>; we will discuss first <strong>the</strong>preferred <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> variables. As we menti<strong>on</strong>ed before, three scenarios are analysed based <strong>on</strong> fournetwork. Average relative humidity was preferred instead <strong>of</strong> maximum relative humidity due to data availability and due to <strong>the</strong> lowcorrelati<strong>on</strong> index with total rain. In c<strong>on</strong>trast with average humidity, maximum humidity is <strong>the</strong> variable that has an important correlati<strong>on</strong>index with total rain.22 Am<strong>on</strong>g <strong>the</strong> most comm<strong>on</strong> envir<strong>on</strong>mental variables are: <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g>, populati<strong>on</strong> density, average load, peak demand, topography, GDP percapita, regulatory envir<strong>on</strong>ment, degree <strong>of</strong> vertical integrati<strong>on</strong> and age <strong>of</strong> assets.23 These results corresp<strong>on</strong>d to those from <strong>the</strong> previous chapter in which <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> variables were not included in <strong>the</strong> models.15


<str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> variables: total rain, maximum and minimum absolute temperatures and flash rate. Table 4presents <strong>the</strong> parameters <strong>of</strong> <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> variables when <strong>the</strong>se are included in <strong>the</strong> producti<strong>on</strong> functi<strong>on</strong> 24 .Table 4: Wea<strong>the</strong>r estimators per modelModelScenario 1 Scenario 2 Scenario 3rain tmax tmin fr γ rain tmax tmin γ fr tmax tmin γM1 -0.000* -0.005 -0.003 -0.003 0.84 0 -0.004 -0.007*** 0.84 -0.005 -0.005 -0 0.83M2 0 -0.005 -0.002 -0.002 0.80 0 -0.005 -0.005** 0.80 -0.004 -0.005 -0 0.80M3 -0.000** -0.011*** -0.003 -0.003 0.96 -0.000* -0.009*** -0.005** 0.95 -0.005* -0.010*** -0 0.96M4 0 -0.011** -0.005* -0.004 0.98 0 -0.010** -0.004 0.98 -0.003 -0.009** -0 0.98M5 0 -0.012*** -0.002 -0.003 0.97 0 -0.010*** -0.004 0.96 -0.004 -0.011*** -0 0.98M6 0 -0.010** -0.004 -0.003 0.98 0 -0.010** -0.004 0.97 -0.003 -0.008* -0 0.98Significance levels: * p


level. Based <strong>on</strong> <strong>the</strong> previous discussi<strong>on</strong> we observe that maximum and minimum absolutetemperatures are <strong>the</strong> <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> variables that most influence <strong>the</strong> shape <strong>of</strong> <strong>the</strong> technology under costqualityand cost models respectively. Thus we find c<strong>on</strong>venient to select Scenario 2 as <strong>the</strong> preferredmodel. This combines total rain, maximum and minimum absolute temperature. This is <strong>the</strong> <strong>on</strong>e thatcaptures <strong>the</strong> most <strong>the</strong> effect <strong>of</strong> <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> variables <strong>on</strong> <strong>the</strong> producti<strong>on</strong> functi<strong>on</strong> 25 .6.2 Maximum Likelihood estimatorsHaving selected <strong>the</strong> preferred <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> models, we will discuss our results based <strong>on</strong> <strong>the</strong>se. Table 5shows <strong>the</strong> maximum likelihood estimators for all <strong>the</strong> models: translog without <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> (Case A) 26 ,<str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> in producti<strong>on</strong> (Case B) and <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> in in<strong>efficiency</strong> (Case C). STATA was used forcomputing <strong>the</strong> first and <strong>the</strong> sec<strong>on</strong>d <strong>on</strong>es and Fr<strong>on</strong>tier 4.1 for estimating <strong>the</strong> last <strong>on</strong>es. Geometricmeans are preferred instead <strong>of</strong> original explanatory variables, thus first order coefficients representelasticities at <strong>the</strong> sample mean. The time trend was also adjusted to <strong>the</strong> mean, where first ordercoefficients refer to <strong>the</strong> technical change at <strong>the</strong> sample mean 27 . The input distance functi<strong>on</strong> is wellspecified and <strong>the</strong> most part <strong>of</strong> parameters are statistically significant. In general, first order outputestimators have <strong>the</strong> correct sign that means coefficients <strong>of</strong> number <strong>of</strong> customers, energy delivered andlength <strong>of</strong> network are negative.Only some excepti<strong>on</strong>s are observed in M1 Case C, M4 Case A and Case C, and M6 Case C, but <strong>the</strong>coefficients are not statistically significant. <strong>An</strong> increase in output level suggests an increase in inputlevels. Output elasticities sum <strong>on</strong> average -0.9648, -0.9593 and -0.9590 regarding Case A, Case B andCase C models respectively. Elasticities from cost models are <strong>the</strong> lowest <strong>on</strong>es. This suggests that ingeneral is observed a very s<strong>of</strong>t decreasing return to scale at <strong>the</strong> sample mean. From <strong>the</strong>se results wealso observed very small ec<strong>on</strong>omies <strong>of</strong> scale. In general, cost models are those with <strong>the</strong> highest value<strong>of</strong> ec<strong>on</strong>omies <strong>of</strong> scale. The introducti<strong>on</strong> <strong>of</strong> <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> does not produce an important increase inec<strong>on</strong>omies <strong>of</strong> scale. This upward is <strong>on</strong> average 0.57 per cent and 0.61 per cent regarding models fromCase B and Case C respectively.25 Following Jamasb et al. (2010), <strong>the</strong> complexity <strong>of</strong> <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> variables makes more reas<strong>on</strong>able to think that more <str<strong>on</strong>g>matter</str<strong>on</strong>g>s <strong>the</strong> overall effectthan <strong>the</strong> individual effect <strong>of</strong> a specific <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> variable, due to <strong>the</strong> possible correlati<strong>on</strong>s that can exist between this and o<strong>the</strong>rs. Under thisapproach we find c<strong>on</strong>venient to select Scenario 2 even though <strong>the</strong> three variables are not statistically significant across all <strong>the</strong> models.26 In this scenario <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> variables have been removed across <strong>the</strong> six models.27 Coelli et al. (2003) provide a very clear explanati<strong>on</strong> <strong>of</strong> <strong>the</strong>se adjustments. See Chapter 4: <strong>An</strong> Empirical Example.17


Table 5: Input Distance Functi<strong>on</strong> Maximum Likelihood Estimators (Part 1)VariablesModel 1 Model 2M1 Case A M1 Case B M1 Case C M2 Case A M2 Case B M2 Case C M3 Case A M3 Case B M3 Case CCoef. t Stat Coef. t Stat Coef. t Stat Coef. t Stat Coef. t Stat Coef. t Stat Coef. t Stat Coef. t Stat Coef. t Statα o 0.600 (7.85) 0.541 (10.29) 0.407 (9.61) 0.594 (6.45) 0.550 (8.97) 0.439 (4.49) 0.490 (10.36) 0.477 (13.56) 0.333 (15.81)ln(y1) -0.525 (-7.29) -0.538 (-7.27) -0.721 (-17.52) -0.506 (-7.23) -0.518 (-7.20) -0.671 (-15.39) -0.596 (-10.37) -0.604 (-10.81) -0.629 (-20.95)ln(y2) -0.318 (-6.97) -0.294 (-6.07) -0.217 (-8.32) -0.329 (-7.95) -0.307 (-6.85) -0.238 (-9.14) -0.313 (-9.18) -0.287 (-8.13) -0.319 (-15.63)ln(y3) -0.098 (-2.49) -0.099 (-2.73) 0.014 (0.64) -0.126 (-3.13) -0.128 (-3.50) -0.036 (-1.71) -0.081 (-2.79) -0.089 (-2.96) -0.022 (-1.36)0.5*ln(y1) 2 0.005 (0.02) 0.032 (0.14) -0.232 (-1.45) 0.226 (1.00) 0.248 (1.13) -0.415 (-3.01) -0.475 (-2.55) -0.380 (-2.01) -0.357 (-2.65)0.5*ln(y2) 2 -0.127 (-2.81) -0.129 (-2.88) 0.015 (0.26) -0.136 (-3.18) -0.138 (-3.25) -0.003 (-0.06) -0.110 (-3.28) -0.119 (-3.50) -0.069 (-1.45)0.5*ln(y3) 2 0.105 (1.15) 0.089 (1.04) -0.372 (-6.77) 0.098 (1.16) 0.085 (1.05) -0.383 (-7.69) 0.012 (0.18) -0.008 (-0.13) -0.153 (-3.09)ln(y1)*ln(y2) 0.076 (0.83) 0.054 (0.60) 0.031 (0.37) 0.011 (0.12) -0.010 (-0.12) 0.097 (1.35) 0.179 (2.56) 0.119 (1.65) 0.148 (2.09)ln(y1)*ln(y3) -0.027 (-0.20) -0.019 (-0.14) 0.327 (3.77) -0.137 (-1.08) -0.121 (-0.97) 0.405 (5.16) 0.172 (1.62) 0.140 (1.33) 0.224 (2.98)ln(y2)*ln(y3) -0.066 (-0.90) -0.052 (-0.74) -0.066 (-1.47) 0.015 (0.21) 0.020 (0.30) -0.102 (-2.49) -0.111 (-2.03) -0.050 (-0.85) -0.091 (-2.45)ln(x2/x1) 0.139 (10.64) 0.132 (10.12) 0.218 (15.05)ln(x3/x1) 0.494 (24.02) 0.487 (23.87) 0.323 (19.57)ln(x4/x1)0.5*ln(x2/x1) 2 0.056 (3.16) 0.056 (3.23) 0.014 (0.64)0.5*ln(x3/x1) 2 -0.231 (-5.15) -0.218 (-4.95) -0.344 (-6.90)0.5*ln(x4/x1) 2ln(x2/x1)*ln(x3/x1)ln(x2/x1)*ln(x4/x1)ln(x3/x1)*ln(x4/x1)ln(y1)*ln(x2/x1) 0.099 (2.66) 0.121 (3.32) 0.011 (0.23)ln(y1)*ln(x3/x1) -0.058 (-1.00) -0.025 (-0.42) -0.165 (-3.13)ln(y1)*ln(x4/x1)ln(y2)*ln(x2/x1) 0.035 (1.75) 0.020 (1.02) 0.124 (4.88)ln(y2)*ln(x3/x1) 0.219 (5.93) 0.192 (5.29) 0.215 (7.01)ln(y2)*ln(x4/x1)ln(y3)*ln(x2/x1) -0.099 (-4.45) -0.102 (-4.70) -0.076 (-2.74)ln(y3)*ln(x3/x1) -0.073 (-2.15) -0.074 (-2.22) 0.006 (0.20)ln(y3)*ln(x4/x1)t 0.023 (4.85) 0.023 (5.46) 0.003 (1.03) 0.017 (3.31) 0.018 (3.77) -0.001 (-0.34) 0.009 (2.94) 0.011 (3.62) 0.002 (0.79)0.5*t 2 -0.008 (-5.69) -0.008 (-5.74) -0.008 (-3.70) -0.013 (-8.88) -0.012 (-8.71) -0.017 (-8.51) -0.007 (-7.00) -0.007 (-7.24) -0.005 (-3.24)t*ln(y1) 0.000 (0.00) -0.006 (-0.85) 0.000 (-0.02) -0.005 (-0.74) -0.012 (-1.73) 0.001 (0.06) 0.020 (4.01) 0.017 (3.21) 0.013 (1.64)t*ln(y2) -0.002 (-0.45) 0.003 (0.68) -0.016 (-2.46) 0.003 (0.56) 0.008 (1.76) -0.009 (-1.50) -0.026 (-7.39) -0.023 (-5.98) -0.028 (-5.46)t*ln(y3) 0.009 (2.22) 0.008 (2.19) 0.025 (4.47) 0.003 (0.90) 0.004 (1.01) 0.010 (1.90) 0.006 (2.14) 0.006 (2.06) 0.017 (4.15)t*ln(x2/x1) 0 (-0.08) -0.002 (-0.57) 0.004 (1.00)t*ln(x3/x1) 0.024 (5.91) 0.024 (6.03) 0.020 (3.58)t*ln(x4/x1)z1 (rain) 0.000 (-1.09) 0.000 (-0.54) 0.000 (-1.71)z2 (tmax) -0.004 (-0.87) -0.005 (-1.07) -0.009 (-2.62)z3 (tmin) -0.007 (-2.96) -0.005 (-2.31) -0.005 (-2.16)δ o 0.135 (1.13) 0.248 (1.61) -0.242 (-1.33)w1 (rain) 0.000 (2.82) 0.000 (1.38) 0.000 (3.44)w2 (tmax) 0.019 (2.24) 0.008 (1.34) 0.066 (3.53)w3 (tmin) 0.002 (0.66) 0.007 (3.41) 0.015 (3.68)γ 0.819 (19.52) 0.844 (21.16) 0.831 (16.58) 0.784 (17.59) 0.804 (18.61) 0.742 (7.24) 0.959 (44.73) 0.950 (42.45) 0.911 (38.37)LLF 239.6 257.0703 -23.27 297.3 313.16 85.34 479.5 482.8 128.20N o <strong>of</strong> observati<strong>on</strong>s 809 790 790 797 788 788 807 788 788Case A: without <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g>, Case B: <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> in producti<strong>on</strong> functi<strong>on</strong> and Case C: <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> in in<strong>efficiency</strong>Model 318


Table 5: Input Distance Functi<strong>on</strong> Maximum Likelihood Estimators (Part 2)VariablesModel 4 Model 5Model 6M4 Case A M4 Case B M4 Case C M5 Case A M5 Case B M5 Case C M6 Case A M6 Case B M6 Case CCoef. t Stat Coef. t Stat Coef. t Stat Coef. t Stat Coef. t Stat Coef. t Stat Coef. t Stat Coef. t Stat Coef. t Statα o 0.449 (13.21) 0.500 (12.26) 0.364 (11.02) 0.455 (11.33) 0.466 (13.27) 0.287 (12.95) 0.466 (13.21) 0.515 (12.75) 0.308 (5.17)ln(y1) -0.651 (-10.12) -0.654 (-10.03) -0.774 (-19.26) -0.573 (-11.16) -0.585 (-10.98) -0.608 (-22.00) -0.631 (-9.45) -0.640 (-9.47) -0.747 (-18.67)ln(y2) -0.314 (-7.78) -0.280 (-6.46) -0.196 (-6.23) -0.325 (-10.13) -0.295 (-8.39) -0.325 (-17.32) -0.309 (-7.52) -0.270 (-6.18) -0.235 (-7.82)ln(y3) 0.009 (0.26) -0.023 (-0.67) 0.013 (0.48) -0.089 (-3.40) -0.103 (-3.80) -0.055 (-3.55) -0.014 (-0.40) -0.042 (-1.23) 0.012 (0.44)0.5*ln(y1) 2 0.548 (1.86) 0.488 (1.65) 0.067 (0.31) -0.339 (-1.74) -0.272 (-1.48) -0.453 (-4.03) 0.712 (2.35) 0.700 (2.29) -0.137 (-0.51)0.5*ln(y2) 2 0.245 (2.29) 0.181 (1.70) 0.204 (1.91) -0.119 (-3.70) -0.128 (-3.90) -0.084 (-2.29) 0.232 (2.10) 0.185 (1.72) 0.047 (0.41)0.5*ln(y3) 2 -0.144 (-1.67) -0.184 (-2.23) -0.448 (-6.40) -0.045 (-0.72) -0.060 (-0.98) -0.168 (-3.57) -0.126 (-1.52) -0.160 (-1.99) -0.402 (-4.31)ln(y1)*ln(y2) -0.457 (-2.92) -0.414 (-2.59) -0.312 (-2.12) 0.138 (2.08) 0.083 (1.21) 0.187 (3.36) -0.484 (-2.93) -0.474 (-2.84) -0.116 (-0.72)ln(y1)*ln(y3) -0.073 (-0.53) -0.059 (-0.44) 0.290 (3.28) 0.142 (1.38) 0.119 (1.20) 0.264 (3.87) -0.129 (-0.96) -0.130 (-0.98) 0.295 (2.53)ln(y2)*ln(y3) 0.181 (2.81) 0.205 (3.11) 0.114 (1.91) -0.062 (-1.21) -0.008 (-0.15) -0.099 (-2.95) 0.185 (2.83) 0.221 (3.26) 0.074 (1.21)ln(x2/x1) 0.084 (8.01) 0.078 (7.57) 0.178 (14.03) 0.057 (4.77) 0.055 (4.68) 0.122 (4.98)ln(x3/x1) 0.466 (16.73) 0.449 (15.60) 0.300 (10.33) 0.458 (22.25) 0.454 (22.55) 0.283 (16.00) 0.429 (15.19) 0.411 (14.07) 0.293 (10.76)ln(x4/x1) 0.092 (5.22) 0.101 (5.63) 0.088 (4.07) 0.093 (5.31) 0.102 (5.71) 0.053 (2.47)0.5*ln(x2/x1) 2 0.048 (3.69) 0.049 (3.83) -0.010 (-0.56) 0.031 (1.81) 0.037 (2.19) -0.025 (-0.82)0.5*ln(x3/x1) 2 -0.158 (-2.55) -0.139 (-2.24) -0.437 (-5.14) -0.211 (-4.81) -0.206 (-4.74) -0.225 (-4.57) -0.103 (-1.60) -0.101 (-1.57) -0.367 (-4.58)0.5*ln(x4/x1) 2 -0.039 (-1.58) 0.002 (0.08) -0.036 (-0.94) -0.013 (-0.55) 0.023 (0.78) -0.057 (-1.39)ln(x2/x1)*ln(x3/x1) -0.055 (-3.67) -0.052 (-3.54) -0.032 (-1.45) -0.025 (-1.22) -0.021 (-1.03) -0.040 (-1.03)ln(x2/x1)*ln(x4/x1) -0.032 (-2.02) -0.031 (-1.93) 0.012 (0.44)ln(x3/x1)*ln(x4/x1) -0.030 (-0.93) -0.064 (-1.98) 0.003 (0.08) -0.028 (-0.90) -0.059 (-1.88) 0.061 (1.31)ln(y1)*ln(x2/x1) 0.086 (3.04) 0.098 (3.49) 0.006 (0.15) 0.046 (1.21) 0.064 (1.69) -0.066 (-1.09)ln(y1)*ln(x3/x1) 0.229 (3.03) 0.241 (3.12) 0.079 (0.90) -0.01 (-0.17) 0.010 (0.19) -0.120 (-2.43) 0.214 (2.88) 0.221 (2.95) 0.007 (0.08)ln(y1)*ln(x4/x1) -0.068 (-1.28) -0.106 (-1.88) -0.087 (-1.33) -0.106 (-2.03) -0.144 (-2.55) -0.031 (-0.47)ln(y2)*ln(x2/x1) 0.025 (1.55) 0.015 (0.97) 0.107 (4.88) 0.013 (0.52) 0.000 (0.01) 0.101 (2.44)ln(y2)*ln(x3/x1) -0.027 (-0.44) -0.056 (-0.92) 0.169 (2.44) 0.201 (4.93) 0.171 (4.67) 0.171 (5.85) -0.03 (-0.51) -0.052 (-0.89) 0.224 (3.45)ln(y2)*ln(x4/x1) 0.043 (1.06) 0.102 (2.27) 0.047 (0.93) 0.067 (1.69) 0.121 (2.69) -0.025 (-0.51)ln(y3)*ln(x2/x1) -0.081 (-4.87) -0.082 (-5.01) -0.048 (-2.14) -0.026 (-1.28) -0.031 (-1.59) 0.017 (0.56)ln(y3)*ln(x3/x1) -0.148 (-3.62) -0.153 (-3.74) -0.157 (-3.22) -0.134 (-4.25) -0.120 (-3.76) -0.039 (-1.33) -0.147 (-3.69) -0.150 (-3.74) -0.176 (-3.49)ln(y3)*ln(x4/x1) 0.044 (1.57) 0.037 (1.29) 0.090 (2.29) 0.054 (1.94) 0.052 (1.81) 0.090 (2.29)t 0.015 (4.84) 0.016 (4.59) 0.010 (2.74) 0.003 (0.74) 0.007 (2.02) 0.000 (-0.14) 0.013 (3.96) 0.014 (3.81) 0.008 (2.10)0.5*t 2 -0.006 (-5.91) -0.006 (-5.59) -0.006 (-2.79) -0.009 (-8.55) -0.009 (-8.52) -0.012 (-7.34) -0.009 (-8.22) -0.009 (-7.76) -0.011 (-5.24)t*ln(y1) 0.006 (0.90) 0.000 (0.05) 0.003 (0.28) 0.012 (2.56) 0.010 (1.91) 0.012 (1.66) 0.01 (1.45) 0.003 (0.50) 0.019 (1.76)t*ln(y2) -0.011 (-2.03) -0.008 (-1.51) -0.007 (-0.83) -0.02 (-5.57) -0.017 (-4.35) -0.023 (-4.45) -0.014 (-2.47) -0.010 (-1.74) -0.016 (-1.85)t*ln(y3) 0.005 (1.72) 0.009 (2.72) 0.004 (0.81) 0.005 (1.77) 0.005 (1.74) 0.008 (2.04) 0.002 (0.60) 0.005 (1.60) -0.007 (-1.26)t*ln(x2/x1) 0.002 (0.63) -0.001 (-0.52) 0.004 (1.10) 0.003 (0.99) 0.001 (0.33) 0.001 (0.26)t*ln(x3/x1) 0.010 (1.74) 0.014 (2.55) -0.001 (-0.15) 0.021 (4.21) 0.025 (5.70) 0.017 (3.25) 0.009 (1.46) 0.013 (2.17) -0.003 (-0.39)t*ln(x4/x1) 0.010 (2.92) 0.008 (2.43) 0.012 (1.89) 0.008 (2.28) 0.006 (1.86) 0.010 (1.60)z1 (rain) 0.000 (-0.15) 0.000 (-0.79) 0.000 (-0.41)z2 (tmax) -0.010 (-2.26) -0.010 (-3.05) -0.010 (-2.20)z3 (tmin) -0.004 (-1.56) -0.004 (-1.62) -0.004 (-1.53)δ o -0.069 (-0.52) -0.464 (-1.90) -0.323 (-1.31)w1 (rain) 0.000 (2.89) 0.000 (2.54) 0.000 (1.95)w2 (tmax) 0.040 (2.81) 0.079 (3.01) 0.070 (1.84)w3 (tmin) 0.019 (3.61) 0.030 (3.58) 0.028 (4.22)γ 0.988 (80.35) 0.978 (63.35) 0.893 (21.88) 0.968 (44.66) 0.957 (40.39) 0.863 (20.18) 0.984 (82.07) 0.974 (63.04) 0.837 (6.95)LLF 422.6 422.1 128.2 530.8 533.8 226.2 450.6 448.4 203.6N o <strong>of</strong> observati<strong>on</strong>s 535 520 520 795 776 776 535 520 520Case A: without <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g>, Case B: <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> in producti<strong>on</strong> functi<strong>on</strong> and Case C: <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> in in<strong>efficiency</strong>19


In terms <strong>of</strong> technical change and c<strong>on</strong>cerning Case A and Case B models, all <strong>the</strong> time coefficients arepositive and statistically significant, which indicates a mean technical progress <strong>of</strong> 1.33 per cent and1.48 per cent per year for Case A and Case B models respectively. This means that <strong>the</strong> introducti<strong>on</strong> <strong>of</strong><str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> produces a minor upward <strong>of</strong> 0.15 percentage points <strong>of</strong> technical progress.The cost models are those that c<strong>on</strong>tribute <strong>the</strong> most, with a mean technical progress <strong>of</strong> 2.0 per cent and2.1 per cent per year respectively. Regarding Case C, technical change is not statistically significantexcept for M4 Case C. In terms <strong>of</strong> <strong>the</strong> n<strong>on</strong>-neutral technical change which is represented by <strong>the</strong> timeinteracted with each output (in log), those that corresp<strong>on</strong>d to customers and length <strong>of</strong> network ingeneral have a positive impact <strong>on</strong> opex reducti<strong>on</strong> and energy delivered has <strong>the</strong> inverse effect.However, coefficients <strong>of</strong> cost quality models are in general those that are statistically significant.Regarding models that include <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> variables, Case B and Case C, <strong>the</strong> coefficients have <strong>the</strong> rightsign. As it was previously menti<strong>on</strong>ed, in Case B models maximum and minimum temperature are <strong>the</strong>variables that influence <strong>the</strong> most <strong>the</strong> producti<strong>on</strong> functi<strong>on</strong>. The influence <strong>of</strong> total rain is weak and <strong>on</strong>lyis statistically significant in M3 Case B. For Case C models we observe that <strong>the</strong> level <strong>of</strong> significanceincreases in comparis<strong>on</strong> with Case B models and that total rain remains still weak. We also note that<strong>the</strong> influence <strong>of</strong> maximum and minimum temperature <strong>on</strong> in<strong>efficiency</strong> is higher in cost-quality modelsthan in cost models. Estimators vary from 0.008 to 0.079 regarding maximum temperature and from0.002 to 0.030 regarding minimum temperature. The positive sign <strong>of</strong> <strong>the</strong>se estimators indicate thatin<strong>efficiency</strong> increases when <strong>the</strong>se values also rise.Gamma (ɣ) 28 , which explains <strong>the</strong> c<strong>on</strong>tributi<strong>on</strong> <strong>of</strong> <strong>the</strong> in<strong>efficiency</strong> comp<strong>on</strong>ent <strong>on</strong> <strong>the</strong> variati<strong>on</strong> <strong>of</strong> <strong>the</strong>composite error term, is <strong>on</strong> average 0.885, 0.891 and 0.842 for Case A, Case B and Case C modelsrespectively. The fact that firms are not fully efficient is much more explained when quality variablesare introduced in <strong>the</strong> models. On average for <strong>the</strong>se models gamma are equal to 0.974, 0.965 and 0.876respectively; all <strong>of</strong> <strong>the</strong>m are statistically significant at 1 per cent. The number <strong>of</strong> observati<strong>on</strong>s differs28 = , h = + 20


across models; it varies from 520 to 826 and depends <strong>on</strong> <strong>the</strong> model. The models which includecustomer hour lost are those with <strong>the</strong> lowest number. This variable was fully available for Brazil,partially available for Argentina and Peru and not available for Chile; in <strong>the</strong> format that allowedmaking proper comparis<strong>on</strong>s. In terms <strong>of</strong> <strong>the</strong> fitness <strong>of</strong> <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> models, results from likelihood ratiotests indicate that Case A models are rejected in most <strong>of</strong> cases in favour <strong>of</strong> Case B models 29 and fullyrejected in favour <strong>of</strong> Case C models 30 . The next secti<strong>on</strong> compared both approach (Case B and Case Cmodels) with nested models in order to identify <strong>the</strong> approach that provides <strong>the</strong> best fitness.6.3 Technical Efficiency6.3.1 Global EffectFigure 1 depicts <strong>the</strong> <strong>efficiency</strong> score for models exclusive <strong>of</strong> <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> (Case A), <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> in producti<strong>on</strong>(Case B) and <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> in in<strong>efficiency</strong> (Case C). Efficiency scores from Case C models are <strong>the</strong> highest<strong>on</strong>es and from Case A models are <strong>the</strong> lowest <strong>on</strong>es. Regarding <strong>the</strong> former, <strong>efficiency</strong> scores vary from0.751 to 0.848. These scores <strong>on</strong> average are higher in 19.9 per cent and 13.6 per cent than those scoresregarding Case A for cost models and cost-quality models respectively. A similar comparis<strong>on</strong> withCase B models suggests that <strong>efficiency</strong> scores under Case C models are higher in 14.1 per cent and14.2 per cent regarding cost models and cost-quality models respectively. When comparing <strong>the</strong><strong>efficiency</strong> trend across Case A, Case B and Case C models, a similar tendency is observed betweenCase A and Case C models. This is something expected due to <strong>the</strong> fact that in Case C <strong>the</strong> producti<strong>on</strong>functi<strong>on</strong> is not affected by <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g>; it is <strong>the</strong> in<strong>efficiency</strong> term that is directly influenced by <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g>.These results are in line with Coelli et al. (1999) which find that technical <strong>efficiency</strong> regarding modelswith envir<strong>on</strong>ment in in<strong>efficiency</strong> are higher than in those models with envir<strong>on</strong>ment in producti<strong>on</strong>.29 Model 1, Model 2, Model 3 and Model 4 from Case A are rejected at 1 per cent and Model 5 at 10 per cent. Model 6, Model 7 andModel 8 cannot be rejected. However a Wald test suggests that Model 6 and Model 8 are rejected at 5 per cent and Model 7 at 1 per cent.30 In this case, all models from Case A are rejected in favour <strong>of</strong> models from Case C at 1 per cent.21


Figure 1: Efficiency comparis<strong>on</strong> exclusive and inclusive <strong>of</strong> <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g>0.90.850.8<strong>efficiency</strong>0.750.70.650.60.550.5M1 M2 M3 M4 M5 M6Case A Case B Case CThe selecti<strong>on</strong> between Case B and Case C models appears to be a difficult task. In order to determine<strong>the</strong> best approach, <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> in producti<strong>on</strong> versus <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> in in<strong>efficiency</strong>; a set <strong>of</strong> nested models 31 wasbuilt for doing proper comparis<strong>on</strong>s. It is noteworthy that Case B and Case C models are not nested ineach o<strong>the</strong>rs. Following Coelli et al. (1999), <strong>the</strong> artificial nested models are built including <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g>variables in producti<strong>on</strong> and also in in<strong>efficiency</strong> as explanatory variables <strong>of</strong> technical <strong>efficiency</strong>.Estimators for <strong>the</strong> nested models can be provided <strong>on</strong> request. The idea is to test a null hypo<strong>the</strong>sisusing a likelihood test between (1) <strong>the</strong> nested models and <strong>the</strong> Case B models and (2) <strong>the</strong> nestedmodels and <strong>the</strong> Case C models. On <strong>on</strong>e hand, <strong>the</strong> tests indicate that all models from Case B cannot berejected in favour <strong>of</strong> <strong>the</strong> nested models 32 . On <strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong> tests suggest that models from CaseC are rejected in favour <strong>of</strong> <strong>the</strong> nested models at 1 per cent 33 . This implies that models in which<str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> affects directly <strong>the</strong> producti<strong>on</strong> functi<strong>on</strong> is preferred due to <strong>the</strong> better fitness to <strong>the</strong> sampledata.6.3.2 Country-Level EffectFigure 2 shows <strong>the</strong> impact that <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> has <strong>on</strong> <strong>the</strong> firm’s <strong>efficiency</strong> at country-level, regarding <strong>the</strong>preferred <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> models, Case B. A comparis<strong>on</strong> between models without <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> and with <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g>in producti<strong>on</strong> for each country was made. The impact is measured as <strong>the</strong> change <strong>on</strong> <strong>efficiency</strong> when31 When <strong>on</strong>e model is an extensi<strong>on</strong> <strong>of</strong> <strong>the</strong> o<strong>the</strong>r <strong>on</strong>e.32 Results from <strong>the</strong> LLR test (d.f.=3) are as follows:, -399.3 (Model 1), -439.6 (Model 2), -689.5 (Model 3), -478.9 (Model 4), -578.1 (Model5) and -461.9 (Model 6).33 Results from <strong>the</strong> LLR test (d.f.=3) are as follows:, 161.3 (Model 1), 16.1 (Model 2), 19.7 (Model 3), 24.5 (Model 4), 37.1 (Model 5) and27.6 (Model 6).22


<str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> is added. Two different comments can be made from this. Firstly, regarding cost-<str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g>models <strong>the</strong> country with <strong>the</strong> highest increase <strong>on</strong> <strong>efficiency</strong> is Brazil and <strong>the</strong> country with <strong>the</strong> lowest<strong>on</strong>e is Chile. These results suggest that firms from Brazil and Peru operate in less favourable <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g>c<strong>on</strong>diti<strong>on</strong>s than <strong>on</strong>es from Argentina and Chile. Regarding Model 1 Brazilian firms increase<strong>efficiency</strong> in 9.5 per cent and <strong>the</strong> Chilean <strong>on</strong>es decrease in 1.4 per cent. When comparing Model 1with Model 2, we observe that in general <strong>the</strong> impact is more significant when costs refer <strong>on</strong>ly to opex.In <strong>the</strong> case <strong>of</strong> Brazil and Peru this suggests that to some extent capital cost could be internalising <strong>the</strong>effect <strong>of</strong> <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g>. Regarding Argentina, <strong>the</strong> effect is not significant. In summary, <strong>the</strong> introducti<strong>on</strong> <strong>of</strong><str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> variables in technology in relati<strong>on</strong> to cost models produces an increase <strong>on</strong> <strong>efficiency</strong> asfollows: 8.1 per cent in Brazil, 0.4 per cent in Argentina, 6.5 per cent in Peru and a decrease in 0.3 percent in Chile.Figure 2: Change <strong>on</strong> <strong>efficiency</strong> due to <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> at country-level12%10%8%<strong>efficiency</strong> change6%4%2%0%-2%-4%-6%-8%M1 M2 M3 M4 M5 M6Brazil Argentina Peru ChileSec<strong>on</strong>dly, in terms <strong>of</strong> cost-quality models, we note that <strong>on</strong> average <strong>the</strong> influence <strong>of</strong> <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> <strong>on</strong><strong>efficiency</strong> is much lower than <strong>the</strong> previous case. However, under this approach firms from Chile are<strong>the</strong> <strong>on</strong>es which present <strong>the</strong> highest variati<strong>on</strong> in <strong>efficiency</strong> when comparing Model 3 and Model 5. Thisvariati<strong>on</strong> has a negative sign, which means that <strong>efficiency</strong> decreases. When customer hour lost isincluded, see Model 4 and Model 6, firms from Argentina are <strong>the</strong> most affected and <strong>efficiency</strong>reduces <strong>on</strong> average 5 per cent. In summary, <strong>the</strong> effect <strong>of</strong> <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> producti<strong>on</strong> functi<strong>on</strong> under <strong>the</strong>cost-quality models generates <strong>the</strong> following changes <strong>on</strong> <strong>efficiency</strong>: 1.5 per cent in Brazil, -2.0 per cent23


in Argentina, -1.6 per cent in Peru and -5.8 per cent in Chile. These results suggest that <strong>on</strong> averagefirms are able to adequate <strong>the</strong>ir networks taking into account <strong>the</strong> envir<strong>on</strong>ment in which <strong>the</strong>y operate,such as <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g>; in order to improve <strong>the</strong> reliability <strong>of</strong> <strong>the</strong> system. If this assumpti<strong>on</strong> is true, <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g>would not affect significantly to losses and interrupti<strong>on</strong>s. A negative sign under this approach wouldmean that <strong>the</strong> firm has adapted its networks based <strong>on</strong> <strong>the</strong>ir envir<strong>on</strong>mental reality in which <strong>the</strong>y operateand at <strong>the</strong> same time it benefits from <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g>. This assumpti<strong>on</strong> makes more sense in <strong>the</strong> case <strong>of</strong> Chile,in which <strong>the</strong> level <strong>of</strong> losses is very low in comparis<strong>on</strong> with <strong>the</strong> rest <strong>of</strong> countries and at <strong>the</strong> same time<str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s seems to be more favourable.We find that <strong>the</strong>se results are in line with o<strong>the</strong>r <strong>empirical</strong> studies in <strong>the</strong> sense that <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> <str<strong>on</strong>g>matter</str<strong>on</strong>g>s to<strong>efficiency</strong>. The size <strong>of</strong> impact depends <strong>on</strong> <strong>the</strong> model specificati<strong>on</strong>s and <strong>the</strong> combinati<strong>on</strong> <strong>of</strong> inputs,outputs and envir<strong>on</strong>mental variables selected; Yu et al. (2008), Jamasb et al. (2010), Nillesen andPollitt (2010), Growitsch et al. (2010).The use <strong>of</strong> dummy variables for capturing any systematic differences across countries was alsoanalysed. The calculati<strong>on</strong>s are not showed in this paper but can be provided <strong>on</strong> request. Brazil wasselected as <strong>the</strong> base country 34 . Results show that <strong>the</strong> coefficients <strong>of</strong> <strong>the</strong> dummy variables are notstatistically significant across all models 35 . In additi<strong>on</strong>, <strong>the</strong> inclusi<strong>on</strong> <strong>of</strong> <strong>the</strong>se dummies makes that <strong>the</strong><str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> variables in general (with some excepti<strong>on</strong>s) 36 are not statistically significant. Thus, appears tobe that to some extent <strong>the</strong> systematic differences between Brazil and <strong>the</strong> rest <strong>of</strong> countries arecapturing <strong>the</strong> effect that <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> could have <strong>on</strong> this.6.3.3 Firm-level EffectFinally, a firm-level analysis is c<strong>on</strong>ducted in order to evaluate <strong>the</strong> impact that <strong>the</strong> inclusi<strong>on</strong> <strong>of</strong> <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g>has <strong>on</strong> firm’s <strong>efficiency</strong>. For this purpose <strong>the</strong> average <strong>efficiency</strong> score for each model and for eachfirm was plotted for <strong>the</strong> period 1998-2008, see Figure 3. The firms were sorted based <strong>on</strong> <strong>the</strong> gapbetween <strong>efficiency</strong> under Case A and Case B models.34 The idea is to analyse <strong>the</strong> individual effect (per country) base <strong>on</strong> firms from Brazil.35 For instance, dummy variable from Chile is statistically significant for 4 models (Model 1, Model 2, Model 3 and Model 5; dummyvariable from Argentina is statistically significant for 3 models (Model 1, Model 3 and Model 6) and dummy variable from Peru isstatistically significant for 3 models (Model 4, Model 5 and Model 6).36 Total rain is <strong>on</strong>ly statistically significant in Model 2, tmax in Model 3 and tmin in Model 4.24


Figure 3: Average change <strong>of</strong> <strong>efficiency</strong> (1998-2008) per model10.810.810.80.60.60.6<strong>efficiency</strong>0.4<strong>efficiency</strong>0.4<strong>efficiency</strong>0.40.20.20.20-0.20 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85FirmM1 Case A M1 Case B Eff. change0-0.20 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85FirmM2 Case A M2 Case B Eff. change0-0.20 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85FirmM3 Case A M3 Case B Eff. change1110.80.80.80.60.60.6<strong>efficiency</strong>0.40.2<strong>efficiency</strong>0.40.2<strong>efficiency</strong>0.40.20-0.20 5 10 15 20 25 30 35 40 45 50 55 60 65Firm0-0.20 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85Firm0-0.20 5 10 15 20 25 30 35 40 45 50 55 60 65FirmM4 Case A M4 Case B Eff. changeM5 Case A M5 Case B Eff. changeM6 Case A M6 Case B Eff. change25


Dark blue dots indicate <strong>efficiency</strong> without <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> (Case A) and light blue dots indicate <strong>efficiency</strong>with <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> (Case B). The gap increases proporti<strong>on</strong>ally to <strong>the</strong> number <strong>of</strong> firm 37 . For instance, inModel 1 we observe that <strong>the</strong> most part <strong>of</strong> firms increase <strong>the</strong>ir <strong>efficiency</strong> when <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> is taken intoaccount. The area between <strong>the</strong> horiz<strong>on</strong>tal axis and <strong>the</strong> green line indicates <strong>the</strong> number <strong>of</strong> firms thatincreases (right side) or decreases (left side) <strong>the</strong>ir <strong>efficiency</strong> when <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> is added. For instance inModel 1 <strong>the</strong> maximum gap is 0.13 which means that a firm could increase its <strong>efficiency</strong> from 0.79 to0.92 when <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> is added. The number <strong>of</strong> firms that experience an upward <strong>on</strong> <strong>efficiency</strong> is asfollows: 64 (Model 1), 65 (Model 2), 49 (Model 3), 29 (Model 3), 45 (Model 5) and 29 (Model 6) 38 .We observe that <strong>the</strong> frequency <strong>of</strong> upwards is much higher in cost models than in cost-qualitymodels.On average, <strong>the</strong> percentage <strong>of</strong> firms that increase <strong>efficiency</strong> is 79 per cent for cost models and52 per cent for cost-quality models. In additi<strong>on</strong> <strong>the</strong> average increase in <strong>efficiency</strong> (in percentagepoints) regarding <strong>the</strong>se firms is as follows: 5.23 (Model 1), 3.96 (Model 2), 3.83 (Model 3), 2.5(Model 4), 3.21 (Model 5) and 2.42 (Model 6). These results are in line with those from <strong>the</strong> countrylevelanalysis. From <strong>the</strong>se figures and regarding cost models we note a decrease in 1.27 percentagepoints when capex is added. As we have menti<strong>on</strong>ed before, this suggests that <strong>the</strong> effect <strong>of</strong> <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g>could be being internalised by capital costs. In terms <strong>of</strong> cost-quality models <strong>the</strong> trend is very similar in<strong>the</strong> sense that when total costs are included (Model 4 and Model 6) <strong>the</strong> increase in <strong>efficiency</strong> is lower.From <strong>the</strong> previous discussi<strong>on</strong> se we can state that <strong>the</strong> additi<strong>on</strong> <strong>of</strong> <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> could affect significantly <strong>the</strong><strong>efficiency</strong> <strong>of</strong> some firms. Important variati<strong>on</strong>s are observed being <strong>the</strong> maximum increase and decrease12.8 per cent (Model 1) and 14.8 per cent (Model 5) respectively. Following Coelli et al. (2003),when specific firms face important variati<strong>on</strong>s in <strong>efficiency</strong> due to <strong>the</strong> introducti<strong>on</strong> <strong>of</strong> envir<strong>on</strong>mentalvariables, regulators are suggested to invite <strong>the</strong>se specific firms and to make a case for deciding <strong>the</strong>appropriate adjustment <strong>of</strong> <strong>the</strong>ir respective <strong>efficiency</strong> scores.7. C<strong>on</strong>clusi<strong>on</strong>sIn this paper technical <strong>efficiency</strong> was estimated for 82 electricity distributi<strong>on</strong> firms that operate inSouth America for <strong>the</strong> period 1998-2008. The countries that are part <strong>of</strong> this <strong>study</strong> are Argentina,37 This means that <strong>the</strong> order <strong>of</strong> firms is not <strong>the</strong> same across models.38 For Model 1, 2, 3, 4, 5, and 7 <strong>the</strong> total number <strong>of</strong> firms is 82. For Model 6 and 8 <strong>the</strong> total number is 62.26


Brazil, Chile and Peru. A stochastic fr<strong>on</strong>tier approach was selected for this purpose. The transloginput distance functi<strong>on</strong> is <strong>the</strong> preferred functi<strong>on</strong>al form due to its flexibility in managing multipleinputs and outputs. The use <strong>of</strong> c<strong>on</strong>cordance tables was fundamental for grouping costs into <strong>the</strong> sameaccount category. The collecti<strong>on</strong> <strong>of</strong> quality variables and some physical variables, involved asignificant coordinati<strong>on</strong> am<strong>on</strong>g regulators, in order to have quality indicators and physical data thatcan be comparable, based <strong>on</strong> <strong>the</strong> same standards and references respectively. The collecti<strong>on</strong> <strong>of</strong><str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> variables required <strong>the</strong> same effort. Geographic informati<strong>on</strong> system made possible to locate<strong>the</strong> firms’ service areas and to allocate <strong>the</strong>ir respective meteorological stati<strong>on</strong>s and NASA coordinates(flash rate). For determining <strong>the</strong> preferred <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> models, different approaches were analysed suchas <strong>the</strong> inclusi<strong>on</strong> <strong>of</strong> <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> in producti<strong>on</strong> and its inclusi<strong>on</strong> in <strong>the</strong> in<strong>efficiency</strong> term.Results suggest that rain, high and low absolute temperatures combined are <strong>the</strong> <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> variables thatwould affect <strong>the</strong> shape <strong>of</strong> <strong>the</strong> producti<strong>on</strong> functi<strong>on</strong> under cost models and cost-quality models. Acountry-level analysis indicates that under cost models, firms from Brazil and Peru increase <strong>the</strong>ir<strong>efficiency</strong> significantly when <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> is included, while in <strong>the</strong> case <strong>of</strong> Argentina and Chile <strong>the</strong>increase is much lower. From this we c<strong>on</strong>clude that firms from Brazil and Peru operate in lessfavourable <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s than <strong>the</strong> <strong>on</strong>es from Argentina and Chile. In terms <strong>of</strong> cost-qualitymodels <strong>the</strong> impact <strong>of</strong> <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> <strong>on</strong> <strong>efficiency</strong> is <strong>on</strong> average much lower. Results suggest that Chile is<strong>the</strong> <strong>on</strong>e in which <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> influences <strong>the</strong> most but this influence produced a downward <strong>on</strong> <strong>efficiency</strong>.From this we c<strong>on</strong>clude that <strong>on</strong> average firms are able to adapt <strong>the</strong>ir networks c<strong>on</strong>sidering <strong>the</strong>ir ownenvir<strong>on</strong>ment.A company-level analysis shows that across models <strong>the</strong>re are an important number <strong>of</strong> firms in which<str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> affects firms’ <strong>efficiency</strong>. This reflects to some extent <strong>the</strong> appropriate selecti<strong>on</strong> <strong>of</strong> <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g>variables due to <strong>the</strong> large effect. In additi<strong>on</strong>, <strong>the</strong> number <strong>of</strong> <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> variables is also c<strong>on</strong>venientbecause allows regulators to c<strong>on</strong>trol degrees <strong>of</strong> freedom. We have observed that some specific firmsface a large variati<strong>on</strong> in <strong>efficiency</strong> when <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> is added. Thus, regulators are suggested to make acase <strong>study</strong> to invite <strong>the</strong>se specific firms and to make a case for deciding <strong>the</strong> appropriate adjustment <strong>of</strong><strong>the</strong>ir respective <strong>efficiency</strong> scores.27


Our findings suggest that regulators are advised to practice performance comparis<strong>on</strong>s across countriesthat include in additi<strong>on</strong> to physical and cost variables quality and <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> factors. This minimises <strong>the</strong>risk <strong>of</strong> discriminating unfairly a specific firm which is close to <strong>the</strong> fr<strong>on</strong>tier when an internati<strong>on</strong>albenchmarking is experienced. This practise also helps to reduce <strong>the</strong> level <strong>of</strong> informati<strong>on</strong> asymmetrywhich is <strong>on</strong>e <strong>of</strong> <strong>the</strong> main c<strong>on</strong>cerns <strong>of</strong> <strong>the</strong> regulatory authorities. This usually places in a better positi<strong>on</strong><strong>the</strong> regulated firms for negotiating prices, c<strong>on</strong>tractual obligati<strong>on</strong>s, am<strong>on</strong>g o<strong>the</strong>rs. For this purpose andfor <strong>the</strong> experience in building our dataset, a coordinati<strong>on</strong> am<strong>on</strong>g regulators, associati<strong>on</strong>s <strong>of</strong> electricitydistributi<strong>on</strong> firms, regi<strong>on</strong>al energy agencies (such as OLADE ), regi<strong>on</strong>al energy regulatorscommissi<strong>on</strong>s (such as CIER); internati<strong>on</strong>al agencies (such as World Bank), meteorological <strong>of</strong>fices ando<strong>the</strong>r spatial agencies; is essential for data collecti<strong>on</strong> and also for doing proper comparis<strong>on</strong>s acrossfirms that operate in different countries and envir<strong>on</strong>ments.References1. Aigner, D.J., Lovell, C.A.K. and Schmidt, P. (1977). Formulati<strong>on</strong> and estimati<strong>on</strong> <strong>of</strong> stochastic fr<strong>on</strong>tierproducti<strong>on</strong> functi<strong>on</strong> models. Journal <strong>of</strong> Ec<strong>on</strong>ometrics 6, 21-37.2. ANEEL (2007). Manual de C<strong>on</strong>tabilidade do Serviço Público de Energia Elétrica. Agência Naci<strong>on</strong>al deEnergia Elétrica.3. Atkins<strong>on</strong>, S.E. and Prim<strong>on</strong>t, D. (2002). Stochastic estimati<strong>on</strong> <strong>of</strong> firm technology, in<strong>efficiency</strong>, andproductivity growth using shadow cost and distance functi<strong>on</strong>s. Journal <strong>of</strong> Ec<strong>on</strong>ometrics 108, 203-225.4. Battese G. <strong>An</strong>d Coelli T. (1992). Fr<strong>on</strong>tier producti<strong>on</strong> functi<strong>on</strong>s, technical <strong>efficiency</strong> and panel data:with applicati<strong>on</strong> to paddy farmers in India. Journal <strong>of</strong> Productivity <strong>An</strong>alysis 3, 153-169.5. Battese G. <strong>An</strong>d Coelli T. (1995). A model for technical in<strong>efficiency</strong> effects in a stochastic fr<strong>on</strong>tierproducti<strong>on</strong> functi<strong>on</strong> for panel data. Empirical Ec<strong>on</strong>omics 20, 325-332.6. Burke, James J. and Lawrence, David J. (1983). Characteristics <strong>of</strong> fault currents <strong>on</strong> distributi<strong>on</strong>systems. IEEE transacti<strong>on</strong>s <strong>on</strong> power apparatus and systems, Vol. PAS-103, No. 1, 1-6, January 1984.7. Coelli, T., Perelman, S. and Romano, E. (1999). Accounting for envir<strong>on</strong>mental influences in stochasticfr<strong>on</strong>tier models: with applicati<strong>on</strong> to internati<strong>on</strong>al airlines. Journal <strong>of</strong> Productivity <strong>An</strong>alysis, 11, 251-273.8. Coelli, T., Estache, A., Perelman, S. and Trujillo, L. (2003). A primer <strong>on</strong> <strong>efficiency</strong> measurement forutilities and transport regulators. WBI Development Studies. World Bank Institute.9. Coelli, T., Prasada Rao, D.S. and Battese, G. E. (2005). <strong>An</strong> introducti<strong>on</strong> to <strong>efficiency</strong> and productivityanalysis. Sec<strong>on</strong>d Editi<strong>on</strong>. Springer Science, Business Media, Inc. ISBN -13: 978-0387-24266-8.10. Cuesta, Rafael A. (2000). A Producti<strong>on</strong> Model with Firm-Specific Temporal Variati<strong>on</strong> in TechnicalIn<strong>efficiency</strong>: With Applicati<strong>on</strong> to Spanish Dairy Farms. Journal <strong>of</strong> Productivity <strong>An</strong>alysis 13 (2), 139-158.11. DOE (1981). The nati<strong>on</strong>al electric reliability <strong>study</strong>: technical <strong>study</strong> reports. U.S Department <strong>of</strong> EnergyDOE/EP-0005, April 1981.12. Estache A., Rossi M.A. and Ruzzier C.A. (2004). The case for internati<strong>on</strong>al coordinati<strong>on</strong> <strong>of</strong> electricityregulati<strong>on</strong>: Evidence from <strong>the</strong> measurement <strong>of</strong> Efficiency in South America. Journal <strong>of</strong> RegulatoryEc<strong>on</strong>omics 25, 271-295.13. Farsi, M., Filippini, M. <strong>An</strong>d Greene, W. (2006). Applicati<strong>on</strong> <strong>of</strong> panel data models in benchmarkinganalysis <strong>of</strong> <strong>the</strong> electricity distributi<strong>on</strong> sector. <strong>An</strong>nals <strong>of</strong> Public and Cooperative Ec<strong>on</strong>omics 77:3 2006,271–290.28


14. Giannakis, D., Jamasb, T. and Pollit, M.G. (2005). Benchmarking and incentive regulati<strong>on</strong> <strong>of</strong> quality <strong>of</strong>service: <strong>An</strong> applicati<strong>on</strong> to <strong>the</strong> UK electricity distributi<strong>on</strong> networks. Energy Policy 33 (1), 2256-2271.15. Gönen, Turan (2008). Electric Power Distributi<strong>on</strong> System Engineering. California State University,Sacramento, California. CRC Press. Sec<strong>on</strong>d Editi<strong>on</strong>. ISBN – 13: 978-1-4200-6200-7.16. Hattori, T., Jamasb, T. <strong>An</strong>d Pollit, M.G. (2005). Electricity distributi<strong>on</strong> in UK and Japan: Acomparative <strong>efficiency</strong> analysis 1985-1998. Energy Journal 26 (2), 23–47.17. Jamasb, T., Orea, L. and Pollitt, M. (2010). Wea<strong>the</strong>r factors and performance <strong>of</strong> network utilities: Amethodology and applicati<strong>on</strong> to electricity distributi<strong>on</strong>. EPRG Working Paper 1020. CambridgeWorking Paper in Ec<strong>on</strong>omics 1042. Electricity Policy Research Group. University <strong>of</strong> Cambridge18. Korh<strong>on</strong>en, P.J. and Syrjanen, P.J. (2003). Evaluati<strong>on</strong> <strong>of</strong> Cost Efficiency in Finnish ElectricityDistributi<strong>on</strong>. <strong>An</strong>nals <strong>of</strong> Operati<strong>on</strong>s Research, 121, 105-122.19. Kumbhakar,S. and Knox Lovell C.A. (2000). Stochastic Fr<strong>on</strong>tier <strong>An</strong>alysis. Cambridge UniversityPress. ISBN 0-521-48184-8.20. Kumbhakar,S. and Wang H. (2006). Estimati<strong>on</strong> <strong>of</strong> technical and allocative in<strong>efficiency</strong>: A primalsystem approach. Journal <strong>of</strong> Ec<strong>on</strong>ometrics 134, 419-440.21. Meeusen W. and van den Broeck J. (1977). Efficiency estimati<strong>on</strong> from Coob-Douglas producti<strong>on</strong>functi<strong>on</strong>s with composed error. Internati<strong>on</strong>al Ec<strong>on</strong>omic Review 18(2), 435–444.22. MINEM (1994a). Manual de costos para empresas de electricidad c<strong>on</strong>cesi<strong>on</strong>arias y/o autorizadas.Ministerioo de Energía y Minas.23. MINEM (1994b). Norma Técnica de Calidad de los Servicios Eléctricos. Dirección General deElectricidad. Ministerio de Energía y Minas.24. Mota, R.L. (2004). Comparing Brazil and USA electricity distributi<strong>on</strong> performance: What was <strong>the</strong>impact <strong>of</strong> privatizati<strong>on</strong>? DAE Working Paper WP 0423, Department <strong>of</strong> Applied Ec<strong>on</strong>omics, University<strong>of</strong> Cambridge.25. Nillesen, P. and Pollitt, M. (2010). Using regulatory benchmarking techniques to set companyperformance targets: <strong>the</strong> case <strong>of</strong> US electricity. Competiti<strong>on</strong> and Regulati<strong>on</strong> in Network26. OFREG (2000). A report <strong>on</strong> <strong>the</strong> boxing day storms 1998. Office for <strong>the</strong> regulati<strong>on</strong> <strong>of</strong> electricity andgas.27. OSINERGMIN (2003). Estadísticas sobre la calidad del servicio eléctrico. Organismo Supervisor de laInversión en Energía y Minería.28. OSINERGMIN (2004). Procedimiento para la supervisión de la operación de los sistemas eléctricos.Organismo Supervisor de la Inversión en Energía y Minería.29. Pabla, A.S. (2005). Electric power distributi<strong>on</strong>. McGraw-Hill Companies, Inc. ISBN: 0-07-144783-0.30. Pérez-Reyes, R. and Tovar, B. Measuring <strong>efficiency</strong> and producticity change (PTF) in <strong>the</strong> Peruvianelectricity distributi<strong>on</strong> companies after reforms. Energy Policy 37, 2249-2261.31. Pinto, Osmar Jr. and Almeida Pinto, Iara (2008). Relâmpagos. Editora Brasilience, 2ª edição. ISBN –13: 9788511001129.32. Pollitt, Michael G. (1995). Ownership and performance in electric utilities. Oxford University Press.ISBN 0-19-730015-4.33. Resende, M. (2002). Relative <strong>efficiency</strong> measurement and prospects for yardstick competiti<strong>on</strong> inBrazilian electricity distributi<strong>on</strong>. Energy Policy 30 (2002), 637-647.34. Rossi, M. (2007). Labour productivity change estimates as an input for X-factors. In Chisari, O. (ed)Regulatory Ec<strong>on</strong>omics and Quantitative Methods: Evidence from Latin America. The CRC Series <strong>on</strong>Competiti<strong>on</strong>, Regulati<strong>on</strong> and Development, 2007. Edward Elgar Publisher, pp. 39-53. ISBN 978 184542 961 4.35. Rothstein, B. and Halbig G. (2010). Wea<strong>the</strong>r sensitivity <strong>of</strong> electricity supply and data services <strong>of</strong> <strong>the</strong>German met <strong>of</strong>fice. In Troccoli, A. (ed) Management <strong>of</strong> <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> and climate risk in <strong>the</strong> energyindustry. NATO science for peace and security series C: Envir<strong>on</strong>mental Security. ISBN: 978-90-481-3692-6-ebook.36. Sahuenza, R., Rudnick, H. and Lagunas, H. (2004). DEA <strong>efficiency</strong> for <strong>the</strong> determinati<strong>on</strong> <strong>of</strong> <strong>the</strong> electricpower distributi<strong>on</strong> added value. IEEE Transacti<strong>on</strong>s <strong>on</strong> power systems, Vol. 19 (2), May 2004. Institute<strong>of</strong> Electrical and Electr<strong>on</strong>ics Engineers.37. SEC (2006). Sistemas de cuentas para informar y valorizar los costos e ingresos de explotación de lasc<strong>on</strong>cesi<strong>on</strong>arias de servicio público de distribución de electricidad. Superintendencia de electricidad ycombustibles.38. Secretaría de Energía (2008). Informe estadístico del sector eléctrico 2008. Secretaria de Energía delMinisterio de Planificación Federal, Administración Pública y Servicios.29


39. Shephard, R.W. (1970). Theory <strong>of</strong> cost and producti<strong>on</strong> functi<strong>on</strong>s. Princet<strong>on</strong> University Press,Princet<strong>on</strong>.40. Short, Tom A. (2006). Distributi<strong>on</strong> reliability and power quality. CRC Press. Taylor & Francis Group.Sec<strong>on</strong>d Editi<strong>on</strong>. ISBN-13: 978-0-8493-9575-8.41. Tovar, B., Ramos-Real, F.J. and Fagundes de Almeida, E. (2011). Firm size and productivity. Evidencefrom <strong>the</strong> electricity distributi<strong>on</strong> industry in Brazil. Energy Policy 39, 826-833.42. V<strong>on</strong> Hirschhausen, C, Chullmann A. and Kappeler A. (2006). Efficiency analysis <strong>of</strong> German electricitydistributi<strong>on</strong> utilities – n<strong>on</strong> parametric and parametric tests. Journal <strong>of</strong> Applied Ec<strong>on</strong>omics 38, 2553-2566.43. Yu, William., Jamasb, T., and Pollit, M. (2008). <str<strong>on</strong>g>Does</str<strong>on</strong>g> <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> explain <strong>the</strong> cost and qualityperformance? <strong>An</strong> analysis <strong>of</strong> UK electricity distributi<strong>on</strong> companies. EPRG Working Paper 0827.Cambridge Working Paper in Ec<strong>on</strong>omics 0858. Electricity Policy Research Group. University <strong>of</strong>Cambridge.44. Yu, William and Pollit, M. (2009). <str<strong>on</strong>g>Does</str<strong>on</strong>g> liberalisati<strong>on</strong> cause more electricity blackouts? Evidence froma global <strong>study</strong> <strong>of</strong> newspaper reports. EPRG Working Paper 0902. Cambridge Working Paper inEc<strong>on</strong>omics 0911. Electricity Policy Research Group. University <strong>of</strong> Cambridge.1. Cost data<strong>An</strong>nex 1: Data collecti<strong>on</strong>Operating costs, opex, include in general labour costs, materials and third party services. However due to<strong>the</strong> difference that exists in presenting operating costs across countries, some adjustments were made. Theway <strong>of</strong> presenting financial figures was not homogenous across companies. Thus, nati<strong>on</strong>al and regulatoryaccounting was analysed for grouping cost figures based <strong>on</strong> <strong>the</strong> three categories, ANEEL (2007), SEC(2006), MINEM (1994a) 39 . A c<strong>on</strong>cordance table was built for this purpose. In general across countries,opex are composed <strong>of</strong> (1) distributi<strong>on</strong> cost, (2) retail cost and (3) administrative and general expenses 40 .Some companies also have generati<strong>on</strong> and transmissi<strong>on</strong> costs; which were excluded. The administrativeand general expenses associated with generati<strong>on</strong> and transmissi<strong>on</strong> business were also excluded. However,<strong>the</strong> cost breakdown related to transmissi<strong>on</strong> was not always available 41 . In this scenario, opex aggregatesdistributi<strong>on</strong> and transmissi<strong>on</strong> costs.Regarding capital cost, capex, <strong>the</strong>se are represented by total asset additi<strong>on</strong>s, including work in progress.Unlike opex figures, cost breakdown <strong>of</strong> capex by type <strong>of</strong> activity (distributi<strong>on</strong>, transmissi<strong>on</strong>, generati<strong>on</strong>)was not available for all companies, thus some adjustments were also made 42 . All figures were adjusted at2008 prices based <strong>on</strong> <strong>the</strong> c<strong>on</strong>sumer price index (CPI) and <strong>the</strong> purchasing power parity (PPP) c<strong>on</strong>versi<strong>on</strong>factor 43 . The main sources <strong>of</strong> informati<strong>on</strong> are companies’ annual reports 44 . They were obtained fromcompanies’ web sites. <strong>An</strong> important number <strong>of</strong> reports were collected during <strong>the</strong> fieldwork from energyregulators, associati<strong>on</strong> <strong>of</strong> electricity distributi<strong>on</strong> companies 45 , utilities and from <strong>the</strong> Nati<strong>on</strong>al Security andInsurances Agencies 46 . CPI was provided by INDEC, IBGE, INE and INEI 47 . PPP c<strong>on</strong>versi<strong>on</strong> factor wasobtained from <strong>the</strong> World Bank Internati<strong>on</strong>al Comparis<strong>on</strong> Program Database.39 In <strong>the</strong> case <strong>of</strong> Argentina, from <strong>the</strong> 18 companies, 3 <strong>of</strong> <strong>the</strong>m are regulated by ENRE (EDENOR, EDESUR, EDELAP), 3 more by OCEBA (EDEN,EDES, EDEA) and 10 are regulated by regi<strong>on</strong>al regulators. The o<strong>the</strong>r two are stated-owned companies, managed by local governmentsfrom Santa Fe and Cordoba Provinces. Each regulator provides <strong>the</strong> Regulatory Accounting Guide to <strong>the</strong> regulated companies. The guidesare very similar am<strong>on</strong>g regulators. We have used as reference those from ENRE (Resolución ENRE 464/2002: Plan y Manual de CuentasÚnico para las Empresas de Distribución de Energía Eléctrica) and OCEBA (Resolución OCEBA 0148/2009: Plan y Manual de Cuentas Único).40 The administrative and general expenses are those costs that are shared am<strong>on</strong>g all firms’ business when a firm is vertically integrated.41 The exclusi<strong>on</strong> (when disaggregati<strong>on</strong> was available) or inclusi<strong>on</strong> (when disaggregati<strong>on</strong> was not available) <strong>of</strong> transmissi<strong>on</strong> lines is also inline with this. Transmissi<strong>on</strong> lines usually are associated with high voltage lines.42 For this purpose <strong>the</strong> ratio obtained by dividing generati<strong>on</strong> costs and transmissi<strong>on</strong> costs over total costs (net <strong>of</strong> administrative andgeneral expenses, purchase <strong>of</strong> energy, fuel and lubricants) was used for estimati<strong>on</strong>s.43 GDP (LCU per internati<strong>on</strong>al $)44 This includes c<strong>on</strong>venti<strong>on</strong>al annual reports, specific financial reports and o<strong>the</strong>r reports (related to pricing) in <strong>the</strong> case <strong>of</strong> Chile.45 ADEERA from Argentina, ABRADEE from Brazil.46 Nati<strong>on</strong>al Security Commissi<strong>on</strong> (CNV) from Argentina, Securities and Exchange Commissi<strong>on</strong> (CVM) from Brazil, Securities and InsuranceSupervisor (SVS) from Chile and Nati<strong>on</strong>al Supervisory Commissi<strong>on</strong> for Companies and Securities (CONASEV).47 Nati<strong>on</strong>al Institute <strong>of</strong> Statistics and Censuses for Argentina (INDEC), Brazilian Institute <strong>of</strong> Geography and Statistics (IBGE), Nati<strong>on</strong>alStatistics Institute for Chile (INE), Nati<strong>on</strong>al Institute <strong>of</strong> Statistics and Informati<strong>on</strong> (INEI) for Peru.30


2. Physical dataIn terms <strong>of</strong> physical data, <strong>the</strong> number <strong>of</strong> customers is basically composed <strong>of</strong> residential, industrial, rural,businesses and government customers. The classificati<strong>on</strong> varies am<strong>on</strong>g countries. Energy delivered refersto <strong>the</strong> total sale <strong>of</strong> energy in <strong>the</strong> regulated and free market (free customers). In <strong>the</strong> case <strong>of</strong> Argentina it alsoincludes energy delivered to Cooperatives. Free customers are those who depending <strong>on</strong> <strong>the</strong> size <strong>of</strong> <strong>the</strong>irdemand are able to select <strong>the</strong>ir supplier and pay a toll to <strong>the</strong> electricity distributi<strong>on</strong> firm for <strong>the</strong> use <strong>of</strong> itsnetwork. For doing suitable comparis<strong>on</strong>s regarding <strong>the</strong> energy delivered, an energy-balance approach wasbuilt for each firm. This allowed identify in most <strong>of</strong> cases <strong>the</strong> input energy, <strong>the</strong> output energy per type <strong>of</strong>customers (regulated, free, cooperatives, utilities) and losses (total losses). Length <strong>of</strong> network is focused <strong>on</strong><strong>the</strong> distributi<strong>on</strong> business however this c<strong>on</strong>cept varies across countries. Based <strong>on</strong> an individual analysisam<strong>on</strong>g countries, we c<strong>on</strong>clude that distributi<strong>on</strong> networks in general are those with voltage levels up to 34.5kV and that are associated with low and medium voltages 48 . In most <strong>of</strong> cases, high voltage refers to <strong>the</strong>transmissi<strong>on</strong> business and has been excluded when possible 49 . Adjustments in opex and capex, whichmeans <strong>the</strong> exclusi<strong>on</strong> <strong>of</strong> transmissi<strong>on</strong> costs, were also made in order to be in line with this approach.Number <strong>of</strong> workers refer to number <strong>of</strong> own employees. Service area represents <strong>the</strong> area in whichcompanies operate.Physical data was collected mainly from companies’ annual reports, energy regulators and associati<strong>on</strong>s <strong>of</strong>electricity distributi<strong>on</strong> companies. For instance, some regulators such as ANEEL and OSINERGMINprovided specific informati<strong>on</strong> such as length <strong>of</strong> network, which was very useful for completing <strong>the</strong> dataset.ANEEL also provided informati<strong>on</strong> that helped to build <strong>the</strong> energy-balance for each firm, such as abreakdown <strong>of</strong> energy delivered which included <strong>the</strong> free market. ADEERA, was also an important source <strong>of</strong>informati<strong>on</strong> regarding network length. Informati<strong>on</strong> obtained from system operators and from <strong>the</strong> WorldBank database was very useful to complement data <strong>of</strong> network length. Regarding service area, somespecific reports and database were used in order to locate <strong>the</strong> service area geographically for each firmusing a geographic informati<strong>on</strong> system (GIS). Fur<strong>the</strong>r details are given in secti<strong>on</strong> 4 (Wea<strong>the</strong>r data).3. Quality dataTotal power losses 50 , average durati<strong>on</strong> <strong>of</strong> interrupti<strong>on</strong>s per customer (adic) and average number <strong>of</strong>interrupti<strong>on</strong>s per customer (anic) 51 , were obtained mainly from companies’ annual reports, regulators andassociati<strong>on</strong>s <strong>of</strong> electricity distributi<strong>on</strong> companies. Total losses are composed <strong>of</strong> technical and n<strong>on</strong>-technicallosses 52 . . Interrupti<strong>on</strong>s involve those that are equal to 3 minutes or higher, planned and unplanned, internaland externals; and exclude major interrupti<strong>on</strong> events. In <strong>the</strong> case <strong>of</strong> Argentina and Peru, quality variablesregarding <strong>the</strong> durati<strong>on</strong> and frequency <strong>of</strong> interrupti<strong>on</strong>s were provided directly from regulators 53 . Theyprovided <strong>the</strong> informati<strong>on</strong> in <strong>the</strong> format required. It is worth noting that <strong>on</strong>ly in <strong>the</strong> case <strong>of</strong> Peru, majorinterrupti<strong>on</strong>s were not possible to exclude. OSINERGMIN provided two kinds <strong>of</strong> indicators. The first<strong>on</strong>es, which were obtained from individual indicators N and D 54 ; refer in general to those interrupti<strong>on</strong>sproduced in urban areas 55 . These involve <strong>the</strong> 3 level <strong>of</strong> voltages and include interrupti<strong>on</strong>s produced byfortuitous events. This data is available since 2002 <strong>on</strong>wards. The sec<strong>on</strong>d <strong>on</strong>es, SAIDI and SAIFI 56 , refer tothose interrupti<strong>on</strong>s produced in urban and n<strong>on</strong>-urban areas. These <strong>on</strong>ly involve interrupti<strong>on</strong>s reported inmedium and high voltage levels and a disaggregati<strong>on</strong> <strong>of</strong> interrupti<strong>on</strong>s due to fortuitous event is available.However, <strong>the</strong>se indicators have been calculated since 2005 <strong>on</strong>wards. In this <strong>study</strong> due to <strong>the</strong> fact that <strong>the</strong>first kind <strong>of</strong> indicators include <strong>the</strong> low voltage level, in which <strong>the</strong> most part <strong>of</strong> customers is c<strong>on</strong>centrated,48 This classificati<strong>on</strong> cannot be applied to <strong>the</strong> 100 per cent <strong>of</strong> companies but at least for <strong>the</strong> most part <strong>of</strong> <strong>the</strong>se. Voltage leveldecompositi<strong>on</strong> was not available for <strong>the</strong> all sample. Data from system operators was also analysed in order to complete informati<strong>on</strong>regarding length <strong>of</strong> network associated with <strong>the</strong> transmissi<strong>on</strong> activity.49 For instance, transmissi<strong>on</strong> lines represent around 4.5 per cent and 2.5 per cent <strong>of</strong> <strong>the</strong> total length, regarding electricity distributi<strong>on</strong> firmsfrom Argentina and Chile respectively. 2008 Figures.50 The management <strong>of</strong> power losses is associated with <strong>the</strong> quality <strong>of</strong> network operati<strong>on</strong>.51 = and = 52 The decompositi<strong>on</strong> <strong>of</strong> losses in technical and n<strong>on</strong>-technical losses across countries was not possible to make. The decompositi<strong>on</strong> was<strong>on</strong>ly available for Brazilian utilities.53 In <strong>the</strong> case <strong>of</strong> Chile, quality variables in <strong>the</strong> format that was required for this <strong>study</strong> were not possible to obtain. Based <strong>on</strong> <strong>the</strong> regulatoryframework, Chilean companies report global indicators such as <strong>the</strong> mean frequency <strong>of</strong> interrupti<strong>on</strong> and time <strong>of</strong> interrupti<strong>on</strong> per installedcapacity (kVA), FMIK and TTIK respectively.54 Indicators defined in <strong>the</strong> Technical Standard for Quality Electric Services (NTCSE), MINEM(1994b).55 Around 80 per cent <strong>of</strong> <strong>the</strong> total number <strong>of</strong> customers is c<strong>on</strong>centrated in <strong>the</strong>se areas, (OSINERGMIN, 2003).56 Indicators are defined in OSINERGMIN (2004).31


and due to <strong>the</strong> availability <strong>of</strong> data which adds three more periods to <strong>the</strong> models, <strong>the</strong> selecti<strong>on</strong> <strong>of</strong> <strong>the</strong> firstkind <strong>of</strong> indicators is c<strong>on</strong>venient.4. Wea<strong>the</strong>r dataThe availability <strong>of</strong> <str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> data varies across countries. Argentina is <strong>the</strong> <strong>on</strong>e that provided <strong>the</strong> mostcomplete panel. Wea<strong>the</strong>r data was collected from Meteorological Offices 57 and from <strong>the</strong> Nati<strong>on</strong>alAer<strong>on</strong>autics and Space Administrati<strong>on</strong> <strong>of</strong> <strong>the</strong> USA (NASA) 58 . The first <strong>on</strong>es provided informati<strong>on</strong> <strong>of</strong><str<strong>on</strong>g>wea<strong>the</strong>r</str<strong>on</strong>g> data that was recorded in 458 stati<strong>on</strong>s from which 429 are placed inside <strong>the</strong> service area <strong>of</strong> <strong>the</strong>companies that are part <strong>of</strong> this <strong>study</strong>, see <strong>An</strong>nex 3. A geographic informati<strong>on</strong> system was used for thispurpose 59 . Maximum absolute temperature, minimum absolute temperature, total rain, number <strong>of</strong> days in ayear with: gales, storm, hails and frost days, humidity, are am<strong>on</strong>g <strong>the</strong>se data 60 .Regarding <strong>the</strong> sec<strong>on</strong>d <strong>on</strong>e, <strong>the</strong> data refers to flash density (number <strong>of</strong> flashes/km 2 /year), i.e. lightning. Thedata set that NASA used was that from LIS (High Resoluti<strong>on</strong> Full Climatology - HRFC), tropical coveragefor <strong>the</strong> period 1998-2008 with resoluti<strong>on</strong> <strong>of</strong> 0.5 degrees. Similar to <strong>the</strong> procedure followed previously, ageographic informati<strong>on</strong> system was used for plotting <strong>the</strong> flash rate coordinates. Around 3423 coordinates(grided data) with informati<strong>on</strong> <strong>of</strong> flash rate were identified inside <strong>the</strong> service area regarding <strong>the</strong> wholesample <strong>of</strong> companies 61 , see <strong>An</strong>nex 3. As we can see <strong>the</strong> locati<strong>on</strong> <strong>of</strong> <strong>the</strong> companies’ service area in a georeferencedsystem is required for matching <strong>the</strong> meteorological stati<strong>on</strong>s and flash rate coordinates thatcorresp<strong>on</strong>d to each firm, see <strong>An</strong>nex 2. The first step was to get <strong>the</strong> digital maps for <strong>the</strong> four countries.Depending <strong>on</strong> <strong>the</strong> country’s administrative and political boundaries maps can be obtained at department,municipal, district, commune am<strong>on</strong>g o<strong>the</strong>r levels. Usually <strong>the</strong>se boundaries are related to <strong>the</strong> service orc<strong>on</strong>cessi<strong>on</strong> area that is allocated to a specific utility. In <strong>the</strong> case <strong>of</strong> Argentina, <strong>the</strong> digital map atdepartmental level was provided by INTA 62 . Regarding Brazil, <strong>the</strong> map was downloaded from <strong>the</strong> georeferencedinformati<strong>on</strong> system <strong>of</strong> electric sector (SIGEL) from ANEEL. This map c<strong>on</strong>tains informati<strong>on</strong> <strong>of</strong>companies’ service area at municipal level. The Chilean Nati<strong>on</strong>al System <strong>of</strong> Coordinati<strong>on</strong> <strong>of</strong> TerritorialInformati<strong>on</strong> (SNIT) from <strong>the</strong> Ministry <strong>of</strong> Nati<strong>on</strong>al Property provided <strong>the</strong> digital map at <strong>the</strong> communelevel 63 . In Peru, <strong>the</strong> digital map was provided by <strong>the</strong> Nati<strong>on</strong>al Geographic Institute (IGN) 64 . The sec<strong>on</strong>dstep was to get <strong>the</strong> companies’ service area dataset 65 . The informati<strong>on</strong> at departmental level was found at<strong>the</strong> annual reports from <strong>the</strong> Secretary <strong>of</strong> Energy from Argentina 66 . In <strong>the</strong> case <strong>of</strong> Brazil <strong>the</strong> digital mapincludes this dataset. Regarding Chile and Peru, <strong>the</strong> dataset was provided by <strong>the</strong> Superintendence <strong>of</strong>Electricity and Fuel (SEC) at communal level and OSINERGMIN at district level respectively 67 . With <strong>the</strong>digital maps and firms’ service area dataset was possible to geo-reference <strong>the</strong> firms’ service areas andallocated <strong>the</strong> meteorological stati<strong>on</strong>s and flash rate coordinates for each <strong>on</strong>57 Nati<strong>on</strong>al Meteorological Service (SMN) <strong>of</strong> Argentina, Nati<strong>on</strong>al Institute <strong>of</strong> Meteorology (INMET) <strong>of</strong> Brazil, Meteorological Directi<strong>on</strong>(DMC) <strong>of</strong> Chile and The Nati<strong>on</strong>al Service <strong>of</strong> Meteorology and Hydrology (SENAMHI) <strong>of</strong> Peru.58 We are very grateful to Meteorological Offices and to NASA due to <strong>the</strong> provisi<strong>on</strong> <strong>of</strong> data. This was prepared in <strong>the</strong> format that wasrequired and provided <strong>on</strong>ly for this research.59 Meteorological Offices provided coordinates (latitude, l<strong>on</strong>gitude) for each met stati<strong>on</strong>. ArcGis is <strong>the</strong> applicati<strong>on</strong> that was used.60 M<strong>on</strong>thly based-data. For modelling, data was c<strong>on</strong>verted in annual-based.61 Based <strong>on</strong> <strong>the</strong> coverage (~35 o N/S) <strong>the</strong> total number <strong>of</strong> coordinates provided by NASA is 100,800 (720*360). Due to this boundary(tropical coverage) for some companies (whose service area are situated higher than 35 S), flash rate variable was not possible to get (5 intotal). Gauss was <strong>the</strong> s<strong>of</strong>tware used for arranging <strong>the</strong> data in <strong>the</strong> format required for ArcGis.62 Nati<strong>on</strong>al Agricultural Research Centre from Argentina.63 The data was provided in UTM coordinates. This was c<strong>on</strong>verted in geographical coordinates in order to have a comm<strong>on</strong> standard.64 We have around: 535 departments in Argentina, 5562 municipalities in Brazil, 342 communes in Chile and 1833 districts in Peru.65 It refers usually to <strong>the</strong> number <strong>of</strong> customers or energy delivered that <strong>the</strong> firm serves in each department, municipio, commune, district.66 Secretaría de Energía (2008).67 In <strong>the</strong> case <strong>of</strong> Peru, informati<strong>on</strong> regarding area (at district level) was complemented by <strong>the</strong> dataset provided by <strong>the</strong> Nati<strong>on</strong>al Institute <strong>of</strong>Statistics and Informati<strong>on</strong> (INEI).32


<strong>An</strong>nex 2: Map <strong>of</strong> firms’ service areaPERUFirms: 14Energy delivered: 99.6%Firms’ service area: 630 Km2(000’)CHILEFirms: 11Energy delivered: 94.8%Firms’ service area: 492 Km2(000’)ARGENTINAFirms: 18Energy delivered: 92.2%Firms’ service area: 1543 Km2(000’)BRAZILFirms: 39Energy delivered: 97.6%Firms’ service area: 8111 Km2(000’)Note: The service areas showed in <strong>the</strong> map refer <strong>on</strong>ly to those companies that are part <strong>of</strong> this <strong>study</strong>.Own elaborati<strong>on</strong>.33


<strong>An</strong>nex 3: Met Stati<strong>on</strong>s and NASA coordinates per countryMet Stati<strong>on</strong>sLightning (flash/km2)BRAZILCoordinates: 2830Flash rate:Average: 4.02Max: 24.33PERUMet stati<strong>on</strong>s: 75PERUCoordinates: 426Flash rate:Average: 2.7Max: 14.55CHILEMet stati<strong>on</strong>s: 16ARGENTINAMet stati<strong>on</strong>s: 67BRAZILMet stati<strong>on</strong>s: 300CHILECoordinates: 123Flash rate:Average: 0.23Max: 1.86ARGENTINACoordinates: 570Flash rate:Average: 4.35Max: 20.43Own elaborati<strong>on</strong>. Met stati<strong>on</strong>s’ coordinates provided by Met Offices.Own elaborati<strong>on</strong>. Lightning’ coordinates provided by NASA.34

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!