13.07.2015 Views

Multivariable Advanced Calculus

Multivariable Advanced Calculus

Multivariable Advanced Calculus

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

100 CONTINUOUS FUNCTIONSThus the expression is maximized when x = 1/2 and yields m/4 in this case. Thisproves the lemma. Now let f be a continuous function defined on [0, 1] . Let p n be the polynomialdefined byn∑( ( n kp n (x) ≡ f xk)n)k (1 − x) n−k . (5.7)k=0For f a continuous function defined on [0, 1] n and for x = (x 1 , · · · , x n ) ,consider thepolynomial,p m (x) ≡∑m 1k 1=0· · ·∑m nk n=0( )( ) ( )m1 m2 mn· · · x k11k 1 k 2 k (1 − x 1) m1−k1 x k22 (1 − x 2) m2−k2n· · · x knn(1 − x n ) m n−k nf(k1, · · · , k )n. (5.8)m 1 m nAlso define if I is a set in R n ||h|| I≡ sup {|h (x)| : x ∈ I} .Letmin (m) ≡ min {m 1 , · · · , m n } , max (m) ≡ max {m 1 , · · · , m n }Definition 5.7.2 Define p m converges uniformly to f on a set, I iflim ||p m − f|| I= 0.min(m)→∞To simplify the notation, let k = (k 1 , · · · , k n ) where each k i ∈ [0, m i ],(km ≡ k1, · · · , k )n,m 1 m nand let ( ) m≡kAlso define for k = (k 1 , · · · , k n )( )( ) ( )m1 m2 mn· · · .k 1 k 2 k nk ≤ m if 0 ≤ k i ≤ m i for each ix k (1 − x) m−k ≡ x k11 (1 − x 1) m1−k1 x k22 (1 − x 2) m2−k2 · · · x k nn (1 − x n ) mn−kn .Thus in terms of this notation,p m (x) = ∑ k≤m( )( mx k (1 − x) m−k kfk m)This is the n dimensional version of the Bernstein polynomials which is what results inthe case where n = 1.Lemma 5.7.3 For x ∈ [0, 1] n , f a continuous F valued function defined on [0, 1] n ,and p m given in 5.8, p m converges uniformly to f on [0, 1] n as m → ∞. More generally,one can have f a continuous function with values in an arbitrary real or complex normedlinear space. There is no change in the conclusions and proof. You just write ∥·∥ insteadof |·|.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!