13.07.2015 Views

Particulate matter in and from agriculture - Johann Heinrich von ...

Particulate matter in and from agriculture - Johann Heinrich von ...

Particulate matter in and from agriculture - Johann Heinrich von ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Sonderheft 308Special Issue<strong>Particulate</strong> Matter <strong>in</strong> <strong>and</strong> <strong>from</strong> AgricultureTorsten H<strong>in</strong>z <strong>and</strong> Kar<strong>in</strong> Tamoschat-Depolt (eds.)


Bibliographic <strong>in</strong>formation published by Die Deutsche BibliothekDie Deutsche Bibliothek lists this publication <strong>in</strong> the Deutsche Nationalbibliografie;detailed bibliographic data is available <strong>in</strong> the Internet at http://dnb.ddb.de .Die Verantwortung für die Inhalte liegt bei den jeweiligen Verfassern bzw. Verfasser<strong>in</strong>nen.Responsibility for the content rests exclusively with the author.2007L<strong>and</strong>bauforschung Völkenrode - FAL Agricultural ResearchBundesforschungsanstalt für L<strong>and</strong>wirtschaft (FAL)Bundesallee 50, 38116 Braunschweig, Germanyl<strong>and</strong>bauforschung@fal.dePreis / Price: 12 €ISSN 0376-0723ISBN 978-3-86576-032-6


Sonderheft 308Special Issue<strong>Particulate</strong> Matter <strong>in</strong> <strong>and</strong> <strong>from</strong> Agricultureedited byTorsten H<strong>in</strong>z <strong>and</strong> Kar<strong>in</strong> Tamoschat-DepoltProceed<strong>in</strong>gs of the Conference organized by theInstitut für Technologie und BiosystemtechnikBundesforschungsanstalt für L<strong>and</strong>wirtschaft (FAL)


ContentEditorialT. H<strong>in</strong>z.........................................................................................................................................................................................1Politics <strong>and</strong> InventoriesThe role of <strong>agriculture</strong> <strong>in</strong> the European Commission strategy to reduce air pollutionZ. Klimont....................................................................................................................................................................................3Trends <strong>in</strong> emissions <strong>and</strong> control policies for f<strong>in</strong>e dust particles <strong>in</strong> GermanyB. Schärer...................................................................................................................................................................................11<strong>Particulate</strong> <strong>matter</strong> emissions <strong>from</strong> arable production - a guide for UNECE emission <strong>in</strong>ventoriesK. W. van der Hoek....................................................................................................................................................................15Control of PM emission <strong>from</strong> livestock farm<strong>in</strong>g <strong>in</strong>stallations <strong>in</strong> GermanyE. Grimm...................................................................................................................................................................................21PM emissions <strong>and</strong> mitigation options <strong>from</strong> agricultural processes <strong>in</strong> GermanyO. Beletskaya.............................................................................................................................................................................27Agricultural particulate <strong>matter</strong> emissions <strong>in</strong> the Czech RepublicH. Hnilicova...............................................................................................................................................................................33EffectsParticle emissions <strong>from</strong> German livestock build<strong>in</strong>gs - <strong>in</strong>fluences <strong>and</strong> fluctuation factorsCh. Nannen................................................................................................................................................................................39Physical aspects of aerosol particle dispersionE. Rosenthal...............................................................................................................................................................................45Human health risks <strong>from</strong> diesel eng<strong>in</strong>e particlesJ. Bünger....................................................................................................................................................................................51An assessment of time changes of the health risk of PM10 based on GRIMM analyzer data <strong>and</strong> respiratory deposition modelJ. Keder......................................................................................................................................................................................57Measur<strong>in</strong>g TechniquesAerosol-spectrometers for particle number, size <strong>and</strong> mass detectionF. Schneider...............................................................................................................................................................................63Effects of different sampl<strong>in</strong>g heads such as PM1, PM2.5, PM10 <strong>and</strong> Sigma 2 on the particle size determ<strong>in</strong>ation with aerosolspectrometersG. L<strong>in</strong>denthal.............................................................................................................................................................................71Advantages <strong>and</strong> limits of aerosol spectrometers for the particle size <strong>and</strong> particle quantity determ<strong>in</strong>ation stables <strong>and</strong> air exhaust ductsM. Schmidt................................................................................................................................................................................77Particle size <strong>and</strong> shape distribution of stable dust analysed with laser diffraction <strong>and</strong> imag<strong>in</strong>g techniqueM. Romann...............................................................................................................................................................................91


ii<strong>Particulate</strong> Diesel Eng<strong>in</strong>e EmissionsEmissions of particulate <strong>matter</strong> <strong>from</strong> diesel eng<strong>in</strong>es- Determ<strong>in</strong>ation of the particle number concentration <strong>in</strong> diesel exhaust gas <strong>and</strong>- Emissions of heavy-duty diesel eng<strong>in</strong>es with focus on particulate <strong>matter</strong>Y<strong>von</strong>ne Ruschel..........................................................................................................................................................................99EffectsComposition of dust <strong>and</strong> effects on animalsJ. Hartung................................................................................................................................................................................111Comparison of odorants <strong>in</strong> room-air <strong>and</strong> <strong>in</strong> headspace of sediment dust collected <strong>in</strong> sw<strong>in</strong>e build<strong>in</strong>gsH. Takai....................................................................................................................................................................................117Abatement, control <strong>and</strong> regulation of emissions <strong>and</strong> ambient concentrations of odour <strong>and</strong> allergens <strong>from</strong> livestock farm<strong>in</strong>g<strong>in</strong> the Nordic countriesP. V. Madsen............................................................................................................................................................................125Application of tensid mixed fog for seperation of organic/biologic aerosolsW. Haunold..............................................................................................................................................................................131ResultsAirborne dust control for floor hous<strong>in</strong>g systems for lay<strong>in</strong>g hensG. Gustafsson...........................................................................................................................................................................135Measur<strong>in</strong>g particle emissions <strong>in</strong> <strong>and</strong> <strong>from</strong> a polish cattle houseJ. Karlowski.............................................................................................................................................................................141Measurement, analysis, <strong>and</strong> model<strong>in</strong>g of f<strong>in</strong>e particulate <strong>matter</strong> <strong>in</strong> high ammonia region of Eastern North Carol<strong>in</strong>a, U.S.A.V. P. Aneja................................................................................................................................................................................147Influence of soil type <strong>and</strong> soil moisture on PM emissions <strong>from</strong> soils dur<strong>in</strong>g tillageR. Funk....................................................................................................................................................................................157A methodology to constra<strong>in</strong> the potential source strength of various soil dust sources contribut<strong>in</strong>g to atmospheric PM10concentrationsH. Denier van der Gon............................................................................................................................................................165PM emission factors for farm<strong>in</strong>g activities by means of dispersion model<strong>in</strong>gD. Öttl......................................................................................................................................................................................173List of speakers........................................................................................................................................................................179


EditorialFor the second time the Institute for Technology <strong>and</strong> BiosystemsEng<strong>in</strong>eer<strong>in</strong>g of the German Federal AgriculturalResearch Center (FAL) hosts a conference on particulate<strong>matter</strong> <strong>in</strong> <strong>and</strong> <strong>from</strong> <strong>agriculture</strong>. Deal<strong>in</strong>g with research ondust <strong>and</strong> aerosols <strong>in</strong> <strong>agriculture</strong> has a long tradition <strong>in</strong> this<strong>in</strong>stitute start<strong>in</strong>g <strong>in</strong> the 1950s with experiments concern<strong>in</strong>gcross-flow separation of agricultural goods <strong>and</strong> the effectsof hedge walls <strong>and</strong> other obstacles on soil erosion. Later on<strong>in</strong> the 1970s farmer load aga<strong>in</strong>st dust exposure <strong>in</strong> arable <strong>and</strong>stock farm<strong>in</strong>g was <strong>in</strong> the scope of humanisation of labor, followedby considerations of animal protection <strong>and</strong> environmentalrelevance.Currently a wide field of topics is covered by <strong>in</strong>vestigationsof the PM emissions dur<strong>in</strong>g soil cultivation, PM emissions<strong>in</strong> <strong>and</strong> <strong>from</strong> livestock enterprises <strong>and</strong> the emissions causedby the use of bio-fuels <strong>in</strong> <strong>in</strong>ternal combustion eng<strong>in</strong>es. Theparticle size ranges <strong>from</strong> coarse particles with diameters ofhundreds of micrometers down to the ultra f<strong>in</strong>es. Traditional<strong>and</strong> highly advanced techniques for measur<strong>in</strong>g <strong>and</strong> modell<strong>in</strong>gare used. Results are available by national <strong>and</strong> <strong>in</strong>ternationalpublications which are quoted <strong>in</strong> the annual reports ofthe FAL.Five years ago at the first conference a state of the art ofPM research with agricultural background was given. Datawere presented for TSP (total dust) ma<strong>in</strong>ly. Some attemptswere given concern<strong>in</strong>g the def<strong>in</strong>ition of PM 10 <strong>and</strong> PM 2.5<strong>and</strong> the correspond<strong>in</strong>g methods to measure these quantities.For PM emissions <strong>from</strong> livestock build<strong>in</strong>gs PM 10 <strong>and</strong> PM2.5 were calculated by conversion factors based on <strong>in</strong>halabledust, which was set to be total dust, <strong>and</strong> on the respiratoryfraction, which was measured accord<strong>in</strong>g to the conventionof <strong>Johann</strong>isburg. The absolute numbers of the so calculatedemission factors may be quite uncerta<strong>in</strong> but the relationshipsbetween different species of animals <strong>and</strong> <strong>in</strong>fluences ofhousekeep<strong>in</strong>g are probably given <strong>in</strong> a correct way.Follow<strong>in</strong>g the new EU regulations about clean air, <strong>in</strong>troduc<strong>in</strong>glimit values for concentration of PM <strong>in</strong> the ambientair, the problem received public awareness. In contrast to e.g.ammonia all forms of f<strong>in</strong>e particles have health impacts. Apparentlyno threshold for particle concentration can be identified.Effects <strong>in</strong>clud<strong>in</strong>g mortality rate are found to be <strong>in</strong>creas<strong>in</strong>gwith particle mass concentration <strong>in</strong> the ambient air. As a result<strong>from</strong> those f<strong>in</strong>d<strong>in</strong>gs US EPA decreased its limit value forPM 2.5 to 15 µg/m³, which is much lower than the limit ofthe EU. WHO is <strong>in</strong> favour of a value <strong>in</strong> the near of 5 µg/m³.But nobody knows exactly how to realize that the limitswill be kept. Reduction means are required. Actions must betaken by all stakeholders <strong>in</strong>volved. More political will for reductionis claimed by the authorities. But <strong>from</strong> the scientificpo<strong>in</strong>t of view it is necessary first to identify key sources withall relevant parameters <strong>in</strong> order to turn the right screws.Agriculture is now identified to be one of the major sourcesalso of PM emissions <strong>from</strong> livestocks <strong>and</strong> arable farm<strong>in</strong>g.In the Netherl<strong>and</strong>s emissions <strong>from</strong> animal hous<strong>in</strong>g are estimatedto contribute 20 % of national PM 10. Ammonia<strong>from</strong> animal production is one of the key pollutions form<strong>in</strong>gsecondary PM 2.5. For an <strong>in</strong>tegrated reduction szenarioma<strong>in</strong>ly technical end-of-the-pipe measures of separation arerecommended although particular other means of reductionare possible.Arable farm<strong>in</strong>g contributes with emissions of soil <strong>and</strong> produce<strong>from</strong> the fields caused by natural <strong>and</strong> mach<strong>in</strong>ery <strong>in</strong>ducedforces. These emissions were <strong>in</strong>troduced as a majorsource although its well known that there is a substantiallack of data. The data available are not always comparables<strong>in</strong>ce they were collected by apply<strong>in</strong>g different measur<strong>in</strong>gtechniques <strong>and</strong> often the description of relevant parametersis miss<strong>in</strong>g. But with this concern there are much more gapsto close for air quality <strong>in</strong> <strong>and</strong> emissions <strong>from</strong> agriculturalproduction.Try<strong>in</strong>g this is one reason for this second conference on PM<strong>in</strong> <strong>and</strong> <strong>from</strong> <strong>agriculture</strong>. This is <strong>in</strong> l<strong>in</strong>e with the summary ofdustconf 2007 <strong>in</strong> Maastricht, The Netherl<strong>and</strong>s. There it waspo<strong>in</strong>ted out that for <strong>agriculture</strong> the follow<strong>in</strong>g further actionsare needed:• Fund<strong>in</strong>g of <strong>in</strong>ternational measur<strong>in</strong>g <strong>and</strong> research programs• International network for st<strong>and</strong>ardisation <strong>and</strong> harmonisationof measur<strong>in</strong>g techniques <strong>and</strong> modellers• Focused <strong>in</strong>tegrated study to identify the effectiveness ofabatement techniques.Strik<strong>in</strong>g aspects of the conference were questions about:• Different PM chemical (biological) composition <strong>and</strong>health effects• How seasons affect dust emissions, particularly <strong>from</strong> <strong>agriculture</strong><strong>and</strong>• How difficult it is to measure PM <strong>from</strong> livestock hous<strong>in</strong>g.Let us <strong>in</strong>tensively discuss the measurement problems <strong>in</strong> orderto get comparable <strong>and</strong> reliable data, such that results leadto a well-founded use <strong>in</strong> emission <strong>in</strong>ventories.Torsten H<strong>in</strong>z


Z. Klimont et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 The role of <strong>agriculture</strong> <strong>in</strong> the European Commission strategy to reduce air pollutionZ. Klimont 1 , F. Wagner 1 , M. Amann 1 , J. Cofala 1 , W. Schöpp 1 , Ch. Heyes 1 , I. Bertok 1 , <strong>and</strong> W. Asman 1AbstractOne of the ma<strong>in</strong> EU policy <strong>in</strong>struments, the ThematicStrategy announced the revision of the Directive on NationalEmissions Ceil<strong>in</strong>gs with new emission ceil<strong>in</strong>gs thatshould lead to the achievement of the agreed objectives withpriority given to f<strong>in</strong>e PM. This paper highlights the role ofthe agricultural sector <strong>in</strong> the cost-effective emission controlstrategies for the EU-27. To support the quantitative costeffectivenessanalysis, the GAINS <strong>in</strong>tegrated assessmentmodel has been used. In the EU-27, agricultural activitiesare responsible for the majority of NH 3emissions <strong>and</strong>about 4 % of PM2.5; <strong>in</strong> the future the relative contributionto PM emissions is expected to <strong>in</strong>crease. Implementation ofcurrent emission control legislation is estimated to reduceemissions of most pollutants <strong>in</strong> the EU-27 by 40 - 60 %by 2020. For ammonia, however, emissions are estimatedto decl<strong>in</strong>e by only 10 %, ma<strong>in</strong>ly as a consequence of theexpected decl<strong>in</strong>e <strong>in</strong> cattle numbers; tak<strong>in</strong>g full account ofthe Nitrate Directive impact might result <strong>in</strong> a further 10 %reduction. Also the total control costs are much lower for<strong>agriculture</strong> than <strong>in</strong> several other sectors. Although the totalpotential for technical emission control measures is significantlylower for ammonia than for other pollutants, ammoniaoffers the largest scope for further emission reductionson top of the measures required by current legislation. Inthe optimal strategy, a significant reduction of ammonia isexpected, which is associated with relatively large costs,represent<strong>in</strong>g about 20 % of total additional costs over thecurrent legislation basel<strong>in</strong>e. However, with respect to thetotal control costs, <strong>agriculture</strong> rema<strong>in</strong>s among the smallersectors. The analysis performed shows that <strong>in</strong>dependentof the environmental objective (exclud<strong>in</strong>g an ozone-onlycase) the emission reductions <strong>in</strong> <strong>agriculture</strong>, primarily ofNH 3, play an important role <strong>in</strong> atta<strong>in</strong><strong>in</strong>g targets specified<strong>in</strong> the Thematic Strategy <strong>and</strong> represent about 20 to 40 % ofthe additional costs of the strategies analyzed. Only <strong>in</strong> thescenario where full implementation of the Nitrate Directivewas assumed is the share of <strong>agriculture</strong> lower.Keywords: <strong>agriculture</strong>, particulate <strong>matter</strong>, ammonia, NationalEmission Ceil<strong>in</strong>gs, European policy, modell<strong>in</strong>gIntroduction <strong>and</strong> policy backgroundA number of studies have demonstrated consistent associationsbetween the concentrations of f<strong>in</strong>e particulate<strong>matter</strong> (PM) <strong>in</strong> the air <strong>and</strong> adverse effects on human health(respiratory symptoms, morbidity <strong>and</strong> mortality) for concentrationscommonly encountered <strong>in</strong> Europe <strong>and</strong> NorthAmerica, e.g., Dockery D. W. et al. 1993; Pope C. A. etal. 2002.Airborne suspended particulate <strong>matter</strong> – <strong>in</strong> the form ofprimary particles (PM) – are emitted directly <strong>in</strong>to the atmosphereby natural <strong>and</strong>/or anthropogenic processes, whereassecondary particles are predom<strong>in</strong>antly man-made <strong>in</strong> orig<strong>in</strong><strong>and</strong> are formed <strong>in</strong> the atmosphere <strong>from</strong> the oxidation<strong>and</strong> subsequent reactions of sulphur dioxide (SO 2), nitrogenoxides (NO x), ammonia (NH 3) <strong>and</strong> volatile organiccompounds (VOC). The typical residence time of the f<strong>in</strong>efraction of particulate <strong>matter</strong> ranges between 10 <strong>and</strong> 100hours, dur<strong>in</strong>g which such aerosols are transported with theair mass over long distances. Thus, as with other transboundarypollutants, f<strong>in</strong>e particles at a given site orig<strong>in</strong>ate<strong>from</strong> emission sources <strong>in</strong> a large region, typically <strong>in</strong>clud<strong>in</strong>gsources <strong>in</strong> other countries.Consider<strong>in</strong>g the transboundary nature of particulate <strong>matter</strong>(PM), the Commission of the European Union <strong>and</strong> theUnited Nations Economic Commission for Europe’s Conventionon Long-range Transboundary Air Pollution (UN-ECE/CLRTAP) are currently develop<strong>in</strong>g harmonized <strong>in</strong>ternationalresponse strategies for a cost-effective controlof PM <strong>in</strong> Europe. While the CLRTAP aims at <strong>in</strong>clusion ofPM-related analysis <strong>in</strong> the review of the Gothenburg Protocol(UNECE, 1999) <strong>in</strong> 2008, the European CommissionThematic Strategy on Air Pollution outl<strong>in</strong>ed the strategicapproach towards cleaner air <strong>in</strong> Europe (CEC, 2005) <strong>and</strong>established environmental <strong>in</strong>terim targets for the year 2020(table 1) with<strong>in</strong> the ‘Clean Air for Europe’ (CAFE) program(CEC, 2001). As one of the ma<strong>in</strong> policy <strong>in</strong>struments,the Thematic Strategy announced the revision of the Directiveon National Emissions Ceil<strong>in</strong>gs (2001/81/EC) withnew emission ceil<strong>in</strong>gs that should lead to the achievementof the agreed <strong>in</strong>terim objectives with priority given to f<strong>in</strong>eparticulate <strong>matter</strong>.1International Institute for Applied Systems Analysis, Laxenburg, Austria


Table 1:Environmental targets of the EU Thematic StrategyEffectLife years lost <strong>from</strong> particulate<strong>matter</strong> (YOLLs)Area of forest ecosystems whereacid deposition exceeds thecritical loads for acidificationArea of freshwater ecosystemswhere acid depotion exceeds thecritical loads for acidificationEcosystems area where nitrogendeposition exceeds the criticalloads for eutrophicationPremature mortality <strong>from</strong> ozoneUnit of the<strong>in</strong>dicatorYears oflife lostPercentageimprovementcompared to thesituation <strong>in</strong> 200047 %km 2 74 %km 2 39 %km 2 43 %Numberof cases10 %Area of forest ecosystems whereozone concentrations exceed km 2 15 %the critical levels for ozone 1)1)This effect has not been explicitly modelled <strong>in</strong> RAINS. The environmental improvements<strong>in</strong> the area of forest ecosystems exceed<strong>in</strong>g ozone levels result<strong>in</strong>g <strong>from</strong> emission controlsthat are targeted at the other effect <strong>in</strong>dicators have been determ<strong>in</strong>ed <strong>in</strong> an ex-post analysis.In 2006, the European Commission began the processto develop national ceil<strong>in</strong>gs for the emissions of the relevantair pollutants with close <strong>in</strong>volvement of numerousstakeholders <strong>in</strong>clud<strong>in</strong>g national experts <strong>and</strong> <strong>in</strong>dustrial associations(Amann M. et al. 2006). As a start<strong>in</strong>g po<strong>in</strong>t,the analysis developed basel<strong>in</strong>e projections of emissions<strong>and</strong> air quality impacts to be expected <strong>from</strong> the envisagedevolution of anthropogenic activities tak<strong>in</strong>g <strong>in</strong>to accountthe impacts of the present legislation on emission controls.Subsequently, a series of reports explored sets of cost-effectivemeasures that achieve the environmental ambitionlevels of the Thematic Strategy. The reports analyzed potentialemission ceil<strong>in</strong>gs that emerge <strong>from</strong> the environmentalobjectives established <strong>and</strong> studied the robustness of theidentified emission reduction requirements aga<strong>in</strong>st a rangeof uncerta<strong>in</strong>ties (Amann M. et al. 2007a).This paper highlights the role of measures <strong>in</strong> the agriculturalsector <strong>in</strong> the cost-effective emission control strategies,draw<strong>in</strong>g on analyses presented <strong>in</strong> the NEC reports (AmannM. et al., 2007b) <strong>and</strong> outcomes of the study on <strong>in</strong>tegratedmeasures <strong>in</strong> <strong>agriculture</strong> (Klimont Z. et al. 2007).MethodsTo maximize the cost-effectiveness of emission controlstrategies, measures for reduc<strong>in</strong>g the various precursoremissions of particulate <strong>matter</strong> (primary <strong>and</strong> secondary)need to be balanced across all contribut<strong>in</strong>g economic sectors,<strong>in</strong>clud<strong>in</strong>g <strong>agriculture</strong>, <strong>in</strong> view of the contributions theymake to the various environmental problems. To supportthe quantitative cost-effectiveness analysis, the GAINS(Greenhouse gas - Air pollution Interactions <strong>and</strong> Synergies)<strong>in</strong>tegrated assessment model has been used to allocateemission control measures across economic sectors.The GAINS model, which has been developed at theInternational Institute for Applied Systems Analysis (IIA-SA), is an <strong>in</strong>tegrated assessment model that br<strong>in</strong>gs together<strong>in</strong>formation on the sources <strong>and</strong> impacts of air pollutant <strong>and</strong>greenhouse gas emissions <strong>and</strong> their <strong>in</strong>teractions. GAINSis an extension of the earlier RAINS (Regional Air PollutionInformation <strong>and</strong> Simulation) model, which addressedair pollution aspects only. GAINS br<strong>in</strong>gs together data oneconomic development, the structure, control potential<strong>and</strong> costs of emission sources, the formation <strong>and</strong> dispersionof pollutants <strong>in</strong> the atmosphere <strong>and</strong> an assessment ofenvironmental impacts of pollution. GAINS addresses airpollution impacts on human health <strong>from</strong> f<strong>in</strong>e particulate<strong>matter</strong> <strong>and</strong> ground-level ozone, vegetation damage causedby ground-level ozone, the acidification of terrestrial <strong>and</strong>aquatic ecosystems <strong>and</strong> excess nitrogen deposition to soils,<strong>in</strong> addition to the mitigation of greenhouse gas emissions.GAINS describes the <strong>in</strong>terrelations between these multipleeffects <strong>and</strong> the range of pollutants (SO 2, NO x, PM,NMVOC, NH 3, CO 2, CH 4, N 2O, F-gases) that contribute tothese effects at the European scale. A detailed descriptionof the air pollution component of the GAINS model canbe found <strong>in</strong> Schöpp W. et al. (1999) <strong>and</strong> http://www.iiasa.ac.at/ra<strong>in</strong>s/review.html; the model is also available <strong>in</strong> theInternet <strong>from</strong> http://www.iiasa.ac.at/ra<strong>in</strong>s.Several emission sources contribute via various pathwaysto the concentrations of f<strong>in</strong>e particulate <strong>matter</strong> <strong>in</strong> ambientair. While a certa<strong>in</strong> fraction of f<strong>in</strong>e particles found <strong>in</strong>the ambient air orig<strong>in</strong>ates directly <strong>from</strong> the emissions ofthose substances (the “primary particles”), another partis formed through secondary processes <strong>in</strong> the atmosphere<strong>from</strong> precursor emissions, <strong>in</strong>volv<strong>in</strong>g SO 2, NO x, NMVOC<strong>and</strong> NH 3. Inter alia, agricultural activities contribute to primaryemissions of particulate <strong>matter</strong>, e.g., livestock hous<strong>in</strong>g,arable farm<strong>in</strong>g, manag<strong>in</strong>g crops, energy use, burn<strong>in</strong>gof agricultural waste <strong>and</strong> unpaved roads. In addition, NH 3released <strong>from</strong> agricultural activities constitute an importantprecursor to the formation of secondary aerosols.GAINS allows the estimation of emissions <strong>from</strong> livestockhous<strong>in</strong>g, fertilizer application, energy use <strong>in</strong> <strong>agriculture</strong>(small stationary combustion <strong>and</strong> mobile sources)


Z. Klimont et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 <strong>and</strong>, to some extent, <strong>from</strong> h<strong>and</strong>l<strong>in</strong>g of crops. Size-specificPM emission factors were developed, draw<strong>in</strong>g on the resultsof Takai H. et al. (1998), Louhela<strong>in</strong>en K. et al. (1987),Donham K. J. et al. (1986 <strong>and</strong> 1989), ICC &SRI (2000),<strong>and</strong> Heber A. J. et al. (1988). GAINS estimates countryspecificemission rates per animal per year consider<strong>in</strong>g thelength of the hous<strong>in</strong>g periods (for cattle <strong>and</strong> pigs). Detailsof the GAINS methodology for the assessment of particulate<strong>matter</strong> emissions <strong>and</strong> control costs <strong>from</strong> <strong>agriculture</strong> aredocumented <strong>in</strong> Klimont Z. et al. (2002). For ammonia thedetailed methodology is presented <strong>in</strong> Klimont Z. <strong>and</strong> Br<strong>in</strong>kC. (2004).Historical activity data for <strong>agriculture</strong> orig<strong>in</strong>ates <strong>from</strong>FAO (2006), IFA (2004), <strong>and</strong> is supplemented by national<strong>in</strong>formation collected <strong>from</strong> national experts. Forecasts upto 2020 have been developed for the review of the NationalEmission Ceil<strong>in</strong>gs Directive of the European Community<strong>and</strong> are documented <strong>in</strong> Amann M. et al. (2006 <strong>and</strong> 2007a).An <strong>in</strong>tegrated assessment needs to l<strong>in</strong>k changes <strong>in</strong> theprecursor emissions at the various sources to responses <strong>in</strong>impact-relevant air quality <strong>in</strong>dicators at a receptor grid cell.Traditionally, this task is accomplished by comprehensiveatmospheric chemistry <strong>and</strong> transport models, which simulatea complex range of chemical <strong>and</strong> physical reactions.The GAINS <strong>in</strong>tegrated assessment analysis relies on thedetailed analyses conducted with the Unified EMEP Eulerianmodel (Simpson O. et al. 2003), <strong>and</strong> represents theresponses <strong>in</strong> air quality towards changes <strong>in</strong> emissions ascomputed by the EMEP model through computationallyefficient response surface functions. Such source-receptorrelationships have been developed for changes <strong>in</strong> emissionsof SO 2, NO x, NH 3, VOC <strong>and</strong> PM2.5 <strong>from</strong> the 27 MemberStates of the EU, Croatia, Norway <strong>and</strong> Switzerl<strong>and</strong>, <strong>and</strong>five sea areas, describ<strong>in</strong>g their impacts for the EU territorywith the 50 km × 50 km grid resolution of the geographicalprojection of the EMEP model (see www.emep.<strong>in</strong>t/grid/<strong>in</strong>dex.html).Quantitative environmental objectives have been establishedby the European Commission <strong>in</strong> its Thematic Strategyon Air Pollution for four environmental <strong>in</strong>dicators:Years of life lost (YOLL) <strong>from</strong> PM2.5 exposure, areas unprotected<strong>from</strong> eutrophication or acidification, prematuredeaths <strong>from</strong> ozone, or jo<strong>in</strong>tly on all <strong>in</strong>dicators (see table 1).The optimization module of GAINS has then been used tof<strong>in</strong>d cost-optimal control strategies that meet the environmentalobjectives established <strong>in</strong> the Thematic Strategy.countries, the shares of <strong>agriculture</strong> <strong>in</strong> PM2.5 vary <strong>from</strong> lessthan 1 % to nearly 10 %, due to structural differences <strong>in</strong>other sources (e.g., the use of solid fuels for home heat<strong>in</strong>g,etc.). Because emissions <strong>from</strong> other sources will decl<strong>in</strong>e <strong>in</strong>the future due to emission control legislation (e.g., tightenedemission st<strong>and</strong>ards for mobile sources) <strong>and</strong> ongo<strong>in</strong>gstructural changes (e.g., phase-out of solid fuels), agriculturalsources will ga<strong>in</strong> <strong>in</strong> relative importance <strong>and</strong> will contributeon average up to 6.5 % <strong>in</strong> the current legislationbasel<strong>in</strong>e projection. Typically, about half of the agriculturalemissions of PM2.5 orig<strong>in</strong>ate <strong>from</strong> open burn<strong>in</strong>g of agriculturalresidue.To assess the cost-effective scope for further emissionreductions, it is necessary to analyze the impacts of thefull implementation of current emission control legislationfor all pollutants. Figure 1 compares the effects of currentlegislation with the scope for further technical emissioncontrol measures. Full implementation of current emissioncontrol legislation is estimated to reduce emissions of mostpollutants <strong>in</strong> the EU-27 by 40 - 60 % by 2020. A notableexception, however, is ammonia where emissions are estimatedto decl<strong>in</strong>e <strong>in</strong> the current legislation case by only10 %, ma<strong>in</strong>ly as a consequence of the expected decl<strong>in</strong>e<strong>in</strong> cattle numbers <strong>and</strong> not due to more str<strong>in</strong>gent emissionlegislation. While the basel<strong>in</strong>e projection <strong>in</strong>cludes likelyimpacts of the IPPC Directive for farm<strong>in</strong>g, it does not takefull account of the Nitrate Directive (ND). The latter wasanalyzed <strong>in</strong> Klimont Z. et al. (2007), who estimated thatby 2020 an additional 10 % of ammonia emissions couldbe avoided by proper enforcement of the ND (figure 4, leftchart).Although the total potential for technical emission controlmeasures is significantly lower for ammonia than forother pollutants, ammonia offers the largest scope for furtheremission reductions on top of the measures requiredby current legislation (figure 1). While for other pollutantsmore than half of the technical potential forms part of exist<strong>in</strong>glaw, for ammonia current regulations <strong>in</strong>volve lessthan one third of the possible measures.Results <strong>and</strong> discussionAgricultural activities <strong>in</strong> the EU-27 are responsible fortypically 85 to 90 % of total emissions of ammonia, <strong>and</strong>they contribute on average about 4 % to primary PM2.5emissions <strong>from</strong> anthropogenic sources. For <strong>in</strong>dividual


100%80%% of emissions <strong>in</strong> 200060%40%20%0%SO2 2 NOx X PM2.5 NH3 3VOCMRR Basel<strong>in</strong>e-MRR 2000-Basel<strong>in</strong>eFigure 1:Scope for further emission reductions <strong>in</strong> the basel<strong>in</strong>e scenario <strong>in</strong> 2020, <strong>in</strong> relation to the emissions <strong>in</strong> the year 2000.The grey bars <strong>in</strong>dicate emission reductionsas a consequence of the full application of current emission control legislation <strong>and</strong> the white ranges display the potential for further emission reductionsthat can be achieved with currently available technical emission control measures. The black ranges <strong>in</strong>dicate residual emissions that cannot be reduced withpresent day emission control technologies.This paper presents two scenarios that have been explored<strong>in</strong> the course of the development of the NEC Directive.The first case is the NEC basel<strong>in</strong>e scenario where nationalperspectives on development of the agricultural sector areconsidered together with impacts of national <strong>and</strong> Europeanemission legislation as well as the mid-term review of theEU Common Agricultural Policy (CAP). Its developmenthas been documented <strong>in</strong> the series of NEC reports, e.g.,Amann M. et al. 2007a. Although the pr<strong>in</strong>cipal assumption<strong>in</strong> the basel<strong>in</strong>e scenario is that the current legislationimpacts are <strong>in</strong>cluded, analysis performed by e.g., OnemaO. et al. (2007) shows that str<strong>in</strong>gent <strong>in</strong>terpretation <strong>and</strong> enforcementof water directives (Nitrate <strong>and</strong> Water FrameworkDirectives) would require more effective controls <strong>and</strong>possibly structural changes <strong>in</strong> agricultural production. Resultsof the above study were <strong>in</strong>terpreted <strong>and</strong> implemented<strong>in</strong> GAINS (Klimont Z. et al. 2007) <strong>and</strong> this paper presentsthe potential impacts of such development <strong>in</strong> the scenarioreferred to as Basel<strong>in</strong>e + ND (Nitrate directive).Table 2 shows emissions <strong>and</strong> total control costs by pollutantfor the basel<strong>in</strong>e scenario as well as the optimal multieffectstrategy where TSAP targets (table 1) are met.Table 2:Emissions <strong>and</strong> total costs of the basel<strong>in</strong>e scenario for EU27+Norway (Amann M. et al., 2007b)Emissions [Tg/year]Total costs [billion €/year]Pollutant 2000 Basel<strong>in</strong>e - 2020 Basel<strong>in</strong>e - OPT 2000 Basel<strong>in</strong>e - 2020 Basel<strong>in</strong>e - OPTSO 210.3 4.1 2.2 11.00 16.9 19.6NO 1) X12.5 7.2 5.1 9.80 47.8 51.4NH 34.0 3.6 2.8 1.80 3.4 5.7PM2.5 1.8 1.2 0.82 8.00 9.3 10.2NMVOC 11.4 6.4 5.3 0.79 2.3 3.31)Total transport costs (exclud<strong>in</strong>g sulphur-related) <strong>in</strong>cluded <strong>in</strong> the NO xcosts


Z. Klimont et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 As already shown <strong>in</strong> figure 1, the agricultural sector emissionsdo not decl<strong>in</strong>e significantly <strong>in</strong> the basel<strong>in</strong>e <strong>and</strong> thetotal costs are far lower than for other pollutants; note thatPM2.5 <strong>and</strong> NMVOC costs exclude the transport sector asall of those costs are associated with NO x, represent<strong>in</strong>g thelargest share. In the optimal strategy, significant reductionsof ammonia are expected, which are associated with relativelylarge costs, represent<strong>in</strong>g about 20 % total additionalcosts over the basel<strong>in</strong>e (compare also figure 2 <strong>and</strong> 3).However, with respect to the total control costs, <strong>agriculture</strong>rema<strong>in</strong>s among the smaller sectors.Apart <strong>from</strong> calculat<strong>in</strong>g reduction costs of the optimalmulti-effect strategy (Jo<strong>in</strong>t optimization – figure 2; Basel<strong>in</strong>e– figure 3), we have also assessed the control costs fors<strong>in</strong>gle effect scenarios (figure 2 <strong>and</strong> figure 3; Basel<strong>in</strong>e-PMonly). For all of the above scenarios the targets were as <strong>in</strong>table 1. Independent of the environmental objective (exclud<strong>in</strong>gthe ozone-only case) the agricultural sector emissionreductions, primarily of ammonia, play an importantrole <strong>and</strong> represent about 20 to 40 % of additional costs <strong>in</strong>the strategies analyzed. Only <strong>in</strong> the scenario where full implementationof the Nitrate Directive was assumed (figure3; Basel<strong>in</strong>e+ND) is the share of <strong>agriculture</strong> lower. This is,however, largely compensated for by the additional costs<strong>in</strong> the basel<strong>in</strong>e, as the implementation of ND has been estimatedto cost about 0.9 billion € (figure 4, right chart, seethe difference <strong>in</strong> CLE-2020 value).For the “Basel<strong>in</strong>e+ND” optimal scenario the emissionlevels of the “Jo<strong>in</strong>t optimization” case were assumed asemission ceil<strong>in</strong>gs, but the underly<strong>in</strong>g activity data <strong>and</strong>penetration of abatement measures take <strong>in</strong>to account fullimplementation of the Nitrate Directive. The Nitrate Directiveenforcement has been estimated to br<strong>in</strong>g furtherreductions of ammonia emissions, about 300 kt NH 3<strong>in</strong> theEU-27 basel<strong>in</strong>e by 2020, at an estimated cost of 0.9 billion€ (figure 4). The actual costs might be higher whenaccount<strong>in</strong>g for revenue loss by the farmers who would notbe allowed to exp<strong>and</strong> their operations or would have todownscale them, specifically <strong>in</strong> nitrate vulnerable zones.In the optimal scenario, the overall level of emissionswould rema<strong>in</strong> about the same as <strong>in</strong> the basel<strong>in</strong>e; the totalcosts to the agricultural sector would be smaller than <strong>in</strong> thebasel<strong>in</strong>e case (figure 4; right panel). This effect is associatedwith the distribution <strong>and</strong> level of ammonia emissionreductions achieved <strong>in</strong> the basel<strong>in</strong>e <strong>in</strong>clud<strong>in</strong>g ND regulation.More details about the implementation <strong>and</strong> results ofthis scenario are available <strong>from</strong> Klimont Z. et al. (2007)<strong>and</strong> Amann M. et al. (2007b).12108Billion €/yr6420Health impacts<strong>from</strong> PMAcidification Eutrophication Ground-levelozoneJo<strong>in</strong>t optimizationSO2 2 NOX X Euro-VI PM NH3 3 VOCFigure 2:Emission control costs by pollutant for achiev<strong>in</strong>g the four environmental objectives separately compared to the multi-effect (jo<strong>in</strong>t) optimization (Where morethan one pollutant is reduced by a particular control measure, the allocation of costs by pollutant follows an arbitrary sequence; this may result <strong>in</strong> otherwisesurpris<strong>in</strong>g associations between pollutants <strong>and</strong> impacts, e.g. the apparent <strong>in</strong>fluence of PM on ground-level ozone.)


100%90%80%70%60%50%40%30%20%10%0%Basel<strong>in</strong>e Basel<strong>in</strong>e-PM only Basel<strong>in</strong>e + NDIndustry Domestic Transport Other AgricultureFigure 3:Distribution of additional (over the current legislation) control costs between sectors for the two optimal multi-effect scenarios (Basel<strong>in</strong>e <strong>and</strong> Basel<strong>in</strong>e+ND)<strong>and</strong> the scenario where only the health impacts of PM2.5 are considered (Basel<strong>in</strong>e-PM only).Emissions <strong>from</strong> <strong>agriculture</strong>Total costs <strong>in</strong> <strong>agriculture</strong>463.55.55Tg NH 33bln €/year4.542.53.52 32000 CLE-2020 TSAPCLE-2020TSAPBasel<strong>in</strong>eBasel<strong>in</strong>e + NDFigure 4:Expected impact of the Nitrate Directive on agricultural emissions <strong>and</strong> costs for the year 2020 basel<strong>in</strong>e <strong>and</strong> optimal scenario with TSAP targets (table 1).


Z. Klimont et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 ConclusionsAchiev<strong>in</strong>g the health <strong>and</strong> environmental targets specified<strong>in</strong> the EU Thematic Strategy will require significant furtherreductions of emissions of air pollutants <strong>in</strong> Europe. Theanalysis performed for the review of the NEC Directive<strong>in</strong>dicates potential for cost-effective reductions of agriculturalemissions, primarily ammonia, that contribute to theformation of secondary f<strong>in</strong>e particulate <strong>matter</strong> <strong>and</strong> play animportant role <strong>in</strong> excess deposition of nitrogen <strong>in</strong> sensitiveareas. Although total European ammonia emissionsare expected to decrease by 2020 by about 10 % comparedto 2000, this decl<strong>in</strong>e is significantly lower than reductionsfor other pollutants, so that for secondary aerosols the importanceof the contribution <strong>from</strong> the agricultural sector isexpected to grow.PM emissions <strong>from</strong> European <strong>agriculture</strong> are not expectedto grow <strong>in</strong> the next decades. However, <strong>in</strong> the absence ofspecific control measures taken <strong>in</strong> the agricultural sector,its relative contribution to total PM will further <strong>in</strong>crease,<strong>from</strong> about 4 to nearly 7 %. This is ma<strong>in</strong>ly a consequenceof str<strong>in</strong>gent emission controls be<strong>in</strong>g <strong>in</strong>troduced <strong>in</strong> othersectors (e.g., stationary energy combustion, mobile sources).Only limited potential for further reductions of primaryPM <strong>in</strong> <strong>agriculture</strong> has been identified, the ma<strong>in</strong> be<strong>in</strong>g aneffective ban on open burn<strong>in</strong>g of agricultural residue thatis responsible for about half of the total agricultural emissionsof f<strong>in</strong>e PM.The analysis performed shows that <strong>in</strong>dependent of the environmentalobjective (exclud<strong>in</strong>g the ozone-only case) theemission reductions <strong>in</strong> <strong>agriculture</strong>, primarily of ammonia,play an important role <strong>in</strong> atta<strong>in</strong><strong>in</strong>g targets specified <strong>in</strong> theThematic Strategy <strong>and</strong> represent about 20 to 40 % of additionalcosts of the analyzed strategies. Only <strong>in</strong> the scenariowhere full implementation of the nitrate directive (ND)was assumed is the share of <strong>agriculture</strong> lower. This is, however,largely compensated for by the additional costs <strong>in</strong> thebasel<strong>in</strong>e associated with the implementation of ND.Although the calculated emission reductions <strong>and</strong> additionalcosts for <strong>agriculture</strong> are significant, they have to beseen <strong>in</strong> the perspective of spend<strong>in</strong>g already committed byother sectors to control emissions of SO 2, NO x, PM2.5 <strong>and</strong>NMVOC. Such comparison shows that the total costs toreduce emissions <strong>in</strong> <strong>agriculture</strong> <strong>in</strong> the analyzed strategiesdo not exceed 10 % of the total strategy price.ReferencesAmann M., Bertok I., Cabala R., Cofala J., Gyarfas F., Heyes C.,Gyarfas F., Klimont Z., Schöpp W., Wagner F. (2005). A furtheremissions control scenario for the Clean Air For Europe (CAFE)CAFE Report #7. International Institute for Applied Systems Analysis(IIASA), Laxenburg, AustriAmann M., Bertok I., Cofala J., Heyes C., Klimont Z., Posch M.,Schöpp W., Wagner F. (2006). Basel<strong>in</strong>e scenarios for the revision ofthe NEC Emission Ceil<strong>in</strong>gs Directive Part 1: Emission projections.NEC Scenario Analysis Report Nr. 1. International Institute for AppliedSystems Analysis (IIASA), Laxenburg, Austria.Amann M., Asman W., Bertok I., Cofala J., Heyes C., Klimont Z.,Schöpp W., Wagner F. (2007a). Updated Basel<strong>in</strong>e Projections for theRevision of the Emission Ceil<strong>in</strong>gs Directive of the European Union.NEC Scenario Analysis Report #4. International Institute for AppliedSystems Analysis (IIASA), Laxenburg, Austria.Amann M., Asman W., Bertok I., Cofala J., Heyes C., Klimont Z.,Schöpp W., Wagner F. (2007b). Cost-effective Emission Reductionsto meet the Environmental Targets of the Thematic Strategy on AirPollution under Different Greenhouse Gas Constra<strong>in</strong>ts. NEC ScenarioAnalysis Report #5. International Institute for Applied Systems Analysis(IIASA), Laxenburg, Austria.CEC (2001). The Clean Air for Europe (Cafe) Programme: Towards aThematic Strategy for Air Quality. Communication <strong>from</strong> the Commission.Commission of the European Communities, COM(2001)245 f<strong>in</strong>al,Brussels, BelgiumCEC (2005). Communication <strong>from</strong> the Commission to the Council <strong>and</strong>the European Parliament on a Thematic Strategy on Air Pollution.SEC(2005) 1132. Commission of the European Communities, Brussels,Belgium.Dockery D. W., Pope C. A. III, Xu X., Spengler J. D., Ware J. H., FayM. E., Ferris B. G. Jr., Speizer F. E. (1993). An Association betweenair pollution <strong>and</strong> mortality <strong>in</strong> six U.S. cities. New Engl<strong>and</strong> J. of Medic<strong>in</strong>e329:2753-1759Donham K. J., Scallon L. J., Popendorf W., Treuhaft M. W., RobertsR. C. (1986). Characterisation of dusts collected <strong>from</strong> sw<strong>in</strong>e conf<strong>in</strong>ementbuild<strong>in</strong>gs. Am. J. of Ind. Med., 10:294-297Donham K. J., Hagl<strong>in</strong>d P., Peterson Y., Ryl<strong>and</strong>er R., Bel<strong>in</strong> L. (1989).Environmental <strong>and</strong> health studies of workers <strong>in</strong> Swedish sw<strong>in</strong>e build<strong>in</strong>gs.Brit. J. Ind. Med. 46:31-7FAO (2006) FAOSTAT: FAO Statistical Databases [on-l<strong>in</strong>e]. Italy, to befound on the United Nations Food <strong>and</strong> Agriculture Organization website: http://apps.fao.org/Heber A. J., Stroik M., Faubion J. M., Willard L. H. (1988). Size distribution<strong>and</strong> identification of aerial dust particles <strong>in</strong> sw<strong>in</strong>e f<strong>in</strong>ish<strong>in</strong>gbuild<strong>in</strong>gs. Transactions of the ASAE, 31(3):882-887ICC &SRI (ICConsultants <strong>and</strong> Silsoe Research Institute) (2000) Atmosphericemissions of particulates <strong>from</strong> <strong>agriculture</strong>: a scop<strong>in</strong>g study. F<strong>in</strong>alreport for the M<strong>in</strong>istry of Agriculture, Fisheries <strong>and</strong> Food (MAFF)Research <strong>and</strong> Development, London, UK, 97 pIFA (2004). IFA Data Statistics; <strong>from</strong> 1973-1973/74 to 2002-2002/03.CD-ROM International Fertilizer Industry Association, Paris, November2004Klimont Z., Bertok I., Amann M., Cofala J., Heyes Ch., Gyarfas F.(2002). Modell<strong>in</strong>g <strong>Particulate</strong> Emissions <strong>in</strong> Europe: A Framework toEstimate Reduction Potential <strong>and</strong> Control Costs. Interim Report IR-02-076, IIASA, Laxenburg, Austria, 169 pKlimont Z., Br<strong>in</strong>k C. (2004). Modell<strong>in</strong>g of Emissions of Air Pollutants<strong>and</strong> Greenhouse Gases <strong>from</strong> Agricultural Sources <strong>in</strong> Europe. Interim


10Report IR-04-048. International Institute for Applied Systems Analysis,Laxenburg, Austria, 69 pKlimont Z., Asman W. A. H., Bertok I., Gyarfas F., Heyes C., WagnerF., W<strong>in</strong>iwarter W., Höglund-Isaksson L., S<strong>and</strong>ler R. (2007). Measures<strong>in</strong> Agriculture to Reduce Ammonia Emissions. F<strong>in</strong>al Report underEuropean Commission Service Contract No 070501/2006/433072/FRA/2C1. International Institute for Applied Systems Analysis (IIA-SA), Laxenburg, Austria.Louhela<strong>in</strong>en K., Vilhunen P., Kangas J., Terho F.O. (1987). Dust exposure<strong>in</strong> piggeries. European J. of Resp. Diseases, 71(152):80-90Oenema O., D. A., Oudendag H. P., Witzke G. J., Monteny G. L.,VelthofS., Pietrzak M., P<strong>in</strong>to W., Britz E., Schwaiger J. W., Erisman W., deVries J. J. M., van Gr<strong>in</strong>sven M. Sutton (2007). Integrated measures<strong>in</strong> <strong>agriculture</strong> to reduce ammonia emissions. F<strong>in</strong>al summary report. EuropeanCommission service contract 070501/2005/422822/MAR/C1.Alterra, Wagen<strong>in</strong>gen, the Netherl<strong>and</strong>s.Pope C. A., Burnett M. J. T. R., Calle E. E., Krewski E., Ito K.,Thurston G. D. (2002). Lung cancer, cardiopulmonary mortality <strong>and</strong>long-term exposure to f<strong>in</strong>e particulate air pollution. J. of the Amer.Med. Assoc. 287(9):1132-1141Schöpp W., Amann M., Cofala J., Heyes Ch., Klimont Z. (1999). Integratedassessment of European air pollution emission control strategies.Env. Modell<strong>in</strong>g & Soft. 14(1):1-9Simpson D., Fagerli H., Jonson J. E., Tsyro S., W<strong>in</strong>d P., Tuov<strong>in</strong>enJ.-P. (2003). Transboundary Acidification, Eutrophication <strong>and</strong> GroundLevel Ozone <strong>in</strong> Europe. Part 1: Unified EMEP Model Description.EMEP Status Report 1/2003. EMEP Meteorological Synthesiz<strong>in</strong>g Centre- West, Norwegian Meteorological Institute, Oslo.Takai H., Pedersen S., Johnsen J. O., Metz J. H. M., Groot KoerkampP. W. G., Uenk G. H., Phillips V. R., Holden M. R., Sneath R. W.,Short J. L., White R. P., Hartung J., Seedorf J., Schröder M., L<strong>in</strong>kertK. H., <strong>and</strong> Wathes C. M. (1998). Concentrations <strong>and</strong> emissionof airborne dust <strong>in</strong> livestock build<strong>in</strong>gs <strong>in</strong> Northern Europe. J. Agric.Engng. Res., 1(70):59-77.UNECE (1999). Protocol to the 1979 convention on long-range transboundaryair pollution to abate acidification, eutrophication <strong>and</strong>ground-level ozone. United Nations Economic Commission for Europe(UNECE), Geneva


B. Schärer / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 11Trends <strong>in</strong> emissions <strong>and</strong> control policies for f<strong>in</strong>e dust particles <strong>in</strong> GermanyB. Schärer 1AbstractThe presentation is on primary, anthropogenic f<strong>in</strong>e particles.We will show the historical trend of f<strong>in</strong>e dust emissions<strong>and</strong> projections up to 2020 as well as measures <strong>and</strong>regulations to reduce emissions <strong>and</strong> <strong>in</strong>fluence their trends.Furthermore we will deal with the latest policies <strong>in</strong> thecombat aga<strong>in</strong>st dust.Keywords: dust emission, dust projection, policy measuresIntroductionDust emissions, especially their f<strong>in</strong>e fractions cause unhealthyhigh concentration <strong>in</strong> the air <strong>in</strong> many areas <strong>in</strong> Germany(By the end of 2006 58 German cities had developeda clean air plan, i.e. that they did not achieve the air qualityst<strong>and</strong>ard for PM10. The Federal Environment Agency publishesa list of these cities: http:// www.env-it.de/luftdaten/download/public/html/Luftre<strong>in</strong>halteplaene/uballl.htm). Inaddition to the primary dust emissions, the secondary emissionsstemm<strong>in</strong>g <strong>from</strong> precursors such as sulphur dioxide,nitrogen oxides, ammonia <strong>and</strong> volatile organic compoundscontribute to elevated levels above the ambient air qualityst<strong>and</strong>ards. Both, the primary <strong>and</strong> the secondary particlesare due to a wide range of economic, private <strong>and</strong> naturalactivities.The focus of this presentation is on primary, anthropogenicf<strong>in</strong>e particles (i.e. caused by human activities). In thispresentation we will show the historical trend of f<strong>in</strong>e dustemissions <strong>and</strong> projections until 2020 as well as measures<strong>and</strong> regulations to reduce emissions <strong>and</strong> <strong>in</strong>fluence theirtrends. Furthermore we will deal with the latest policies<strong>in</strong> the combat aga<strong>in</strong>st dust. Ambient air concentrations <strong>and</strong>their unhealthy effects are not subject of the presentation.Trend of emissions <strong>and</strong> regulations for their reductionDust is ma<strong>in</strong>ly emitted by fuel-burn<strong>in</strong>g, which partiallyserves the generation of energy <strong>and</strong> the use of vehicles.Other mayor emitt<strong>in</strong>g sectors are the h<strong>and</strong>l<strong>in</strong>g of bulk materials,production processes, especially the iron & stealworks <strong>and</strong> the m<strong>in</strong>eral <strong>in</strong>dustry as well as agricultural activities.About 40 years ago the two parts of Germany emittedmore than 3 million tons of dust per year, with an <strong>in</strong>creas<strong>in</strong>gtendency, even that there were already regulations <strong>in</strong>place for fitt<strong>in</strong>g major new plants with filters. S<strong>in</strong>ce thattime, <strong>and</strong> comprehensive <strong>and</strong> <strong>in</strong>tegrated under the 1974Act of Federal Immission Control (Bundes-Immissionsschutzgesetz- BImSchG), a system of ord<strong>in</strong>ances <strong>and</strong>technical <strong>in</strong>structions on emission prevention <strong>and</strong> controlhas come <strong>in</strong>to effect <strong>and</strong> has reversed the trend of grow<strong>in</strong>gemissions.A basic feature of the Federal Immission Control Act isthe precautionary pr<strong>in</strong>ciple, which means <strong>in</strong> practical terms1Federal Environment Agency, Dessau, Germany


12that all sources (new <strong>and</strong> old) must prevent <strong>and</strong> controlemissions accord<strong>in</strong>g to the state of the art:1. The establishment <strong>and</strong> operation of listed plants particularlyliable to cause harmful effects on the environmentare subject to licens<strong>in</strong>g, relevant smaller <strong>in</strong>stallationsneed type-approval. PM emission control requirementsreflect<strong>in</strong>g state of the art technology are laid down <strong>in</strong>the ord<strong>in</strong>ance on large combustion plants, the TechnicalInstruction Air (TA Luft) for all other plants subjectto licens<strong>in</strong>g <strong>and</strong> <strong>in</strong> the ord<strong>in</strong>ance on small combustionplants (


B. Schärer / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 13Based on emissions control measures <strong>and</strong> regulations,that were already <strong>in</strong> place <strong>in</strong> 2005, projections to 2020 areshown <strong>in</strong> figure 1 by sectors <strong>and</strong> <strong>in</strong> figure 2 by fractions.The major feature of the future trend of PM-emissions isthe substantial decrease, triggered by regulations already<strong>in</strong> place. The decrease of emissions for all fractions will bequite substantial <strong>and</strong> will amount to 40 % for PM2.5, 31 %for PM10, <strong>and</strong> 27 % for total dust.A breakdown of total emission shows significant differences<strong>in</strong> the shares of dust fractions of emitt<strong>in</strong>g sectorsover time.[kt]35030025020015010050Figure 1:02000GesamtstaubPM10PM2.52005 2010 2015 2020Primary dust <strong>and</strong> f<strong>in</strong>e dust emissions <strong>in</strong> Germany 2000 - 2020When it comes to total dust, figure 2 shows that emissionsare scattered widely over the sectors. On the other h<strong>and</strong>for PM2.5, which figure 2 does not show, emissions arelimited to the sectors road traffic, wood fir<strong>in</strong>g, mobile mach<strong>in</strong>es,large combustion plants <strong>and</strong> the ore <strong>and</strong> steal <strong>in</strong>dustry.Agricultural activities also contribute significantly todust emissions. At the moment <strong>agriculture</strong> produces 10 %of primary PM10 with a slightly lower share for PM2.5.For wood burn<strong>in</strong>g the emissions depend on the assumptionson the future use of wood. The projections provided<strong>in</strong> the figures do not <strong>in</strong>clude the latest policies <strong>and</strong> trendsof the use of bio fuels. Therefore the emissions for woodfir<strong>in</strong>g are underestimated as the use of wood has <strong>in</strong>creasedsubstantially <strong>and</strong> will grow further. This would lead to asubstantial <strong>in</strong>crease of dust emissions without further reductionmeasures. To cope with this development the Ord<strong>in</strong>ancefor small fir<strong>in</strong>g <strong>in</strong>stallations is under revision withstr<strong>in</strong>gent emission limit values.OutlookReduc<strong>in</strong>g emissions of f<strong>in</strong>e particulate <strong>matter</strong> is, <strong>in</strong> pr<strong>in</strong>ciple,possible for all sources other than natural. With aview to the need for further emission reductions, the GermanFederal Environment Agency has exam<strong>in</strong>ed additionalmeasures <strong>and</strong> their realisation potential. This led tothe identification of measures for coal-fired power plants,small-scale wood burn<strong>in</strong>g, road <strong>and</strong> other transport as wellas for non-road mobile mach<strong>in</strong>ery. The comb<strong>in</strong>ation of all350300250200sonstige QuellenSchüttgutumschlagL<strong>and</strong>wirtschaft PM10sonstige IndustrieM<strong>in</strong>eralstoff<strong>in</strong>dustrie[kt]150Metall<strong>in</strong>dustriesonstiger Verkehr / mobile Masch<strong>in</strong>en100Straßenverkehr AbriebStraßenverkehr Auspuff5002000 2005 2010 2015 2020Stationäre Feuerung: Haushalte / GHStationäre Feuerung:Kraftwerke / Industrie / MVAFigure 2:Breakdown <strong>in</strong> sectors of the total primary dust <strong>and</strong> trend of emissions <strong>in</strong> Germany 2000-2020


14measures analysed can reduce emissions of PM2.5 <strong>in</strong> thereference scenario by 3.3, of PM10 by 2.0 % <strong>and</strong> of totalparticulate <strong>matter</strong> by 1.6 % by 2020.Due to long-range transboundary transport of particulate<strong>matter</strong> <strong>and</strong> precursor substances, national regulations arenot sufficient. As part of its air pollution control policy, theEU has developed a strategy to reduce pollution by particulate<strong>matter</strong> under its Clean Air for Europe Programme<strong>and</strong> has started revisions of the First Daughter Directive onAir Quality <strong>and</strong> the NEC Directive. In 2008 the EuropeanCommission is expected to propose an update to the NECDirective up to the year 2020. In addition to def<strong>in</strong><strong>in</strong>g newnational emission ceil<strong>in</strong>gs for the substances covered bythe present Directive, it is consider<strong>in</strong>g <strong>in</strong>troduc<strong>in</strong>g nationalemission ceil<strong>in</strong>gs for f<strong>in</strong>e particulate <strong>matter</strong> (PM2.5).The United Nations Economic Commission for Europe(UNECE), whose Member States cover a geographicalarea even larger than that of the EU, has also put pollutionby particulate <strong>matter</strong> on its agenda <strong>and</strong> will update the socalledMulti-component Protocol to the UNECE Conventionon Long-range Transboundary Air Pollution.ReferencesZSE (2005). Datenbank Zentrales System Emissionen (ZSE) des Umweltbundesamtes,Version vom 16.11.2005UBA (2007). Umweltbundesamt: Emissionen und MaßnahmenanalyseFe<strong>in</strong>staub 2000-2020, Schlussbericht zum F+E-Vorhaben 204 42202/2


K. W. van der Hoek et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 15<strong>Particulate</strong> <strong>matter</strong> emissions <strong>from</strong> arable production - a guide for UNECE emission <strong>in</strong>ventoriesK. W. van der Hoek 1 <strong>and</strong> T. H<strong>in</strong>z 2AbstractWith<strong>in</strong> arable production we dist<strong>in</strong>guish the follow<strong>in</strong>gsubsequent stages: soil cultivation (<strong>in</strong>cludes all work<strong>in</strong>gsteps treat<strong>in</strong>g the soil e.g. plough<strong>in</strong>g, harrow<strong>in</strong>g, <strong>and</strong> seed<strong>in</strong>g),harvest<strong>in</strong>g <strong>and</strong> post harvest treatments at farm scale(like unload<strong>in</strong>g, clean<strong>in</strong>g <strong>and</strong> dry<strong>in</strong>g crops).For the arable crops wheat, rye, barley <strong>and</strong> oat, a firstestimate of the emission factor is 3 – 5 kg PM10/ha. Theactual <strong>and</strong> local emission factors are dependent on fixedparameters like soil properties (s<strong>and</strong>, loess, silt fraction)<strong>and</strong> variable parameters like dry or moist soil.It is assumed that a part of the emitted PM10 is deposited<strong>in</strong> the field <strong>and</strong> will not leave the field. The part that leavesthe field is considered to be <strong>in</strong>ventory relevant. The <strong>in</strong>-fieldreduction percentage is dependent on atmospheric stability<strong>and</strong> w<strong>in</strong>d speed.Keywords: PM10, arable farm<strong>in</strong>g, tillage, emission rates,<strong>in</strong>-field depositionHuman health aspectsThomas Jefferson’s Declaration <strong>in</strong> 1776 states that ‘Cultivatorsof the earth are the most valuable citizens. They arethe most vigorous, the most <strong>in</strong>dependent, the most virtuous,<strong>and</strong> they are tied to their country <strong>and</strong> wedded to itsliberty <strong>and</strong> <strong>in</strong>terests by the most last<strong>in</strong>g bonds’. Unfortunately,the myth of the robust, reliably healthy farmer doesnot correspond with the realities of agricultural life. Respiratorydiseases associated with <strong>agriculture</strong> were one ofthe first-recognized occupational hazards. As early as 1555there was a warn<strong>in</strong>g about the dangers of <strong>in</strong>hal<strong>in</strong>g gra<strong>in</strong>dusts, but it has only been <strong>in</strong> the 20 th century that respiratoryhazards <strong>in</strong> <strong>agriculture</strong> were studied <strong>and</strong> documented(ATS, 1998).Respiratory health hazards <strong>in</strong> <strong>agriculture</strong> are documented<strong>in</strong> full detail <strong>in</strong> a conference report of the American ThoracicSociety, <strong>and</strong> <strong>in</strong> a review article (ATS, 1998; EduardW. 1997). Both studies comprise animal <strong>agriculture</strong> as wellas arable production. Recently a review article has beenpublished devoted to soil as a source of dust <strong>and</strong> the associatedhuman health aspects (Smith J. L. <strong>and</strong> Lee K. 2003).Focus on arable productionThis paper is concerned with the emission rates of particulate<strong>matter</strong> dur<strong>in</strong>g arable production, storage <strong>and</strong> h<strong>and</strong>l<strong>in</strong>gproducts while produc<strong>in</strong>g food <strong>and</strong> non food plants <strong>and</strong>fruits. Not <strong>in</strong>cluded <strong>in</strong> the paper are emissions <strong>from</strong> movementon unpaved roads, <strong>from</strong> the consumption of fuels<strong>and</strong> emissions due to the <strong>in</strong>put of pesticides. Also pollenswhich are ma<strong>in</strong>ly larger than the particle sizes concerned<strong>in</strong> this paper, are not <strong>in</strong>cluded. W<strong>in</strong>d blown particles <strong>from</strong>cultivated soils not aris<strong>in</strong>g directly <strong>from</strong> field operationswill be considered as natural emissions. These emissions,often called w<strong>in</strong>d erosion, are very variable as well <strong>in</strong> sizeas <strong>in</strong> frequency.Arable production <strong>in</strong> more detailDifferent types of soil cultivation, harvest<strong>in</strong>g, <strong>and</strong> the applicationof m<strong>in</strong>eral fertilizer are responsible for particulate<strong>matter</strong> emissions <strong>from</strong> the fields. Soil cultivation <strong>in</strong>cludesall work<strong>in</strong>g steps treat<strong>in</strong>g the soil e.g. plough<strong>in</strong>g, harrow<strong>in</strong>g,<strong>and</strong> seed<strong>in</strong>g. Post harvest treatments like unload<strong>in</strong>g,1National Institute for Public Health <strong>and</strong> the Environment, Bilthoven, The Netherl<strong>and</strong>s2Federal Agricultural Research Centre, Institute for Technology <strong>and</strong> Biosystems Eng<strong>in</strong>eer<strong>in</strong>g, Braunschweig, Germany


16clean<strong>in</strong>g <strong>and</strong> dry<strong>in</strong>g crops are only taken <strong>in</strong>to account ifthey take place on farm level. Farm level <strong>in</strong>cludes all operationson the farm until the produce leaves the farm.The ma<strong>in</strong> sources of particulate <strong>matter</strong> emissions arecaused by comb<strong>in</strong>e harvest<strong>in</strong>g <strong>and</strong> soil cultivation <strong>and</strong> theirmagnitude is with<strong>in</strong> the range of more than 80 % of totalPM10 emissions <strong>from</strong> arable production.Emission of particulate <strong>matter</strong> <strong>in</strong> arable productionEmissions of particulate <strong>matter</strong> <strong>in</strong> arable production occur<strong>from</strong> different sources <strong>and</strong> at different times. Sourcesare operations on the fields <strong>and</strong> the farms. In chronologicalorder follow <strong>from</strong> spr<strong>in</strong>g to autumn soil cultivation, harvest<strong>in</strong>g,post harvest<strong>in</strong>g treatments <strong>and</strong> aga<strong>in</strong> soil cultivation(figure 1 <strong>and</strong> 2).Figure 2:Soil cultivationsoil cultivationharvest<strong>in</strong>gpost harvest treatmentclean<strong>in</strong>g, dry<strong>in</strong>g, unload<strong>in</strong>gsoil cultivationE 1E 2E 3E 4area related emission:n4E = E jj=1Figure 1:Scheme of particulate <strong>matter</strong> sources <strong>in</strong> arable production––––––––Mass flows of emitted particles are governed by a largenumber of parameters:the produce, type of crop, fruit, vegetablethe physical properties of the particles depend<strong>in</strong>g ontheir orig<strong>in</strong>orig<strong>in</strong> of the particles: soil, plant, mach<strong>in</strong>erysoil composition (s<strong>and</strong>, loess, silt fraction)meteorological conditions of soil <strong>and</strong>/or produce before<strong>and</strong> dur<strong>in</strong>g the operation (w<strong>in</strong>d speed, temperature, ra<strong>in</strong>fall, humidity)type of operation (harrow<strong>in</strong>g, disc<strong>in</strong>g, cultivat<strong>in</strong>g,plough<strong>in</strong>g)parameters of the mach<strong>in</strong>ery (work<strong>in</strong>g speed, work<strong>in</strong>gcapacity, work<strong>in</strong>g surface).Particle emissions <strong>from</strong> arable production may be relatedto the cultivated area of each produce.E = nEF . A . n10 10=1E 10EF 10Anemission of PM10 <strong>in</strong> kg/yearemission factor <strong>in</strong> kg/haannual treated area <strong>in</strong> haannual repetitions of treatmentThe emission factors of post harvest operations are generallygiven related to the amount of h<strong>and</strong>led mass. Theseemissions factors can be converted to area related factorsby multiply<strong>in</strong>g with the averaged annual yield:EF 10= EF 10m* YEF 10EF 10mYemission factor <strong>in</strong> kg/haemission factor <strong>in</strong> kg/tonaveraged annual yield <strong>in</strong> ton/haThe emissions dur<strong>in</strong>g arable production follow the seasons<strong>and</strong> are given <strong>in</strong> table 1.


K. W. van der Hoek et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 17Table 1:Time table for considerable work<strong>in</strong>g steps <strong>in</strong> arable productionWork<strong>in</strong>g step, time tableCrop Soil cultivation/seed<strong>in</strong>g Harvest<strong>in</strong>g Clean<strong>in</strong>g Dry<strong>in</strong>gWheat March/October July/August July/August July/AugustRye March/October August August AugustBarley March/September June/July June/July June/JulyOat March August August AugustDef<strong>in</strong>itions of PM10, PM2.5 <strong>and</strong> TSPThere are different def<strong>in</strong>itions for particle fractions, butall of them def<strong>in</strong>e penetration curves of virtual separators.PM10 <strong>and</strong> PM2.5 orig<strong>in</strong> <strong>from</strong> US EPA def<strong>in</strong>ed for environmentalpurpose. ISO gives health related def<strong>in</strong>itions whichare consider<strong>in</strong>g the pathway <strong>in</strong>to the human breath<strong>in</strong>g apparatus.Figure 3 shows these different curves. Differences are obviousfor PM10 <strong>and</strong> the thoracic fraction which correspondwith it by the same cut off at 10 µm. PM10 do not considerparticles larger than 15 µm while thoracic reaches up to40 µm.particulate <strong>matter</strong>. This must be considered for PM10 <strong>and</strong>thoracic fraction if the emissions <strong>in</strong>clude a high portion ofparticles with size between 15 µm <strong>and</strong> 40 µm. Practicalmeasur<strong>in</strong>g equipment will often follow the ISO def<strong>in</strong>ition.Def<strong>in</strong>itions for PM2.5 <strong>and</strong> the respirable fraction (riskgroup) are consistent.TSP means total suspended particles <strong>and</strong> it is ma<strong>in</strong>ly used<strong>in</strong> ambient air for sizes below 57 µm. From emission po<strong>in</strong>tof view TSP means more or less total dust consider<strong>in</strong>g allsizes up to the largest particles which size depends on theorig<strong>in</strong> of the dust.Dust particles should be limited to sizes not larger than500 µm (aerodynamic diameter).Cumulative frequency [%]1009080706050403020100Aerodynamic particle diameter [µm]Thoracic ISOPM10Respirable (risk) ISOPM2,5 US EPAPM10 US EPA5 10 15 20 25 30 35 40Figure 3:Patterns of different particle fractionsThe presented curves describe virtual particle separatorssimulat<strong>in</strong>g the correspond<strong>in</strong>g parts of the breath<strong>in</strong>g tract.They are characterized by their shape <strong>and</strong> by the 50 %value of separation <strong>and</strong> penetration the so called cut off diameter.Samplers with same cut off diameters but differentshaped penetration curves will collect different fractions ofCompilation of emission factorsThere are different methods for establish<strong>in</strong>g emission factorsfor arable production.• Direct measurements of the particulate <strong>matter</strong> emissionflows of tractors <strong>and</strong> implements. From these mach<strong>in</strong>ery


18related data of the potential strength of a source, field relatedemission factors must be calculated.• Indirect estimation of source strength us<strong>in</strong>g concentrationmeasurements carried out mach<strong>in</strong>ery bound on thedrivers place <strong>and</strong> models of a layer or a plume on thetreated area to get the connection with a balance volumeor a volume flow rate concerned.• Measurements of particulate <strong>matter</strong> concentrations atthe border of a field fitted to an <strong>in</strong>verse comput<strong>in</strong>g modelof dispersion.There is a lot of <strong>in</strong>formation on measurements availableform California (Baker J. B. et al. 2005, Clausnitzer H. <strong>and</strong>S<strong>in</strong>ger M. J. 1996, 1997, Holmén B. A. et al. 2000, 2001),Germany (Batel W. 1975, 1976, 1979, Goossens D. et al.2001, H<strong>in</strong>z T. <strong>and</strong> Funk R. 2007, Oettl D. et al. 2005) <strong>and</strong>Belgium (Bogman P. et al. 2007).For soil cultivation the follow<strong>in</strong>g PM10 emission factorsare found:0.1 kg/ha, RAINS (Klimont T. et al. 2002)0.06 - 0.3 kg/ha (MAFF 2000, Wathes C. M. et al. 2002)0.28 - 0.48 kg/ha (H<strong>in</strong>z T. et al. 2002).In table 3 an averaged field emission factor of 0.25 kg/hais used.Measurements <strong>in</strong> California are much higher, 4.2 - 5.2 kg/ha (WRAP, 2006). The reason is probably the climatic <strong>and</strong>soil conditions with higher temperature <strong>and</strong> lower humidity.This assumption is supported by measurements done <strong>in</strong>Br<strong>and</strong>enburg, Germany under the 2006 hot <strong>and</strong> dry conditions,result<strong>in</strong>g <strong>in</strong> a dry soil <strong>and</strong> emission values one orderof magnitude higher than <strong>in</strong> former years (table 2).Table 2:Emission factors for soil operations (Oettl D. et al. 2005, H<strong>in</strong>z T. <strong>and</strong>Funk R. 2007).Emission factors for PM10, PM2.5 <strong>and</strong> PM1 for field operationsPM10kg/haPM2.5kg/haPM1kg/haHarrow<strong>in</strong>g 0.82 0.29


K. W. van der Hoek et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 19Table 3:Matrix of field emission factors for considerable work<strong>in</strong>g steps <strong>and</strong> totals for crops, as presented as draft <strong>in</strong> the expert group of the UNECE Emission InventoryGuidebook <strong>in</strong> Thessaloniki, 2006.NB The work<strong>in</strong>g steps EF are measured on the spot; the amount of PM10 leav<strong>in</strong>g the field is given for 2 situations: 50 % <strong>and</strong> 90 % reduction by settlement<strong>in</strong> the near-field.Work<strong>in</strong>g step EF 10kg/haEF 10kg/haCrop Soil cultivation Harvest<strong>in</strong>g Clean<strong>in</strong>g Dry<strong>in</strong>g No reduction 50 % red 90 % redWheat 0.25 2.7 0.19 0.56 3.70 1.85 0.37Rye 0.25 2.0 0.16 0.37 2.78 1.39 0.28Barley 0.25 2.3 0.16 0.43 3.14 1.57 0.31Oat 0.25 3.4 0.25 0.66 4.56 2.28 0.46ReferencesATS (1998). Respiratory health hazards <strong>in</strong> <strong>agriculture</strong>. Am. J. Respir.Crit. Care Med., 158, pp S1-S76Baker J. B., Southard R. J., Mitchell J. P. (2005). Agricultural dust production<strong>in</strong> st<strong>and</strong>ard <strong>and</strong> conservation tillage systems <strong>in</strong> the San Joaqu<strong>in</strong>Valley. J. Envron. Environ. Qual. 34, 1260-1269Batel W. (1975). Messungen zur Staub-, Lärm– und Geruchsbelästigungenan Arbeitsplätzen <strong>in</strong> der l<strong>and</strong>wirtschaftlichen Produktion und Wegezur Entlastung. Grundl. L<strong>and</strong>technik Bd. 26, Nr. 5, 135-157Batel W. (1976). Staubemission, Staubimmission und Staubbekämpfungbeim Mähdrescher, Grundl. L<strong>and</strong>technik Bd. 26, pp 205-248Batel W. (1979). Staubbelastung und Staubzusammensetzung an Arbeitsplätzender l<strong>and</strong>wirtschaftlichen Produktion und daraus abzuleitendeBelastungsgrenzen und Staubschutzmaßnahmen. Grundl. L<strong>and</strong>technikBd. 29, Nr. 2, 41-54Bogman P., Cornelis W., Rollé H., Gabriels D. (2007). Prediction Predcton ofTSP <strong>and</strong> PM10 emissions <strong>from</strong> agricultural operations <strong>in</strong> Fl<strong>and</strong>ers,Belgium. DustConf 2007, International Conference Maastricht, 23-24April 2007. www.dustconf.orgClausnitzer H., <strong>and</strong> S<strong>in</strong>ger M. J. (1996). Respirable-dust production<strong>from</strong> agricultural operations <strong>in</strong> the Sacramento Valley, California. J.Environ. Qual., 25, 877-884Clausnitzer H., <strong>and</strong> S<strong>in</strong>ger M. J. (1997). Intensive l<strong>and</strong> preparationemits respirable dust. California Agriculture 51, 27–30Dong Y., Hardy R., McGown M. (2004). Why road dust concentrationsare overestimated <strong>in</strong> Eulerian Grid Models. Third Annual CMAS Models-3Users’ Conference, 18-20 October 2004, Chapel Hill, NCEduard W. (1997). Exposure to non-<strong>in</strong>fectious microorganisms <strong>and</strong> endotox<strong>in</strong>s<strong>in</strong> <strong>agriculture</strong>. Ann. Agric. Environ. Med. 4, 179-186Etyemezian V., Gillies J., Kuhns H., Nikolic D., Watson J., VeranthJ., Laban R., Seshadri G., Gillette D. (2003). Field test<strong>in</strong>g <strong>and</strong> evaluationof dust deposition <strong>and</strong> removal mechanisms: – F<strong>in</strong>al Report.Desert Research Institute, Las Vegas, NVGoossens D., Gross J., Spaan W. (2001). Aeolian dust dynamics <strong>in</strong> agriculturall<strong>and</strong> areas <strong>in</strong> Lower Saxony, Germany. Earth Surface Processes<strong>and</strong> L<strong>and</strong>forms, 26, 701-720Hagen L. J., Van Pelt S., Zobeck T. M., Retta A. (2007). Dust depositionnear an erod<strong>in</strong>g source field. Earth Surface Processes <strong>and</strong> L<strong>and</strong>forms,32, 281-289H<strong>in</strong>z T., Rönnpagel B., L<strong>in</strong>ke S. (Eds) (2002). <strong>Particulate</strong> Matter <strong>in</strong> <strong>and</strong><strong>from</strong> <strong>agriculture</strong>. Special Issue 235. L<strong>and</strong>bauforschung VölkenrodeH<strong>in</strong>z T. <strong>and</strong> Funk R. (2007). Particle emissions of soils <strong>in</strong>duced by agriculturalfield operations. DustConf 2007, International ConferenceMaastricht, 23-24 April 2007. www.dustconf.orgHolmén B. A., James T. A., Ashbaugh L. L., Flocch<strong>in</strong>i R. G. (2000).Lidar-assisted measurement of PM10 emissions <strong>from</strong> agricultural till<strong>in</strong>g<strong>in</strong> California’s San Joaqu<strong>in</strong> Valley. I: Lidar. Atmospheric Environment35, 3251-3264Holmén B. A., James T. A., Ashbaugh L. L., Flocch<strong>in</strong>i R. G. (2001).Lidar-assisted measurement of PM10 emissions <strong>from</strong> agricultural till<strong>in</strong>g<strong>in</strong> California’s San Joaqu<strong>in</strong> Valley. Part II: emission factors. AtmosphericEnvironment 35, 3265-3277Klimont Z., Cofala J., Bertok I., Amann M., Heyes C., Gyarfas F.(2002). Modell<strong>in</strong>g particulate emissions <strong>in</strong> Europe. A framework to estimatereduction potential <strong>and</strong> control costs. Interim Report IR-02-076,IIASA, Laxenburg, Austria.MAFF (2000). Atmospheric emissions of particulates <strong>from</strong> <strong>agriculture</strong>: ascop<strong>in</strong>g study. MAFF Project code WA 0802. M<strong>in</strong>istry of Agriculture,Fisheries <strong>and</strong> Food, London, UK.Oettl D., Funk R., Sturm P. (2005). PM emission factors for farm<strong>in</strong>g activities.In: Proceed<strong>in</strong>gs of the 14th Symposium Transport <strong>and</strong> Air Pollution,1-3.6 2005, Graz, Technical University Graz, Austria, 411-419Pace T. G. (2005). Methodology to estimate the Transportable Fraction(TF) of fugitive dust emissions for regional <strong>and</strong> urban scale air qualityanalyses (8/3/2005 revision). U.S. EPA, Research Triangle Park, NC.Smith J. L. <strong>and</strong> Lee K. (2003). Soil as a source of dust <strong>and</strong> implicationsfor human health. Advances <strong>in</strong> Agronomy, 80, 1-32Wathes C. M., Phillips V. R., Sneath R. W., Brush S., ApSimon H. M.(2002). Atmospheric emissions of particulates (PM10) <strong>from</strong> <strong>agriculture</strong><strong>in</strong> the United K<strong>in</strong>gdom. ASAE Paper number 024217WRAP Fugitive Dust H<strong>and</strong>book (2006). Prepared for: Western Governors’Association by Countess Environmental, Westlake Village, CA


E. Grimm / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 21Control of PM emission <strong>from</strong> livestock farm<strong>in</strong>g <strong>in</strong>stallations <strong>in</strong> GermanyE. Grimm 1AbstractIn order to control the emission of particulate <strong>matter</strong> <strong>and</strong>to prevent harmful effects on people liv<strong>in</strong>g <strong>in</strong> the vic<strong>in</strong>ityof livestock <strong>in</strong>stallations <strong>in</strong> Germany, potential environmentaleffects are assessed dur<strong>in</strong>g the licens<strong>in</strong>g procedures.Assessment is based on the regulations of the TechnicalInstructions on Air Quality Control (TA Luft), which determ<strong>in</strong>eslimit values for the immission of f<strong>in</strong>e particles(PM10). These limit values are cited <strong>from</strong> the EuropeanAir Quality Daughter Directive.For reasons of commensurability a detailed assessmentwhether the limit values are not exceeded is only requiredunder certa<strong>in</strong> conditions. Assessment is not necessary, ifpeople do not permanently live <strong>in</strong> the vic<strong>in</strong>ity of an <strong>in</strong>stallation<strong>and</strong> if the so-called bagatelle-emission rate, whichis equivalent to a livestock of about e.g. 2,150 fatten<strong>in</strong>gpigs <strong>and</strong> 74,500 lay<strong>in</strong>g hens is not exceeded. It is also notrequired if the level of the <strong>in</strong>itial load can be estimated as“low” or if the level of the additional load caused by an <strong>in</strong>stallationis “irrelevant” <strong>in</strong> terms of TA Luft (< 1.2 µg/m 3 )<strong>and</strong> additional measures for emission abatement are taken.In contrast to the regulations of the TA Luft to control theimmission load, regulations on emission limitation for totaldust <strong>in</strong> general will not affect livestock <strong>in</strong>stallations.Practical experience reveals, that there is a lack of sounddata relat<strong>in</strong>g to the emission of PM <strong>from</strong> different production<strong>and</strong> hous<strong>in</strong>g systems <strong>and</strong> that there is a need to establish<strong>and</strong> to harmonise special measurement protocols fortheir determ<strong>in</strong>ation.Keywords: livestock <strong>in</strong>stallation, particulate <strong>matter</strong>, emissiondata, immission limit values1 IntroductionAgriculture, namely livestock <strong>in</strong>stallations are a source ofprimary <strong>Particulate</strong> Matter (PM) <strong>and</strong> of ammonia, which isa ma<strong>in</strong> precursor for the form<strong>in</strong>g of secondary aerosols <strong>in</strong>the atmosphere (table 1). Also on a local scale s<strong>in</strong>gle <strong>in</strong>tensivelivestock <strong>in</strong>stallations or a high density of <strong>in</strong>stallationsmay contribute to a large extent to the PM immission load(Bleeker A. et al. 2007). So the control of PM emissionis also <strong>in</strong> the focus of the licens<strong>in</strong>g processes for the construction<strong>and</strong> operation of livestock <strong>in</strong>stallations under theFederal Immission Control Act (BImSchG).2 Legal frameworkIn Germany, the legal basis for the protection of humanhealth <strong>and</strong> environment aga<strong>in</strong>st aerial pollutants is laiddown <strong>in</strong> the Federal Immission Control Act (Bundes-Immissionsschutzgesetz– BImSchG 2002). Accord<strong>in</strong>g to theBImSchG livestock <strong>in</strong>stallation shall be constructed <strong>and</strong>operated <strong>in</strong> such a way, that this does not <strong>in</strong>volve harmfuleffects on the environment or other hazards, considerabledisadvantage <strong>and</strong> considerable nuisance to the generalpublic <strong>and</strong> the neighbourhood (pr<strong>in</strong>ciple of protection).In addition, precautions must be taken to prevent harmfuleffects on the environment, <strong>in</strong> particular by such emissioncontrol measures as are appropriate accord<strong>in</strong>g to thestate of the art (“St<strong>and</strong> der Technik”, which is equivalentto “Best Available Technology”). Accord<strong>in</strong>g to the precautionarypr<strong>in</strong>ciple harmful emissions must be reduced bytechnical means below a certa<strong>in</strong> limit. Limits depend onthe hazardousness of a pollutant, the size of an <strong>in</strong>stallation,the technical feasibilities <strong>and</strong> the economic efficiency ofabatement technologies.In detail, requirements are laid down <strong>in</strong> the First GeneralAdm<strong>in</strong>istrative Regulation Perta<strong>in</strong><strong>in</strong>g the Federal ImmissionControl Act (Technical Instructions on Air QualityControl – TA Luft of 24 July 2002). By this way severalEuropean Directives (esp. IPPC, NEC <strong>and</strong> European AirQuality Daughter Directive) have been adopted to Germanlaw. The requirements, especially emission <strong>and</strong> immissionlimit values <strong>and</strong> emission abatement techniques must beadhered to if <strong>in</strong>dustrial plants <strong>and</strong> other <strong>in</strong>stallations suchas animal husb<strong>and</strong>ries are constructed <strong>and</strong> operated, enlargedor <strong>in</strong> any other way substantial altered.1Association for Technology <strong>and</strong> Structures <strong>in</strong> Agriculture (KTBL), Darmstadt, Germany


22In order to verify whether a livestock build<strong>in</strong>g projectcomplies with these requirements, data on the emissionof particulate <strong>matter</strong> are needed. For the measurement ofthese emission is very laborious <strong>and</strong> costly, data derived<strong>from</strong> scientific <strong>in</strong>vestigations are used.Table 2:Mean emission rates for <strong>in</strong>halable dust (total dust), converted <strong>from</strong> theresults of Takai H. et al. (1998) for Demark, Germany, Engl<strong>and</strong> <strong>and</strong> theNetherl<strong>and</strong>s; amended with data <strong>from</strong> Brehme G. (2003), LFL (2004) <strong>and</strong>H<strong>in</strong>z T. (2005), summarized <strong>in</strong> KTBL (2006)Table 1:Type ofemissionTotalemissionofGermany(2005)[kt/a][kt/a]Emission of primary particles <strong>from</strong> <strong>agriculture</strong> <strong>and</strong> animal husb<strong>and</strong>ry respectivelyAgricultureAgriculture[%]Animalhusb<strong>and</strong>ry[kt/a]Animalhusb<strong>and</strong>ry[%]Ammonia 1) 619 590.0 95.0 494.0 79.0– 3)Total dust 269 1)(1995) 2)513 71.020.5PM10 194 1)(1995) 2)281 23.0– 3)14.010.08.0– 3)49.019.322.0– 3)10.08.08.0PM2.5 111 1) 4.7 4.2 4.7 4.21)UBA (2007)2)Klimont Z. et al. (2002)3)no data available3 Available data on PM emissionMost of the data that are available <strong>and</strong> used for the assessmentof environmental effects of livestock <strong>in</strong>stallationshave been published for the <strong>in</strong>halable fraction accord<strong>in</strong>g toDIN EN 481 for occupational health <strong>and</strong> safety purposes.Those data are often used equal to total dust data althoughthe precipitation for particles > 100 μm is only about 50 %<strong>in</strong> those measurements. Table 2 summarizes the results ofdifferent <strong>in</strong>vestigations <strong>in</strong> Europe show<strong>in</strong>g a wide span.Only few <strong>in</strong>vestigations have been carried out to determ<strong>in</strong>ePM10-concentrations. The proportion of PM10 is estimatedpragmatically by so-called conversion factors thatare derived <strong>from</strong> only few <strong>in</strong>vestigations (table 3).Animal category<strong>and</strong>hous<strong>in</strong>g systemPig fatten<strong>in</strong>g 3)0- solid manure system0- liquid manuresystemSows 4)0- solid manure system0- liquid manuresystemPiglet rear<strong>in</strong>g 5)0- liquid manuresystemCows0- solid manure system0- cubicle (liquidmanure system)Bull fatten<strong>in</strong>g0- solid manure system0- liquid manuresystemCalves0- solid manure system0- liquid manuresystemLay<strong>in</strong>g hens0- cage hous<strong>in</strong>g0- floor hous<strong>in</strong>g0- aviary (with aeratedmanure belt)Mean emissionrate of <strong>in</strong>vestigations<strong>in</strong> Germany[mg/(AP h)] 2)-69.0226.049.0[kg/(AP a)] 2)Range of data of all<strong>in</strong>vestigations 1)[mg/(AP h)] 2)- 73 - 1160.57 6) 54 - 1161.90 6) 43 - 2260.40 6) 36 - 255[kg/(AP a)] 2)0.6 -0.45 -0.36 -0.31 -0.950.961.92.1422.0 0.18 6) 21 - 41 0.17 - 0.3491.0406.095.082.043.058.00.80 6) 72 - 1703.60 6) 25 - 4060.80 6) 25 - 950.70 6) 55 - 1010.40 6) 19 -0.50 6) 19 -43580.02 6) 1.42.0- 330 6)0 0.27 6) -40 6)0 0.35 6) 6 - 14.80.6 - 1.50.2 - 3.60.2 - 0.80.5 - 0.90.2 - 0.40.2 - 0.50.01 - 0.030.05 - 0.13-Broilers 7)0- floor hous<strong>in</strong>g 4.2 0.03 6) 2.8 - 9.3 0.02 - 0.06Turkeys8)0- floor hous<strong>in</strong>g 73.0 0.55 6) - -Ducks0- rear<strong>in</strong>g 9)1.70- fatten<strong>in</strong>g 9) 5.40.0120.041)Denmark, Engl<strong>and</strong>, the Netherl<strong>and</strong>s <strong>and</strong> Germany2)AP = animal place3)343 days hous<strong>in</strong>g period4)350 days hous<strong>in</strong>g period5)346 days hous<strong>in</strong>g period6)LfL (2004)7)264 days hous<strong>in</strong>g period8)turkey cock, 314 days hous<strong>in</strong>g period; H<strong>in</strong>z T. (2005)9)300 days hous<strong>in</strong>g period; Brehme G. (2003)----


E. Grimm / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 23Table 3:Proportion of PM10 of total dust (KTBL 2006)Animal category<strong>and</strong>hous<strong>in</strong>g systemPM10-ratio of total dustMeasureddataPigs 0.310.450.4Cattle 0.30.460.64Poultry(<strong>in</strong> general)Lay<strong>in</strong>g hens(cage hous<strong>in</strong>g)Lay<strong>in</strong>g hens(aviary hous<strong>in</strong>g)Lay<strong>in</strong>g hens(floor hous<strong>in</strong>g)(0.33-0.87)0.460.40.15-0.16ConventionSource0.4 Koch W. et al. (2002)Louhela<strong>in</strong>en K.et al. (1997)Berdowski J. J.M. et al. (1997)0.5 Koch W. et al. (2002)Seedorf J. (2003)Cathomas R. L.et al. (2002)Koch W. et al. (2002)Berdowski J. J.M. et al. (1997)Cravens et al. (1981)0.33 0.3 TÜV Süddeutschl<strong>and</strong>(2000)0.50.6Broilers 0.40.580.5 H<strong>in</strong>z T. (2005)LfL (2004)0.59 0.6 LfL (2004)0.5 H<strong>in</strong>z T. (2005)TÜV Süddeutschl<strong>and</strong>(2000)Turkeys 0.25 0.3 H<strong>in</strong>z T. (2005)3 Provisions on air pollution controlThe TA Luft (2002) determ<strong>in</strong>es limit values for the immissionof f<strong>in</strong>e particles (PM10), which are cited <strong>from</strong> theEuropean Air Quality Daughter Directive (European Union1999) (table 4).Table 4:Immission limit values of TA Luft (2002) for PM10Concentrationlimitvalue[µg/m 3 ]Averag<strong>in</strong>gperiodRemarksLevel of<strong>in</strong>itialimmissionload classifiedas “low”[µg/m 3 ]Level of additionalimmission loadclassifiedas “irrelevant”[µg/m 3 ]40 1 year - < 34 1.250 24hours≤ 35exceedancesper yearpermissible≤ 15 exceedancesper yearover the last3 yearsDur<strong>in</strong>g the licens<strong>in</strong>g process of a livestock <strong>in</strong>stallationproject the assessment whether those limit values are notexceeded is necessary only for those places of <strong>in</strong>terest,where with<strong>in</strong> a distance of 1 km <strong>from</strong> the <strong>in</strong>stallation peoplecould not only temporarily be exposed to PM immissions,as it is the case e.g. <strong>in</strong> dwell<strong>in</strong>g areas.-People affected?yesBagatelle-emission rate exceeded (diffusive emissions)?e.g. > 2,150 pig-places> 74,500 poultry-placesyes3Initial load > 34 µg/m (year) or> 15 exceedances 50 µg/myes3Additional load > 1.2 µg/m (year)yesSum of <strong>in</strong>itial load (data <strong>from</strong> publicmonitor<strong>in</strong>g networks) <strong>and</strong> add. load(prognosis) > immission limit valuesyesMonitor<strong>in</strong>g of <strong>in</strong>itial load<strong>and</strong>prognosis of add. load3nononononoNo determ<strong>in</strong>ationexcept that sufficient clues fora special assessment accord<strong>in</strong>gto 4.8 TA Luft are givenFigure 1:Assessment scheme relat<strong>in</strong>g to PM10 immission accord<strong>in</strong>g to TA Luft (2002)


24For reasons of commensurability the competent authorityshall dispense with the need to determ<strong>in</strong>e the immissionload <strong>in</strong> detail, if <strong>in</strong> the case• of a low emission mass flow rate (cf. 4.6.1.1 TA Luft)or• of a low <strong>in</strong>itial load (cf. 4.6.2.1 TA Luft)or• of an irrelevant additional load caused by the <strong>in</strong>stallation(cf. 4.2.2 TA Luft) <strong>and</strong> additional measures foremission abatementit can be assumed that harmful effects on the environmentcannot be caused by the <strong>in</strong>stallation. The exam<strong>in</strong>ation followsthe scheme illustrated <strong>in</strong> figure 1.In contrast to the regulations to control the immissionload, regulations of the TA Luft on emission limitation fortotal dust <strong>in</strong> general will not affect livestock <strong>in</strong>stallations.3.1 Low emission mass flow rateImmission of PM10 are usually not determ<strong>in</strong>ed, if theemission of a livestock <strong>in</strong>stallation do not exceed the socalledbagatelle-emission rate of 0.1 kg/h of total dust. Thebagatelle-emission rate is equivalent to a livestock of aboute.g. 2,150 fatten<strong>in</strong>g pigs <strong>and</strong> 74,500 lay<strong>in</strong>g hens <strong>in</strong> con-ventional hous<strong>in</strong>g systems tak<strong>in</strong>g the round<strong>in</strong>g adjustment(0.149 kg/h, cf. 2.9 TA Luft) <strong>in</strong>to account.It must be noticed, that livestock hous<strong>in</strong>gs are treated asdiffuse sources. This means, that the bagatelle-emissionis only 10 % compared to an <strong>in</strong>dustrial source with highstacks.3.2 Low <strong>in</strong>itial immission loadThe exist<strong>in</strong>g <strong>in</strong>itial immission load of PM10 is low, if theannual mean does not exceed 34 µg/m 3 <strong>and</strong> if the daily immissionload of 50 µg/m 3 is not exceeded for more than 15days a year over the last three years.Table 5 gives an overview on the concentration of PM10<strong>in</strong> different regions of Germany. Highest levels are usuallymonitored <strong>in</strong> congested urban areas <strong>and</strong> at sites <strong>in</strong>fluencedby <strong>and</strong> close to major roads.In rural areas the immission concentration usually rema<strong>in</strong>sunder the level of the TA Luft (2002) <strong>in</strong>dicat<strong>in</strong>g alow <strong>in</strong>itial load if there are no site specific conditions thathave to be taken <strong>in</strong>to account. This is also <strong>in</strong>dicated bythe distribution of measured PM10 concentrations, whichshow a strong correlation between the annual mean value<strong>and</strong> the number of days exceed<strong>in</strong>g 50 μg/m³ (figure 2).454035y = 18.4 + 0.3 xr 2 = 0.89302522 µg/m 32015105Annual mean concentration [µg/m 3 ]> 34 µg/m3 > 15 exceedances of daily limit value00 10 20 30 40 50 60 70 80Number of days conc. > 50 µg/m 3Figure 2:Correlation between the number of days exceed<strong>in</strong>g the daily limit value of 50 µg/m 3 <strong>and</strong> the annual mean concentration of PM10; regression l<strong>in</strong>e <strong>and</strong> confidence<strong>in</strong>terval for the mean value with 99 % confidence level (Lower Saxony 2003 – 2005; Niedersächsisches Umweltm<strong>in</strong>isterium 2006)


E. Grimm / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 25Table 5:Typical ranges of concentrations of PM10 at different locations <strong>in</strong> Germany2001 (Lahl U. 2005)Location Rural site Urban site Traffic siteAnnual meanconcentration[µg/m 3 ]10 - 18 20 - 30 30 - 45Number of daysexceed<strong>in</strong>gthe dailylimit value of50 µg/m 3 0 - 5 5 - 20 15 - 100As the level of the mean annual concentration for PM10is more homogeneous <strong>in</strong> the wide-range <strong>and</strong> easier toprognose than the number of days exceed<strong>in</strong>g the dailylimit (Umweltbundesamt Wien 2005), with the help of thisgraph annual mean concentrations can be transposed to anumber of exceedances of the daily limit value (FierensF. et al. 2006; Torfs R. et al. 2007). In the case of LowerSaxony it can be stated with a 99 % confidence level, thatthe number of exceedances of the daily limit value will bebelow 15 if the annual mean concentration measured orprognosed <strong>in</strong> rural areas is below 22 µg/m 3 .3.3 Irrelevant additional immission loadDespite high <strong>in</strong>itial loads a project might be licensable ifthe additional load caused by an <strong>in</strong>stallation is classifiedas irrelevant (1.2 µg/m 3 ) <strong>in</strong> terms of TA Luft (2002). Thislevel is as low, that it is lost <strong>in</strong> the natural fluctuation of thebackground concentration, i.e. it is more or less a zero load.To comply with this value, the mean concentration of dust<strong>in</strong> the air of e.g. a typical pig conf<strong>in</strong>ement build<strong>in</strong>g, whichis about 2 mg/m 3 (Seedorf J. <strong>and</strong> Hartung J. 2002), must bediluted by a factor of 1,000.The modell<strong>in</strong>g of the dispersion of f<strong>in</strong>e particles as prescribed<strong>in</strong> the TA Luft (Lagrange particle model) is basedon the same assumptions as for ammonia concern<strong>in</strong>g thevelocities of deposition <strong>and</strong> sedimentation. In analogy toammonia <strong>and</strong> <strong>in</strong> dependency on the topographical <strong>and</strong>meteorological conditions the distance, where the immissionconcentration reaches the level of the irrelevant additionalload <strong>in</strong> the ma<strong>in</strong> w<strong>in</strong>d direction, can be estimated(figure 3). It can be stated, that e.g. <strong>in</strong> the case of pigs theirrelevant distance for PM10 is smaller than for ammonia<strong>and</strong> even smaller than for odour accord<strong>in</strong>g to the m<strong>in</strong>imumdistance regulation of the TA Luft (2002) to prevent odourcompliances (cf. 5.4.7.1 TA Luft).M<strong>in</strong>imum distance [m]1000800600400200Figure 3:0AmmoniOdourF<strong>in</strong>e dust0 1000 2000 3000 4000 5000 6000Fatten<strong>in</strong>g pigs [places]M<strong>in</strong>imum distances for ammonia <strong>and</strong> odour accord<strong>in</strong>g to TA Luft for fatten<strong>in</strong>gpigs. The irrelevant distance for PM10 (1.2 µg/m 3 additional load)is calculated on the same assumptions as for ammonia.4 ConclusionsIn Germany emission of PM are controlled dur<strong>in</strong>g the licens<strong>in</strong>gprocess of livestock <strong>in</strong>stallations. In practise onlythe regulations of the TA Luft concern<strong>in</strong>g the limitationof immission of PM10 are relevant, for the emission limitvalues, that are apply<strong>in</strong>g to total dust, are not exceeded <strong>in</strong>livestock <strong>in</strong>stallations.There are some provisions <strong>in</strong> order to simplify the executionof the immission load regulation, but they do not takeeffect <strong>in</strong> all cases. For example, the bagatelle-emissionrate that equals to <strong>in</strong>stallations with 2,150 pigs or 74,500lay<strong>in</strong>g hens <strong>in</strong> conventional hous<strong>in</strong>g systems, <strong>in</strong> the caseof alternative hous<strong>in</strong>g techniques such as littered pens orfloor hous<strong>in</strong>g systems may be exceeded by even a smallerlivestock. In addition, the criteria of the TA Luft <strong>in</strong>dicat<strong>in</strong>ga low <strong>in</strong>itial immission load may be exceeded underspecific site conditions (e.g. coastal areas with high naturalsea spray concentrations, sites be<strong>in</strong>g <strong>in</strong>fluenced by congestedurban areas or local sources). F<strong>in</strong>ally, if a livestock<strong>in</strong>stallation e.g. <strong>in</strong> the case of an enlargement or any othersubstantial alteration does not keep the m<strong>in</strong>imum distanceregulations towards the next dwell<strong>in</strong>g area, additional measuresfor emission abatement must be taken.For the adequate prognosis of the emission <strong>and</strong> the immissioncaused by a livestock <strong>in</strong>stallation reliable <strong>and</strong> differentiatedemission data are miss<strong>in</strong>g. Up to now measurementsare often carried out under occupational safety <strong>and</strong>health aspects <strong>and</strong> correspond<strong>in</strong>g sampl<strong>in</strong>g methods. Thus,a lot of data that have been published relate to the <strong>in</strong>halablefraction <strong>and</strong>/or the respirable fraction. Hardly any data havebeen published for PM10 emission. No data are availablefor natural ventilated hous<strong>in</strong>gs. In addition, it can be assumedthat measurements based on separat<strong>in</strong>g techniques


26have usually not been carried out with an isok<strong>in</strong>etic sampl<strong>in</strong>gmethod for this requires an additional expenditure oflabour. There is an urgent need to establish <strong>and</strong> harmonisesampl<strong>in</strong>g procedures for the measur<strong>in</strong>g of emission of particulate<strong>matter</strong> <strong>from</strong> livestock hous<strong>in</strong>g systems.6 ReferencesBerdowski J. J. M., Mulder W., Veldt C., Visschedijk A. J. H., Z<strong>and</strong>veldP. Y. J. (1997). <strong>Particulate</strong> <strong>matter</strong> emissions (PM10 - PM2.5- PM0.1) <strong>in</strong> Europe <strong>in</strong> 1990 <strong>and</strong> 1993. TNO-report, TNOMEP TNO_MEP - R96/472BImSchG (2002). Gesetz zum Schutz vor schädlichen Umwelte<strong>in</strong>wirkungendurch Luftverunre<strong>in</strong>igungen, Geräusche, Erschütterungenund ähnliche Vorgänge (Bundes-Immissionsschutzgesetz - BIm-SchG) <strong>in</strong> der Fassung der Bekanntmachung vom 26. September 2002(BGBl. I S. 3830), zuletzt geändert durch Artikel 3 des Gesetzes vom18. Dezember 2006 (BGBl. I S. 3180)Bleeker A., Aarn<strong>in</strong>k J. A., van Lent A. J. H., Kraai A. (2007). Theimportance of agricultural po<strong>in</strong>t sources for local scale air quality.DustConf 2007 - Papers as presented at the conference, CD-Rom,MaastrichtBrehme G. (2003). Moderne Entenhaltung – Langzeitstudie <strong>von</strong> Emissionenund Abluftre<strong>in</strong>igungssystemen. In: KTBL (eds) 6. Tagung: Bau,Technik und Umwelt 2003 <strong>in</strong> der l<strong>and</strong>wirtschaftlichen Nutztierhaltung25.-27. März 2003, VechtaCathomas R. L., Brüesch H., Fehr R., Re<strong>in</strong>hart W. H., Kuhn M.(2002). Organic dust exposure <strong>in</strong> dairy farms <strong>in</strong> an alp<strong>in</strong>e region. SwissMedical Weekly 132, pp 174–178Cravens R. L., Beaulieu H. J., Buchan R. M. (1981). Characterisationof the aerosol <strong>in</strong> turkey rear<strong>in</strong>g conf<strong>in</strong>ements. American Industrial HygieneAssociation Journal, Vol. 42, no. 4, pp 315-318European Union (1999). Council Directive 1999/30/EC of 22 April 1999relat<strong>in</strong>g to limit values for sulphur dioxide, nitrogen dioxide <strong>and</strong> oxidesof nitrogen, particulate <strong>matter</strong> <strong>and</strong> lead <strong>in</strong> ambient air. Official JournalL 163, 29/06/1999, pp 0041 – 0060Fierens F., Dumont G., Demuth C. (2006). Estimation of the exceedanceof the European PM10 limit values <strong>in</strong> Belgian cities <strong>and</strong> streetsdur<strong>in</strong>g the period 2005 - 2010 – 2015. IRCEL-CELINE [onlne]. [onl<strong>in</strong>e]. Zuf<strong>in</strong>den <strong>in</strong> http://www.ircel<strong>in</strong>e.be/~cel<strong>in</strong>air/documents/pub/atta<strong>in</strong>/estimation_PM_Belgium.pdf[zitiert am 17.7.2007]H<strong>in</strong>z T. (2005). Messung luftgetragener Partikel <strong>in</strong> und aus der Geflügelhaltung.L<strong>and</strong>technik L<strong>and</strong>technk 2/2005, pp 2-3Klimont Z., Cofala J., Bertok I., Amann M., Heyes C., Gyarfas F.(2002). Modell<strong>in</strong>g <strong>Particulate</strong> Emissions <strong>in</strong> Europe. A Framework toEstimate Reduction Potential <strong>and</strong> Control Costs. International Institutefor Applied Systems Analysis, Interim Report IR-02-076 [onl<strong>in</strong>e]. Zuf<strong>in</strong>den <strong>in</strong> http://www.iiasa.ac.at/Publications/Documents/IR-02-076.pdf [zitiert am 17.7.2007]Koch W., Dunkhorst H., Lödd<strong>in</strong>g H. (2002). Evaluation of a new methodfor personal time <strong>and</strong> size resolved dust measurements at workplaces.L<strong>and</strong>bauforschung Völkenrode, Sonderheft 235, Braunschweig, pp77-82KTBL (2006). H<strong>and</strong>habung der TA Luft bei Tierhaltungsanlagen. KTBL-Schrift 447, DarmstadtLahl U. (2005). Fe<strong>in</strong>staub – e<strong>in</strong>e gesundheitspolitische Herausforderung.Vortrag zum 6. Kongress der Deutschen Gesellschaft für Pneumologie,17. März 2005, Berl<strong>in</strong>LfL (eds) (2004). Alternative Legehennenhaltung. Evaluierung alternativerHaltungsformen für Legehennen – Abschlussbericht zum Geme<strong>in</strong>schaftsprojektder L<strong>and</strong>esanstalten für L<strong>and</strong>wirtschaft der FreistaatenBayern, Sachsen und Thür<strong>in</strong>gen. Schriftenreihe der Bayerischen L<strong>and</strong>esanstaltfür L<strong>and</strong>wirtschaft (LfL), Freis<strong>in</strong>g-WeihenstephanLouhela<strong>in</strong>en K., Vilhunen P., Kangas P., Terho E. O. (1997). Dustexposure <strong>in</strong> piggeries. European Journal of Respiratory Respratory Diseases Dseases 71(suppl.) No. 152, 80-90. zitiert <strong>in</strong>: Philipps V R et al. (2002) Creatng Creat<strong>in</strong>gan <strong>in</strong>ventory of agricultural PM emissions. L<strong>and</strong>bauforschung Völkenrode,Sonderheft 235, Braunschweig, pp 21-28Niedersächsisches Umweltm<strong>in</strong>isterium (2006). Luftüberwachung Niedersachsen,Jahresberichte 2002-2006, Hannover [onl<strong>in</strong>e]. Zu f<strong>in</strong>den <strong>in</strong>http://www.umwelt.niedersachsen.de/master/C9729742_N9723829_L20_D0_I598.html [zitiert am 17.7.2007]Seedorf J., Hartung J. (2002). Stäube und Mikroorganismen <strong>in</strong> der Tierhaltung.KTBL-Schrift 393, Darmstadt, 158 pSeedorf J. (2003). Beurteilung <strong>von</strong> Stäuben und Keimen. KTBL-Vortragstagung„Aktuelle rechtliche Rahmenbed<strong>in</strong>gungen für die Tierhaltung“,17. Juni 2003, HannoverTA Luft (2002). Erste Allgeme<strong>in</strong>e Verwaltungsvorschrift zum Bundes–Immissionsschutzgesetz (Technische Anleitung zur Re<strong>in</strong>haltung derLuft – TA Luft) vom 24. Jul Juli 2002 (GMBl. 2002, Heft 25 – 29, S. 511– 605); First General Adm<strong>in</strong>istrative Regulation Perta<strong>in</strong><strong>in</strong>g the FederalImmission Control Act (Technical Instructions on Air Quality Control– TA Luft) [onl<strong>in</strong>e]. Zu fnden f<strong>in</strong>den n <strong>in</strong> http://www.bmu.de/englsh/arpollu-http://www.bmu.de/english/air_pollution_control/ta_luft/doc/36958.php[zitiert am 17.7.2007]Takai H., Pedersen S., Johnsen J. O., Metz J. H. M., Groot KoerkampP. W. G., Uenk G. H., Phillips V. R., Holden M. R., Sneath R. W.,Short J. L., White R. P., Hartung J., Seedorf J., Schröder M.,L<strong>in</strong>kert K.-H., Wathes C. M. (1998). Concentrations <strong>and</strong> emissionsof airborne dust <strong>in</strong> livestock build<strong>in</strong>gs <strong>in</strong> northern Europe. Journal ofAgricultural Eng<strong>in</strong>eer<strong>in</strong>g Research 70, pp 59-77Torfs R., Mens<strong>in</strong>k C., Bleux N., Berghmans P., Sleeuwaert F., vanRompaey H. (2007). Disentangl<strong>in</strong>g the PM problem – research to <strong>in</strong>formpolicy makers <strong>and</strong> stakeholders. DustConf 2007 Papers as presentedat the conference, CD-Rom, MaastrichtTÜV Süddeutschl<strong>and</strong> (2000). Bericht über „Grundsatzuntersuchungüber die Ermittlung der Korngrößenverteilung im Abgas verschiedenerEmittenten (< PM 2.5 und < PM 10)“, TÜV Süddeutschl<strong>and</strong>,MünchenUBA (2007). Berichterstattung 2007 unter dem Übere<strong>in</strong>kommen überweiträumige grenzüberschreitende Luftverschmutzung (UN ECE-CLRTAP). Umweltbundesamt, Berl<strong>in</strong> [onl<strong>in</strong>e]. Zu f<strong>in</strong>den <strong>in</strong> http://www.umweltbundesamt.de/emissionen/archiv/DE_2007_Tables_IV1A_1990_2005.zip [zitiert am 17.7.2007]Umweltbundesamt Wien (2005). Leitfaden UVP und IG-L. Hilfestellungim Umgang mit der Überschreitung <strong>von</strong> Immissionsgrenzwerten<strong>von</strong> Luftschadstoffen <strong>in</strong> UVP-Verfahren. Berichte BE-274, Wien


O. Beletskaya et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 27PM emissions <strong>and</strong> mitigation options <strong>from</strong> agricultural processes <strong>in</strong> GermanyO. Beletskaya 1 , I. Huck 2 , E. Angenendt 1 , J. Theloke 2 , J. Zeddies 1 , <strong>and</strong> R. Friedrich 2AbstractAgriculture is one of the sources of particulate <strong>matter</strong>(PM) emissions to the atmosphere. For calculat<strong>in</strong>g emissions<strong>and</strong> assess<strong>in</strong>g abatement potentials of mitigationmeasures, an economic-ecological model<strong>in</strong>g system iselaborated. The ma<strong>in</strong> target of the model is the improvementof the German agricultural <strong>in</strong>ventory. Primary PMwith fractions of 10 <strong>and</strong> 2.5 μm is taken <strong>in</strong>to account, becauseof a high concern for the environmental policy dueto relevant health impacts caused.Abatement strategies for the particulate <strong>matter</strong> emissionwill be formulated <strong>and</strong> assessed <strong>in</strong> the framework of the regionalmodel, EFEM (Economic Farm Emission Model).Five regions <strong>in</strong> Germany will be considered: Br<strong>and</strong>enburg,Niedersachsen, Bayern, Nordrhe<strong>in</strong>-Westfalen <strong>and</strong> Baden-Württemberg.In order to get results on the PM emission for these regions,activities (animal husb<strong>and</strong>ry, crop production, fodderpreparation, manure management, tillage, l<strong>and</strong> preparation<strong>and</strong> harvest<strong>in</strong>g operations) of different farm of varioustypes <strong>and</strong> <strong>in</strong>formation on the emission <strong>in</strong>tensities will becompiled with the help of l<strong>in</strong>ear programm<strong>in</strong>g. Emissionfactors will be either determ<strong>in</strong>ed or taken <strong>from</strong> studiesabout European agricultural particulate emission <strong>and</strong> adoptedfor the EFEM. The emission outputs of the modelwill be implemented <strong>in</strong>to the IER emission model, which isable to calculate high spatially resolved emission data.The effects of mitigation options to the PM emission <strong>from</strong>agricultural activities <strong>in</strong> Germany will be assessed on thebase of comparison of the reference year 2003 <strong>and</strong> scenario2013.F<strong>in</strong>ally, implementation strategies of the most efficientmitigation options will be elaborated, regard<strong>in</strong>g technical<strong>and</strong> non-technical measures <strong>in</strong> particular under considerationof the economic impacts to the recipients <strong>and</strong> otherregional effects.Keywords: particulate <strong>matter</strong> emission, economic-ecologicalmodel<strong>in</strong>g system, abatement strategies1 IntroductionThe contribution of <strong>agriculture</strong> to the total particulate <strong>matter</strong>(PM) emission <strong>in</strong> 2004 - 2005 <strong>in</strong> Germany was about9 per cent of the PM10 <strong>and</strong> nearly 7 per cent of PM2.5primary emission (Umweltbundesamt). PM with particlesizes of 10 <strong>and</strong> 2.5 μm is of the highest <strong>in</strong>terest for both political<strong>and</strong> healthcare organizations. On one h<strong>and</strong>, <strong>in</strong>formationon the emission of the above-mentioned PM fractionsis more desirable, because already exist<strong>in</strong>g data about itare not enough to fulfill the <strong>in</strong>ternational report<strong>in</strong>g obligations,to monitor progress <strong>in</strong> air pollution <strong>and</strong> to identifypossible mitigation strategies. On the other h<strong>and</strong>, manystudies highlight, that particles of 10 <strong>and</strong> 2.5 μm, associatedwith <strong>in</strong>halable dust (<strong>in</strong> some researches – with <strong>in</strong>halable<strong>and</strong> respirable dust respectively), cause serious healthproblems. In this relation data on PM10/PM2.5-emissionsare quite essential for further development of technologies(e.g. BAT - Best Available Technologies) effectively abat<strong>in</strong>gPM emission <strong>from</strong> agricultural systems, as well as ofpolitical measures direct<strong>in</strong>g agricultural management to amore susta<strong>in</strong>able way.2 ObjectivesThe ma<strong>in</strong> objective of the project “Model<strong>in</strong>g of sectoral,spatial disaggregated balances of greenhouse gases<strong>and</strong> assessment of environmental protection strategies atthe regional policy level” f<strong>in</strong>anced by German ResearchAssociation (DFG), is to develop an improved Germanagricultural <strong>in</strong>ventory for ammonia <strong>and</strong> greenhouse gasesemissions. PM-emission, with respect to its assessment,development of possible abatement measures <strong>and</strong> determ<strong>in</strong>ationof their effects on other environmental <strong>in</strong>dicators,has become a key issue of this study.As the result of the research follow<strong>in</strong>g sub-targets are tobe atta<strong>in</strong>ed:• Representation of emission “hot-spots” <strong>in</strong> regions <strong>and</strong>consequent choice of experiment regions.• Model<strong>in</strong>g of the primary PM emission on the level ofselected regions <strong>and</strong> their adm<strong>in</strong>istrative districts underthe consideration of various local conditions <strong>and</strong> farmstructures.1University of Hohenheim, Institute for Farm Management, Germany2Universität Stuttgart, Institute of Energy Economics <strong>and</strong> the Rational Use of Energy, Germany


28• Spatial <strong>and</strong> temporal distribution of PM emissions <strong>in</strong>experiment regions• Appraisal of future emission development <strong>and</strong> evaluationof abatement possibilities (their potentials, costs,other disadvantages <strong>and</strong> advantages) <strong>and</strong> therefore theirorder<strong>in</strong>g accord<strong>in</strong>g to efficiency <strong>and</strong> political feasibility.• Transfer of the results for chosen regions on the perspectiveof the whole of Germany.In order to reach these objectives an economic-ecologicalmodel<strong>in</strong>g system will be elaborated, also extended, improved,<strong>and</strong> f<strong>in</strong>ally implemented.3 Research regionsFive regions are taken <strong>in</strong>to consideration: Niedersachsen,Br<strong>and</strong>enburg, Bayern, Baden-Württemberg <strong>and</strong> Nordrhe<strong>in</strong>-Westfalen. Each county is subdivided <strong>in</strong>to adm<strong>in</strong>istrativedistricts (Regierungsbezirke).The above-mentioned regions have been chosen for thestudy, because “hot spots” of emission can be po<strong>in</strong>ted outaccord<strong>in</strong>g to the emission registry, <strong>and</strong> the choice of thementioned German counties was made with regard to these“hot spots”. To demonstrate the importance of various agriculturalemission sources for primary PM, it does makesense to choose regions with different key production activities.Thus, Nedersachsen Niedersachsen <strong>and</strong> Nordrhe<strong>in</strong>-Westfalen Nordrhen-Westfalen areconsidered because of their <strong>in</strong>tensive livestock production.Accord<strong>in</strong>g to the report of the German Environmental Organization,the highest amount of PM is emitted <strong>from</strong> livestockfarm<strong>in</strong>g; <strong>in</strong> 1995 the emission <strong>from</strong> animal husb<strong>and</strong>ry<strong>in</strong> Europe amounted to 4.5 per cent of PM10 <strong>and</strong> 1.7 percent of PM2.5 (Umweltbundesamt). Other most importantemission sources are fodder, dry manure (uppermost <strong>in</strong> thepoultry houses) <strong>and</strong> litter. Bayern <strong>and</strong> Baden-Württembergwere chosen, because of high shares of forage-grow<strong>in</strong>gactivities presented there (50 <strong>and</strong> 36 per cent of foragegrow<strong>in</strong>gfarms accord<strong>in</strong>gly). Besides animal production,PM emissions are registered as well <strong>from</strong> other k<strong>in</strong>d ofagricultural activities, for <strong>in</strong>stance, <strong>from</strong> arable farm<strong>in</strong>g.In this relation Br<strong>and</strong>enburg was regarded as the regionof extensive arable crop production with a high share ofarable farms (34 per cent), carry<strong>in</strong>g out their agriculturalactivities on 38 per cent of the total used agricultural l<strong>and</strong>.It is also important to mention that <strong>in</strong> all selected regions<strong>from</strong> 40 to 55 per cent of l<strong>and</strong> is under agricultural use.So, the elaboration of PM-emission mitigation policy looksquite essential for these German counties, concern<strong>in</strong>g the<strong>in</strong>formation presented above (Destatis).4 Methods <strong>and</strong> materials4.1 Economic Farm Emission Model (EFEM)Measurement of PM-emissions at the farm scale is feasible<strong>and</strong> models allow the most coherent estimat<strong>in</strong>g ofemissions at the regional scale. However, <strong>in</strong> many modelsmeasur<strong>in</strong>g of PM-emission is associated with great technicalrequirements <strong>and</strong> high costs. Recently, PM-emissionscaused by agricultural activities are considered <strong>in</strong> multisectoralmodels (e.g. RAINS - Regional Air Pollution Information<strong>and</strong> Simulation). Anyway, by the reason of theircomplexity, detailed exam<strong>in</strong>ation of the agricultural sectoris hardly possible. That is why an ecologic-economicalEconomic Farm Emission Model (EFEM) was developed(Schäfer M. 2006).EFEM was used for various projects <strong>and</strong>, therefore, itskey research issue has been cont<strong>in</strong>uously extended. Thus,the current work is dedicated to analyze PM-emission <strong>from</strong>various agricultural systems.In the model, the target of the economic analysis carriedout on the farm-level corresponds to the farmer’s <strong>in</strong>terests.Therefore the objective of EFEM is the maximization ofan <strong>in</strong>dividual farm’s gross-marg<strong>in</strong>. These farms are regardedas representative for all farms of the same type <strong>in</strong> thesame region, <strong>and</strong> their objective function can be writtenas follows:max π k= (p i- c i) * x k,x ks.t. A k* x k≤ z k, x k≥ 0,where π kis the total gross-marg<strong>in</strong> of the k-th farm-type,p i<strong>and</strong> c iare n-vectors for the i-th sell<strong>in</strong>g price <strong>and</strong> variablecosts of the i-th production activity consequently, x kisthe n-vector of comm<strong>and</strong> variables. The constra<strong>in</strong>ts facedby farm-type k are def<strong>in</strong>ed through A k<strong>and</strong> z k, determ<strong>in</strong><strong>in</strong>gm×n-<strong>in</strong>put-output matrix <strong>and</strong> m-vector of capacitiesaccord<strong>in</strong>gly.Comm<strong>and</strong> variables <strong>in</strong> EFEM are area associated to eachcrop (<strong>in</strong>clud<strong>in</strong>g grassl<strong>and</strong> <strong>and</strong> set-aside area), the numberof animals <strong>from</strong> different categories, <strong>and</strong> quantity ofpurchased animal feed<strong>in</strong>g, variables related to policy programs(enrolment <strong>in</strong> environmental or set-aside programs),total greenhouse gases emissions. In the letter case p i<strong>and</strong>c iare substituted by the tax on emissions (De Cara S. et al.2006).EFEM is a mixed <strong>in</strong>teger model, one of special cases ofl<strong>in</strong>ear programm<strong>in</strong>g, where the correspond<strong>in</strong>g variables canbe <strong>in</strong>cluded as both b<strong>in</strong>ary <strong>and</strong> <strong>in</strong>teger. The given approachreflects the possibility of farmers to deal <strong>in</strong> mutually exclusivepolicy programs <strong>in</strong>clud<strong>in</strong>g different obligations <strong>and</strong>payments. EFEM takes <strong>in</strong>to account crop <strong>and</strong> grassl<strong>and</strong>


O. Beletskaya et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 29products <strong>and</strong> crop by-products, which can be used on farmfor feed<strong>in</strong>g purposes, for litter, or green manure sell<strong>in</strong>g (DeCara S. et al. 2006).There are the follow<strong>in</strong>g constra<strong>in</strong>ts def<strong>in</strong>ed by A k:1) Cropp<strong>in</strong>g area2) Crop rotation3) Animal hous<strong>in</strong>g places <strong>and</strong> animal demography4) Livestock feed requirements5) Quotas6) Restrictions imposed by policy <strong>and</strong> environmentalprogramsIn EFEM total l<strong>and</strong> is fixed at <strong>in</strong>itial l<strong>and</strong> endowmentof each farm-type. Crop rotation constra<strong>in</strong>ts relate to maximumarea shares of certa<strong>in</strong> crops <strong>in</strong> a rotation process.Based on historical observations <strong>and</strong> calibrated to reflectcommon practices <strong>and</strong> rationality of agricultural bus<strong>in</strong>ess,these constra<strong>in</strong>ts aim at substitut<strong>in</strong>g the dynamics of croprotation <strong>and</strong> thereafter translat<strong>in</strong>g it <strong>in</strong>to a static model.Livestock numbers are also limited by the availability offixed capital (number of hous<strong>in</strong>g places). As for model<strong>in</strong>gof animal feed requirements, the m<strong>in</strong>imum requirementsof energy <strong>and</strong> prote<strong>in</strong> for each livestock category are to bemet, as well as for digestible <strong>matter</strong>. Among quotas sugarbeet <strong>and</strong> milk quotas are dist<strong>in</strong>guished as constra<strong>in</strong>ts. Setasiderequirements fell <strong>in</strong>to the category of restrictions imposedby policy end environmental programs (De Cara S.et al. 2006).The core of EFEM, show<strong>in</strong>g an <strong>in</strong>teraction of both economic<strong>and</strong> environmental elements, is the production module.The model is adapted to f<strong>in</strong>d simultaneous solutions ofmultidimensional problems <strong>and</strong> adjusted for various farmstructures.Last-mentioned were chosen accord<strong>in</strong>g to thebus<strong>in</strong>ess alignment (BWA – Betriebswirtschaftliche Ausrichtung),with the only exception: horticultural bus<strong>in</strong>esswas excluded <strong>from</strong> the model<strong>in</strong>g. Agricultural activities ofthe follow<strong>in</strong>g 5 farm-types will be regarded: arable farm<strong>in</strong>g,permanent cropp<strong>in</strong>g, forage-grow<strong>in</strong>g, <strong>in</strong>tensive livestock,<strong>and</strong> mixed farms.The model is composed of different sub-models, mak<strong>in</strong>gpossible a representation of all relevant production processesof arable farm<strong>in</strong>g <strong>and</strong> grassl<strong>and</strong> management, withrelated mechanization, animal husb<strong>and</strong>ry with a disaggregatedfeed<strong>in</strong>g module, manure management <strong>and</strong> nitrogencirculation. Besides these mentioned constituents, productionmodules of each mentioned sub-module also conta<strong>in</strong>energy, emission <strong>and</strong> stock flow parameters for quantificationof emissions caused by the above-mentioned operations.Moreover, greenhouse gases <strong>and</strong> PM emissions aredifferentiated accord<strong>in</strong>g to the production branch, whichthese gases <strong>and</strong> PM outflow <strong>from</strong> (see figure 1).Figure 1:Crop productionFarm structure moduleProduction moduleMechanizationFeed<strong>in</strong>g moduleAnimal productionManure moduleN-cycle-N-output modelGrassl<strong>and</strong> productionOUTPUTEconomic results, production structures<strong>and</strong> quantities, emissionsBuild-up of the EFEM (Triebe S. 2007)Costs <strong>and</strong> activities data such as yield, productivities, <strong>and</strong><strong>in</strong>tensities are different <strong>from</strong> region to region. All productionactivities presented <strong>in</strong> EFEM are highly disaggregatedaccord<strong>in</strong>g to the level of <strong>in</strong>put-use <strong>and</strong> performance.Firstly, <strong>in</strong> general 14 different arable crops are <strong>in</strong>tegrated<strong>in</strong>to EFEM: w<strong>in</strong>ter- <strong>and</strong> summer-wheat, w<strong>in</strong>ter- <strong>and</strong> summer-barley,oats, rye, w<strong>in</strong>ter-rape, sugar beets, potatoes,field beans, sunflowers, gra<strong>in</strong> maize <strong>and</strong> silage corn, aswell as clover-grass. Each crop-production activity canbe comb<strong>in</strong>ed with different fertilization <strong>in</strong>tensities. Secondly,EFEM dist<strong>in</strong>guishes between two grassl<strong>and</strong> activities:meadow <strong>and</strong> pasture (Triebe S. 2007; De Cara S. etal. 2006). Thirdly, livestock production is also subdividedaccord<strong>in</strong>g to levels of performance for ma<strong>in</strong> animal categorieskept <strong>in</strong> selected regions. The part of the model devotedto animal husb<strong>and</strong>ry <strong>in</strong>cludes data on dairy farm<strong>in</strong>g,calves, heifers, bulls, fatten<strong>in</strong>g pigs, cows, sheep, <strong>and</strong> <strong>in</strong>tensivelivestock farm<strong>in</strong>g with emphasis on hog <strong>and</strong> poultryproduction (Triebe S. 2007).PM-emissions are differentiated <strong>in</strong> EFEM for follow<strong>in</strong>gagricultural activities: l<strong>and</strong> preparation, seed<strong>in</strong>g, harvest<strong>in</strong>g,livestock as well as forage production <strong>and</strong> manuremanagement. Therefore, emission factors for these productionactivities <strong>and</strong> the operations they comprise are considered<strong>in</strong> the model. For <strong>in</strong>stance, emission <strong>in</strong>tensities forsuch operations of arable farm<strong>in</strong>g as l<strong>and</strong> preparation, cropproduction, <strong>and</strong> harvest<strong>in</strong>g are accounted for. In the case offeed<strong>in</strong>g <strong>and</strong> manure managements the production of feed<strong>and</strong> manure consequently is considered. For animal hus-


30b<strong>and</strong>ry various types of manure <strong>and</strong> hous<strong>in</strong>g systems aretaken <strong>in</strong>to account while determ<strong>in</strong><strong>in</strong>g emission factors.Information on the emission <strong>in</strong>tensity <strong>and</strong> farm activitiesdata, <strong>in</strong>tegrated <strong>in</strong>to EFEM allows analyz<strong>in</strong>g <strong>and</strong> predict<strong>in</strong>gthe development of PM emission firstly on the farmlevel. With the next step of model<strong>in</strong>g due to numerousmodel-calculations, technical <strong>and</strong> political abatement strategieswith the accent on their reduction potentials are exam<strong>in</strong>edon the same level. Targeted technical <strong>and</strong> politicaloptions are to be oriented to assess PM emission <strong>and</strong>, atthe result, to f<strong>in</strong>d out a proper ways to m<strong>in</strong>imize or evenelim<strong>in</strong>ate it.In EFEM optimized results for <strong>in</strong>dividual farms will beextended to the regional level due to a special extrapolationprocedure.areas selected for the research will be calculated <strong>in</strong> a spatialresolution of 5 km x 5 km. Results will be parameterised,so that the emissions <strong>in</strong> other regions of Germany can beassessed. The spatial resolution of the GIS regard<strong>in</strong>g thewhole of Germany will be 10 km x 10 km. If more than onecounty is located <strong>in</strong> a grid segment, the respective emissionsof each county will be weighted by the relative sizeof its area, result<strong>in</strong>g <strong>in</strong> the average emissions of the segment.The result<strong>in</strong>g resultng shares are stored <strong>in</strong> n two database tables<strong>and</strong> used by the ECM for multiplication with the yearlyemission data <strong>and</strong> temporal profiles.Data base of yearly emissions 1994 - 2000, 2010 <strong>in</strong>cl.Po<strong>in</strong>t sourcesLCP, <strong>in</strong>dustry, airports, l<strong>and</strong>fillsArea sourcesNUTS or gridsSpatial resolutionL<strong>in</strong>e sources NUTS or gridsnon-urban road/rail transportCorrespond<strong>in</strong>g GIS Coverage (NUTS 0, 1, 2, 3 or grids)GIS-based grid <strong>in</strong>tersection with digitisedcoord<strong>in</strong>ates l<strong>and</strong> use data road netSpatial resolutione.g. 10 x 10 km-gridsource <strong>and</strong> country specific temporal profilesdaily-, weekly- <strong>and</strong> yearly profiles of different driv<strong>in</strong>g forcesTemporal resolutionhourly/dailyEmission data <strong>in</strong> spatial <strong>and</strong> temporal resolutionas <strong>in</strong>put data for the modell<strong>in</strong>g of atmospheric concentrationsFigure 2:General approach for the generation of emission data <strong>in</strong> high spatial <strong>and</strong> temporal resolution with<strong>in</strong> the IER emission model (Pregger T. et al., 2007)4.2 IER ECM-modelThe <strong>in</strong>formation on PM-emission result<strong>in</strong>g <strong>from</strong> theEFEM-model will be implemented <strong>in</strong>to the IER emissioncalculation model (ECM). The latter is developedto calculate emission data with a high spatial resolution.The basic methodology of the IER approach is shown <strong>in</strong>figure 2.The model starts with a yearly emission table that <strong>in</strong>cludespo<strong>in</strong>t, area <strong>and</strong> l<strong>in</strong>e sources us<strong>in</strong>g different geographic datafor spatial allocation of these source types. Spatial allocationbased on GIS <strong>in</strong>tersection leads to grid- <strong>and</strong> cellsharesof emission sources considered. PM emssons emissions n <strong>in</strong>5 Source dataTo build up the regional typical farm-model, bookkeep<strong>in</strong>gdata for <strong>in</strong>dividual farms <strong>in</strong> the considered Germancounties for the reference year 2003 are needed. This <strong>in</strong>formationis obta<strong>in</strong>ed <strong>from</strong> Farm Accountancy Data Network(FADN). Test-farms are to be assessed on the regional level<strong>and</strong>, thereafter, averaged. For each region up to 5 typicalfarms, whose factor endowments are close to averageresults, will be selected.FADN databank conta<strong>in</strong>s consistent <strong>in</strong>formation on costs,prices, areas, <strong>and</strong> <strong>in</strong>come for all selected regions <strong>and</strong> adm<strong>in</strong>istrativedistricts of Germany. FADN provides <strong>in</strong>for-


O. Beletskaya et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 31mation on important agricultural products (meat, milk,crops, etc.), but does not take <strong>in</strong>to account any changes ofproduction <strong>in</strong>tensities of a s<strong>in</strong>gle production process. Foreach farm type <strong>in</strong>put <strong>and</strong> production <strong>in</strong>tensities are fixedthroughout prices, costs <strong>and</strong> yields for a certa<strong>in</strong> farm-type.In return that means that the use of FADN data requiresan analysis of the changes of agricultural management <strong>in</strong>ducedby deviations <strong>from</strong> the orig<strong>in</strong>al one. This divergencehas significant <strong>in</strong>fluence on fertilizer application, cultivatedcrops <strong>and</strong> so forth (Vabitsch A. M., 2006).At the result of a comparison between data <strong>from</strong> FADN<strong>and</strong> regional statistics, significant differences were found.Moreover, figures <strong>from</strong> FADN for the same parameters<strong>and</strong> regions are lower than those <strong>from</strong> the regional statistics.Such a difference can be expla<strong>in</strong>ed by the fact that thebookkeep<strong>in</strong>g <strong>in</strong>formation for part-time farms is not taken<strong>in</strong>to account <strong>in</strong> the FADN-database. To be able to projectthe results <strong>from</strong> farm to regional level, a methodology forextrapolation was developed. It is based on an optimizationapproach, which eases the representation of total capacitiesof regarded regions through the weight<strong>in</strong>g of capacities oftypical farm-types. In FADN alternative extrapolation factorsexpress<strong>in</strong>g number of representative farms are used.But for the case of EFEM these farms cannot be used asextrapolation coefficients, firstly, because of the deviation<strong>from</strong> regional statistics. Therefore extrapolation factors arebe<strong>in</strong>g elaborated accord<strong>in</strong>g to the approach presented bySchäfer M. (2006). Its basic pr<strong>in</strong>ciple presumes the presentationof a serial of typical model farms, their assessment<strong>and</strong> weight<strong>in</strong>g <strong>in</strong> order to match them to the exist<strong>in</strong>gregional production <strong>and</strong> farm structures <strong>and</strong>, therefore, torepresent regional capacities exactly. Rather typical thanaverage farms will be extrapolated <strong>in</strong> this study. Each ofthe regional capacities will be weighted with the respectivegross-marg<strong>in</strong> to guarantee that they won’t be overestimated.Monetary deviations, i.e. sums of absolute under- <strong>and</strong>overestimations are to be m<strong>in</strong>imized through the optimizationapproach (Schäfer M. 2006).Factor endowments for each region will be exactly assesseddue to the multiplication of the adjusted farmscapacities with the weight<strong>in</strong>g coefficient. Extrapolationprocedure additionally assures that farm structures <strong>in</strong> theselected counties are well represented.On the basis of bookkeep<strong>in</strong>g data together with <strong>in</strong>formationon PM-emission <strong>in</strong>tensities, the presentation presentaton of aGerman detailed agricultural <strong>in</strong>ventory for PM10/PM2.5-emissions <strong>from</strong> <strong>agriculture</strong> is to be done. It is the ma<strong>in</strong> concernof the work <strong>in</strong> the described research project. Emission-factorswill be provided by IER on the base of owncalculations <strong>and</strong> literature research.The choice of PM emission factors has appeared to be aquite problematic issue, mostly because of the absence of aworldwide unique <strong>in</strong>ventory system. Information on emission<strong>in</strong>tensity for different PM fractions, measurement aggregations<strong>and</strong> units make it difficult to use emission datafor the f<strong>in</strong>al model<strong>in</strong>g without additional preprocess<strong>in</strong>g.There is still not enough <strong>in</strong>formation to conclude about thecontribution of, for example, arable farm<strong>in</strong>g with relevantoperations of l<strong>and</strong> preparation, crop production <strong>and</strong> harvest<strong>in</strong>g.Even if there is any <strong>in</strong>formation on PM-emission<strong>in</strong>tensity, very few studies analyze how uncerta<strong>in</strong> emissionfactors can be calculated <strong>and</strong>, therefore, comparison of <strong>in</strong>formationon emission <strong>from</strong> different researchers showsnot always clearly where emission data are overestimated<strong>and</strong> where they are underestimated.Very often European emission is assumed as be<strong>in</strong>g equalor at least equivalent to the American one without considerationof different climate <strong>and</strong> soil conditions. The uppermostreason is that the emission factors are more readilyavailable <strong>in</strong> American studies than <strong>in</strong> European ones. Thisholds particularly true for emission studies <strong>from</strong> California.Due to the lack of relevant European research the contributionof some agricultural activities to the total PM emissionis still not known as, for <strong>in</strong>stance, <strong>in</strong> the case of operationson l<strong>and</strong> preparation.However emission data <strong>from</strong> some sources are alreadyused <strong>in</strong> big projects <strong>and</strong> can be used as well to build up thecurrent model on the PM-emission. Thus, <strong>in</strong> the RAINSmodeldeveloped at the International Institute for AppliedSystems Analysis (IIASA) the exist<strong>in</strong>g structure for assessmentof gaseous emissions was already extended toestimate PM-emission. For an appraisal of the PM-emission<strong>from</strong> animal production <strong>and</strong> arable crop productionthe most important animal categories <strong>and</strong> arable farm<strong>in</strong>gactivities have been chosen, <strong>in</strong> other words, the aggregationof parameters, regarded as PM-emission sources, <strong>in</strong>RAINS is very general. The elaboration of eventual emissionfactors <strong>in</strong> this model is based on the results of twostudies: Takai H. et al. (1998) <strong>and</strong> ICC&SRI (2000).Some studies <strong>from</strong> the German Federal Agricultural ResearchCentre (FAL) <strong>and</strong> the Leibniz-Centre for AgriculturalL<strong>and</strong>scape <strong>and</strong> L<strong>and</strong> Use Research (ZALF) <strong>in</strong> turnprovide sufficient <strong>in</strong>formation on emission <strong>from</strong> the arablefarm<strong>in</strong>g. Here the aggregation of PM-emission sources accord<strong>in</strong>gto different operations is relatively detailed.The study of Seedorf J. (2004) is another source of <strong>in</strong>formationon emission <strong>from</strong> animal production. Measur<strong>in</strong>gtechniques used for this work are different <strong>from</strong> those appliedby Takai H., et al. (1998). This is possibly the mostsignificant reason for differences <strong>in</strong> the two studies’ results.Anyway, emission is measured for <strong>in</strong>halable <strong>and</strong> respirabledust <strong>in</strong> both works. But if <strong>in</strong> RAINS <strong>in</strong>halable <strong>and</strong> respirabledust <strong>from</strong> Takai H., et al. (1998) was associated withPM10 <strong>and</strong> PM2.5 accord<strong>in</strong>gly, Seedorf J. (2004) suggeststransformation factors <strong>in</strong> order to obta<strong>in</strong> PM10 <strong>and</strong> PM2.5emphasiz<strong>in</strong>g that these conversion data should be used very


32carefully, because there is no clear correlation between <strong>in</strong>halable<strong>and</strong> respirable dust <strong>and</strong> the above-mentioned PMfractions. Moreover, Seedorf J. (2004) suggested to take<strong>in</strong>to account hous<strong>in</strong>g periods to make data more precise<strong>and</strong> presented the way how these data can be calculated.Klimont Z. <strong>and</strong> Amann M. (2002) (IIASA) have also suggestedto elaborate emission factors consider<strong>in</strong>g hous<strong>in</strong>gperiod but the way of its calculation is not clear.6 Expected resultsThe most prom<strong>in</strong>ent strength, responsible for the resultsexpected <strong>from</strong> the implementation of the EFEM-model,is the possibility to calculate simultaneously both consequencesof abatement strategies <strong>and</strong> development of PMemissions.The model allows an appraisal of emissions <strong>from</strong> agriculturalsystems on farm <strong>and</strong> regional levels. Calculatedresults for the PM-emission will be differentiated accord<strong>in</strong>gto the farm-type <strong>and</strong> regional conditions. At the resultof a sophisticated regional analysis, strategies with themost efficient mitigation options will be chosen, regard<strong>in</strong>gtechnical <strong>and</strong> non-technical measures, for the simulation smulaton ofhow agricultural policies (for <strong>in</strong>stance subsidies, law) <strong>and</strong>socioeconomic framework (prices, labour, etc.) <strong>in</strong>fluencefarmers’ decisions on management options <strong>and</strong> on <strong>in</strong>tensityof agricultural activities, that eventually affect the expectedrevenue. Thus, these abatement strategies strateges are to be evaluatedthrough measurements <strong>in</strong>fluenc<strong>in</strong>g either activities orspecific emissions of each activity unit (emission factors),with respect to environmental effectiveness <strong>and</strong> economicfeasibility.Due to the whole model<strong>in</strong>g process, depiction of spatialdistribution of PM-emission “hot-spots” will be representedthrough the implementation of GIS. Regional results areto be extrapolated for the whole of Germany. Therefore, thedevelopment of an improved German emission <strong>in</strong>ventoryis expected <strong>from</strong> the implementation of the EFEM-model.An emission <strong>in</strong>ventory for PM will be presented for theyear 2003, effects of mtgaton mitigation optons options n <strong>in</strong> Germany wll willbe appraised on the base of the reference scenario for 2013,compar<strong>in</strong>g calculated emission with emissions <strong>in</strong> a referencescenario. With the scenario 2013, future PM-emission<strong>from</strong> <strong>agriculture</strong> will be evaluated under consideration ofagricultural policy development.7 ReferencesDe Cara S., Blank D., Carré-Bonsch F., Jayet P.-A. (2006). A twomodelcomparison of GHG emissions <strong>and</strong> abatement costs <strong>in</strong> Baden-Württemberg. INSEA, Project Report (FP 6)Destatis (Statistische Bundesamt Deutschl<strong>and</strong>), http://www.destatis.de,21.05.2007H<strong>in</strong>z T. (2004). Agricultural PM10 Emissions <strong>from</strong> Plant Production.Task Force on Emission Inventories <strong>and</strong> Projections, http://tfeip-secretariat.org/pallanza/041_Agricultural_PM10_Emissions_<strong>from</strong>_Plant_Production.pdf, 17.01.2007ICC <strong>and</strong> SRI (I C Consultants <strong>and</strong> Silsoe Research Institute) (2000).Atmospheric emissions of particulates <strong>from</strong> <strong>agriculture</strong>: a scop<strong>in</strong>gstudy. F<strong>in</strong>al report for the M<strong>in</strong>istry of Agriculture, Fisheries <strong>and</strong> Food(MAFF) Research <strong>and</strong> Development, London, UKKlimont Z., Amann M. (2002). European control strategy for f<strong>in</strong>e particles:the potential role of <strong>agriculture</strong>. L<strong>and</strong>bauforschung Völkenrode,Special issue 235, pp. 29–35Neufeldt H., Schäfer M., Angenendt E., Li Ch., Kaltschmitt M., ZeddiesJ. (2006). Disaggregated greenhouse gas emissions <strong>in</strong>ventories<strong>from</strong> <strong>agriculture</strong> via a coupled economic-ecosystem model. Agriculture,Ecosystems <strong>and</strong> Environment 112 (2006), pp. 233-240Agrcultu-Pregger T., Scholz Y., Friedrich R. (2007). Documentation of the anthropogenicGHG emission data for Europe provided <strong>in</strong> the frame ofCarboEurope GHG <strong>and</strong> CarboEurope IP. University of Stuttgart, IER(Institute of Energy <strong>and</strong> the Rational Use of Energy)Schäfer M. (2006). Abschätzung der Emissionen klimarelevanter Gaseaus der L<strong>and</strong>wirtschaft Baden-Württembergs und Bewertung <strong>von</strong>M<strong>in</strong>derungsstrategien unter Nutzung e<strong>in</strong>es ökonomisch-ökologischenRegionalmodells. Shaker Verlag.Seedorf J. (2004). An emission <strong>in</strong>ventory of livestock-related bioaerosolsfor Lower Saxony, Germany. Atmospheric Environment 38 (2004),pp.6565-6581, 23.04.2007Takai H., Pedersen S., Johnsen J. O., Metz J .H. M., Groot KoerkampP. W. G., Uenk G. H., Phillips V. R., Holden M. R., Sneath R. W.,Short J. L., White R. P., Hartung J., Seedorf J., Schröder M., L<strong>in</strong>kertK.H. <strong>and</strong> Wathes C. M. (1998). Concentrations <strong>and</strong> emissions ofairborne dust <strong>in</strong> livestock build<strong>in</strong>gs <strong>in</strong> northern Europe. Journal of AgriculturalEng<strong>in</strong>eer<strong>in</strong>g Research Vol. 70, pp. 59-77.Triebe S. (2007). Möglichkeiten zur Verm<strong>in</strong>derung <strong>von</strong> Treibhausgasenaus der L<strong>and</strong>wirtschaft <strong>in</strong> der Bundesländern Br<strong>and</strong>enburg und Niedersachsen.Dissertation, Dssertaton, Hohenhem. Hohenheim.Umweltbundesamt, http://www.umweltbundesamt.de/uba-<strong>in</strong>fo-presse/h<strong>in</strong>tergrund/fe<strong>in</strong>staub.pdf, 13.05.2007Vabitsch A. M. (2006). Qualitativer Vergleich <strong>von</strong> Modellen zur Bewertung<strong>von</strong> Klimaschutzmaßnahmen <strong>in</strong> Europa unter besonderer Berücksichtigungder L<strong>and</strong>wirtschaft. Dssertaton Dissertation zur Erlangung des Gradese<strong>in</strong>es Doktors der Agrarwissenschaften. Universität Hohenheim. pp.85-87


H. Hnilicova et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 33Agricultural particulate <strong>matter</strong> emissions <strong>in</strong> the Czech RepublicH. Hnilicova 1 <strong>and</strong> P. Hnilica 2AbstractRecent studies have demonstrated adverse effect of particulate<strong>matter</strong> on human health. Area of the Czech Republic,where is annual limit value of PM10 exceeded, permanently<strong>in</strong>creases. In order to prepare effective measureof air quality improvement we have to compose completeemission <strong>in</strong>ventory. One item, that <strong>in</strong> Czech emission <strong>in</strong>ventoriesis miss<strong>in</strong>g, is emissions of <strong>agriculture</strong> activities.On preparation emission <strong>in</strong>ventories are national emissionfactors preferred. In the Czech Republic no <strong>agriculture</strong>emissions were realized, therefore we will adapt USEPAmethod.Basic operations on arable farm<strong>in</strong>g are:••••soil preparationharvest<strong>in</strong>gtransportunload<strong>in</strong>gpost harvest treatment•Emissions <strong>from</strong> transport, unload<strong>in</strong>g <strong>and</strong> post harvesttreatment are <strong>in</strong>cluded <strong>in</strong> other source categories for thatreason we will deal with soil preparation <strong>and</strong> harvest<strong>in</strong>g.Accord<strong>in</strong>g to USEPA emission factors <strong>from</strong> this operationsare depended on•••soil type respective its silt contentweather conditionsspecies of vegetal productsmethod of soil preparation•All the above items will be <strong>in</strong>corporated <strong>in</strong>to emissionfactors.For emission estimation <strong>from</strong> animal farm<strong>in</strong>g it was taken<strong>in</strong>to account species <strong>and</strong> age structure of animals <strong>in</strong> theCzech breeds <strong>and</strong> breed<strong>in</strong>g technique.Keywords: asrable farm<strong>in</strong>g, animal farm<strong>in</strong>g, PM emissions,agricultural operationsIntroductionAgriculture particles are emitted <strong>from</strong> both animal <strong>and</strong>plant production. Their composition is very various <strong>and</strong>depends on particle orig<strong>in</strong>. Particles <strong>from</strong> plant production<strong>in</strong>clude soil m<strong>in</strong>erals, organic material <strong>from</strong> plants, pollen<strong>and</strong> fungal spores. From animal production there are particlescom<strong>in</strong>g <strong>from</strong> feed, rest of sk<strong>in</strong> <strong>and</strong> hairs <strong>and</strong> also drymanure (Atmospherc Atmospheric emissions emssons of particulates partculates <strong>from</strong> <strong>agriculture</strong>:a scop<strong>in</strong>g study, 2000). Agrcultural Agricultural boaerosols bioaerosolscause respiratory disease <strong>and</strong> some <strong>matter</strong> presented <strong>in</strong> thisaerosol cause allergic reaction of sk<strong>in</strong>, eye <strong>and</strong> nasal mucosa.Agricultural emissions come <strong>from</strong> housed livestock,arable farm<strong>in</strong>g, crop storage, energy used on farms <strong>and</strong> unpavedroads on farm. The emission <strong>from</strong> energy used <strong>and</strong>crop storage have been <strong>in</strong>cluded <strong>in</strong> our <strong>in</strong>ventory for thatreason we try to estimate emission <strong>from</strong> housed livestock<strong>and</strong> arable farm<strong>in</strong>g <strong>in</strong> this paper. The emission estimation<strong>from</strong> housed livestock is based on methodology presented<strong>in</strong> AEI Guidebook (2006). S<strong>in</strong>ce the chapter on arablefarm<strong>in</strong>g emissions is not available the emission estimationfor this source category is based on USEPA methodology.Arable farm<strong>in</strong>gThe current version of AP-42 (i.e., the 5th edition) doesnot address agricultural till<strong>in</strong>g even though a PM10 emissionfactor for fugitive dust generated by agricultural till<strong>in</strong>gwas developed by Midwest Research Institute <strong>in</strong> 1983 <strong>and</strong>adopted by the USEPA <strong>in</strong> their 4th edition of AP-42. Thus,the methodology adopted by the California Air ResourcesBoard (CARB) (Countess Environmental (2004) WRAPFugitive Dust H<strong>and</strong>book) is presented as the primary emissionsestimation methodology <strong>in</strong> lieu of an official EPAmethodology for this fugitive dust source category.The way of till<strong>in</strong>g fields, the soil <strong>and</strong> climatic conditions<strong>in</strong> Mid-West is very different <strong>from</strong> conditions <strong>in</strong> the CzechRepublic therefore it was necessary to adapt this emissionmodel.The USEPA (NATIONALAIR AIR POLLUTANTEMISSIONTRENDS, 1900 – 1998, 2000) has published publshed a general empiricalformula for dust emissions due to l<strong>and</strong> preparation,which can be used to estimate the amount of particulate<strong>matter</strong> (PM10, PM2.5) generated per acre-pass.1Czech Hydrometerological Institute, Prague 4, Czech Republic2Private researcher


340.6E = k × S × a × c × pwhereS =% silt content of the soil def<strong>in</strong>ed as the massfraction of particles smaller than 75 µm diameterfound <strong>in</strong> soil to a depth of 10 cm (%)field areaconstant emission factor (c = 4.8 lbs/acre-pass)a =c =p = number of till<strong>in</strong>gThe amount of emission depends on soil type only not onthe type of work<strong>in</strong>g operation for this type of emission estimation.Modified model takes the type of work<strong>in</strong>g operation<strong>in</strong>to account but there is no dependence on character ofsoil under the plough (cultivated l<strong>and</strong>). For this reason thefollow<strong>in</strong>g relation for emission estimation is applied.×∑ a j× ( ∑ EF )0.6E = k × SiwhereE =k =S =a j=PM emissionsdimensionless particle size multiplier (EPAdefault is for PM10 = 0.21, PM2.5 = 0.042)weighted mean % silt content of the soil <strong>in</strong> theCzech Rep.areas under farm crops for each <strong>in</strong>dividual crops12∑EF = sum of emission factors for <strong>in</strong>dividual work<strong>in</strong>gioperation us<strong>in</strong>g dur<strong>in</strong>g the field works performedfor the most frequently grown plants dur<strong>in</strong>g theyearNature conditions of Czech RepublicThe Czech Republic is a l<strong>and</strong>locked country located <strong>in</strong>moderate geographical latitudes <strong>in</strong> the Northern Hemisphere.The climate of the Czech Republic can be labeledas moderate, of course with great local diversity seenthroughout the year. The most important factor <strong>in</strong> the diversityof the Czech climate rema<strong>in</strong>s the varied topography,thanks to which the climate varies among <strong>in</strong>dividualregions of the country. These factors cause regional differencesof air temperature, precipitation amount, w<strong>in</strong>ds <strong>and</strong>consequently the variability of soil moisture.Soil types <strong>and</strong> methods of their <strong>agriculture</strong> cultivationAll above mentioned climatic factors <strong>in</strong>fluence the methodsof <strong>agriculture</strong> soil cultivation. The way of soil preparationdepends on the amount of precipitations <strong>in</strong> autumn.This is the time for sow<strong>in</strong>g of w<strong>in</strong>ter wheat <strong>and</strong> rape. Generallyspeak<strong>in</strong>g the dryer autumn the more procedures areneeded for l<strong>and</strong> preparation for sow<strong>in</strong>g.Figure 1:Soil map of Czech Republic


H. Hnilicova et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 35Another factor that <strong>in</strong>fluences <strong>agriculture</strong> soil cultivation<strong>and</strong> PM emission dur<strong>in</strong>g the field works is the soil type. Thesoil map of the Czech Republic is presented on figure 1.Accord<strong>in</strong>g to the Czech classification classfcaton (Petr J., et al.1989), the major part of soils sols <strong>in</strong> n the Czech Republic Republc falls <strong>in</strong> ncategory “middle”. This category implies “loam“ <strong>and</strong> “siltloam” categories accord<strong>in</strong>g to triangle classification. TheCzech soil classification <strong>and</strong> the triangle one are compared<strong>in</strong> table 1. The weighted mean of silt content amounts to 40% <strong>in</strong> the Czech Republic.Table 1:Soil classificationCzech Soil Type Soil Type texture triangle Silt Content (%)light s<strong>and</strong> 12light middle loamy s<strong>and</strong> 12s<strong>and</strong>y loam 33middle silt loam 52loam 40heavy middle clay loam 29heavy clay 29On the base of data <strong>from</strong> the Statistical yearbook (2006)there were selected crops whose areas under crops coverabout 80 % of arable soil <strong>in</strong> the Czech Republic. For thesecorps there were specified the typical operations of l<strong>and</strong>preparation. These operations were chosen <strong>from</strong> Czechpublications (Petr J. et al. 1989, Autorský kolektiv 1998,Pulkrábek J. 2003) <strong>and</strong> consulted wth with farmers (see table 2<strong>and</strong> table 3). Emission factors were selected <strong>from</strong> the work(Bogman P. et al. (2007). Emsson Emission factors publshed published n <strong>in</strong> thsthisstudy stem <strong>from</strong> measurements which were provided forthe soil type with the silt content amount<strong>in</strong>g to 40 %.This value corresponds to the weighted mean content ofsilt <strong>in</strong> soils <strong>in</strong> Czech Republic. The equation (2) transforms<strong>in</strong>toE×∑ a j× ( ∑ EF )= ki3because formula ∑ EFi <strong>in</strong>cludes of soil texture <strong>in</strong>fluence.A soil preparation for seed<strong>in</strong>g is divided <strong>in</strong>to operationsfor spr<strong>in</strong>g <strong>and</strong> w<strong>in</strong>ter crops. The first ones always emit lessdust particles then autumnal operations, because the soilis mostly moist by spr<strong>in</strong>g when they are performed. Thiswas also the reason why the emission factor for float<strong>in</strong>ghas been decreased for spr<strong>in</strong>g compared to the autumnseason. Furthermore, it should be mentioned that dem<strong>and</strong>sfor work<strong>in</strong>g operations for particular crop may differ evenwith<strong>in</strong> one farm <strong>and</strong> depend on factual soil conditions.Emissions for the Czech Republic were calculated accord<strong>in</strong>gto formula 2, where we take B = 1 for S = 40 % as atypical value <strong>in</strong> the Czech Republic.Table 2:Agriculture operations for w<strong>in</strong>ter cereals <strong>and</strong> w<strong>in</strong>ter rapeOperationWet autumnTSP emissions(kg/ha)W<strong>in</strong>ter cropsOperationDry autumnTSP emissions(kg/ha)root cutt<strong>in</strong>g 1.26 root cutt<strong>in</strong>g 1.26disc<strong>in</strong>g, till<strong>in</strong>g,chisel<strong>in</strong>g4.50 disc<strong>in</strong>g, till<strong>in</strong>g,chisel<strong>in</strong>g4.50fertiliz<strong>in</strong>g 0.60 fertiliz<strong>in</strong>g 0.60float<strong>in</strong>g 4.50 2x float<strong>in</strong>g 9.00seed<strong>in</strong>g 4.50 seed<strong>in</strong>g 4.50spray<strong>in</strong>g 0.60 spray<strong>in</strong>g 0.60harvest<strong>in</strong>g 5.50 harvest<strong>in</strong>g 5.50Table 3:Agriculture operations for spr<strong>in</strong>g cereals, corn <strong>and</strong> sugar beetOperationSpr<strong>in</strong>g cropsTSP emissions(kg/ha)root cutt<strong>in</strong>g 1.26plough<strong>in</strong>g 4.50fertiliz<strong>in</strong>g 0.60float<strong>in</strong>g + seed<strong>in</strong>g 2.50spray<strong>in</strong>g 0.60harvest<strong>in</strong>g 1 5.50for corn <strong>and</strong> sugar beet cultivation 3.001without sugar beetResults of arable farm<strong>in</strong>g emissions assessment for theCzech RepublicResults of assessment of emissions <strong>from</strong> arable farm<strong>in</strong>g<strong>in</strong> the Czech Republic are summarized <strong>in</strong> table 4 <strong>and</strong>compared with those estimated accord<strong>in</strong>g to RAINS methodology(http://www.iiasa.ac.at/web-apps/apd/Ra<strong>in</strong>sWeb/Ra<strong>in</strong>sServlet1). The RAINS estmates estimates show sgnfcantly significantlylower values. The reason for this fact is a need for applicationof more operations, because only about one half ofCzech farms are equipped with advanced technologies enabl<strong>in</strong>gmatch<strong>in</strong>g of several work<strong>in</strong>g operations. Zero-tillageapproaches are not appropriate for all regions of CzechRepublic, especially for spr<strong>in</strong>g crops. These technologiesare applied <strong>in</strong> limited extent because their application forheavy-textured soils is too energy-consum<strong>in</strong>g.


36Table 4:Czech emission <strong>from</strong> arable farm<strong>in</strong>g, 2005TSPUnit Emissions Emissionsaccord<strong>in</strong>gto IIASA55535 4990PM10 Mg/year 11662 274PM2.5 2332 0The emissions <strong>from</strong> arable farm<strong>in</strong>g are not <strong>in</strong>significant<strong>and</strong> furthermore they are concentrated on several months<strong>in</strong> year. Monthly variability <strong>in</strong> agricultural operations isshowed <strong>in</strong> table 5.Table 5:Monthly variabilities <strong>in</strong> agricultural operationsCrop Jan Feb Mar April May Juny July Aug Sept Oct Nov Decw<strong>in</strong>ter wheatspr<strong>in</strong>g wheatw<strong>in</strong>ter barleyspr<strong>in</strong>g barleyTriticaleOatsRyeRapeGra<strong>in</strong> maizeIndustrial sugar.beetGreen <strong>and</strong> silage maizeOther annual fodder cropsLucerneRed cloverOther perennial fodder cropsTable 6:Emission <strong>from</strong> animal bread<strong>in</strong>g, 2005RatioEF PM10kg/animalEF PM2,5kg/animalNumber1000 headDairy cattle Tied or litter 0.90 0.36 0.23 564.00 183 117Cubicles (slurry) 0.10 0.70 0.45 564.00 39 25Beef cattle Solid 0.90 0.24 0.16 598.00 129 86Slurry 0.10 0.32 0.21 598.00 19 13Calves Solid 0.90 0.16 0.10 212.00 31 19Slurry 0.10 0.15 0.10 212.00 3 2Sows Solid 0.00 0.58 0.09 229.00 0 0Slurry 1.00 0.45 0.07 229.00 103 17Weaners Solid 0.00 na na 975.00 0Slurry 1.00 0.18 0.03 975.00 176 28Fatten<strong>in</strong>g pigs Solid 0.00 0.50 0.08 1630.00 0 0Slurry 1.00 0.42 0.07 1630.00 685 112Horses Solid 1.00 0.18 0.12 23.00 4 3Lay<strong>in</strong>g hens Cages 0.95 0.02 0.00 6316.00 102 13Perchery 0.05 0.08 0.02 6316.00 27 5Broilers Solid 1.00 0.05 0.01 19420.00 1010 132Total emissions (Mg/year) 2511 572PM10MgPM2,5Mg


H. Hnilicova et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 37Animal farm<strong>in</strong>gUnlike arable farm<strong>in</strong>g, the procedure of emisions assessment<strong>from</strong> animal breed<strong>in</strong>g is described <strong>in</strong> the Guidebook.Result<strong>in</strong>g emissions correspond to RAINS emissions estimates.For emission estimation <strong>from</strong> animal farm<strong>in</strong>g, species composition<strong>and</strong> age structure of animals <strong>in</strong> the Czech breeds<strong>and</strong> breed<strong>in</strong>g techniques were taken <strong>in</strong>to account.ReferencesAutorský kolektiv (1998). Zemědělské výrobní technologie v tabulkácha číslech, M<strong>in</strong>isterstvo zemědělství České republiky, Praha 1998,ISBN80-213-0454-5 (<strong>in</strong> Czech)Atmospheric emissions of particulates <strong>from</strong> <strong>agriculture</strong>: a scop<strong>in</strong>gstudy (2000). Mnistry of Agriculture, Fisheries <strong>and</strong> Food,.Research<strong>and</strong> Development , F<strong>in</strong>al Project ReportBogman P., Cornelis W., Rollé H., Gabriels D. (2007). Prediction ofTSP <strong>and</strong> PM10 emissions <strong>from</strong> agricultural operations <strong>in</strong> Fl<strong>and</strong>ers,Belgium, DustConf 2007, International Conference <strong>in</strong> Maastricht, TheNetherl<strong>and</strong>s 23-25 April 2007Countess Environmental (2004). WRAP Fugitive Dust H<strong>and</strong>book,WGA Contract No. 30204-83, f<strong>in</strong>d <strong>in</strong> http://ndep.nv.gov/baqp/WRAP/f<strong>in</strong>al-h<strong>and</strong>book.pdfH<strong>in</strong>z T., Funk R. (2007). Particle Emissions of soils <strong>in</strong>duced by agriculturalfield operations, DustConf 2007, International Conference <strong>in</strong>Maastricht, The Netherl<strong>and</strong>s 23-25 April 2007http://www.iiasa.ac.at/web-apps/apd/Ra<strong>in</strong>sWeb/Ra<strong>in</strong>sServlet1Emission Inventory Guidebook (2006),Petr J. et al. (1989). Rukověť agronoma, SZN – Praha 1989, ISBN 80-209-0062-4 (<strong>in</strong> Czech)Pulkrábek J. (2003). Speciální fytotechnika, Katedra rostl<strong>in</strong>né výrobyČZU, Praha 2003, ISBN 80-213-1020-0 (<strong>in</strong> Czech)NATIONAL AIR POLLUTANT EMISSION TRENDS, 1900 – 1998(2000). EPA-454/R-00-002, March 2000Statistical Yearbooks of the Czech Republic


Ch. Nannen et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 39Particle emissions <strong>from</strong> German livestock build<strong>in</strong>gs - <strong>in</strong>fluences <strong>and</strong> fluctuation factorsCh. Nannen 1 <strong>and</strong> W. Büscher 1AbstractDust measurements are done <strong>in</strong> several animal build<strong>in</strong>gswith different air ventilation <strong>and</strong> feed<strong>in</strong>g systems. Evenif all dust regulations are observed some aspects shouldbe added, which apply to <strong>in</strong>fluences on the dust emissionfactors. These aspects are related to mean emission factorsover one day, season or year. For that the parameters airvolume flow, animal activity <strong>and</strong> particle concentration <strong>in</strong>the <strong>in</strong>terior <strong>and</strong> exhaust air depend<strong>in</strong>g on different seasonsare done <strong>in</strong> a fatten<strong>in</strong>g pig barn. Animal activity <strong>and</strong> airvolume flow affected the develop<strong>in</strong>g of particle emissionfactors. A deviation of s<strong>in</strong>gle half an hour data to the averagevalue of the whole day was determ<strong>in</strong>ed. So it is necessaryto set the m<strong>in</strong>imum analys<strong>in</strong>g <strong>in</strong>terval on 24 hours.The measur<strong>in</strong>g po<strong>in</strong>t for the dust measurements should bethe exhaust air. A comparison of the <strong>in</strong>terior <strong>and</strong> exhaustdust concentrations showed that fact.Furthermore the distribution of particles is chang<strong>in</strong>g bydifferent levels of animal activity. The higher the animalactivity the higher is the number of particles with big opticaldiameters. The management of the farmer has a big<strong>in</strong>fluence on the <strong>in</strong>terior factors of the barn. Different practiseswith equal hous<strong>in</strong>g <strong>and</strong> feed<strong>in</strong>g systems, weights ofanimals <strong>and</strong> ventilation systems yield different results.Keywords: dust measurement, animal activity, particleemission, ventilation rateIntroductionIn most animal houses, heat<strong>in</strong>g, feed<strong>in</strong>g <strong>and</strong> ventilationsystems are very complex <strong>and</strong> have many <strong>in</strong>fluences onthe generation of particles, odor <strong>and</strong> ammonia. Based onseveral measurements on dust we are able to describe someimportant conditions for the measurement setups. The <strong>in</strong>fluencesof animal activity <strong>and</strong> ventilation rates should beexposed to get more knowledge about the consider<strong>in</strong>g fluctuationfactors.MethodsDiurnal variations <strong>in</strong> the parameters animal activity, particleconcentration <strong>and</strong> air volume flow rate were recordedwith different weather conditions <strong>in</strong> order to facilitate theanalysis of the connection between animal activity <strong>and</strong> particleemissions. The <strong>in</strong>vestigations were made <strong>in</strong> a fatten<strong>in</strong>ghouse for 112 pigs with dry feed<strong>in</strong>g (ad libitum) <strong>and</strong>door ventilation.The cont<strong>in</strong>uous particle measurements were carried out<strong>in</strong> accordance with st<strong>and</strong>ardised measur<strong>in</strong>g <strong>in</strong>structions foroccupational safety <strong>and</strong> health (VDI 2080, VDI 2066). Particleconcentrations were measured with an aerosol spectrometer,model 1.108 (GRIMM-Aerosoltechnik, A<strong>in</strong>r<strong>in</strong>g,Germany). Isok<strong>in</strong>etic sampl<strong>in</strong>g <strong>in</strong> the exhaust air flow wascarried out on the <strong>in</strong>take side. The measur<strong>in</strong>g <strong>in</strong>terval wasone m<strong>in</strong>ute. A calibrated measur<strong>in</strong>g fan with a data loggerfor monitor<strong>in</strong>g the frequency of the fan was used to monitorthe volume flow rate. The measur<strong>in</strong>g <strong>in</strong>terval <strong>in</strong> thiscase was one m<strong>in</strong>ute as well. The measur<strong>in</strong>g fan was positionedon the pressure side of the exhaust shaft. The activitysensors used <strong>in</strong> this study are commercial passive <strong>in</strong>fraredsensors modified for this particular application. The<strong>in</strong>tegrated relay control for the prevention of <strong>in</strong>terferenceshas been deactivated. Instead, a voltage is tapped directly<strong>from</strong> the sensor so that it maps a signal that is analogous tothe recorded movement. The signal is a differential signal,i.e. rapid temperature <strong>in</strong>creases or decreases <strong>in</strong> front of thesensor lead to higher positive or negative values than slowchanges <strong>in</strong> temperature. Thus, the amplitude of the impulseis proportional to the <strong>in</strong>tensity of the temperature change.Slow temperature changes <strong>in</strong>duce no signal. Signals arefirst rectified for further process<strong>in</strong>g so that temperature<strong>in</strong>creases <strong>and</strong> decreases are no longer differentiated. The1Section Livestock Technology at the Institute for Agricultural Eng<strong>in</strong>eer<strong>in</strong>g of Bonn University, Germany


40<strong>in</strong>com<strong>in</strong>g signal is then routed through a hold<strong>in</strong>g circuit sothat short impulses are artificially prolonged; the durationcan be adjusted on the sensor. Thus, a data logger recordsthe voltage every six seconds to capture short movementsas well.To get more knowledge about the difference of the particleconcentration between the <strong>in</strong>terior air <strong>and</strong> the exhaustair, two aerosol spectrometers were positioned <strong>in</strong>side thebarn 1.2 m above the animals <strong>and</strong> <strong>in</strong> the exhaust air as describedbefore.Results <strong>and</strong> discussionThe first <strong>and</strong> most important fact is that it is necessary tomeasure emissions over one day to calculate a mean valuefor those emissions. The deviation of a three or four hour’smeasurement is factor 2 to 4 <strong>in</strong> relation to the daily mean.Figure 1 shows that fact.The reasons for this deviation are chang<strong>in</strong>g animal activity<strong>and</strong> chang<strong>in</strong>g air volume rates. So it is possible tounderestimate or overestimate the emissions by measur<strong>in</strong>gonly short terms.Animal activity <strong>and</strong> particle emission levels are closelycorrelated. Emissions <strong>in</strong>crease drastically especially dur<strong>in</strong>gperiods of activity as you can see <strong>in</strong> figure 2. The results ofthe measurements by Pedersen S. (1993) <strong>and</strong> Bönsch S. etal. (1996) were confirmed by the measurements made forthe present study. The example of the development of animalactivity <strong>and</strong> particle emission for several days as depicted<strong>in</strong> figure 3 shows that especially surveillance walksare connected with high animal activity <strong>and</strong> consequentlywith high particle emission. The question arises to whatdegree animal activity <strong>and</strong> particle emission are correlated.Figure 3 also conta<strong>in</strong>s the scatter plot of the correlation.As expected, the calculated coefficient of determ<strong>in</strong>ationacross all size classes (R 2= 0.8) shows the correlation betweenanimal activity <strong>and</strong> particle emission to be high.deviation of particle mass concentration <strong>from</strong>average value [= 100%]Figure 1:450400350300250200150100500average00:1506:1512:1518:1500:1506:1512:1518:1500:1506:1512:15time [hh:mm]Deviation of half an hour values of particle mass concentration <strong>from</strong> average value18:1500:1506:1512:1518:1500:1506:1512:1518:15


42In this analysis a new aspect was found regard<strong>in</strong>g particlesize distribution. Representative for all daily developments,figure 4 shows the development of the total massconcentration, the PM10 concentration <strong>and</strong> the levels ofanimal activity.140The higher the ventilation rate, the lower the dust concentration<strong>and</strong> the higher the correspondence between the dustconcentration <strong>in</strong> the <strong>in</strong>terior air <strong>and</strong> <strong>in</strong> the exhaust air dueto better mix<strong>in</strong>g. Because of that, it is necessary to measurethe emission <strong>in</strong> the exhaust air <strong>and</strong> not <strong>in</strong> the barn.We calculate factors between the <strong>in</strong>terior <strong>and</strong> exhaust airdepend<strong>in</strong>g on different levels of the air volume flow. It wasconcluded that the barn is not a constant system that emitsequal values of emissions over the whole day. The higherquotients for particles >5 μm can be attributed to the depositionof dust <strong>in</strong> the fan shafts. Particles are depositedon the walls of the exhaust air chimneys, resuspend<strong>in</strong>g atsufficiently high air velocities as larger particles formedby agglomeration with other particles. To visualise the results,the quotient of the particle concentration <strong>in</strong> the exhaustair <strong>and</strong> the particle concentration <strong>in</strong> the <strong>in</strong>terior wascalculated for different particle sizes. This concentrationratio describes the probability of encounter<strong>in</strong>g a particleof a certa<strong>in</strong> size both on the <strong>in</strong>side of the livestock house1,60120animal activity1,40particle emission [g h -1 GV -1 ]Figure 4:10080604020000:1506:15PM1012:1518:1500:1506:1512:1518:1500:15time [hh:mm]Total particle mass concentration <strong>and</strong> PM10 concentration <strong>in</strong> relation to animal activity06:1512:1518:1500:1506:1512:1518:15total dust1,201,000,800,600,400,200,00animal activityOne of the reasons for this is the <strong>in</strong>creas<strong>in</strong>g proportionof larger particles <strong>in</strong> the total number of particles. In thiscase high animal activity describes a deviation of one st<strong>and</strong>arddeviation <strong>from</strong> the average value of the day set 100 %.Higher levels of animal activity affect especially the particleswith <strong>in</strong>creas<strong>in</strong>g diameter.<strong>and</strong> <strong>in</strong> its exhaust air. At a quotient of q = 1 for all particlesize classes, all particles <strong>from</strong> the <strong>in</strong>terior of the livestockhouse would make their way <strong>in</strong>to the exhaust air. The particleconcentration <strong>in</strong>side the livestock house would be thesame as that <strong>in</strong> its exhaust air. The assumption that particleconcentrations <strong>in</strong> the <strong>in</strong>terior of livestock houses differ<strong>from</strong> those <strong>in</strong> their exhaust air was confirmed by reproduciblemeasurements. The number of bigger particles <strong>in</strong> the<strong>in</strong>terior air is much higher than <strong>in</strong> the exhaust air as youcan see <strong>in</strong> figure 5.


Ch. Nannen et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 43<strong>in</strong>terior air/exhaust air ratio4,03,53,02,52,01,51,00,50,03.0-4.0 µm4.0-5.0 µm5.0-7.5 µm7.5-10.0 µm10.0-15.0 µmsize ranges15.0-20.0 µmThe last <strong>in</strong>fluenc<strong>in</strong>g factor is the management. Two barns,constructed <strong>in</strong> the same way with equal feed<strong>in</strong>g, ventilation<strong>and</strong> heat<strong>in</strong>g systems were compared. Surveillance walk,adjustment of the air volume flow or number of feed<strong>in</strong>gtime per day affect different emission factor, expressed <strong>in</strong>emission per animal unit. Figure 6 shows the particle massconcentration <strong>and</strong> the air volume flow <strong>in</strong> two different fatten<strong>in</strong>gpig farms. The management of the farmer is determ<strong>in</strong>edby the air volume flow. The airflow is a function ofthe temperature set of the controller. This <strong>in</strong>cludes <strong>in</strong>fluenceson the particle mass concentration <strong>and</strong> the particleemission factors.Other important factors on emissions are the seasonal effects.Because of higher volume flow rates per animal <strong>in</strong>summer, the emissions are higher than <strong>in</strong> autumn or w<strong>in</strong>ter.On the other h<strong>and</strong>, the concentration of emissions <strong>in</strong> theexhaust air <strong>in</strong> the w<strong>in</strong>ter time is higher than <strong>in</strong> the summertime as you can see <strong>in</strong> figure 6.Figure 5:Ratio of the particle number concentration <strong>in</strong> the <strong>in</strong>terior air to the exhaust airparticle mass concentration [µg m -3 ]1.8001.6001.4001.2001.000800600400200particle mass concentrationair volume flow35030025020015010050air volume flow [m 3 h -1 AU -1 ]00summer spr<strong>in</strong>g /autumnw<strong>in</strong>ter summer spr<strong>in</strong>g /autumnw<strong>in</strong>terfarm Afarm BFigure 6:Particle mass concentrations <strong>and</strong> air volume flows <strong>in</strong> different seasons <strong>and</strong> two different farms


44ConsequencesThe results showed different consider<strong>in</strong>g fluctuation factorson dust generation <strong>and</strong> PM-emissions. To quantify adust emission factor, it is necessary to measure 24 hours. Inthat case animal activity is the most important factor. Climaticallyeffects <strong>and</strong> the house management of the farmerlead to differ between seasons. The position of dust sampl<strong>in</strong>gshould be <strong>in</strong> the exhaust air, because the dust concentration<strong>in</strong> the <strong>in</strong>terior air is not equal to the concentration<strong>in</strong> the exhaust air.ReferencesBönsch S., Hoy S. (1996). Staubkonzentration und Verhalten <strong>von</strong> Mastschwe<strong>in</strong>en.L<strong>and</strong>technik, Jahrgang 51, Heft 3Pedersen S. (1993) Time Based Variantion <strong>in</strong> Airborne Dust <strong>in</strong> Respect toAnimal Activity. Libestock Environment IV, Fourth International Symposium,Coventry, Engl<strong>and</strong>; ASAE; S.718 - 725 (1993)VDI 2080. Meßverfahren und Messgeräte für RaumluftechnischeAnlagenVDI 2066. Staubmessungen <strong>in</strong> strömenden Gasen, Gravimetrische Bestimmungder Staubbeladung


E. Rosenthal et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 45Physical aspects of aerosol particle dispersionE. Rosenthal 1 , W. Büscher 1 , <strong>and</strong> B. Diekmann 2AbstractThe dispersion of dust particles gives us the causal connectionbetween particle emission <strong>and</strong> immission. Due tothe fact that it is impossible to follow the track of a s<strong>in</strong>gleparticle through the air, a lot of effects <strong>and</strong> there parametersmust be known to simulate the dispersion.The usage of tracer-gases allows to compare (gas) dispersionmodels with measured data, but the dispersion ofgases or odours is not comparable with the dispersion ofaerosols. One reason for that is a factor 10 to the power of10 <strong>in</strong> the weight of a one micron particle with the densityof 1000kg/m³ <strong>and</strong> a SF6 molecule.The best available technologies to determ<strong>in</strong>e the parametersof all participated effects are laboratory-confirmedexperiments. At the Institute of Agriculture Eng<strong>in</strong>eer<strong>in</strong>g atBonn University such experiments has been made <strong>and</strong> willbe done further, supported by the DFG (German ResearchFoundation).In our research we exam<strong>in</strong>e dust samples with <strong>agriculture</strong>background, mostly <strong>from</strong> animal farms. One major effect,which <strong>in</strong>fluences the dispersion of aerosols, is the sedimentation.The results of our experiments are that the sedimentationvelocity <strong>and</strong> the aerodynamic behaviour of aerosolparticles depends on the animal type, the feed<strong>in</strong>g system<strong>and</strong> the animal house setup. Another important effect is theagglomeration, which is depend<strong>in</strong>g just as well on the dustsource <strong>and</strong> meteorological parameters, basically <strong>from</strong> thehumidity. Furthermore aerosol particles can <strong>in</strong>teract withsurfaces. Depend<strong>in</strong>g on the surface structure, the humidity<strong>and</strong> the particle attributes as well as the air velocity nearbythe particle surface <strong>in</strong>terface, the aerosol particles can beaccumulated or displaced.Difficulties occur <strong>in</strong> statistic dispersion simulations <strong>in</strong>clud<strong>in</strong>gall before described effects. At our <strong>in</strong>stitute a numericaldispersion model is developed. Every s<strong>in</strong>gle trackof all particles is computed, so that all participated physicaleffects which <strong>in</strong>fluence the behaviour of aerosol particlescan be taken <strong>in</strong>to account.Keywords: aerosol transmission, dispersion models, sedimentation,agglomeration, adsorption, resuspensionIntroductionThe term “aerosol transmission” describes the transport of dustparticles <strong>from</strong> the emission source to the immission po<strong>in</strong>t. Dur<strong>in</strong>gthe transmission phase the emitted substance is subject to anumber of processes which change the properties <strong>and</strong> the concentrationof the substance <strong>in</strong> the air. Apart <strong>from</strong> the <strong>in</strong>fluenceof chemical decomposition, the concentration of a substance atthe immission po<strong>in</strong>t is primarily determ<strong>in</strong>ed by physical effects<strong>and</strong> dilution dur<strong>in</strong>g dispersion. The dispersion of dust particlesdiffers <strong>in</strong> important respects <strong>from</strong> the dispersion of gases. Dustparticles are subject to a variety of physical processes accord<strong>in</strong>gto their density, size <strong>and</strong> shape. The most important physicaleffects <strong>in</strong> this context are sedimentation, agglomeration <strong>and</strong>aerodynamics as well as adsorption <strong>and</strong> resuspension. Statementsabout the transmission behaviour of an aerosol requireparticle-specific analysis of the dust <strong>in</strong> question.SedimentationIt is primarily the sedimentation effect, i.e. the <strong>in</strong>fluenceof gravity on aerosol particles, that causes them to fall to theground. The sedimentation velocity depends not only on theweight of the particle but also on meteorological parameters(temperature, air pressure, air humidity) <strong>and</strong>, of course, onthe size of the particle. This is illustrated <strong>in</strong> figure 1, whichshows the sedimentation velocities of different size classes<strong>in</strong> a dust sample <strong>from</strong> an aviary house with approximately70,000 lay<strong>in</strong>g hens (Schmitt-Pauksztat G. 2006).Sedimentation velocity <strong>in</strong> m/s0.0200.0160.0120.0080.0040.0000Figure. 1:5 10 15 20 25 30Particle diameter <strong>in</strong> µmMeasured sedimentation velocities of different particle size classes <strong>in</strong> a dustsample <strong>from</strong> an aviary house for lay<strong>in</strong>g hens (Schmitt-Pauksztat G., 2006)1Institute of Agricultural Eng<strong>in</strong>eer<strong>in</strong>g, Bonn University, Germany2Institute of Physics, Bonn University, Germany


46Measured sedimentation velocities <strong>and</strong> particle sizes canbe used to calculate the ratio of particle density to particleshape. Figure 2 shows that the ratio of the density to theshape of the particles of the dust sample used <strong>in</strong> this examplediffers accord<strong>in</strong>g to their diameter. In the same sample,the ratio is three times higher for small particles than forlarge particles.A possible explanation for the large differences betweenthe <strong>in</strong>dividual particle sizes is not so much the varianceof the particle densities as the different shapes of the particles.The density of smaller particles with a diameter of3-5µm is <strong>in</strong> the same range as concrete, which has a densityof 2000 to 3000 kg/m³ depend<strong>in</strong>g on the admixturesused, whereas the density of larger particles is <strong>in</strong> the rangeof organic material such as feed f<strong>in</strong>es, epidermal scales orfeather fragments. Moreover, <strong>in</strong> m<strong>in</strong>eral particles the formfactor is usually smaller than <strong>in</strong> organic particles so that thedenom<strong>in</strong>ator <strong>and</strong> the numerator can lower or raise the ratioat the same time. Therefore, it is possible to ga<strong>in</strong> <strong>in</strong>formationon the possible orig<strong>in</strong> of dust particles by measur<strong>in</strong>gthe sedimentation velocity of a dust sample <strong>and</strong> calculat<strong>in</strong>gthe ratio of particle density to particle shape.different aerodynamic properties <strong>and</strong> different sedimentationvelocities. Experiments have shown that air humidity<strong>in</strong> particular has a great <strong>in</strong>fluence on the agglomeration behaviourof aerosols. Due to electrostatic forces the agglomerationrate is high at low air humidity, whereas hydrostaticforces stimulate agglomeration at high air humidity. Moreover,agglomeration depends on the material properties ofthe particles so that the variables describ<strong>in</strong>g the agglomerationprocess may vary for different aerosols <strong>from</strong> differentk<strong>in</strong>ds of sources (Rosenthal E. 2006).Particle shapeAnother important parameter <strong>in</strong> aerosol dispersion is thegeometry or the shape of the particles. Microscopic studiesshow that dust <strong>from</strong> agricultural sources consists ofhighly structured particles of various shapes <strong>and</strong> densities(fig. 3).Density/shape factor ration <strong>in</strong> kg/m 34000350030002500200015001000500Figure 2:005 10 15 20 25 30Particle diameter <strong>in</strong> µmRatio of particle density to particle shape factor for different particle sizeclasses <strong>in</strong> a dust sample <strong>from</strong> an aviary house for lay<strong>in</strong>g hens, calculated<strong>from</strong> experimental dataAgglomerationAnother important effect <strong>in</strong> relation to the transmissionof aerosols is agglomeration. Agglomeration is the associationof <strong>in</strong>dividual aerosol particles <strong>in</strong> so-called agglomeratesas a result of attractive, b<strong>in</strong>d<strong>in</strong>g forces. As the rangeof the forces between <strong>in</strong>dividual aerosol particles is verylimited, agglomerates are formed almost exclusively as theresult of two particles collid<strong>in</strong>g. The collision of particlesdue to their thermal movement is called thermal coagulation.The b<strong>in</strong>d<strong>in</strong>g forces between particles are ma<strong>in</strong>ly electromagnetic<strong>and</strong> hydrostatic forces. Differ<strong>in</strong>g <strong>from</strong> otherparticles <strong>in</strong> terms of diameter <strong>and</strong> shape, aerosols also haveFigure 3:Microscopic image of aerosol particles; the figures next to the particlesspecify their respective size (Nannen C., 2005)The aerodynamic behaviour of a particle is <strong>in</strong>fluenced byits shape <strong>in</strong> the same manner as that of a car. To do justiceto the various surface shapes of particles, a number of approachesto describ<strong>in</strong>g the aerodynamic properties of particleshave been developed. The dynamic shape factor is aparameter that is used to adapt the Stokes friction term forirregularly shaped particles. Very much like the Cd factor(cars), the shape factor is very difficult to calculate <strong>and</strong> istherefore usually determ<strong>in</strong>ed by experiments. Another wayof adapt<strong>in</strong>g the Stokes term is by us<strong>in</strong>g the aerodynamicdiameter, which is def<strong>in</strong>ed as the diameter of a sphericalparticle of unit density (1000 kg/m³) which has the samesedimentation velocity as the irregularly shaped particleunder consideration (H<strong>in</strong>ds W. C. 1992). The Stokes diameter,which is used less frequently than the aerodynamicdiameter, is the diameter of a spherical particle that has


E. Rosenthal et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 47the same density <strong>and</strong> the same sedimentation velocity asthe irregularly shaped particle under consideration. Witha procedure developed at the Institute for Agricultural Eng<strong>in</strong>eer<strong>in</strong>gof Bonn University the ratio of particle densityto particle shape can be determ<strong>in</strong>ed experimentally. Thismeasur<strong>in</strong>g procedure is based on a comparison of experimentallydeterm<strong>in</strong>ed sedimentation velocities with thecorrespond<strong>in</strong>g optically measured size classes. Thus, theaerodynamic behaviour of particles of any shape can betaken <strong>in</strong>to account <strong>in</strong> transmission simulationss (Schmitt-Pauksztat G. 2006). Analyses of the dispersion behaviourof aerosols must also take <strong>in</strong>to account the <strong>in</strong>terface behaviourbetween aerosol particles <strong>and</strong> various k<strong>in</strong>ds of surface.The process of particles settl<strong>in</strong>g on a surface is calledadsorption. The process of particles be<strong>in</strong>g detached aga<strong>in</strong><strong>from</strong> the surface by airflow is called resuspension. Adsorption<strong>and</strong> resuspension both depend on the surface structure(roughness, physical <strong>and</strong> chemical properties) <strong>and</strong> on theproperties of the particle under consideration. For precisepredictions of the dynamic dispersion of aerosols it is necessaryto parameterize the adsorption <strong>and</strong> resuspensionprocesses with suitable variables, which have to be determ<strong>in</strong>edexperimentally.Immission <strong>and</strong> dispersion modell<strong>in</strong>gBy means of flow simulations based on the physical effectsdescribed above <strong>and</strong> on parameters which have to be determ<strong>in</strong>edexperimentally <strong>in</strong> advance, it is possible to analyse<strong>and</strong> predict the dynamic distribution of aerosols <strong>in</strong> the exhaustplumes of livestock houses. Dispersion simulationsare often based on statistical plume models, the ma<strong>in</strong> advantagesof which are short comput<strong>in</strong>g times <strong>and</strong> low comput<strong>in</strong>gperformance requirements. Moreover, such modelsproduce reliable predictions for areas further away <strong>from</strong>livestock houses, provided that the ground is level <strong>and</strong> thatthe meteorological conditions are stable. Statistical modelshave clear drawbacks, however, if the focus is on an areawith<strong>in</strong> only a few kilometres <strong>from</strong> the emission source.For example, turbulences caused by the animal housesthemselves, by neighbour<strong>in</strong>g build<strong>in</strong>gs or by natural obstacles(trees, hedgerows, etc.) cannot, or can only <strong>in</strong>sufficiently,be <strong>in</strong>tegrated <strong>in</strong> statistical models. This is partlydue to the <strong>in</strong>ertia of dust particles, which makes itself feltespecially <strong>in</strong> turbulent airflows. Lagrange models seem tobe more suitable for aerosol dispersion simulations. Theyuse a stationary flow field on which the trajectories of thearticles are calculated; averaged turbulences can be usedas parameters <strong>in</strong> the calculation. For determ<strong>in</strong><strong>in</strong>g the traveldistance of bioaerosols <strong>and</strong> the <strong>in</strong>fluence of neighbour<strong>in</strong>gfacilities it is important to look at the immediate vic<strong>in</strong>ity ofthe source build<strong>in</strong>gs <strong>and</strong> any turbulences that might occurthere. Experimental f<strong>in</strong>d<strong>in</strong>gs by the State EnvironmentalAgency of North Rh<strong>in</strong>e-Westphalia have shown that thetravel distance of aerosols depends strongly on the design<strong>and</strong> the result<strong>in</strong>g flow conditions of build<strong>in</strong>gs on the immissionside (Heller D. 2004). In order to be able to predictthe dispersal of aerosols with<strong>in</strong> a few kilometres whiletak<strong>in</strong>g the build<strong>in</strong>gs <strong>in</strong> that area <strong>in</strong>to account, a numericaldispersion simulation for near-surface aerosols wasdeveloped at the Institute for Agricultural Eng<strong>in</strong>eer<strong>in</strong>g <strong>in</strong>co-operation with the Physics Institute of Bonn University(Wallenfang W. et al. 2002).calculation of dynamic3D flow fieldcalculation of aerosoldistribution tak<strong>in</strong>g <strong>in</strong>toaccount the physisalproperties of particlesdynamic visualisationof aerosol distributionFigure 4:3D l<strong>and</strong>scape <strong>and</strong>build<strong>in</strong>g modell<strong>in</strong>gdef<strong>in</strong>ition ofemission sourcesdef<strong>in</strong>ition of particlepropertiesFunctional blocks of the NAAS 3D numerical dispersion simulation programIn a research project funded by the German ResearchFoundation (DFG – Deutsche Forschungsgeme<strong>in</strong>schaft)the three-dimensional aerosol dispersion simulation program(NAAS 3D – Numerische Aerosol Ausbreitungssimulation<strong>in</strong> drei Dimensionen) is be<strong>in</strong>g developed further. Incontrast to statistical models, <strong>in</strong> NAAS 3D the trajectoriesof <strong>in</strong>dividual aerosol particles are calculated on the basisof a dynamic flow simulation. The simulation process canbe divided <strong>in</strong>to three functional blocks (fig. 4). In the firststep, a dynamic flow vector field is created on the basisof three-dimensional <strong>in</strong>formation regard<strong>in</strong>g build<strong>in</strong>gs, theterra<strong>in</strong> <strong>and</strong> meteorological data. The relevant airflow calculationscan be carried out with any meteorological orflow-dynamical simulation program with an ASCII Tecplot<strong>in</strong>terface. The dispersion behaviour of aerosols <strong>in</strong> the vic<strong>in</strong>ityof build<strong>in</strong>gs <strong>and</strong> natural obstacles is <strong>in</strong>fluenced stronglyby turbulences. Therefore, a program called NaSt3DGB,which was developed by the Institute for Numerical Simulationof Bonn University, is used <strong>in</strong> the simulation; it offersa numerical solution for <strong>in</strong>compressible Navier-Stokesequations (Griebel et al. 1995). In the next step, the trajectoriesof the aerosol particles are calculated on the basis ofthe dynamic vector field. This step is based on the physicalparameters of the <strong>in</strong>dividual particles. Here the great ad-


48vantage of the numerical calculation of the particle trajectoriesbecomes evident; for <strong>in</strong>stance, the agglomeration behaviourof the particles can be modelled with a high degreeof precision. Moreover, the characteristic shape of eachparticle <strong>and</strong> the <strong>in</strong>teraction between particles <strong>and</strong> surfacesare taken <strong>in</strong>to account by us<strong>in</strong>g the aerodynamic diameter<strong>and</strong> experimentally determ<strong>in</strong>ed variables, respectively. Inthe third <strong>and</strong> last functional block of the dispersion simulationthe particle trajectories are visualised <strong>and</strong> the immissiondata are represented graphically. The representation ofthe aerosol distribution is generated by the computer <strong>in</strong> realtime. This means that the computer cont<strong>in</strong>uously computesevery <strong>in</strong>dividual image <strong>from</strong> the available geometrical data<strong>and</strong> <strong>from</strong> the behaviour <strong>and</strong> movement of the ‘observer’(fig. 5). Thus, the user is provided with a three-dimensional<strong>in</strong>sight <strong>in</strong>to the spatial distribution of an aerosol <strong>from</strong> oneor more sources <strong>in</strong> the vic<strong>in</strong>ity of a build<strong>in</strong>g.Figure 5:Visual representation of a time step <strong>in</strong> a NAAS 3D numerical dispersionsimulationThe three model variants presented <strong>in</strong> this paper can beclassified as follows:• Statistical programs• Lagrange model• Dynamic dispersion modelsStatistical programs show their advantages <strong>in</strong> the predictionof odours if the immission po<strong>in</strong>t is a few kilometres removed<strong>from</strong> the emission source <strong>in</strong> less structured terra<strong>in</strong>.The Lagrange model strikes a compromise between the requiredcalculation time <strong>and</strong> the precision of the prediction.It is only of limited use <strong>in</strong> the closer vic<strong>in</strong>ity of emissionsources. If the focus is on the dispersal of aerosols <strong>in</strong> complexterra<strong>in</strong> a few hundred metres around the source, thennumerical calculation methods based on dynamic flowfields are the best choice.Suitable tracer systems for the validation of aerosol dispersalsimulations are currently be<strong>in</strong>g researched at theInstitute for Agricultural Eng<strong>in</strong>eer<strong>in</strong>g. Tracer gases, suchas SF6 which is used to validate odour dispersal models,are unsuitable because they do not replicate the particlespecificproperties of aerosols. The difficulty <strong>in</strong> develop<strong>in</strong>ga suitable aerosol tracer system lies <strong>in</strong> l<strong>in</strong>k<strong>in</strong>g measureddusts to particular emission sources. The two approachestaken to the problem of identify<strong>in</strong>g dusts can be divided<strong>in</strong>to onl<strong>in</strong>e <strong>and</strong> offl<strong>in</strong>e methods.The use of modified two-stage optical particle countersuggests itself fort he onl<strong>in</strong>e approach. In the first stage,the size of a particle is measured by means of scatteredlight. On the basis of additional <strong>in</strong>formation on the numberof particles it is possible to calculate the developmentof the concentrations of different particle size class. In thesecond stage, the particle counter checks if the particle canbe attributed to the tracer source.In the second approach, offl<strong>in</strong>e evaluation, particle samplersare used to collect the dust load together with thetracer dust at different times <strong>and</strong> at a specified distance<strong>from</strong> the source. In a laboratory the particles are exam<strong>in</strong>edwith a light microscope <strong>in</strong> order to determ<strong>in</strong>e their size <strong>and</strong>distribution. One suitable k<strong>in</strong>d of tracer dust can be pollen<strong>from</strong> plants which do not occur <strong>in</strong> the natural surround<strong>in</strong>gsof the area under scrut<strong>in</strong>y at the time of the measurements.Fluorescent particles, which are easy to identify under themicroscope <strong>in</strong> suitable light conditions, are another option,<strong>and</strong> they are also suitable for use <strong>in</strong> onl<strong>in</strong>e methods.Yet another option is the detection of released radioactivenuclide (Müller H.-J. 2001). Be<strong>in</strong>g much more sensitivethan methods based on tracer particles, this methodrequires only small amounts of radioactive material to bereleased. Suitable radionuclides are pure gamma emitterswith short half-life periods <strong>in</strong> the range of a few hours.Due to its environmental impact, however, this method issuitable only for sporadic research <strong>and</strong> validation measurements<strong>and</strong> not for use on a rout<strong>in</strong>e basis.ReferencesGriebel M., Dornseifer Th., Neunhoefer T. (1995). Numerische Simulation<strong>in</strong> der Strömungsmechanik, Vieweg VerlagH<strong>in</strong>ds W. C. (1992). Aerosol Technology, John Wiley& Sons, New YorkHeller D.(2004). Immissionen luftgetragener Mikroorganismen (Bioaerosole)im Umfeld <strong>von</strong> Kompostierungsanlagen <strong>in</strong> NRW, http://www.lua.nrw.de/gesundheit/ pdf/02-05-04_bew_kompost.pdfMüller H.-J. (2001). Bilanzmethoden zur Luftvolumenstromermittlung<strong>in</strong> frei gelüfteten Ställen. In: Messmethoden für Ammoniak-Emissionen,KTBL-Schrift 401Nannen C. (2005): Mikroskopische Untersuchung <strong>von</strong> luftgetragenenPartikeln <strong>in</strong> Schwe<strong>in</strong>emastställen, diploma thesis, Bonn UniversityRosenthal E. (2006). Aufbau und Optimierung e<strong>in</strong>es Messsystems zurBestimmung der Sedimentationsgeschw<strong>in</strong>digkeit <strong>von</strong> Aerosolpartikelunter Berücksichtigung klimatischer Rahmenbed<strong>in</strong>gungen, diplomathesis, Bonn University


E. Rosenthal et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 49Schmitt G., Wallenfang O., Büscher W., Diekmann B. (2004). Partikelkonzentrationen<strong>in</strong> der Stallabluft im Vergleich mit der Innenraumkonzentration.Agrartechnische Forschung 10 (6), p. 105-110Schmitt-Pauksztat G. (2006). Verfahren zur Bestimmung der Sedimentationsgeschw<strong>in</strong>digkeit<strong>von</strong> Stäuben und Festlegung partikel-spezifischerParameter für deren Ausbreitungssimulation, doctoral dissertation,VDI-MEG-Schrift 440Wallenfang W., Boeker P., Büscher W., Diekmann B., SchulzeLammers P. (2002). Ausbreitung <strong>von</strong> Gerüchen und biogenen Aerosolen,L<strong>and</strong>technik 5/2002


J. Bünger / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 51Human health risks <strong>from</strong> diesel eng<strong>in</strong>e particlesJ. Bünger 1SummaryEvidence <strong>from</strong> toxicological <strong>and</strong> epidemiological studies<strong>in</strong>dicates that human health hazards are associated withexposure to diesel eng<strong>in</strong>e particles (DEP), also called dieselparticulate <strong>matter</strong> (DPM). The hazards <strong>in</strong>clude acuteexposure-related symptoms, chronic exposure related noncancerrespiratory effects, <strong>and</strong> lung cancer (EPA 2002). Asnew <strong>and</strong> cleaner diesel eng<strong>in</strong>e <strong>and</strong> fuel technology, togetherwith efficient exhaust aftertreatment, replace a substantialnumber of older eng<strong>in</strong>es, the general applicability ofthe health hazard conclusions will need to be reevaluated.With new eng<strong>in</strong>e <strong>and</strong> fuel technology expected to producesignificantly cleaner eng<strong>in</strong>e exhaust, significant reductions<strong>in</strong> public health hazards are expected for those eng<strong>in</strong>e usesaffected by the regulations. However, every newly developedtechnology has to be exam<strong>in</strong>ed accord<strong>in</strong>g to its <strong>in</strong>fluenceon human health risks.Keywords: diesel eng<strong>in</strong>e emissions, particles, polycyclicaromatic hydrocarbons, health risks, lung cancer, cardiovasculardiseases, asthmaCharacterization of DEPThe combustion of diesel fuel forms a complex mixtureof hundreds of organic <strong>and</strong> <strong>in</strong>organic compounds <strong>in</strong> thegas <strong>and</strong> particle phase of diesel eng<strong>in</strong>e emissions (DEE).Toxicologically relevant compounds <strong>in</strong> the gas phase ofDEE – but not discussed <strong>in</strong> this review - are carbon dioxide,nitrogen oxides, carbon monoxide, sulfates, aldehydes(formaldehyde, acetaldehyde, acrole<strong>in</strong>), benzene, <strong>and</strong> 1,3-butadiene. Toxicologically most relevant compounds adsorbedonto surfaces of diesel particulate <strong>matter</strong> (DPM)are PAHs as well as their derivatives nitrated PAHs <strong>and</strong>oxidized PAHs. To a lesser extent (PAHs) <strong>and</strong> (nPAHs) arealso found <strong>in</strong> the gaseous phase of DEE (Scheepers P. T.J. <strong>and</strong> Bos R. P. 1992a <strong>and</strong> 1992b, Health Effects Institute1995).The International Agency for Research on Cancer (IARC)classified DEE probably carc<strong>in</strong>ogenic to humans (Group2A) <strong>in</strong> 1989. This classification was confirmed by manyother <strong>in</strong>stitutions.ConstituentsDEP conta<strong>in</strong> a large variety of organic compounds adsorbedonto a center core of elemental carbon, as well assmall amounts of sulfate, nitrate, metals, <strong>and</strong> other traceelements. DPM consists of f<strong>in</strong>e particles (f<strong>in</strong>e particleshave a diameter


52ExposureExposure to diesel eng<strong>in</strong>e emissions is ubiquitous. Highestenvironmental exposures occur <strong>in</strong> urban areas due toheavy traffic. All occupations where diesel eng<strong>in</strong>e poweredvehicles or diesel eng<strong>in</strong>e powered mach<strong>in</strong>ery is <strong>in</strong> use canbe potentially exposed to diesel eng<strong>in</strong>e emissions. Occupationswith strong exposures are related to <strong>agriculture</strong>,transportation, construction, m<strong>in</strong><strong>in</strong>g, <strong>and</strong> eng<strong>in</strong>e ma<strong>in</strong>tenance.Actual <strong>in</strong>formation on prevalence of occupationallyDEE-exposed people is limited. For the total workforce<strong>in</strong> the European Union the number of exposed employeeswas estimated three millions based on <strong>in</strong>formation <strong>in</strong> theCAREX database <strong>from</strong> 1990 to 1993 (Kaupp<strong>in</strong>en T., et al.2000). In Italy, 500.000 subjects were estimated to workwith exposure to DEE (Mirabelli D. <strong>and</strong> Kaupp<strong>in</strong>en T.2005). Accord<strong>in</strong>g to the Federal Agency for Work <strong>and</strong> Labour(Bundesagentur für Arbeit 2005) nearly two millionemployees are work<strong>in</strong>g under a probable exposure to DEE<strong>in</strong> Germany. The follow<strong>in</strong>g numbers of employees <strong>in</strong> Germanyare supposed to be substantially exposed to DEE:On-road professional drivers 750,000Off-road vehicle/mach<strong>in</strong>ery operators 50,000Vehicle <strong>and</strong> mach<strong>in</strong>ery ma<strong>in</strong>tenance workers 645,000Transportation workers 450,000M<strong>in</strong>ers 35,000A detailed list of occupations with an assumption forprobability <strong>and</strong> <strong>in</strong>tensity of exposures to DEE is given <strong>in</strong>the appendix of a Swedish study (Bofetta P. et al. 2001).DPM mass (expressed as µg DPM/m 3 ) has historicallybeen used as a surrogate measure of exposure for wholeDEE. Although uncerta<strong>in</strong>ty exists as to whether DPM is themost appropriate parameter to correlate with human healtheffects, it is considered a reasonable choice until more def<strong>in</strong>itive<strong>in</strong>formation about the mechanisms of toxicity ormodes of action of DEE becomes available. In the ambientenvironment, human exposure to DEE comes <strong>from</strong> bothon-road <strong>and</strong> non-road eng<strong>in</strong>e exhaust. A large percentageof the population also is exposed to ambient PM2.5, ofwhich DPM is typically a significant constituent. Exposureestimates for the early to mid-1990s suggest that annualaverage DEP exposure <strong>in</strong> the U.S.A. <strong>from</strong> on-road eng<strong>in</strong>esalone was <strong>in</strong> the range of about 0.5 to 0.8 µg DPM/m 3 of<strong>in</strong>haled air <strong>in</strong> many rural <strong>and</strong> urban areas, respectively. Forlocalized urban areas where people spend a large portionof their time outdoors, the exposures are higher <strong>and</strong>, forexample, may range up to 4.0 µg DPM/m 3 of <strong>in</strong>haled air(EPA 2002). In Europe, exist<strong>in</strong>g occupational exposurelevels (OELs) for DEP are based on the measurement ofelemental carbon (EC). An <strong>in</strong>ter-comparison showed thatexist<strong>in</strong>g analytical procedures for the determ<strong>in</strong>ation of dieselparticulate <strong>matter</strong> at workplaces fulfil the requirementsof European st<strong>and</strong>ard EN 482 (Hebisch R. et al. 2003).Some 3,500 measurements of DEE at enclosed workplaceswere performed <strong>in</strong> 1.070 German work sites <strong>in</strong> 1990 to2000 (Mattenklott M. et al. 2002), compris<strong>in</strong>g results forelemental carbon (EC) <strong>and</strong> total carbon (TC). Mean exposuresat workplaces under roof varied between 0.018 <strong>and</strong>0.027 mg/m 3 for EC (0.026 <strong>and</strong> 0.047 mg/m 3 for TC). Thecorrespond<strong>in</strong>g 90 %-values were 0.055 up to 0.100 mg/m 3for EC (0.088 <strong>and</strong> 0.150 mg/m 3 for TC). Means of exposuresat underground workplaces varied between 0.095 <strong>and</strong>0.150 mg/m 3 for EC (0.165 <strong>and</strong> 0.210 mg/m 3 for TC). Thecorrespond<strong>in</strong>g 90 %-values were 0.226 up to 0.406 mg/m 3for EC (0.373 <strong>and</strong> 0.498 mg/m 3 for TC).Due to the high relevance of DEE <strong>in</strong> many occupations<strong>and</strong> environmentally exposed subjects very effort is put tothe development of specific <strong>and</strong> sensitive biomarkers ofexposure to DEE <strong>and</strong> their health effects, especially accord<strong>in</strong>gto PAHs (Angerer J. et al. 1997, Scheepers P. T. J.et al. 2002, Seidel A. et al. 2002, Rossbach B. et al. 2007,Wilhelm M. et al. 2007).Health effects of DEPDiesel exhaust particles (DEP) contribute considerablyto the ambient air pollution <strong>from</strong> particulate <strong>matter</strong>, whichcauses acute <strong>and</strong> chronic effects <strong>in</strong> mucosal membranes,<strong>in</strong> the respiratory tract <strong>in</strong>clud<strong>in</strong>g lung cancer, <strong>and</strong> <strong>in</strong> thecardiovascular system. Due to their median aerodynamicdiameter (0.01 - 0.3 µm) these particles are readily <strong>in</strong>haled<strong>and</strong> about 10 % are deposited <strong>in</strong> the alveolar region of thelung (Scheepers P. T. J. <strong>and</strong> Bos R. P. 1992b, Health EffectsInstitute 1995). Number <strong>and</strong> size of the particles as well asthe type <strong>and</strong> amount of combustion compounds vary <strong>in</strong> awide range depend<strong>in</strong>g on the eng<strong>in</strong>es, fuels, <strong>and</strong> driv<strong>in</strong>g parameters.Although the epidemiological evidence is strong,there are until now no established biological mechanismsto fully expla<strong>in</strong> the toxicity of DPM to humans (Salvi S. etal. 1999).Non cancer effectsAcute <strong>and</strong> subacute effectsFirst recognized dur<strong>in</strong>g smog episodes <strong>in</strong> London dur<strong>in</strong>gthe 1950´s, subsequent epidemiologic studies have notedthat short-term <strong>in</strong>creases <strong>in</strong> ambient levels of particulate<strong>matter</strong> (PM) are associated with hospital admissions <strong>and</strong>deaths <strong>from</strong> cardiovascular <strong>and</strong> respiratory disorders.These acute effects were observed <strong>in</strong> patients with chronicobstructive pulmonary disease, chronic bronchitis, asthma<strong>and</strong> cardiovascular disease (Dockery D. W. <strong>and</strong> Pope C.A. III 1994, Samet J. M. et al. 1995, Katsouyanni K. et


J. Bünger / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 53al. 1997). However, the biologic mechanisms that underliethis association <strong>and</strong> the role that the composition <strong>and</strong> sizeof PM may have <strong>in</strong> caus<strong>in</strong>g adverse health effects are notwell understood (Salvi S. et al. 1999, Holgate S. T. et al.2003).Recent experimental studies <strong>in</strong> healthy human volunteersshowed <strong>in</strong>creases of many parameters of systemic <strong>and</strong> pulmonary<strong>in</strong>flammation but no measurable effects on lungfunction after exposure to DEP (Salvi S. et al. 1999, NordenhallC. et al. 2000, Pourazar J. et al. 2005). Furthermore,there is broad evidence that DEP <strong>in</strong>halation causesvascular dysfunction <strong>and</strong> impaired endogenous fibr<strong>in</strong>olysis(Mills N. L. et al. 2005).Information is limited for characteriz<strong>in</strong>g the potentialhealth effects associated with acute or short-term exposure.However, on the basis of available human <strong>and</strong> animalevidence, it is concluded that acute or short-term (e.g.,episodic) exposure to DEE can cause acute irritation ofthe eyes <strong>and</strong> upper airways, neurophysiological symptoms(e.g., lightheadedness, nausea), <strong>and</strong> respiratory symptoms(cough, phlegm). The lack of adequate exposure-response<strong>in</strong>formation <strong>in</strong> the acute health effect studies precludes thedevelopment of recommendations about levels of exposurethat would be presumed safe for these effects (EPA 2002).Chronic effectsIn long-term studies a significant association of mortalityhas been reported with air pollution <strong>from</strong> PM lessthan 10 µm <strong>in</strong> aerodynamic diameter (PM10) (Schwartz J.1993, Dockery D. W. et al. 1993, Pope C. A. III et al. 1995,Abbey D. E. et al. 1999). The Work<strong>in</strong>g Group on PublicHealth <strong>and</strong> Fossil-Fuel Combustion (1997) estimated 8million additional deaths globally until 2020 due to PMexposure if the air pollution <strong>in</strong>creases to the same degreeas hitherto. Recently, special attention has been focussedon the respiratory effects of f<strong>in</strong>e (PM2.5) <strong>and</strong> ultraf<strong>in</strong>e particles(PM0.1) (Peters A. et al. 1997, Schwartz J. <strong>and</strong> NeasL. M. 2000).Information <strong>from</strong> human studies is solely <strong>in</strong>adequate fora def<strong>in</strong>itive evaluation of non-cancer health effects <strong>from</strong>chronic exposure to DEP. However, on the basis of extensiveanimal evidence, DEP is judged to pose a chronicrespiratory hazard to humans. Chronic-exposure, animal<strong>in</strong>halation studies show a spectrum of dose-dependent <strong>in</strong>flammation<strong>and</strong> histopathological changes <strong>in</strong> the lung <strong>in</strong>several animal species <strong>in</strong>clud<strong>in</strong>g rats, mice, hamsters, <strong>and</strong>monkeys (EPA 2002).SensitizationThere also is evidence for an immunologic effect–theexacerbation of allergic responses to known allergens <strong>and</strong>asthma-like symptoms (EPA 2002). Several large epidemiologicalstudies have demonstrated a strong associationbetween exposure to motor vehicle traffic emissions <strong>and</strong>allergic symptoms <strong>and</strong> reduced lung function (BrunekeefB. et al. 1997, Brauer M. et al. 2002, Janssen N. A. et al.2003, Mc Connell R. et al. 2006), although the s<strong>in</strong>gularresults differ <strong>in</strong> detail. Laboratory studies <strong>in</strong> humans <strong>and</strong>animals have shown that particulate toxic pollutants-particularlydiesel exhaust particulates-can enhance allergic<strong>in</strong>flammation <strong>and</strong> can <strong>in</strong>duce allergic immune responses(Li N. et al. 2003, Siegel P. D. et al. 2004). Most of theseimmune responses are mediated by the carbon core of dieselexhaust particulates. However, also PAHs <strong>from</strong> DEPenhance the production of immunoglobul<strong>in</strong> E (MastrangeloG. et al. 2003).While the evidence for the exacerbation of immunologiceffects <strong>in</strong> already sensitized subjects is good, evidencefor the development of allergic sensitization <strong>from</strong> dieselexhaust particulates is less abundant. Comparisons of theprevalence of hay fever, as well as positive sk<strong>in</strong>-prick tests,between citizens of former West <strong>and</strong> East Germany <strong>and</strong> betweenHong Kong <strong>and</strong> Ch<strong>in</strong>a civilians, have demonstratedmarked differences. Crucial variations <strong>in</strong> the level of particulateair pollution <strong>from</strong> motor vehicles <strong>in</strong> these countriesmay account for the observed <strong>in</strong>creased prevalence ofatopy. In a review <strong>from</strong> 2002 Polosa <strong>and</strong> coworkers statedthat allergic susceptibility associated with diesel exhaustparticle exposure is clear as mud (Polosa R. et al. 2002).Two years later He<strong>in</strong>rich <strong>and</strong> Wichmann wrote that the evidencefor an <strong>in</strong>creased risk for asthma <strong>and</strong> hay fever is stillweak but seems to be strengthened a little (He<strong>in</strong>rich J. <strong>and</strong>Wichmann H. E. 2004).Cancer <strong>and</strong> mutagenic effectsCancerAn association of <strong>in</strong>creased risks for lung cancer associatedwith exposure to DEE has been observed <strong>in</strong> the vastmajority of over 30 epidemiologic cohort <strong>and</strong> case controlstudies published <strong>in</strong> the literature. Dist<strong>in</strong>ct populations ofoccupational groups were studied, <strong>in</strong>clud<strong>in</strong>g railroad workers,truck drivers, heavy-equipment operators, farm tractoroperators, <strong>and</strong> professional diesel vehicle drivers. Threemeta-analyses confirmed the relationship of diesel exhaustexposure <strong>and</strong> lung cancer (Cohen A. J. <strong>and</strong> Higg<strong>in</strong>s M. W.P. 1995, Bhatia R. et al. 1998, Lipsett M. <strong>and</strong> CamplemanS. 1999).Risk assessment data based on actual exposures to DEEwas not available. Elevated risks were estimated <strong>in</strong> epidemiologicalstudies on the basis of historical exposure scenarios.The Cohen <strong>and</strong> Higg<strong>in</strong>s report (1995) is a qualitativereview of 35 epidemiologic studies (16 cohort <strong>and</strong> 19


54case-control) of occupational exposure to DEE publishedbetween 1957 <strong>and</strong> 1993. The evidence suggests that occupationalexposure to DEE <strong>from</strong> diverse sources <strong>in</strong>creasesthe rate of lung cancer by 20 % to 40 % <strong>in</strong> exposed workers<strong>in</strong> general, <strong>and</strong> to a greater extent among workers with prolongedexposure. Bhatia R. et al. (1998) found a small butconsistent <strong>in</strong>crease <strong>in</strong> the risk for lung cancer among workerswith exposure to DEE, <strong>in</strong> a quantitative meta-analysisof 23 studies. The pooled RR weighted by study precisionwas 1.33 (95 % CI = 1.24-1.44). Lipsett <strong>and</strong> Campleman(1999) performed a quantitative meta-analysis. Pooled RRsfor all studies <strong>and</strong> for study subsets were estimated us<strong>in</strong>g ar<strong>and</strong>om effect model. A pooled smok<strong>in</strong>g-adjusted RR was1.47 (95 % CI = 1.29-1.67). Although the results of theseanalyses were called <strong>in</strong>to question by several authors (StöberW. <strong>and</strong> Abel U. R. 1996, Muscat J. E. 1996, Crump K.S. 1999, Hesterberg T. W. et al. 2006), another recent studyadded new evidence for an <strong>in</strong>creased lung cancer risk <strong>from</strong>exposure to DEP (Parent M. E. et al. 2007).Risk assessment data for specific occupations based onactual exposures to DEE was not available. A pooled studybased on exposures <strong>in</strong> East <strong>and</strong> Western Germany somedecades ago showed the follow<strong>in</strong>g odds ratios (Brüske-Hohlfeld I. et al. 1999):Heavy equipment operatorsOR = 2.31 (95 % - CI 1.44 - 3.70)Tractor drivers (exposure >30 years)OR = 6.81 (95 % - CI 1.17 - 39.51)Professional drivers (West Germany)OR = 1.44 (95 % - CI 1.18 - 1.76)Other traffic related jobsOR = 1.53 (95 % - CI 1.04 - 2.24)Most assessments conclude that DEP is “likely to be carc<strong>in</strong>ogenicto humans by <strong>in</strong>halation” <strong>and</strong> that this hazard appliesto occupational <strong>and</strong> environmental exposures (IARC1989, EPA 2002). This conclusion is based on the evidence<strong>from</strong> human, animal, <strong>and</strong> other support<strong>in</strong>g studies. Thereis considerable evidence demonstrat<strong>in</strong>g an association betweenDEP exposure <strong>and</strong> <strong>in</strong>creased lung cancer risk amongworkers <strong>in</strong> varied occupations where diesel eng<strong>in</strong>es historicallyhave been used. The human evidence <strong>from</strong> occupationalstudies is considered strongly supportive of af<strong>in</strong>d<strong>in</strong>g that DEP exposure is causally associated with lungcancer, though the evidence is less than that needed to def<strong>in</strong>itivelyconclude that DEP is carc<strong>in</strong>ogenic to humans.There is some uncerta<strong>in</strong>ty about the degree to which confoundersare hav<strong>in</strong>g an <strong>in</strong>fluence on the observed cancerrisk <strong>in</strong> the occupational studies, <strong>and</strong> there is uncerta<strong>in</strong>tyevolv<strong>in</strong>g <strong>from</strong> the lack of actual DEP exposure data for theworkers (EPA 2002).In addition to the human evidence, there is support<strong>in</strong>gevidence of DEP’s carc<strong>in</strong>ogenicity <strong>and</strong> associated DEP organiccompound extracts <strong>in</strong> rats. The experiments showeda consistent dose-dependant <strong>in</strong>cidence of lung tumors aftera chronic exposure to high concentrations of DEE (He<strong>in</strong>richU. et al. 1986, Ish<strong>in</strong>ishi N. et al. 1986, Iwai K. et al.1986, Mauderly J. L. et al. 1987). But these results werecriticized s<strong>in</strong>ce concentrations led to an “lung-overload”with particles <strong>in</strong> the animals (EPA 2002).MutagenicityOther support<strong>in</strong>g evidence <strong>in</strong>cludes the demonstratedmutagenic effects of DEP <strong>and</strong> its organic constituents. Ahigh mutagenic potency of extracts of DEP was describedby Huis<strong>in</strong>gh J. et al. (1978) us<strong>in</strong>g the Salmonella typhimurium/mammalianmicrosome assay (Ames-Test) <strong>and</strong>has been confirmed <strong>in</strong> multiple further studies (Clark C.R. <strong>and</strong> Vigil C. L. 1980, Claxton L. D. <strong>and</strong> Barnes H. M.1981, Belisario M. A. et al. 1984). The direct-act<strong>in</strong>g mutagenicityof DEP is ascribed to substituted PAHs, e. g. nitro-PAHs (Wang Y. Y. et al. 1978, Pedersen T. C. <strong>and</strong> Siak J.S. 1981, Ohe T. 1984), while not substituted PAH requiremetabolic activation by S9 (IARC 1983). In recent yearsrenewable sources, especially vegetable oils, were used tocreate biogenic diesel fuels. Accord<strong>in</strong>g to results us<strong>in</strong>g theAmes-Test, DEP extracts of plant oil derived methyl esterse.g. (SME, RME) are less mutagenic (Bagley S. T. et al.1998, Bünger J. et al. 1998, Bünger J. et al. 2000a, BüngerJ. et al. 2000b, Bünger J. et al. 2006) compared to commondiesel fuel, while the combustion of crude rape seed oilresulted <strong>in</strong> an extreme <strong>in</strong>crease of mutagenicity <strong>in</strong> an actualstudy (Bünger J. et al. 2007).ReferencesAbbey D. E., Nish<strong>in</strong>o N., McDonnell W. F., Burchette R. J., KnutsenS. F., Beeson W. L., Yang J. X. (1999). Long-term <strong>in</strong>halable particles<strong>and</strong> other air pollutants related to mortality <strong>in</strong> nonsmokers. Am J RespirCrit Care Med 159:373-382Angerer J., Mannschreck C., Gundel J. (1997). Biological monitor<strong>in</strong>g<strong>and</strong> biochemical effect monitor<strong>in</strong>g of exposure to polycyclic aromatichydrocarbons. Int Arch Occup Environ Health 70:365-377Bagley S. T., Gratz L. D. , Johnson J. H., McDonald J. F. (1998). Effectsof an oxidation catalytic converter <strong>and</strong> a biodiesel fuel on thechemical, mutagenic, <strong>and</strong> particle size characteristics of emissions<strong>from</strong> a diesel eng<strong>in</strong>e. Environ Sci Technol 32:1183-1191Belisario M. A., Buonocore V., De Mar<strong>in</strong>is E., De Lorenzo F. (1984).Biological availability of mutagenic compounds adsorbed onto dieselexhaust particulate. Mutat Res 135:1-9Bhatia R., Lopipero P., Smith A. (1998). Diesel exhaust exposure <strong>and</strong>lung cancer. Epidemiology 9:84-91Bofetta P., Dosemeci M., Gridley G., Bath H., Moradi T., Silverman D.(2001). Occupational exposure to diesel eng<strong>in</strong>e emissions <strong>and</strong> riskof cancer <strong>in</strong> Swedish men <strong>and</strong> women. Cancer Causes <strong>and</strong> Control12:365-374


J. Bünger / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 55Brauer M., Hoek G., Van Vliet P., Meliefste K., Fischer P. H., WijgaA., Koopman L. P., Neijens H. J., Gerritsen J., Kerkhof M., He<strong>in</strong>richJ., Bell<strong>and</strong>er T., Brunekreef B. (2002). Air pollution <strong>from</strong> traffic<strong>and</strong> the development of respiratory <strong>in</strong>fections <strong>and</strong> asthmatic <strong>and</strong> allergicsymptoms <strong>in</strong> children. Am J Respir Crit Care Med 166:1092-1098Brunekreef B., Janssen N. A., de Hartog J., Harssema J., Knape M.,van Vliet P. (1997). Air pollution <strong>from</strong> truck traffic <strong>and</strong> lung function<strong>in</strong> children liv<strong>in</strong>g near motorways. Epidemiology 8:298-303Brüske-Hohlfeld I., Möhner M., Ahrens W., Pohlabeln H., He<strong>in</strong>richJ., Kreuzer M., Jöckel K. H., Wichmann H. E. (1999). Lung cancerrisk <strong>in</strong> male workers occupationally exposed to diesel motor emissions<strong>in</strong> Germany. Am J Ind Med 36:405-414Bundesagentur für Arbeit (2005) Institut für Arbeitsmarkt- und Berufsforschung(IAB). http://www.pallas.iab.de/bisds/berufe.htmBünger J., Krahl J., Baum K., Schröder O., Müller M., WestphalG., Ruhnau P., Schulz T., Hallier E. (2000b). Comparison of dieseleng<strong>in</strong>e emissions <strong>from</strong> biodiesel <strong>and</strong> petrol diesel fuel: Particle size<strong>and</strong> number analysis, cytotoxic <strong>and</strong> mutagenic effects. Arch Toxicol74:490-498Bünger J., Krahl J., Franke H. U., Munack A., Hallier E. (1998). Mutagenic<strong>and</strong> cytotoxic effects of exhaust particulate <strong>matter</strong> of biodieselcompared to fossil diesel fuel. Mutat. Res 415:13-23Bünger J., Krahl J., Munack A., Ruschel Y., Schröder O., EmmertB., Westphal G., Müller M., Hallier E., Brün<strong>in</strong>g T. (2007). Strongmutagenic effects of diesel eng<strong>in</strong>e emissions us<strong>in</strong>g vegetable oil asfuel. Arch Toxicol 81: [Epub ahead of pr<strong>in</strong>t] DOI: 10.1007/s00204-007-0196-3Bünger J., Krahl J., Weigel A., Schröder O., Brün<strong>in</strong>g T., Müller M.,Hallier E., Westphal G. (2006). Influence of fuel properties, nitrogenoxides, <strong>and</strong> exhaust treatment by an oxidation catalytic converter onthe mutagenicity of diesel eng<strong>in</strong>e emissions. Arch Toxicol 80:540-546Bünger J., Müller M. M., Krahl J., Baum K., Weigel A., Hallier E.,Schulz T. G. (2000a). Mutagenicity of diesel eng<strong>in</strong>e particles <strong>from</strong> twofossil <strong>and</strong> two plant oil fuels. Mutagenesis 15:391–397Clark C. R., Vigil C. L. (1980). Influence of rat lung <strong>and</strong> liver homogenateson the mutagenicity of diesel exhaust particulate extracts. ToxicolAppl Pharmacol 56:100-115Claxton L. D., Barnes H. M. (1981). The mutagenicity of diesel-exhaustparticle extracts collected under smoke-chamber conditions us<strong>in</strong>g theSalmonella typhimurium test system. Mutat Res 88:255-272Cohen A. J., Higg<strong>in</strong>s M. W. P. (1995). Health effects of diesel exhaust:epidemiology. In: Diesel exhaust: a critical analysis of emissions, exposure,<strong>and</strong> health effects. Cambridge, MA: Related HEI Publications;pp. 251-292Crump K. S (1999). Lung cancer mortality <strong>and</strong> diesel exhaust: Reanalysisof a retrospective cohort study of U.S. Railroad workers. InhalToxicol 11:1-17Dockery D. W., Pope C. A. III (1994). Acute respiratory effects of particulateair pollution. Annu Rev Public Health 15:107-132Dockery D. W., Pope C. A. III, Xu X., Spengler J. D., Ware J. H., FayM. E., Ferris B. G., Speizer F. E. (1993). An association betweenair pollution <strong>and</strong> mortality <strong>in</strong> six U.S. cities. N Engl J Med 329:1753-1759EPA, U.S. Environmental Protection Agency (2002) Health assessmentdocument for diesel eng<strong>in</strong>e exhaust. Prepared by the National Centerfor Environmental Assessment, Wash<strong>in</strong>gton, DC, for the Office ofTransportation <strong>and</strong> Air Quality; EPA/600/8-90/057F. Available <strong>from</strong>:National Technical Information Service, Spr<strong>in</strong>gfield, VA; PB2002-107661, <strong>and</strong> .Health Effects Institute (1999) Diesel exhaust <strong>and</strong> lung cancer: Epidemiology<strong>and</strong> quantitative risk assessment. A special report of the <strong>in</strong>stitutesdiesel epidemiology expert panel. Cambridge, USAHealth Effects Institute (1995) Diesel exhaust: A critical analysis ofemissions, exposure, <strong>and</strong> health effects. A special report of the <strong>in</strong>stitutesdiesel work<strong>in</strong>g group, Cambridge, USAHebisch R., Dabill D., Dahmann D., Diebold F., Geiregat N., GrosjeanR., Mattenklott M., Perret V., Guillem<strong>in</strong> M. (2003). Sampl<strong>in</strong>g <strong>and</strong>analysis of carbon <strong>in</strong> diesel exhaust particulates - an <strong>in</strong>ternational comparison.Int Arch Occup Environ Health 76:137-142He<strong>in</strong>rich J., Wichmann H. E. (2004). Traffic related pollutants <strong>in</strong> Europe<strong>and</strong> their effect on allergic disease. Curr Op<strong>in</strong> Allergy Cl<strong>in</strong> Immunol4:341-348He<strong>in</strong>rich U., Muhle H., Takenaka S., Ernst H., Fuhst R., Mohr U.,Pott F., Stöber W. (1986). Chronic effects on the respiratory tract ofhamsters, mice <strong>and</strong> rat after long-term <strong>in</strong>halation of high concentrationsof filtered <strong>and</strong> unfiltered diesel eng<strong>in</strong>e emissions. J Appl Toxicol6:383-395Hesterberg T. W., Bunn W. B. 3rd, Chase G. R., Valberg P. A., Slav<strong>in</strong>T. J., Lap<strong>in</strong> C. A., Hart G. A. (2006). A critical assessment of studieson the carc<strong>in</strong>ogenic potential of diesel exhaust. Crit Rev Toxicol36:727-776Holgate S. T., S<strong>and</strong>ström T., Frew A. J., Stenfors N., Nördenhall C.,Salvi S., Blomberg A., Helleday R., Södenberg M. (2003). Healtheffects of acute exposure to air pollution. Research Report 112, HealthEffects Institute, Boston MA, U.S.A.Huis<strong>in</strong>gh J., Bradow R., Jungers R., Claxton L., Zweid<strong>in</strong>ger R., TejadaS., Bumgarner J., Duffield F., Waters M. (1978). Application ofbioassay to the characterization of diesel particle emissions; <strong>in</strong>: Applicationof short-term bioassay <strong>in</strong> the fractionation <strong>and</strong> analysis of complexenvironmental mixtures; hrsg. v. Waters MD, Nesnow S, Huis<strong>in</strong>ghJL, S<strong>and</strong>hu SS, Claxton LD; Plenum Press, New York, 382-418IARC (1989) International Agency for Research on Cancer Monographson the evaluation of carc<strong>in</strong>ogenic risks to humans: Diesel <strong>and</strong> gasol<strong>in</strong>eeng<strong>in</strong>e exhausts <strong>and</strong> some nitroarenes. IARC Monographs 46, Lyon,FranceIARC (1983) International Agency for Research on Cancer: Monographson the evaluation of carc<strong>in</strong>ogenic risks to humans: Polynuclear aromaticcompounds. IARC Monographs 32, Lyon, FranceIsh<strong>in</strong>ishi N., Kuwabara N., Nagase S., Suzuki T., Ishiwata S., Kohno T.(1986). Long-term <strong>in</strong>halation studies on effects of exhaust <strong>from</strong> heavy<strong>and</strong> light duty diesel eng<strong>in</strong>es on F344 rats; <strong>in</strong>: Carc<strong>in</strong>ogenic <strong>and</strong> MutagenicEffects of Diesel Eng<strong>in</strong>e Exhaust; hrsg. v. Ish<strong>in</strong>ishi N, KoizumiA, Mc Clellan RO, Stöber W; Elsevier Science Publish<strong>in</strong>g, New York,329-348Iwai K., Udagawa T., Yamagishi M., Yanada H. (1986). Long-term <strong>in</strong>halationstudies of diesel exhaust on 344 SPF rats; <strong>in</strong>: Carc<strong>in</strong>ogenic<strong>and</strong> Mutagenic Effects of Diesel Eng<strong>in</strong>e Exhaust; hrsg. v. Ish<strong>in</strong>ishi N,Koizumi A, Mc Clellan RO, Stöber W; Elsevier Science Publish<strong>in</strong>g,New York, 349-360Janssen N. A., Brunekreef B., van Vliet P., Aarts F., Meliefste K.,Harssema H., Fischer P. (2003). The relationship between air pollution<strong>from</strong> heavy traffic <strong>and</strong> allergic sensitization, bronchial hyperresponsiveness,<strong>and</strong> respiratory symptoms <strong>in</strong> Dutch schoolchildren.Environ Health Perspect 111:1512-1518Katsouyanni K., Touloumi G., Spix C., Schwartz J., Balducci F., Med<strong>in</strong>aS., Rossi G., Wojtyniak B., Sunyer J., Bacharova L., SchoutenJ. P., Ponka A., Anderson H. R. (1997). Short-term effects of ambientsulphur dioxide <strong>and</strong> particulate <strong>matter</strong> on mortality <strong>in</strong> 12 European cities:results <strong>from</strong> time series data <strong>from</strong> the APHEA project. Air pollution<strong>and</strong> health: a European approach. BMJ 314 (7095) 1658-1663


56Kaupp<strong>in</strong>en T., Toikkanen J., Pedersen D., Young R., Ahrens W., BoffettaP., Hansen J., Kromhout H., Maqueda Blasco J., Mirabelli D.,de la Orden-Rivera V., Pannett B., Plato N., Savela A., V<strong>in</strong>cent R.,Kogev<strong>in</strong>as M. (2000). Occupational exposure to carc<strong>in</strong>ogens <strong>in</strong> theEuropean Union. Occup Environ Med 57:10-8Li N., Hao M., Phalen R. F., H<strong>in</strong>ds W. C., Nel A. E. (2003). <strong>Particulate</strong> Partculateair pollutants <strong>and</strong> asthma. A paradigm paradgm for the role of oxidative oxdatve stress <strong>in</strong> nPM-<strong>in</strong>duced adverse health effects. Cl<strong>in</strong> Immunol 109:250-265Lipsett M., Campleman S. (1999). Occupational exposure to diesel exhaust<strong>and</strong> lung cancer: a meta-analysis. Am J Public Health 80:1009-1017Mastrangelo G., Clonfero E., Pavanello S., Fedeli U., Fadda E., TuratoA., Picc<strong>in</strong>ni S., Montagnani R., Marcer G. (2003). Exposureto diesel exhaust enhances total IgE <strong>in</strong> non-atopic dockers. Int ArchOccup Environ Health 76:63-68Mattenklott M., Bagschik U., Chromy W., Dahmann D., Kieser D.,Rietschel P., Schwalb J., S<strong>in</strong>ner K. E., Stückrath M., Van GelderR., Wilms V. (2002). Diesel eng<strong>in</strong>e emissions at workplaces. Gefahrstoffe– Re<strong>in</strong>haltung der Luft 62:13-23Mauderly J. L., Jones R. K., Griffith W. C., Henderson R. F., Mc-Clellan R. (1987). Diesel exhaust is a pulmonary carc<strong>in</strong>ogen <strong>in</strong> ratsexposed chronically by <strong>in</strong>halation. Fundam Appl Toxicol 9:208 - 221McConnell R., Berhane K., Yao L., Jerrett M., Lurmann F., Gillil<strong>and</strong>F., Künzli N., Gauderman J., Avol E., Thomas D., Peters J. (2006).Traffic, susceptibility, <strong>and</strong> childhood asthma. Environ Health Perspect114:766-772Mills N. L., Tornqvist H., Rob<strong>in</strong>son S. D., Gonzalez M., Darnley K.,MacNee W., Boon N. A., Donaldson K., Blomberg A., S<strong>and</strong>stromT., Newby DE (2005). Diesel exhaust <strong>in</strong>halation causes vascular dysfunction<strong>and</strong> impaired endogenous fibr<strong>in</strong>olysis. Circulation 112:3930-3936Mirabelli D., Kaupp<strong>in</strong>en T. (2005) Occupational exposures to carc<strong>in</strong>ogens<strong>in</strong> Italy: an update of CAREX database. Int J Occup EnvironHealth 11:53-63Muscat J. E. (1996). Carc<strong>in</strong>ogenic effects of diesel emissions <strong>and</strong> lungcancer: the epidemiologic evidence is not causal. J Cl<strong>in</strong> Epidemiol49:891-892Nordenhall C., Pourazar J., Blomberg A. (2000). Airway <strong>in</strong>flammationfollow<strong>in</strong>g exposure to diesel exhaust: a study of time k<strong>in</strong>etics us<strong>in</strong>g<strong>in</strong>duced sputum. Eur Respir J 15:1046-1051Ohe T. (1984). Mutagenicity of photochemical reaction products of polycyclicaromatic hydrocarbons with nitrite. Sc Sci Total Envron Environ 39:161-175Parent M. E., Rousseau M. C., Boffetta P., Cohen A., Siemiatycki J.(2007). Exposure to diesel <strong>and</strong> gasol<strong>in</strong>e eng<strong>in</strong>e emissions <strong>and</strong> the riskof lung cancer. Am J Epidemiol 165:53-62Pederson T. C., Siak J. S. (1981). The role of nitroaromatic compounds<strong>in</strong> the direct-act<strong>in</strong>g mutagenicity of diesel particle extracts. J ApplToxicol 1:54-60Peters A., Wichmann H. E., Tuch T., He<strong>in</strong>rich J., Heyder J. (1997).Respiratory effects are associated with the number of ultraf<strong>in</strong>e particles.Am J Respir Crit Care Med 155:1376-1383Polosa R., Salvi S., Di Maria G.U. (2002). Allergic susceptibility associatedwith diesel exhaust particle exposure: clear as mud. Arch EnvironHealth 57:188-193Pope C. A. III, Thun M. J., Namboodiri M. M., Dockery D. W., EvansJ. S., Speizer F. E., Heath CW (1995). <strong>Particulate</strong> air pollution asa predictor of mortality <strong>in</strong> a prospective study of U.S. adults. Am JRespir Crit Care Med 151:669-674Pourazar J., Mudway I. S., Samet J. M., Helleday R., Blomberg A.,Wilson S. J., Frew A. J., Kelly F. J., S<strong>and</strong>strom T. (2005). Dieselexhaust activates redox-sensitive transcription factors <strong>and</strong> k<strong>in</strong>ases <strong>in</strong>human airways. Am J Physiol Lung Cell Mol Physiol 289:L724-730Rossbach B., Preuss R., Letzel S., Drexler H., Angerer J. (2007). Biologicalmonitor<strong>in</strong>g of occupational exposure to polycyclic aromatic hydrocarbons(PAH) by determ<strong>in</strong>ation of monohydroxylated metabolitesof phenanthrene <strong>and</strong> pyrene <strong>in</strong> ur<strong>in</strong>e. Int Arch Occup Environ Health;[Epub ahead of pr<strong>in</strong>t]Salvi S., Blomberg A., Rudell B., Kelly F., S<strong>and</strong>ström T., Holgate S.T., Frew A. (1999). Acute <strong>in</strong>flammatory response <strong>in</strong> the airways <strong>and</strong>peripheral blood after short-term exposure to diesel exhaust <strong>in</strong> healthyhuman volunteers. Am J Respir Crit Care Med 159:702-709Samet J. M., Zeger S. L., Birhane K. (1995). The association of mortality<strong>and</strong> particulate air pollution. In: <strong>Particulate</strong> air pollution <strong>and</strong> dailymortality: replication <strong>and</strong> validation of selected studies, the Phase I. Areport of the particle epidemiology evaluation project. Health EffectsInstitute, Cambridge, MA, U.S.A.Scheepers P. T., Coggon D., Knudsen L. E., Anzion R., Autrup H., BogovskiS., Bos R. P., Dahmann D., Farmer P., Mart<strong>in</strong> E. A., MickaV., Muzyka V., Neumann H. G., Poole J., Schmidt-Ott A., Seiler F.,Volf J., Zwirner-Baier I. (2002). Biomarkers for occupational dieselexhaust exposure monitor<strong>in</strong>g (BIOMODEM)—a study <strong>in</strong> undergroundm<strong>in</strong><strong>in</strong>g. Toxicol Lett 134:305-317Scheepers P. T. J., Bos R. P. (1992a). Combustion of diesel fuel <strong>from</strong>a toxicological perspective, I. Orig<strong>in</strong> of <strong>in</strong>complete combustion products.Int Arch Occup Environ Health 64:149-161Scheepers P. T. J., Bos R. P. (1992b). Combustion of diesel fuel <strong>from</strong> atoxicological perspective, II. Toxicity. Int Arch Occup Environ Health64:163-177Schwartz J. (1993). <strong>Particulate</strong> air pollution <strong>and</strong> chronic respiratory disease.Environ Res 62:7-13Schwartz J., Neas L. M. (2000). F<strong>in</strong>e particles are more strongly associatedthan coarse particles with acute respiratory health effects <strong>in</strong>schoolchildren. Epidemiology 11:6-10Seidel A., Dahmann D., Krekeler H., Jacob J. (2002). Biomonitor<strong>in</strong>gof polycyclic aromatic compounds <strong>in</strong> the ur<strong>in</strong>e of m<strong>in</strong><strong>in</strong>g workersoccupationally exposed to diesel exhaust. Int J Hyg Environ Health204:333-338Siegel P. D., Saxena R. K., Saxena Q. B., Ma J. K., Ma J. Y., Y<strong>in</strong> X. J.,Castranova V., Al-Humadi N., Lewis D. M. (2004). Effect of dieselexhaust particulate (DEP) on immune responses: contributions of particulateversus organic soluble components. J Toxicol Environ HealthA 67:221-231Stöber W., Abel U. R. (1996). Lung cancer due to diesel soot particles <strong>in</strong>ambient air? A critical appraisal of epidemiological studies address<strong>in</strong>gthis question. Int Arch Occup Environ Health 68 Suppl:3-61Wang Y. Y., Rappaport S. M., Sawyer R. F., Talcott R. E., Wei E. T.(1978). Direct-act<strong>in</strong>g mutagens <strong>in</strong> automobile exhaust. Cancer Lett5:39-47Wilhelm M., Ewers U., Wittsiepe J., Furst P., Holzer J., Eberwe<strong>in</strong> G.,Angerer J., Marczynski B., Ranft U. (2007). Human biomonitor<strong>in</strong>gstudies <strong>in</strong> North Rh<strong>in</strong>e-Westphalia, Germany. Int J Hyg Environ Health210:307-318Work<strong>in</strong>g Group on Public Health <strong>and</strong> Fossil-Fuel Combustion (1997).Short-term improvements <strong>in</strong> public health <strong>from</strong> global-climate policieson fossil-fuel combustion: an <strong>in</strong>terim report. Lancet 350 (9088):1341-1349


J. Keder / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 57An assessment of time changes of the health risk of PM10 based on GRIMM analyzer data <strong>and</strong>respiratory deposition modelJ. Keder 1AbstractPM10 particles are considered as one of the most problematicalpollutants affect<strong>in</strong>g the human health, especially<strong>in</strong> the urban environment, where they are emitted primarily<strong>from</strong> the mobile sources. Particles enter<strong>in</strong>g human respiratorysystem are subjected to number of depositionmechanisms <strong>and</strong> the fraction deposited <strong>in</strong> different parts ofrespiratory tract depends on their aerodynamical diameter.Thus, identical PM10 concentrations measured by monitor<strong>in</strong>gstations may cause different health effects depend<strong>in</strong>gon size distribution of particles whose concentrationwas detected.Synchronous measurements of suspended particles fractionsPM1, PM2.5 <strong>and</strong> PM10 were provided us<strong>in</strong>g GRIMMModel 180 analyzer <strong>in</strong> Prague (Czech Republic capital)<strong>and</strong> <strong>in</strong> Ostrava <strong>in</strong>dustrial region. These enable to assess theproportion of contribution of different fraction to the totalPM10 concentration. Collocated PM10 concentration datagathered by the radiometric method was available as well.The model developed by the International Commissionon Radiological Protection (ICRP) to predict the particledeposition <strong>in</strong> human respiratory tract was applied at themeasured data <strong>and</strong> possible particulate dose assessmenthas been found for different locations <strong>and</strong> time periods.Keywords: PM10, size distribution, health effects, GRIMManalyzerIntroductionParticles are considered as one of the most problematicalpollutants affect<strong>in</strong>g the human health. They comprise typicalair pollution burden especially <strong>in</strong> the urban environment,where they are emitted primarily <strong>from</strong> the mobilesources <strong>and</strong> <strong>in</strong> the <strong>in</strong>dustrial regions as well. Health riskdepends by particulate <strong>matter</strong> concentration <strong>and</strong> particlessize, morphology <strong>and</strong> chemical composition (Pope III. C.A. <strong>and</strong> Dockery D. W. 2006). The air quality st<strong>and</strong>ardsregulate PM10 concentrations first of all. In recent years,however, the PM2.5 <strong>and</strong> PM1 particles, deposit<strong>in</strong>g <strong>in</strong> thelower respiratory tract <strong>and</strong> be<strong>in</strong>g assumed as the ma<strong>in</strong>cause of <strong>in</strong>creased morbidity <strong>and</strong> mortality among population,were studied with the <strong>in</strong>creased <strong>in</strong>tensity.Methodology <strong>and</strong> data usedMeasured data <strong>from</strong> GRIMM Model 180 analyzer(GRIMM Aerosol Technik, 2003), gathered at two places<strong>in</strong> the Czech Republic dur<strong>in</strong>g the period September 2005– October 2006, were analyzed. The GRIMM analyzerswere <strong>in</strong>stalled at automatic monitor<strong>in</strong>g stations located <strong>in</strong>Prague (Czech Republic capital) <strong>and</strong> <strong>in</strong> highly <strong>in</strong>dustrializedtown Ostrava. PM10 concentrations measurements bymeans of Thermo ESM Andersen FH 62 I-R analyzers areprovided at both stations at regular basis. Parallel meteorologicaldata such as air temperature <strong>and</strong> humidity, w<strong>in</strong>d <strong>and</strong>global solar radiation are available as well at these sites.The analysis has been provided for the hourly means of allmeasured quantities.Particles suspended <strong>in</strong> the air enter human body by breath<strong>in</strong>g.These particles <strong>in</strong>clude natural materials such as bacteria,viruses, pollens, sea salt, road dust as well as anthropogenicemissions. The hazard caused by these particlesdepends on their chemical composition as well as wherethey deposit with<strong>in</strong> human respiratory system. Hence, theunderst<strong>and</strong><strong>in</strong>g of aerosol deposition <strong>in</strong> human respiratorysystem is critical to human health so that the deposition of“bad” aerosol can be reduced (http://aerosol.ees.ufl.edu).The respiratory system is works essentially as a filter.The viscous surface of the airway walls almost guaranteesthe deposition without re-entra<strong>in</strong>ment when a particle is<strong>in</strong> contact with it. The most important mechanisms areimpaction, settl<strong>in</strong>g, diffusion <strong>and</strong> <strong>in</strong>terception. A particleenter<strong>in</strong>g respiratory system is subject to all the deposition1Czech Hydrometeorological Institute, Praha, Czech Republic


58mechanisms mentioned previously. The actual depositionefficiency of a given particle size has been determ<strong>in</strong>ed experimentally.Several models have been developed to predictthe deposition based on experimental data. A widelyused one was developed by the International Commissionon Radiological Protection. For the purpose of this ths model,respiratory system is divided <strong>in</strong>to 3 parts: head airways(HA), tracheobronchial region (TB) <strong>and</strong> alveolar region(fig. 1).1: Pharynx2: Larynx3: Trachea4: Bronchus5: Bronchioles6: Pulmonary Alveoli12HAEquations describ<strong>in</strong>g the total deposition fraction (DF)<strong>in</strong> the whole respiratory system <strong>and</strong> regional depositionfractions <strong>in</strong> head airways (DFHA), tracheobronchial region(DFTB) <strong>and</strong> alveolar region (DFAL) were derived <strong>in</strong>this model (http://www.icrp.org). Regional deposition is ofmore <strong>in</strong>terest because it is more relevant <strong>in</strong> assess<strong>in</strong>g thepotential hazard of <strong>in</strong>haled particles.In figure 2, dependences of particular deposition fractionon particle size diameter calculated accord<strong>in</strong>g to ICRPmodel equations are depicted. It is obvious that particleswith their diameter with<strong>in</strong> the range 0.1 – 1 µm depositwith the lowest efficiency. The most dangerous, related tohuman health, are the f<strong>in</strong>e particles with diameters rang<strong>in</strong>gbetween 0.01 – 0.1 µm which are deposited <strong>in</strong> pulmonaryalveoli without possibility to be removed <strong>from</strong> them for<strong>in</strong>stance by cough.Results <strong>and</strong> discussion3456Figure 1:Parts of human respiratory tract used <strong>in</strong> ICRP model10.90.8Deposition fraction0.70.60.50.40.30.20.1TBALTotal depositionHead airwaysTracheobronchial regionAlveolar regionHourly mean particle concentrations <strong>in</strong> fractions PM10<strong>and</strong> PM2.5, measured by GRIMM analyzers, were comparedwith those <strong>from</strong> regular network.Example of such comparison gives a scatter graph at figure3, where comparison of PM10 data <strong>from</strong> Ostrava wasdepicted.The good correlation of both methods is obvious, butGRIMM analyzer significantly underestimates PM10 massconcentration values. Similar results were obta<strong>in</strong>ed for locality<strong>in</strong> Prague <strong>and</strong> for the PM2.5 fraction. Obviously the00.001 0.01 0.1 1 10 100Particle diameter [µm]Figure 2:Dependence of regional particle deposition fraction on particle diameter


J. Keder / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 59calibration constants of GRIMM analyzer must be checked<strong>and</strong> set appropriately. As for the current data, we concludedthat it would be reasonable to analyse proportions of particularfractions <strong>in</strong> PM10 <strong>in</strong>stead their mass concentrationsprovided by GRIMM.250PM10 mass concentration, GRIMM20015010050y = 0.49x + 8.7537R 2 = 0.855300 50 100 150 200 250 300 350 400 450 500PM10 mass concentration, regular monitor<strong>in</strong>g, OstravaFigure 3:Comparison of PM10 concentration measured by GRIMM <strong>and</strong> a st<strong>and</strong>ard network analyzer(GM10-GM25)/GM10GM1/GM10(GM25-GM1)/GM10Typical proportion of fractions, <strong>from</strong> the left to the rightType 1Type 2Type 3Type 4Figure 4:Types of PM fractions proportions <strong>in</strong> PM10, Ostrava


6030 3025 2520 20DayDAY15 1510 10550002 4 6 8 10 12 14 16 18 20 22 24HOUR HourType11Type22Type33Type44Figure 5:Time changes of typical profiles of PM fractions share <strong>in</strong> PM10 <strong>in</strong> Ostrava, January 200630 3025 2520 20DayDAY15 1510 10550002 4 6 8 10 12 14 16 18 20 22 24HOUR HourType 1Type 2Type 3Type 4Figure 6:Time changes of typical profiles of PM fractions share <strong>in</strong> PM10 <strong>in</strong> Ostrava, July 2006


J. Keder / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 61For further analysis, proportions of particular fractionsmeasured by GRIMM were determ<strong>in</strong>ed, where e.g. GM1/GM10 stays for the share of PM1 <strong>in</strong> total PM10 concentration.Changes of share of PM1 <strong>and</strong> PM2.5 <strong>in</strong> PM10 withair temperature <strong>and</strong> relative humidity were studied <strong>and</strong> ithas been found that the share of f<strong>in</strong>e fraction <strong>in</strong> total PM10concentration <strong>in</strong>creases when air temperature decreases.For low temperatures, practically the whole PM2.5 fractionconsists of the f<strong>in</strong>est PM1 particles, which are the mostdangerous form the aspect of health effects. Similarly, theshare of both fractions <strong>in</strong> the total PM10 <strong>in</strong>creases with <strong>in</strong>creas<strong>in</strong>grelative humidity <strong>and</strong> the share of PM1 <strong>in</strong> PM2.5<strong>in</strong>creases as well. In range of relative humidity between 80<strong>and</strong> 90% practically all PM2.5 consists of PM1.For the purpose of health protection <strong>and</strong> for considerationson particle orig<strong>in</strong> there is necessary to answer the questionif <strong>and</strong> how the share of particular fraction <strong>in</strong> PM10 changes<strong>in</strong> time. The results of multicomponent statistical analysisshowed that this share has been chang<strong>in</strong>g at both locationsdur<strong>in</strong>g the day <strong>and</strong> <strong>from</strong> one month to another as well. Fourtypical profiles of share of PM1 <strong>and</strong> PM2.5 fractions <strong>in</strong>PM10 were found by means of cluster analysis, marked<strong>from</strong> 1 to 4. Each hourly profile was then allocated <strong>in</strong>toone profile class. The share of f<strong>in</strong>e fraction <strong>in</strong> total PM10<strong>in</strong>creases with the <strong>in</strong>creas<strong>in</strong>g class number <strong>and</strong> for class4 practically the whole PM10 consists of PM1. Thus, therate of danger for the human health <strong>in</strong>creases with the classnumber.Figure 5 shows the daily changes of profile classes <strong>in</strong>Ostrava for w<strong>in</strong>ter (January) <strong>and</strong> summer (July) month.The most dangerous profile class dom<strong>in</strong>ated <strong>in</strong> Ostravaover the whole January 2006, without any <strong>in</strong>dication ofthe daily course. The different picture showed July, whenamount of less serious classes <strong>in</strong>creased <strong>and</strong> daily courseof them is also apparent. The described approach enablesto map the changes of burden by particular PM fractionsdur<strong>in</strong>g the whole year <strong>and</strong> study their relation to meteorologicalparameters <strong>and</strong> emission sources types.Clearly, not only the proportion of fractions but also theirmass concentration is crucial <strong>from</strong> the viewpo<strong>in</strong>t of healtheffects. Figure 7 gives an example of comb<strong>in</strong>ation of parallelGRIMM <strong>and</strong> st<strong>and</strong>ard analyzer measurement. ThePM10 mass concentration <strong>from</strong> st<strong>and</strong>ard analyzer has beendisaggregated among particular fractions by means of coefficientsderived <strong>from</strong> the share of PM1 <strong>and</strong> PM2.5 fractionsmeasured by GRIMM. The PM1 <strong>and</strong> PM2.5 concentrationsderived <strong>from</strong> PM10 ones are marked as “hypothetical”.If the GRIMM analyzer were set for measurements ofbroader spectrum of fractions, the parallel measurementsprovided by both analyzers would give the possibility toassess particulate mass concentrations <strong>in</strong> separate spectralb<strong>and</strong>s <strong>and</strong> determ<strong>in</strong>e their time changes.Significant changes of PM10 concentration dur<strong>in</strong>g thetime period presented at Figure 6, accompanied by simultaneousparticle size spectrum changes (be<strong>in</strong>g demonstratedby changes of share of size fractions <strong>in</strong> PM10), caused140120PM10PM2.5hypPM1hypConcentration [µg •m -3 ]1008060402001. - 15.7.2006Figure 7:Disaggregation of operationally measured PM10 mass concentrations measured by means of fraction proportions determ<strong>in</strong>ed <strong>from</strong> GRIMM. Ostrava, July 2006


62140120HeadTreacheobronchialAlveoliPM10Concentration [µg • m -3 ]1008060402001. - 15.7. 2006Figure 8:Potential deposition of particle mass concentration <strong>in</strong> particular parts of human respiratory tract, derived <strong>from</strong> ICRP modelthat the particle mass which might be potentially deposited<strong>in</strong> particular parts of human respiratory tract was time-dependentas well. The ICRP deposition model enables us toassess these values for each hour. Results of such assessmentare shown <strong>in</strong> figure 9. Median particle diameters foreach size class measured by GRIMM, i.e. 0 - 1, 1 - 2.5 <strong>and</strong>2.5 - 10 micrometers, were taken as an <strong>in</strong>put of depositionfraction calculation provided by the ICRP model. The dosepotentially deposited <strong>in</strong> particular parts of respiratory tractcan be treated as a measure of health hazard caused by thepresence of particles <strong>in</strong> the air. This dose might differ evenif the ambient PM10 concentration would be the same, depend<strong>in</strong>gon the actual particle size spectrum.Conclusions• The PM10 mass concentrations measured by GRIMManalyzer are underestimated significantly, neverthelessthe data are homogenous <strong>and</strong> well correlated with therout<strong>in</strong>e analyzer measurements• It is possible to derive correction formulae for the recalculationof GRIMM data <strong>and</strong> disaggregate the PM10data <strong>from</strong> regular monitor<strong>in</strong>g <strong>in</strong>to particular fractions,us<strong>in</strong>g the fractions proportions derived <strong>from</strong> GRIMM• Share of particular fractions (PM1 <strong>and</strong> PM2.5) <strong>in</strong> totalPM10 concentration showed significant time changes<strong>and</strong> was related to the meteorological conditions• It was possible to def<strong>in</strong>e typical profiles of such pro-portions <strong>and</strong> to highlight the presence of structures <strong>in</strong>measured data that way• The share of particles, deposit<strong>in</strong>g <strong>in</strong> the low respiratorytract (PM1 <strong>and</strong> PM2.5) at the total PM10 concentration<strong>in</strong>creased with the decrease of air temperature <strong>and</strong> <strong>in</strong>creaseof relative humidity. This is very serious fact <strong>in</strong>relation to the human health protection• The rout<strong>in</strong>e measurements exp<strong>and</strong>ed by GRIMM datacan be used as an ICRP deposition model <strong>in</strong>put <strong>and</strong> assesshow the health risk caused by particles changes <strong>in</strong>time.AcknowledgementsThis work has been f<strong>in</strong>ancially supported by the CzechM<strong>in</strong>istry of Environment <strong>from</strong> granted research projectVaV SM-9-86-05.ReferencesGRIMM Aerosol Technik GmbH & Co. KG, (2003). GRIMM EnvironmentalDust Monitor #180 User Manual www.grimm-aerosol.comhttp://aerosol.ees.ufl.eduhttp://www.icrp.orgPope III C. A. <strong>and</strong> Dockery D. W. (2006). Health Effects of F<strong>in</strong>e <strong>Particulate</strong>Air Pollution: L<strong>in</strong>es that Connect. Air & Waste Manage. Assoc.56, pp. 709–742


F. Schneider / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 63Aerosol-spectrometers for particle number, size <strong>and</strong> mass detectionF. Schneider 1AbstractThe aim of this article is to give some basic fundamentalsabout the functional pr<strong>in</strong>ciples of aerosol spectrometers,procedures for calibration <strong>and</strong> validation of aerosol spectrometers<strong>and</strong> some application examples of actual aerosolspectrometer used for particle number, size <strong>and</strong> mass detection<strong>in</strong> agricultural or environmental applications.Keywords: aerosol Spectrometer, particle size distribution,PM10, PM2.5, PM1IntroductionThis paper will focus on the application of light-scatter<strong>in</strong>gaerosol spectrometers for particle number, size <strong>and</strong>mass detection for high particle concentrations, exclud<strong>in</strong>gsuch applications for clean spaces, where the needed specificationsof the aerosol spectrometers are very different,e.g. accurate particle size determ<strong>in</strong>ation is not requested,sample volume flow is comparably high <strong>and</strong> maximumparticle concentrations are very low.The determ<strong>in</strong>ation of particle concentration, particle sizedistribution <strong>and</strong> particle mass of aerosol particles is required<strong>in</strong> various application fields, e.g. chemical, pharmaceutical,agricultural, or automotive <strong>in</strong>dustry. Dur<strong>in</strong>g thelast decade some remarkable steps <strong>in</strong> aerosol spectrometerdevelopment took place, so today aerosol spectrometersare used to obta<strong>in</strong> all this results, mentioned above.Aerosol spectrometersFundamentals <strong>and</strong> detailed descriptions can be found <strong>in</strong>literature about light scatter<strong>in</strong>g of s<strong>in</strong>gle particles (Van derHulst H. C. 1957, Bohren C. F. <strong>and</strong> Hufmann D. R. 1998),basic functional pr<strong>in</strong>ciples of aerosol spectrometers (e.g.Se<strong>in</strong>feld J. H. <strong>and</strong> P<strong>and</strong>is S. 1998 or <strong>in</strong> German languageHaller P. 1999) <strong>and</strong> different technical specifications (e.g.Baron P. A. <strong>and</strong> Willeke K. 2001 or H<strong>in</strong>ds W. C. 1998).Light scatter<strong>in</strong>g of s<strong>in</strong>gle particlesAerosol spectrometers are based on the <strong>in</strong>teraction betweenan <strong>in</strong>cident light beam <strong>and</strong> s<strong>in</strong>gle aerosol particles.The fist description <strong>and</strong> calculation for the elastic scatter<strong>in</strong>g<strong>and</strong> absobtion by aerosol particles accord<strong>in</strong>g to the<strong>in</strong>cident wavelength are the Maxwell equations (Mie G.1908). Light scatter<strong>in</strong>g can be divided <strong>in</strong> three ranges, def<strong>in</strong><strong>in</strong>gan optical size parameter x by x = π * Dp/λ, withthe aerosol particles circumference π * Dp <strong>and</strong> the <strong>in</strong>cidentwavelength λ:x


64x ≅ 1: Mie-scatter<strong>in</strong>g: particle diameter is about the <strong>in</strong>cidentwavelength. There is a strong <strong>in</strong>teraction between theaerosol particle <strong>and</strong> the <strong>in</strong>cident beam, depend<strong>in</strong>g althoughon particle refractive <strong>in</strong>dex with no simple relation betweenscattered <strong>in</strong>tensity <strong>and</strong> particle diameter (especiallyfor mono chromatic light, e.g. laser). This is most relevantfor atmospheric aerosol particles.x >> 1: Geometric Optics: light rays hitt<strong>in</strong>g the particlelead to reflection, refraction <strong>and</strong> absorption, rays pass<strong>in</strong>gthe particles edge give rise to diffraction. The scattered <strong>in</strong>tensityis proportional to the particle cross-sectional area(I ~ Dp 2 ). This will cause e.g. cloud optical effects with waterdroplets or ra<strong>in</strong>bow effect <strong>and</strong> affects an aerosol spectrometersupper size detection limit for course particles.Beside the <strong>in</strong>cident wavelength <strong>and</strong> the particle diameterthe (complex) refractive <strong>in</strong>dex of a aerosol particledef<strong>in</strong><strong>in</strong>g its scatter<strong>in</strong>g <strong>and</strong> absorption is very important.Depend<strong>in</strong>g on their chemical composition <strong>and</strong> the <strong>in</strong>ternalmixture of aerosol particles the refractive <strong>in</strong>dex <strong>in</strong>fluencesthe scatter<strong>in</strong>g <strong>in</strong>tensity of an aerosol particle. It has to bementioned, that scatter<strong>in</strong>g <strong>in</strong>tensity is not symmetricallyaround an aerosol particle, but with strong differences <strong>in</strong>scatter<strong>in</strong>g angles (0° = backward direction, 90° scatter<strong>in</strong>gor 180° forward direction).All together, the scatter<strong>in</strong>g <strong>in</strong>tensity given by a s<strong>in</strong>gle particledepends on the wavelength, <strong>in</strong>tensity <strong>and</strong> polarisationangle of the <strong>in</strong>cident light, the detection angle of the scatteredlight <strong>and</strong> the diameter <strong>and</strong> complex refractive <strong>in</strong>dexof the aerosol particle.So different aerosol particles generate different scatteredlight impulses, which can be detected to determ<strong>in</strong>e particleconcentration <strong>and</strong> determ<strong>in</strong><strong>in</strong>g the <strong>in</strong>tensity of the scatteredlight impulse with a pulse height analyser it is also possibleto determ<strong>in</strong>e the size of the aerosol particle.Functional pr<strong>in</strong>ciplesAn aerosol spectrometer operates by lead<strong>in</strong>g s<strong>in</strong>gle aerosolparticles through a light beam or through an <strong>in</strong>tensivelylighted measur<strong>in</strong>g volume. The light pulse which is scatteredby the s<strong>in</strong>gle particle is measured <strong>and</strong> also its <strong>in</strong>tensity.Know<strong>in</strong>g the sample volume flow <strong>and</strong> the measur<strong>in</strong>gperiod the particle number concentration can be derived<strong>from</strong> the number of the counted scatter<strong>in</strong>g pulses. The <strong>in</strong>tensityof the scattered light can be <strong>in</strong>terpreted to a particlesize. Depend<strong>in</strong>g on calibration procedure <strong>and</strong> <strong>in</strong>formationabout the micro physical properties of the measured aerosolparticles it is also possible to calculate the particle massfor a given particle size fraction.There are many types of aerosol spectrometers commerciallyavailable, differ<strong>in</strong>g <strong>in</strong> their technical setups <strong>and</strong> ma<strong>in</strong>application fields. In the follow<strong>in</strong>g the ma<strong>in</strong> components ofan aerosol spectrometer will be expla<strong>in</strong>ed, with regards todifferent technical solutions.As light source either lasers (e.g. diode-lasers, He-Nelasers)or <strong>in</strong>tensive white light (e.g. xenon high-pressurelamps) is used. The light has to be focuses by a beam optic<strong>in</strong>to a well def<strong>in</strong>ed, homogeneously illum<strong>in</strong>ated opticalmeasur<strong>in</strong>g volume. The beam optic has to full fill severalaims. Aerosol spectrometer us<strong>in</strong>g a laser have to compensate<strong>in</strong>homogeneity of the laser beam <strong>in</strong>tensity, caused bythe Gauss-shaped distribution over the laser beam diameter.Also the border zone error, caused by aerosol particleswhich not fully pass the optical measur<strong>in</strong>g volume or passthe laser beam <strong>in</strong> an area where its <strong>in</strong>tensity is lower <strong>and</strong>the co<strong>in</strong>cidence error, caused by two or more aerosol particles<strong>in</strong> the optical measur<strong>in</strong>g volume at the same timehave to be avoided (e.g. by an optical measur<strong>in</strong>g volumelimitation) or m<strong>in</strong>imized. Beside the optical limitation theaerosol flow can be focused <strong>in</strong>to the light beam, to achievea so called aerodynamic measur<strong>in</strong>g volume limitation.After the optical measur<strong>in</strong>g volume the beam might becollected by a light trap.The aerosol flow pass<strong>in</strong>g the light beam <strong>in</strong> the measur<strong>in</strong>gvolume has to be strictly volume controlled, to assure theknown time while an aerosol particle stays <strong>in</strong> the measur<strong>in</strong>gvolume <strong>and</strong> to be able to calculate the particle concentration<strong>in</strong> the sample.The scattered light is collected by the detector optics undera certa<strong>in</strong> solid angle with known aperture <strong>and</strong> led ona detector, typically a photodiode or a photo-multiplier.Aerosol spectrometers are available with detectors placedunder different angles, namely <strong>in</strong> backward (appr. 0°-45°),forward (~180°) or 90° direction. The detector position <strong>and</strong>aperture can be chosen <strong>in</strong> a way to m<strong>in</strong>imize the <strong>in</strong>fluenceof refractive <strong>in</strong>dex on scatter<strong>in</strong>g <strong>in</strong>tensity <strong>and</strong> to compensateMie-<strong>in</strong>terferences <strong>in</strong> scatter<strong>in</strong>g <strong>in</strong>tensity when laserlight is used. On the other h<strong>and</strong> signal to noise ratio of thescatter<strong>in</strong>g signal also is strongly <strong>in</strong>fluenced by the detectorposition <strong>and</strong> aperture angle. F<strong>in</strong>ally the signal has to beamplified <strong>and</strong> analyzed by a pulse height analyzer.The setup of an aerosol spectrometer will <strong>in</strong>fluence thespecification such as precision, particle size range, numberof size classes, maximum concentration range but alsoprice, costs for calibration <strong>and</strong> service, size <strong>and</strong> weight orroughness. Beside the technical specification of the opticaldetection mentioned above, aerosol spectrometers areavailable with different setups for special applications,e.g.:• automatic co<strong>in</strong>cidence <strong>in</strong>dication, to <strong>in</strong>crease count<strong>in</strong>gefficiency• isok<strong>in</strong>etic sampl<strong>in</strong>g <strong>in</strong>lets for measur<strong>in</strong>g <strong>in</strong> high velocities• implementation of Nafion dryers to reduce humidity <strong>in</strong>sampl<strong>in</strong>g air without heat<strong>in</strong>g <strong>and</strong> without affect<strong>in</strong>g particleconcentration or size distribution


F. Schneider / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 65• <strong>in</strong>tegrated filters to validate particle mass calculation orenable further <strong>in</strong>vestigation of analysed aerosol particles(gravimetrically, microscopically or chemically)• ex-proof or temperature resist sensors to enable measurements<strong>in</strong> critical atmospheres <strong>and</strong> conditions• battery powered for portable, mobile useIf a device measures the scatter<strong>in</strong>g <strong>in</strong>tensity not <strong>from</strong>s<strong>in</strong>gle particles but <strong>from</strong> multiple particles this photometersor nephelometers are not able to determ<strong>in</strong>e particlesize distribution. Also particle concentration only can bemeasured with these systems, when certa<strong>in</strong> requirementsare met (particle size distribution <strong>and</strong> refractive <strong>in</strong>dex mustbe constant dur<strong>in</strong>g a series of runs). This is for many applicationsmost unlikely, so this type of photometers mustnot be mixed with aerosol spectrometers.CalibrationActually there is no national or <strong>in</strong>ternational st<strong>and</strong>ard forcalibration of optical aerosol spectrometers, yet. But both<strong>in</strong>ternational (ISO) <strong>and</strong> national (VDI) work<strong>in</strong>g groupshave been <strong>in</strong>itialised to close this gap. The aim of theseguidel<strong>in</strong>es is to describe a calibration procedure <strong>and</strong> a validationmethod of aerosol spectrometers, to m<strong>in</strong>imise thedeviation <strong>in</strong> the results measured by a s<strong>in</strong>gle aerosol spectrometer<strong>and</strong> to m<strong>in</strong>imize difference <strong>in</strong> the results measuredby different <strong>in</strong>struments.Particle size can be calibrated by mono disperse st<strong>and</strong>ardparticles, poly disperse aerosols <strong>in</strong> comb<strong>in</strong>ation withcyclones (B<strong>in</strong>n<strong>in</strong>g J. et al. 2006) <strong>and</strong> theoretically by calculat<strong>in</strong>gcalibration curve (scatter<strong>in</strong>g <strong>in</strong>tensity vs. particlesize for given refractive <strong>in</strong>dex or materials). For the theoreticalcalculation it is fundamental to now all parametersof the optical setup, e.g. published by the manufacturer,otherwise the results are completely wrong as publishede.g. by Vetter T. 2004.Two different types of size st<strong>and</strong>ards so called primary<strong>and</strong> secondary st<strong>and</strong>ards are available: Mono disperse,spherical reference particles, certified by the manufactureas primary calibration st<strong>and</strong>ards mostly <strong>in</strong> aqueous suspension,like polystyrene-latex (Boundy R. H. <strong>and</strong> Boyer R.F. 1952). The size of these particles usually was exam<strong>in</strong>edmicroscopically (light or electron microscope). A secondpossibility to use st<strong>and</strong>ard particles is to generate monodisperse reference particles directly <strong>in</strong>to the gas phase, aso-called secondary st<strong>and</strong>ard. The users are responsibleon its own to full fill repeatability <strong>and</strong> accuracy of thismethod. The dispersion of an aerosol us<strong>in</strong>g a generator is<strong>in</strong>fluenced by the electrically charge of the particles, so thest<strong>and</strong>ard aerosol must be neutralised by suitable methods.Water coat<strong>in</strong>gs on the st<strong>and</strong>ard particles, stabilisation <strong>from</strong>the solution or agglomerates of st<strong>and</strong>ard particles mightcause problems dur<strong>in</strong>g calibration procedure (Haller P.1999).For the calibration of particle concentration no primaryst<strong>and</strong>ard exists. The count<strong>in</strong>g efficiency only can be determ<strong>in</strong>edby comparison of an aerosol spectrometer with awell-def<strong>in</strong>ed reference unit (aerosol spectrometer or othere.g. Differential Mobility Analyzer, DMA <strong>and</strong> CondensationParticle Counter CPC).Application examples for particle count<strong>in</strong>g, siz<strong>in</strong>g <strong>and</strong>mass determ<strong>in</strong>ationThe selected examples show results <strong>from</strong> particle measurementsboth count<strong>in</strong>g, siz<strong>in</strong>g <strong>and</strong> mass determ<strong>in</strong>ation.All measurements have been carried out with laser aerosolspectrometers of various models manufactured by GrimmAerosoltechnik, A<strong>in</strong>r<strong>in</strong>g.All Grimm aerosol spectrometers operate with a verysimilar optical detection pr<strong>in</strong>ciple:••••diode-laser with 780 nm or 683 nm15 channel or 31 size channels90° scatter<strong>in</strong>g light detection with a given aperture ofabout 60°maximum particle concentration without co<strong>in</strong>cidence2,000 particles/cm³1.2 l/m<strong>in</strong> sampl<strong>in</strong>g flow•The spectrometers are available as portable model measur<strong>in</strong>gparticle concentration or particle mass for all sizechannels <strong>and</strong> equipped with an <strong>in</strong>tegrated 47 mm-PTFEfilter for gravimetrically control of dust mass. Other Versionis 19" rack version for cont<strong>in</strong>uously measurements ofPM10, PM2.5 <strong>and</strong> PM1 (simultaneously) or particle concentration<strong>in</strong> 31 size channels. These models are equippedwith a special sampl<strong>in</strong>g pipe to avoid condensation <strong>and</strong> tocontrol relative humidity <strong>and</strong> optionally with external sensors,special weather hous<strong>in</strong>g for cont<strong>in</strong>uously measurements.Figure 1 <strong>and</strong> 2 show a measurement dur<strong>in</strong>g 24 hours <strong>in</strong>a lay<strong>in</strong>g hen stable <strong>in</strong> summer (figure 1) <strong>and</strong> w<strong>in</strong>ter (figure2) performed with a 15 size channel aerosol spectrometerModel 1.108, Grimm <strong>and</strong> a time resolution of 1 m<strong>in</strong>utemean values. The size channels where summed up to onefraction smaller 1 µm <strong>and</strong> one fraction bigger 1 µm.


661000Particle concentration N [cm -³]100101N_PM1 1µm-20µm0.112:00 15:00 18:00 21:00 0:00 3:00 6:00 9:00 12:00 15:00TimeFigure 1:Particle concentration <strong>in</strong> summer time <strong>in</strong> a lay<strong>in</strong>g hen stable for two size ranges (0.3 µm - 1 µm <strong>and</strong> 1 µm - 20 µm) dur<strong>in</strong>g 24 hours, with a time resolutionof 1 m<strong>in</strong>ute (Schneider C. 2005)1000Particle concentration N [cm -³]100101N_PM1 1µm-20µm0.19:00 12:00 15:00 18:00 21:00 0:00 3:00 6:00 9:00 12:00TimeFigure 2:Particle concentration <strong>in</strong> w<strong>in</strong>ter time <strong>in</strong> a lay<strong>in</strong>g hen stable for two size ranges (0,3 µm - 1 µm <strong>and</strong> 1 µm - 20 µm) dur<strong>in</strong>g 24 hours, with a time resolution of1 m<strong>in</strong>ute (Schneider C. 2005)


F. Schneider / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 67The figures above clearly show the differences <strong>in</strong> particlenumber concentration between the seasons. High ventilationrates dur<strong>in</strong>g summer (figure 1) cause a dilution ofparticles smaller 1 µm. Dur<strong>in</strong>g night a seasonable <strong>in</strong>fluenceon course particles can be neglected. Size selectiveconcentration measurements with high temporal resolutionconta<strong>in</strong><strong>in</strong>g a lot of <strong>in</strong>formation about air quality, ventilationperformance or animal hygiene.Figure 3 <strong>and</strong> 4 show a measured normalized particle sizedistribution with a Grimm Wide Range Aerosol Spectrometerconsist<strong>in</strong>g of an aerosol spectrometer (Grimm Model1.108) <strong>in</strong> comb<strong>in</strong>ation with a SMPS system for nano particlecount<strong>in</strong>g (CPC, Grimm Model 5.400) <strong>and</strong> siz<strong>in</strong>g (DMA,Grimm Model 5.500). The measurement took place <strong>in</strong> acattle stable (figure 3) <strong>and</strong> <strong>in</strong> a pig stable (figure 4).The comb<strong>in</strong>ation of optical particle counters with a SMPSsystem enables to measure a complete size range <strong>from</strong> 5nmup to 20 µm with one set up.The graphs <strong>in</strong> figure 5 <strong>and</strong> 6 show data sets <strong>from</strong> a simultaneousmeasurement of two environmental dust monitors,Grimm, mode l 107, dur<strong>in</strong>g a w<strong>in</strong>ter day. These aerosolspectrometers are able to obta<strong>in</strong> PM10, PM2.5 <strong>and</strong> PM1mass concentration simultaneously. The spectrometerswere mounted <strong>in</strong> a special weather hous<strong>in</strong>g for temperature<strong>and</strong> humidity control. One spectrometer (figure 6) wasequipped with a heated sampl<strong>in</strong>g <strong>in</strong>let, the other spectrometer(figure 5) was st<strong>and</strong>ard version with no temperaturemodification.dN/dlog(D) [cm -3 ]1000001000010001001010.1measurement SMPSmeasurement OPCmodel 4 size modesnucleation-modeaccumulation-mode 1accumulation-mode 2coarse particle-mode0.010.0010.001 0.01 0.1 1 10 100Particle diameter D [µm]Figure 3:Normalized particle size distribution <strong>in</strong> a cattle stable measured with an optical particle counter (OPC 0.3 µm < D < 20 µm) <strong>and</strong> a sequential mobility particlesizer (SMPS 0.0055 µm < D < 0.3 µm) <strong>and</strong> modelled particle size distribution (0.0055 < D < 20 µm) calculated for four lognormal size modes, namelynucleation-mode, accumulation-mode 1, accumulation-mode 2 <strong>and</strong> coarse particle-mode (Onyeneke-Edwards H. C. 2006)The results <strong>in</strong> figure 3 <strong>and</strong> 4 show, that the optical particlecounter <strong>and</strong> the SMPS system measure <strong>in</strong> the overlapsize range around 0.3 µm <strong>in</strong> the same concentration range,also completely different techniques are compared (e.g.optical latex-equivalent diameter <strong>and</strong> electrical mobilitydiameter). This means that the used calibration methodsfor number <strong>and</strong> size are suitable <strong>and</strong> lead to precise <strong>and</strong>reproducible results. The measured size distribution easilycan be expla<strong>in</strong>ed by comb<strong>in</strong>ed log normal distributions.


6810000010000dN/dlog(D) [cm -3 ]1000100101measurement SMPSmeasurement OPCmodel 4 size modesnucleation-modeaccumulation-mode 1accumulation-mode 2coarse particle-mode0.10.010.001Figure 4:0.001 0.01 0.1 1 10 100Particle diameter D [µm]Normalized particle size distribution <strong>in</strong> a sw<strong>in</strong>e stable measured with an optical particle counter (OPC 0.3 µm < D < 20 µm) <strong>and</strong> a sequential mobility particlesizer (SMPS 0.0055 µm < D < 0.3 µm) <strong>and</strong> modelled particle size distribution (0.0055 < D < 20 µm) calculated for four lognormal size modes, namelynucleation-mode, accumulation-mode 1, accumulation-mode 2 <strong>and</strong> coarse particle-mode (Mahmoud-Yas<strong>in</strong> N. 2006)90Mass concentration [µg*m-³]8070605040302010PM10 (normal)PM2.5 (normal)PM1 (normal)00:10 2:10 4:10 6:10 8:10 10:10 12:10 14:10 16:10 18:10 20:10 22:10Time, 10 m<strong>in</strong>ute meanFigure 5:Mass fraction PM10, PM2.5 <strong>and</strong> PM1 dur<strong>in</strong>g a w<strong>in</strong>ter day, measured with a st<strong>and</strong>ard sampl<strong>in</strong>g <strong>in</strong>let


F. Schneider / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 69Mass concentration [µg*m-³]908070605040302010PM10 (heated)PM2.5 (heated)PM1 (heated)00:10 2:10 4:10 6:10 8:10 10:10 12:10 14:10 16:10 18:10 20:10 22:10Time, 10 m<strong>in</strong>ute meanFigure 6:Mass fraction PM10, PM2.5 <strong>and</strong> PM1 dur<strong>in</strong>g a w<strong>in</strong>ter day, measured with a heated sampl<strong>in</strong>g <strong>in</strong>letAs <strong>in</strong>dicated <strong>in</strong> the graphs <strong>in</strong> figure 5 <strong>and</strong> 6 it can be seen,that PM10 <strong>and</strong> PM2.5 fraction are almost the same. Look<strong>in</strong>gon the effect of the heated sampl<strong>in</strong>g <strong>in</strong>let, it is obvious,that about 1/3 of the particulate <strong>matter</strong> is semi volatilecompounds, which are lost, if the sampl<strong>in</strong>g <strong>in</strong>let is heated.This measurements have been compared with mass fractionscollected with st<strong>and</strong>ard filter samplers, runn<strong>in</strong>g atthe same location simultaneously <strong>and</strong> chemical analyses.The Grimm 107 was used <strong>in</strong> many <strong>in</strong>ternational campaignswith very good results, e.g. Gorny R. L. et al. 2002, LiaoC.-M. et al. 2003, Putaud J.-P. et al. 2003, Querol X. et al.2004.The further development of the model 107 is the Grimmmodel 180 environmental dust monitor. This stationary 19"rack version has been approved (Umweltbundesamt, 2006)as an equivalent PM10 measur<strong>in</strong>g system, accord<strong>in</strong>g to EN12341! It runs with a <strong>in</strong>cluded Nafion dryer, which enablessimultaneously determ<strong>in</strong>ation of PM10, PM2.5 <strong>and</strong> PM1mass fraction, while the PM2.5 mass fraction <strong>in</strong>cludes thesemi-volatile species, but exclud<strong>in</strong>g water. This is a bigadvantage <strong>in</strong> comparison to other environmental dust samplersas described e.g. by Delbert J. E. et al. 2007.As shown above, aerosol spectrometers successfully canbe used <strong>in</strong> applications, where particle number, size ormass has to be determa<strong>in</strong>ed.ReferencesBaron P. A.,Willeke K. (2001). Aerosol measurement : pr<strong>in</strong>ciples, techniques,<strong>and</strong> applications / ed. by Paul A. Baron <strong>and</strong> K. Willeke - 2. ed.- New York, NY : Wiley.B<strong>in</strong>n<strong>in</strong>g J., Meyer J., Kasper G. (2007). Calibration of an optical particlecounter to provide PM 2.5-Mass for well def<strong>in</strong>ed particle materials.Journal of Aerosol Science, 38, 325-332.Bohren C. F., Hufmann D. R. (1998). Absorption <strong>and</strong> scatter<strong>in</strong>g of lightby small particles. Wiley Interscience, New York.Boundy R. H., Boyer R. F. (Ed.) (1952). Styrene, its polymers, copolymers<strong>and</strong> derivatives., Re<strong>in</strong>hold Publish<strong>in</strong>g Corp., New York, 523-525.Delbert J. E., Bates B. L., Clark J. M., Kuprov R. Y., Mukherjee P.,Murray J. A., Simmons M. A., Waite M. F., Woolw<strong>in</strong>e W., EatoughN. L., Hansen J. C. (2007). Comparison of semi-cont<strong>in</strong>uous maesurementof PM2.5 <strong>and</strong> anions by several samplers, J.Aer. Sci (to be published).EN 12341 (1998). Air quality - Determ<strong>in</strong>ation of the PM10 fraction ofsuspended particulate <strong>matter</strong> - Reference method <strong>and</strong> field test procedureto demonstrate reference equivalence of measurement methods;Beuth Verlag, Berl<strong>in</strong>.Gorny R. L., Reponen T., Willeke K., Schmechel D., Rob<strong>in</strong>e E.,Boissier M., Gr<strong>in</strong>shpun S. A. (2002). Fungal Fragments as IndoorAir Biocontam<strong>in</strong>ants, Applied <strong>and</strong> environmental microbiology, 07,3522–3531.Haller P. (1999). Leitfaden, 25 Jahre Aerosolphysik - Tips für Anwender.Herausgegeben vom AC-Laboratorium Spiez, CH-3700 Spiez.H<strong>in</strong>ds W. C. (1998). Aerosol Technology - properties, behavior <strong>and</strong> measurementof airborne particles, John Wiley & Sons, Inc. New York.


70Onyeneke-Edwards H. C. (2006). Measur<strong>in</strong>g Aerosol Particle Emission<strong>from</strong> cattle us<strong>in</strong>g Wide Range SMPS <strong>and</strong> OPC. Master’s Thesis,School of Forest Science <strong>and</strong> Resource Management, Technical Universityof Munich, Germany, 43p.Liao C.-M., Chen J.-W., Huang S.-J. (2003). Size-dependent PM10 <strong>in</strong>door/outdoor/personalrelationships for a w<strong>in</strong>d-<strong>in</strong>duced naturally ventilatedairspace. Department of Bioenvironmental Systems Eng<strong>in</strong>eer<strong>in</strong>g,National Taiwan University, Taipei 10617, Taiwan, ROC; AtmosphericEnvironment 37, 3065–3075.Mahmoud-Yas<strong>in</strong> N., (2006). Measur<strong>in</strong>g Aerosol Particle Emission <strong>from</strong>Sw<strong>in</strong>e <strong>and</strong> Poultry us<strong>in</strong>g Wide Range SMPS <strong>and</strong> OPC. Master’s Thesis,School of Forest Science <strong>and</strong> Resource Management, TechnicalUniversity of Munich, Germany.Mie G. (1908). Beiträge zur Optik trüber Medien, speziell kolloidalerMetallösungen. Ann. Phys. 25, 377-445.Putaud J.-P., Van D<strong>in</strong>genen R., Dell’Acqua A., Raes F., Matta E., DecesariS., Facch<strong>in</strong>i M. C., Fuzzi S. (2003). Sze-segregated Size-segregated aerosolmass closure <strong>and</strong> chemical composition <strong>in</strong> Monte Cimone dur<strong>in</strong>g MI-NATROC. European Commsson, Commission, Jont Jo<strong>in</strong>t Research Centre, Insttute Institute forEnvironment <strong>and</strong> Susta<strong>in</strong>ability, Ispra, Italy <strong>and</strong> Consiglio Nazionaledelle Ricerche, Istituto delle Scienze dell’Atmosfera e del Clima, Bologna,ItalyQuerol X., Alastuey A., Viana M. M., Rodriguez S., Arti˜nano B., SalvadorP., Garcia do Santos S., Fern<strong>and</strong>ez Patier R., Ruiz C. R., dela Rosa J., Sanchez de la Campa A., Menendez M., Gil J. I. (2004).Speciation <strong>and</strong> Orig<strong>in</strong> of PM10 <strong>and</strong> PM2.5 <strong>in</strong> Spa<strong>in</strong>, Aerosol Science35, 1151-1172.Schneider C. (2006). Messen und modellieren <strong>von</strong> Partikelemissionenaus der Tierhaltung. Diplomarbeit, FH Rüsselsheim.Se<strong>in</strong>feld J. H., P<strong>and</strong>is S. (1998). Atmospheric chemistry <strong>and</strong> physics.John Wiley & Sons, Inc. New York.Umweltbundesamt (2006). http://www.umweltbundesamt.de/luft/messe<strong>in</strong>richtungen/moimi9.pdfVan den Hulst H. C. (1957). Light Scatter<strong>in</strong>g by small Particles. Wiley,New York.Vetter T. (2004). Berechnung der Mie-Streufunktionen zur Kalibrierungoptischer Partikelzähler; Abteilung Wolkenphysik und –chemie; Max-Planck-Institut für Chemie Ma<strong>in</strong>z.


L. Mölter et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 71Effects of different sampl<strong>in</strong>g heads such as PM1, PM2.5, PM10 <strong>and</strong> Sigma 2 on the particle sizedeterm<strong>in</strong>ation with aerosol spectrometersL. Mölter 1 , G. L<strong>in</strong>denthal 2 , <strong>and</strong> T. H<strong>in</strong>z 3AbstractFrom epidemiological research it is well-known thatgravimetric emission <strong>and</strong> immission measurements do notsupply all <strong>in</strong>formation which is crucial for the effects ofatmospheric particles on human health. Count<strong>in</strong>g measur<strong>in</strong>gmethods (e.g. optical aerosol spectrometers) offer theadvantage of the particle size <strong>and</strong> particle quantity determ<strong>in</strong>ation<strong>in</strong> time high resolution, thus quasi real time determ<strong>in</strong>ation.A representative sampl<strong>in</strong>g is crucial for the <strong>in</strong>formationcontent of the particle size <strong>and</strong> particle quantity measurementboth dur<strong>in</strong>g emission measurements (e.g. <strong>in</strong> exhaustducts) <strong>and</strong> measurements <strong>in</strong> ambient air or <strong>in</strong> stables.In exhaust ducts the particle sampl<strong>in</strong>g must be accomplished<strong>in</strong> an isok<strong>in</strong>etic <strong>and</strong> representative way concern<strong>in</strong>gthe particle size <strong>and</strong> particle quantity over the duct crosssection. Dur<strong>in</strong>g the immission measurement with count<strong>in</strong>gmeasur<strong>in</strong>g methods the sampl<strong>in</strong>g concern<strong>in</strong>g particlesize <strong>and</strong> particle quantity has to be likewise representative.For the adherence to the appropriate def<strong>in</strong>itions of particlefractions often pre-separators (e.g. sampl<strong>in</strong>g heads such asPM1, PM2.5, PM10) <strong>and</strong> passive collectors like Sigma 2(VDI 2119 part 4) are used.With the white-light-aerosol-spectrometer-system welas ®both the representative sampl<strong>in</strong>g place <strong>in</strong> an exhaust duct<strong>and</strong> the collect<strong>in</strong>g efficiency of different sampl<strong>in</strong>g headscan be found <strong>and</strong>/or determ<strong>in</strong>ed fast <strong>and</strong> safely.In this paper we are go<strong>in</strong>g to present results which weredeterm<strong>in</strong>ed <strong>in</strong> the exhaust air duct of a turkey hen stable<strong>and</strong> <strong>in</strong> a turkey hen stable <strong>in</strong> November 2006.Keywords: collect<strong>in</strong>g efficiency, representative sampl<strong>in</strong>g,isok<strong>in</strong>etic sampl<strong>in</strong>g, pre-separator1 Basics concern<strong>in</strong>g isok<strong>in</strong>etic <strong>and</strong> representative sampl<strong>in</strong>g<strong>in</strong> exhaust air ductsDur<strong>in</strong>g the particle size <strong>and</strong> particle quantity determ<strong>in</strong>ationof aerosols the selection of the measur<strong>in</strong>g method, ofthe measur<strong>in</strong>g device <strong>and</strong> the proceed<strong>in</strong>g with the sampl<strong>in</strong>gare of crucial importance. The unclear answer to the follow<strong>in</strong>gquestions not seldom leads to serious errors dur<strong>in</strong>gthe particle size <strong>and</strong> particle quantity determ<strong>in</strong>ation:••What is to be measured?Where is to be measured?How is to be measured?•A typical measurement cha<strong>in</strong> for the on-l<strong>in</strong>e measurementof particle sizes <strong>and</strong> particle quantities is represented<strong>in</strong> figure 1. This figure also shows that the weakest elementof the measurement cha<strong>in</strong> determ<strong>in</strong>es the quality ofthe measurement.sampl<strong>in</strong>g systemmeasur<strong>in</strong>gpo<strong>in</strong>taerosolextractionaerosoltransportaerosolprocess<strong>in</strong>gmeasur<strong>in</strong>gdeviceFigure 1:Typical measurement cha<strong>in</strong>Dur<strong>in</strong>g the particle size <strong>and</strong> particle quantity determ<strong>in</strong>ation<strong>in</strong> exhaust ducts (e.g. of forced ventilated stables) onemust sample <strong>in</strong> an isok<strong>in</strong>etic <strong>and</strong> representative way. An1Palas® GmbH, Karlsruhe, Germany2Ingenieurbüro für Partikeltechnologie und Umweltmesstechnik, Espenau-Hohenkirchen, Germany3Institut für Technologie und Biosystemtechnik der Bundesforschungsanstalt für L<strong>and</strong>wirtschaft, Braunschweig, Germany


72isok<strong>in</strong>etic sampl<strong>in</strong>g makes sense only if the constancy ofthe flow rate at the sampl<strong>in</strong>g place is not higher than the<strong>in</strong>dicated tolerance to the isok<strong>in</strong>etic sampl<strong>in</strong>g.The effect of the non-isok<strong>in</strong>etic sampl<strong>in</strong>g can be easilymade underst<strong>and</strong>able with the help of figure 2.N1020W1020304050E4050Figure 2:W = V W > V W < VRepresentation of the isok<strong>in</strong>etic sampl<strong>in</strong>g (W = flow rate <strong>in</strong> the duct, V =flow rate <strong>in</strong> the probe)Isok<strong>in</strong>etic case W = V: All particles, which flow aga<strong>in</strong>stthe probe with<strong>in</strong> the flow cross-section, are collected. Incase of a too slow suction W > V, more large (<strong>in</strong>ertial) particlesget <strong>in</strong>to the probe open<strong>in</strong>g. Those particles cannotany longer follow the flow l<strong>in</strong>es due to their <strong>in</strong>ertia. In caseof a too fast suction W < V, more small particles are sucked<strong>in</strong>, s<strong>in</strong>ce the large (<strong>in</strong>ertial) particles not be<strong>in</strong>g able to followthe flow l<strong>in</strong>es fly by at the outside.The error of the non-isok<strong>in</strong>etic sampl<strong>in</strong>g is not l<strong>in</strong>ear <strong>and</strong>depends accord<strong>in</strong>g to (H<strong>in</strong>ds W. C. 1999) on the ratio ofthe particle concentration C V/C W, on the ratio of the gasflow W/V <strong>and</strong> on the particle diameter (C V= concentration<strong>in</strong> the sampl<strong>in</strong>g probe, C W= concentration <strong>in</strong> the exhaustduct).The representative sampl<strong>in</strong>g place concern<strong>in</strong>g particlesize <strong>and</strong> particle concentration can be determ<strong>in</strong>ed fast witha count<strong>in</strong>g measur<strong>in</strong>g method at sufficient particle concentrationby scann<strong>in</strong>g the cross section.Different particle losses <strong>in</strong> the sampl<strong>in</strong>g l<strong>in</strong>es can occurby selection of the material (metal or plastic), of the <strong>in</strong>sidediameter, of the length of sampl<strong>in</strong>g l<strong>in</strong>es <strong>and</strong> by sedimentation<strong>and</strong> impaction effects.1.1 Results for the determ<strong>in</strong>ation of the representativesampl<strong>in</strong>gThe numbers <strong>in</strong> figure 3 represent the distance to the ductwall <strong>in</strong> cm <strong>from</strong> the north <strong>and</strong>/or west side. Thus, position30 is the duct centre.Figure 3:SAlignment of the measur<strong>in</strong>g po<strong>in</strong>ts <strong>in</strong> the exhaust duct, duct diameter 60cmThe <strong>in</strong>cident-flow rate was measured with a thermo-anemometer.S<strong>in</strong>ce the <strong>in</strong>cident-flow rate is not constant overthe duct cross section, it was specified with 5 m/s for thesett<strong>in</strong>g of the diameter of the isok<strong>in</strong>etic sampl<strong>in</strong>g probe.The particle size <strong>and</strong> particle quantity determ<strong>in</strong>ationswere detected with:optical aerosol spectrometer: welas ® -system 2000welas ® -sensor 2300sampl<strong>in</strong>g volume flow:5 l/m<strong>in</strong>measur<strong>in</strong>g ranges:0.3 – 17 µm or0.6 – 40 µmselected measur<strong>in</strong>g range: 0.6 – 40 µmmeasur<strong>in</strong>g times:at each position 2 x 60 sThe measur<strong>in</strong>g range of 0.6 - 40 µm was selected on theone h<strong>and</strong> because particles as large as possible should bemeasured <strong>and</strong> on the other h<strong>and</strong> because the data shouldbe compared with a parallel operated optical aerosol spectrometerof the company Grimm, whose measur<strong>in</strong>g rangewas <strong>in</strong>dicated <strong>from</strong> 0.5 to 30 µm.With the welas ® -sensor 2300 the particle concentrationcan be measured practically co<strong>in</strong>cidence-free up toC N= 10 4 particles/cm³. The measured particle numbers Ṅ<strong>in</strong>creased <strong>from</strong> the outside <strong>in</strong>ward <strong>from</strong> Ṅ = 1036 - 2423particles/m<strong>in</strong>.Due to the particle number distribution <strong>in</strong> the exhaustduct, the sampl<strong>in</strong>g po<strong>in</strong>t for the welas ® -system was def<strong>in</strong>ed<strong>in</strong> position 40 of the N-S axis <strong>and</strong> the suction flow rate forthe gravimetric mass determ<strong>in</strong>ation <strong>in</strong> position 20 of theW-E axis.The Grimm-spectrometer was attached with an isok<strong>in</strong>eticpart flow consumption probe <strong>in</strong> the suction flow rate for the


L. Mölter et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 73gravimetric mass determ<strong>in</strong>ation. Over the measur<strong>in</strong>g timeof 15 m<strong>in</strong> both the welas ® -system <strong>and</strong> the Grimm-spectrometercould register at the same time the fluctuationsof the particle numbers. Afterwards the welas ® -system wasattached at the part sampl<strong>in</strong>g probe of the Grimm-spectrometer,<strong>in</strong> order to determ<strong>in</strong>e there the particle size distribution.Follow<strong>in</strong>g, an axial cyclone (H<strong>in</strong>z T. 1983) withthe separation function accord<strong>in</strong>g to figure 4 was <strong>in</strong>serted<strong>in</strong> front of the part sampl<strong>in</strong>g probe, <strong>in</strong> order to determ<strong>in</strong>eits separation function.Separation efficieny [%]100Figure 4:8060402000def<strong>in</strong>ition<strong>Johann</strong>isburger separation function3calibration6 9 12Particle Size [µm]Theoretical curve <strong>and</strong> actual calibration while sampl<strong>in</strong>g with a flow rateof 50 m³/hFor this cyclone the cut-off-diameter is <strong>in</strong>dicated with5 µm. All particles larger than 7.5 µm should be separated.In figure 5 the measur<strong>in</strong>g curves are represented whichwere measured with the welas ® -system after the part flowconsumption with <strong>and</strong> without measur<strong>in</strong>g cyclone. S<strong>in</strong>cethe theoretical separation function (figure 4) of the cyclonedoes not let pass practically any particles above 10 µm,the measur<strong>in</strong>g range at the welas ® was selected <strong>from</strong>0.3 - 17 µm.Figure 5 shows clearly that the cyclone has a cut-off-diameterof 5 µm <strong>and</strong> does not let pass practically any particleslarger than 10 µm.Sum (V)/V1.0000.9000.8000.7000.6000.5000.4000.3000.2000.100with cyclonewithout cyclone0.0000.29 1.00x [µm]10.00 17.78Figure 5:Measured relative volume distributions of the particles <strong>in</strong> the exhaustduct, welas ® -sensor 2300 beh<strong>in</strong>d the part sampl<strong>in</strong>g measur<strong>in</strong>g sectionwith <strong>and</strong> without cyclone, measur<strong>in</strong>g range 0.3 – 17µm2 Def<strong>in</strong>itions concern<strong>in</strong>g separation devices <strong>and</strong> separatorsThe evaluation of separation degrees <strong>and</strong> separation efficiencycurves can be quite complicated on closer <strong>in</strong>spection,s<strong>in</strong>ce here the dependence of the separation processon the particle size <strong>and</strong> possibly also still further material<strong>and</strong> operation properties are to be considered. The selectedmeasur<strong>in</strong>g method <strong>and</strong> the measurement setup can affectthe separation degree <strong>and</strong> the separation efficiency curvelikewise substantially.The separation degree (figure 6) <strong>in</strong>dicates which portionof the feed arrived after the separation <strong>in</strong> the coarse fraction<strong>and</strong>/or <strong>in</strong> the f<strong>in</strong>e fraction.The mass balance dur<strong>in</strong>g the two-fraction separation, i.e.dur<strong>in</strong>g the separation with a separation cut (1 coarse fraction<strong>and</strong> 1 f<strong>in</strong>e fraction), is very helpful dur<strong>in</strong>g the evaluationof separation devices <strong>and</strong> separators.


741ideal separation efficiencygood separation efficiencyT(x)0.5bad separationefficiencyideal class<strong>in</strong>gselectiveclass<strong>in</strong>gdiffuseclass<strong>in</strong>gFigure 6:00 10xSeparation curves of separation devices (e.g. cyclones) <strong>and</strong> separators (e.g. filters)feed raw gasMgT = = RetentonMaM aQ a (x)q a (x)C aT(x)M gQ g (x)q g (x)M fQ f (x)q f (x)C fThe total penetration grade: P =ˆ f<strong>in</strong>e mass fractionMfP = = PenetratonMaIf one refers all masses to M a, then one gets:1 = T +With the dust concentration C raw= C a<strong>in</strong> raw gas <strong>and</strong>C clean= C f<strong>in</strong> clean gas one can also write:Pcoarse fraction (separated)Figure 7:Mass flows of a separationf<strong>in</strong>e fraction(penetration, clean gas)The <strong>in</strong>tegral mass balance supplies: M = M + MThe total separation efficiency: T =ˆ coarse mass fractionagfCcleanT = 1 − T = total separation efficiencyCrawCclean(x)T(x) = 1 −Craw(x)T(x) = separation degree depend<strong>in</strong>g on the particle size =ˆfractional separation efficiency


L. Mölter et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 75C clean (x) = particle concentration <strong>in</strong> clean gas depend<strong>in</strong>g on xC raw (x) = particle concentration <strong>in</strong> raw gas depend<strong>in</strong>g on xx = particle sizeA classifier can be described mean<strong>in</strong>gfully only with aseparation curve. Just like dur<strong>in</strong>g the description of a particlesize distribution at least two parameters are needed: alocation parameter <strong>and</strong> a distribution parameter.Often, only the location parameter T(x) = 50 % is <strong>in</strong>dicatedas value of the separation limit, cut-off. S<strong>in</strong>ce separatorsfrequently do not show a symmetrical run of the separationcurve (figure 6), it has to be advised aga<strong>in</strong>st this approach.The exclusive <strong>in</strong>dication of the separation limit <strong>in</strong> po<strong>in</strong>tT(x) = 50 % does not supply any <strong>in</strong>formation about whichform shows the separation curve <strong>and</strong>/or which selectivityshows the separation device.With the welas ® -system, one determ<strong>in</strong>ed the different collect<strong>in</strong>gefficiencies of the sampl<strong>in</strong>g heads <strong>and</strong>/or withoutsampl<strong>in</strong>g head but only with sampl<strong>in</strong>g tube with an <strong>in</strong>sidediameter of 8 mm.It was determ<strong>in</strong>ed <strong>in</strong> a measurement-technological waythat the particle number with<strong>in</strong> the measur<strong>in</strong>g range <strong>from</strong>0.6 - 40 µm with the Sigma 2 accord<strong>in</strong>g to VDI 2119 part4 is around the factor 2 higher than with only the sampl<strong>in</strong>gtube of diameter 8 mm. After these measurements,the different sampl<strong>in</strong>g heads PM1, PM2.5 <strong>and</strong> PM10 wereconnected with the welas ® -system <strong>and</strong> their collect<strong>in</strong>g efficiencieswere determ<strong>in</strong>ed.In figure 8 the respective relative cumulative frequencydistributions of the measurements with the <strong>in</strong>dividual PMheadsare represented. The different separation functionsare clearly recognisable.1.0000.9000.8000.700The selectivity is described by the distribution parameter χ.This parameter can be calculated at different particle sizes:x25x16x10 = , = or =x xx7584E.g. x 10means the particle size x at which the separationcurve is T(x) = 0.1 = 10 %.90Sum (V)/V0.6000.5000.4000.300PM2.5PM10The values x 10to x 90describe the run of the separationcurve with<strong>in</strong> a certa<strong>in</strong> range below <strong>and</strong>/or above x 50. Themore closely is selected this range, the fewer <strong>in</strong>formationconta<strong>in</strong>s the curve on the border areas of the separator.For the critical evaluation of the selectivity <strong>and</strong>/or of thecut-off of a separation device or of a separation efficiencycurve the mean<strong>in</strong>gful <strong>in</strong>dication of the used measur<strong>in</strong>gtechnology <strong>and</strong> a clear sketch of the measurement setupare necessary. For this measur<strong>in</strong>g task the welas ® -systemproved particularly of value, s<strong>in</strong>ce here also large particlescan be clearly detected.A separation device has always a separation curve, <strong>and</strong> nostep function, as this is described also <strong>in</strong> (John A. C. et al.2001 <strong>and</strong> VDI 2066 part 10).2.1 Measurement results related to collect<strong>in</strong>g efficiencyof sampl<strong>in</strong>g heads0.2000.100PM10.0000.29 1.00x [µm]10.00 17.78Figure 8:Relative number cumulative distribution <strong>in</strong> the turkey hen stable with differentPM-headsFigure 9 shows the relative volume distributions of theparticles let pass by the different PM-heads. One can clearlyrecognise that this is also a separation curve <strong>and</strong> not astep function.


761.0000.9000.8000.700PM10separator it is necessary to know the device characteristicsof an aerosol spectrometer.In the VDI 3867 part 4 draft <strong>and</strong> <strong>in</strong> the ISO/CD 21501-1e.g. the size resolution, the size classification, the borderzone error as well as their effect on the particle size distributionare described. These new guidel<strong>in</strong>es will be usefulfor the users of particle measur<strong>in</strong>g technology with count<strong>in</strong>gmeasur<strong>in</strong>g methods for the determ<strong>in</strong>ation of the massconcentration.Sum (V)/V0.6000.5000.4000.3000.2000.100PM1PM2.50.0000.29 1.00x [µm]10.00 17.78Figure 9:Measured relative volume distributions <strong>in</strong> the turkey hen stable with differentPM-headsThese measurement results confirm the def<strong>in</strong>ition <strong>and</strong>representation <strong>in</strong> VDI 2066 part 10.PM10 d 50/3≤ 10PM2.5 d 50/3≤ 2.5PM1 d 50/3≤ 1There is a variation of def<strong>in</strong>ition at the result of PM1.Table 1:d 50/3values of the measured PM-heads3 ConclusionsWith optical aerosol spectrometers the collect<strong>in</strong>g efficiencydifference of different sampl<strong>in</strong>g heads <strong>and</strong> the functionof pre-separators can be determ<strong>in</strong>ed fast. Also the representativesampl<strong>in</strong>g place <strong>in</strong> exhaust tubes can be foundfast <strong>and</strong> safely.The measurements shown above <strong>in</strong>clud<strong>in</strong>g setup <strong>and</strong> dismantl<strong>in</strong>gwere accomplished <strong>in</strong> 6 hours.4 ReferencesH<strong>in</strong>ds W. C. (1999). Aerosol Technology: properties, behaviour <strong>and</strong>measurement of airborne particles – 2 nd edition. In: A Wiley-Intersciencepublication, 1999.H<strong>in</strong>z T. (1983). Untersuchungen zur Staubexposition <strong>in</strong> der Getreideproduktion.Staub-Re<strong>in</strong>halt. Luft 43, Nr.5, S203-S207.ISO/CD 21501-1: Determ<strong>in</strong>ation of particle size distribution – S<strong>in</strong>gleparticle light <strong>in</strong>teraction methods – Part 1: Light-scatter<strong>in</strong>g aerosolspectrometerJohn A. C., Kuhlbusch T. A. J., Fissan H., Geueke K.-J., Bröker G.(2001). Development of a PM10/PM2.5 cascade impactor <strong>and</strong> <strong>in</strong>-stackmeasurements. In: Journal of Aerosol Science 32, Suppl. 1, S967-S968(2001)VDI 2066 part 10: <strong>Particulate</strong> <strong>matter</strong> measurement – Dust measurement<strong>in</strong> flow<strong>in</strong>g gases – Measurement of PM10 <strong>and</strong> PM2.5 emissions at stationarysources by impaction methodVDI 2119 part 4: Measurement of particulate precipitations – Microscopicdifferentiation <strong>and</strong> size fractionated determ<strong>in</strong>ation of particledeposition on adhesive collection plates – Sigma-2 samplerVDI 3867 part 4 draft: Measurement of particles <strong>in</strong> ambient air – Methodsfor characteriz<strong>in</strong>g test aerosols – Determ<strong>in</strong>ation of the particlenumber concentration <strong>and</strong> particle size distribution – Optical aerosolspectrometerPM 10 2.5 1d 50/39 µm 2.5 µm 2.5 µmDur<strong>in</strong>g the sampl<strong>in</strong>g with Sigma 2 there were measureda higher number of particles <strong>and</strong> larger particles than withthe PM10-head. Thus, at the discussion on the evaluationof the total dust exam<strong>in</strong>ation the sample collector Sigma 2is to be absolutely considered.For the evaluation of a measured separation function of a


L. Mölter <strong>and</strong> M. Schmidt et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 77Advantages <strong>and</strong> limits of aerosol spectrometers for the particle size <strong>and</strong> particle quantitydeterm<strong>in</strong>ation stables <strong>and</strong> air exhaust ductsL. Mölter 1 <strong>and</strong> M. Schmidt 1AbstractFor a reliable particle size <strong>and</strong> particle quantity determ<strong>in</strong>ation<strong>in</strong> particle concentrations up to 10 5 p/cm³ opticalaerosol spectrometers (OAS) offer many advantages.However, they must fulfil certa<strong>in</strong> technical requirements<strong>in</strong> order to ensure significant measurement results. This essayimparts important basics for reliable particle measurementwith optical aerosol spectrometers. The technical setup<strong>and</strong> the function of an OAS are described <strong>and</strong> possiblesources of error are also mentioned.In order to avoid errors, a new OAS was developed whosemeasur<strong>in</strong>g procedures are based on the “true” Mie-scatter<strong>in</strong>g,i. e. on the scatter<strong>in</strong>g at the spherical s<strong>in</strong>gle particle.This measur<strong>in</strong>g <strong>in</strong>strument offers clear calibration curves<strong>and</strong> very good device characteristics such as size resolution<strong>and</strong> classification accuracy, measures without borderzone errors <strong>and</strong> has co<strong>in</strong>cidence detection. The sensors canbe used <strong>in</strong>to temperatures of – 90° to 70°C. With a specialcuvette, particles can be measured <strong>in</strong> overpressure up to 10bar <strong>and</strong> <strong>in</strong> hot gases up to 120°C.With this OAS an isothermal particle measurement ispossible. Therefore, the system offers special advantagesfor the clear <strong>and</strong> economic characterisation of MDI, DPI,<strong>in</strong>halers or jet mills as well as of separators even <strong>in</strong> highlyexplosive environments or <strong>in</strong> badly accessible places.Keywords: high particle concentration, function OAS, explanation<strong>and</strong> <strong>in</strong>fluence of device parameters on particlesize distribution, calibration curve, border zone error, co<strong>in</strong>cidence1 IntroductionAt the particle size analysis, count<strong>in</strong>g measur<strong>in</strong>g methodsare naturally used for numerous applications, becausemeasurements at the particle collective or gravimetric procedures,which come <strong>from</strong> the total mass as valuation criterion,do not supply all desired <strong>in</strong>formation depend<strong>in</strong>g uponthe application. Thus e.g. a photometer cannot differentiatebetween a particle size <strong>and</strong> a particle concentration variation.With count<strong>in</strong>g measur<strong>in</strong>g methods however, a timeresolution of the particle sizes <strong>and</strong> the particle concentration<strong>and</strong> thus a clear determ<strong>in</strong>ation of these measurablevariables is possible.For the determ<strong>in</strong>ation of the fractional separation efficiencyof separators, the size <strong>and</strong> the number of particles both<strong>in</strong> raw gas <strong>and</strong> <strong>in</strong> clean gas must be determ<strong>in</strong>ed accurately,e.g. at blow-by <strong>in</strong>-situ measurements, at tests of <strong>in</strong>teriorfilters or eng<strong>in</strong>e filters accord<strong>in</strong>g to ISO 5011. Here the useof optical aerosol spectrometers (OAS) is recommended(Hess W. F. et al. 2005, Mölter L. et al. 2003, Baron P.et al. 2001, H<strong>in</strong>ds W. C. 1999, Hemmer G. et al. 1999,Umhauer H. et al. 1995), which can measure also <strong>in</strong> highparticle concentrations up to 10 5 P/cm³ without dilution.OAS offer special advantages also for the characterisationof MDI, DPI <strong>and</strong> nebulisers <strong>in</strong> pharmacy, the productionmonitor<strong>in</strong>g of active substances, the cut off determ<strong>in</strong>ationof impactors, cyclones (B<strong>in</strong>nig J. et al. 2005), imp<strong>in</strong>gersor the measurement of atmospheric aerosols (e.g. bio aerosols<strong>in</strong> stables, compost, fog or tunnel), particularly for themeasurement of droplet aerosols.An aerosol spectrometer is not to be mixed up with a socalled“clean room counter”. The latter is to determ<strong>in</strong>e thenumber of particles <strong>in</strong> clean rooms - thus <strong>in</strong> low concentrations- with<strong>in</strong> a short time, whereby the particle size determ<strong>in</strong>ationdoes not have to be accurate.An aerosol spectrometer however is used if a highly concentratedaerosol is to be characterised concern<strong>in</strong>g the particlesize <strong>and</strong> the particle number as clearly as possible. Atpresent an ISO st<strong>and</strong>ard for optical aerosol spectrometers(ISO/CD-21501-1) <strong>and</strong> for clean room counters (ISO/FDIS21501-4) is worked out.In this essay, we will describe the technical set-up <strong>and</strong> thefunction of an optical aerosol spectrometer <strong>and</strong> we will expla<strong>in</strong>the effects of the device characteristics on the particlesize <strong>and</strong> particle concentration determ<strong>in</strong>ation.1Palas® GmbH, Karlsruhe, Germany


78The particle measurement <strong>in</strong> environments with vary<strong>in</strong>gparticle size distributions <strong>and</strong> vary<strong>in</strong>g particle concentrationsmakes special dem<strong>and</strong>s on the used measur<strong>in</strong>gmethod. Examples for this are outside air measurementsor measurements at objects with strongly vary<strong>in</strong>g raw gasconcentrations such as cool<strong>in</strong>g agent oil separators, <strong>in</strong>-situmeasurements of the car eng<strong>in</strong>e or measurements of thelung function (<strong>in</strong>hale/exhale). In addition, measurements<strong>in</strong> very high particle concentrations or <strong>in</strong> environments accessiblewith difficulty <strong>and</strong>/or explosive environments requirethe employment of a measur<strong>in</strong>g method particularlysuitable for this purpose. Another application would be thequality assurance of a jet mill dur<strong>in</strong>g the production of activesubstances.With an optical aerosol spectrometer, which can measureat two different measur<strong>in</strong>g po<strong>in</strong>ts quasi simultaneously,there are completely new possibilities for the applicationsspecified above. The new modular particle measur<strong>in</strong>g systemwelas ® 3000 measures with two sensors, which areconnected to only one light source <strong>and</strong> only one photomultiplier,<strong>and</strong> obta<strong>in</strong>s that way particularly quick <strong>and</strong> accurateresults.Thus, dur<strong>in</strong>g filter test<strong>in</strong>g, one of the sensors can be usedfor example <strong>in</strong> raw gas <strong>and</strong> the other can be used quasisimultaneously for clean gas measurement. Furthermore,unwanted factors, e.g. the <strong>in</strong>fluence of temperature <strong>and</strong> humidityon the particle size distribution, can be m<strong>in</strong>imisedwith this measur<strong>in</strong>g <strong>in</strong>strument. Due to the flexible selectionof the sensors concern<strong>in</strong>g their measur<strong>in</strong>g volumes,this measur<strong>in</strong>g system can be used for different particleconcentration ranges. That way, it can be adapted optimallyto the respective application.2 Selection criteria for an appropriate measur<strong>in</strong>g methodIn particle measurement, count<strong>in</strong>g procedures are suitable<strong>in</strong> particular if – <strong>from</strong> the beg<strong>in</strong>n<strong>in</strong>g on – there aresmall sample quantities to be analysed, if there are not tohigh particle concentrations (number concentrations of lessthan 10 6 P/cm³) or if one has to measure <strong>in</strong> very small concentrations.Count<strong>in</strong>g aerosol measur<strong>in</strong>g <strong>in</strong>struments are e.g.:••••OAS (Optical Aerosol Spectrometer),PDA (Phase Doppler Anemometer),Relaxation Time Spectrometer (Time of Flight Spectrometer),SMPS (Scann<strong>in</strong>g Mobility Particle Sizer).For the correct selection of the appropriate measur<strong>in</strong>gmethod it is helpful to first visualise the requirements ofthe application to the measur<strong>in</strong>g <strong>in</strong>strument to be used.One has to expect e.g. at outside air measurements witha particle diameter of 0.2 µm a concentration of approx.2000 particles per cm³. In such concentrations, the particledistance is clearly smaller than 1 mm (table 1).Table 1:Distances of the particles as a function of the concentrationNumberN [m -3 ]NumberN [cm -3 ]particledistance[cm]1 10 -6 100 100010 3 10 -3 10 10010 6 1 1 10particledistance[mm]particledistance[µm]10 9 10 3 1 100010 12 10 6 0,1 10010 15 10 9 0,01 1010 18 10 12 0,001 1From this, one can conclude that e.g. an optical aerosolspectrometer with an optical measur<strong>in</strong>g volume of approx.1 mm³ cannot determ<strong>in</strong>e concentrations above 1 000 p/cm³without co<strong>in</strong>cidence errors, s<strong>in</strong>ce with a particle distanceof less than 1 mm there has to be allways more than oneparticle <strong>in</strong> the measur<strong>in</strong>g volume.By calculation, it can be observed that the particle distance<strong>in</strong> a concentration of 10 6 particles per cm³ amountsto 100 µm (table 1). Thus, if a particle concentration of10 5 particles per cm³ is to be measured, then the borderlength of the optical measur<strong>in</strong>g volume should be naturallynot larger than 100 µm. The <strong>in</strong>dication of the measur<strong>in</strong>gvolume size is very helpful for the user <strong>in</strong> order to be ableto estimate <strong>in</strong> which maximum concentrations he can measureco<strong>in</strong>cidence-freely. These examples show how importantit is to know the theoretical basics for the selection ofthe appropriate count<strong>in</strong>g procedure.3 Theoretical basics of optical aerosol spectrometers3.1 Lorentz-Mie theoryThe measur<strong>in</strong>g method of optical aerosol spectrometersis based on the Lorentz-Mie theory. The particle characteristic,the diameter, is determ<strong>in</strong>ed by the impulse heightanalysis of the scattered light at the spherical s<strong>in</strong>gle particle.The particle number is determ<strong>in</strong>ed at the same timeby the number of scattered light impulses.Does light with the wavelength λ meet on a spherical particlewith the diameter x <strong>and</strong> the refractive <strong>in</strong>dex m, thenthe light is scattered <strong>in</strong> different directions (figure 1).The scatter<strong>in</strong>g of light at the particle is caused by diffraction,refraction <strong>and</strong> reflection. The polarisation plane of the<strong>in</strong>cident light wave is also turned.


L. Mölter <strong>and</strong> M. Schmidt et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 79<strong>in</strong>cident lightFigure 1:x,mPr<strong>in</strong>ciple of <strong>in</strong>cident light scatter<strong>in</strong>grscatter<strong>in</strong>g areaThe <strong>in</strong>tensity Ι of the light scattered at the s<strong>in</strong>gle particlesdepends on the <strong>in</strong>cident light <strong>in</strong>tensity Ι 0, the polarisationangle Φ, the detection angle of the scattered light Θ, therefractive <strong>in</strong>dex n, the light wave length λ <strong>and</strong> the particlediameter x.Ι = Ι 0 · f(Φ,Θ, n,λ,x)10 4By means of the scatter<strong>in</strong>g parameter <strong>in</strong>troduced by Mie(Mie G. 1908) ⋅ x =the relation between the sphere circumference π· x to thewave length λ is used <strong>in</strong>to the above mentioned equation:Ι = Ι 0 · f(Φ,Θ, n,α)With regard to the particle-size-depend<strong>in</strong>g scatter<strong>in</strong>gpower one can differ between three ranges due to the <strong>in</strong>troductionof the scatter<strong>in</strong>g parameter α:a) Rayleigh-range: α


80is not enough. The necessary quantity of light must bepossibly 64-times stronger than at a twice as large particle.b) Mie-range: 0.1≤ α ≤10; here the correlation betweenthe scattered light <strong>in</strong>tensity <strong>and</strong> the particle size is notclear (figure. 2). Whereas with white light <strong>and</strong> 90°scattered light detection this correlation is clear (figure3).c) Fraunhofer- resp. geometrical range: α >> 1 (<strong>from</strong>α ≈ 10); here the quadratic correlation between thescatter<strong>in</strong>g power <strong>and</strong> particle diameter is valid.In order to be able to determ<strong>in</strong>e with an aerosol spectrometerthe particle size distribution as accurately as possible,a clear calibration curve (figure 3) is an important condition.OAS are usually calibrated by the manufacturer withmonodisperse latex-aerosols with a refractive <strong>in</strong>dex of m =1.59. Further suitable calibration procedures, e.g. the aerodynamiccalibration, are described by Friehmelt (FriehmeltR. 1999).3.2 Technical set-up of optical aerosol spectrometersFor the better underst<strong>and</strong><strong>in</strong>g of the measur<strong>in</strong>g method <strong>in</strong>clud<strong>in</strong>gthe device characteristics, the set-up <strong>in</strong> pr<strong>in</strong>ciple ofan OAS <strong>in</strong> forward scatter<strong>in</strong>g is represented <strong>in</strong> figure 4.Dur<strong>in</strong>g forward scatter<strong>in</strong>g the light scattered by particles(figure 1) toward 180° is collected by the light source witha light-sensitive detector, e.g. a photomultiplier. At the 90°scattered light detection, the photomultiplier is attachedorthogonally to the image plane. The height of the scatteredlight impulse is a measure for the particle diameter,while the number of impulses supplies the <strong>in</strong>formation onthe concentration s<strong>in</strong>ce the volume flow is known.With the help of a lens system the light is focused on thedesired measur<strong>in</strong>g volume size. Before the receiver opticsthere must be <strong>in</strong>stalled a light collector <strong>in</strong> forward scatter<strong>in</strong>g,which protects the light detector aga<strong>in</strong>st direct irradiation.Due to diffraction actions of the light <strong>and</strong> of thescattered light, this light collector leads to an ambiguouscalibration curve, also when us<strong>in</strong>g white light. However,a source of white light <strong>in</strong> connection with a 90° scatteredlight detection secures a clear calibration curve for manyrefractive <strong>in</strong>dices.An advantage of a small measur<strong>in</strong>g volume def<strong>in</strong>ed <strong>and</strong>projected with white light is that this one - <strong>in</strong> contrast to thelaser beam - is homogeneously illum<strong>in</strong>ated over the crosssection. In the figure 5 <strong>and</strong> 6, real scattered light signalsare represented <strong>from</strong> which the particle size is determ<strong>in</strong>edby detection of the impulse height. It is easily conceivablethat the signal <strong>from</strong> figure 6 can be detected more easily<strong>and</strong> reliably than the signal <strong>in</strong> figure 5. Friehmelt po<strong>in</strong>ts out<strong>in</strong> his dissertation (Friehmelt R. 1999; see also FriehmeltR. et al., 1998) that the particle size of irregularly shapedparticles is determ<strong>in</strong>ed with white light better than with laserlight.For the quality of the evaluated scattered light impulses,not only the optical set-up is responsible, but also the qualityof the opto-electronic elements.sheath air<strong>in</strong>ductionfilteraerosol cuvettelight collectoraperturelightsource 10°aperture 20°electronicselectronicscondenser lensreceiver opticsphotomultipliermeasur<strong>in</strong>gvolumepumpfilterFigure 4:Optical aerosol spectrometer (forward scatter<strong>in</strong>g)


L. Mölter <strong>and</strong> M. Schmidt et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 810.124 About the measur<strong>in</strong>g accuracy of count<strong>in</strong>g measur<strong>in</strong>gmethodsImpulshöhe [V]0.080.04Independently of which count<strong>in</strong>g method is used, usuallyone or more physical values must be known for theclear measurement of the particle size. Depend<strong>in</strong>g upon thecount<strong>in</strong>g method, these values are the follow<strong>in</strong>g:••••the refractive <strong>in</strong>dex,the particle material density,the surface texture or the chemical composition,the electrical charge.0.000Figure 5:20 40 60 80t [µs]Real scattered light signal at laser measur<strong>in</strong>g devices: Signal of a 0,5 µmSiO2-sphere (monosphere, company Merck);Source: H. Mühlenweg (Diss.)Figure 6:Real scattered light signal at an homogeneously illum<strong>in</strong>ated T-shapedmeasur<strong>in</strong>g volume (white light source <strong>and</strong> 90° scattered light detection);Source: Palas® GmbHA particle measurement without the tak<strong>in</strong>g <strong>in</strong>to considerationof the necessary physical values leads to differentmeasur<strong>in</strong>g results at different measur<strong>in</strong>g methods. If differentmeasur<strong>in</strong>g <strong>in</strong>struments with the same measur<strong>in</strong>gmethod supply different measur<strong>in</strong>g results under the sametest conditions, even when know<strong>in</strong>g the concerned physicalvalues, then the cause might have to be found <strong>in</strong> thedetail set-up <strong>and</strong>/or <strong>in</strong> the selection of the components ofthese measur<strong>in</strong>g <strong>in</strong>struments. The shape <strong>in</strong>fluence of theparticles plays a large role, too.As generally <strong>in</strong> the measurement technique, it is mean<strong>in</strong>gfulalso <strong>in</strong> the particle measur<strong>in</strong>g technique to give <strong>in</strong>formationon the measurement uncerta<strong>in</strong>ty of the used measur<strong>in</strong>gmethod <strong>and</strong>/or the concerned measur<strong>in</strong>g <strong>in</strong>strument.In the on-l<strong>in</strong>e particle measur<strong>in</strong>g technique - <strong>in</strong> contrastto the mechanical measur<strong>in</strong>g technique - it is practicallyimpossible to determ<strong>in</strong>e measur<strong>in</strong>g errors exactly withthe help of a fixed tolerance (<strong>in</strong> the mechanical measur<strong>in</strong>gtechnique for example the hole diameter of a drill<strong>in</strong>g H7).Therefore, <strong>in</strong> the particle measur<strong>in</strong>g technique, one has def<strong>in</strong>edfor the error consideration important device characteristics,which are specified <strong>in</strong> the VDI guide l<strong>in</strong>e 3489<strong>and</strong> the ISO 13323-1 <strong>and</strong> will be described <strong>in</strong> the future <strong>in</strong>the VDI 3867 <strong>and</strong> the ISO/DIS 21501-1-4, too.For a clear quantitative comparison of measurement results,which are won with different measur<strong>in</strong>g methods, theused measur<strong>in</strong>g <strong>in</strong>struments should be calibrated - if possible- with the same calibration procedure.4.1 Particle size resolution <strong>and</strong> particle size classificationaccuracyThe particle size resolution gives <strong>in</strong>formation about whichparticle sizes can be differentiated <strong>from</strong> each other. Theparticle size classification accuracy <strong>in</strong>dicates how exactlythe particles are determ<strong>in</strong>ed concern<strong>in</strong>g their size.


824.2 Sources of error when measur<strong>in</strong>g with optical aerosolspectrometersOptical measur<strong>in</strong>g volume limitations are used <strong>in</strong> practice<strong>in</strong> order to be <strong>in</strong>dependent of the Gauss <strong>in</strong>tensity distributionof the laser light or to be able to determ<strong>in</strong>e as co<strong>in</strong>cidence-freeas possible the particle size distribution <strong>in</strong> highconcentrations. The follow<strong>in</strong>g possible sources of errormust be considered:4.2.1 Border zone errorFigure 7 shows the detail set-up of the measur<strong>in</strong>g volumeof an OAS with laser light <strong>and</strong> without optical measur<strong>in</strong>gvolume limitation.<strong>from</strong> the sideaerosol nozzleaerosol flowlight beammeasur<strong>in</strong>gvolumesuctionnozzle<strong>in</strong>tensity I14Figure 8:121086420d LaserSchematic representation of the <strong>in</strong>tensity distribution of the laser beam(Gauss-shape)If an optical measur<strong>in</strong>g volume limitation is selected <strong>in</strong>order to m<strong>in</strong>imise e.g. the effect of the Gauss distributionof a laser beam, then a further border zone problem arises.In figure 9 an optical measur<strong>in</strong>g volume limitation is representedat which the problem of the border zone error canbe made clear. A particle which is lighted only to 50% <strong>in</strong>the border zone scatters only half of the light of an equallylarge particle which is <strong>in</strong> the measur<strong>in</strong>g volume center.Thus, the border zone error leads to the fact that particlesare measured too small. In filter test<strong>in</strong>g this leads to thefact that the separation efficiency is measured better than itreally is because the f<strong>in</strong>e parts of the particle size spectrum<strong>in</strong> the raw gas are measured too high.<strong>from</strong> the side<strong>from</strong> the topaerosol channelaerosol flowFigure 7:light beamMeasur<strong>in</strong>g pr<strong>in</strong>ciple: laser beammeasur<strong>in</strong>g volumelight beam<strong>from</strong> the topmeasur<strong>in</strong>g volumeaerosol channelThe light <strong>in</strong>tensity of a laser light beam is distributedGauss-shaped over the beam diameter (figure 8).A particle at the border of the laser beam scatters substantiallyfewer light than an equally large particle <strong>in</strong> the centerof the laser beam. This so-called border zone error has beenalready known s<strong>in</strong>ce 1970 <strong>and</strong> is described <strong>in</strong> (Helsper C.1981, Blattner J. 1995, Mölter L. et al. 1995). This errorcan be m<strong>in</strong>imised also by an aerodynamic focuss<strong>in</strong>g of theaerosol beam.light beammeasur<strong>in</strong>g volumedetectionFigure 9:Measur<strong>in</strong>g pr<strong>in</strong>ciple: optical volume limitation, 90° scattered light detection


L. Mölter <strong>and</strong> M. Schmidt et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 83Figure 10 shows through the example of monodispersetest aerosols that the size of the border zone error is dependenton the particle size. The wider is the particle sizedistribution to be measured, the larger is also the borderzone error.Sum frequency1.00.80.60.40.20.320.490.560.650.750.871.001.702.103.40Dp (µm)4.605.707.209.10different calibration curves for different refractive <strong>in</strong>dicescan be supplied with the welas ® if desired. With the opticalset-up of the system <strong>and</strong> its patented T-shaped measur<strong>in</strong>gvolume, with which it can be measured practically withoutborder zone errors, a clear particle size determ<strong>in</strong>ation withvery good size resolution <strong>and</strong> very good classification accuracyis ensured (L<strong>in</strong>denthal G. et al. 1998, Keusen G.2003).The measur<strong>in</strong>g chamber is optionally heatable <strong>in</strong> order toavoid cross sensitivities <strong>and</strong> changes of particle size as afunction of the relative humidity – an important po<strong>in</strong>t, becauseby a change of the relative humidity <strong>from</strong> approx. 40% to 90 % e.g. hydrophilic particles such as NaCl particlescan <strong>in</strong>crease to around the factor 2 (Ebert E. et. al. 2002).T-aperturesaerosol flow0010 20 30 40 50 60ChannelFigure 10:Border zone error at optical measur<strong>in</strong>g volume limitation (sum distributionof different mono-disperse aerosols)Source: Helsper 1981 (Diss.)4.2.2 Co<strong>in</strong>cidenceOne speaks about co<strong>in</strong>cidence error if there is more thanone particle at the same time <strong>in</strong> the measur<strong>in</strong>g volume.If e.g. a laser beam diameter amounts to 1 mm, then onecan measure with it maximally <strong>in</strong> a concentration of 1 000particles per cm³ with negligible co<strong>in</strong>cidence error, s<strong>in</strong>ce,theoretically, the particle distance amounts here to 1 mm(table 1). Several particles <strong>in</strong> the measur<strong>in</strong>g volume supplya higher scattered light impulse. Therefore the co<strong>in</strong>cidence-afflictedparticle measurement leads to two errors:The particles are measured too large <strong>and</strong> the concentrationtoo low (Raasch J. et al. 1984, Szymanski W. W. 1996,Mölter L. 1995). At the conversion of the number distribution<strong>in</strong>to the volume distribution these errors affect particularlystrongly. In filter test<strong>in</strong>g this leads to the fact that theseparation efficiency is measured worse than it really is.Thus, measurements without border zone error <strong>and</strong> withco<strong>in</strong>cidence detection are an important precondition for anaccurate <strong>and</strong> reliable filter test<strong>in</strong>g.5 Particle measurement without border zone error <strong>and</strong>with co<strong>in</strong>cidence detectionThe new white-light-aerosol-spectrometer system welas® has a clear calibration curve due to the white lightsource <strong>and</strong> the 90° scattered light detection (figure 3). Sixoptical fibres connectionsFigure 11:Cross section through the welas® sensoroptical measur<strong>in</strong>gvolumeT-aperturelight <strong>in</strong>letFigure 12:aerosol <strong>in</strong>letP2P1Three-dimensional T-shaped measur<strong>in</strong>g volumeoptically limitedmeasur<strong>in</strong>g volumeT-aperture scatteredlight detectionmirrorIn figure 11 one can see the compact set-up of the welas ® -sensor. White light is <strong>in</strong>jected over optical fibres <strong>in</strong>to theaerosol sensor <strong>and</strong> focused with a T-aperture <strong>in</strong> a T-shapedway <strong>in</strong> the measur<strong>in</strong>g volume. The scattered light is ob-


84served over a T-aperture <strong>in</strong> an angle of 90° to the <strong>in</strong>cidentlight. One receives a three-dimensional T-shaped measur<strong>in</strong>gvolume by the T-shaped light beam <strong>and</strong> the T-shapedobservation level (figure 12). S<strong>in</strong>ce the aerosol is suckedwith a vacuum pump through the sensor, one knows theruntime between <strong>in</strong>flow <strong>and</strong> outflow of the particles <strong>in</strong>tothe measur<strong>in</strong>g volume.5.0.1 No border zone error due to T-aperture technologyFigure 13 shows different particle positions <strong>in</strong> the T-shaped measur<strong>in</strong>g volume as well as the correspond<strong>in</strong>gscattered light impulse.The pulse width analysis is used beyond that also for co<strong>in</strong>cidencedetection.5.0.2 Co<strong>in</strong>cidence signal by means of T-aperture technologyIf several particles fly at the same time through the measur<strong>in</strong>gvolume (figure 14), then one can easily imag<strong>in</strong>e thatthe impulse height is higher than at only one particle ofcomparable size. Without co<strong>in</strong>cidence detection the particleswould be measured too large <strong>and</strong> the concentrationtoo low.Particle 1Particle 2 Particle 3 Particle 4I I I It 0t Ett 0t Ett 0t Ett 0t EtFigure 13:Border zone error correction of the white light aerosol spectrometer welas®Particles, which pass both the upper <strong>and</strong> the lower part ofthe measur<strong>in</strong>g volume <strong>in</strong> a central place, generate a rectangularscattered light impulse as represented <strong>in</strong> case 1 offigure 13.Case 2 represents a particle, which is still completelyseized <strong>in</strong> the upper, larger part of the measur<strong>in</strong>g volume,but is subject to a border zone error <strong>in</strong> the lower part ofthe measur<strong>in</strong>g volume. The correspond<strong>in</strong>g scattered lightimpulse shows a step-decrease with the passage of theparticle <strong>from</strong> the upper to the lower part of the measur<strong>in</strong>gvolume. This particle is <strong>in</strong>cluded with the higher impulseheight <strong>in</strong>to the evaluation.In case 3 a particle is illum<strong>in</strong>ated <strong>and</strong> seized measurement-technologicallyonly <strong>in</strong> the upper part of the measur<strong>in</strong>gvolume. The signal evaluation recognizes this by theshorter impulse duration <strong>and</strong> rejects this impulse.In case 4 a particle at the border of the upper part of themeasur<strong>in</strong>g volume is illum<strong>in</strong>ated only to 50%. In this casethe particle is measured around 50% too small. The measur<strong>in</strong>g<strong>in</strong>strument rejects the signal of case 4, s<strong>in</strong>ce the runn<strong>in</strong>gtime is too short.Figure 14:P2P1P3Co<strong>in</strong>cidence detection: particle flow through the optical T measur<strong>in</strong>g volume<strong>and</strong> evaluation of the signal height <strong>and</strong> signal lengthAt the welas ® -system (figure 14) the co<strong>in</strong>cidence error isdetected by the runtime measurement (the impulse is toolong) <strong>and</strong> <strong>in</strong>dicated by an acoustical <strong>and</strong>/or optical warn<strong>in</strong>gsignal. Only a co<strong>in</strong>cidence free particle measurementallows a reliable particle size <strong>and</strong> particle number determ<strong>in</strong>ationof the aerosol. The user is responsible to use <strong>in</strong>accordance with the measur<strong>in</strong>g task a particle measur<strong>in</strong>g


L. Mölter <strong>and</strong> M. Schmidt et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 85<strong>in</strong>strument with the correct measur<strong>in</strong>g volume size <strong>in</strong> orderto measure as co<strong>in</strong>cidence-free as possible. Due to thepatented modular set-up of the welas ® -system one can selectdepend<strong>in</strong>g upon measur<strong>in</strong>g problem the optimal sensorwith the optimal measur<strong>in</strong>g volume size (border length100, 200 or 300 µm) concern<strong>in</strong>g the particle concentrationto be measured (table 2).Table 2:Particle size range <strong>and</strong> maximum concentration range of the welas®-systemsmeasur<strong>in</strong>granges [µm]concentrationwelas ®1100welas ®1200welas ®2100welas ®22000.18 – 40 0.18 – 40 0.3 – 40 0.3 – 40Cmax [p/cm³] 10 5 10 4 10 5 10 45.1 Evaluation of the scattered light signalsThe evaluation of the scattered light impulses is done withthe fundamental formulas of the error calculation <strong>and</strong>/or ofthe statistics known <strong>in</strong> the technology. The scattered lightgenerated by the s<strong>in</strong>gle particles supplies at the same time<strong>in</strong>formation about the number (s<strong>in</strong>gle particle analysis) <strong>and</strong>the size of the particles, whereby the height of the scatteredlight impulse is a measure for the diameter <strong>and</strong> the numberof impulses is a measure for the quantity of particles.The better are the classification accuracy <strong>and</strong> the resolutionof a particle measur<strong>in</strong>g <strong>in</strong>strument, the narrower canbe selected the characteristic category. Therefore, at thewelas ® -system the characteristic categories can be selectedvery closely. In pr<strong>in</strong>ciple, 4096 size classes are availablefor evaluation. The size classes are summarised <strong>in</strong>to 32channels per decade. The user can have the size distributions<strong>in</strong>dicated <strong>in</strong> 32, 16, 8 or 4 size classes at the PC.Due to this high resolution, with the welas ® 1100 eventri-modal particle size distributions of highly concentrateddroplet aerosols d p< 2 µm can be measured as represented<strong>in</strong> figure 15. Here, this concerns the oil mist of a cool<strong>in</strong>gagent lubricant.For the representation of the particle size distribution neithercomplicated mathematics nor <strong>in</strong>transparent algorithmsare used. The particles are assigned directly to the sizeclasses (figure 15). Thus, e.g. the cumulative distributionis calculated accord<strong>in</strong>g to the follow<strong>in</strong>g formula:Figure 15:Tri-modal particle size distribution


86Cumulative distribution Q r(x)The follow<strong>in</strong>g is valid formally mathematically:quantity q of measured particles ≤ xQr(x) =total quantity of particles qgesx'dQr( x)qr( x)= Qr( x')=dx∫ qr( x)dxxm<strong>in</strong>Q (x ) =r<strong>in</strong>∑i=1qqgesiQuantity type: r = 0 : numberr = 1 : lengthr = 2 : facer = 3 : volumex = particle sizer = quantity measureCalculation of the density distribution q r(x):q (x) =rquantity q (dq) of the measured particles <strong>in</strong> the <strong>in</strong>tervall x (dx)total quantity ofthe measured particles qges⋅ <strong>in</strong>tervall width x (dx)Figure 16:Raw data analysis <strong>in</strong> the welas® software


L. Mölter <strong>and</strong> M. Schmidt et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 875.2 CalibrationIt was already mentioned how important is the calibrationof a particle measur<strong>in</strong>g <strong>in</strong>strument for a clear comparisonof measurement results. Possibilities for the generationof test aerosols are represented <strong>in</strong> (Hochra<strong>in</strong>er S. 1998,Helsper C. et al. 1989, Peters C. et al. 1991).Optical aerosol spectrometers are calibrated with latex(m = 1.59). One measures with such methods the scatteredlight equivalent diameters related to latex.In the follow<strong>in</strong>g, the importance of the correct calibrationprocedure will be shown consider<strong>in</strong>g as example theparticle size characterisation of the aerosol spectrometerwelas ® .As described <strong>in</strong> chapter 5, at the welas ® -system – due tothe evaluation of the fly<strong>in</strong>g time of the particles throughthe T-shaped measur<strong>in</strong>g volume – all scattered light impulsesare rejected automatically, whose evaluation withconventional measur<strong>in</strong>g <strong>in</strong>struments would cause a borderzone error. Due to the same technology, measurements <strong>in</strong>co<strong>in</strong>cidence are <strong>in</strong>dicated optically <strong>and</strong>/or acoustically.For these reasons, the evaluation software of the welas ® offersan analysis of the raw data concern<strong>in</strong>g the particle size<strong>and</strong> particle velocity distribution as represented <strong>in</strong> figure 16.The condition of the exact concentration determ<strong>in</strong>ation isthe accurate size of the measur<strong>in</strong>g volume which is determ<strong>in</strong>edwith a tolerance of ± 1.5 %.Figure 16 shows the raw data saved dur<strong>in</strong>g a measurement.One measured quasi monodisperse SiO 2-particleswith a scattered light equivalent diameter of 0.87 µm relatedto Latex.On the Y-axis the number of particles is represented. Onthe lower X-axis the raw data channels (raw size classes)are shown, on the upper X-axis the fly<strong>in</strong>g time <strong>in</strong> µs. Intable of figure 16 one can read the correspond<strong>in</strong>g values.S<strong>in</strong>ce the welas ® -system is supplied, depend<strong>in</strong>g upon application,with differently large measur<strong>in</strong>g volumes <strong>and</strong> differentlyhighly adjustable volume flows, the respective m<strong>in</strong>imumpermitted fly<strong>in</strong>g time T m<strong>in</strong>must be set by computer.From the <strong>in</strong>dication of the mean fly<strong>in</strong>g time of the particles<strong>and</strong> the length of the measur<strong>in</strong>g volume one canclearly determ<strong>in</strong>e the mean particle velocity <strong>in</strong> the measur<strong>in</strong>gvolume for monosphere (figure 17).Cursor System 1 Ref.Cursor System 2 Meas.Cursor TimeFigure 17:Raw data analysis – detail40.00 600.0040.00 590.0024.80 602.00mean flight time <strong>in</strong> µsvVparticleL=measur<strong>in</strong>gvolumemeasur<strong>in</strong>gvolumetparticle= Ameasur<strong>in</strong>gvolume• vLmeasur<strong>in</strong>g volume : length of measur<strong>in</strong>g volumeparticlet particle : mean fly<strong>in</strong>g time of particles through the measur<strong>in</strong>g volumev particle : mean velocity of particles through the measur<strong>in</strong>g volumeVmeasur<strong>in</strong>g volume : volume flow <strong>in</strong> the measur<strong>in</strong>g volumeAmeasur<strong>in</strong>g volume : passage surface of measur<strong>in</strong>g volumeOnly the accurate determ<strong>in</strong>ation of the particle velocity<strong>in</strong> connection with an accurate <strong>in</strong>dication of the passagesurface <strong>in</strong> the measur<strong>in</strong>g volume leads to an accurate calculationof the measured particle concentration.Nanalysed particles • tmeasur<strong>in</strong>g timecn=Vmeasur<strong>in</strong>g volumecn= number concentrationNanalysed particles = number of measured particlestmeasur<strong>in</strong>g time = measur<strong>in</strong>g durationThe raw data distribution is used also for the exact adjustmentof the sensor with monodisperse particles. This calibrationconcern<strong>in</strong>g the particle size can be accomplishedby the customer himself.5.2.1 Characterisation of the device parameters – borderzone error, resolution <strong>and</strong> classification accuracyThe characterisation of the welas ® 1200, which isequipped with a cuvette, was accomplished <strong>in</strong> the Leibniz-Institut für Troposphärenforschung e. V. (IFT) <strong>in</strong> Leipzig,Germany. In the figures 18 <strong>and</strong> 19 the measur<strong>in</strong>g data ofthree different latex aerosols are represented. The latexsuspensions (0.2 µm; 0.34 µm; 0.5 µm) were generated<strong>in</strong> each case <strong>in</strong> a separate Palas ® latex generator <strong>and</strong> weresupplied directly to the welas ® system.It can be clearly taken <strong>from</strong> the run of the cumulative distribution<strong>in</strong> figure 19 that besides latex there are also f<strong>in</strong>erparticles <strong>in</strong> the aerosol. As it is well known, one does notreceive an exclusive mono-disperse aerosol when nebulis<strong>in</strong>glatex suspensions, s<strong>in</strong>ce the stabilisers of the suspensionare also nebulised <strong>and</strong> measured. This fact supplies anexplanation for the f<strong>in</strong>es recognisable <strong>in</strong> figure 19. However,it can not be excluded that the f<strong>in</strong>es represented <strong>in</strong> thecurve could also be due to a rema<strong>in</strong>der border zone error ofthe measur<strong>in</strong>g system.


881.0001.0000.9000.9000.8000.8000.7000.7000.6000.600Sum(N)/N0.5000.400Sum(N)/N0.5000.4000.3000.3000.2000.2000.1000.1000.0000.17 1.00x[µm]5.230.0000.17 1.00x[µm]5.23Figure 18:Latex aerosols dp = 0.2; 0.34; 0.5 µm with f<strong>in</strong>es separated by a DMAFor the clear characterisation of the aerosol spectrometer,the three different latex aerosols were led through acompany-owned Differential Mobility Analyser (DMA) ofthe IFT. The DMA was switched between the latex generator<strong>and</strong> the welas ® -system. In figure 18 it can be clearlyrecognised that the f<strong>in</strong>es of the aerosol were separated bythe DMA <strong>and</strong> that they are therefore not measured <strong>and</strong> <strong>in</strong>dicatedby the welas ® -system. Thus, it can be concludedthat the T-aperture-technology supplies practically borderzone-errorfree measurement results. Therefore, the curve<strong>in</strong> figure 19 was measured correctly with the welas ® , s<strong>in</strong>cethe latex aerosol was soiled with f<strong>in</strong>es. The curves showclearly the high resolution <strong>and</strong> the good classification accuracyof the welas ® -system. One recognises the resolutionby the rate of rise of the cumulative distribution. Theclassify<strong>in</strong>g accuracy is read off <strong>from</strong> the d 50-value of thecumulative distribution.Figure 19:Latex aerosols dp = 0.2; 0.34; 0.5 µm with f<strong>in</strong>es nebulised by the stabilisersof the suspension6 Summary <strong>and</strong> future prospectsCount<strong>in</strong>g optical aerosol spectrometers are suitable forthe mean<strong>in</strong>gful particle size <strong>and</strong> particle number determ<strong>in</strong>ation;they must however fulfil certa<strong>in</strong> technical conditions.Among them there are the high resolution <strong>and</strong> the goodclassification accuracy, i.e. a measur<strong>in</strong>g method which hasa clear calibration curve <strong>and</strong> measures without border zoneerrors. Co<strong>in</strong>cidence-free measurements are ensured by co<strong>in</strong>cidencedetection.The <strong>in</strong>sight <strong>in</strong>to the theoretical basics of the count<strong>in</strong>g opticalparticle measurement expla<strong>in</strong>s the significance of thedevice parameters <strong>and</strong> the importance of a clear calibrationcurve. The explanation of the operational pr<strong>in</strong>ciple of opticalmeasur<strong>in</strong>g methods demonstrates the advantages of ameasurement with white light <strong>and</strong> 90° scattered light detectioncompared to laser light or forward scatter<strong>in</strong>g.The white light source <strong>and</strong> the 90° scattered light detectionprovide a clear calibration curve. A specific feature isthe patented T-aperture-technology: The T-shaped measur<strong>in</strong>gvolume projected <strong>and</strong> limited with white light allowsfor the first time a border-zone-error free measurement.


L. Mölter <strong>and</strong> M. Schmidt et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 89In addition, the measur<strong>in</strong>g system possesses co<strong>in</strong>cidencedetection. The heatable measur<strong>in</strong>g chamber <strong>and</strong> the opticalfibre technology offer special advantages, too. Due tothe modular set-up the sensors with the optimal measur<strong>in</strong>gvolume size can be selected depend<strong>in</strong>g upon application.Beyond that, the welas ® -system offers an <strong>in</strong>novative specificfeature which pays off particularly with special applications,for example measurements <strong>in</strong> strongly vary<strong>in</strong>gor very high raw gas concentrations or measurements <strong>in</strong>badly accessible environments: For the first time one canmeasure with two sensors at one control unit quasi simultaneouslyat different places <strong>in</strong> different concentrations.The evaluation of the scattered light signals generated bythe particles is done by software tested <strong>in</strong> practical applications.This software does not only allow different representationpossibilities of the particle size distribution, but alsorecords the environment conditions such as air pressure,relative humidity, temperature <strong>and</strong> velocity, which weremeasured with other sensors. The data can be recalled alsoover the <strong>in</strong>ternet.An important advantage of the welas ® -system is - <strong>in</strong>particular also with view to the future - the possibility tocomb<strong>in</strong>e the measurements with other measur<strong>in</strong>g methods(Mölter L. et al. 2004).7 ReferencesBaron P., Willeke K. (2001). Aerosol Measurement – Pr<strong>in</strong>ciples, Techniques<strong>and</strong> Applications, Chapter 15 <strong>and</strong> 16. Wiley-Interscience Publication.2nd edition, New York 2001.B<strong>in</strong>nig J., Meyer J., Kasper G. (2005). Integration Integraton of cyclones <strong>and</strong> anoptical particle counter <strong>in</strong>to a filter tester VDI-3926 / Type1 to characterizePM2.5 emissions <strong>from</strong> pulse-jet cleaned filter media. In: Gefahrstoffe- Re<strong>in</strong>haltung der Luft 65/ No. 4, 2005.Blattner J. (1995). Filtrieren und Separieren. Fraktionsabscheidegradbestimmungmittels Streulichtpartikelzähler mit e<strong>in</strong>em optisch begrenztenMessvolumen. Frankfurt/M. 1995.Ebert E. et. al. (2002). Environmental scann<strong>in</strong>g electron microscopy asa new technique to determ<strong>in</strong>e the hygroscopic behavior of <strong>in</strong>dividualaerosol particles. In: Atmospheric Environment 36 (2002), S. 5909-5916.Friehmelt R. (1999). Aerosol-Messsysteme. Vergleichbarkeit und Komb<strong>in</strong>ationausgewählter onl<strong>in</strong>e-Verfahren. Diss. 1999.Friehmelt R., Büttner H., Ebert F. (1998). On-l<strong>in</strong>e Measurement of ParticleSizes <strong>and</strong> Number Concentrations: Establishment of a Comb<strong>in</strong>edMeasur<strong>in</strong>g System. In: Proceed<strong>in</strong>gs of Partec 1998.Helsper C. (1981). Bestimmung, Simulation und Korrektur des nichtidealenÜbertragungsverhaltens klassifizierender Aerosolmessverfahren.Diss. Universität Duisburg 1981.Helsper C., Mölter L. (1989). Erzeugung <strong>von</strong> Prüfaerosolen für die Kalibrierung<strong>von</strong> optischen Partikelmessverfahren nach VDI 3491. In:Technisches Messen – tm 56 (1989), Nr. 5, S. 229-234.Hemmer G., Umhauer H., Kasper G., Berbner S. (1999). The SeparationEfficiency of Ceramic Barrier Filters Determ<strong>in</strong>ed at High Temperaturesby Optical Particle Size <strong>and</strong> Concentration Measurement. In:High Temperature Gas Clean<strong>in</strong>g Vol. II, ed. by A. Dittler, G. Hemmer,G. Kasper, Karlsruhe 1999.Hess W. F., Matschke C. (2005). Comparison of two Scattered LightParticle Counters <strong>in</strong> practical application <strong>in</strong> a dust removal test st<strong>and</strong>.In: Filtrieren & Separieren International Edition, May 2005.H<strong>in</strong>ds W. C. (1999). Technology – Properties, Behaviour <strong>and</strong> Measurementof Airborne Particles, Chapter 16. Wiley-Interscience Publication,2nd edition, New York 1999.Hochra<strong>in</strong>er S. (1998). Quality Assurance <strong>in</strong> Particle Measurement Technology<strong>and</strong> Filter Test Technology: Calibration Systems for ParticleCounters <strong>and</strong> Particle Size Analysers. In: Advances <strong>in</strong> Filtration <strong>and</strong>Separation Technology, Vol. 12 (1998).ISO 13323-1: Determ<strong>in</strong>ation of particle size distribution – s<strong>in</strong>gle particlelight <strong>in</strong>teraction methods, Part 1: Light <strong>in</strong>teraction considerationsISO/CD 21501-1: Light-scatter<strong>in</strong>g aerosol spectrometerISO/DIS 21501-4: Light-scatter<strong>in</strong>g air-bone particle counter for cleanspacesKeusen G. (2003). Anwendung der Streulicht-Partikelgrößen-Zählanalysezur Charakterisierung <strong>von</strong> Tropfenkollektiven bei der Dieselöl-Hochdruckzerstäubung. Diss. 2003.L<strong>in</strong>denthal G., Mölter L. (1998). New White-Light S<strong>in</strong>gle-ParticleCounter – Border Zone Error nearly elim<strong>in</strong>ated. In: Proceed<strong>in</strong>gs ofPartec 1998.Mie G. (1908). Beugung an leitenden Kugeln. In: Annalen der Physik 15,1908, S. 377-445.Mölter L. (1995). In-Situ Particle Size Analysis at high Concentrations.In: Proceed<strong>in</strong>gs of Partec 1995.Mölter L., L<strong>in</strong>denthal G. (1995). How to measure the fractional gradeefficiency correctly for ISO 9000. In: Filtration & Separation, Sept.1995.Mölter L., Schütz S. (2003). Accurate Particle Count<strong>in</strong>g of VacuumCleaner Emissions. In: Filtration & Separation No. 9/ 2003.Mölter L., Kessler P. (2004). Partikelgrößen- und Partikelanzahlbestimmung<strong>in</strong> der Außenluft mit e<strong>in</strong>em neuen optischen Aerosolspektrometer.In: Gefahrstoffe – Re<strong>in</strong>haltung der Luft 10 (2004).Peters C., Gebhardt J., Roth C., Sehrt S. (1991). Test of high sensitivelaser particle counters with PSL-Aerosols <strong>and</strong> CNC reference. Journalof Aerosol Science, Vol. 22, Suppl.1, 1991.Raasch J., Umhauer H. (1984). Errors <strong>in</strong> the Determ<strong>in</strong>ation of ParticleSize Distributions caused by Co<strong>in</strong>cidence <strong>in</strong> Optical Particle Counters.In: Particle & Particle Systems Characterization No. 1/ 1984.Szymanski W.W. (1996). Applicability of Optical Particle Counters forDeterm<strong>in</strong>ation of Filter Efficiencies. In: Proceed<strong>in</strong>gs of InternationalSymposium Filtration <strong>and</strong> Separation of F<strong>in</strong>e Dust, 24.-26. April 1996,ed. by W. Höfl<strong>in</strong>ger, Vienna 1996.Umhauer H. (1989). Streulicht-Partikelgrößen-Zählanalyse als Methodefür In-Situ-Messungen <strong>in</strong> Gas-Partikel-Strömungen. In: TechnischesMessen tm 56 (1989) 5 VDI 3489, <strong>Particulate</strong> Matter Measurement.Umhauer H., Berbner S. (1995). Optical In-Situ Size Analysis of ParticlesDispersed <strong>in</strong> Gases at Temperatures of up to 1000°C. In: Proceed<strong>in</strong>gsof Partec 1995.VDI 3489, <strong>Particulate</strong> Matter Measurement.


M. Romann et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 91Particle size <strong>and</strong> shape distribution of stable dust analysed with laser diffraction <strong>and</strong>imag<strong>in</strong>g techniqueM. Romann 1 <strong>and</strong> T. H<strong>in</strong>z 2AbstractEffects of particles on <strong>in</strong>dividuals <strong>and</strong> the dispersion ofairborne particles are strongly dependent on their size,density, surface <strong>and</strong> shape. Risk assessment requiresknowledge about mass or number concentration or fluxesconcerned. For this purpose different k<strong>in</strong>ds of measur<strong>in</strong>gtechniques are used, which react <strong>in</strong> particular way to theparameters mentioned above. Depend<strong>in</strong>g on the task an appropriatetechnique will be selected. It’s well known thatdusts <strong>from</strong> livestock facilities vary widely depend<strong>in</strong>g onthe source. Sophisticated structures <strong>and</strong> large ranges of sizedistribution must be detected. For siz<strong>in</strong>g laser diffractiontechnique was used to characterize samples of dust whichwere collected <strong>in</strong> stables of different species of farm animals.These results are now supplemented with Sympatecsimag<strong>in</strong>g system for shape analysis.Keywords: livestock, PM, size, shape, laser diffraction,high speed imag<strong>in</strong>gIntroductionEffects of particles on <strong>in</strong>dividuals <strong>and</strong> the dispersion ofairborne particles are strongly dependent on their size, density,surface <strong>and</strong> shape (Schmitt-Pauksztat G. 2006). Depend<strong>in</strong>gon these parameters particles penetrate more orless deep <strong>in</strong>to the breath<strong>in</strong>g of <strong>in</strong>dividuals. Aerodynamicdiameter is used to cover complex <strong>in</strong>fluences <strong>in</strong>clud<strong>in</strong>gshape <strong>and</strong> structures. This becomes complicated for particledispersion caused by emissions <strong>in</strong> animal production.Therefore the well established laser diffraction techniquefor analyz<strong>in</strong>g particle size distribution is not sufficient. Inthe follow<strong>in</strong>g more detailed parameters for the characterizationof the dust particles are described.Materials <strong>and</strong> MethodsParticle analysis was carried out <strong>in</strong> the labs of Sympatecwith samples which were taken <strong>in</strong> research facilities of theFAL <strong>and</strong> <strong>in</strong> a commercial piggery near Braunschweig. Thedifferent dust types are taken <strong>in</strong> stables of cattle, piglets,pigs, horses, sheeps <strong>and</strong> turkey.The collection location was a central po<strong>in</strong>t <strong>in</strong>side of eachstable with the exception of turkey where the sample wastaken <strong>from</strong> the emission flow. This type of stable dust waschosen for the first <strong>in</strong>vestigations.Accord<strong>in</strong>g to the conditions of measurements at work<strong>in</strong>gplaces (VDI 1980) probes were sucked with a velocity of1.25 m/s <strong>in</strong> a height of approximately 1.5 m above ground.Figure 1 shows the setup of the sampler. Samples <strong>in</strong> theexhaust of the force ventilated turkey kept the conditionsof isok<strong>in</strong>etic probe (DIN EN 12384-1, ISO 7708).Independent of the air <strong>in</strong>take the equipments consist of ahigh volume sampler with an axis-type cyclone to separatethe coarse fraction <strong>and</strong> a glass fibre filter to collect the penetrat<strong>in</strong>gf<strong>in</strong>e dust particles, figure 2.1Sympatec GmbH, Clausthal-Zellerfeld, Germany2Federal Agricultural Research Centre, Institute for Technology <strong>and</strong> Biosystems Eng<strong>in</strong>eer<strong>in</strong>g, Braunschweig, Germany


92air <strong>in</strong>let100cyclonefilterSeparation efficieny [%]806040def<strong>in</strong>itioncalibrationhigh volumesampler200036 9 12Particle Size [µm]Figure 1:Sampl<strong>in</strong>g dust <strong>in</strong>side a stableair <strong>in</strong>letswirl idlerFigure 3:Separation efficiency of the used cycloneHigh volume sampl<strong>in</strong>g ensures proper amounts of dust <strong>in</strong>the cyclone beaker <strong>and</strong> on the filter <strong>in</strong> an acceptable timeof runn<strong>in</strong>g. Mass detection followed by weigh<strong>in</strong>g. Afterweigh<strong>in</strong>g the samples of the coarse fraction were transferredto the lab for further analysis.coarse dustf<strong>in</strong>e dustfilterFigure 2:Scheme of the equipmentThe separation efficiency of the cyclone was fitted to thepreviously used Convention of <strong>Johann</strong>isburg, with a cut offdiameter of 5 µm. Particles larger than 7.07 µm should beseparated totally. Figure 3 shows the theoretical curve <strong>and</strong>the actual calibration while sampl<strong>in</strong>g with a flow rate of50 m³/h.Figure 4:Sample of stable dustThis sample can be divided <strong>in</strong>to two different types ofparticles: a dusty appear<strong>in</strong>g collection of “normal” particles<strong>and</strong> balls of fibrously particles that can be taken out bytweezers. A dry sample splitt<strong>in</strong>g is impossible.


M. Romann et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 93The best way to h<strong>and</strong>le the sample of stable dust carefullyis to prepare a suspension of the entirely sample <strong>in</strong>dry isopropylic alcohol. Stirrer speed should be slow <strong>and</strong>it should change the rotation direction <strong>from</strong> time to time<strong>in</strong> order to avoid the collect<strong>in</strong>g of fibres or the creation offiber balls aga<strong>in</strong>.The suspension can now be split <strong>and</strong> diluted for the measurementsfirst with a HELOS laser diffraction togetherwith the dispers<strong>in</strong>g unit SUCELL <strong>and</strong> then with a QICPICimag<strong>in</strong>g system comb<strong>in</strong>ed with the dispers<strong>in</strong>g system LIX-ELL.Results <strong>and</strong> discussionTable 1 gives the concentration of the coarse <strong>and</strong> f<strong>in</strong>efractions split by the cyclone separator <strong>and</strong> its ratio coarseto f<strong>in</strong>e. The suspension made up for the particle size distributionanalysis <strong>and</strong> for the shape analysis conta<strong>in</strong>s onlythe coarse fraction.Table 1:Concentration of coarse <strong>and</strong> f<strong>in</strong>e dust fraction, percentage coarseSpeciesFraction concentratoncoarse fne <strong>in</strong>e[mg/m 3 ] [mg/m 3 ]PercentagecoarsePositionCattle I 0.116 0.00567 96 <strong>in</strong>sideCattle II 0.180 0.029 87 <strong>in</strong>sidePiglet 1.144 0.159 88 <strong>in</strong>sidePigs 0.860 0.057 93 <strong>in</strong>sideHorse 0.150 0.0268 85 <strong>in</strong>sideSheep 0.072 0.017 89 <strong>in</strong>sideTurkey 2.560 0.296 90 exhaustCumulative distribution Q3 [%]10090807060504030201000.200.100.001 5 10 50 100 500 800Particle size [µm]1.101.000.900.800.700.600.500.400.30Density distribution q3*Figure 5:HELOS - Cumulative <strong>and</strong> density distribution of the turkey stable dust.The result of the laser diffraction analysis shows a distributionof laser diffraction comparable spheres. The measurementitself is done <strong>in</strong> less then one m<strong>in</strong>ute <strong>and</strong> is basedof some million particles. Therefore the reproducibility <strong>and</strong>reliability of the result are very high. The st<strong>and</strong>ard deviationof three different measurements is below 0.5 %.But even the best result does not show any <strong>in</strong>formationabout particle shape.More detailed <strong>in</strong>formation about the particles is given bythe imag<strong>in</strong>g system QICPIC. Its s<strong>in</strong>gularly comb<strong>in</strong>ation ofa high speed camera up to 500 images per second, shortestexposure times below 1 ns with special telecentric opticsmakes it possible to evaluate a high number of sharp particleimages (Witt W. et al. 2006 <strong>and</strong> 2007).


94Po<strong>in</strong>tsourceBeamexpansionObjectplaneImag<strong>in</strong>gsensormum value, length <strong>and</strong> diameter of fibres <strong>and</strong> the volumebased fibre diameter. This list has to be supplemented withthe shape parameters like sphericity, aspect-ratio, convexity,straightness <strong>and</strong> elongation of fibres <strong>and</strong> with the possibilityto comb<strong>in</strong>e these parameters to USER-def<strong>in</strong>ed parameters.Special opticalmoduleFigure 6:Optical setup of QICPIC imag<strong>in</strong>g system.Before <strong>and</strong> dur<strong>in</strong>g the measurement the sensor-controlw<strong>in</strong>dow of the WINDOX-software shows already particleimages. This allows to check the measur<strong>in</strong>g range <strong>and</strong> theconcentration of particles <strong>in</strong> the suspension.Consider<strong>in</strong>g the flow velocity <strong>in</strong> the cuvette <strong>and</strong> the volumeof the suspension a frame rate of 50 images per seconddur<strong>in</strong>g a measur<strong>in</strong>g time of 120 seconds has been suitable.In this case the measurement conta<strong>in</strong>s the images of350,000 particles.The software WINDOX calculates parameters like EQPC(diameter of the circle of equal projection area), the differentFeret-diameters (distance between to parallel tangents),the m<strong>in</strong>imum bound<strong>in</strong>g area with its maximum <strong>and</strong> m<strong>in</strong>i-Figure 7:QICPIC - Particles flow<strong>in</strong>g through the cuvette dur<strong>in</strong>g the measurementCumulative distribution Q3 [%]10090807060504030201000.40.30.20.10.01 5 10 50 100 500 1000 2000Particle size [µm]1.71.61.51.41.31.21.11.00.90.80.70.60.5Density distribution q3*Figure 8:QICPIC - Volume distribution of EQPC as first result. This diagram is slightly comparable to the volume distribution diagram of the laser diffraction result.(Figure 4)


M. Romann et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 95With all these parameters <strong>and</strong> their comb<strong>in</strong>ations a widespreadvariety of different results can be created to characterizethe very special properties of the sample:•••••Particle size distribution of different particle diametersDistributions of user def<strong>in</strong>ed particle parametersShape diagrams of different shape parameters vs. particlesizeDistribution diagrams of different shape parametersShape diagrams of USER-def<strong>in</strong>ed particle parametersCumulative distribution Q1 [%]10090807060504030201000.200.100.001 5 10 50 100 500 1000 2000Particle size [µm]1.201.101.000.900.800.700.600.500.400.30Density distribution q1*Figure 9:QICPIC - Length distribution of Feret-Max as result for fibrously materialsCumulative distribution Q1 [%]10090807060504030201001.000.900.800.700.600.500.400.300.200.101 5 10 50 100 500 10000.002000Particle size [µm]Density distribution q1*Figure 10:QICPIC - Length distribution of LEFI (Length of Fibre)


961001.25Cumulative distribution Q1 [%]90807060504030201000.250.001 5 10 50 100 500 1000 2000Particle size [µm]1.000.750.50Density distribution q1*Figure 11:QICPIC - Length distribution of LEFI > 20 µm <strong>and</strong> Aspect ratio < 0.25. This user filter suppresses the part of small, spherical particlesFigure 12:QICPIC - Particle Gallery of the distribution shown <strong>in</strong> Figure 10


M. Romann et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 97The last h<strong>in</strong>t, that the sample of stable dust conta<strong>in</strong>s mostlyneedle-shaped particles is found <strong>in</strong> a shape-diagram:Aspect ratio0.750.700.650.600.550.500.450.400.350.300.250.200.150.100.050.001 5 10 50 100 500 1000 2000Particle size [µm]Figure 13:QICPIC - Aspect ratio vs. LEFI. Typical for fibrously samples is the fall<strong>in</strong>g curve to bigger particles10090Cumulative distribution Q0 [%]8070605040302010Figure 14:00.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00Aspect ratioQICPIC - Cumulative number distribution of aspect ratio. A flat curve shows the predom<strong>in</strong>antly <strong>in</strong>fluence of fibres


98ConclusionFirst <strong>in</strong>vestigations <strong>in</strong> stable dust dispersed as suspension<strong>in</strong> dry isopropylic alcohol, show very positive results withSympatec laser diffraction system HELOS with SUCELLthat allow a suitable h<strong>and</strong>l<strong>in</strong>g of this special material <strong>and</strong>gives reproducible results of particle size distribution. Thisrealization has been transferred to the imag<strong>in</strong>g systemQICPIC with LIXELL. Its variously possibilities <strong>in</strong> theevaluation of stable dust lead <strong>from</strong> simple particle distributions<strong>in</strong> order to have an overview down to the discover<strong>in</strong>gof s<strong>in</strong>gle particles with very special user specified properties.ReferencesISO 7708 (1996-01). Air quality- Particle size fraction def<strong>in</strong>itions forhealth- related sampl<strong>in</strong>g.US EPA: Code of Federal Regulations; PM10, 2001a PM2.5, 2001cSchmitt-Pauksztat G. (2006).”Verfahren zur Bestimmung der Sedimentationsgeschw<strong>in</strong>digkeit<strong>von</strong> Stäuben und Festlegung partikelspezifischerParameter für deren Ausbreitungssimulation.“Dissertation,BonnWitt W., Köhler U., List J. (2007). Sympatec GmbH “Current Possibilitiesof Particle Size <strong>and</strong> Shape Characterization with high Speed ImageAnalysis”PARTEC 2007, Nuremberg, GermanyWitt W., Köhler U., List J. (2007). Sympatec GmbH “Comparison ofLaser Diffraction <strong>and</strong> Image Analysis under Identical Dispers<strong>in</strong>g Conditions”PARTEC 2007, Nuremberg, GermanyWitt W., Altrogge D., Rutsch O. (2006). Sympatec GmbH “High-SpeedImage Analysis <strong>and</strong> Dispersion for Size <strong>and</strong> Shape Characterisationof Fibres” 5th World Congress of Particle Technology 2006, Orl<strong>and</strong>o,USAFor detailed <strong>in</strong>formations about the laser diffraction system HELOS <strong>and</strong>the imag<strong>in</strong>g system QICPIC please refer to www.sympatec.com (englishside) or www.sympatec.de (german).


Y. Ruschel <strong>and</strong> J. Krahl et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 99Emissions of particulate <strong>matter</strong> <strong>from</strong> diesel eng<strong>in</strong>es- Determ<strong>in</strong>ation of the particle number concentration <strong>in</strong> diesel exhaust gas <strong>and</strong>- Emissions of heavy-duty diesel eng<strong>in</strong>es with focus on particulate <strong>matter</strong>Y<strong>von</strong>ne Ruschel 1 , Olaf Schröder 1 , Jürgen Krahl 1,2 , <strong>and</strong> Axel Munack 1Abstract<strong>Particulate</strong> <strong>matter</strong> (PM) has become perceived as oneof the major harmful emissions <strong>from</strong> diesel eng<strong>in</strong>es. PMemissions are subject to diesel eng<strong>in</strong>e emission legislationsworldwide. Epidemiological <strong>and</strong> toxicological studies have<strong>in</strong>dicated that adverse health effects <strong>in</strong>crease with decreas<strong>in</strong>gparticle size <strong>and</strong> <strong>in</strong>creas<strong>in</strong>g particle number. Therefore,the determ<strong>in</strong>ation of the particle number distribution is ofsame importance as the assessment of the total mass ofPM. In the first part of this paper, measurement techniquesof particulate <strong>matter</strong> <strong>and</strong> two <strong>in</strong>struments for determ<strong>in</strong>ationof particle number concentration <strong>and</strong> particle size distribution<strong>in</strong> diesel exhaust gas are <strong>in</strong>troduced. The second partgives an overview of particulate emissions of a heavy-dutydiesel eng<strong>in</strong>e runn<strong>in</strong>g on four different fuels.Keywords: Biodiesel, diesel fuel, particulate <strong>matter</strong>, ultraf<strong>in</strong>eparticles, health effects, ELPI, SMPSIntroduction<strong>Particulate</strong> Matter (PM) has become perceived as oneof the major harmful emissions <strong>from</strong> diesel eng<strong>in</strong>es. PMemissions are subject to diesel eng<strong>in</strong>e emission legislationsworldwide. Accord<strong>in</strong>g to the U.S. Environmental ProtectionAgency (EPA), particles are def<strong>in</strong>ed as all solid orliquid substances <strong>in</strong> diluted exhaust gas that can be collectedon a filter at a temperature of under 51.7 °C (whichis 125 °F) (Code of Federal Regulations). The temperaturereduction of the exhaust gas is achieved by dilut<strong>in</strong>g the exhaustgas with air.PM consists of a variety of organic <strong>and</strong> <strong>in</strong>organic substances.The ma<strong>in</strong> constituents of the organic substancesare unburned or partially burned fuel <strong>and</strong> lubrication oilcompounds. The <strong>in</strong>organic substances <strong>in</strong>clude soot (carbon),sulphates, water <strong>and</strong> metallic compounds. Metal <strong>and</strong>rust particles <strong>from</strong> the eng<strong>in</strong>e or the exhaust gas system aswell as derivates of organo-metallic fuel <strong>and</strong> lubricant additivesare <strong>in</strong>cluded <strong>in</strong> the metallic compounds. The percentageof these substances <strong>in</strong> the total particle mass dependson a multitude of parameters. In addition to constructiveparameters such as design of the combustion chamber <strong>and</strong>the <strong>in</strong>jection system, the mode of operation, or rather theoverall load configuration, the fuel <strong>and</strong> lubricant qualityas well as the wear of the eng<strong>in</strong>e are also <strong>in</strong>cluded here(Wachter F. <strong>and</strong> Cartellieri W. P. 1987).Recently emissions of f<strong>in</strong>e <strong>and</strong> ultraf<strong>in</strong>e particles <strong>from</strong>diesel eng<strong>in</strong>es <strong>in</strong>duced a broad discussion <strong>in</strong> Germany.S<strong>in</strong>ce January 2005 the limit for the emission of f<strong>in</strong>e particleshas been tightened <strong>in</strong> the context of a council directiveof the European Union (99/30/EG).Accord<strong>in</strong>g to this directive the limit of 50 µg/m³ particles<strong>in</strong> ambient air should not be exceeded. The compliance ofthe limit cannot be guaranteed yet all over <strong>in</strong> Germany.In 2006, an exceedance of the limit on more than 35 daysper year occurred at 100 of the 450 measur<strong>in</strong>g stations.In detail, particles <strong>from</strong> diesel eng<strong>in</strong>es show a bimodalsize distribution consist<strong>in</strong>g of a nuclei mode <strong>and</strong> an accumulationmode as can be seen <strong>in</strong> figure 1.1Federal Agricultural Research Centre, Institute for Technology <strong>and</strong> Biosystems Eng<strong>in</strong>eer<strong>in</strong>g, Braunschweig, Germany2University of Applied Sciences Coburg, Coburg, Germany


Normalized concentration, dC/Ctotal/dlogDp (µm)Alveolar deposition fraction1000.200.18F<strong>in</strong>e particlesDp < 2.5 µm1.00.90.160.14Ultraf<strong>in</strong>e particlesDp < 100 nmPM10Dp < 10 µm0.80.70.120.100.080.06Fractional deposition of particleswith density of 1 g/µm0.60.50.40.30.040.020.00NucleimodeAccumulationmodeDiameter (µm)Coarsemode0.001 0.0100.100 1.000 10.0000.20.10.0Mass weight<strong>in</strong>gNumber weight<strong>in</strong>gAlveolar deposition fractionFigure 1:Typical diesel eng<strong>in</strong>e exhaust particle distribution by mass, number <strong>and</strong> alveolar deposition (Kittelson D. B. 2000)Nuclei mode particles, which can depose deep <strong>in</strong> thelungs, dom<strong>in</strong>ate the majority of particles but have onlylittle effect on the total mass. Epidemiological <strong>and</strong> toxicologicalstudies <strong>in</strong>dicated that adverse health effects <strong>from</strong>exposure to PM may <strong>in</strong>crease with decreas<strong>in</strong>g particle sizeeven if the particles consist of toxicologically <strong>in</strong>ert materials(Seaton A. et al. 1995, Donaldson K. et al. 2000). Ultraf<strong>in</strong>eparticles can penetrate the alveolus region, rest<strong>in</strong>gthere for months. Here the particles can cause allergic or<strong>in</strong>flammatory reactions lead<strong>in</strong>g to bronchitis <strong>and</strong> asthma(Mayer A. 2001). Therefore the determ<strong>in</strong>ation of the particlenumber distribution is just of the same importance asthe PM mass that is subject to regulation. Consequentially,the particle number is currently under discussion as futureregulated value for Euro 6 legislation.Beneath results on emissions this paper presents brieflytwo <strong>in</strong>struments for the determ<strong>in</strong>ation of particle numberconcentration <strong>in</strong> diesel exhaust gas as well as the sampl<strong>in</strong>gprocedure for PM. A scann<strong>in</strong>g mobility particle sizer(SMPS) detects particles based on their electrical mobility.SMPS enables the determ<strong>in</strong>ation of particles <strong>in</strong> thesize range between 10 to 300 nm. A low pressure impactor(ELPI) detects particles between 30 nm <strong>and</strong> 10 µm. Furthermore,the overall particulate mass (PM) can be determ<strong>in</strong>edgravimetrically.The presented particulate emissions data of a heavy-dutydiesel eng<strong>in</strong>e runn<strong>in</strong>g on four different fuels were obta<strong>in</strong>edbe apply<strong>in</strong>g all three measurement methods.Material <strong>and</strong> methodsTest Eng<strong>in</strong>eStudies were carried out at the emission test st<strong>and</strong> of theInstitute for Technology <strong>and</strong> Biosystems Eng<strong>in</strong>eer<strong>in</strong>g atthe Federal Agricultural Research Centre (FAL) <strong>in</strong> Braunschweig,Germany. A Mercedes-Benz eng<strong>in</strong>e OM 906 LA(Euro 3) with turbocharger <strong>and</strong> <strong>in</strong>tercooler was used. Theeng<strong>in</strong>e was equipped with a pump-l<strong>in</strong>e <strong>in</strong>jector system. Itwas operated without exhaust gas recirculation. Table 1presents some of the eng<strong>in</strong>e characteristics.


Y. Ruschel <strong>and</strong> J. Krahl et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 101Table 1:Technical data of the test eng<strong>in</strong>e Mercedes-Benz OM 906 LAPiston stroke130 mmBore of cyl<strong>in</strong>der102 mmNumber of cyl<strong>in</strong>ders 6Stroke volume 6370 cm 3Rated speed 2300 m<strong>in</strong> -1Rated power205 kWMaximum torque 1100 Nm at 1300 m<strong>in</strong> -1Compression ratio 17.4Load100%806040additional modesdeterm<strong>in</strong>ed bycertificationpersonnel2658%85%45%39%1010%1210%138%5%5%Exact eng<strong>in</strong>e load dur<strong>in</strong>g test cycles is guaranteedby crankshaft coupl<strong>in</strong>g to a Froude Cons<strong>in</strong>e eddy-currentbrake. Eng<strong>in</strong>e test runs were <strong>in</strong> accordance with the13-mode European Stationary Cycle (ESC), for which thepreset torque <strong>and</strong> revolution rates (related to maximumload at the actual speed or related to rated speed, respectively)as well as the time courses of eng<strong>in</strong>e torque <strong>and</strong>speed are displayed <strong>in</strong> subsequent figures 2 <strong>and</strong> 3.201 15%0Figure 2:Modes of the ESC test cycle4075%Eng<strong>in</strong>e speed910%115%60 80 % 1002500SpeedTorque2000Speed [1/m<strong>in</strong>], Torque [Nm]1500100050000 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30Time [m<strong>in</strong>]Figure 3:Exemplary courses of eng<strong>in</strong>e speed <strong>and</strong> torque for an ESC test cycle


102In previous <strong>in</strong>vestigations higher emissions of particles <strong>in</strong>the nuclei mode were detected for RME compared to otherfuels (Munack A. <strong>and</strong> Krahl J. 2005; Herbst L. et al. 2006;Ruschel Y. et al. 2006). Therefore, RME was compared totwo common diesel fuels <strong>and</strong> one artificial blend. The follow<strong>in</strong>gfour fuels were used for eng<strong>in</strong>e operation:DF: Reference diesel fuelRME: Rapeseed oil methyl esterB5Ult: 5 % RME + 95 % Aral Ultimate Diesel ®V-Power: Shell V-Power Diesel ®RME was provided by Carl Büttner M<strong>in</strong>eralöl-GmbH <strong>in</strong>Leer; DF <strong>from</strong> Haltermann Products BSL Olef<strong>in</strong>verbundGmbH <strong>in</strong> Hamburg. Aral Ultimate Diesel ® <strong>and</strong> Shell V-Power Diesel ® were obta<strong>in</strong>ed <strong>from</strong> public fill<strong>in</strong>g stations<strong>in</strong> Braunschweig.<strong>Particulate</strong> measurementThe emissions of particles were determ<strong>in</strong>ed by three differentways: The total mass of particulate emissions wasmeasured gravimetrically accord<strong>in</strong>g to the EU regulation(EU, 2005). Particle number <strong>and</strong> particle size distributionswere measured with ELPI <strong>and</strong> SMPS.<strong>Particulate</strong> MatterPM measurements were accomplished after partial flowdilution of raw exhaust gas <strong>in</strong> a dilution tunnel (figure 4),which cools down the exhaust gas to under 51.7 °C. A dilutionfactor of about 10 is applied for determ<strong>in</strong>ation. Dilutionfactors are calculated <strong>from</strong> separate record<strong>in</strong>gs of CO 2contents <strong>in</strong> exhaust gas, fresh air, <strong>and</strong> diluted exhaust gas.The particles are collected on a two stage filter. Particlemass was determ<strong>in</strong>ed gravimetrically after deposition toteflon-coated glass fibre filters (T60A20, Pallflex, diameter70 mm).The total volume (V SAM) that is led through the filter results<strong>from</strong> the requirement that the sampl<strong>in</strong>g time for eachtest<strong>in</strong>g phase must be at least four seconds per 0.01 weight<strong>in</strong>gfactor. This must also take place as late as possible <strong>and</strong>may not be concluded earlier than five seconds before theend of the phase. For sampl<strong>in</strong>g a mass flow controller is set<strong>in</strong> such a manner that it is <strong>in</strong> accordance with the <strong>in</strong>dividualweight<strong>in</strong>g factors of each mode of the ESC test. Each sampl<strong>in</strong>gtakes 60 seconds <strong>and</strong> ends three seconds before theend of the mode. In this time the dilution level is constantlymonitored <strong>and</strong> the exhaust gas sample volume can be correctedthrough a lengthen<strong>in</strong>g or shorten<strong>in</strong>g of sample timeif the dilution factor changes. At the end the weight<strong>in</strong>g factorthat results <strong>from</strong> the follow<strong>in</strong>g equation must be kept at± 7 % to the weight<strong>in</strong>g factor of the ESC-test.⋅∑ ( VEDF,i′′ ⋅ WFi)V SAM,i!i=VwithV SAM:V SAM,i:SAM⋅q⋅V′′iEDF,iWFTotal volume of samplesVolume of sample <strong>in</strong> mode iV ′ : Volume flow of exhaust gas <strong>in</strong> mode iEDF,WF i: Weight<strong>in</strong>g factor of mode iq i: Exhaust gas dilution factor <strong>in</strong> mode i.Weights of fresh <strong>and</strong> sampled filters were determ<strong>in</strong>ed toan accuracy of ± 1 µg by means of a microbalance M5P<strong>from</strong> Sartorius, always preceded by at least 24 hours ofiDiesel eng<strong>in</strong>eExhaust gasFractional sampl<strong>in</strong>gPartial flowdilution systemFilterAirFigure 4:Schematic diagram of the exhaust gas dilution tunnel


Y. Ruschel <strong>and</strong> J. Krahl et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 103condition<strong>in</strong>g <strong>in</strong> a climate chamber held at 25 °C <strong>and</strong> 45 %relative humidity.The particulate emission can then be calculated asMPT =VwithPT:M PF:V SAM:PF⋅SAM∑( VEDF,i′′ ⋅ WFi)i⋅∑( Pi⋅ WFi)iSpecific particulate emissionTotal mass on the particle filterTotal volume of samplesSheath air <strong>in</strong>takeImpactorKr-85bipolar chargerHigh-voltagepower supplyAerosol<strong>in</strong>takeV ′ EDF,: Volume flow of exhaust gas <strong>in</strong> mode iWF i: Weight<strong>in</strong>g factor of mode iP i: Power <strong>in</strong> mode i.Particle size <strong>and</strong> number distributionDeterm<strong>in</strong>ation of the particle size distribution is carriedout by sampl<strong>in</strong>g with a multi-hole probe at the end of theexhaust gas dilution tunnel us<strong>in</strong>g a scann<strong>in</strong>g mobility particlesizer (SMPS) system <strong>from</strong> TSI company. Secondarydilution is required to avoid an overload<strong>in</strong>g of the measurement<strong>in</strong>strument.The SMPS consists of a Kr-85 bipolar charger, an electrostaticclassifier, both placed <strong>in</strong> the differential mobilityanalyzer (DMA), <strong>and</strong> a condensation particle counter(CPC). Before the sample aerosol flows through the DMA,particles larger 300 nm are removed by an impactor whichis located <strong>in</strong> front of the DMA. The polydisperse aerosol isfirst led to a Boltzmann charge distribution by beta emission<strong>from</strong> the 85 Kr source (Liu B. Y. H. <strong>and</strong> Pui D. Y. H.1974; Wiedensohler A. 1988). After pass<strong>in</strong>g the charger theaerosol is conducted <strong>in</strong>to the electrostatic classifier. Figure5 shows a general scheme of the DMA.The electrostatic classifier consists of two concentric cyl<strong>in</strong>ders.The outer cyl<strong>in</strong>der is grounded. Between the cyl<strong>in</strong>dersflows a sheath gas of filtered air. The charged sampleaerosol is <strong>in</strong>troduced along the <strong>in</strong>ner wall of the outer electrode.The positively charged particles are accelerated towardthe <strong>in</strong>ner electrode by the electric field. As a result ofthe deflection the positively charged particles are draggedthrough the sheath air. Consequently, they quickly reach aterm<strong>in</strong>al radial velocity that depends on the electrical mobilityof the particles, that is <strong>in</strong>dependent of mass <strong>and</strong> density(Willeke K. <strong>and</strong> Baron P. A. 1993, Maricq M. M. et al.2000, H<strong>in</strong>ds W. A. 1989). Depend<strong>in</strong>g on the voltage appliedacross the cyl<strong>in</strong>ders, only particles with<strong>in</strong> a narrow range ofelectrical mobility, <strong>and</strong> therefore diameter, can pass throughthe exit aperture of the classifier (Knutson E. O. <strong>and</strong> WhitbyK. T. 1975, Maricq M. et al. 2000). Afterwards the monodisperseaerosol is detected <strong>in</strong> the CPC (figure 6).Figure 5:MonodisperseaerosolSchematic of the differential mobility analyser (DMA)Because particles of diesel exhaust gas are to small fordirect optical detection methods they are first enlarged<strong>in</strong>side the CPC. This is achieved by surface condensationof supersaturated n-butyl alcohol, such that they <strong>in</strong>creasequickly <strong>in</strong> size (up to about 10 µm). The enlarged particlesare counted us<strong>in</strong>g laser diode light. The measurement signalused for count<strong>in</strong>g is the scattered light of the s<strong>in</strong>gleparticle (Mayer A. 2001, ACEA 2002).As alternative to the SMPS technique, the F<strong>in</strong>nish companyDecati Ltd. offers an electrical low pressure impactor(ELPI). For the determ<strong>in</strong>ation of the particle size distributionsamples are taken with a multi-hole probe at the end ofthe exhaust gas dilution tunnel.The pr<strong>in</strong>cipal components of the ELPI <strong>in</strong>clude a coronadischarge, a Berner low pressure impactor, <strong>and</strong> a series ofelectrometers. The general scheme of the ELPI is shown<strong>in</strong> figure 7.


104Exhaust outletCritical orifice flow controlPhoto detectorLaser diodeElectrical pulsesCondensatorAerosol <strong>in</strong>let1.0 l/m<strong>in</strong>Heated saturatorThermoelectricheat pumpNatural convectionheat sunkFigure 6:Alcohol reservoirSchematic of the condensation particle counter (CPC)SampleCoronachargerImpactorVacuumpumpFlush pump <strong>and</strong> filterHV <strong>and</strong> power sourceElectrometers<strong>and</strong> A/DPressuresensorInternalPCExternal PCor laptop(External<strong>in</strong>/out)Controls<strong>and</strong>LCD displayAfter be<strong>in</strong>g charged the aerosol passes through a thirteenstagecascade impactor, where the particles are separated <strong>in</strong>accordance to their aerodynamic diameter. The thirteenthstage removes particles larger than 10 µm. Each of thetwelve lower stages is connected to an electrometer thatmeasures the current deposited <strong>from</strong> particle impaction.The charge on each stage, result<strong>in</strong>g <strong>from</strong> particle impaction,is proportional to the number of impacted particles.With a dynamic response of 1 second, the ELPI is able tofollow a transient driv<strong>in</strong>g cycle (Mayer A. 2001, ACEA,2002).ResultsPMFigure 7:Schematic of the electrical low pressure impactor (ELPI)The diode type corona discharge provides unipolar charg<strong>in</strong>gof the particles <strong>in</strong> the sample aerosol. It is coupled witha trap, which has the function to remove ions <strong>and</strong> small(< 20 nm) particles that can otherwise produce extraneouscurrents at the electrometers. The amount of charge acceptedby the particles <strong>in</strong>creases with their mobility diameters.PM emissions of the tested fuels are presented <strong>in</strong> figure 8.The EURO 3 limit of 0.1 g/kWh was met by all four fuels.The lowest emissions were obta<strong>in</strong>ed for RME. The highestemissions were determ<strong>in</strong>ed for DF. The emissions of thetwo fuels B5Ult <strong>and</strong> V-Power lay between RME <strong>and</strong> DF.The value for B5Ult was lower than for V-Power. By useof RME it was possible to obta<strong>in</strong> reductions <strong>in</strong> the particleemissions versus DF.


Y. Ruschel <strong>and</strong> J. Krahl et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 1050.120.10EURO III limit: 0.1 g/kWhSpecific PM emissions [g/kWh]0.080.060.040.020.00DFRMEV-PowerB5UltFigure 8:Specific PM emissions (OM 906 LA, ESC test)ELPIThe ELPI results are presented <strong>in</strong> figure 9.Specific particle number [1/kWh]10 161.E+161.E+1510 151.E+1410 141.E+1310 131.E+1210 121.E+1110 111.E+1010 101.E+0910 91.E+08 10 8DFRMEV-PowerB5Ult28-5555-9494-156156-264264-386386-619619-957Figure 9:Aerodynamic diameter [nm]Specific particle number distribution <strong>in</strong> the exhaust gas (ELPI, OM 906 LA, ESC test)


106RME showed the lowest emissions compared with theother fuels. The other three fuels exhibited a similar emissiontendency among themselves over the entire size range.Up to impactor stage that classifies particles with diameters<strong>from</strong> 156 to 264 nm hardly no differences betweenV-Power, B5Ult <strong>and</strong> DF where observed; with exceptionof the size range <strong>from</strong> 28 to 55 nm, <strong>in</strong> which B5Ult showed<strong>in</strong>creas<strong>in</strong>g emissions. As for larger particles the emissionsof V-Power <strong>and</strong> B5Ult were slightly higher versus DF.Start<strong>in</strong>g <strong>from</strong> the size class range <strong>from</strong> 156 to 264 nm thehighest emissions were detected for V-Power comparedwith the rema<strong>in</strong><strong>in</strong>g fuels. In detail, B5Ult showed similaremissions as DF. Advantages concern<strong>in</strong>g the emissions ofparticles where observed for RME.SMPSRME demonstrated great potential to obta<strong>in</strong> a reduction<strong>in</strong> particle emission.The determ<strong>in</strong>ation of the particle size distribution withSMPS shows a bimodal size distribution (figure 1 <strong>and</strong> 10).In detail, the particle size distribution determ<strong>in</strong>ed by theSMPS was slightly shifted to smaller values, such that themaximum of the nuclei mode was below 10 nm.However, <strong>in</strong> <strong>in</strong>dividual modes different distributionswere detected. At idle a high emission of ultraf<strong>in</strong>e particleswas measured (figure 11). At rated power the accumulationmode predom<strong>in</strong>ates. In the range of the accumulationmode the highest particle number emissions were found(figure 12). This leads to the result that – accumulated overthe entire ESC test – a bimodal particle size distribution isobserved.Analogically to ELPI <strong>and</strong> PM results, RME led as wellto the lowest particulate emissions, when SMPS is used,figure 10.10 151E+15Specific particle number [1/kWh]1E+1410 141E+1310 13DFRMEV-PowerB5Ult10 121E+12Figure 10:10 100 1000Electrical mobility diameter [nm]Specific particle number distribution <strong>in</strong> exhaust gas (SMPS, OM 906 LA, ESC test)Besides RME, all diesel fuels showed comparable emissions.However, the particulate emission of reference dieselfuel was slightly <strong>in</strong>creased <strong>in</strong> comparison with V-Power<strong>and</strong> B5Ult.


Y. Ruschel <strong>and</strong> J. Krahl et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 10710 16Specific particle number [1/kWh]10 1510 1410 13Figure 11:10 1210 100 1000Electrical mobility diameter [nm]Specific particle number distribution at idle (SMPS, OM 906 LA, RME)10 16Specific particle number [1/kWh]10 1510 1410 1310 1210 100 1000Electrical mobility diameter [nm]Figure 12:Specific particle number distribution at rated power (SMPS, OM 906 LA, RME)


108Influence of the dilution conditions on the particle sizedistribution – Temperature effectsThe <strong>in</strong>fluence of the dilution temperature on the particlesize distribution was <strong>in</strong>vestigated at the example ofRME. Each measurement was fourfold repeated <strong>in</strong> mode 9(1800 m<strong>in</strong> -1 ; 265 Nm) of the ESC test. This test mode wasselected, s<strong>in</strong>ce <strong>in</strong> this mode both the nuclei mode <strong>and</strong> theaccumulation mode are present <strong>and</strong> therefore the <strong>in</strong>fluenceof the temperature on both ranges was expected to be observablequite well.The <strong>in</strong>fluences of the temperature on the particle size distributionare shown <strong>in</strong> figure 13.In the temperature range <strong>from</strong> 20 to 60 °C no differencescould be observed. The distribution was dom<strong>in</strong>ated by particleswith<strong>in</strong> the range of 10 nm to 30 nm. With an <strong>in</strong>creaseof the temperature up to 80 °C a decrease <strong>in</strong> number of nucleiparticles to one tenth was observed. In the temperaturerange <strong>from</strong> 80 to 250 °C the number of particles rema<strong>in</strong>edalmost constant. At a temperature of 300 °C an <strong>in</strong>creaseof particles with a maximum at 17 nm was observed. The<strong>in</strong>fluence of the temperatures on the particle number with<strong>in</strong>the size range <strong>from</strong> 10 to 20 nm has strong effects alreadyat 80 °C. This suggests that particles <strong>in</strong> this size range mayconsist ma<strong>in</strong>ly of volatile substances. This result is supportedby additional <strong>in</strong>vestigations of the particle composition.For RME a high quota of soluble organic fraction(SOF) <strong>and</strong> only a small amount of <strong>in</strong>soluble fraction (ISF)was found; data not shown. It can be assumed that particleswith<strong>in</strong> the range of 10 to 40 nm, which were measured afterthe hot dilution at temperatures greater than 80 °C, arema<strong>in</strong>ly soot, metallic ash or heavy hydrocarbons (MontajirR. M. et al. 2006).10 720°CParticle number [1/cm³]10 610 510 440°C60°C80°C100°C120°C150°C200°C250°C300°C10 310 100 1000Electrical mobility diameter [nm]Figure 13:Particle number distribution at mode 9 (SMPS, OM 906 LA, RME)SummaryThree methods for particle measurement were <strong>in</strong>troduced,such as the legal method for PM emissions <strong>and</strong> two techniquesto detect particle size (ELPI) <strong>and</strong> particle numberdistributions (SMPS).Us<strong>in</strong>g these methods diesel eng<strong>in</strong>e emissions of a Euro 3heavy-duty eng<strong>in</strong>e were analysed <strong>and</strong> compared for rapeseedoil methyl ester (RME), reference diesel fuel (DF) <strong>and</strong>the premium diesel fuels Shell V-Power Diesel ® <strong>and</strong> AralUltimate Diesel ® . The latter was blended with 5 % RME(B5Ult).Previous <strong>in</strong>vestigations showed higher numbers of particles<strong>in</strong> the nuclei mode for RME versus DF. Therefore


Y. Ruschel <strong>and</strong> J. Krahl et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 109more detailed <strong>in</strong>formation had to be obta<strong>in</strong>ed to whatextent RME <strong>in</strong>duces the formation of ultraf<strong>in</strong>e particles,which are considered as harmful to human health.In course of the actual <strong>in</strong>vestigations it could be demonstratedthat these nuclei particles did not ma<strong>in</strong>ly consist ofsoot, but most probably of unburned fuel. It was shownthat the sampl<strong>in</strong>g conditions – especially the temperature<strong>in</strong> the dilution tunnel – had a significant effect on the detectedparticle size <strong>and</strong> number distributions. Particularlyultraf<strong>in</strong>e particles <strong>in</strong> the nuclei mode <strong>from</strong> 10 to 40 nmdecreased when the temperature rose over 80 °C.RME led to reductions of particle number emissions versusall other fuels, whereas the fossil based diesel fuels DF,B5Ult <strong>and</strong> V-Power did not vary significantly among eachother.Regard<strong>in</strong>g particulate <strong>matter</strong> emissions (PM) a reductionby factor two was detected for RME versus DF.In the result <strong>and</strong> at the example of the test eng<strong>in</strong>e it canbe concluded that RME does not lead to higher ultraf<strong>in</strong>eparticle emissions than DF, B5Ult <strong>and</strong> V-Power.AcknowledgmentsThis research was funded by the Agency for RenewableRessources, Gülzow (Fachagentur Nachwachsende Rohstoffee. V., FNR), the Association of German Biofuel Industry,Berl<strong>in</strong> (Verb<strong>and</strong> der Deutschen Biokraftstoff<strong>in</strong>dustriee. V., VDB), <strong>and</strong> the Union for the Promotion of Oil<strong>and</strong> Prote<strong>in</strong> Plants, Berl<strong>in</strong> (Union zur Förderung <strong>von</strong> OelundProte<strong>in</strong>pflanzen e.V., UFOP). The authors want to expresstheir appreciation for this support of their work.ReferencesAssociastion des Constructeurs Européens d’Automobiles (2002).ACEA programme on emissions of f<strong>in</strong>e particles <strong>from</strong> passenger cars[2]. Report July 2002Code of Federal Regulations Title 40: Protection of Environment;Chapter I: Environmental Protection Agency, Part 86: “Control of AirPollution <strong>from</strong> New Motor Vehicles <strong>and</strong> New Motor Vehicle Eng<strong>in</strong>es:Certification <strong>and</strong> Test Procedures.” Federal Register, US GovernmentPr<strong>in</strong>t<strong>in</strong>g Office.Donaldson K., Stone V., Gilmour P. S., Brown D. M., MacNee W.(2000). Ultraf<strong>in</strong>e particles: mechanisms of lung <strong>in</strong>jury. Phil. Trans. R.Soc. Lond. A 358, pp 2741-2749Environmental Protection Agency (1998). Health assessment documentfor diesel emissions: SAB Review draft. EPA/8-90/057C. Office of Research<strong>and</strong> Development, Wash<strong>in</strong>gton, DC, USAEuropean Union (1999). Commission Directive 1999/30/EC of 22 April1999, Official Journal of the European UnionEuropean Union (2005). Commission Directive 2005/78/EC of 14 November2005, Official Journal of the European UnionHerbst L., Kaufmann A., Ruschel Y., Schröder O., Krahl J., BüngerJ., Munack A. (2006). Comparison of Shell middle destillate, premiumdiesel fuel <strong>and</strong> fossil Diesel fuel with rapeseed oil methyl ester.F<strong>in</strong>al reportH<strong>in</strong>ds W. C. (1989). Aerosol technology - properties, behavior, <strong>and</strong>measurement of airborne particles. Wiley Interscience, New York, JohnWiley & SonsKittelson D. B., Watts W. F., Johnson J. P. (2003). On-road particlemeasurements, International conference on Euro V, 10-11 December2003, Milano, Italy [onl<strong>in</strong>e] http://ies.jrc.cec.eu.<strong>in</strong>t/Units/eh/events/EURO5/ PROCEEDINGS/Session%20II%20Presentations/On%20road%20particles-Kittelson.pdf [quoted at 11.07.2007]Knutson E. O., Whitby K. T. (1975). Aerosol classification by electricmobility: apparatus, theory, <strong>and</strong> applications. J. Aerosol Sci. 6, pp 443-451Liu B. Y. H., Pui D. Y. H. (1974). Equilibrium bipolar charge distributionof aerosols. J. Colloid Interface Sci 49, pp 305-312Mayer A. (2001). Particles. [onl<strong>in</strong>e]. http://www.akpf.org/pub/particle_glossary_2001_10.pdf [quoted at 18.05.2006]Maricq M. M., Podsiadlik D. H., Chase R. E. (2000). Size distributionof motor vehicle exhaust PM: A comparison between ELPI <strong>and</strong> SMPSmeasurements. J. Aerosol Sci. 33, pp 239-260Montajir R. M., Kawai T., Goto Y., Odaka M. (2006). Potential of thermalcondition<strong>in</strong>g of exhaust gas for stable diesel nano-particle measurement.[outl<strong>in</strong>e] [quoted at 22.03.2006]Munack A., Krahl J. (2005). Beitrag <strong>von</strong> Biokraftstoffen zur Fe<strong>in</strong>staubemissionim Vergleich zu fossilem Dieselkraftstoff. BBE/UFOPKongress „Kraftstoffe der Zukunft 2005“Ruschel Y., Schwarz S., Bünger J., Krahl J., Munack A. (2006). Bestimmungder Emissionen und der Partikelgrößenverteilung (Fe<strong>in</strong>staub)im Abgas e<strong>in</strong>es modernen Euro-4-Nutzfahrzeugmotors mit SCR-Abgasre<strong>in</strong>igungim Betrieb mit Biodiesel. F<strong>in</strong>al reportSeaton A., MacNee W., Donaldson K. Godden D. (1995). <strong>Particulate</strong> airpollution <strong>and</strong> acute health effects. Lancet 345 (8943), pp. 176 – 178Wachter F., Cartellieri W. P. (1987). Wege zukünftiger Emissionsgrenzwertebei LKW-Dieselmotoren. 8. Int. Wiener Motorensymposium1987, VDI-Bericht Nr. 86, 206 - 239, VDI-Verlag DüsseldorfWiedensohler A. (1988). An approximation of the bipolar charge distributionfor particles <strong>in</strong> the submicron size range. J. Aerosol Sci. 19, pp387-389Willeke K., Baron P. A. (1993). Aerosol Measurement - Pr<strong>in</strong>ciples, Techniques,<strong>and</strong> Applications. Wiley Interscience, New York, John Wiley& Sons


110


J. Hartung et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 111Composition of dust <strong>and</strong> effects on animalsJ. Hartung 1 <strong>and</strong> M. Saleh 1Abstract<strong>Particulate</strong>s <strong>in</strong> the air of animal houses orig<strong>in</strong>ate <strong>from</strong>the feed, the litter, the manure <strong>and</strong> the animals themselves.They consist ma<strong>in</strong>ly of dusts <strong>and</strong> microorganisms. Thedust conta<strong>in</strong>s high amounts of prote<strong>in</strong>s <strong>and</strong> carries gases,odours, microorganisms, <strong>and</strong> endotox<strong>in</strong>s. About 85 % ofits mass consists of organic material. There are clear differences<strong>in</strong> the composition of dust orig<strong>in</strong>at<strong>in</strong>g <strong>from</strong> typesof animals <strong>and</strong> different hous<strong>in</strong>g systems. The behaviourof the particulates can be characterized by the processes offormation (condensation, sublimation, <strong>and</strong> dispersion) <strong>and</strong>decay (sedimentation, diffusion, <strong>and</strong> <strong>in</strong>halation). The effectof dust <strong>and</strong> airborne microorganisms on the health of man<strong>and</strong> animals cannot be strictly separated because both formthe particles that are <strong>in</strong>haled. The role of compounds likeendotox<strong>in</strong>s <strong>and</strong> drug residues (e.g. antibiotics) which canbe found <strong>in</strong> animal house dust <strong>in</strong> relatively large amountsis not yet sufficiently clear. The aerodynamic diameter ofthe particles determ<strong>in</strong>es how deeply they can penetrate <strong>in</strong>tothe respiratory tract. Dust <strong>in</strong> the air of livestock build<strong>in</strong>gscan present a significant burden to the respiratory tract ofhumans <strong>and</strong> animals <strong>and</strong> must be considered <strong>in</strong> the contextof some typical respiratory disease patterns. Their impactcan be described as mechanical, chemical, <strong>in</strong>fectious, immunosuppressive,allergic, <strong>and</strong> toxic. Although there isdist<strong>in</strong>ct evidence that high dust levels <strong>in</strong> pig houses reduceproduction significantly, dust reduction measures are notyet common. It seems necessary to establish scientificallybased maximum levels for dust <strong>in</strong> livestock houses. Thiswould benefit both animals <strong>and</strong> farmers. For the developmentof an <strong>in</strong>fectious disease the presence of the respective<strong>in</strong>fectious agent seems to be necessary. Measures to reducedust formation <strong>and</strong> <strong>in</strong>crease hygiene <strong>in</strong> the animal houseshould be given more susta<strong>in</strong>ed application <strong>in</strong> practice.This would be <strong>in</strong> the <strong>in</strong>terests of workers, of animal welfare,<strong>and</strong> of the wider environment. The role of airborneparticulates <strong>in</strong> livestock production needs close further scientificattention.Keywords: dust, composition, livestock, poultry, bio-aerosol,micro-organisms, endotox<strong>in</strong>, animal healthIntroductionThere are numerous reports about dust concentrations <strong>in</strong>animal house air (Takai H. et al. 1998, Hartung J. 1997,Saleh M. 2006). Less <strong>in</strong>formation is available on the compositionof this dust. Because of the complex nature of animalhouse dust the term bio-aerosol was <strong>in</strong>troduced (HirstJ. M. 1995, Seedorf J. <strong>and</strong> Hartung J. 2002). Bioaerosolsare composed of viable <strong>and</strong> nonviable particles whichmay carry gases <strong>and</strong> which rema<strong>in</strong> suspended <strong>in</strong> the airfor longer periods because of their m<strong>in</strong>ute dimensions ofbetween 10 -4 <strong>and</strong> approximately 10 2 µm. They are widelyconsidered to be pr<strong>in</strong>cipal risk factors for respiratory diseases(Clark S. et al. 1983; Donham K. et al. 1986; BruceJ. M. <strong>and</strong> Sommer M. 1987). The particulates <strong>in</strong> animalhouses air orig<strong>in</strong>ate <strong>from</strong> the feed, the litter, the manure<strong>and</strong> the animals themselves. These sources determ<strong>in</strong>e alsothe composition of the dust. Dust particles <strong>and</strong> micro-organismsusually occur together <strong>in</strong> an airborne state <strong>and</strong>may therefore be considered generally as particles. Theycan comb<strong>in</strong>e chemically with gases emitted <strong>in</strong>to the air <strong>and</strong>also act as a carrier of odours (Hartung J. 1986). However,<strong>in</strong> spite of this evidence no generally accepted maximumallowable concentrations of aerosols, particles or microorganisms<strong>in</strong> conf<strong>in</strong>ed animal houses are def<strong>in</strong>ed, because theeffects of airborne particles on the health <strong>and</strong> performanceof livestock are still <strong>in</strong>conclusive (Perk<strong>in</strong>s S. <strong>and</strong> MorrisonW. D. 1991). One reason for this deficiency may be thecomplexity of husb<strong>and</strong>ry <strong>and</strong> management factors. These<strong>in</strong>clude: unsuitable air temperatures; air humidities <strong>and</strong> airmovements; high stock<strong>in</strong>g densities; low ventilation <strong>in</strong>tensity;<strong>and</strong> <strong>in</strong>adequate clean<strong>in</strong>g of litter <strong>and</strong> floors (De BoerS. <strong>and</strong> Morrison W. D. 1988; Perk<strong>in</strong>s S. <strong>and</strong> Morrison W.D. 1991). These factors can <strong>in</strong>fluence the formation, decay,amount, <strong>and</strong> composition of the airborne particles.This paper will give an outl<strong>in</strong>e of the composition of dust<strong>in</strong> livestock build<strong>in</strong>gs, cattle, pig, turkey, ducks <strong>and</strong> lay<strong>in</strong>ghens. The potential effects on health <strong>and</strong> production offarm animals will also be considered.Aerosols, particles <strong>and</strong> dustSeveral relevant terms are used to describe the particulatessuspended <strong>in</strong> air. `Aerosols’ are solid or liquid particleswhich rema<strong>in</strong> suspended <strong>in</strong> the air for longer periodsbecause of their m<strong>in</strong>ute dimensions of between 10 -4 <strong>and</strong>1Insttute nstitute for Anmal Animal Hygene, Hygiene, Anmal Animal Welfare <strong>and</strong> Behavour Behaviour of Farm Anmals, Animals, Unversty University of Veternary Veter<strong>in</strong>ary Medcne Medic<strong>in</strong>e Hannover, Hannover, Germany


112approximately 10 2 µm. They can comb<strong>in</strong>e chemically withgases emitted <strong>in</strong>to the air <strong>and</strong> these new compounds are<strong>in</strong>haled by liv<strong>in</strong>g organisms or can settle on them (StraubelH. 1981).`Airborne particulates’ can <strong>in</strong>clude both solid <strong>and</strong> liquidparticles. `Viable particles’ are liv<strong>in</strong>g microorganisms orany solid or liquid particles which have liv<strong>in</strong>g microorganismsassociated with them (Carpenter G. A. et al. 1986).`Dusts’ are dispersed particles of solid <strong>matter</strong> <strong>in</strong> gases,which arise dur<strong>in</strong>g mechanical processes or have beenstirred up. They belong to the aerosols together with smoke<strong>and</strong> fog (Henschler D. 1990). Dust may cover a wide rangeof sizes <strong>and</strong> can be airborne or settled (De Boer S. <strong>and</strong>Morrison W. D. 1988). It must be seen as a significant atmosphericcontam<strong>in</strong>ant <strong>and</strong> should no longer be perceivedas a mere nuisance (Honey L. F. <strong>and</strong> McQuitty J. B. 1976).The ma<strong>in</strong> aerial pollutants <strong>in</strong> animal houses are derived<strong>from</strong> similar sources. Gases are predom<strong>in</strong>antly produceddirectly by animals <strong>and</strong> <strong>from</strong> their faeces. Microorganismsare released <strong>from</strong> animals, feed <strong>and</strong> litter. Dust particlesmay orig<strong>in</strong>ate <strong>from</strong> feed (80 to 90 %), litter (55 to68 %) , animal surfaces (2 to 12 %), faeces (2 to 8 % <strong>and</strong>,to a lesser extent, <strong>from</strong> friction aga<strong>in</strong>st floors, walls, <strong>and</strong>other structural elements <strong>in</strong> the house (Hartung J. 1986).A small amount of dust also comes <strong>from</strong> the air <strong>in</strong>take <strong>in</strong>tothe house (Dawson J. R. 1990). A compound which is regularlyfound <strong>in</strong> dust samples <strong>from</strong> all animal houses is endotox<strong>in</strong>.In addition, dust particles can carry residues of drugapplications <strong>in</strong> an animal house.Endotox<strong>in</strong>s <strong>in</strong> sedimentation dustDust samples were taken by the help of st<strong>and</strong>ardized sedimentationplates <strong>in</strong> various animal houses with differentspecies. The results are summarized <strong>in</strong> Table 1.Table 1:Mean, m<strong>in</strong>/max values <strong>and</strong> st<strong>and</strong>ard deviation (s) of endotox<strong>in</strong> concentrations (EU/g) <strong>in</strong> sedimentation dust <strong>from</strong> animal houses of different species. Cattlea = with straw, cattle b = without strawBroiler VOL AKA AKB Turkey Ducks Pig Cattle a Cattle bn 8 8 9 9 9 3 10 3 3Mean (EU/g) 736 1169 1316 1628 1612 855 1143 669 447s 360 341 535 753 1128 84 809 471 334Maximum (EU/g) 1178 1740 2240 3295 4131 946 2624 1196 796M<strong>in</strong>imum (EU/g) 376 522 518 942 339 782 480 289 131n*= Number of monthly samples. Vol = aviary. AKA = furnished cage type Aviplus. AKB = furnished cage type Eurovent.The measurement of dust concentrations should thereforebe correlated to response. This requires that particle separation,accord<strong>in</strong>g to aerodynamic diameter, reflects thedeposition pattern of the particles <strong>in</strong> the respiratory cycle.This can be described <strong>in</strong> terms of dust fractions pass<strong>in</strong>gsize-selectors <strong>in</strong> a model filter system, which can be adoptedfor practical measur<strong>in</strong>g procedures. Each filter of theseries size-selects the particles accord<strong>in</strong>g to aerodynamicdiameter <strong>in</strong>to a transmitted portion <strong>and</strong> a reta<strong>in</strong>ed portion.The respective dust fractions can be described as nosepharynx-larynxdust, tracheobronchial dust <strong>and</strong> alveolardust (Henschler D. 1990). Additionally, the nature of theparticles <strong>and</strong> the compounds which they are carry<strong>in</strong>g determ<strong>in</strong>ethe health effects.Orig<strong>in</strong> <strong>and</strong> composition of animal house dustThe highest s<strong>in</strong>gle concentration was found with 4131 x10³ EU/g <strong>in</strong> the dust <strong>from</strong> a turkey barn. Tak<strong>in</strong>g the arithmeticmean, the highest concentrations were found <strong>in</strong> AKB(1.6 mio EU/g) followed by turkey, AKA, VOL <strong>and</strong> pig.The concentrations of endotox<strong>in</strong> <strong>in</strong> the dust of broiler <strong>and</strong>duck barns were about 50 % lower. The lowest concentrationswere found <strong>in</strong> the cattle house without straw. The relativehigh endotox<strong>in</strong> concentrations <strong>in</strong> the dust <strong>from</strong> AKA<strong>and</strong> AKB may have been <strong>in</strong>fluenced by the position of thesedimentation plates which were placed <strong>in</strong> these systemson the level of the manure belts.Material composition of the dustFrom an earlier <strong>in</strong>vestigation of the composition of sedimentationdust <strong>from</strong> a piggery <strong>and</strong> a poultry house, it isknown that up to 85 % of the dust consists of organic <strong>matter</strong>.Table 2 shows the results. The crude prote<strong>in</strong> content ofthe dust is noticeably higher than that of the feed. This <strong>in</strong>dicatesthat the animal makes a considerable contribution tothe formation of dust. Dust <strong>from</strong> poultry hous<strong>in</strong>g appears


J. Hartung et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 113to be particularly rich <strong>in</strong> prote<strong>in</strong>. Dust <strong>from</strong> stables wasfound to conta<strong>in</strong> over 26 % prote<strong>in</strong> (Zeitler M. 1988).In a recent study (Saleh M. 2006) the prote<strong>in</strong> content <strong>in</strong>the dust <strong>from</strong> pig <strong>and</strong> poultry build<strong>in</strong>gs was even higher.Table 3 summarizes the results of the analysis of the dustaccord<strong>in</strong>g to prote<strong>in</strong>, fat, fiber, nitrogen free components<strong>and</strong> ash.Table 2:Composition (%) of feed <strong>and</strong> deposited dust <strong>from</strong> a piggery <strong>and</strong> <strong>from</strong> apoultry house (after Hartung J. 1983; Aengst C. 1984)Pig house Pig house Poultry houseComponent Deposited dust Feed Deposited dustDry <strong>matter</strong> 78 88 89Crude prote<strong>in</strong> 24 19 50Crude fat 4 4 10Crude fibre 3 5 -Crude ash 15 5 -The dust <strong>from</strong> poultry houses conta<strong>in</strong>s the highest amountsof prote<strong>in</strong>. This is caused firstly by the relatively high prote<strong>in</strong>content <strong>in</strong> the feed which is usually between 20 <strong>and</strong>25 % (Kamphues J. et al. 2004). The other proportion ofup to 45 % comes probably <strong>from</strong> feathers <strong>and</strong> claw abrasion.Also <strong>in</strong> the pig house dust a percentage of about 20 %seems to come <strong>from</strong> the sk<strong>in</strong> <strong>and</strong> the hairs of the animals.The relatively high amounts of fat <strong>in</strong> the dust <strong>from</strong> the duckhouse can be expla<strong>in</strong>ed by the behaviour of the duck to usea self produced fatty substance for preen<strong>in</strong>g <strong>and</strong> protect<strong>in</strong>gthe feathers. The high fiber content <strong>in</strong> the turkey house dustmay have been <strong>in</strong>flunced by the hay baskets which wereoffered to the turkeys as a mean to prevent feather peck<strong>in</strong>g<strong>and</strong> cannibalism.Amounts of microorganisms <strong>in</strong> dustAnimal house dust is an important carrier of bacteria <strong>and</strong>fungi. Table 4 gives an overview of the amounts of totalbacteria count, E. coli, staphylococci, streptococci <strong>and</strong>Table 3:Mean (a) <strong>and</strong> st<strong>and</strong>ard deviation (s) of dust analysis <strong>from</strong> different animal houses <strong>in</strong> percent (%) of dust mass. T.S = dry <strong>matter</strong>. R.A = crude ash. R.P. = crudeprote<strong>in</strong>. R.Fa. = crude fiber. N.F.E. = nitrogen free substancesT.S. % R.A. % R.P. % R.F. % R. Fa. % N.F.E. %Broiler a 90.8 9.0 70.6 3.8 4.7 2.6 N = 8s 0.8 1.4 3.7 0.5 2.5 2.3Aviary a 88.8 13.0 62.3 3.6 6.2 3.6 N = 11s 1.3 1.5 7.7 1.9 3.7 5.0Furnished cage a 90.1 11.7 63.9 6.4 3.7 4.3 N = 11s 0.6 1.5 4.6 1.5 2.0 3.2Ducks a 89.4 8.6 58.6 8.4 3.1 10.6 N = 6s 2.3 1.2 3.8 0.8 1.7 2.8Turkeys a 89.8 9.0 53.8 3.4 11.2 12.4 N = 11s 1.6 1.9 6.0 1.0 4.4 5.0Pigs a 90.2 14.5 38.4 3.6 1.3 32.5 N = 13s 1.0 1.2 2.9 0.9 0.7 3.6Cattle a 85.8 18.8 29.7 6.6 6.6 24.1 N = 6S 5,4 3.8 4.3 1.7 1.7 3.1All dust samples conta<strong>in</strong> relatively little water. In poultry<strong>and</strong> pig dust the dry <strong>matter</strong> content reaches about 90 %.The dust <strong>from</strong> the cattle barn showed a humidity of about15 %. This value is slightly above the threshold of bacterialgrowth which is around 14 % moisture <strong>in</strong> dry meal feed(Kamphues J. et al. 2004). The relative high content of ash<strong>in</strong> the dust <strong>from</strong> the cattle house is probably due to s<strong>and</strong>yfeedstuff. The very low values <strong>in</strong> the moskovy duck houseare probably caused by the plastic floor<strong>in</strong>g.fungi <strong>in</strong> the sedimentation dust <strong>from</strong> animal houses of 6different species.The highest concentrations are observed <strong>in</strong> broiler barnsfollowed by duck, turkey, lay<strong>in</strong>g hen, pig <strong>and</strong> cattle. Thisreflects the common experience that the highest concentrationsof micro-organisms are found <strong>in</strong> poultry houses.There are clear differences between keep<strong>in</strong>g systems of onespecies. In the aviary (VOL) dist<strong>in</strong>ctly higher amounts ofbacteria were found compared to furnished cage systems.


114Table 4:Mean concentrations (a) of typical micro-organisms <strong>in</strong> sedimentation dust <strong>from</strong> animal houses of different species. St<strong>and</strong>ard devaton deviation (s)Total countcfu/gx 10 6E. colicfu/gx 10 3Staph.cfu/gx 10 6Strep.cfu/gx 10 6fungicfu/gx 10 5Lay<strong>in</strong>g hensAviaryas17411146572911686765446Lay<strong>in</strong>g hensAviplus (AKA)as2008239835212455831212Lay<strong>in</strong>g hensEurovent (AKB)as40826849937334222812245Broileras77723990285177632629332224289129Turkeysas35541938181313042915186693317153Cattle aas91.479.91651.61497.064.759.91.30.66.352.0Cattle bas85.78.1157410963.01.60.90.55.78.0Moscovy duckas578236441291501764195622419336Pigas884490962617151024The dust <strong>from</strong> livestock build<strong>in</strong>gs conta<strong>in</strong>s a variety offurther compounds which are potentially hazardous agents(Donham K. J. 1989). Dust also conta<strong>in</strong>s potentially allergicagents, <strong>in</strong>fectious microorganisms, enzymes, <strong>and</strong> toxicgases. One gram of piggery dust can absorb about 1 mg ofgases such as fatty acids <strong>and</strong> phenols (Hartung J. 1985).Further compounds which are associated with animalhouse dust are drugs. In a recent study Hamscher G. et al.(2003) were able to show that pig house dust has an excellent“memory” for all types of antibiotics. Up to 12 mg/kgdust of antibiotic residues were analyzed. It was possible toidentify different classes of antibiotics <strong>in</strong> the dust even 15years after its application.Effect of airborne particlesThe effects of the particles <strong>in</strong> livestock build<strong>in</strong>gs on human<strong>and</strong> animal health cannot simply be attributed to dustlevels or the concentration of microorganisms. Effects onhealth are related to the complex action of particles <strong>and</strong>gases as well as the physical <strong>and</strong> psychological environment.<strong>Particulate</strong>s can have effects which may be describedas mechanical, <strong>in</strong>fectious, immunosuppressive, allergic ortoxic. Table 5 summarizes the possible effects of airbornedust, microorganisms <strong>and</strong> gases on animal health.The mechanical effects of high dust levels <strong>and</strong> the <strong>in</strong>fluenceof pathogenic microorganisms are relatively easy tounderst<strong>and</strong>. Inhalation of large amounts of dust may causeoverload<strong>in</strong>g of the clearance mechanisms <strong>in</strong> the respiratorypassages <strong>and</strong> mechanical irritation which facilitates thebeg<strong>in</strong>n<strong>in</strong>g of <strong>in</strong>fections. High levels of dust, microorganismsor gases <strong>in</strong> the respiratory tract may lead to reducedresistance (Parry R. R. et al., 1987), particularly <strong>in</strong> animalswhere they may be comb<strong>in</strong>ed with the effects of fight<strong>in</strong>gwith<strong>in</strong> groups or unfavourable climatic conditions <strong>in</strong> thebuild<strong>in</strong>g.Particle size is of fundamental importance to the <strong>in</strong>fluenceof dust, irrespective of whether the <strong>in</strong>haled particle isa gra<strong>in</strong> of dust or a bacterium. The smaller the particle diameter,the deeper its po<strong>in</strong>t of deposition <strong>in</strong> the respiratorytract. Particles of less than 7 µm <strong>in</strong> diameter are known asalveole-accessible (V<strong>in</strong>cent J. H. <strong>and</strong> Mark D. 1981; HenschlerD. 1990).A decid<strong>in</strong>g factor <strong>in</strong> the depth of penetration is the aerodynamicdiameter. At diameters of 4 to 5 µm the alveolardeposition rate may be as high as 50 %. It is not only the


J. Hartung et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 115size of the dust particles which plays a part <strong>in</strong> animal health<strong>and</strong> performance. High dust concentrations seem to have ageneral performance-reduc<strong>in</strong>g effect. Carpenter G. A. et al.(1986) demonstrated that removal of a part of the airbornedust, us<strong>in</strong>g coarse dust filters <strong>in</strong> an air recirculation system,led to an <strong>in</strong>crease <strong>in</strong> fatten<strong>in</strong>g pig performance. Althoughdust removal was only practised <strong>in</strong> the weaner house forthe first 20 days after wean<strong>in</strong>g, <strong>and</strong> the pigs were subjectedto the same conditions as the control group subsequently,the animals reached their market weight up to 8 days earlierthan the control group reared entirely without dust removal.Only a low level of cl<strong>in</strong>ically recognizable diseasesoccurred <strong>in</strong> both groups.Table 5:Possible <strong>in</strong>fluences of dust <strong>and</strong> microorganism levels on animal health(after Zeitler M. 1988)FactorHigh dust levelsSpecific microorganismsDust, microorganisms,<strong>and</strong> gasesMicroorganisms <strong>and</strong> dustMicroorganisms <strong>and</strong> dustEffect on the animalMechanical irritation: overload<strong>in</strong>gof lung clearance, lesions of themucous membranesInfectious effect: <strong>in</strong>fection by pathogensNon-specific effect: defence mechanismsstressed, reduced resistanceAllergic effect: over-sensitivity reactionToxic effects: <strong>in</strong>toxication bybacterial/fungal tox<strong>in</strong>sHigh levels of aerial pollutants can dist<strong>in</strong>ctly <strong>in</strong>fluencethe health status of pig herds. In a comparison of 44 fatten<strong>in</strong>gpig herds with (+AR n = 15) <strong>and</strong> without (-AR n = 29)cl<strong>in</strong>ically recognized atrophic rh<strong>in</strong>itis (AR) was shown that<strong>in</strong>creased levels of dust, bacteria, endotox<strong>in</strong>s, <strong>and</strong> ammoniawere associated with a higher <strong>in</strong>cidence of AR (BaekboP. 1990). When compar<strong>in</strong>g these results with a proposal foran exposure threshold given by Donham K. J. (1989), it isshown that respiratory disease may be absent even underunfavourable concentrations of some of the factors.A lot of attention has been given to endotox<strong>in</strong>s whichseem to be implicated <strong>in</strong> the pathogenesis of hypersensitivepneumonias <strong>in</strong> humans (Thel<strong>in</strong> A. et al. 1984). Apart<strong>from</strong> their allergic potential, they also affect the immunesystem (Ryl<strong>and</strong>er R. 1986). In sensitive <strong>in</strong>dividuals, evenvery small amounts of these lipopolysaccharides are sufficientto cause an <strong>in</strong>crease <strong>in</strong> antibodies (Clark et al., 1983).In cattle <strong>and</strong> horses, allergic diseases such as rh<strong>in</strong>itis, alveolitis,<strong>and</strong> asthma are well known <strong>and</strong> are primarily associatedwith the use of mouldy feed, hay or straw (SiepelmeyerF. J. 1982). The role of endotox<strong>in</strong>s <strong>in</strong> respiratorydiseases of animals has not been sufficiently researched. Inhumans it is known that only chronic exposure over yearswill contribute to cl<strong>in</strong>ically apparent respiratory alterationslike chronic bronchitis. The lifetimes of livestock maytherefore be too short for damage to occur. However, evenyounger workers, who have spent a relatively short period<strong>in</strong> pig farm<strong>in</strong>g, can show temporary symptoms of irritationof the airways (Ryl<strong>and</strong>er R. et al. 1989).Dust <strong>in</strong> the air of livestock build<strong>in</strong>gs can present a significantburden to the respiratory tract of humans <strong>and</strong> animals<strong>and</strong> must be considered <strong>in</strong> the context of some typical respiratorydisease patterns. The effects of dust, microorganisms,gases, <strong>and</strong> tox<strong>in</strong>s cannot be separated, but dust is ofspecial significance as the carrier of these substances. Highdust burden can dist<strong>in</strong>ctly <strong>in</strong>fluence the health of animalskept <strong>in</strong> conf<strong>in</strong>ed build<strong>in</strong>gs. For the development of an <strong>in</strong>fectiousdisease the presence of the respective <strong>in</strong>fectiousagent seems to be necessary. Measures to reduce dust formation<strong>and</strong> <strong>in</strong>crease hygiene <strong>in</strong> the animal houses shouldbe given more susta<strong>in</strong>ed application <strong>in</strong> practice. It seemsnecessary to establish scientifically based maximum levelsfor dust <strong>in</strong> livestock houses. This would be <strong>in</strong> the <strong>in</strong>terestsof workers, of animal welfare, <strong>and</strong> of the wider environment.The role of airborne particulates <strong>in</strong> livestock productionneeds close further scientific attention.ReferencesAengst C. (1984). Zur Zusammensetzung des Staubes <strong>in</strong> e<strong>in</strong>em Schwe<strong>in</strong>emaststall.Thesis. School of Veter<strong>in</strong>ary Medic<strong>in</strong>e, Hanover.Baekbo P. (1990). Air quality <strong>in</strong> Danish pig herds. Proceed<strong>in</strong>gs 11th Congressof the International Pig Veter<strong>in</strong>ary Society 1-5 July 1990, Lausanne,p. 395. Bartz, J. <strong>and</strong> Hartung, J. (1993) Dust measurements on ahorse us<strong>in</strong>g an “Equ<strong>in</strong>e Personal Sampler”. In: Coll<strong>in</strong>s, E. <strong>and</strong> Boon, C.(eds), Livestock Environment. Proceed<strong>in</strong>gs 4th International Symposium,6-9 July, University of Warwick, Coventry, UK, pp. 742-746.Bruce J. M. <strong>and</strong> Sommer M. (1987). Environmental Aspects of RespiratoryDisease <strong>in</strong> Intensive Pig <strong>and</strong> Poultry Houses, Includ<strong>in</strong>g the Implicationsfor Human Health. Proceed<strong>in</strong>gs EC Meet<strong>in</strong>g Aberdeen, 29-30October 1986. EC Commission Publications, Brussels.Carpenter G. A., Cooper A.W. <strong>and</strong> Wheeler G. E. (1986). The effectof air filtration on air hygiene <strong>and</strong> pig performance <strong>in</strong> early-weaner accommodation.Animal Production 43, 505-515.Clark S., Ryl<strong>and</strong>er R. <strong>and</strong> Larsson L. (1983). Airborne bacteria, endotox<strong>in</strong><strong>and</strong> fungi <strong>in</strong> dust <strong>in</strong> poultry <strong>and</strong> sw<strong>in</strong>e conf<strong>in</strong>ement build<strong>in</strong>gs.American Industrial Hygiene Association Journal 44, 537-541.Dawson J. R. (1990). M<strong>in</strong>imiz<strong>in</strong>g dust <strong>in</strong> livestock build<strong>in</strong>gs: Possible alternativesto mechanical separation. Journal of Agricultural Eng<strong>in</strong>eer<strong>in</strong>gResearch 47, 235-248.De Boer S. <strong>and</strong> Morrison W. D. (1988). The Effect of the Quality of theEnvironment <strong>in</strong> Livestock Build<strong>in</strong>gs on the Productivity of Sw<strong>in</strong>e <strong>and</strong>Safety of Humans. A literature Review. Report: Department of Animal<strong>and</strong> Poultry Science, Ontario Agricultural College, University ofGuelph.Donham K. J. (1989). Relationships of air quality <strong>and</strong> productivity <strong>in</strong><strong>in</strong>tensive sw<strong>in</strong>e hous<strong>in</strong>g. Agri-Practice 10, 15-26.Donham K., Scallon L. J. <strong>and</strong> Popendorf W. (1986). Characterizationof dusts collected <strong>from</strong> sw<strong>in</strong>e conf<strong>in</strong>ement build<strong>in</strong>gs. Amercan American IndustrialHygiene Association Journal 47, 404-410.


116Hamscher G., Pawelzick H. T., Sczesny S., Nau H., Hartung J. (2003).Antibiotics <strong>in</strong> Dust Orig<strong>in</strong>at<strong>in</strong>g <strong>from</strong> a Pig-Fatten<strong>in</strong>g Farm: A NewSource of Health Hazard for Farmers? Environmental Health Perspectives111, 1590-1594.Hartung J. (1983). Spurengase im Hühnerstallstaub. In: 15. Kongressder Deutschen Veter<strong>in</strong>aermediz<strong>in</strong>ischen Gesellschaft, 1983 (Berichte<strong>in</strong> Fortschritte Veter<strong>in</strong>aermediz<strong>in</strong> 37), pp. 246-250.Hartung J. (1985). Gas chromatographic analysis of volatile fatty acids<strong>and</strong> phenolic/<strong>in</strong>dolic compounds <strong>in</strong> pig house dust after ethanolic extraction.Environmental Technology Letters 6, 21-30.Hartung J. (1986). Dust <strong>in</strong> livestock build<strong>in</strong>gs as a carrier of odours. In:Nielsen, V.C., Voorburg, J.H. <strong>and</strong> L’Hermite, P. (eds), Odour Prevention<strong>and</strong> Control of Organic Sludge <strong>and</strong> Livestock Farm<strong>in</strong>g. Elsevier,London, pp.321-332.Hartung J. (1997). Staubbelastung <strong>in</strong> der Nutztierhaltung. Zbl. Arbeitsmed.47, 65-72.Henschler D. (1990). Maximale Arbeitsplatzkonzentrationen und biologischeArbeitsstofftoleranzwerte. Mitteilung der Senatskommissionzur Prüfung Gesundheitsschädlicher Arbeitsstoffe; 26. (Occupationalhealth st<strong>and</strong>ards.) VCH Verlagsgesellschaft, We<strong>in</strong>heim, Germany.Hirst J. M. (1995). Bioaerosols: Introduction, retrospect <strong>and</strong> prospect.In: Bioaerosols H<strong>and</strong>book, C.S. Cox <strong>and</strong> C.M. Wathes (eds.), CRCPress, Boca Raton.Honey L. F. <strong>and</strong> McQuitty J. B. (1976). Dust <strong>in</strong> Animal Environments.Department of Agricultural Eng<strong>in</strong>eer<strong>in</strong>g, University of Alberta, ResearchBullet<strong>in</strong> 76-2. Honey, L.F. <strong>and</strong> McQuitty, J.B. (1979) Somephysical factors affect<strong>in</strong>g dust concentrations <strong>in</strong> a pig facility. CanadianAgricultural Eng<strong>in</strong>eer<strong>in</strong>g 21, 9-13.Kamphues J., Coenen M., Kienzle E., Pallauf J., Simon O., ZentekJ. (2004). Supplemente zu Vorlesungen und -Übungen <strong>in</strong> der Tierernährung.10., überarbeitete Auflage, Verlag M. & H. Schaper Alfeld-Hannover.Parry R. R., Schlenker E. H. <strong>and</strong> Feistner B. (1987). Correlation ofpositive Farmer’s Lung serologies, respiratory symptoms, <strong>and</strong> pulmonaryfunction tests <strong>in</strong> non-smok<strong>in</strong>g workers <strong>in</strong>volved <strong>in</strong> conf<strong>in</strong>ementrais<strong>in</strong>g of livestock. American Review of Respiratory Disease 135,A451.Perk<strong>in</strong>s S. <strong>and</strong> Morrison W. D. (1991). The Effects of the Quality ofthe Environment <strong>in</strong> Poultry Build<strong>in</strong>gs on the Productivity of Poultry<strong>and</strong> Safety of Humans. A Literature Review. Report: Department ofAnimal <strong>and</strong> Poultry science, Ontario Agricultural College, Universityof Guelph.Ryl<strong>and</strong>er R. (1986). Lung diseases caused by organic dusts <strong>in</strong> the farmenvironment. American Journal Industrial Medic<strong>in</strong>e 10, 221-227.Ryl<strong>and</strong>er R., Donham K. J., Jort C., Brouwer R. <strong>and</strong> Heederik D.(1989). Effects of exposure to dust <strong>in</strong> sw<strong>in</strong>e conf<strong>in</strong>ement build<strong>in</strong>gs - awork<strong>in</strong>g group report. Sc<strong>and</strong><strong>in</strong>avian Journal of Work Environment <strong>and</strong>Health 15 309-312.Saleh M. (2006). Untersuchungen zur Luftqualität <strong>in</strong> verschienen Systemender Geflügelhaltung. Diss (PhD) Tierärztliche Hochschule Hannover.Siepelmeyer F. J. (1982). Erkrankungen des Respirationstraktes durchSchimmelpilze bei Haussäugetieren unter besonderer Berucksichtigungder Allergie. Thesis. School of Veter<strong>in</strong>ary Medic<strong>in</strong>e, Hanover.Seedorf J. <strong>and</strong> Hartung J. (2002). Stäube und Mikroorganismen <strong>in</strong> derTierhaltung. KTBL-Schrift 393, L<strong>and</strong>wirtschaftsverlag GmbH, Münster,166 SeitenStraubel H. (1981). Elektro-optische Messung <strong>von</strong> Aerosolen. TechnischesMessen 48, 199-210.Takai H., Pedersen S., Johnsen J. O., Metz J. H. M., Groot KoerkampP. W. G., Uenk G. H., Phillips V. R., Holden M. R., Sneath R. W.,Short J. L., White R. P., Hartung J.,Seedorf J., Schröder M., L<strong>in</strong>kertK. H., Wathes C. M. (1998). Concentrations <strong>and</strong> Emissions ofAirborne Dust <strong>in</strong> Livestock Build<strong>in</strong>gs <strong>in</strong> Northern Europe. Journal ofAgricultural Eng<strong>in</strong>eer<strong>in</strong>g Research, 70, 59-77Thel<strong>in</strong> A., Tegler O. <strong>and</strong> Ryl<strong>and</strong>er R. (1984). Lung reactions dur<strong>in</strong>gpoultry h<strong>and</strong>l<strong>in</strong>g related to dust <strong>and</strong> bacterial endotox<strong>in</strong> levels. EuropeanJournal of Respiratory Diseases 65, 266-271.V<strong>in</strong>cent J. H. <strong>and</strong> Mark D. (1981). The basis of dust sampl<strong>in</strong>g <strong>in</strong> occupationalhygiene: A critical review. Annals of Occupational Hygiene24, 375-390. Wathes, C.M. <strong>and</strong> R<strong>and</strong>all, J.M (1989) Aerosol Sampl<strong>in</strong>g<strong>in</strong> Animal Houses. EC Commission Publication, EUR 11877, Luxembourg.Zeitler M. (1988). Hygienische Bedeutung des Staubes-<strong>and</strong> KeimgehaltesderStalluftder. Bayer. L<strong>and</strong>wirtschaftl. Jahrbuch 65, 151-165.


H. Takai et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 117Comparison of odorants <strong>in</strong> room-air <strong>and</strong> <strong>in</strong> headspace of sediment dust collected <strong>in</strong> sw<strong>in</strong>ebuild<strong>in</strong>gsH. Takai 1 , P. J. Dahl 1 , M. Maahn 1 , J. O. Johnsen 1 , <strong>and</strong> P. Kai 1AbstractThis paper presents prelim<strong>in</strong>ary results <strong>from</strong> a studyaimed at compar<strong>in</strong>g odorants <strong>in</strong> room-air <strong>and</strong> odorants<strong>in</strong> static headspace of sediment dust samples collected <strong>in</strong>sw<strong>in</strong>e build<strong>in</strong>gs. The study <strong>in</strong>cluded the samples collecteddur<strong>in</strong>g w<strong>in</strong>ter <strong>and</strong> summer surveys at four different sw<strong>in</strong>efarms, each equipped with gestation, farrow<strong>in</strong>g, rear<strong>in</strong>g,<strong>and</strong> f<strong>in</strong>ish<strong>in</strong>g build<strong>in</strong>gs.The room-air odorants <strong>in</strong> different sw<strong>in</strong>e build<strong>in</strong>gs weresampled us<strong>in</strong>g solid-phase microextraction (SPME) fibres<strong>and</strong> their relative concentrations were analyzed us<strong>in</strong>g gaschromatography <strong>and</strong> mass spectrometry (GC/MS). Oneach sampl<strong>in</strong>g occasion, two SPME samples were taken<strong>and</strong> a sediment dust sample was collected <strong>from</strong> the surfacesof fixtures <strong>in</strong> the room. About 5 g of the sedimentdust sample was packed <strong>in</strong> a ∅ 38 mm sta<strong>in</strong>less steel pipe,whose headspace was connected with a closed air circulationpipe. In a climate chamber, the whole setup was kept at30 o C for 30 m<strong>in</strong> to achieve the equilibrium stage, then, thedust-headspace odorants were sampled us<strong>in</strong>g SPME. Then,their relative concentrations were analyzed by GC/MS.The odorants <strong>in</strong>cluded <strong>in</strong> the present study are: trimethylam<strong>in</strong>e (TMA), dimethyl sulphide (DMS), butanoic acid(BA), 3-methyl-butanoic acid (3MBA), 4-methyl-pentanoicacid (4MPA), benzyl alcohol (BAL), <strong>in</strong>dole (IND),<strong>and</strong> 3-methyl-<strong>in</strong>dole (3MIND). These 8 odorants are calledtechnical key odorants (TKOs).As overall, TKO concentrations <strong>in</strong> room-air <strong>and</strong> headspacesare significantly correlated; but a relatively largespread<strong>in</strong>g was also observed. Further study on <strong>in</strong>teractionbetween TKOs <strong>in</strong> room air <strong>and</strong> dust particles is recommended.Keywords: odour, sw<strong>in</strong>e build<strong>in</strong>g, dust headspace, SPMEIntroductionMore than 300 different odorous compounds have beenidentified <strong>in</strong> livestock build<strong>in</strong>gs (Tanaka H. 1988, SchiffmanS. S. et al. 2001). Tanaka H. (1988) reported thatammonia, sulphides, volatile fatty acids, am<strong>in</strong>es, <strong>in</strong>doles,phenols, ketones, aldehydes <strong>and</strong> mercaptans are compounds/compoundgroups of special importance <strong>in</strong> connectionwith offensive odours <strong>from</strong> animal husb<strong>and</strong>ry. Manyof these odorants are generated <strong>in</strong> slurry under anaerobicconditions. The profile of the odorant concentrations <strong>in</strong>room air is affected by different conditions, such as feed<strong>in</strong>g,management of livestock manure, hygiene <strong>and</strong> ventilationmethods, <strong>and</strong> the rate of air exchange (Jacobson L. D.et al. 2000, Janni K. et al. 2001). Hartung J. (1985) showedthat dust <strong>from</strong> sw<strong>in</strong>e conf<strong>in</strong>ement build<strong>in</strong>gs conta<strong>in</strong>s VFA,phenols, <strong>in</strong>doles <strong>and</strong> scatole. The airborne dust orig<strong>in</strong>ated<strong>from</strong> manure conta<strong>in</strong>s these compounds. The dust particles<strong>in</strong>teract with the surround<strong>in</strong>g air <strong>and</strong> may exchange theodorous compounds by means of ad-, ab- <strong>and</strong> desorptionprocesses. Hammond E. G. et al. (1981) estimated that theconcentration of butyric acid <strong>and</strong> p-cresol will be about4 × 10 7 greater <strong>in</strong> a dust particle than <strong>in</strong> an equal volume ofair. Reynolds S. J. et al. (1998) estimated that a significantproportion (15 - 23%) of airborne ammonia <strong>in</strong> enclosedlivestock facilities is associated with particles. Takai H. etal. (2002) reported that ammonia contents <strong>in</strong> <strong>in</strong>halable dustcollected <strong>in</strong> dairy, poultry <strong>and</strong> farrow<strong>in</strong>g houses ranged<strong>from</strong> 1-6 µg per mg of dust, i.e. 1,000 to 6,000 ppm ona weight basis, while about 7 µg NH 3per mg of dust, i.e.7,000 ppm, was found <strong>in</strong> respirable dust.Ammonia, hydrogen sulphide <strong>and</strong> other odorous compounds<strong>in</strong> the respirable fraction of <strong>in</strong>haled dust particlesmay reach the lower parts of the respiratory tract, i.e. thebronchi <strong>and</strong> the alveoli, <strong>and</strong> irritate the organs. If this hypothesisis true, the chemical compounds absorbed <strong>in</strong> dustparticles plays an important role <strong>in</strong> the development of respiratorydiseases <strong>in</strong> farmers’ lungs. The deposition of dustparticles <strong>in</strong> the nose may result <strong>in</strong> high local concentrationsof odours at <strong>and</strong> <strong>in</strong> the mucosa <strong>in</strong> the regio olfactoria,which will affect the perception of odour.To underst<strong>and</strong> the synergistic effects of gases <strong>and</strong> aerosolson farmers’ health <strong>and</strong> malodour problems improvedknowledge on relation between odorant concentrations <strong>in</strong>dust particles <strong>and</strong> <strong>in</strong> room air is desired.1Aarhus University, Department of Agricultural Eng<strong>in</strong>eer<strong>in</strong>g, Research Centre Bygholm, Horsens, Denmark


118The present study is aimed at compar<strong>in</strong>g the odorants<strong>in</strong> the room-air <strong>and</strong> <strong>in</strong> the headspace of the sediment dustsamples collected <strong>in</strong> sw<strong>in</strong>e build<strong>in</strong>gs.Method <strong>and</strong> materialsDust filterFEP tube, ca. 1.5 mExhaust airSPME-fibreSeptum<strong>in</strong>-l<strong>in</strong>erThe study have <strong>in</strong>cluded samples collected dur<strong>in</strong>g w<strong>in</strong>ter<strong>and</strong> summer surveys at four different sw<strong>in</strong>e farms, eachequipped with gestation, farrow<strong>in</strong>g, rear<strong>in</strong>g, <strong>and</strong> f<strong>in</strong>ish<strong>in</strong>gbuild<strong>in</strong>gs. Two surveys were carried out <strong>in</strong> the w<strong>in</strong>ter of2003−2004 <strong>and</strong> two <strong>in</strong> the summer of 2004.The odorants <strong>in</strong>cluded <strong>in</strong> the present study are: trimethylam<strong>in</strong>e (TMA), dimethyl sulfide (DMS), butanoic acid(BA), 3-methyl-butanoic acid (3MBA), 4-methyl-pentanoicacid (4MPA), benzyl alcohol (BAL), <strong>in</strong>dole (IND),<strong>and</strong> 3-methyl-<strong>in</strong>dole (3MIND). These 8 odorants are calledtechnical key odorants (TKOs) <strong>and</strong> were selected based onthe results <strong>from</strong> earlier study (Takai H. et al. 2007), whoapplied pr<strong>in</strong>cipal variable analysis to identify TKOs. Thestudy showed that these 8 TKOs could expla<strong>in</strong> more than90% of the variation found <strong>in</strong> a data set of 18 room-airodorants. The physical properties <strong>and</strong> odor threshold levelsof TKOs found <strong>in</strong> the literatures are shown <strong>in</strong> table 1.Ventilation airFigure 1:Air pumpOdorant sampl<strong>in</strong>g <strong>in</strong> a sw<strong>in</strong>e build<strong>in</strong>g by means of SPMEVentilationairFlow meterTable 1:Physical properties <strong>and</strong> odor threshold levels of the technical key odorants (TKOs) <strong>in</strong>cluded <strong>in</strong> the present study (Syracuse Research Corporation’s, 2007)Name CAS #Mol weightmSolubilityH 2O(25 o C)g l -1Boil<strong>in</strong>gpo<strong>in</strong>tVaporPressure(25 o C)mm HgHenry‘sconstantk hatm l mol -1Dis-sociationconstantOdourthreshold 2)g mol -1( o C)pK aµg m -3Trimethyl am<strong>in</strong>e (TMA) 1) 75-50-3 59.11 890.0 2.8 1.61E+03 1.04E-01 9.80 5.9Dimethyl sulphide (DMS) 75-18-3 62.13 22.0 37.3 5.02E+02 1.61E+00 5.9n-Butyric acid (BA) 107-92-6 88.11 60.0 164.1 1.65E+00 5.35E-04 4.83 14.53-Methyl butanoic acid (3MBA) 503-74-2 102.10 40.7 176.5 4.40E-01 8.33E-04 4.77 10.54-Methyl pentanoic acid (4MPA) 646-07-1 116.16 5.3 200.5 4.45E-01 1.70E-03 4.8415.4075.924,500.0Benzyl alcohol (BAL) 100-51-6 108.14 42.9 205.3 9.40E-02 3.37E-04 0.00 0.0Indole (IND) 120-72-9 117.20 3.6 253.0 1.22E-02 5.28E-04 -2.40 0.23-Methyl-1H-<strong>in</strong>dole (3MIND) 83-34-1 131.10 0.5 265.0 5.55E-03 2.13E-03 -3.40 3.11)As a solution <strong>in</strong> water ~50%2)Schiffmann S. S. et al. (2001)The room-air odorants <strong>in</strong> different sw<strong>in</strong>e build<strong>in</strong>gs were sampled us<strong>in</strong>g solid-phase microextraction (SPME) fibres (figure1), <strong>and</strong> their relative concentrations were analyzed us<strong>in</strong>ggas chromatography <strong>and</strong> mass spectrometry (GC/MS).On each sampl<strong>in</strong>g occasion, two SPME samples were collected<strong>in</strong> parallel <strong>and</strong> a sediment dust sample was collected<strong>from</strong> the surfaces of fixtures <strong>in</strong> the room. The sedimentdust samples were kept <strong>in</strong> airtight blue cap glass bottles(100 ml) with PTFE seal<strong>in</strong>g <strong>in</strong> a freezer at -15 o C until analysiswith<strong>in</strong> about 120 days.About 5 g of the sediment dust sample was packed <strong>in</strong> a∅ 38 mm sta<strong>in</strong>less steel pipe, of which the headspace airwas circulated <strong>in</strong> a closed system consist<strong>in</strong>g of FEP tubes,a septum <strong>in</strong>-l<strong>in</strong>er <strong>and</strong> a sta<strong>in</strong>less steel air pump (AFC 123personal air sampler; BGI Inc., USA). In a climate chamber,the setup was kept at 30 o C for 30 m<strong>in</strong> to achieve theequilibrium stage, then, the dust-headspace odorants weresampled by us<strong>in</strong>g SPME, figure 2. Then, their relative concentrationswere analyzed by GC/MS.


H. Takai et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 119Climate chanberDust filterHeadspaceBlue cap bottleFigure 2:DustSPME-fibreSeptum<strong>in</strong>-l<strong>in</strong>erSta<strong>in</strong>less steelair pumpSampl<strong>in</strong>g of odorants of dust headspace air at different temperaturesSolid-phase microextraction for determ<strong>in</strong><strong>in</strong>g the relativeodorant concentrations:SPME is a qualitative analysis technique. To conductquantitative analysis, a calibration method would have tobe developed, which was not possible <strong>in</strong> the present study.It was assumed that the amount of molecules of an odorantsampled us<strong>in</strong>g SPME would <strong>in</strong>dicate its relative concentration.This assumption apparently works for compar<strong>in</strong>godors composed of similar chemical compositions, e.g.,odors <strong>in</strong> <strong>and</strong> <strong>from</strong> sw<strong>in</strong>e build<strong>in</strong>gs. To improve the comparabilityof the relative odorant concentrations <strong>in</strong> differentsw<strong>in</strong>e build<strong>in</strong>gs, a st<strong>and</strong>ard procedure for SPME sampl<strong>in</strong>gwas used, as follows. SPME fibers coated with 50/30 µmDiv<strong>in</strong>ylbenzene/Carboxen/Polydimethylsiloxane (Supelco,Bellefonte, Pennsylvania, USA) were <strong>in</strong>serted <strong>in</strong>to aPolytetrafluorethylene (PTFE) septum <strong>in</strong>jector (Omnifit,Cambridge, Engl<strong>and</strong>), which was <strong>in</strong>serted between a dustfilter (25 mm of 0.2-µm PTFE membrane syr<strong>in</strong>ge filter,Whatman, Brentford, Middlesex, UK) <strong>and</strong> an air pumpwith a suction sampl<strong>in</strong>g rate of 0.001 m 3 m<strong>in</strong> −1 (fig. 1). Theseptum <strong>in</strong>jector ensured that all SPME fibers used <strong>in</strong> thesurveys were exposed to the air samples under the same airflow conditions. The sampl<strong>in</strong>g period was 10 m<strong>in</strong>, equivalentto a sampled air volume of 0.01 m 3 . This sampl<strong>in</strong>gperiod was chosen on the basis of pre-surveys <strong>in</strong>dicat<strong>in</strong>gthat an SPME fiber has a much greater absorption capacitythan the amount of odorant molecules that can be absorbed<strong>in</strong> sw<strong>in</strong>e build<strong>in</strong>gs with<strong>in</strong> the applied sampl<strong>in</strong>g period.The amounts of different odorant molecules sampled bymeans of SPME were analyzed us<strong>in</strong>g a Varian 3800 gaschromatograph (GC) coupled to a Varian Saturn 2000ion trap mass spectrometer (MS) (Varian; Palo Alto, CA.,USA). The GC was equipped with a special SPME l<strong>in</strong>er(Varian) <strong>and</strong> a Varian VF-1ms Factor Four non-polar capillarycolumn (60 m × 0.32 mm × 1.0 µm). Helium Alphagaz2 (Air Liquide Danmark, Ballerup, Denmark) was used ascarrier gas at 2.5 mL m<strong>in</strong> −1 (constant pressure at 1 × 10 5 Nm -2 ). The SPME fiber was <strong>in</strong>serted directly <strong>in</strong>to the <strong>in</strong>jectorfor five m<strong>in</strong> at 250°C. The oven temperature program wasas follows: 4 m<strong>in</strong> at 40°C , a ramp to 150°C at 5°C/m<strong>in</strong>,followed by a ramp to 220°C at 10°C/m<strong>in</strong>, <strong>and</strong> 7 m<strong>in</strong> at220°C. The MS was used <strong>in</strong> the electron impact mode at 70eV <strong>and</strong> with a scann<strong>in</strong>g range of 30–150 m/z. The temperatureswere as follows: ion trap, 175°C; manifold, 110°C;<strong>and</strong> transfer l<strong>in</strong>e, 170°C.It was estimated that the detection limit (DL) of the appliedGC/MS analysis was approximately 500 counts. Inthe case of a count less than 500, a dummy value of DL/2 =250 (which is almost zero compared to the GC/MS countsrepresent<strong>in</strong>g the concentrations typically found <strong>in</strong> the samples)was <strong>in</strong>serted to allow log transformation before furtherstatistical analysis. Log transformation was performedma<strong>in</strong>ly because the distributions of the orig<strong>in</strong>al data wereskewed, with long tails to the right.Results <strong>and</strong> discussionsTechnical parameters, which assumed to have <strong>in</strong>fluenceon odour <strong>and</strong> dust emissions <strong>in</strong> the sw<strong>in</strong>e build<strong>in</strong>gs, weredeterm<strong>in</strong>ed at the sampl<strong>in</strong>g occasions. The maximum,m<strong>in</strong>imum <strong>and</strong> average values of the technical parametersare shown <strong>in</strong> table 2a <strong>and</strong> 2b. The f<strong>in</strong>al fnal datasets subjectedto the statistical analyses were derived <strong>from</strong> 6, 14, 11 <strong>and</strong>13 averaged values of duplicate measurements of roomairodorant <strong>and</strong> <strong>from</strong> the correspond<strong>in</strong>g 6, 14, 11 <strong>and</strong> 13measurements of odorants <strong>in</strong> the headspace of the sedimentdust samples collected <strong>in</strong> gestaton, estation, farrow<strong>in</strong>g, farrowng, rear<strong>in</strong>g<strong>and</strong> f<strong>in</strong>ish<strong>in</strong>g build<strong>in</strong>gs, respectively. The reason forthe small observation number for gestation build<strong>in</strong>g is thatthe surfaces <strong>in</strong> the build<strong>in</strong>g were often too wet to be ableto collect a satisfactory amount of sediment dust. Table 3shows the number of observations, where the TKO concentrationswere higher than DL. As seen <strong>in</strong> the table, DMSconcentrations have often been lower than DL especially<strong>in</strong> the gestation <strong>and</strong> farrow<strong>in</strong>g build<strong>in</strong>gs. Only 6 out of 44measurements on DMS <strong>in</strong> dust headspaces showed higherconcentrations than DL. All 6 measurements on 4MPA <strong>in</strong>room-air of gestation build<strong>in</strong>gs were lower than DL. While4MPA was observed more frequently <strong>in</strong> the room-air ofthe other build<strong>in</strong>gs types . Dust headspaces for gestation,farrow<strong>in</strong>g <strong>and</strong> rear<strong>in</strong>g build<strong>in</strong>gs often showed 4MPA concentrationlower than DL, whereas, the 4MPA was morecommon compound <strong>in</strong> the dust headspaces of f<strong>in</strong>ish<strong>in</strong>gbuild<strong>in</strong>gs.


120Table 2a:Ranges <strong>and</strong> averages of some technical parameters determ<strong>in</strong>ed <strong>in</strong> connection with sampl<strong>in</strong>g of odorants <strong>in</strong> the sw<strong>in</strong>e houseGestationFarrow<strong>in</strong>gMax. M<strong>in</strong>. Ave. Max. M<strong>in</strong>. Ave.Room:Rom volume, m 3 1122 468 734 870 92 644No. of pens, room -1 180 78 121 75 16 55Area of slatted floor, % 100 50 67 33 33 33Animals:Body weight, kg pig -1 250 150 192 250 200 225Heat production, W animal -1 490 393 434 473 426 449Stock<strong>in</strong>g density:No. of animals, room -1 189 68 114 75 16 49Do., m -2 0.4 0.3 0.4 0.4 0.1 0.2Boddy weight, kg m -3 42.1 20.5 29.3 43.5 10.0 18.8Do., kg m -2 105.2 51.3 72.7 100.0 28.7 47.2Indoor climate:Ventilation rate, m 3 h -1 hpu -1 247 86 154 336 76 229Do, m 3 h -1 room -1 11810 2869 7234 10095 965 5030Air exchange rate, h -1 14 6 10 16 2 8Temperature 24 18 21 27 18 23Relative humidity 76 61 69 73 47 63NH 3concentration, ppm 18 6 12 14 3 6CO 2concentration, ppm 2500 1100 1733 2800 900 1371Room cleanl<strong>in</strong>ess:1-5: Dry floor - Wet floor 4 2 2.7 3 1 1.51-5: Not dusty - Very dusty 3 1 2.0 4 1 2.5


H. Takai et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 121Table 2b:Ranges <strong>and</strong> average of some technical parameters determ<strong>in</strong>ed <strong>in</strong> connection with sampl<strong>in</strong>g of odorants <strong>in</strong> the sw<strong>in</strong>e housesRear<strong>in</strong>g F<strong>in</strong>ish<strong>in</strong>gMax. M<strong>in</strong>. Ave. Max. M<strong>in</strong>. Ave.Room:Rom volume, m 3 427 104 224 1008 330 703No. of pens, room -1 8 5 7 28 9 16Area of slatted floor, % 100 33 51 100 100 100Animals:Body weight, kg pig -1 30 12 20 80 50 68Heat production, W animal -1 130 73 101 217 174 202Stock<strong>in</strong>g density:No. of animals, room -1 300 125 187 560 75 267Do., m -2 3.8 1.1 2.4 1.5 0.4 1.1Boddy weight, kg m -3 46.2 6.6 21.0 38.7 8.2 25.1Do., kg m -2 92.3 16.4 49.8 109.1 32.8 75.8Indoor climate:Ventilation rate, m 3 h -1 hpu -1 1233 76 299 529 59 203Do, m 3 h -1 room -1 14314 1190 4876 57036 2055 12139Air exchange rate, h -1 95 5 28 66 4 17Temperature 24 19 22 26 17 21Relative humidity 77 51 65 83 52 67NH 3concentration, ppm 8 1 3 24 6 14CO 2concentration, ppm 2800 500 1545 3500 700 1638Room cleanl<strong>in</strong>ess:1-5: Dry floor - Wet floor 4 1 2.5 4 1 2.31-5: Not dusty - Very dusty 3 1 2.5 4 2 2.8Figure 3 shows the correlation between odorant concentrations<strong>in</strong> room-air <strong>and</strong> dust headspace. The trend l<strong>in</strong>e <strong>in</strong>the figure shows the overall trend of the 8 odorants. Althoughthe overall correlation is significant some of TKOsshow relatively large spread<strong>in</strong>g. To explore a possible effectof build<strong>in</strong>g type on the <strong>in</strong>teraction between room-air<strong>and</strong> dust particles, correlation coefficients between relativeTKO concentrations <strong>in</strong> the room-air <strong>and</strong> <strong>in</strong> the dustheadspaces were determ<strong>in</strong>ed for different build<strong>in</strong>g types.The results are shown <strong>in</strong> table 4. None of the correlationcoefficients for the gestation build<strong>in</strong>g were significant.One reason for this might be the small number of observations,n=6. Farrow<strong>in</strong>g build<strong>in</strong>gs showed that TMA, BA <strong>and</strong>3MBA concentrations <strong>in</strong> room-air <strong>and</strong> dust headspace weresignificantly correlated. TMA, DMS, BA <strong>and</strong> 3MBA concentrations<strong>in</strong> rear<strong>in</strong>g build<strong>in</strong>gs were significantly correlated.While <strong>in</strong> the f<strong>in</strong>ish<strong>in</strong>g build<strong>in</strong>gs, 5 TKOs, i.e. TMA,BA, 3MBA, IND <strong>and</strong> 3MIND concentrations <strong>in</strong> room-air<strong>and</strong> dust headspace were significantly correlated.Conclusions• Relative concentrations of 8 TKOs <strong>in</strong> room-air <strong>and</strong> dustheadspaces samples <strong>from</strong> gestation, farrow<strong>in</strong>g, rear<strong>in</strong>g<strong>and</strong> f<strong>in</strong>ish<strong>in</strong>g build<strong>in</strong>gs have been determ<strong>in</strong>ed <strong>and</strong> theircorrelations are studied.• As overall, TKO concentrations <strong>in</strong> room-air <strong>and</strong> headspaceswere significantly correlated; but relatively largespread<strong>in</strong>g was observed.• Further study on the <strong>in</strong>teraction between TKOs <strong>in</strong> roomair<strong>and</strong> dust particles is recommended.


122Table 3:Number of TKO concentration data higher than detection limit for room-air <strong>and</strong> dust head spaces for different build<strong>in</strong>g types.Type ofbuild<strong>in</strong>gsNo. ofobservationsRoom-air(TMA)Dimethylsulfide(DMS)Butanoicacid(BA)Trimethyleam<strong>in</strong>e3-methylbutanoicacid(3MBA)4-methylpentanoicacid(4MPA)Gestation 6 6 2 6 4 0 5 6 6Farrow<strong>in</strong>g 14 12 2 14 14 7 12 14 14Rear<strong>in</strong>g 11 10 6 11 11 10 10 11 11F<strong>in</strong>ish<strong>in</strong>g 13 12 8 13 13 7 12 13 13Dust headspaceGestation 6 6 1 6 5 2 6 6 6Farrow<strong>in</strong>g 14 14 1 14 14 3 13 14 14Rear<strong>in</strong>g 11 11 2 11 11 6 10 11 11F<strong>in</strong>ish<strong>in</strong>g 12 13 2 13 13 11 12 13 13(BAL)Indole(IND)Benzylalcohol3-methyl<strong>in</strong>dole(3MIND)1.0E+07TMA DMS BA 3MBA 4MPA BAL IND 3MIND1.0E+06Dust head space, counts1.0E+051.0E+04Y=3.98*X 0.879R 2 =0.722***1.0E+031.0E+021.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07Odrants <strong>in</strong> room-air, countsFigure 3:Correlation between relative odorant concentrations <strong>in</strong> room-air (X-axis) <strong>and</strong> dust headspace (Y-axis)


H. Takai et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 123Table 4:Correlation coefficients between relative odorant concentrations (GC/MS counts) <strong>in</strong> the room air <strong>and</strong> <strong>in</strong> the dust headspaceType ofbuild<strong>in</strong>gs(TMA)Dimethylsulfide(DMS)Butanoicacid(BA)Trimethyleam<strong>in</strong>e3-methylbutanoicacid(3MBA)4-methylpentanoicacid(4MPA)(BAL)Indole(IND)Benzylalcohol3-methyl<strong>in</strong>dole(3MINDGestation r 0.580 -0.299 -0.103 -0.327 - 0.190 0.586 0.450P-value 0.132 0.473 0.809 0.430 - 0.653 0.127 0.263Farrow<strong>in</strong>g r 0.681 -0.104 0.815 0.681 0.124 0.374 0.141 -0.030P-value 0.004 0.701 0.000 0.004 0.648 0.154 0.601 0.912Rear<strong>in</strong>g r 0.611 0.678 0.874 0.739 0.397 0.538 0.511 0.305P-value 0.027 0.011 0.000 0.004 0.180 0.058 0.074 0.310F<strong>in</strong>ish<strong>in</strong>g r 0.663 -0.226 0.788 0.650 0.266 0.231 0.531 0.558P-value 0.007 0.418 0.000 0.009 0.338 0.407 0.042 0.031AknowledgementThis project has been sponsored <strong>and</strong> supported by theDanish M<strong>in</strong>istry of Food, Agriculture <strong>and</strong> Fisheries, theDanish Research Councils <strong>and</strong> the Danish Institute of AgriculturalSciences.ReferencesHammond E.G., Fedler C., Smith R. J. (1981). Analysis of particlebornesw<strong>in</strong>e house odors. Agriculture <strong>and</strong> environment, 6 (1981): 395-401.Hartung J. (1985). Gas chromatographic analysis of volatile fatty acid<strong>and</strong> phenolic/<strong>in</strong>dolic compounds <strong>in</strong> pig house dust after ethanolic extraction.Environmental Technology Letters, Vol. 6, 1985: 21-30.Jacobson L. D., Huiq<strong>in</strong>g G., Schmidt D. R., Nicolai R. E., Zhu J.,Janni K. (2000). Development of an odour rat<strong>in</strong>g system to estimatesetback distances <strong>from</strong> animal feedlots: odour for feedlots setback EstimationTool (OFFSET): Dept. of Biosystems <strong>and</strong> Agricultural Eng<strong>in</strong>eer<strong>in</strong>g,College of Agricultural, Food <strong>and</strong> Environmental Sciences,Univ. of M<strong>in</strong>nesota: 27 pp.Janni K., Jacobson L., Schmidt D., B. Koehler (2001). Livestock <strong>and</strong>Poultry odour Workshop. The department of Biosystems <strong>and</strong> AgriculturalEng<strong>in</strong>eer<strong>in</strong>g extension odour Team, University of M<strong>in</strong>nesota: 186pp.Reynolds S. J., Chao D. Y., Thorne P. S., Subramanian P., Waldron P.F., Selim M., Whitten P. S., Popendorf W. J. (1998). Field comparisonof methods for evaluation of vapor/particle phase distribution ofammonia <strong>in</strong> livestock build<strong>in</strong>gs. J. Agr. Safety <strong>and</strong> Health 4(2): 81-93.Schiffman S. S., Bennett J. L., Raymer J. H. (2001). Quantification ofodours <strong>and</strong> odorants <strong>from</strong> sw<strong>in</strong>e operation <strong>in</strong> North Carol<strong>in</strong>a. Agricultural<strong>and</strong> Forest Meteorology 108, Elsevier: 213-240.Syracuse Research Corporation’s (SRC) (2007). Interactive PhysPropDatabase Demo, http://www.syrres.com/esc/physdemo.htm , CorporateHeadquarters, 7502 Round Pond Road, North Syracuse, New York13212-2510Takai H., Nekomoto K., Dahl P., Okamoto E., Morita S., HoshibaS. (2002). Ammonia contents <strong>in</strong> <strong>and</strong> desorption <strong>from</strong> dusts collected<strong>in</strong> livestock build<strong>in</strong>gs. CIGR e-journal: http://baen.tamu.edu/cigr/volume4.htmlhttp://baen.tamu.edu/cgr/vo-Takai H., Dahl P. J., Tgersen Tøgersen F. Aa., Johnsen J. O., Maahn M., S- S- S- SøgaardH. T. (2007). Regression analyses of the effects of technicalparameters on the relative concentrations of pr<strong>in</strong>cipal variable-selectedodorants <strong>in</strong> sw<strong>in</strong>e build<strong>in</strong>gs. Submitted for publication <strong>in</strong> the Transactionof ASABE.Tanaka H. (1988). Characterstcs Characteristics of odours <strong>from</strong> anmal animal Industry (n (<strong>in</strong>Japanese). Journal of Agricultural Mach<strong>in</strong>ery Association 51-4: 99-104


124


P. V. Madsen et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 125Abatement, control <strong>and</strong> regulation of emissions <strong>and</strong> ambient concentrations of odour <strong>and</strong>allergens <strong>from</strong> livestock farm<strong>in</strong>g <strong>in</strong> the Nordic countriesP. V. Madsen 1 , O. Hertel 1 , T. Sigsgaard 2 J. Bønløkke 2 , <strong>and</strong> K. Puputti 3AbstractA survey on current practise <strong>and</strong> ongo<strong>in</strong>g policy regard<strong>in</strong>gabatement, control <strong>and</strong> regulation of emissions <strong>and</strong> ambientconcentrations of odour <strong>and</strong> allergens <strong>from</strong> livestockfarm<strong>in</strong>g <strong>in</strong> the Nordic countries is planned to form the basisfor a common Nordic strategy <strong>in</strong> this area. Such a strategywould be an important element <strong>in</strong> reduc<strong>in</strong>g the number ofpeople <strong>in</strong> the Nordic Countries exposed to odour <strong>and</strong>/orallergens as well as to other livestock related compoundshealth hazardous beyond certa<strong>in</strong> thresholds. The project isforeseen to strengthen the knowledge exchange <strong>and</strong> cooperationbetween the Nordic countries <strong>and</strong> <strong>in</strong> the follow<strong>in</strong>gphases address the urgent <strong>matter</strong> <strong>in</strong> EU. The goal of theproject is to reduc<strong>in</strong>g the number of <strong>in</strong>habitants <strong>in</strong> the Nordiccountries that are exposed to odour <strong>and</strong> airborne allergensas well as other emissions <strong>from</strong> animal farm<strong>in</strong>g withpossible health impact <strong>and</strong> to <strong>in</strong>vestigate to what extent thevarious countries have developed national strategies <strong>in</strong> orderto control <strong>and</strong> regulate odour annoyance <strong>and</strong> allergenof dispersion <strong>from</strong> livestock farm<strong>in</strong>g.Keywords: odour management, bioaerosols, emission <strong>from</strong>livestock, allergens, annoyance, regulation, health <strong>and</strong> lifequalityIntroductionThous<strong>and</strong>s of different odour <strong>and</strong> bioaerosols compounds<strong>from</strong> livestock farm<strong>in</strong>g have been identified (Attwood P. etal. 2004). Odour <strong>from</strong> livestock farm<strong>in</strong>g is usually a mixtureof many compounds (Avery R. et al. 2004). Some ofthese may enhance the effect of other compounds whereasothers may elim<strong>in</strong>ate each other. A number of compoundsthat may be difficult to detect separately might <strong>in</strong> somecases together give a strong smell. The human nose is ableto dist<strong>in</strong>guish about 10,000 different odour compounds.More than 200 odour compounds have been identified <strong>in</strong>manure. Although odour is <strong>in</strong> gas phase, some compoundsmay be associated with dust <strong>and</strong> can later evaporate.All types of animal house hold may lead to odour problems,but pig production appears to be the most importantcause of odour lead<strong>in</strong>g to annoyance problems (Eder W. et.al. 2006) – at least quantitavely. Another important concernis the potential health problems related to allergens<strong>and</strong> other harmful compounds emitted <strong>from</strong> farm animals.In this context especially allergens <strong>from</strong> horses have been<strong>in</strong> focus <strong>in</strong> a strong debate that has taken place <strong>in</strong> Sweden.The orig<strong>in</strong>s of the bioaerosols are the animals themselves:their feed, stools <strong>and</strong> ur<strong>in</strong>e with some allergens <strong>from</strong> sk<strong>in</strong><strong>and</strong> hair. Additional components stem <strong>from</strong> <strong>in</strong>sects <strong>and</strong>microorganisms thriv<strong>in</strong>g on the organic material <strong>in</strong> animalbuild<strong>in</strong>gs. Dis<strong>in</strong>fectants <strong>and</strong> other agents applied to theenvironment are also present, <strong>and</strong> may add to the adversehealth effects of workers (Preller L. et al. 1995). Bacteriathrive <strong>in</strong> this environment <strong>and</strong> give orig<strong>in</strong> to high concentrationsof bacteria, endotox<strong>in</strong>s, <strong>and</strong> other bacterial components<strong>in</strong> the air. The fungal load <strong>in</strong> animal houses withconcrete floors without litter is likely to orig<strong>in</strong>ate primarily<strong>from</strong> outside air. For livestock raised on litter or animalsfed on hay fungi probably orig<strong>in</strong>ate to a great extent <strong>in</strong>doors.This is important, s<strong>in</strong>ce fungal spores appear to becloser associated with the asthma prevalence <strong>in</strong> livestockfarmers than endotox<strong>in</strong>s <strong>and</strong> more protective <strong>in</strong> <strong>in</strong>dividualsdisposed for allergic diseases <strong>and</strong> more harmful <strong>in</strong> <strong>in</strong>dividualsnot disposed for allergic diseases (Eduard W. et al.2004).Bioaerosols conta<strong>in</strong><strong>in</strong>g this type of components have repeatedlybeen found to <strong>in</strong>duce lung function changes, upperairway <strong>and</strong> mucosal <strong>in</strong>flammation, symptoms <strong>and</strong> sys-1National Environmental Research Institute (NERI) Department for Atmospheric Environment (ATMI) Aarhus, Denmark2Aarhus University, Department for Environment <strong>and</strong> Occupational Health, Aarhus, Denmark3F<strong>in</strong>nish Meteorological Institute, Air Quality Research, Hels<strong>in</strong>ki, F<strong>in</strong>l<strong>and</strong>


126temic <strong>in</strong>flammatory reactions <strong>in</strong> adults exposed to them.Airborne concentrations of live bacteria are also veryhigh (Ducha<strong>in</strong>e C. et al. 2000, Donham K. J. et al. 1986,Attwood P. et al. 1987). Gram-positive bacteria dom<strong>in</strong>atethis population as they easily represent 90-95% of the totalbacteria. Experimentally, endotox<strong>in</strong>s are capable of <strong>in</strong>duc<strong>in</strong>gmany of the symptoms associated with livestock exposure,<strong>in</strong>clud<strong>in</strong>g fever reactions as seen <strong>in</strong> organic dust toxicsyndrome <strong>and</strong> farmer’s lung <strong>and</strong> worsen<strong>in</strong>g of asthma withcough <strong>and</strong> breathlessness. Thus, it is not surpris<strong>in</strong>g, thatendotox<strong>in</strong>s have drawn so much attraction. Several epidemiologic<strong>in</strong>vestigations have found that respirable endotox<strong>in</strong><strong>in</strong> farm<strong>in</strong>g environments were closer associated withadverse effects on the airways <strong>and</strong> immune system thanwere airborne dust levels (W<strong>in</strong>g S. et al. 2002).National status of odourIn Denmark an <strong>in</strong>creas<strong>in</strong>g pig production has <strong>in</strong>creasedthe odour problems over the last decade. Table 1 shows thenumber of private residences <strong>in</strong> Denmark that are placed<strong>in</strong> the vic<strong>in</strong>ity of livestock farms over a certa<strong>in</strong> size. Thisselection is based on the number of Animal Units per livestockfarm. One Animal Unit is def<strong>in</strong>ed as the animalslead<strong>in</strong>g to an emission of 100 kg N/year. This is equalto 0.85 milk<strong>in</strong>g cow <strong>in</strong> stable, annual production of 36slaughter pigs (equal to 9 <strong>in</strong> stable), or 2900 annually producedslaughter chickens. Larger livestock farms typicallycover an area with a diameter of 100 m (radius 50 m), <strong>and</strong>the distances given <strong>in</strong> Table 1 should therefore be reducedby approximately 50 m. Thus about 6700 residences areplaced with<strong>in</strong> 300 m <strong>from</strong> a livestock farm with more than249 Animal Units. It should here be noted that the figures<strong>in</strong> the table refer to number of houses <strong>in</strong> Denmark with apotential odour problem related to livestock farm<strong>in</strong>g.Table 1:Number of private residences <strong>in</strong> the vic<strong>in</strong>ity of livestock farms <strong>in</strong> Denmarkbased on registry data per 31/12/2002 (Source: Steen GyldenkærnePolicy Analysis, NERI 2005)Radius (meters)Size <strong>and</strong> number of livestock farms>125 DE >249 DE6238 963Number of private houses100 8708 1258150 13939 1953250 28190 3983350 46548 6699500 84312 125611000 298966 53630Odour problems are ma<strong>in</strong>ly related to manure <strong>and</strong> theemissions may have three different sources: <strong>from</strong> stables,manure storages <strong>and</strong> <strong>from</strong> out br<strong>in</strong>g<strong>in</strong>g to the fields. Theodour <strong>from</strong> storages may be reduced significantly e.g. bycover<strong>in</strong>g of manure storage tanks. Out br<strong>in</strong>g<strong>in</strong>g takes placeover relatively short periods of time, whereas stables haveto be ventilated cont<strong>in</strong>uously. Stables may therefore emitodour dur<strong>in</strong>g the entire year <strong>and</strong> research <strong>in</strong> this field hasto a large part been devoted to regulation of ventilation <strong>and</strong>control of air flows <strong>in</strong>side the stables.In Denmark the <strong>agriculture</strong> is <strong>in</strong> general more <strong>in</strong>tense than<strong>in</strong> the other Nordic countries. The public concern about especiallyabout odour <strong>and</strong> ammonia has also been high forseveral years putt<strong>in</strong>g a pressure on the political system forregulation of this area through legislation. A Danish Guidel<strong>in</strong>efor h<strong>and</strong>l<strong>in</strong>g odour <strong>from</strong> livestock farm<strong>in</strong>g has been<strong>in</strong> preparation for a longer period of time. Currently thisGuidel<strong>in</strong>e is await<strong>in</strong>g the restructur<strong>in</strong>g of Danish counties<strong>and</strong> municipalities which took place by 1. January 2007.In Sweden there has recently been an <strong>in</strong>creas<strong>in</strong>g concernnot only to odour problems but also concern<strong>in</strong>g the releaseof allergens <strong>from</strong> livestock farm<strong>in</strong>g <strong>and</strong> how these releasesof allergens affect the health of the population <strong>in</strong> the nearbysurround<strong>in</strong>gs of the farms. In Germany the “NILS” studyhas shown, that there is a detrimental effect on the lungfunction of liv<strong>in</strong>g <strong>in</strong> the vic<strong>in</strong>ity of many animal farms.The researchers showed, that for people exposed to > 20EULPS m -3 there was a tendency to asthmatic patterns <strong>in</strong> lungfunction measures. Allergens <strong>from</strong> horses may to a higherextend than allergens <strong>from</strong> other farm animals be spreadfurther away <strong>from</strong> the farm houses.F<strong>in</strong>l<strong>and</strong> has no formalised guidel<strong>in</strong>es for odour. Appliedpr<strong>in</strong>ciples are formed with certa<strong>in</strong> limit values or with setback distances. Odour management obligations for odouremitt<strong>in</strong>g plants are set <strong>in</strong> regional EPA environmental permits.Often the emission limits are set <strong>and</strong> followed up locallyresult<strong>in</strong>g <strong>in</strong> limited predictability for farmers. For lifestock operation, set back distances are usually applied.Livestock farm<strong>in</strong>g has caused odour compla<strong>in</strong>ts <strong>in</strong> F<strong>in</strong>l<strong>and</strong>,the impact of these activities is usually limited to lessthan 0.5 km, although large pig farms can cause significantannoyance depend<strong>in</strong>g on the volume <strong>and</strong> animal unit.Due to environmental measures, the odour load <strong>and</strong> annoyancehas generally dim<strong>in</strong>ished <strong>from</strong> <strong>in</strong>dustries, agriculturalodour be<strong>in</strong>g an exception. The reason for this isthat the production units <strong>in</strong> F<strong>in</strong>nish livestock productionare significantly <strong>in</strong>creas<strong>in</strong>g as well as <strong>in</strong> the other Nordiccountries. Large animal houses are built closer to dwell<strong>in</strong>ghouses <strong>and</strong> as a consequence, odour annoyance becomessignificant (Beaman A. L. 1988).


P. V. Madsen et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 127distance (m)50045040035030025020015010050Figure 1:00 500 1000 1500 2000 2500 3000 3500animal (pig) unitsConditions:normalfavourabledem<strong>and</strong><strong>in</strong>gM<strong>in</strong>imum distance between livestock units <strong>and</strong> sensible areasIn the nearest surround<strong>in</strong>g area of the production unitthe odour occurrence levels are above 12 % of favourablecondition calculated <strong>in</strong> yearly hours. The odour occurrencelevels are decreas<strong>in</strong>g as the distance <strong>from</strong> emission sourcesis <strong>in</strong>creas<strong>in</strong>g.term ‘severe odour nuisance’ comes <strong>from</strong> the periodicalnuisance survey conducted by the Dutch research <strong>in</strong>stituteTNO (also known as the ‘questionnaire survey’).Odour nuisance (<strong>in</strong> the Statistics Netherl<strong>and</strong>s def<strong>in</strong>ition)is def<strong>in</strong>ed as experienc<strong>in</strong>g frequent or occasional nuisance<strong>from</strong> stench, <strong>in</strong> l<strong>in</strong>e with the questions asked <strong>in</strong> the OSLC.Sources of odour <strong>in</strong>cluded <strong>in</strong> the survey are road traffic,<strong>in</strong>dustry or bus<strong>in</strong>ess, <strong>agriculture</strong> <strong>and</strong> open fires/multi-burnersillustrated <strong>in</strong> figure 2.Severe odour nuisance (<strong>in</strong> the def<strong>in</strong>ition given by TNO)is based on the question <strong>from</strong> the periodical nuisance surveyof TNO about the extent to which people see a specificsource <strong>in</strong> the liv<strong>in</strong>g environment as a nuisance on a scale<strong>from</strong> of 1 (not a nuisance at all) to 10 (extreme nuisance).People giv<strong>in</strong>g answers <strong>in</strong> the 8 to 10 range are classifiedas experienc<strong>in</strong>g ‘severe nuisance’ (Rantakrans E. et al.1995).It is not easy to compare the concepts because of the differentways the questions are formulated <strong>and</strong> the differentdef<strong>in</strong>itions of the sources.SOURCES ODOUR IMPACTconsumers<strong>agriculture</strong>trafficodour nuisanceimpact onpublic health<strong>in</strong>dustrySource: RIVMopen firesRIVM/ED/Oct02/0949Figure 2:Sources of odourDist<strong>in</strong>ction between odour nuisance <strong>and</strong> severe odournuisanceThe Dutch government uses two def<strong>in</strong>itions for the environmentalproblem of odour nuisance: odour nuisance <strong>and</strong>severe odour nuisance. The concept of odour nuisance isbased on the term<strong>in</strong>ology used by Statistics Netherl<strong>and</strong>s <strong>in</strong>its “Ongo<strong>in</strong>g Survey of Liv<strong>in</strong>g Conditions” (OSLC). TheAllergens <strong>and</strong> healthIt is a well known fact that exposure to the environment<strong>in</strong> sw<strong>in</strong>e conf<strong>in</strong>ement build<strong>in</strong>gs is a cause of respiratoryimpairment <strong>and</strong> loss of lung function <strong>in</strong> farmers (Oml<strong>and</strong>O. 2002, Oml<strong>and</strong> O. et al. 2000, Preller L. et al. 1995b),Thorne, (Cormier Y. et al. 1991). Acute exposure to highamounts of dust <strong>from</strong> sw<strong>in</strong>e conf<strong>in</strong>ement build<strong>in</strong>gs has


128been shown to <strong>in</strong>duce a neutrophilic pneumonitis.Furthermore acute exposure of subjects has been shownto <strong>in</strong>duce substantial more <strong>in</strong>flammation <strong>in</strong> subjects naïveto farm<strong>in</strong>g compared to farmers. Cattle <strong>and</strong> poultry arealso known to cause both short <strong>and</strong> long term respiratoryimpairment among exposed workers. In addition there arereports on adverse effects on the respiratory system <strong>from</strong>exposures to other livestock such as sheep <strong>and</strong> horses. Thecommon belief that odour is worse <strong>from</strong> sw<strong>in</strong>e than <strong>from</strong>cattle farms is supported by the greater emission rates <strong>from</strong>such build<strong>in</strong>gs <strong>in</strong> Europe (Takai H. et al. 1998).The airway diseases that can be caused by livestock exposures<strong>in</strong>clude development of allergic <strong>and</strong> non-allergicrh<strong>in</strong>itis, other upper airway <strong>and</strong> mucous membrane irritationsymptoms, allergic <strong>and</strong> non-allergic asthma, aggravationof exist<strong>in</strong>g asthma, chronic obstructive pulmonary disease,hypersensitivity pneumonitis, <strong>and</strong> airway <strong>in</strong>fections.Allergic alveolitis may be caused by exposure to mouldyhay <strong>and</strong> thus be related to although not directly caused byexposure to cattle <strong>and</strong> cows.Odour alone has been shown to negatively affect immunefunction <strong>in</strong> neighbour<strong>in</strong>g residential mediated via stress(Avery R. C. et al. 2004) but the isolated effect of odourhas not been studied <strong>in</strong> livestock exposed workers. Allergensappear to play a limited role <strong>in</strong> <strong>in</strong>dustrialized farm<strong>in</strong>genvironments such as <strong>in</strong> modern sw<strong>in</strong>e farm<strong>in</strong>g with lowprevalences of allergic sensitization <strong>and</strong> allergic diseases.It cannot be ruled out that this is partly because of self selectionout of the trade by <strong>in</strong>dividuals with atopic disposition.Most <strong>in</strong>vestigators agree that no s<strong>in</strong>gle componentor factor is responsible for the adverse health effects thatoccur after exposure to the animal farm<strong>in</strong>g environment.Rather the mixture of gases, dust particles, allergens, microbes<strong>and</strong> substances of microbial orig<strong>in</strong> together <strong>in</strong>ducethe neutrophilic <strong>in</strong>flammation <strong>in</strong> the airways <strong>and</strong> the systemicchanges <strong>in</strong> immune function.Many different allergens of animal <strong>and</strong> plant orig<strong>in</strong> areabundant <strong>in</strong> farm<strong>in</strong>g. In cattle breeders it has been shownthat even several years after the last animal contact, thereare significantly more allergens <strong>in</strong> the farmers houses,compared to other houses (Schulze A. 2006). For peoplehav<strong>in</strong>g horses, it has also been observed, that their familiesare exposed to high amounts of horse allergen. This meansthat the allergens are stable over time, <strong>and</strong> can be transported<strong>from</strong> the stables to hous<strong>in</strong>g quarters of the farmersor horseback riders themselves. There is only very scarce<strong>in</strong>formation on the allergen concentrations <strong>in</strong> the area surround<strong>in</strong>ga horse stable or a cow-shed.Exposure to high levels of endotox<strong>in</strong> is particularly welldocumented <strong>in</strong> many types of farm<strong>in</strong>g, but other substancesof microbiologic orig<strong>in</strong> such as peptidoglycans <strong>and</strong> β-glucans are present <strong>in</strong> high concentrations. Airborne concentrationsof live bacteria are also very high (Ducha<strong>in</strong>eC. et al. 2000), Donham K. J. et al. 1986, Attwood P. et al.1987a). Gram-positive bacteria dom<strong>in</strong>ate this populationas they easily represent 90-95% of the total (dead as wellas live) bacteria.The orig<strong>in</strong>s of the bioaerosols are the animals themselves:their feed, stools <strong>and</strong> ur<strong>in</strong>e with some allergens <strong>from</strong> sk<strong>in</strong><strong>and</strong> hair. Additional components stem <strong>from</strong> <strong>in</strong>sects <strong>and</strong>microorganisms thriv<strong>in</strong>g on the organic material <strong>in</strong> animalbuild<strong>in</strong>gs. Dis<strong>in</strong>fectants <strong>and</strong> other agents applied to theenvironment are also present, <strong>and</strong> may add to the adversehealth effects of workers (Preller L. et al. 1995a). Bacteriathrive <strong>in</strong> this environment <strong>and</strong> give orig<strong>in</strong> to high concentrationsof bacteria, endotox<strong>in</strong>s, <strong>and</strong> other bacterial components<strong>in</strong> the air. The fungal load <strong>in</strong> animal houses withconcrete floors without litter is likely to orig<strong>in</strong>ate primarily<strong>from</strong> outside air (at least this is true for pigs on slatter). Forlivestock raised on litter (e.g. sw<strong>in</strong>e or cattle on choppedstraw or on shav<strong>in</strong>gs) or animals fed on hay (such as horses)fungi probably orig<strong>in</strong>ate to a great extent <strong>in</strong>doors. Thisis important, s<strong>in</strong>ce fungal spores appear to be closer associatedwith the asthma prevalence <strong>in</strong> livestock farmers thanendotox<strong>in</strong>s (more protective <strong>in</strong> atopics <strong>and</strong> more harmfull<strong>in</strong> non-atopics) (Eduard W. et al. 2004c). Gases evaporate<strong>from</strong> the manure pits underneath or <strong>in</strong> close adjunction tothe sw<strong>in</strong>e build<strong>in</strong>gs.Bioaerosols conta<strong>in</strong><strong>in</strong>g this type of components have repeatedlybeen found to <strong>in</strong>duce lung function changes, upperairway <strong>and</strong> mucosal <strong>in</strong>flammation, symptoms <strong>and</strong> systemic<strong>in</strong>flammatory reactions <strong>in</strong> adults exposed to them.The effects on children’s health are subject to some debate.On the one side there is evidence that the farm<strong>in</strong>genvironment is protective aga<strong>in</strong>st the development of allergies<strong>and</strong> some allergic disease <strong>and</strong> more so with animalexposure. On the other side, there is impell<strong>in</strong>g evidence,that high concentrations of modern livestock operations<strong>in</strong> close vic<strong>in</strong>ity of children’s homes is associated withnegative health effects <strong>and</strong> <strong>in</strong>creased risk of lung disease<strong>in</strong>clud<strong>in</strong>g asthma-like symptoms. Children’s exposure islikely to differ <strong>from</strong> that of adults with less exposure <strong>from</strong><strong>in</strong>side concentrated animal build<strong>in</strong>gs <strong>and</strong> more exposureto diesel exhaust <strong>and</strong> feed, gra<strong>in</strong> <strong>and</strong> other dusts outsidethese build<strong>in</strong>gs as well as odours. Livestock exposureseven appear to be strongly protective aga<strong>in</strong>st atopy <strong>in</strong> theprenatal period (Ege M. J. et al. 2006). Whether livestockexposures are protective or harmful depends on the geneticbackground of the exposed person <strong>and</strong> this is true both <strong>in</strong>childhood (Eder W. et al. 2006) <strong>and</strong> adulthood (Eduard W.et al. 2004a).Differences <strong>in</strong> technology <strong>and</strong> climate is, however, likelyto cause differences <strong>in</strong> qualities <strong>and</strong> quantities of exposures<strong>in</strong> residential areas. Importantly, it has been shown thatwhereas bioaerosol components such as gases <strong>and</strong> bacteriacan be traced at long distances <strong>from</strong> CAFO’s, they are di-


P. V. Madsen et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 129luted to m<strong>in</strong>ute amounts with<strong>in</strong> very short distances of theventilatory outlets. However, higher background levels ofe.g. endotox<strong>in</strong> can be found <strong>in</strong> rural areas with <strong>in</strong>tensivelivestock production than <strong>in</strong> urban areas (Schulze A. et al.2006). With the current knowledge of mechanisms there isno reason to th<strong>in</strong>k that such low levels could have adversehealth effects other than those caused by odour.Quality of life, as <strong>in</strong>dicated by the number of times residentscould not open their w<strong>in</strong>dows or go outside even <strong>in</strong>nice weather, was found to be similar <strong>in</strong> residents <strong>in</strong> thevic<strong>in</strong>ity of a cattle operation or far away <strong>from</strong> livestockbut greatly reduced among residents near a hog operation(W<strong>in</strong>g S. et al. 2000). More wheez<strong>in</strong>g has been observedamong pupils at schools <strong>in</strong> the vic<strong>in</strong>ity of conf<strong>in</strong>ed sw<strong>in</strong>efeed<strong>in</strong>g operations (Mirabelli M. C. et al. 2006).Regulation <strong>and</strong> abatementS<strong>in</strong>ce the end of the 1990’s there was a strong need feltby the environmental authorities to improve the scientificbasis of the odour regulations especially <strong>in</strong> the agriculturalsector to <strong>in</strong>crease their acceptance <strong>and</strong> effectiveness.(Cormier Y. 2004). This was further elaborated <strong>in</strong> a coupleof larger research projects (W<strong>in</strong>g S. et al. 2002).The concern of the public is grow<strong>in</strong>g <strong>in</strong> the Nordic countries.It would be beneficial <strong>in</strong> the Nordic countries to exchangeknowledge about strategies beh<strong>in</strong>d environmentalmanagement <strong>and</strong> regulation of odour <strong>and</strong> allergens <strong>from</strong>livestock farm<strong>in</strong>g. A common Nordic strategy could be usea basis for recommendations to a new EU legislation <strong>in</strong>this field.Emission factor data for pig <strong>and</strong> broiler production hasbeen established for odour impact assessments. The emissiondata for pig production were slightly higher thanresults obta<strong>in</strong>ed <strong>in</strong> other countries, although <strong>in</strong> the sameorder of magnitude. Emission rates are <strong>in</strong>fluenced by arange of local factors <strong>in</strong>clud<strong>in</strong>g feed, manure management,build<strong>in</strong>g design <strong>and</strong> ventilation rate. Certa<strong>in</strong> lack ofunanimity <strong>in</strong> published odour emission data speaks up forthe importance of us<strong>in</strong>g data obta<strong>in</strong>ed <strong>in</strong> representative nationalconditions. F<strong>in</strong>nish agricultural circumstances differnoticeable <strong>from</strong> those <strong>in</strong> Central Europe or North Americaconcern<strong>in</strong>g both climate <strong>and</strong> production methods.Odour annoyance study has showed that people’s reactionsto pig <strong>and</strong> poultry odour are very different. Thus noclear <strong>in</strong>dication for need for set back distances for mid-sizethe poultry production plants could be identified <strong>in</strong> the <strong>in</strong>vestigatedplants. On the other h<strong>and</strong>, there seems to be aneed for significant set back distances for large sw<strong>in</strong>e productionunits if no odour reduc<strong>in</strong>g measures implemented.Dust emitted by hous<strong>in</strong>g units contributes to odour transport<strong>and</strong> plumes may have potential for transmitt<strong>in</strong>g diseasesto other hous<strong>in</strong>g units or neighbour<strong>in</strong>g people. Odouris comb<strong>in</strong>ed with higher concentrations of endotox<strong>in</strong>s <strong>in</strong>the surround<strong>in</strong>gs of a farm. This subject is currently be<strong>in</strong>g<strong>in</strong>vestigated with regard to potential effects on health offarmer families <strong>and</strong> neighbour<strong>in</strong>g residential. At the sametime, a F<strong>in</strong>nish study has <strong>in</strong>dicated that newborns’ exposureto microbes related to livestock farm<strong>in</strong>g dim<strong>in</strong>ishesthe risk for the child to develop allergies (Oml<strong>and</strong> O. et al.2002).SummaryOdour is one of the most remarkable environmental hazardscaused by livestock farm<strong>in</strong>g. Odour is annoy<strong>in</strong>g peopleliv<strong>in</strong>g <strong>in</strong> the neighborhood of farm<strong>in</strong>g units <strong>and</strong> odour<strong>in</strong>conveniencies may cause compla<strong>in</strong><strong>in</strong>g <strong>in</strong> the vic<strong>in</strong>ity ofproduction units.A major part of the on-go<strong>in</strong>g projects on air emissions<strong>from</strong> agricultural sources relates to monitor<strong>in</strong>g <strong>and</strong> dim<strong>in</strong>ish<strong>in</strong>ggreenhouse gases. There is, however a need to revisethe current general set of guidel<strong>in</strong>es for livestock production<strong>and</strong> base them on the actual odour impact. Very littledata is available e.g. on odour emissions <strong>from</strong> cow sheds<strong>and</strong> fur production.A major odour source is the application of slurry <strong>in</strong> thefields. These <strong>in</strong>termittent fugitive odour sources are difficultto regulate <strong>and</strong> control. Investigation <strong>in</strong> the odouremission <strong>and</strong> annoyance aris<strong>in</strong>g <strong>from</strong> spread<strong>in</strong>g slurry <strong>in</strong>the field would function as a base for further guidel<strong>in</strong>es.Exposure to high levels of endotox<strong>in</strong> is particularly welldocumented <strong>in</strong> many types of farm<strong>in</strong>g, but other substancesof microbiologic orig<strong>in</strong> such as peptidoglycans <strong>and</strong> β-glucans are present <strong>in</strong> high concentrations.Reduction of life quality <strong>in</strong> cities downstream <strong>from</strong> livestockfarm<strong>in</strong>g some studies have been conducted to <strong>in</strong>vestigatepossible negative effects of exposure <strong>from</strong> thesefacilities.ReferencesAttwood P., Brouwer R., Ruigewaard P., Versloot P., de, D. HeederikW. R., Boleij J. S., (1987). A study of the relationship between airbornecontam<strong>in</strong>ants <strong>and</strong> environmental factors <strong>in</strong> Dutch sw<strong>in</strong>e conf<strong>in</strong>ementbuild<strong>in</strong>gs, American Industrial Hygiene Association Journal,48(8), 745-751.Avery, R. C., W<strong>in</strong>g S., Marshall S. W., Schiffman S. S. (2004). Odor<strong>from</strong> <strong>in</strong>dustrial hog farm<strong>in</strong>g operations <strong>and</strong> mucosal immune function<strong>in</strong> neighbors, Archives of Environmental Health, 59, 101-108,Beaman A. L. (1988). Anovel Approach to estimate the Odour ConcentrationDistribution <strong>in</strong> the Community. Atmos. Environ. 22, pp. 561-567Cormier Y., Boulet L. P., Bedard G., Tremblay G. (2004). Respiratoryhealth of workers exposed to sw<strong>in</strong>e conf<strong>in</strong>ement build<strong>in</strong>gs only or toboth sw<strong>in</strong>e conf<strong>in</strong>ement build<strong>in</strong>gs <strong>and</strong> dairy barns, Sc<strong>and</strong><strong>in</strong>avian Journalof Work, Environment <strong>and</strong> Health, 17, 269-275.Donham K. J., Popendorf W., Palmgren U., Larsson L. (1986). Char-


130acterization of dusts collected <strong>from</strong> sw<strong>in</strong>e conf<strong>in</strong>ement build<strong>in</strong>gs,American Journal of Industrial Medic<strong>in</strong>e, 10(3), 294-297.Ducha<strong>in</strong>e C., Grimard Y., Cormier Y. (2000). Influence of build<strong>in</strong>gma<strong>in</strong>tenance, environmental factors, <strong>and</strong> seasons on airborne contam<strong>in</strong>antsof sw<strong>in</strong>e conf<strong>in</strong>ement build<strong>in</strong>gs., American Industrial HygieneAssociation Journal, 61, 56-63.Eder W., Klimecki W., Yu L., <strong>von</strong> Mutius E., Riedler J., Braun-Fahrl<strong>and</strong>er C., Nowak D., Holst O., Mart<strong>in</strong>ez F. D. (2006). Associationbetween exposure to farm<strong>in</strong>g, allergies <strong>and</strong> genetic variation <strong>in</strong>CARD4/NOD1, Allergy, 61, 1117-1124.Eduard W., Douwes J., Omenaas E., Heederik D. (2004). Do farm<strong>in</strong>gexposures cause or prevent asthma? Results <strong>from</strong> a study of adult Norwegianfarmers, Thorax, 59, 381-386.Ege M. J., Bieli C., Frei R., van Strien R. T., Riedler J., UblaggerE., Schram-Bijkerk D., Brunekreef B., van Hage M., ScheyniusA., Pershagen G., Benz M. R., Lauener R., <strong>von</strong> Mutius E., Braun-Fahrl<strong>and</strong>er C., the Parsifal Study Team (2006). Prenatal farm exposureis related to the expression of receptors of the <strong>in</strong>nate immunity <strong>and</strong>to atopic sensitization <strong>in</strong> school-age children, Journal of Allergy <strong>and</strong>Cl<strong>in</strong>ical Immunology, 117(4), 817-823.Mirabelli M. C., W<strong>in</strong>g S., Marshall S. W., Wilcosky T. C. (2006).Asthma symptoms among adolescents who attend public schools thatare located near conf<strong>in</strong>ed sw<strong>in</strong>e feed<strong>in</strong>g operations, Pediatrics, 118,e66-e75.Oml<strong>and</strong> O. (2004). Exposure <strong>and</strong> respiratory health <strong>in</strong> farm<strong>in</strong>g <strong>in</strong> temperatezones--a review of the literature, Annals of Agricultural <strong>and</strong> EnvironmentalMedic<strong>in</strong>e, 9, 119-136.Oml<strong>and</strong> O., Sigsgaard T., Pedersen O. F., Miller M. R. (2002). Theshape of the maximum expiratory flow-volume curve reflects exposure<strong>in</strong> farm<strong>in</strong>g, Annals of Agricultural <strong>and</strong> Environmental Medic<strong>in</strong>e, 7(2),71-78.Preller L., Heederik D., Boleij J. S., Vogelzang P. F., Tielen M. J.(1995). Lung function <strong>and</strong> chronic respiratory symptoms of pig farmers:focus on exposure to endotox<strong>in</strong>s <strong>and</strong> ammonia <strong>and</strong> use of dis<strong>in</strong>fectants,Occupational <strong>and</strong> Environmental Medic<strong>in</strong>e, 52, 654-660.Rantakrans E., Savunen T. (1995). Modell<strong>in</strong>g of the Dispersion ofOdours. Hels<strong>in</strong>ki: F<strong>in</strong>nish Meteorological Institute, Publications onAir Quality.Schulze A., van Strien R., Ehrenste<strong>in</strong> V., Schierl R., Kuchenhoff H.,Radon K. (2006). Ambient endotox<strong>in</strong> level <strong>in</strong> an area with <strong>in</strong>tensivelivestock production, Annals of Agricultural <strong>and</strong> Environmental Medic<strong>in</strong>e,13(1), 87-91.Takai H., Pedersen S., Johnsen J. O., Metz J. H. M., Groot KoerkampP. W. G., Uenk G. H., Philips V. R., Holden M. R., Sneath R.W.,Short J. L., White R. P., Hartung J., Seedorf J., Schröder M.,L<strong>in</strong>kert K. H., Wathes C. M. (1998). Concentrations <strong>and</strong> Emissionsof Airborne Dust <strong>in</strong> Livestock Build<strong>in</strong>gs <strong>in</strong> Northern Europe, Journalof Agricultural Eng<strong>in</strong>eer<strong>in</strong>g Research, 70, pp. 59-77.W<strong>in</strong>g S., Wolf S. (2002). Intensive livestock operations, health, <strong>and</strong> qualityof life among eastern North Carol<strong>in</strong>a residents, Environ Health Perspect,108, pp. 233-238.


W. Haunold / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 131Application of tensid mixed fog for seperation of organic/biologic aerosolsW. Haunold 1AbstractThe purification process <strong>in</strong> the atmosphere by fog <strong>and</strong>clouds is the most effective way to remove aerosol particleseven <strong>in</strong> <strong>in</strong>dustrial applications. We have developeda seperation device which imitated the natural process byartificial fog produced for <strong>in</strong>dustrial use. Tensids added tothe water are coat<strong>in</strong>g the t<strong>in</strong>y fog-droplets. This coat<strong>in</strong>g enablethe fog to absorb organic emissions as well as biologicactive aerosols high efficiently. With<strong>in</strong> a very short timeof contact the adsorbed material will be removed togetherwith the fog-droplets. This presentation will show first applicationat an <strong>in</strong>dustrial site.Keywords : adsorption aerosol, waste-air purification,germ reduction, germ seperationIntroductionNew emission rules for the release of organic <strong>and</strong> biologicalactive aerosols lead many companies <strong>in</strong> the <strong>in</strong>dustrial<strong>and</strong> agricultural sector to serious problems. CFU, (colonyform<strong>in</strong>g units) by bacteria, fungus <strong>and</strong> virus are hard to beremoved out of the airstream. Our technique will help thesecopnpanies to catch the limits.By us<strong>in</strong>g t<strong>in</strong>y, floatable fog-droplets a very efficient adsorptionmedium at low costs is created.Droplets produced with with special laser drilled nozzlesat 50 – 70 bar pressure.They have a diameter of 5 – 20 micron, like natural fog.The fog is airborne <strong>and</strong> therefore rema<strong>in</strong>s <strong>in</strong> the air-massup to several m<strong>in</strong>utes (figure 1).1 gram of water dispersed as fog has a surface area of approximately0.5 m². Aqueous fog can be acidic <strong>and</strong> alkal<strong>in</strong>eactivated <strong>and</strong> is <strong>in</strong> this form very efficient to reduce gaseslike H 2S <strong>and</strong> NH 3<strong>in</strong> the exhaust air. The time needed toneutralize pH active gases with pH activated fog <strong>and</strong> is lessthan 1 second.WaterSurfactantPumpNozle NozzleSpraySurfactantcoatedfog-tropletsFigure 1:Water conta<strong>in</strong><strong>in</strong>g an mixture of surfactants is sprayed by high pressurenozzles to generate a fogThe efficiency of adsoption of organic <strong>and</strong> odorus substancesare strongly <strong>in</strong>creased by mix<strong>in</strong>g of only one percentof the patented additive tensids <strong>in</strong> fog droplets.1Institute of Atmosphere <strong>and</strong> Environment, WG Prof. Jaeschke, University Frankfurt, Germany


132Tensides are amphiphile molecules which comb<strong>in</strong>e a lipophilic<strong>and</strong> a hydrophilic part (figure 2).Surfactantcoatedfog- tropletLypophilegas <strong>and</strong>aerosoleAdsorbed organicmaterial on thefog-tropletsctantreactiontimeNonpolarLipophilFigure 2:HydrophilPolarStructure of a tensidsTensids settle rather fast on the fog-droplets surface <strong>and</strong>cause an organic, lipophilic sk<strong>in</strong> around the droplet.The composition of tensids can be optimized for differenttypes of emission „Tailer „Taler made Fog“. Even high hgh hydrophobicsubstances are adsorbed.The adsorption efficiency relays on the total surface areaof the fog. The surface area is controlled by the droplet size<strong>and</strong> the total mass of fog waterAerosol particles <strong>and</strong> organic molecules are reach<strong>in</strong>g thesurface of fog droplets by turbulence <strong>and</strong> molecular diffusionmotion, where they were adsorbed (figure (fgure 3).Figure 3:Organic molecules <strong>and</strong> aerosol particles are connect<strong>in</strong>g connectng on the surface ofthe droplets where they are absorbedFigure 4 shows the efficiency of the procedure as functionof the droplet size <strong>and</strong> time of contact. So far testswere performed with fog droplets <strong>in</strong> the size range of 1 upto 1000 µm.Reduction efficiency [%]1009080706050403020100droplet size1 µm5 µm15 µm50 µm100 µm500 µm1000 µm1 2 3 4 5 6Reaction time [s]Figure 4:Efficeiency of smell reduction as function of time of contact <strong>and</strong> droplet size


W. Haunold / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 133Pollutants absorbed by fog-droplets can be scavenged bythe aid of demisters.With this set up, air-pollutants are separated <strong>from</strong> the airtogether with the reagents (figure (fgure 5).A sterilisation of the germs s is not necessary they arewashed out by the demistor.Air streamDemistorCleanAirFigure 5:Separation of fog <strong>and</strong> germsWastewater10 g of fog activated with tensids per m³ waste air is ableto elim<strong>in</strong>ate more than 80 % of colony form<strong>in</strong>g micro organismswith<strong>in</strong> 5 seconds of contact. After contact the fogis separated with a demistor <strong>and</strong> all absorbed aerosols areremoved. The result is a germ loaded liquid to be dra<strong>in</strong>edoff n the reaction reacton conta<strong>in</strong>er contaner <strong>and</strong> s is run off nto <strong>in</strong>to the sewagesystem(figure (fgure 6 ).Sofar <strong>in</strong>stalled systems were build <strong>in</strong> customary conta<strong>in</strong>ers.The fog is created by apply<strong>in</strong>g fog-nozzles at theair-<strong>in</strong>let of the conta<strong>in</strong>er. The conta<strong>in</strong>ers are f<strong>in</strong>ished withsta<strong>in</strong>less steel sheet-metal <strong>and</strong> can h<strong>and</strong>le up to 50.000 m 3air flow per hour for germ reduction. Smaller units for testsare available (figure (fgure 7 <strong>and</strong> 8).InSprayFogAerosol / BacteriaDemistorOutFigure 7:Setup with st<strong>and</strong>ard conta<strong>in</strong>er (20 Feet), air flow 30 000 m 3 /h, water300 l/h <strong>and</strong> 40 Nozzle; picture: Fog SystemsTable 1:Values certificated by SGS Institute FreseniusBefore conta<strong>in</strong>erCladosporiumspp.Penicilliumspp.AspergillusflavusAspergillusfumigatusAspergillusnigerAspergillusnidulansSterilecoloniesAfter conta<strong>in</strong>er7500 Cladosporium 137525001750SterilecoloniesCFU number concentration taken before <strong>and</strong> after the separation conta<strong>in</strong>er.Acremoniumsp.63251625 Alternaria sp. 251250 Botrytis sp. 25375375AspergillusfumigatusAureobasidiumpullulans


134Technicum: Up to 100 m 3 /hLabscale: Up to 50 m 3/hFigure 8:Tests <strong>and</strong> measurements are possible <strong>in</strong> various fields of application <strong>and</strong> <strong>in</strong> different scalesThe effectiveness of the procedure was shown predom<strong>in</strong>antlyso far <strong>in</strong> the field of smell reduction.First results <strong>in</strong> the <strong>in</strong>dustrial <strong>and</strong> laboratory range showvery high efficiencies of germ seperation.Com<strong>in</strong>g research projects shall show the efficiency of thesystem with virus <strong>in</strong>fected waste air-treatment.Table 2:References <strong>and</strong> ProjectsLife stockTextileprocess<strong>in</strong>gEmissions <strong>from</strong>mix<strong>in</strong>g vesselsEmissions <strong>from</strong>steel plantsWaste treatmentsiteWaste treatmentsiteGE = Odor UnitsKBE = CFUTest <strong>in</strong> pig farms ( >1000 animals)pH 94% GEBitumen + Oil + m<strong>in</strong>eral dustpH >7 / 2 % surfactants reduction 96% GEGaseous comp. <strong>from</strong> selective process stepspH >7 / 2% surfactants reduction 96% GEDecomposition of gases (aerob <strong>and</strong> anaerob)pH mix / 2% surfactants reduction 85% GEGerms <strong>in</strong> sort<strong>in</strong>g area for waste goodspH < 7 / 2% surfactants reduction KBE >90%ReferencesDBU AZ 08975 Deutsche Bundesstiftung Umwelt DBU und UniversitätFrankfurt Entwicklung e<strong>in</strong>es Verfahrens zur Absorption <strong>von</strong> übel riechendenEmissionen aus L<strong>and</strong>wirtschaft, Kommunalen Entsorgungsbetriebenund Industrie.Seibert M., Fichtner W. CLB Chemie <strong>in</strong> Labor und Biotechnik, 57. JahrgangHeft 08/2006 M<strong>in</strong>derung biotischer Luftverunre<strong>in</strong>igungen durche<strong>in</strong> AbsorptionsnebelverfahrenSchumann M. (2000). Dissertation Zentrum für Umweltforschung,Universität Frankfurt Nutzungsmöglichkeiten der Chemisorption mitNebeltropfen zur M<strong>in</strong>derung der Emission <strong>von</strong> Ammoniak, Schwefelwasserstoffund organischen Gasen aus Industriebetrieben. SFB 233„Dynamik und Chemie der Hydrometeore“Eur. Pat. 0 972 556 A1 „Adsorption <strong>von</strong> hydrophoben Gaskomponentenund/oder Aerosolen aus e<strong>in</strong>er Gasphase“ CLIMAROTEC GmbH BadHomburg v.d.H. ( Patent erteilt 22.12.2004 )Jaeschke W., Haunold W., Schumann M (2001). Entwicklung e<strong>in</strong>esVerfahrens zur Absorption <strong>von</strong> übelriechenden Emissionen aus L<strong>and</strong>wirtschaftund Industrie.Bioabfallkompostierung – Neue Entwicklungen und Lösungsmöglichkeitenzur Reduzierung <strong>von</strong> Geruchsemissionen. Hessisches L<strong>and</strong>esamtfür Umwelt und Geologie HLUGAcknowledgementThe support by the Deutsche Bundesstiftung UmweltDBU <strong>and</strong> BASF AG Ludwigshafen, Germany is gratefullyacknowledged.


G. Gustafsson et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 135Airborne dust control for floor hous<strong>in</strong>g systems for lay<strong>in</strong>g hensG. Gustafsson 1 <strong>and</strong> E. <strong>von</strong> Wachenfelt 1AbstractFloor hous<strong>in</strong>g systems for lay<strong>in</strong>g hens are be<strong>in</strong>g re-established<strong>in</strong> Sweden. Compared to traditional cage systems, theair <strong>in</strong> floor hous<strong>in</strong>g systems may be more polluted with dust.Investigations about how different factors affect concentration<strong>and</strong> generation of dust <strong>in</strong> a floor hous<strong>in</strong>g systemfor lay<strong>in</strong>g hens have therefore been carried out at JBT:sresearch station Alnarp Södergård. A climate chamber wasequipped with a floor hous<strong>in</strong>g system. How age of hens,storage time of manure, ventilation rate <strong>and</strong> bedd<strong>in</strong>g materialsaffected concentration <strong>and</strong> release of dust were <strong>in</strong>vestigateddur<strong>in</strong>g two production cycles.The concentration <strong>and</strong> generation of dust as well as theefficiency of different dust reduc<strong>in</strong>g measures were <strong>in</strong>vestigated<strong>and</strong> analysed <strong>in</strong> order to improve the underst<strong>and</strong><strong>in</strong>gof how different factors <strong>in</strong>fluence dust conditions <strong>in</strong> thesehous<strong>in</strong>g systems.Settl<strong>in</strong>g of dust was a more important mechanism <strong>in</strong> themass balance of dust than ventilation rate which reducedthe <strong>in</strong>fluence of ventilation rate as a dust reduc<strong>in</strong>g measure.A major part of the generated dust settled on differentsurfaces <strong>in</strong>side the build<strong>in</strong>g. The settl<strong>in</strong>g rate of dust wasaffected by the concentration of dust <strong>in</strong> the air. The settledamount of dust also stood <strong>in</strong> relation to the floor area of thestable. An <strong>in</strong>creased ventilation rate had a limited effect onthe concentration of total dust due to the importance of thesettl<strong>in</strong>g of the dust.Dust release was also <strong>in</strong>vestigated when us<strong>in</strong>g six differentbedd<strong>in</strong>g materials, namely; gravel, clay pellets, peat,wood shav<strong>in</strong>gs, chopped straw <strong>and</strong> chopped paper. Claypellets <strong>and</strong> peat resulted <strong>in</strong> lowest concentrations of dust.Automatic spray<strong>in</strong>g of small droplets of water reducedthe dust concentration <strong>in</strong> four trials with different bedd<strong>in</strong>gmaterials (chopped paper, clay pellets, peat <strong>and</strong> woodshav<strong>in</strong>gs).Spray<strong>in</strong>g a mixture of rape seed oil <strong>in</strong> water was also effectivewith an automatic spray<strong>in</strong>g system.From our f<strong>in</strong>d<strong>in</strong>gs <strong>from</strong> the <strong>in</strong>vestigation we will recommendus<strong>in</strong>g clay pellets as bedd<strong>in</strong>g material <strong>and</strong> us<strong>in</strong>g aspr<strong>in</strong>kler system spray<strong>in</strong>g water droplets frequently <strong>in</strong>floor hous<strong>in</strong>g systems for lay<strong>in</strong>g hens.Keywords: lay<strong>in</strong>g hens, dust, climate, ventilation, bedd<strong>in</strong>g1 IntroductionHartung J. (1998) states that poultry house air has muchhigher dust concentrations than for other animals. SeedorfJ. (2000) demonstrated that particle emission <strong>in</strong> fowl keep<strong>in</strong>gwas 22 times higher (3165 mg h -1 per livestock unit)than for cattle keep<strong>in</strong>g <strong>and</strong> four times higher than for pigkeep<strong>in</strong>g.Regard<strong>in</strong>g lay<strong>in</strong>g hens, floor hous<strong>in</strong>g systems are be<strong>in</strong>gre-established <strong>in</strong> Sweden s<strong>in</strong>ce animal welfare legislationstipulates that systems for lay<strong>in</strong>g hens must <strong>in</strong>clude lay<strong>in</strong>gnests <strong>and</strong> perches <strong>and</strong> provide access to litter. Comparedto traditional cage systems, the air <strong>in</strong> floor hous<strong>in</strong>gsystems may be more polluted with dust because of highactivity <strong>and</strong> more bedd<strong>in</strong>g material (Gustafsson G. et al.1990, Hauser R. H. 1990, Lyngtveit T. 1992, Drost H. et al.1992, 1993, Groot Koerkamp P. et al. 1993). The hygienicthreshold limit value for dust for occupational safety <strong>and</strong>health (Swedish National Board of Occupational Safety<strong>and</strong> Health, 2000) of 5 mg m -3 is often exceeded dur<strong>in</strong>gwork operations <strong>in</strong> floor hous<strong>in</strong>g systems for lay<strong>in</strong>g hens.Whyte R. T. et al. (1993) reported that the average <strong>in</strong>spirablefraction breathed by poultry stockmen ranged <strong>from</strong>2.1 to 28.5 mg m -3 for a complete work<strong>in</strong>g day.In <strong>in</strong>vestigations about concentrations <strong>and</strong> emissions ofairborne dust <strong>in</strong> Northern Europe (Takai H. et al. 1998)was it concluded that both <strong>in</strong>halable <strong>and</strong> respirable dustconcentrations were higher <strong>in</strong> percheries than <strong>in</strong> houses forcaged layers. Ellen H. H. et al. (2000) reported that dustconcentrations <strong>in</strong> perchery <strong>and</strong> aviary hous<strong>in</strong>g systems oftenwere four to five times higher than <strong>in</strong> cage systems.Factors affect<strong>in</strong>g dust concentrations are animal category,activity, bedd<strong>in</strong>g materials <strong>and</strong> season.Whyte R. T. (2002) reported that average <strong>in</strong>halable dustexposure by poultry stockmen for a complete work<strong>in</strong>gday <strong>in</strong> free range systems was 10.8 mg m -3 compared to4.8 mg m -3 <strong>in</strong> cage systems.Guar<strong>in</strong>o M. et al. (1999) found that dust concentration<strong>in</strong> an enclosed lay<strong>in</strong>g house was significantly higher dur<strong>in</strong>gperiods with feed distribution <strong>and</strong> scraper clean<strong>in</strong>g th<strong>and</strong>ur<strong>in</strong>g the night.Donham K. et al. (1999) reported a threshold concentrationof 2.4 mg m -3 for human health <strong>in</strong>side poultry build<strong>in</strong>gs.In order to study the generation <strong>and</strong> concentrations of dust1Swedish University of Agricultural Sciences, Department of Agricultural Biosystems <strong>and</strong> Technology, Sweden


136<strong>and</strong> their correlation to other factors a small scale poultryhouse (climate chamber) was equipped with a floor hous<strong>in</strong>gsystem. Between 333 <strong>and</strong> 392 hens were kept <strong>in</strong> thesystem dur<strong>in</strong>g the <strong>in</strong>vestigations.The objective of the <strong>in</strong>vestigations was to evaluate the<strong>in</strong>fluence of follow<strong>in</strong>g factors on dust concentration <strong>and</strong>generation:7672541232800* Age of hens* Storage of manure* Ventilation rate* Bedd<strong>in</strong>g materials* Fogg<strong>in</strong>g water droplets* Spray<strong>in</strong>g a rape seed oil mixture2 Mass balance of dustThe mean generation of dust can be described as:p = q (C o- C i) + S A (1)where: p is the production of dust <strong>in</strong> mg h -1 ;C o<strong>and</strong> C iare the total dust concentrations <strong>in</strong> air outlets <strong>and</strong><strong>in</strong>lets <strong>in</strong> mg m -3 ;S is the settl<strong>in</strong>g rate of dust on floor surfaces <strong>in</strong> mg m -2 h -1 ;<strong>and</strong> A is the area of the floor <strong>in</strong> m 2 .3 Materials <strong>and</strong> methodsHow age of hens, storage time of manure, ventilationrate, bedd<strong>in</strong>g materials <strong>and</strong> spray<strong>in</strong>g water droplets or anrape seed oil mixture affected generation <strong>and</strong> concentrationof dust were <strong>in</strong>vestigated dur<strong>in</strong>g two production cycles atJBT:s research station Alnarp Södergård.3.1 Hous<strong>in</strong>g systemThe <strong>in</strong>vestigations were carried out <strong>in</strong> a climate chamberequipped with a floor hous<strong>in</strong>g system, figure 1. The chamberwas surrounded by a temperature controlled air spacewhere the air temperature <strong>and</strong> supply air temperature to thechamber were varied between 0 <strong>and</strong> 16 º C.The hous<strong>in</strong>g system conta<strong>in</strong>ed a bedd<strong>in</strong>g area, a manureb<strong>in</strong> area with manure conveyors below a dra<strong>in</strong><strong>in</strong>g floor <strong>and</strong>lay<strong>in</strong>g nests which were placed close to one of the walls.The bedd<strong>in</strong>g area was 1.5 m wide where six different bedd<strong>in</strong>gmaterials were <strong>in</strong>vestigated successively, namely;gravel, clay pellets, peat, wood shav<strong>in</strong>gs, chopped straw<strong>and</strong> chopped paper. The rest part of the floor which was3.0 m wide was elevated to a height of 0.6 m <strong>and</strong> equippedwith a dra<strong>in</strong><strong>in</strong>g floor.850 3010 15001. Climate controlled air space2. Air <strong>in</strong>let3 Bedd<strong>in</strong>g4. Dra<strong>in</strong><strong>in</strong>g floor5. Conveyors6. Nests7. Air outletFigure 1:The climate chamber equipped with a floor hous<strong>in</strong>g system3.2 Ventilation <strong>and</strong> climate controlMechanical ventilation was provided by a negative pressuresystem. Air <strong>in</strong>lets <strong>in</strong> the ceil<strong>in</strong>g provided the chamberwith supply air <strong>from</strong> the climate controlled area surround<strong>in</strong>gthe chamber. In these studies an exhaust fan removedair at floor level close to the manure conveyors via a slit <strong>in</strong>a duct below the lay<strong>in</strong>g nests.The temperature <strong>in</strong>side the chamber was kept at a constantlevel of 20 to 21 °C dur<strong>in</strong>g each trial. The ventilationrate could thereby also be kept constant. The constant airtemperature was ma<strong>in</strong>ta<strong>in</strong>ed by controll<strong>in</strong>g the amount ofextra heat <strong>from</strong> heat pipes <strong>in</strong> the chamber.The ventilation rate was manually regulated with a damper<strong>in</strong> an exhaust air duct.3.3 MeasurementsThe ventilation rate was calculated <strong>from</strong> air velocitiesmeasured two times per trial <strong>in</strong> 5 positions of the cross sectionof the exhaust air duct (φ 400 mm) by us<strong>in</strong>g a hot wireanemometer (GGA- 65P, Alnor Instrument CO, Skokie,Ill<strong>in</strong>ois, USA).The efficiencies of different treatments were determ<strong>in</strong>edby gravimetric measurements of sampled dust masses on37 mm diameter dust filters (Millipore with an air flowrate of 1.9 l/m<strong>in</strong>) <strong>in</strong> SKC cassettes located <strong>in</strong> the middleof the barn at 1.7 m height above the floor (breath<strong>in</strong>g zoneof humans) but also <strong>in</strong> the exhaust air. Each sampl<strong>in</strong>g periodwas 3 - 4 days. Sampl<strong>in</strong>g was done 15 m<strong>in</strong>utes eachhour controlled by a timer. Settled dust, which was sampledon five 0.230 m 2 settl<strong>in</strong>g plates located at a height of2.0 m (height was chosen so that they could not be moveddur<strong>in</strong>g work operations) was also gravimetrically determ<strong>in</strong>ed.Each measurement was carried out over a period of


G. Gustafsson et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 1373 - 4 days <strong>in</strong> order to collect enough dust on the settl<strong>in</strong>gplates. Different treatments were compared to referencevalues measured before <strong>and</strong> after the treatments.The generation of dust was determ<strong>in</strong>ed accord<strong>in</strong>g toequation 1.3.4 AnalysesDifferent measures to reduce the generation <strong>and</strong> concentrationof dust was analysed by us<strong>in</strong>g the follow<strong>in</strong>g properties<strong>in</strong> the mass balance <strong>in</strong> equation 1: averages of totaldust concentrations C omeasured <strong>in</strong> the exhaust air; averageof settl<strong>in</strong>g rate of dust on settl<strong>in</strong>g plates S; generation ofdust p as def<strong>in</strong>ed by equation 1;. Concentration <strong>in</strong> <strong>in</strong>let air,C i, was assumed neglectable compared to C o.3.5 InvestigationsThe <strong>in</strong>fluence of age of the hens on release of dust was<strong>in</strong>vestigated dur<strong>in</strong>g two production cycles.The <strong>in</strong>fluence of <strong>in</strong>creas<strong>in</strong>g storage time of manure <strong>in</strong> thebedd<strong>in</strong>g area was <strong>in</strong>vestigated dur<strong>in</strong>g periods with dailymanure removal <strong>from</strong> the conveyors.The <strong>in</strong>fluence of ventilation rate was determ<strong>in</strong>ed at constantair temperature (20 to 21 ºC) at vary<strong>in</strong>g ventilationrates.Six different bedd<strong>in</strong>g materials were <strong>in</strong>vestigated namely;gravel, clay pellets, peat, wood shav<strong>in</strong>gs, choppedstraw <strong>and</strong> chopped paper at ventilation rates <strong>in</strong> the range of1.04 – 1.13 m 3 hen -1 h -1 .How different amounts of water which was fogged <strong>in</strong>fluenceddust concentration was <strong>in</strong>vestigated us<strong>in</strong>g four differentbedd<strong>in</strong>g materials (chopped paper, clay pellets, peat<strong>and</strong> wood shav<strong>in</strong>gs). Full cone nozzles (Fulljet 5LVS) wereused. The equipment for controll<strong>in</strong>g the spray<strong>in</strong>g time ispresented <strong>in</strong> figure 2.Aut OffTime relayHygrostateTimerWater Pump Reducer valve NozzleFigure 2.Equipment for control of spray<strong>in</strong>g time <strong>and</strong> <strong>in</strong>tervals for the spray<strong>in</strong>gnozzleSpray<strong>in</strong>g was done twice per hour dur<strong>in</strong>g the light period4.30 a.m. – 5.30 p.m.. Different amounts of water were <strong>in</strong>vestigatedby vary<strong>in</strong>g the spray<strong>in</strong>g time with a time relay.The effect on dust concentration by fogg<strong>in</strong>g water dropletswas compared with reference periods without any fogg<strong>in</strong>g.The effect of spray<strong>in</strong>g different amounts of a mixture of10% rapeseed oil <strong>in</strong> water on dust concentration was also<strong>in</strong>vestigated. The mixture was supplied once per day withthe same equipment as for water droplets.4 Results <strong>and</strong> discussion4.1 Age of hensIt could not be proved that the age of the hens had any<strong>in</strong>fluence on the generation of dust.Obviously the dependence of age <strong>in</strong> this type of hous<strong>in</strong>gsystem for layers differs with the generation of broilerswere it has been reported that the generation of dust<strong>in</strong>creases with age <strong>and</strong> weight of chickens (Gustafsson G.et al. 1990). An explanation may be that the weight of thehens is relatively constant dur<strong>in</strong>g the production period.4.2 Storage of manureThe storage time of manure <strong>in</strong> the bedd<strong>in</strong>g had no significant<strong>in</strong>fluence on the generation of dust. Accumulation ofmanure <strong>in</strong> the bedd<strong>in</strong>g seems therefore not to be the majorsource for the generation of dust.4.3 Ventilation rateThe ventilation rate had a limited dilut<strong>in</strong>g effect on dustconcentration, figure 3.Dust concentration, mg m 36543210Figure 3:0 1 2 3 43 -1 -1Ventilation rate, m hen hTotal dust concentrations at different ventilation rates <strong>in</strong> a trial with gravelas bedd<strong>in</strong>g materialEven if dust concentration decreased at <strong>in</strong>creas<strong>in</strong>g ventilationrate, it was not an ideal dilution depend<strong>in</strong>g on ventilationrate. The variations <strong>in</strong> dust concentrations werelarge which <strong>in</strong>dicates that there were other factors as activ-


138ity <strong>in</strong> the build<strong>in</strong>g environment which were more importantfor the dust concentration than ventilation rate. Theventilation rate did not either have any significant <strong>in</strong>fluenceon the generation of dust. The average dust generationwas 27.9 mg hen -1 h -1 when the ventilation rate was<strong>in</strong> the range of 0.9 – 3.4 m 3 hen -1 h -1 . The <strong>in</strong>vestigationsshowed that it was a limited amount of the dust generatedwhich was exhausted with the ventilation air, figure4. The reason was that the major part of the dust producedsettled on different surfaces. This result is <strong>in</strong> accordancewith results earlier reported for sw<strong>in</strong>e <strong>and</strong> chickens(Nilsson C. et al. 1987, Gustafsson G. et al. 1990).Ratio of exhausted dust, %40200Figure 402y = -0.96x + 11.9x + 4.72R = 0.931 2 3 43 -1 -1Ventilation rate, m hen hRatio of exhausted dust at different ventilation rates <strong>in</strong> a trial with gravelas bedd<strong>in</strong>g material4.4 Settl<strong>in</strong>g of dustThe settl<strong>in</strong>g rate of dust, S, was also analysed as functionof the dust concentration <strong>in</strong> the air, see figure 5. The settl<strong>in</strong>grate <strong>in</strong>creased with <strong>in</strong>creas<strong>in</strong>g concentration.-2 -1Sett<strong>in</strong>g rate, mg m h15010050Figure 5:y = 29.7x - 14.52R = 0.7700 1 2 3 4 5Dust concentration, mg m -3Settl<strong>in</strong>g rate of dust as function of dust concentration when gravel wasbedd<strong>in</strong>g material4.5 Bedd<strong>in</strong>g materialsTotal dust concentrations with different bedd<strong>in</strong>g materialsare presented <strong>in</strong> table 1 when the ventilation rates were<strong>in</strong> the range of 1.04 – 1.13 m 3 hen -1 h -1 .The level of concentration of dust was about the same forthe bedd<strong>in</strong>g materials wood shav<strong>in</strong>gs, clay pellets, peat <strong>and</strong>chopped straw. Especially gravel resulted <strong>in</strong> higher concentrations,however, not statistically different.Regard<strong>in</strong>g the generation of dust was the picture aboutthe same as for concentration of dust except for peat <strong>and</strong>chopped paper as bedd<strong>in</strong>g materials, table 2. The high dustproduction with peat depended on a high settl<strong>in</strong>g rate.Table 1:Total dust concentration (mg m -3 ) with different bedd<strong>in</strong>g materials. Ventilationrate <strong>in</strong> the range of 1.04 – 1.13 m 3 hen -1 h -1Bedd<strong>in</strong>g:Averagemg m -3M<strong>in</strong>imummg m -3Maximummg m -3Gravel 4.7 4.0 5.5Wood shav<strong>in</strong>gs 2.3 2.1 2.4Clay pellets 1.8 1.7 1.9Peat 1.7 1.2 2.3Chopped straw 2.1 1.8 2.3Chopped paper 2.6 2.2 2.9Table 2:Total dust production (mg hen -1 h -1 ) with different bedd<strong>in</strong>g materials. Ventilationrate <strong>in</strong> the range of 1.04 – 1.13 m 3 hen -1 h -1Bedd<strong>in</strong>g:Averagemg hen -1 h -1M<strong>in</strong>imummg hen -1 h -1Maximummg hen -1 h -1Gravel 27.4 26.6 28.3Wood shav<strong>in</strong>gs 11.4 10.4 12.4Clay pellets 8.5 7.6 9.8Peat 21.7 12.1 35.3Chopped straw 16.8 15.7 17.8Chopped paper 22.7 18.5 25.54.6 Fogg<strong>in</strong>g water dropletsHow different amounts of water which was fogged <strong>in</strong>fluenceddust concentration was <strong>in</strong>vestigated us<strong>in</strong>g fourdifferent bedd<strong>in</strong>g materials. The effect of fogg<strong>in</strong>g wasanalysed as relative values compared to the levels withoutany fogg<strong>in</strong>g. Fogg<strong>in</strong>g resulted <strong>in</strong> a considerable reductionof dust concentration <strong>in</strong> all trials. The reduction <strong>in</strong> dustconcentration was improved when the amount of water <strong>in</strong>creased,which is exemplified <strong>in</strong> figure 6.Fogg<strong>in</strong>g water droplets is obviously an effective way ofreduc<strong>in</strong>g dust concentration <strong>in</strong> this type of hous<strong>in</strong>g system.Von Wachenfelt E. (1999) has earlier reported up to 65%reduction by fogg<strong>in</strong>g water droplets <strong>in</strong> an aviary system forlay<strong>in</strong>g hens.


G. Gustafsson et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 139Relative concentration10.500 0.5 1 1.5 2 2.5-2 -1Amount of water, lm day• Gravel as bedd<strong>in</strong>g material generated the highest concentrations.From our f<strong>in</strong>d<strong>in</strong>gs <strong>from</strong> the <strong>in</strong>vestigations we will recommendus<strong>in</strong>g clay pellets as bedd<strong>in</strong>g material <strong>and</strong> us<strong>in</strong>ga spr<strong>in</strong>kler system spray<strong>in</strong>g water droplets frequently <strong>in</strong>floor hous<strong>in</strong>g systems for lay<strong>in</strong>g hens.6 AcknowledgementsFigure 6:Relative dust concentration (1.0 is reference level) at different amounts ofwater sprayed. Wood shav<strong>in</strong>gs was bedd<strong>in</strong>g material4.7 Spray<strong>in</strong>g a rape seed oil mixtureThe effect of shower<strong>in</strong>g a mixture of 10 % rape seed oil<strong>in</strong> water on dust concentration was also <strong>in</strong>vestigated, figure7. The mixture was showered with full cone nozzleslocated above the dra<strong>in</strong><strong>in</strong>g floor. Shower<strong>in</strong>g the oil mixturereduced the dust concentration with 30 to 50 %. The oilmixture had effect at as low amounts as 0.003 l m -2 day -1 .Relative concentration10.5Figure 7:000.05 0.1-2 -1Amount of oil, lm dayRelative total dust concentration (1.0 is reference level) at differentamounts of a sprayed oil mixture5 ConclusionsThe follow<strong>in</strong>g conclusions can be drawn <strong>from</strong> the <strong>in</strong>vestigations:• There were no ideal dilut<strong>in</strong>g effect of ventilation rate ondust concentration.• A major part of the produced dust settled on differentsurfaces.• Spray<strong>in</strong>g water droplets or an oil mixture reduced dustconcentration.• The feather conditions were very good when waterdroplets or an oil mixture were sprayed.• Bedd<strong>in</strong>g of clay pellets or peat generated the lowestconcentrations.F<strong>in</strong>ancial support <strong>from</strong> the Swedish Farmers´ Foundationfor Research <strong>and</strong> the Swedish Board of Agriculture isgratefully acknowledged.7 ReferencesDonham K., Cumro D. (1999). Sett<strong>in</strong>g maximum dust exposure levelsfor people <strong>and</strong> animals <strong>in</strong> livestock facilities. In: Livestock EnvironmentIV. pp 93-110. American Society of Agricultural Eng<strong>in</strong>eers.Drost H., van den Drift D. W. (1992). Workng Work<strong>in</strong>g condtons conditions n <strong>in</strong> an av- aviarysystem for lay<strong>in</strong>g hens. World´s Poultry Congress, Amsterdam, theNetherl<strong>and</strong>s 20- 24 September 1992. Proceed<strong>in</strong>gs Vol 2, pp 734-738.Drost H., van den Drift D. W. (1993). Health effects <strong>in</strong> n relation relaton to exposureto aerial components <strong>in</strong> aviary systems for layers. Proceed<strong>in</strong>gsXXV CIOSTA CIGR Congress, May 10-13, 1993, Wagen<strong>in</strong>gen, theNetherl<strong>and</strong>s, pp 198-204.Ellen H. H., Bottcher R. W., <strong>von</strong> Wachenfelt E., Takai H. (2000). Dustlevels <strong>and</strong> control methods <strong>in</strong> poultry houses. Journal of AgriculturalSafety <strong>and</strong> Health, 6(4): 275-282.Groet Koerkamp P., Drost H. (1993). Air contam<strong>in</strong>ation <strong>in</strong> poultry productionsystems. Fourth European Symposium on Poultry Welfare.Ed<strong>in</strong>burgh. Great Brita<strong>in</strong>.Guar<strong>in</strong>o M., Caroli A., Navarotto P. (1999). Dust concentration <strong>and</strong>mortality distribution <strong>in</strong> an enclosed lay<strong>in</strong>g house. Transactions of theASAE, 42(4): 1127-1133.Gustafsson G., Mårtensson L. (1990). Gaser och damm i fjäderfästallar(Gases <strong>and</strong> dust <strong>in</strong> poultry houses). Report 68. Lund, Sweden: SwedishUniv. Agric. Sciences, Dep. of Farm Build<strong>in</strong>gs. (In Swedish).Hartung J. (1998). Nature <strong>and</strong> amount of aerial pollutants fom livestockbuild<strong>in</strong>gs (In German). Dtsch Terarztl Tierarztl Wochenschr. 105(6):213-6.Hauser R. H. (1990). Stallhygienische faktoren und hygienische Eiqualität<strong>in</strong> alternativen haltungsystem fur legehennen. Diss. Dss. ETH No 9136.Eidgenössischen Technischen Hochschule Zurich.Lyngtveit T. (1992). Stovmaln<strong>in</strong>g og arbeidstudier i honehus med kompaktburog aviarier. ITF report No 29. Norges l<strong>and</strong>brukshogskole, Institutfor Tekniske Fag. Ås.Nilsson C., Gustafsson G. (1987). Damm i slaktsv<strong>in</strong>stallar (Dust <strong>in</strong> fatten<strong>in</strong>gpig houses). Special report 149, 71 pp. Lund, Sweden: SwedishUniv. Agric. Sciences, Dep. of Farm Build<strong>in</strong>gs. (In Swedish).Seedorf J. (2000). Emssonen Emissionen <strong>von</strong> luftgetragenen Stauben und Mikroorganismen.L<strong>and</strong>technik L<strong>and</strong>technk 50-2, pp 182-183.Mkroor-Swedish National Board of Occupational Safety <strong>and</strong> Health. 2000.AFS (2000:3). Hygieniska gränsvärden och åtgärder mot luftföroren<strong>in</strong>gar(Occupational exposure limit values <strong>and</strong> measures aga<strong>in</strong>st aircontam<strong>in</strong>ants). Statue book of the Swedish National Board of OccupationalSafety <strong>and</strong> Health. Solna, Sweden: Swedish Work EnvironmentAuthority. (In Swedish).Takai H., Pedersen S., Johnsen J. O., Metz J. H. M., Groot Koerkamp


140P. W. G., Uenk G. H., Phillips V. R., Holden M. R., Sneath R. W.,Short J. L., White R. P., Hartung J., Seedorf J., Schröder M., L<strong>in</strong>kertK. H., Wathes C. M. (1998). Concentrations <strong>and</strong> emission of airbornedust <strong>in</strong> livestock build<strong>in</strong>gs <strong>in</strong> Northern Europe. J. Agric. Engng.Res., 1(70), 59-77.Whyte R. T. (2002). Occupational exposure of poultry stockmen <strong>in</strong> currentbarn systems for eggproduction <strong>in</strong> the United K<strong>in</strong>gdom. BritishPoultry Science, 43(3): 364-373.Whyte R. T., Williamson P. A., Lacey J. (1993). Air pollutant burdens<strong>and</strong> respiratory impairment of poultry house stockmen. In: Livestock EnvironmentIV. pp 709-717. American Society of Agricultural Eng<strong>in</strong>eers.Whyte R. T., Hartung J., Seedorf J., Schröder M., L<strong>in</strong>kert K. H.,Wathes C. M. (1998). Concentrations <strong>and</strong> emissions of airborne dust <strong>in</strong>livestock build<strong>in</strong>gs <strong>in</strong> Northern Europé. J. agric. Engng Res. 70, 59-77.Von Wachenfelt E. (1999). Dust reduction <strong>in</strong> alternative production systemsfor lay<strong>in</strong>g hens. Proceed<strong>in</strong>gs: International symposium on dustcontrol <strong>in</strong> animal production facilities, pp 261- 264. Danish Instituteof Agricultural Sciences, Dep. of Agr. Eng<strong>in</strong>eer<strong>in</strong>g, Research CentreBygholm, Horsens, Denmark.


T. H<strong>in</strong>z et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 141Measur<strong>in</strong>g particle emissions <strong>in</strong> <strong>and</strong> <strong>from</strong> a polish cattle houseT. H<strong>in</strong>z 1 , S. L<strong>in</strong>ke 1 , P. Bittner 1 , J. Karlowski 2 , <strong>and</strong> T. Kolodziejczyk 2AbstractAfter ammonia PM comes more <strong>and</strong> more <strong>in</strong> the focus of<strong>in</strong>ternational strategies of air pollution control. AdditionalPM is a factor of air quality <strong>in</strong>side the build<strong>in</strong>gs related tohealth <strong>and</strong> welfare of farmers <strong>and</strong> animals.One of the ma<strong>in</strong> sources are livestock houses of poultry<strong>and</strong> m<strong>in</strong>or pigs <strong>and</strong> cattle. Annual emissions will be calculated<strong>from</strong> activity data (animal places or numbers) <strong>and</strong>emission factors. These emission factors must be determ<strong>in</strong>edby measurements. In contrast to ammonia there areno models available to determ<strong>in</strong>e particle emissions.Effects of particles on <strong>in</strong>dividuals <strong>and</strong> the dispersion ofparticles <strong>in</strong> the ambient air strongly depend on the size thatmeans ultimately the mass of the s<strong>in</strong>gle particles. Variousfractions are def<strong>in</strong>ed by different def<strong>in</strong>itions. The papergives the most important def<strong>in</strong>itions <strong>and</strong> procedures howto measure particles <strong>in</strong> a size selective way.In a project of bilateral German-Polish cooperation <strong>in</strong>agricultural research, measurements <strong>in</strong> a dairy house werecarried out <strong>in</strong> summer <strong>and</strong> w<strong>in</strong>ter 2006. Flow rates <strong>and</strong> PMconcentration were measured <strong>in</strong>side the houses <strong>and</strong> <strong>in</strong> theexhaust of a force ventilated stable.Concentration of TSP (total dust) was below 0.6 mg/m³with higher values <strong>in</strong> summer than <strong>in</strong> w<strong>in</strong>ter, wherebymeasures <strong>in</strong>side the stable were higher than <strong>in</strong> the exhaustflow. Emissions consist of 100 % PM10.One aim of the studies was to give an improvement ofemission factors used <strong>in</strong> emission <strong>in</strong>ventory, but this spotmeasurements will give only the impression that dependenton the management these factors may be lower thanthe usually used.Keywords: dairy cattle, PM, emissions, emission factors,air qualityIntroductionThere is an <strong>in</strong>creas<strong>in</strong>g need to control emissions of particulate<strong>matter</strong> (PM). Agriculture is a substantial sourceof PM emissions. PM also reduces the air quality with<strong>in</strong>livestock build<strong>in</strong>gs with implications for the health <strong>and</strong>welfare of farmers <strong>and</strong> animals. Effects of particles on<strong>in</strong>dividuals <strong>and</strong> their dispersion <strong>in</strong> the air depend on differentparameters but strongly on their size <strong>and</strong> mass. Differenttarget–oriented def<strong>in</strong>itions are used (ISO 1996, USEPA2001), figure 1.Cumulative frequency [%]1009080706050403020100Figure 1:0 5 10 15 20 25 30 35 40Def<strong>in</strong>itions of particle fractionsThoracic ISORespirable (risk) ISOPM2,5 US EPAPM10 US EPAAerodynamic particle diameter [µm]In a bilateral German- Polish research projects, measurementswere carried out <strong>in</strong> force-ventilated build<strong>in</strong>g hous<strong>in</strong>gdairy cows. Concentration of total dust (TSP) <strong>and</strong> thePM10-fractions <strong>in</strong>side the house <strong>and</strong> the air flows throughthe exhaust ducts were measured <strong>and</strong> emission factors calculated.These values may be useful to estimate the size ofemissions <strong>and</strong> the <strong>in</strong>fluenc<strong>in</strong>g parameters.Materials <strong>and</strong> MethodsInvestigations were done on a dairy farm <strong>in</strong> the Kon<strong>in</strong>region of Pol<strong>and</strong>. 64 cows with an average milk yield of9200 kg milk per year <strong>and</strong> cow were kept <strong>in</strong> a build<strong>in</strong>g of46.25m • 12 m equipped with four temperature controlledaxial fans with a nom<strong>in</strong>al maximum flow of 5950 m 3 /heach. Figure 2 shows the floor plan of the stable <strong>and</strong> thelocations of the fans <strong>in</strong> the roof.1Institute for Technology <strong>and</strong> Biosystems Eng<strong>in</strong>eer<strong>in</strong>g, Federal Agricultural Research Centre, Braunschweig, Germany2Institute for Build<strong>in</strong>gs Mechanisation <strong>and</strong> Electrification of Agriculture, Poznan, Pol<strong>and</strong>


142BarnNEWS 30 °1982Number of cows: 20Number of w<strong>in</strong>dows: 5405MilkroomService roomCalves11244 chimneys4 47 cmNumber of cows: 35Number of w<strong>in</strong>dows: 13120045140386045474625296020421056Figure 2:Floor plan of the cattle house with exhaust open<strong>in</strong>gs locationThere was a passage <strong>in</strong> the corridor used for forage distribution.On both sides of it were forage tables <strong>and</strong> two rowsof cha<strong>in</strong>ed cows’ boxes with straw bedd<strong>in</strong>g. Straw manureis removed by mechanical grabbers of an electrically-poweredmach<strong>in</strong>e once a day.Fresh air entered the cow house through w<strong>in</strong>dows withvariable open<strong>in</strong>gs. The degree of decl<strong>in</strong>ation of the w<strong>in</strong>dowswas adjusted manually upon evaluation of atmosphericconditions as given <strong>in</strong> figure 3.Measur<strong>in</strong>g particle emissions <strong>from</strong> force ventilated stablesrequires isok<strong>in</strong>etic sampl<strong>in</strong>g <strong>in</strong> the duct to get the47727106Pr<strong>and</strong>tl probe409025511011241200Figure 3:Cross section of the cattle house


T. H<strong>in</strong>z et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 143representative <strong>in</strong>formation about particle mass concentration<strong>in</strong> the balance area; figure 4 (H<strong>in</strong>z T. 2005).2DMeasurementareaDEv mv sMa<strong>in</strong>streamxvs= vmIsok<strong>in</strong>etic samplerTotaldustPM10PM2,5Size related analysis10D length of undisturbed flowBioaerosolSamples <strong>in</strong>side the build<strong>in</strong>gs were collected with a sampl<strong>in</strong>gvelocity of 1.25 m/s accord<strong>in</strong>g to the conditions atwork<strong>in</strong>g place.In both cases <strong>in</strong>side the stable <strong>and</strong> <strong>in</strong> exhaust a conventionalgravimetric filter procedure served as reference oftotal dust. To determ<strong>in</strong>e the complete size distribution ahigh-volume sampler was used with a pre-separator toseparate large particles. The coarse fraction was analysedwith light diffraction method. A scatter<strong>in</strong>g light monitorwas <strong>in</strong>stalled <strong>in</strong> the flow beh<strong>in</strong>d the cyclone separator <strong>in</strong>order to determ<strong>in</strong>e the pass<strong>in</strong>g through of f<strong>in</strong>e particles.For control <strong>and</strong> calibration purposes an absolute filter collectedthe f<strong>in</strong>e particle fraction. Figure 6 shows the completeensemble of <strong>in</strong>side measurements.Figure 4:Scheme of isok<strong>in</strong>etic sampl<strong>in</strong>gTo ensure the isok<strong>in</strong>etic condition at each measur<strong>in</strong>g location,flow velocity was monitored us<strong>in</strong>g a hot wire anemometer.To asses the emissions actual flow rates through all theducts must be known. It was not possible to do so dur<strong>in</strong>gthe measur<strong>in</strong>g campaign. Pre- <strong>in</strong>vestigations were carriedout to get knowledge about flow distribution <strong>in</strong> the fourducts. For this purpose air velocity profiles were measuredus<strong>in</strong>g a Pr<strong>and</strong>tl-probe. The measur<strong>in</strong>g positions <strong>in</strong>side aduct, which were also basically used to arrange the PMsampler, are given <strong>in</strong> figure 5.At eight positions <strong>in</strong> two cross sections each grid measurementsof air veloctiy were used to calculate average airflow rates <strong>and</strong> to calibrate voltage control of the ventilationsystem.Figure 6:Set of <strong>in</strong>struments to measure concentration <strong>and</strong> particle size <strong>in</strong>side thestable91.649.316.4453.6420.7378.4217.3152.7152.7217.3378.4420.7453.616.449.391.6Figure 5:Array of measur<strong>in</strong>g locations to calculate exhaust air flow


144Results <strong>and</strong> DiscussionResults will be presented for the pre- <strong>in</strong>vestigations tocalibrate the ventilation system, the air flow rates <strong>and</strong> themeasurements of concentration <strong>and</strong> particle size <strong>in</strong>side thestable <strong>in</strong> comparison with the emissions.Monitor<strong>in</strong>g of air flow rate <strong>in</strong> the ventilation system hasbeen replaced by monitor<strong>in</strong>g of the supply<strong>in</strong>g voltage ofthe fans after previous assessment of air flow <strong>in</strong> each chimneyseparately. The sum of capacities of all four chimneysrepresents total runn<strong>in</strong>g capacity of the ventilation systemthat is a function of supply<strong>in</strong>g voltage delivered by thespeed controller.The coefficient of determ<strong>in</strong>ation R 2 = 0.9906 is sufficient.The function was used <strong>in</strong> further calculations for estimat<strong>in</strong>gthe air exchange <strong>in</strong> the stable.From March 2006 to 2007 the ventilation rate changedbetween approximately 8000 m³/h <strong>and</strong> 12000 m³/h measured<strong>in</strong> the hot July 2006. The columns of figure 8 givethe course of the year.The <strong>in</strong>vestigations <strong>in</strong> dust concentration <strong>and</strong> dust emissionswere carried <strong>in</strong> July <strong>and</strong> November 2006. Figure 9shows the measured airflows for the respective days, whichdo not differ widely <strong>from</strong> the monthly averages.In July the air exchange raised up to approximately 11000m³/h while <strong>in</strong> November an average of 9000 m³/h was measuredcaused by the lower temperature.Table 1.Air flow through the chimneys as a function of supply<strong>in</strong>g voltageFanFlow rateSupply<strong>in</strong>g voltage [V]70 90 110 130 150 170 190 210 230K-1 [m 3 /h] 1 858 1 768 2 358 2 537 2 865 3 353 3 459 3 213 3 279K-2 [m 3 /h] 1 440 1 745 2 256 2 565 2 787 3 096 3 291 3 412 3 478K-3 [m 3 /h] 1 290 1 624 2 167 2 524 2 742 2 893 3 039 3 204 3 342K-4 [m 3 /h] 1 628 1 823 2 260 2 518 2 756 2 967 3 099 3 205 3 302Total [m 3 /h] 6 217 6 960 9 041 10 144 11 150 12 308 12 888 13 034 13 402Total performance of the ventilation system is shown <strong>in</strong>the diagram below, figure 7.Air flow rate [m 3 /h]1600012000800040000y = -0.2458x 2 + 121.1x - 1406.7R 2 = 0.990660 80 100 120 140 160 180 200 220 240Voltage [V]Air exchange [m 3 /h]120001000080006000400020000Mrz 06MayJulySeptemberNovemberMonthJanuaryMrz 07Figure 7:Calibration of the ventilation control, total air flow rate of the 4 fansFigure 8:Air exchange <strong>in</strong> the cow stable <strong>in</strong> the period <strong>from</strong> March 2006 untilMarch 2007Thus performance of the ventilation system is presentedby the equation:V = -0.246 • U 2 + 121.1 • U – 1406.7 [m 3 h -1 ]


T. H<strong>in</strong>z et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 145Ventilation rate [m 3 /h]Figure 9:1400012000100008000600040002000004.07.200606./07.11.0600:00 12:00 00:00 12:00 00:0TimeAir exchange <strong>in</strong> the cow stable at 04.07.2006 <strong>and</strong> 06./07.11.2006The concerned concentration of total dust (TSP) <strong>in</strong>sidethe stable, <strong>in</strong> the exhaust <strong>and</strong> the result<strong>in</strong>g emissions ofTSP <strong>and</strong> PM10 are given <strong>in</strong> table 2.Table 2:Concentration <strong>and</strong> emissions <strong>in</strong> <strong>and</strong> <strong>from</strong> the stablesType ofanimal /season /littercow /summer /strawcow /w<strong>in</strong>ter /strawConcentration [mg/m 3 ]0.140.120.100.080.060.040.020.00C <strong>in</strong>side[mg/m³]C exhaust[mg/m³]M TSP[g/(animal/h)]M PM10[g/(animal/h)]0.550 0.188 0.033 n.a.0.198 0.064 0.009 0.008total dustPM109:48 9:56 10:03 10:10 10:17 10:24 10:32 10:39 10:46 10:53 11:00TimeIn the cow stable the concentration was generally lowwith values 20 µm. Bycyclone separation TSP was split to 5 % f<strong>in</strong>e <strong>and</strong> 95 %coarse fraction. Particle size analyses of the coarse fractionshow a wide distribution with particle sizes up to 300µm <strong>and</strong> only a little proportion of approximately 15 % ofPM10, figure 12. In total only 20 % of TSP form PM10 <strong>in</strong>the stable.The differences between concentration <strong>and</strong> size distributionconfirm the necessity to measure <strong>in</strong> the exhaust flowto get the right emissions.Figure 10:TSP <strong>and</strong> PM10 concentration <strong>in</strong> the exhaust flow


1461001.490801.2Cumulative frequency706050401.00.80.6Frequency300.420100.200.5 1 5 10 15 50 100 5000.0Particle sizeFigure 12:Size distribution of the separated coarse fraction <strong>in</strong> the stable airConclusionOn a dairy cattle farm <strong>in</strong> Kon<strong>in</strong>, Pol<strong>and</strong>, PM emissions <strong>in</strong><strong>and</strong> <strong>from</strong> a cattle house were <strong>in</strong>vestigated. Instrumentationwas used to measure total dust <strong>and</strong> PM10 by gravimetricprocedure <strong>and</strong> onl<strong>in</strong>e monitor<strong>in</strong>g.An excellent management strategy by the farmer resulted<strong>in</strong> a very clean dairy house with very low concentration<strong>and</strong> emissions, which may be not the normal case.In summer concentration was higher than <strong>in</strong> w<strong>in</strong>ter.Concentration <strong>in</strong>side the build<strong>in</strong>g was higher than <strong>in</strong> theexhaust flow.The ratio PM10/TSP was nearly 100 % <strong>in</strong> the emissionflow, but 20 % only <strong>in</strong> the stable air.ReferencesH<strong>in</strong>z T. (2005). <strong>Particulate</strong> <strong>matter</strong> emissions as a part of air pollution control<strong>in</strong> <strong>agriculture</strong>. Def<strong>in</strong>itions, sources, measurements, 63-70. In (eds.)Kuczynski T., Dämmgen U., Webb J., Myczko A.(1996). Emissions<strong>from</strong> European <strong>agriculture</strong>.Wagen<strong>in</strong>gen Academic PublishersISO 7708 Publication date: 1996-01 Air quality- Particle size fractiondef<strong>in</strong>itions for health- related sampl<strong>in</strong>g.US EPA: Code of Federal Regulations; PM10, 2001a PM2.5, 2001c


V. P. Aneja et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 147Measurement, analysis, <strong>and</strong> model<strong>in</strong>g of f<strong>in</strong>e particulate <strong>matter</strong> <strong>in</strong> high ammonia region ofEastern North Carol<strong>in</strong>a, U.S.A.V. P. Aneja 1 , S. Goetz 1 , <strong>and</strong> Y. Zhang 1Abstract:An analysis of f<strong>in</strong>e particulate data <strong>in</strong> eastern North Carol<strong>in</strong>ais conducted <strong>in</strong> order to <strong>in</strong>vestigate the impact of hog<strong>in</strong>dustry <strong>and</strong> its emissions of ammonia <strong>in</strong>to the atmosphere.The f<strong>in</strong>e particulate data are simulated us<strong>in</strong>g ISORROPIA,an equilibrium thermodynamic model that simulates thegas <strong>and</strong> aerosol equilibrium of <strong>in</strong>organic atmospheric species.The observational data analyses show that the majorconstituents of f<strong>in</strong>e particulate <strong>matter</strong> (PM2.5) are organiccarbon, elemental carbon, sulfate, nitrate, <strong>and</strong> ammonium.The observed PM2.5 concentration is positively correlatedwith temperature but anti-correlated with w<strong>in</strong>d speed. Thecorrelation between PM2.5 <strong>and</strong> w<strong>in</strong>d direction at somelocations suggests an impact of ammonia emissions <strong>from</strong>hog facilities on PM2.5 formation. The modeled results are<strong>in</strong> good agreement with observations, with slightly betteragreement at urban sites than at rural sites. The predictedtotal <strong>in</strong>organic PM concentrations are with<strong>in</strong> 5 % of theobserved values under conditions with median <strong>in</strong>itial totalPM species concentrations, median relative humidity(RH), <strong>and</strong> median temperature. Ambient conditions withhigh PM precursor concentrations, low temperature, <strong>and</strong>high relative humidity appear to favor the formation of thesecondary PM.Keywords: PM2.5 ;ammonia; hog <strong>in</strong>dustry; ISORROPIA;<strong>in</strong>organic aerosolsIntroduction<strong>Particulate</strong> <strong>matter</strong> has become a relatively recent concern<strong>in</strong> the overall air quality of our environment. In 1997, theEnvironmental Protection Agency modified the NationalAmbient Air Quality St<strong>and</strong>ards for particulate <strong>matter</strong> bydivid<strong>in</strong>g the total suspended particulate st<strong>and</strong>ard <strong>in</strong>to twoseparate modes of particulates, f<strong>in</strong>e (PM2.5) <strong>and</strong> coarse(PM10-2.5) particles, with the st<strong>and</strong>ards for f<strong>in</strong>e particulatesbe<strong>in</strong>g 65 µg m -3 daily <strong>and</strong> 15 µg m -3 annually. TheUS EPA has recently tightened the daily-average st<strong>and</strong>ardfor PM2.5 to be 35 µg m -3 The f<strong>in</strong>e mode of PM is knownto contribute to human respiratory problems, dry <strong>and</strong> wetacidic deposition, reduced visibility, <strong>and</strong> radiative forc<strong>in</strong>g(US EPA, Office of Air & Radiation, 2005). PM2.5 is composedof primary <strong>and</strong> secondary pollutants; primary PM2.5species may <strong>in</strong>clude organic carbon, elemental carbon, soildust, ash, <strong>and</strong> sulfate. Secondary PM2.5 may <strong>in</strong>clude sulfate,nitrate, ammonium, <strong>and</strong> organic carbon, which areformed through the oxidation of their gas-phase precursorssuch as sulfur dioxide, nitrogen dioxide, ammonia, <strong>and</strong>volatile organic compounds.In particular areas of the United States, ammonia <strong>and</strong>ammonium have become a significant contributor to totalPM2.5 concentration. Ammonia can react with acidic compoundsto form various aerosols such as ammonium nitrate(NH 4NO 3), ammonium chloride (NH 4Cl), ammonium sulfate((NH 4) 2SO 4), <strong>and</strong> ammonium bisulfate (NH 4HSO 4).Globally, it is estimated that a total of 49.3 Tg of NH 3isemitted <strong>in</strong>to the atmosphere with 56 % of this total be<strong>in</strong>ganthropogenic. The largest contributor to these ammoniaemissions is domestic animal waste decomposition, whichaccounts for 22 Tg NH 3(Warneck P. 1988, Schless<strong>in</strong>gerW. H. et al. 1992, Crutzen P. J. et al. 1990, Duce R. etal. 1991). In the state of North Carol<strong>in</strong>a alone, the largestsource of ammonia emission is domestic animal waste(Aneja V. P. et al. 2001).In recent years, the hog <strong>in</strong>dustry of North Carol<strong>in</strong>a hasexperienced rapid growth. Between 1986 <strong>and</strong> 2005, thehog population exp<strong>and</strong>ed <strong>from</strong> 2.4 million up to 9.7 million,which makes it rank the second <strong>in</strong> terms of pig productionby state nationwide (NCDA & CS, 2005). Thesw<strong>in</strong>e <strong>in</strong> North Carol<strong>in</strong>a are estimated to emit 68,540 tonsof ammonia per year, which makes sw<strong>in</strong>e the largest contributoramong all domesticated animals <strong>in</strong> North Carol<strong>in</strong>a1Department of Mar<strong>in</strong>e, Earth, <strong>and</strong> Atmospheric Sciences, North Carol<strong>in</strong>a State University ,Raleigh, NC 27695-8208, USA


148(Aneja V. P. et al. 1998). These sw<strong>in</strong>e are concentrated <strong>in</strong>the coastal pla<strong>in</strong> region of the state or the southeast cornercover<strong>in</strong>g Bladen, Dupl<strong>in</strong>, Greene, Lenoir, Sampson, <strong>and</strong>Wayne counties (Walker J. T. 1998).A number of aerosol modules have been developed tosimulate f<strong>in</strong>e particulate <strong>matter</strong>. A particular area of focushas been study<strong>in</strong>g the <strong>in</strong>organic aerosols of f<strong>in</strong>e particulate<strong>matter</strong>, which make up 25-50 % of total f<strong>in</strong>e particulate<strong>matter</strong> (Grey H. A. et al. 1986). Some examples of theseaerosol modules are MARS-A, SEQULIB, SCAPE2, EQ-UISOLV II, <strong>and</strong> AIM2, which have been thoroughly reviewedfor their similarities <strong>and</strong> differences (Zhang Y. etal. 2000). ISORROPIA is a thermodynamic equilibriummodel used for predict<strong>in</strong>g the partition<strong>in</strong>g of major <strong>in</strong>organicspecies between the gas phase <strong>and</strong> aerosol phase.This model was selected due to its efficiency <strong>in</strong> computation<strong>and</strong> its overall satisfactory performance aga<strong>in</strong>st morecomprehensive aerosol thermodynamic models. With an<strong>in</strong>put of temperature, relative humidity, <strong>and</strong> the total (gas+ aerosol) concentrations of sodium, ammonium, nitrate,chloride, <strong>and</strong> sulfate, ISORROPIA predicts how much thetotal amount will be <strong>in</strong> the gas <strong>and</strong> aerosol phases (NenesA. et al. 1998 1999).Table 1:The PM2.5 Sampl<strong>in</strong>g Sites <strong>in</strong> North Carol<strong>in</strong>a.Measurement <strong>and</strong> Model<strong>in</strong>g MethodsPM2.5 observational data was obta<strong>in</strong>ed <strong>from</strong> the NorthCarol<strong>in</strong>a Division of Air Quality (http://daq.state.nc.us/).This data consists of average daily values for seven sites<strong>in</strong> Eastern North Carol<strong>in</strong>a between 2001 <strong>and</strong> early 2004.The exact specifications of the particulate data are listed <strong>in</strong>Table 1. Fayetteville <strong>and</strong> Raleigh are the urban sites, whichare situated to the west of the majority of the hog facilities.Goldsboro, Kenansville, <strong>and</strong> K<strong>in</strong>ston are the rural sites,with Kenansville be<strong>in</strong>g both the smallest city <strong>and</strong> the mostenclosed by the hog facilities. Jacksonville <strong>and</strong> Wilm<strong>in</strong>gtonare two coastal sites with the hog facilities to the north<strong>and</strong> west of their positions. Figure 1 shows the locationsof the seven sites <strong>in</strong> North Carol<strong>in</strong>a <strong>and</strong> their relative positionsto hog facilities (Blunden J. 2003). For all these sites,when the average daily value consists of less than 90 % ofthe <strong>in</strong>dividual hours report<strong>in</strong>g, the average daily data po<strong>in</strong>tis considered <strong>in</strong>accurate <strong>and</strong> is discarded. Meteorologicaldata was obta<strong>in</strong>ed for each site <strong>from</strong> the North Carol<strong>in</strong>aState Climate Office (http://www.nc-climate.ncsu.edu).While PM2.5 data is available for all seven sites, speciatedPM2.5 data is only available for two urban sites, Fayetteville<strong>and</strong> Raleigh, <strong>and</strong> one rural site, K<strong>in</strong>ston.Site Names Time Period of Sampl<strong>in</strong>g # of Po<strong>in</strong>ts Site Type K<strong>in</strong>d of SampleFayetteville Jan 2002 - Jan 2004 124 Urban Speciated F<strong>in</strong>e PM Conc.Goldsboro Jan 2001 - Dec 2003 362 Rural F<strong>in</strong>e PM ConcentrationsJacksonville Jan 2001 - Dec 2003 354 Coastal F<strong>in</strong>e PM ConcentrationsKenansville Jan 2001 - Dec 2003 361 Rural F<strong>in</strong>e PM ConcentrationsK<strong>in</strong>ston Jan 2002 - Jan 2004 123 Rural Speciated F<strong>in</strong>e PM Conc.K<strong>in</strong>ston Jan 2001 - Dec 2003 360 Rural F<strong>in</strong>e PM ConcentrationsRaleigh Jan 2002 - Jan 2004 146 Urban Speciated F<strong>in</strong>e PM Conc.Raleigh Jan 2001 - Dec 2003 1084 Urban F<strong>in</strong>e PM ConcentrationsWilm<strong>in</strong>gton Jan 2001 - Dec 2003 348 Coastal F<strong>in</strong>e PM ConcentrationsThe primary objective of this study is to <strong>in</strong>vestigate theeffect of <strong>in</strong>creased ammonia emissions on the PM2.5 concentrationsthroughout eastern North Carol<strong>in</strong>a. The sourceof these <strong>in</strong>creased ammonia emissions is the presence ofthe hog <strong>in</strong>dustry. The work conducted here <strong>in</strong>cludes analysisof the constituents of PM2.5, their correlations with meteorologicalvariables, <strong>and</strong> the impact of the hog facilitieson PM2.5 concentrations. Another objective is to test howwell ISORROPIA can predict the PM2.5 concentrations<strong>and</strong> under what ambient conditions the model has its bestperformance <strong>in</strong> reproduc<strong>in</strong>g PM2.5 concentrations.The model is set for a forward problem, <strong>in</strong> which the total(both gas <strong>and</strong> aerosol) concentrations of ammonium,sulfate, sodium, chloride, <strong>and</strong> nitrate concentrations <strong>in</strong> additionto relative humidity (RH) <strong>and</strong> temperature (T) areused to calculate the total aerosol mass. Also, the model isset to run <strong>in</strong> the thermodynamically-stable state (i.e., solidscan be formed when RH decreases below its deliquescencerelative humidity (DRH)) <strong>in</strong>stead of the metastable state(i.e., aerosols are <strong>in</strong> liquid even when RH < DRH). The<strong>in</strong>itial conditions for the ISORROPIA model simulationsare listed <strong>in</strong> Table 2. These conditions were selected basedon available observational data <strong>in</strong> North Carol<strong>in</strong>a <strong>and</strong> literaturevalues when observational data was not available.


V. P. Aneja et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 149Raleigh Goldsboro K<strong>in</strong>stonTennesseeSouthCarol<strong>in</strong>aFayettevilleAtlantic OceanKenansvilleWilm<strong>in</strong>gtonJacksonvilleFigure 1:Map of Hog Facilities <strong>in</strong> North Carol<strong>in</strong>a <strong>and</strong> F<strong>in</strong>e <strong>Particulate</strong> Sampl<strong>in</strong>g SitesTable 2:The <strong>in</strong>itial species concentrations <strong>and</strong> meteorological conditions forISORROPIA simulationsInput Variables a K<strong>in</strong>ston Fayetteville RaleighSodium 0.22 0.19 0.17SulfateAmmoniumNitrateChlorideRelativeHumidityTemperatureMedianM<strong>in</strong>imumMaximumMedianM<strong>in</strong>imumMaximumMedianM<strong>in</strong>imumMaximumMedianM<strong>in</strong>imumMaximumMedianM<strong>in</strong>imumMaximumMedianM<strong>in</strong>imumMaximum3.430.5814.303.13 b0.3211.501.07 b0.265.240.14 b0.100.97774697291.00269.61302.44aAll concentrations are given <strong>in</strong> µg m -3b(Walker J. T. et al. 2004)c(Bari A. et al. 2003)3.530.7512.93.19 c0.0711.41.41 c0.1812.30.33 c0.023.207438100291.39271.22304.393.360.7213.85.10 c0.8316.41.60 c0.1919.40.34 c0.024.75743698289.86268.72301.94For each modeled site (i.e., K<strong>in</strong>ston, Fayetteville, <strong>and</strong> Raleigh),three levels of <strong>in</strong>itial total PM species were used:median, m<strong>in</strong>imum <strong>and</strong> maximum, represent<strong>in</strong>g the median,lower <strong>and</strong> upper limits of the 2002 observations respectively.For each concentration level, the model was run underthree meteorological conditions: median RH/median T,m<strong>in</strong>imum RH/maximum T, <strong>and</strong> maximum RH/m<strong>in</strong>imumT. The output variables <strong>in</strong>clude concentrations of gaseousspecies (i.e., ammonia, hydrochloric acid, <strong>and</strong> nitric acid)<strong>and</strong> aerosol species (i.e., sulfate, ammonium, nitrate, sodium,chloride, <strong>and</strong> water), as well as the pH value.Observed PM2.5 <strong>and</strong> its Correlations with MeteorologicalVariablesThe particulate data was first analyzed for its ma<strong>in</strong> constituentsat the three sites with detailed speciated PM2.5data over the entirety of the sampl<strong>in</strong>g period, as shown <strong>in</strong>Figure 2. The plot shows the major constituents of PM2.5to be organic carbon (OC), sulfate, <strong>and</strong> ammonium consistentwith the results by Harrison R. M. et al. (2004), <strong>and</strong>Tanner R. L. et al. (2004). The additional components ofPM2.5 <strong>in</strong>clude nitrate, elemental carbon (EC), <strong>and</strong> over fiftytrace elemental species. The PM2.5 OC concentrationswere higher <strong>in</strong> the urban areas, due to large local emissionsof primary OC <strong>and</strong> volatile organic compounds (VOCs).The sulfate <strong>and</strong> ammonium emissions were found to belarger <strong>in</strong> the rural site, due to the <strong>in</strong>fluence of the hog farm<strong>in</strong>gfacilities <strong>in</strong> the rural area.Figure 3 shows the scatter plots of PM2.5 concentrationvs. RH at Raleigh, K<strong>in</strong>ston, <strong>and</strong> Wilm<strong>in</strong>gton that representurban, rural, <strong>and</strong> coastal areas. High PM2.5 concentrations(> 20 µg/m 3 ) occur with the range of RH between 60 <strong>and</strong>90 %, <strong>and</strong> this effect is more prom<strong>in</strong>ent <strong>in</strong> the urban areas.This trend supports the fact that the overall RH <strong>in</strong>creasesthe film of water formed on the surface of the particles favorsthe formation of PM2.5.


1501009080706050403020100FayettevilleSiteFigure 2:K<strong>in</strong>stonSiteRaleighSiteOtherElemental SpeciesElemental CarbonNitrateAmmoniumSulfateOrganic CarbonPM2.5 Composition at Three Speciated Sites (K<strong>in</strong>ston, Fayetteville, Raleigh)over entire sampl<strong>in</strong>g periodFigure 4 shows the correlation between PM2.5 concentrations<strong>and</strong> w<strong>in</strong>d speeds at three sites. The observed anti-correlationbetween PM concentration <strong>and</strong> w<strong>in</strong>d speed is consistentwith that of Chu S.-H. et al. (2004) <strong>and</strong> de HartogJ. J. et al. (2005). The PM2.5-temperature plots for Raleigh,Kenansville, <strong>and</strong> Wilm<strong>in</strong>gton are shown <strong>in</strong> Figure 5 to representurban, rural, <strong>and</strong> coastal areas respectively. Many highPM2.5 concentrations occurred at high temperatures. Theslopes range <strong>from</strong> 0.08 to 0.18 at the urban <strong>and</strong> the rural sites<strong>and</strong> 0.01 to 0.02 at the coastal site. To <strong>in</strong>vestigate the impactof ammonia on PM2.5 concentrations, the ammoniumconcentrations were plotted aga<strong>in</strong>st the total f<strong>in</strong>e particulateconcentrations (figure not shown). The values for the slope,<strong>in</strong>tercept, <strong>and</strong> the coefficient of determ<strong>in</strong>ation are shown <strong>in</strong>table 3. There are significant correlations <strong>in</strong> the two urbansites (i.e., Raleigh <strong>and</strong> Fayetteville), but no correlation at therural site (i.e., K<strong>in</strong>ston). The very low R 2 value <strong>in</strong> the K<strong>in</strong>stoncorrelation plot is due to the local variability of local primaryOC PM2.5 emissions (i.e., local biomass burn<strong>in</strong>g <strong>from</strong> farm<strong>in</strong>gpractices).PM Concentration [µg/m ]3Urban Plot (Raleigh)7060504030201000 20 40 60 80 100 120Relative Humidity [%]PM Concentration [µg/m ]3Rural Plot (K<strong>in</strong>ston)7060504030201000 20 40 60 80 100 120Relative Humidity [%]PM Concentration [µg/m ]3Coastal Plot (Wilm<strong>in</strong>gton)7060504030201000 20 40 60 80 100 120Relative Humidity [%]Figure 3:(a) Urban (Raleigh) Relative Humidity vs. PM2.5 Concentration(b) Rural (K<strong>in</strong>ston) Relative Humidity vs. PM2.5 Concentration(c) Coastal (Wilm<strong>in</strong>gton) Relative Humidity vs. PM2.5 ConcentrationPM2.5 Concentration [µg/m ]340302010Urban W<strong>in</strong>d Speed Plot(Fayetteville)00 5 10 15 20 25Average W<strong>in</strong>d Speed [mph]PM2.5 Concentration [µg/m ]340302010Rural Plot (Goldsboro)00 5 10 15 20Average W<strong>in</strong>d Speed [mph]PM2.5 Concentration [µg/m ]340302010Coastal Plot (Jacksonville)00 5 10 15 20 25 30Average W<strong>in</strong>d Speed [mph]Figure 4:(a) Urban (Fayetteville) W<strong>in</strong>d Speed vs. PM2.5 Concentration(b) Rural (Goldsboro) W<strong>in</strong>d Speed vs. PM2.5 Concentration(c) Coastal (Jacksonville) W<strong>in</strong>d Speed vs. PM2.5 Concentration


V. P. Aneja et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 151PM2.5 Concentration [µg/m ]35040302010Urban Plot (Raleigh)00 20 40 60 80 100Average Temperature [F]Figure 5:PM2.5 Concentration [µg/m ](a) Urban (Raleigh) Temperature vs. PM2.5 Concentration35040302010(b) Rural (Kenansville) Temperature vs. PM2.5 Concentration(c) Coastal (Wilm<strong>in</strong>gton) Temperature vs. PM2.5 Concentration0Rural Plot (Kenansville)0 20 40 60 80 100Average Temperature [F]PM2.5 Concentration [µg/m ]350403020100Coastal Plot (Wilm<strong>in</strong>gton)0 20 40 60 80 100Average Temperature [F]Table 3:The slope, y-<strong>in</strong>tercept, <strong>and</strong> l<strong>in</strong>ear fit R 2 value <strong>from</strong> the Total PM2.5 vs.Ammonium PM2.5 Plots for K<strong>in</strong>ston, Fayetteville, <strong>and</strong> RaleighSlope Intercept R 2Fayetteville 0.0841 0.1758 0.591K<strong>in</strong>ston 0.0168 1.21 0.011Raleigh 0.0995 -0.05 0.712To <strong>in</strong>vestigate the correlation between w<strong>in</strong>d direction <strong>and</strong>PM distributions, a box whisker plot is made for all sevensites with respect to the eight card<strong>in</strong>al directions, as shown<strong>in</strong> Figure 6. The m<strong>in</strong>imum, 25 th percentile, average, 75 thpercentile, <strong>and</strong> the maximum of each distribution are plotted.The impact of the hog facilities on PM2.5 concentrationscan be seen at some sites. For example, higher PM2.5average concentrations were found <strong>from</strong> a southeast flowat Raleigh (urban), which corresponds to Raleigh’s orientationto the hog facilities. High PM2.5 concentrations atK<strong>in</strong>ston (rural) were <strong>from</strong> the southwest <strong>and</strong> west directions,which correspond exactly to K<strong>in</strong>ston’s orientationto the majority of hog facilities. The highest average concentrationsat Fayetteville were found <strong>from</strong> the southeastdirection, rather than the east <strong>from</strong> which the emissionsof hog facilities come. The weak correlation between thePM2.5 concentrations <strong>and</strong> the east w<strong>in</strong>d direction at Fayettevilleis likely due to the fact that fewer measurementswere available at this site <strong>and</strong> the easterlies were not theprevail<strong>in</strong>g w<strong>in</strong>ds dur<strong>in</strong>g those days with observations. Atthe other two rural sites (i.e., Goldsboro <strong>and</strong> Kenansville),relatively homogeneous correlation between PM2.5 concentrations<strong>and</strong> card<strong>in</strong>al directions was found. High PM2.5average concentrations at Goldsboro were <strong>from</strong> the southeast,southwest, west, <strong>and</strong> north directions with the peakconcentrations com<strong>in</strong>g <strong>from</strong> the southeast. The PM2.5concentrations range <strong>from</strong> 2.7 to 31.4 with an average of10.8 µg m -3 at Kenansville , which are very high for a smallrural town. This <strong>in</strong>dicates the impact of the hog facilities.The two coastal sites (i.e., Jacksonville <strong>and</strong> Wilm<strong>in</strong>gton)have higher concentrations <strong>from</strong> the southwest <strong>and</strong> westdirections, <strong>in</strong>dicat<strong>in</strong>g the impact of emissions <strong>from</strong> thestate of South Carol<strong>in</strong>a. High correlation was also foundfor the east direction at Jacksonville <strong>and</strong> the northwest directionat Wilm<strong>in</strong>gton.


152PM2.5 Concentration [µg/m ]3PM2.5 Concentration [µg/m ]3PM2.5 Concentration [µg/m ]34030201005040302010050403020100NorthNortheastEastNorthNortheastEastUrban Plot (Fayetteville)SoutheastCard<strong>in</strong>al DirectionsSoutheastCard<strong>in</strong>al DirectionsPM2.5 Concentration [µg/m ]350403020100SouthSouthwestWestNorthwestRural Plot (Goldboro)SouthSouthwestWestNorthwestNorthNortheastEastSoutheastSouthSouthwestWestNorthwestCard<strong>in</strong>al DirectionsNorthNortheastEastCostal Plot (Jacksonville)PM2.5 Concentration [µg/m ]3PM2.5 Concentration [µg/m ]370605040302010050403020100Rural Plot (K<strong>in</strong>ston)SoutheastCard<strong>in</strong>al DirectionsPM2.5 Concentration [µg/m ]3NorthNortheastNorthNortheastSouthSouthwestWestNorthwest50403020100Urban Plot (Raleigh)EastSoutheastCard<strong>in</strong>al DirectionsRural Plot (Kenansville)EastSoutheastCard<strong>in</strong>al DirectionsCostal Plot (Wilm<strong>in</strong>gton)NorthNortheastEastSoutheastSouthSouthSouthwestWestNorthwestSouthSouthwestWestNorthwestSouthwestCard<strong>in</strong>al DirectionsWestNorthwestFigure 6:(a) Urban (Fayetteville) W<strong>in</strong>d Direction Box-Whisker Plot(c) Rural (Goldsboro) W<strong>in</strong>d Direction Box-Whisker Plot(e) Rural (K<strong>in</strong>ston) W<strong>in</strong>d Direction Box-Whisker Plot(g) Coastal (Wilm<strong>in</strong>gton) W<strong>in</strong>d Direction Box-Whisker Plot(b) Urban (Raleigh) W<strong>in</strong>d Direction Box-Whisker Plot(d) Rural (Kenansville) W<strong>in</strong>d Direction Box-Whisker Plot(f) Coastal (Jacksonville) W<strong>in</strong>d Direction Box-Whisker Plot


V. P. Aneja et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 153F<strong>in</strong>e <strong>Particulate</strong> Model<strong>in</strong>g ResultsFigure 7 shows the observed <strong>and</strong> predicted average total<strong>in</strong>organic PM 2.5concentrations <strong>and</strong> its composition at threesites: Fayetteville, K<strong>in</strong>ston, <strong>and</strong> Raleigh (“total <strong>in</strong>organicPM2.5 or total <strong>in</strong>organic PM” is def<strong>in</strong>ed as the sum of thefour major <strong>in</strong>organic constituents: ammonium, chloride,nitrate, <strong>and</strong> sulfate).Total Inorganic PM2.5 [µg/m ]376543210Figure 7:K<strong>in</strong>ston-Obs.K<strong>in</strong>ston-Pred.Fayetteville-Obs.Fayetteville-Pred.Total PMPM SulfatePM AmmoniumPM NitratePM Chlor<strong>in</strong>eRaleigh-Obs.Raleigh-Pred.Observed <strong>and</strong> Predicted Total Inorganic PM2.5 Concentrations at K<strong>in</strong>ston,Fayetteville, <strong>and</strong> Raleigh, NC under median RH <strong>and</strong> temperatureconditionsThe predicted values were obta<strong>in</strong>ed under the conditionswith median <strong>in</strong>itial total PM species concentration, medianRH <strong>and</strong> median T, as shown <strong>in</strong> Table 2. The observationsat all three sites show that sulfate has the largest contribution(approximately 2/3 of the total observed <strong>in</strong>organicaerosol), followed respectively by ammonium, nitrate, <strong>and</strong>chloride. The simulation results <strong>from</strong> ISORROPIA generallyagree well with observed PM2.5 <strong>in</strong> terms of bothmagnitude <strong>and</strong> composition. Compared with observed total<strong>in</strong>organic PM2.5 concentration, ISORROPIA underestimatesby 0.50-0.75 µg m -3 (8.7-12.5 %) at Fayetteville<strong>and</strong> K<strong>in</strong>ston, <strong>and</strong> overestimates the observed values by0.37 µg m -3 (6.9 %) at Raleigh. At all three sites, sulfatehas the largest contribution followed respectively by ammonium,nitrate, <strong>and</strong> chloride. The ammonium concentrationat K<strong>in</strong>ston <strong>and</strong> Fayetteville is underpredicted by ~0.1µg m -3 (~7.4 %) <strong>and</strong> that at Raleigh is overpredicted bythe same value (7.7 %). The largest differences betweenobserved <strong>and</strong> predicted values are <strong>in</strong> the nitrate concentration.It is underpredicted by 0.39 µg m -3 at Fayetteville <strong>and</strong>0.54 µg m -3 at K<strong>in</strong>ston (48 % <strong>and</strong> 59 % respectively). Thenitrate concentration predicted at Raleigh is 0.25 µg m -3(37 %) greater than the observed nitrate concentrations.The observed chlor<strong>in</strong>e concentrations are nearly zero whilethe predicted chlor<strong>in</strong>e concentrations at the three sites are< 0.1 µg m -3 . At each site, the predicted pH <strong>and</strong> aerosolwater concentrations are <strong>in</strong> the range of 7.53-7.56, <strong>and</strong>5 µg m -3 respectively. The model gives the best agreementaga<strong>in</strong>st observations at Raleigh among the three sites.Figure 8 shows the predicted total <strong>in</strong>organic PM2.5 concentrationat the maximum <strong>in</strong>itial pollutant concentrationsat each site under the three different meteorological sett<strong>in</strong>gs.PM2.5 Mass Concentration [µg/m ]36050403020100Figure 8:Max RH/M<strong>in</strong> TempMedian RH/TempM<strong>in</strong> RH/Max TempObserved Maximum ValuesK<strong>in</strong>ston Fayetteville RaleighPredicted Total Inorganic PM2.5 Concentrations under three meteorologicalconditions <strong>and</strong> maximum observed Total Inorganic PM2.5 Concentrationsat K<strong>in</strong>ston, Fayetteville, <strong>and</strong> Raleigh, NCThe maximum observed values are also plotted for comparison.For the median RH/median T <strong>and</strong> the maximumRH/m<strong>in</strong>imum T conditions, the predicted total PM2.5 <strong>in</strong>organicaerosol concentrations range <strong>from</strong> 26 to 50 µg m -3 atthe three sites, which consistently overpredicts the observedmaximum concentrations (15-18 µg m -3 ) at all sites. Thepredicted total <strong>in</strong>organic PM2.5 concentration <strong>in</strong>creases asthe urban development of the area <strong>in</strong>creases (K<strong>in</strong>ston (rural),Fayetteville (small city), Raleigh (large city)). Thesedifferences are due to differences <strong>in</strong> the predicted particulatenitrate concentration, which is factors 2 <strong>and</strong> 3 higherat Fayetteville <strong>and</strong> Raleigh, respectively, than that at K<strong>in</strong>ston.The predicted particulate ammonium concentrationis higher by 32 % <strong>and</strong> 80 % at Fayetteville <strong>and</strong> Raleigh,respectively, due to formation of ammonium nitrate. Withthe higher sulfate concentrations at K<strong>in</strong>ston <strong>and</strong> Raleigh,the aerosol is much more acidic at these sites (with pH valuesof 4.5-4.8), whereas that at Fayetteville is more neutral(6.8). The predicted total <strong>in</strong>organic aerosol concentrationsrange <strong>from</strong> 17.23 to 19.09 µg m -3 at the three sites under


154the m<strong>in</strong>imum RH/maximum T condition. Such a conditionfavors evaporation of nitrate <strong>and</strong> water, result<strong>in</strong>g <strong>in</strong> zeronitrate <strong>and</strong> water concentration <strong>in</strong> the aerosol phase. Theaerosol consists of primarily ammonium sulfate salt. Thedifferences <strong>in</strong> predicted total <strong>in</strong>organic aerosol concentrationsamong these sites are thus much smaller.A similar plot is shown at the m<strong>in</strong>imum pollutant concentrationsat each site <strong>in</strong> Figure 9.PM2.5 Mass Concentration [µg/m ]3Figure 9:1.81.61.41.21.00.80.60.40.20Max RH/M<strong>in</strong> TempMedian RH/TempM<strong>in</strong> RH/Max TempObserved M<strong>in</strong>imum ValuesK<strong>in</strong>ston Fayetteville RaleighPredicted Total Inorganic PM2.5 Concentrations under three meteorologicalconditions <strong>and</strong> m<strong>in</strong>imum observed Total Inorganic PM2.5 Concentrationsat K<strong>in</strong>ston, Fayetteville, <strong>and</strong> Raleigh, NCThe model underestimates the observed m<strong>in</strong>imum concentrationsby less than 1 µg m -3 at each site. Under themedian RH/median temperature <strong>and</strong> the m<strong>in</strong>imum RH/maximum T conditions, the total <strong>in</strong>organic PM2.5 concentrationsare the same <strong>and</strong> they consist of sulfate salts only.The nitrate concentrations are either zero or negligible.Under the maximum RH/m<strong>in</strong>imum T conditions, some nitrateforms. The total PM species concentrations predictedat the three sites range <strong>from</strong> 1.01 to 1.11 µg m -3 . Under thiscondition, the urban areas are characterized by 20 % moresulfate than the rural site, but the rural site (i.e. K<strong>in</strong>ston)had slightly more nitrate, ammonium, <strong>and</strong> chloride result<strong>in</strong>g<strong>in</strong> total PM2.5 concentration that is slightly higher thanthat at Fayetteville but lower than that at Raleigh.(e.g. ammonia) <strong>from</strong> the hog <strong>in</strong>dustry <strong>and</strong> their impacts onPM concentrations make this region a unique environmentto underst<strong>and</strong> the role of these emissions <strong>in</strong> PM formation.The major constituents of f<strong>in</strong>e PM2.5 <strong>from</strong> the greatestto the least are OC, sulfate, ammonium, nitrate, <strong>and</strong> EC.Higher PM2.5 concentrations tend to occur between 60<strong>and</strong> 90 % RH with this effect be<strong>in</strong>g more pronounced <strong>in</strong>urban areas. There is a positive relationship between temperature<strong>and</strong> PM2.5 concentrations, <strong>and</strong> a negative relationshipbetween w<strong>in</strong>d speed <strong>and</strong> PM2.5 concentrations.The box-whisker plots of w<strong>in</strong>d direction demonstrate thatthere is a connection between hog facility density <strong>and</strong> f<strong>in</strong>eparticulate concentration, but with the limited data, theseconcentrations could not be attributed to any specific pollutant.ISORROPIA is used to simulate the gas/particle partition<strong>in</strong>g<strong>and</strong> the total <strong>in</strong>organic aerosol concentration atthree sites <strong>in</strong> eastern North Carol<strong>in</strong>a. The model predictionsshow that the major predicted constituents of <strong>in</strong>organicaerosols are sulfate, ammonium, <strong>and</strong> nitrate, whichagrees with the overall measurements. The predicted averagetotal <strong>in</strong>organic concentrations are slightly (< 1 µg m -3 )lower than the observations. While the model predicts theconcentrations of sulfate <strong>and</strong> ammonium that are <strong>in</strong> goodagreement with observations, it tends to underpredict theobserved particulate nitrate concentrations by 0.22 µg m -3(27.5 %) at all three sites. The simulation results are sensitiveto <strong>in</strong>itial total PM concentrations <strong>and</strong> meteorologicalconditions, with the highest secondary PM formation occurr<strong>in</strong>gunder the condition with maximum <strong>in</strong>itial total PMconcentrations, maximum RH, <strong>and</strong> m<strong>in</strong>imum temperature.AcknowledgementsThis research was sponsored by a research <strong>in</strong>itiativegrant <strong>from</strong> the United States Department of Agriculture.YZ’s time is supported by the NSF CAREER award NoAtm-0348819. SG thanks Ryan Boyles of the North Carol<strong>in</strong>aState Climate Office, <strong>and</strong> Hoke Kimball <strong>and</strong> WayneCornelius <strong>from</strong> the North Carol<strong>in</strong>a Division of Air Qualityfor their assistance <strong>in</strong> obta<strong>in</strong><strong>in</strong>g the data. Thanks are alsodue to Dr. Athanasios Nenes <strong>from</strong> the Georgia Institute ofTechnology for provid<strong>in</strong>g the source code of ISORROPIA.(The latest version of the ISORROPIA code <strong>and</strong> more <strong>in</strong>formationabout the code may be obta<strong>in</strong>ed at http://nenes.eas.gatech.edu/ISORROPIA).ConclusionThe concentrations <strong>and</strong> trends of PM2.5 <strong>in</strong> eastern NorthCarol<strong>in</strong>a are studied with data analysis <strong>and</strong> an aerosol thermodynamicbox model that predicts the gas/particle partition<strong>in</strong>gof PM. The unique emission fluxes of pollutants


V. P. Aneja et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 155ReferencesAneja V. P., Bunton B., Walker J. T., Malik B. P. (2001). Measurement<strong>and</strong> analysis of atmospheric ammonia emissions <strong>from</strong> anaerobiclagoons. Atmospheric Environment 35, 1949-1958.Aneja V. P., Murray G., Southerl<strong>and</strong> J. (1998). Proceed<strong>in</strong>gs of theWorkshop on Atmospheric Nitrogen Compounds: Emissions, Transport,Transformation, Deposition, <strong>and</strong> Assessment. North Carol<strong>in</strong>aState University, Raleigh, NC, p. 299.Baek B. H., Aneja V. P. (2004). Measurement <strong>and</strong> analysis of the relationshipbetween ammonia, acid gases, <strong>and</strong> f<strong>in</strong>e particles <strong>in</strong> easternNorth Carol<strong>in</strong>a. Journal of the Air & Waste Management Association54, 623-634.Bari A., Ferraro V., Wilson L. R., Lutt<strong>in</strong>ger D., Husa<strong>in</strong> L. (2003).Measurements of gaseous HONO, HNO 3, SO 2, HCl, NH 3, particulatesulfate <strong>and</strong> PM2.5 <strong>in</strong> New York , NY. Atmospheric Environment 37,2825-2835.Blunden J. (2003). Characterization of non-methane volatile organiccompounds at sw<strong>in</strong>e facilities <strong>in</strong> eastern North Carol<strong>in</strong>a. M.S. Thesis,Department of Mar<strong>in</strong>e, Earth, <strong>and</strong> Atmospheric Sciences, North Carol<strong>in</strong>aState University, Raleigh, NC.Chu S.-H., Paisie J. W., Jang B. W.-L. (2004). PM data analyss analysis – acomparison of two urban areas: Fresno <strong>and</strong> Atlanta. Atmospheric Environment38, 3155-3164.Crutzen P. J., Andrae M. O. (1990). Biomass burn<strong>in</strong>g <strong>in</strong> the tropics:Impact on atmospheric chemistry <strong>and</strong> biogeochemical cycles. Science250, 1669-1678.De Hartog J. J., Hoek G., Mirme A., Tuch T., Kos G. P. A. ten Br<strong>in</strong>k H.M., Cyrys J., He<strong>in</strong>rich J., Pitz M., Lanki T., Vallius M., PekkanenJ., Kreyl<strong>in</strong>g W. (2005). Relationship between different size classes ofparticulate <strong>matter</strong> <strong>and</strong> meteorology <strong>in</strong> three European cities. J. of EnvironmentalMonitor<strong>in</strong>g 7, 302-310.Duce R., Liss P. S., Merrill J. T., Atlans E. L., Buat-Menard P., HicksB. B., Miller J. M., Prospero J. M., Atimoto R., Church T. M., EllisW., Galloway J. N., Hansen L., Jickells T. D., Knap A. H., Re<strong>in</strong>hardtK. H., Schneider B., Soud<strong>in</strong>e A., Tokos J. J., Tsunogai S.,Wollast R., Zhou M. (1991). The atmospheric <strong>in</strong>put of trace species tothe world ocean. Global Biogeochemical Cycles 5, 193-259.Grey H. A., Cass G. R., Huntzicker J. J., Heyerdahl E. K., Rau J. A.(1986). Characteristics of atmospheric organic <strong>and</strong> elemental carbonparticule concentrations <strong>in</strong> Los Angeles. Environmental Science <strong>and</strong>Technology 20, 580-589.Harrison R. M., Jones A. M., Lawrence R. G. (2004). Major componentcomposition of PM10 <strong>and</strong> PM2. 5<strong>from</strong> roadside <strong>and</strong> urban backgroundsites. Atmospheric Environment 38, 4531-4538.NCDA & CS (2005). Agricultural Statistics Division, North Carol<strong>in</strong>aDepartment of Agriculture <strong>and</strong> Consumer Services, P.O. Box 27767,Raleigh, NC 27611, USA.Nenes A., P<strong>and</strong>is S. N., Pil<strong>in</strong>is C. (1998). ISORROPIA: A new (pleasedelete “.”) thermodynamic equilibrium model for multiphase multicomponent<strong>in</strong>organic aerosols. Aquatic Geochemistry 4, 123-152.Nenes A., Pil<strong>in</strong>is C., P<strong>and</strong>is S. N. (1999). Cont<strong>in</strong>ued Contnued Development <strong>and</strong>Test<strong>in</strong>g of a New Thermodynamic Aerosol Module for Urban <strong>and</strong> RegionalAir Quality Models. Atmospheric Environment 33, 1553-1560.Schles<strong>in</strong>ger W. H., Hartley A. E. (1992). A global budget for atmosphericNH 3. Biogeochemistry 15, 191-211.Tanner R. L., Parkhurst W. J., Valente M. L., Phillips D. W. (2004).Regional composition of PM2.5 aerosols measured at urban, rural <strong>and</strong>“background” sites <strong>in</strong> the Tennessee valley. Atmospheric Environment38, 3143-3153.US EPA, Office of Air <strong>and</strong> Radiation. http://www.epa.gov/air/urbanair/pm/hlthl.html, 2005.Walker J. T. (1998). Atmospheric transport <strong>and</strong> wet deposition of NorthCarol<strong>in</strong>a. M.S. Thesis, Department of Mar<strong>in</strong>e, Earth, <strong>and</strong> AtmosphericSciences, North Carol<strong>in</strong>a State University, Raleigh, NC.Walker J. T., Whitall D. R., Robarge W., Paerl H. W. (2004). Ambientammonia <strong>and</strong> ammonium aerosol across a region of variable ammoniaemission density. Atmospheric Environment 38, 1235-1246.Warneck P. (1988). Chemistry of the Natural Atmosphere, Geophys.Service vol. 41. London: Academic Press.Zhang Y., Seigneur C., Se<strong>in</strong>feld J. H., Jacobson M., Clegg S. L.,B<strong>in</strong>kowski F. S. (2000). A comparative review of <strong>in</strong>organic aerosolthermodynamic equilibrium modules: similarities, differences, <strong>and</strong>their likely causes. Atmospheric Environment 34, 117-137.


156


R. Funk et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 157Influence of soil type <strong>and</strong> soil moisture on PM emissions <strong>from</strong> soils dur<strong>in</strong>g tillageR. Funk 1 , W. Engel 1 , C. Hoffmann 1 , <strong>and</strong> H. Reuter 1AbstractTillage is an important cause of PM emissions <strong>from</strong> soils.Measurements <strong>in</strong> rural areas <strong>in</strong> Germany <strong>in</strong>dicated manytimes higher f<strong>in</strong>e dust emissions by tillage operations thanby w<strong>in</strong>d erosion. The ma<strong>in</strong> controll<strong>in</strong>g factor is the soilmoisture, or the vertical distribution of moisture <strong>in</strong> a soilprofile at the moment of tillage. As the emission is a resultof some parameters which can not be controlled <strong>in</strong> fieldexperiments, a stepwise analysis of the ma<strong>in</strong> <strong>in</strong>fluenc<strong>in</strong>gfactors was chosen. First, a w<strong>in</strong>d tunnel was used as crossflowgravitational separator to <strong>in</strong>vestigate the relation betweensoil type, soil moisture <strong>and</strong> PM emission. Twelvesoils of different texture (7 s<strong>and</strong>y, 2 silty, 1 clayey <strong>and</strong> 2organic soils) were <strong>in</strong>vestigated with regard to their watercontent, rang<strong>in</strong>g <strong>from</strong> 0 to 40 mass per cent. The resultsshow that soils can emit dust over a certa<strong>in</strong> range of moisture,but already a small <strong>in</strong>crease <strong>in</strong> soil moisture causesa dist<strong>in</strong>ct reduction of dust emission. The threshold watercontent for f<strong>in</strong>e dust emission of soils was between 2 to 5mass per cent for s<strong>and</strong>y soils, 5 to 10 mass per cent for siltysoils, about 30 mass per cent for the clayey soil <strong>and</strong> 25 to45 mass per cent for organic soils.The w<strong>in</strong>d tunnel results were used to calculate the PM10emission potential of a s<strong>and</strong>y soil <strong>in</strong> spr<strong>in</strong>g <strong>and</strong> late summer.In spr<strong>in</strong>g only the upper 2.5 cm were dry enough toemit PM10, whereas <strong>in</strong> summer the soil was desiccated tothe entire tillage depth. The calculated PM10 emission potentialfor a tillage depth of 20 cm resulted <strong>in</strong> 13.4 g per m²for the soil moisture conditions <strong>in</strong> spr<strong>in</strong>g <strong>and</strong> 76.8 g per m²<strong>in</strong> summer.Our results show the importance of the vertical soil moistureprofile on the PM emission of soils dur<strong>in</strong>g tillage. So,the emission factors result<strong>in</strong>g <strong>from</strong> field operations shouldpreferably be related to the affected amount/volume of asoil, which is dry enough to emit PM, than to the affectedarea.Keywords: soil moisture, particulate <strong>matter</strong>, emission, tillageIntroductionF<strong>in</strong>e dust particles seldom emit directly <strong>from</strong> soil surfaces.They usually need a releas<strong>in</strong>g process as w<strong>in</strong>d erosion ortillage operations (Gillette D. 1977, Green F. H. et al. 1990,Clausnitzer H. et al. 1996, Alfaro S. C. 2001, Kjelgaard etal. 2004). W<strong>in</strong>d erosion is limited to a certa<strong>in</strong> extent becausea susceptible soil surface <strong>and</strong> a given erosivity ofthe climate have to co<strong>in</strong>cide. It is temporally restricted tothe spr<strong>in</strong>g months <strong>and</strong> constra<strong>in</strong>ed spatially by the acreagesof root crops, corn <strong>and</strong> summer cereals, which amount toabout 20 per cent of the agricultural l<strong>and</strong> area <strong>in</strong> NorthernGermany (Federal Statistical Office Germany 2006).Dust emission result<strong>in</strong>g <strong>from</strong> tillage operations affectsall soils, even those which are considered to be non-erodible.This is ma<strong>in</strong>ly caused by higher contents of silt <strong>and</strong>clay particles, which support the formation of aggregatesor crusts. On the other h<strong>and</strong> these soils have a higher potentialfor dust emission when they are disturbed by theimpact of tillage tools. On the North European pla<strong>in</strong>s dustemission <strong>in</strong>duced by tillage was measured as be<strong>in</strong>g four tosix times higher than the dust emission by w<strong>in</strong>d erosionevents (Goossens D. et al. 2001, Goossens D. 2004). Thecorrelations between soil tillage <strong>and</strong> dust emission havebeen <strong>in</strong>vestigated <strong>in</strong> many studies, rang<strong>in</strong>g <strong>from</strong> effects onhuman health to the effects of losses of f<strong>in</strong>e material on soilfertility <strong>and</strong> air quality (Louhela<strong>in</strong>en K. et al. 1987, ClausnitzerH. et al. 1996, Nieuwenhuijsen M. J. et al. 1998,Nieuwenhuijsen M. J. Schenker M. B. 1998, Schenker M.B. 2000, Holmen B. A. et al. 2001a/b, Trzepla-NabagloK. et al. 2002, Cassel T. et al. 2003, Goossens D. 2004).Most of these studies conta<strong>in</strong> no or only general <strong>in</strong>formationabout the soil texture <strong>and</strong> soil water content, so that isnot possible to derive the potential of soils as a source fordust emission <strong>from</strong> these concentration measurements. Thema<strong>in</strong> controll<strong>in</strong>g factor is the soil moisture, or more preciselythe vertical distribution of moisture <strong>in</strong> a soil profileat the moment of tillage. Soil moisture is one of the mostimportant factors which limits w<strong>in</strong>d erosion <strong>and</strong> thereforedust emission as well (Chepil W. S. 1956, We<strong>in</strong>an Ch. etal. 1996). The <strong>in</strong>fluence of soil moisture on erodibility hasbeen <strong>in</strong>vestigated well <strong>in</strong> empirical or physically-basedstudies (ChepilW. S. 1956, Bisal F. et al. 1966, Mc Kenna-Neumann C. et al. 1989, Saleh A. et al. 1995, We<strong>in</strong>an Ch.et al., 1996, Cornelis W., Gabriels D. 2003, Cornelis W. et1Leibniz-Centre for Agricultural L<strong>and</strong>scape Research, Institute of Soil L<strong>and</strong>scape Research, Müncheberg, Germany


158al. 2004). In most cases <strong>in</strong>creas<strong>in</strong>g water content results <strong>in</strong>decreas<strong>in</strong>g w<strong>in</strong>d erosion <strong>and</strong> dust emissions. Although mostof the processes responsible for dust emission of soils areknown <strong>in</strong> detail, there are still some deficits <strong>in</strong> implement<strong>in</strong>gthis knowledge to obta<strong>in</strong> a more soil-related balance of dustemission caused by tillage. The objective of our study wastherefore to derive a soil-related emission factor, which alsoconsiders the actual conditions <strong>in</strong> the field.Material <strong>and</strong> MethodsW<strong>in</strong>d tunnel <strong>in</strong>vestigationsThe experimental setup <strong>in</strong> the laboratory was <strong>in</strong>tendedto reproduce the basic processes <strong>in</strong> the field dur<strong>in</strong>g tillage<strong>in</strong> a simple <strong>and</strong> repeatable way. These processes can bedescribed as follows: soil particles will be lifted <strong>and</strong> acceleratedby the action of the tillage tools <strong>and</strong> the tyres ofthe tractor <strong>in</strong>to the direction of the operation. Then gravity<strong>and</strong> the pull of the mov<strong>in</strong>g tractor result <strong>in</strong> a vertical <strong>and</strong>horizontal component of the separation process depend<strong>in</strong>gon size <strong>and</strong> density of s<strong>in</strong>gle particles or aggregates <strong>and</strong> thespeed of the tillage tool.Dust emission measurements took place <strong>in</strong> the w<strong>in</strong>d tunnelof the Institute of Soil L<strong>and</strong>scape Research <strong>in</strong> Müncheberg(Funk R. 2000). The w<strong>in</strong>d tunnel is generally usedto <strong>in</strong>vestigate w<strong>in</strong>d erosion processes, but it can also beapplied as a cross-flow gravitational separator accord<strong>in</strong>gto st<strong>and</strong>ardised particle size analysis by air classification(DIN 66118). A w<strong>in</strong>d tunnel is a suitable tool to carry out aseparation <strong>in</strong> this way because height of fall, sedimentationdistance <strong>and</strong> w<strong>in</strong>d speed can be adjusted to optimiseconveyorw<strong>in</strong>dparticles < 40 µmparticles > 40 µmw<strong>in</strong>d tunnel work<strong>in</strong>g section (7 m long)PMmeasurementFigure 1:The experimental setup <strong>in</strong> the w<strong>in</strong>d tunnel for cross-flow gravitational separationTable 1:Soil texture, humus content <strong>and</strong> water contents of the <strong>in</strong>vestigated soilsSiteCodeS<strong>and</strong>2000-63µm%Silt63-2µm%Clay< 2 µm%Humus%SWC60 °C*M%SWCair-dry**M%Klockenhagen KLOC 91.8 7.4 0.8 1.31 0.19 0.61Siggelkow SIGG 89.4 8.3 2.3 1.32 0.29 0.66Gottesgabe GOGA 87.3 6.9 5.8 1.33 0.15 0.56Muencheberg MUEB 82.5 14.1 3.4 0.90 0.23 0.46S<strong>and</strong>hagen SAHA 81.2 15.7 3.1 1.13 0.21 0.75Penkow PENK 73.8 22.4 3.8 1.35 0.25 1.41Gross Kiesow GRKI 72.8 24.7 2.5 1.28 0.28 1.04Hildesheim HILD 2.1 81.9 16.0 0.94 0.46 1.85Bad Lauchstedt BALA 11.0 65.0 24.0 0.75 2.85Seelow SEEL 14.3 28.6 57.1 2.18 2.63 4.15He<strong>in</strong>richswalde HEIN 74.4 15.0 10.6 23.3 3.33 6.91Rh<strong>in</strong>luch RHIN 40.9 9.86 21.2* SWC 60 °C – gravimetric soil water content (mass per cent) after 24 hours oven dry<strong>in</strong>g at 60 °C** SWC air-dry – gravimetric soil water content after dry<strong>in</strong>g <strong>in</strong> the laboratory (21°C, 60% rH)


R. Funk et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 159the separation process for certa<strong>in</strong> particle sizes. The work<strong>in</strong>gsection of our w<strong>in</strong>d tunnel has a length of 7 m <strong>and</strong> across section area of 0.7 x 0.7 m. The w<strong>in</strong>d speed <strong>in</strong> thecentre of the tunnel was set to 3 m/s. In contrast to regulartests <strong>in</strong> the w<strong>in</strong>d tunnel we m<strong>in</strong>imised the boundary layerbelow 10 cm height <strong>and</strong> adjusted a more lam<strong>in</strong>ar flow.The soil material was supplied by a conveyor which wasplaced at the beg<strong>in</strong>n<strong>in</strong>g of the work<strong>in</strong>g section on top of thew<strong>in</strong>d tunnel (figure 1). A plate, 0.5 cm thick <strong>and</strong> with a cutoutof 10 x 20 cm, was placed at the conveyor belt. Cut-out<strong>and</strong> thickness of the plate result <strong>in</strong> a volume of 100 cm³which was filled with the soil material, smoothed <strong>and</strong> coveredby a plastic plate to m<strong>in</strong>imise moisture losses dur<strong>in</strong>gthe runs. After start<strong>in</strong>g the conveyor the soil material felloff through a 10 cm wide slot <strong>in</strong>to the work<strong>in</strong>g section at aconstant rate <strong>in</strong> 6 m<strong>in</strong>utes.The soils were taken <strong>from</strong> the plough-horizon of sevens<strong>and</strong>y soils, two silt loam soils, two organic soils <strong>and</strong> oneclay soil. The soils were air-dried <strong>in</strong> an air-conditioned laboratory(temperature: 21 °C, relative humidity: 60 %) <strong>and</strong>sieved for the fraction less than 2 mm. One part of each soilwas dried at 105 °C to obta<strong>in</strong> the amount of hygroscopicwater which had rema<strong>in</strong>ed <strong>in</strong> the air-dried soil. Samplesof 300 g each was moistened with distilled water. Soil watercontents of the follow<strong>in</strong>g gradations were set: 105 °Cdried, 60 °C dried, air-dried <strong>and</strong> depend<strong>in</strong>g on the texture<strong>in</strong> 6 to 10 further steps of about a half mass per cent up toa dist<strong>in</strong>ctly visible moist condition of the sample. The sampleswere stored <strong>in</strong> hermetically sealed Erlenmeyer flasksfor 24 hours. The next day the soil samples were placed onthe conveyor, covered <strong>and</strong> supplied to the w<strong>in</strong>d tunnel.The dust fraction was measured with a dust monitor(Grimm #107 Spectrometer), which cont<strong>in</strong>uously detectsall particles between 0.3 to 30 µm <strong>and</strong> registers these <strong>in</strong>three classes as particle mass PM10, PM2.5 <strong>and</strong> PM1.0 <strong>in</strong>µg per m³. The threshold water content for dust emissionwas appo<strong>in</strong>ted when, compared with the base load <strong>in</strong> thew<strong>in</strong>d tunnel, no <strong>in</strong>crease <strong>in</strong> the PM10 concentration couldbe measured. Multiple regression calculations were performedus<strong>in</strong>g W<strong>in</strong>Stat software (R. Fitch Software).Field measurementsThe field measurements were conducted on loamy s<strong>and</strong><strong>in</strong> Muencheberg (Br<strong>and</strong>enburg, Germany), which wasploughed under typical moisture conditions, such as <strong>in</strong>spr<strong>in</strong>g <strong>and</strong> <strong>in</strong> summer. The field measured 50 m x 50 m.Before tillage, the vertical soil moisture profile was measured<strong>in</strong> steps of 1 cm at several po<strong>in</strong>ts by a near Infrared-Reflexion-Photometer (Pier-Electronic GmbH).For plough<strong>in</strong>g we used a 100 kW tractor with a 3-shareplough <strong>and</strong> a work<strong>in</strong>g width of 1.25 m <strong>and</strong> a work<strong>in</strong>gdepth of 0.2 m. The tillage direction was perpendicular tothe w<strong>in</strong>d direction (figure 2). The dust monitor (GRIMM#107) was positioned <strong>in</strong> comb<strong>in</strong>ation with a meteorologicalstation two meters away <strong>from</strong> the leeward field boundarywith the air <strong>in</strong>let at a height of 2 meters. PM10, PM2.5<strong>and</strong> PM1.0 were measured every 6 seconds simultaneouslywith w<strong>in</strong>d speed (cup anemometers <strong>in</strong> two heights, 2 m <strong>and</strong>0.5 m), w<strong>in</strong>d direction, temperature <strong>and</strong> relative humidity.The aim was to measure only that dust which leaves thefield <strong>and</strong> to get a horizontal <strong>in</strong>tersection of the dust cloud,which was obta<strong>in</strong>ed by the repeated passage of the tractor<strong>and</strong> the <strong>in</strong>creas<strong>in</strong>g distance with any passage.A Lagrangian dispersion model GRAL (Graz LagrangianModel) was used to obta<strong>in</strong> PM area related emissionfactors <strong>from</strong> the concentration measurements. GRAL is awell-validated short range numerical model <strong>and</strong> applicableto a wide range of w<strong>in</strong>d speeds <strong>and</strong> atmospheric stabilities(Oettl D. et al. 2001). Emission factors of PM were obta<strong>in</strong>edby modell<strong>in</strong>g the dispersion <strong>from</strong> the test field, treat<strong>in</strong>git as an area source. In the simulations it was assumedthat the PM emissions are <strong>in</strong>itially mixed up to 2 m aboveground level due to the tractor-<strong>in</strong>duced turbulence (OettlD. et al. 2005).x,y ; 0,0Figure 2:Last trackW<strong>in</strong>d directionTillage directionFirst trackx,y ; 50,50x,y,z ; 52,25,2Dust monitor<strong>and</strong>meteorologicalstationSketch of the field measurements of tillage <strong>in</strong>duced PM emissionsResultsW<strong>in</strong>d tunnel <strong>in</strong>vestigationsOur results show that soils can emit particulate <strong>matter</strong>over a certa<strong>in</strong> range of moisture. Great differences <strong>in</strong>the PM10 emission were already measured between the105°C-, 60°C- <strong>and</strong> air-dried soil samples (figure 3). Thewater content of the 105°C-dried samples was assumed tobe zero, the water contents of the 60°C- <strong>and</strong> air-dried samplesare listed <strong>in</strong> table 1. S<strong>and</strong>y <strong>and</strong> silt soils had the highestf<strong>in</strong>e dust emission rates of both oven-dried samples <strong>and</strong>


160the lowest of the air-dried sample. The clay soil does notshow such a difference. The PM10 emission of the ovendriedsamples resulted <strong>in</strong>: s<strong>and</strong>y > silty > clay, whereas theemission of the air dried samples was: s<strong>and</strong>y < silty < clay.This oppos<strong>in</strong>g trend can be expla<strong>in</strong>ed by the small contactareas between the particles <strong>in</strong> the s<strong>and</strong> <strong>and</strong> clay fraction <strong>in</strong>s<strong>and</strong>y soils, which result <strong>in</strong> weak bond<strong>in</strong>g forces mostlycaused by the adsorptive water between the contact po<strong>in</strong>ts.Water films result<strong>in</strong>g <strong>from</strong> molecular adsorption only appearon particles of the clay size, which are attached to theoutside of the s<strong>and</strong> <strong>and</strong> silt gra<strong>in</strong>s <strong>and</strong> form a large surfacefor evaporation (figure 4).PM10 emission (µg/g)Figure 3:500040003000200010000S<strong>and</strong> Silt Clay OrganicTexture typeoven dried at 105°Coven dried at 60°Cair dried at 21°CDust emission of s<strong>and</strong>y (n = 7), organic (n = 2), silty (n = 2) <strong>and</strong> clay(n = 1) soils us<strong>in</strong>g different dry<strong>in</strong>g <strong>in</strong>tensities (oven dried at 105°C <strong>and</strong>60°C, air dried at 21°C)German St<strong>and</strong>ard for soil texture classification, which arenearest to the PM10 size. The PM10 emission potential of asoil is closely related to the content of these particle sizes.PM10 emission (µg/g)180016001400120010008006004002000Figure 5:y = 18.784x + 252.58R 2 = 0.80310 20 40 60 80Particles < 6.3 µmRelationship between the content of particles < 6.3 µm (clay <strong>and</strong> f<strong>in</strong>e silt)<strong>and</strong> the PM10 emission of the air dried samples (all <strong>in</strong>vestigated soils)The relationship between the PM10 emission <strong>and</strong> the<strong>in</strong>creas<strong>in</strong>g gravimetric water content of the s<strong>and</strong>y soils isshown <strong>in</strong> figure 6, that of silt, clay <strong>and</strong> organic soils <strong>in</strong> figure7. The results show the reduction reducton of dust emission emsson with wth<strong>in</strong>creas<strong>in</strong>g soil moisture. Even small differences dfferences <strong>in</strong> n soilsolmoisture caused dist<strong>in</strong>ct changes <strong>in</strong> dust emission, result<strong>in</strong>g<strong>in</strong> an exponential curve progression for all soil types.In an attempt to relate the PM emission to soil moisture<strong>and</strong> parameters of the soil texture <strong>and</strong> humus content, amultiple regression analysis was performed. Table 2 summarizesthe coefficients of the regression equations, whichhave effected the best r². Above a certa<strong>in</strong> water content nodust was emitted. This can be regarded as the texture relatedthreshold of soil moisture. These threshold values ofsoil moisture are between 2 to 5 % for s<strong>and</strong>y soils, 5 to10 % for silty soils, up to 20 % for the clay soil <strong>and</strong> 25to 45 % for organic soils. The share of PM2.5 amounts toabout 6 per cent, the portion of PM1.0 to about 1 per centof the PM10 mass. These relations were relatively constantfor all <strong>in</strong>vestigated soils <strong>and</strong> did not change with <strong>in</strong>creas<strong>in</strong>gsoil moisture.Figure 4:Scann<strong>in</strong>g electron microscopy of a m<strong>in</strong>eral dust sampleFigure 5 shows the relationship between the PM10 emissionsof all <strong>in</strong>vestigated soils to the content of particles ofthis size <strong>in</strong> the soil. These are all particles <strong>in</strong> the clay <strong>and</strong>f<strong>in</strong>e silt fraction (< 6.3 µm <strong>in</strong> diameter) accord<strong>in</strong>g to the


R. Funk et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 161Table 2.Parameter of multiple l<strong>in</strong>ear regressions of the form:ln PM (µgm -3 ) = a + b SWC (M%) + c silt (%) + d clay (%) + e humus (%), Significance level p = 0.05Soil textural class a b c d e r²S<strong>and</strong> ln PM10 7.07 -1.182 0.115 -1.73 0.77ln PM2.5 5.35 -0.980 0.070 -2.35 0.54ln PM1.0 4.24 -0.955 0.054 -2.48 0.42Silt + clay ln PM10 4.95 -0.248 0.068 0.56ln PM2.5 2.10 -0.347 0.078 0.55ln PM1.0 1.22 -0.363 0.067 0.70Organic soils ln PM10 11.32 -0.117 -0.095 0.86ln PM2.5 9.67 -0.159 -0.125 0.87ln PM1.0 5.03 -0.145 -0.052 0.41PM10 emission (µg/g)600500400300200100GRKIPENKSAHAMUEBGOGASIGGKLOC00,0 1,0 2,0 3,0 4,0 5,0 6,0Gravimetric soil water content (%)Figure 6:PM10 emission of all s<strong>and</strong>y soils, curves are calculated with multiple regression (see table 2), shown curves are examples of GRKI (72.8% s<strong>and</strong>), MUEB(82.5% s<strong>and</strong>) <strong>and</strong> KLOC (91.8% s<strong>and</strong>)PM10 emission (µg/g)300025002000150010005000BALAHILDSEELHEINRHIN0 10 20 30 40 50Gravimetric soil water content (%)Figure 7:PM10 emission of all silt, clay <strong>and</strong> organic soils, curves are calculated with multiple regression (see table 2), shown curves are examples of RHIN (organicsoil), SEEL (clay soil) <strong>and</strong> BALA (silt soil)


162Relevance for the derivation of emission factorsThe relevance of our results for the derivation of emissionfactors is demonstrated by field measurements on a s<strong>and</strong>ysoil <strong>in</strong> Muencheberg, which was ploughed <strong>in</strong> spr<strong>in</strong>g <strong>and</strong> <strong>in</strong>summer. The soil texture is given <strong>in</strong> table 1. The soil moistureof the first centimetre was approximately the same;only the soil moisture depth profile differed at both times<strong>and</strong> is shown <strong>in</strong> figure 8.Soil depth (cm)0510152025Figure 8:Soil moisture (mass %)0 2 4 6 8Soil moisture depth profiles at two dates of plough<strong>in</strong>gsoil specific thresholdvalue for dust emissionThe soil specific threshold value of moisture for dustemission was estimated as about 4 %. Under the moistureconditions <strong>in</strong> spr<strong>in</strong>g only the uppermost 2.5 cm of the soilare dry enough to contribute to the emission of dust particles.The conditions <strong>in</strong> summer are characterised by soilmoisture below the threshold value for the entire plough<strong>in</strong>gdepth. We derived a PM10 emission potential (EP PM10) of13.4 g per m² (± 0.8 g) <strong>in</strong> spr<strong>in</strong>g <strong>and</strong> 76.8 g per m² (± 4.6 g)<strong>in</strong> summer for a plough<strong>in</strong>g depth of 20 cm, us<strong>in</strong>g the abovedeterm<strong>in</strong>ed soil moisture – dust emission relationship <strong>in</strong>steps of 1 cm.EPPM 10=20∑i=1TDE ⋅ ρ ⋅Viwith EP PM10- PM10 emission potential (µg per m²)TDE - total dust emission of the soil related- to the water content (µg per g)r - bulk density of the soil (g per cm³)V - volume of the layer i per m²- (10,000 cm³ per m²)PM measurements <strong>and</strong> subsequent modell<strong>in</strong>g with thedispersion model GRAL resulted <strong>in</strong> an emission of 0.12g per m² of the moist soil <strong>in</strong> spr<strong>in</strong>g <strong>and</strong> 1.05 g per m² ofthe dry soil <strong>in</strong> summer (Oettl et al. 2005). The same tillageoperation at the same soil resulted <strong>in</strong> about 9-times higheremissions <strong>in</strong> summer ma<strong>in</strong>ly <strong>in</strong>duced by the lack of soilmoisture. There is a close relationship to the affected volumeor mass of the soil contribut<strong>in</strong>g to the dust emission,which is 8-times higher <strong>in</strong> summer (20 cm <strong>in</strong> summer, 2.5cm <strong>in</strong> spr<strong>in</strong>g).ConclusionDust emission <strong>from</strong> tillage operations are closely relatedto the soil moisture conditions. This aspect has not beenconsidered <strong>in</strong> previous studies so far. In this study we followeda stepwise analysis of the ma<strong>in</strong> <strong>in</strong>fluenc<strong>in</strong>g factorsof dust emission <strong>from</strong> tillage operations. Firstly, the basicrelations between soil texture, humus content <strong>and</strong> soilwater content were <strong>in</strong>vestigated by us<strong>in</strong>g a w<strong>in</strong>d tunnel ascross-flow gravitational separator. It was possible to showthat soils can emit PM over a certa<strong>in</strong> range of moisture.The relationships of soil water content, soil texture <strong>and</strong> humuscontent on PM10, PM2.5 <strong>and</strong> PM1.0 emissions couldbe derived. Threshold values of soil moisture for PM emissionwere determ<strong>in</strong>ed which ranged between 2 to 5 % fors<strong>and</strong>y soils, 5 to 10 % for silty soils, up to 20 % for the claysoil <strong>and</strong> 25 to 45 % for organic soils.Apply<strong>in</strong>g these f<strong>in</strong>d<strong>in</strong>gs on moisture conditions <strong>in</strong> spr<strong>in</strong>g<strong>and</strong> <strong>in</strong> summer resulted <strong>in</strong> good correlations between thederived PM emission potentials of a soil <strong>and</strong> measuredemissions while plough<strong>in</strong>g. Our results show the necessityof consider<strong>in</strong>g the soil water content <strong>and</strong> its vertical profilefor the derivation of emission factors. So, the emission factorsof field operations should be related to the affectedamount/volume of a soil, which is dry enough to emit PM,rather than to the affected area.ReferencesAlfaro S. C., Gomes L. (2001). Modell<strong>in</strong>g m<strong>in</strong>eral aerosol productionby w<strong>in</strong>d erosion: Emission <strong>in</strong>tensities <strong>and</strong> aerosol size distributions <strong>in</strong>source areas. Journal of Geophysical Research 106: 18075–18084.Bisal F., Hsieh J. (1966). Influence of moisture on erodibility of soils byw<strong>in</strong>d. Soil Science 102(3): 143-146.Cassel T., Trzepla-Nabaglo K., Flocch<strong>in</strong>i R. (2003). PM10 emissionfactors for harvest <strong>and</strong> tillage of row crops. International EmissionInventory Conference “Emission Inventories - Apply<strong>in</strong>g New Technologies,”San Diego, April 29 - May 1, 2003. http://www.epa.gov/ttn/chief/conference/ei12/Chepil W. S. (1956). Influence of Moisture on Erodibility of Soil byW<strong>in</strong>d. Soil Science Society Proceed<strong>in</strong>gs 1956: 288-292.Clausnitzer H., S<strong>in</strong>ger M. J. (1996). Respirable-dust production <strong>from</strong>agricultural operations <strong>in</strong> the Sacramento Valley, California. J. Environ.Qual., 25: 877-884.Cornelis W., Gabriels D. (2003). The effect of surface moisture on theentra<strong>in</strong>ment of dune s<strong>and</strong> by w<strong>in</strong>d: an evaluation of selected models.Sedimentology, 50, 771-790.Cornelis W., Gabriels D., Hartmann R. (2004). A conceptual model topredict the deflation threshold shear velocity as affected by near-sur-


R. Funk et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 163face soil water: I. Theory. Soil Sci. Soc. Am. J. 68: 1154-1161.DIN 66118. Particle size analysis; size analysis by air classification; fundamentals.(DIN St<strong>and</strong>ard, <strong>in</strong> German), 1984-08, Deutsches Institut fürNormung e.V., Beuth Verlag GmbH.Federal Statistical Office Germany (2006). Arable l<strong>and</strong> by ma<strong>in</strong> groupsof crops <strong>and</strong> by types of crops. http://www.stabu.de/presse/deutsch/pk_ueb.htmFunk R. (2000). Vorstellung e<strong>in</strong>es W<strong>in</strong>dkanals für die physikalischeModellierung der Prozesse. Mitt. Dt. Bodenkd. Ges., 92, 77-80.Gillette D. (1977). F<strong>in</strong>e particulate emissions due to w<strong>in</strong>d erosion. Trans.ASAE, 20: 890-897.Goossens D. (2004). W<strong>in</strong>d erosion <strong>and</strong> tillage as a dust production mechanism.In: Goossens, D. <strong>and</strong> M. Riksen (Eds.): W<strong>in</strong>d erosion <strong>and</strong> dustdynamics: Observations, Simulations, Modell<strong>in</strong>g. ESW Publications,Wagen<strong>in</strong>gen: 7-13.Goossens D., Gross J., Spaan W. (2001). Aeolian dust dynamics <strong>in</strong> agriculturall<strong>and</strong> areas <strong>in</strong> Lower Saxony, Germany. Earth Surface Processes<strong>and</strong> L<strong>and</strong>forms, 26: 701-720.Green F. H., Yoshida K., Fick G., Paul J., Hugh A., Green W. F. (1990).Characterization of airborne m<strong>in</strong>eral dusts associated with farm<strong>in</strong>g activities<strong>in</strong> rural Alberta, Canada. Int. Arch. Occup. Environ. Health,62(6): 423-430.Holmen B. A., James T. A., Ashbaugh L. L., Flocch<strong>in</strong>i R. G. (2001a).Lidar-assisted measurement of PM10 emissions <strong>from</strong> agricultural till<strong>in</strong>g<strong>in</strong> California‘s San Joaqu<strong>in</strong> Valley - Part I: lidar. Atmospheric Environment,35(19), 3251 – 3264.Holmen B.A., James T.A., Ashbaugh L. L., Flocch<strong>in</strong>i R. G. (2001b).Lidar-assisted measurement of PM10 emissions <strong>from</strong> agricultural till<strong>in</strong>g<strong>in</strong> California‘s San Joaqu<strong>in</strong> Valley - Part II: emission factors. AtmosphericEnvironment, 35(19), 3265 – 3277.Kjelgaard J., Sharratt B., Sundram I., Lamb B., Claiborn C., SaxtonK., Ch<strong>and</strong>ler D. (2004). PM10 emission <strong>from</strong> agricultural soils on theColumbia Plateau: comparison of dynamic <strong>and</strong> time <strong>in</strong>tegrated fieldscalemeasurements <strong>and</strong> entra<strong>in</strong>ment mechanisms.Louhela<strong>in</strong>en K., Knagas J., Husman K., Terho E. O. (1987). Total concentrationsof dust <strong>in</strong> the air dur<strong>in</strong>g farm work. Eur. J. Resp. Dis., 71(suppl. 152) :73-79.Mc Kenna-Neumann C., Nickl<strong>in</strong>g W. G. (1989). A theoretical w<strong>in</strong>d tunnel<strong>in</strong>vestigation of the effect of capillary water on the entra<strong>in</strong>ment ofsediment by w<strong>in</strong>d. Can. J. Soil Sci. 69: 79-96.Nieuwenhuijsen M. J., Kruize H., Schenker M. B. (1998). Exposureto dust <strong>and</strong> its particle size distribution <strong>in</strong> California Agriculture. Am.Industr. Hygiene Assoc. J. 58: 34-38.Nieuwenhuijsen M. J., Schenker M. B. (1998). Determ<strong>in</strong>ants of personaldust exposure dur<strong>in</strong>g field crop operations <strong>in</strong> California <strong>agriculture</strong>,Am. Industr. Hygiene Assoc. J. 59: 9-13.Öttl D., Almbauer R., Sturm P. J. (2001). A new method to estimatediffusion <strong>in</strong> low w<strong>in</strong>d, stable conditions. Journal of Applied Meteorology,40, 259-268.Öttl D., Funk R., Sturm P. (2005). PM emission factors for farm<strong>in</strong>g activities.In: Proceed<strong>in</strong>g of the 14th Symposium Transport <strong>and</strong> Air Pollution,1.-3.6 2005, Graz Technical University Graz, Austria, 411-419.Saleh A., Fryrear B. (1995). Threshold w<strong>in</strong>d velocities of wet soils asaffected by w<strong>in</strong>d blown s<strong>and</strong>. Soil Sci., 160, 304-309.Schenker M. (2000). Exposures <strong>and</strong> health effects <strong>from</strong> <strong>in</strong>organic agriculturaldusts. Environ. Health Perspect., 108(4): 661-664Trzepla-Nabaglo K., Flocch<strong>in</strong>i R. G. (2002). Lidar contribution to particulate<strong>matter</strong> (PM) measurements <strong>from</strong> agricultural operations. In: T.H<strong>in</strong>z (Ed.): <strong>Particulate</strong> <strong>matter</strong> <strong>in</strong> <strong>and</strong> <strong>from</strong> Agriculture. Proceed<strong>in</strong>gs ofthe Conference, FAL Braunschweig, Special Issue 235, 89-94.We<strong>in</strong>an Ch., Zhibao D., Zhenshan L., Zuotao Y. (1996) W<strong>in</strong>d tunneltest of the <strong>in</strong>fluence of moisture on the erodibility of loessial s<strong>and</strong>yloam soils by w<strong>in</strong>d. Journal of Arid Environment, 34: 391-402.


164


H. A. C. Denier van der Gon et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 165A methodology to constra<strong>in</strong> the potential source strength of various soil dust sources contribut<strong>in</strong>gto atmospheric PM10 concentrationsH. Denier van der Gon 1 , M. Schaap 1 , A. Visschedijk 1 , <strong>and</strong> E. Hendriks 1AbstractCrustal material or soil particles typically make up5 - 20 % of the mass of ambient PM10 samples. In certa<strong>in</strong>regions <strong>and</strong>/or specific meteorological conditions thecontribution may even be higher. Crustal material mayorig<strong>in</strong>ate <strong>from</strong> dist<strong>in</strong>ctly different sources e.g., w<strong>in</strong>d erosionof bare soils, agricultural l<strong>and</strong> management, driv<strong>in</strong>gon unpaved roads, resuspension of road dust, road wear,h<strong>and</strong>l<strong>in</strong>g of materials <strong>and</strong> build<strong>in</strong>g <strong>and</strong> construction activities.Despite the importance of crustal material <strong>in</strong> totalPM10 mass, the sources are still poorly understood <strong>and</strong> notwell-represented <strong>in</strong> emission <strong>in</strong>ventories. This is due to thefact that some sources can be def<strong>in</strong>ed as natural sources(e.g., erosion) whilst others like re-suspension are not recognizedas primary emission but a re-emission. Separat<strong>in</strong>gthe source contributions is difficult because the uniquetracers for crustal material <strong>in</strong> PM10 samples (e.g., Si, Ti)do not allow a dist<strong>in</strong>ction between the potential sources ofthis material. To make progress <strong>in</strong> our underst<strong>and</strong><strong>in</strong>g of thecrustal material source strengths we need a comb<strong>in</strong>ation offlux measurements, emission estimates, chemical analysisof ambient PM10 samples <strong>and</strong> atmospheric transport modell<strong>in</strong>g.In this paper we present a methodology to checkfirst order estimates of the various source strengths. Simple<strong>and</strong> therefore transparent emission functions are comb<strong>in</strong>edwith activity data or l<strong>and</strong> use maps to make emission grids.The gridded emissions are used as <strong>in</strong>put for the LOTOS-EUROS model to calculate the result<strong>in</strong>g concentrations.The predicted concentrations will be compared with observations<strong>in</strong> various parts of Europe derived <strong>from</strong> the literature.This will give an <strong>in</strong>dication if the source strengths are<strong>in</strong> the right order of magnitude to expla<strong>in</strong> observed crustalmaterial contributions to ambient PM10. Next, by vary<strong>in</strong>gthe source strengths of the <strong>in</strong>dividual categories <strong>and</strong> implementationof a meteorological dependency we will <strong>in</strong>vestigateif the patterns of the predicted concentrations are <strong>in</strong>l<strong>in</strong>e with observations.Keywords: particulate <strong>matter</strong>, soil particles, resuspension,w<strong>in</strong>d ersosion, crustal material, emissions, air quality1 The relevance, chemical composition <strong>and</strong> sources ofcrustal material.<strong>Particulate</strong> <strong>matter</strong> (PM) is the generic term used for atype of air pollution that consists of complex <strong>and</strong> vary<strong>in</strong>gmixtures of particles suspended <strong>in</strong> the atmosphere that hasbeen found to present a serious danger to human health.<strong>Particulate</strong> pollution comes <strong>from</strong> such diverse sourcesas coal or oil fired power plants, vehicle exhaust, woodburn<strong>in</strong>g, m<strong>in</strong><strong>in</strong>g, <strong>and</strong> <strong>agriculture</strong>. Airborne PM <strong>in</strong>cludesmany different chemical constituents. PM10 samples collectedon a filter can be analyzed for chemical composition.Sources contribut<strong>in</strong>g to the PM10 concentrations mayemit particles with a unique chemical composition that areenriched, relative to particles <strong>from</strong> other sources, <strong>in</strong> certa<strong>in</strong>elements. For example, vanadium <strong>and</strong> nickel havetypically been used as tracers for emissions <strong>from</strong> fuel oilcombustion. Based on the concentrations of the tracers anestimate of the total amount of PM10 emitted by the particularsource can be made. Crustal materal material (mneral (m<strong>in</strong>eral <strong>matter</strong>,soil particles) typically makes up 5 - 20 % of the massof ambient PM10 (table 1).In certa<strong>in</strong> regions <strong>and</strong>/or specific meteorological conditionsthe contribution may be higher. This is illustrated <strong>in</strong>table 1 with wth the values for Northern EU <strong>and</strong> Southern EUwhere the contribution is elevated due to the use of studdedtires <strong>and</strong> desert dust, respectively.Crustal material may orig<strong>in</strong>ate <strong>from</strong> dist<strong>in</strong>ctly differentsources e.g., w<strong>in</strong>d erosion of bare soils, agricultural l<strong>and</strong>management, driv<strong>in</strong>g on unpaved roads, resuspension ofroad dust, road wear, h<strong>and</strong>l<strong>in</strong>g of materials <strong>and</strong> build<strong>in</strong>g<strong>and</strong> construction activities (figure 1). Despite the importanceof crustal material <strong>in</strong> total PM10 mass, the sourcesare still poorly understood as well as their relative contributionto total crustal PM10. In this paper we present amethodology to check first order estimates of the varioussource strengths (figure 1). Simple, transparent emissionfunctions are comb<strong>in</strong>ed with activity data or l<strong>and</strong> use mapsto make emission grids.1TNO Built Environment <strong>and</strong> Geosciences, Bus<strong>in</strong>ess unit Environment, Health <strong>and</strong> Safety, Apeldoorn, The Netherl<strong>and</strong>s


166Table 1:Mean annual levels (µgm -3 ) of PM10, PM2.5, m<strong>in</strong>eral elements, <strong>and</strong> the equivalent contributions to bulk mass concentrations (% wt), recorded at regionalbackground (RB), urban background (UB) <strong>and</strong> kerbside stations (RS) <strong>in</strong> Central EU (examples <strong>from</strong> Australia, Berl<strong>in</strong>, Switzerl<strong>and</strong>, The Netherl<strong>and</strong>s, UK),Northern EU (13 sites <strong>in</strong> Sweden) <strong>and</strong> Southern EU (10 sites <strong>in</strong> Spa<strong>in</strong>).Central EU Northern EU) Southern EURB UB RS RB UB RS RB UB RSPM10 (µgm -3 ) 14 – 24 24 – 38 30 – 53 8 – 16 17 – 23 26 – 51 14 – 21 31 – 42 45 – 55M<strong>in</strong>eral <strong>matter</strong> (µgm -3 ) 1 – 20 3 – 5a 4 – 8a 2 – 4a 7 – 9a 17 – 36 4 – 8a 8 – 12 10 – 18% M<strong>in</strong>eral <strong>matter</strong> PM10 5 – 10 10 – 15 12 – 15 20 – 30 35 – 45 65 – 70 12 – 40 25 – 30 25 – 37PM2.5 (µgm -3 ) 12 – 20 16 – 30 22 – 39 7 – 13 8 – 15 13 – 19 12 – 16 19 – 25 28 – 35M<strong>in</strong>eral <strong>matter</strong> (µgm -3 ) 0.5 – 20 0.4 – 2a 1 – 2a 1 – 3a 2 – 4a 4 – 6a 1 – 3a 2 – 5a 4 – 6a% M<strong>in</strong>eral <strong>matter</strong>PM2.5Source: Querol X. et al (2004)2 – 80 2 – 8a 5 15 – 25 25 – 30 30 – 40 8 – 20 10 – 20 10 – 15Source functions / emission factors / modules for crustal material sources- Resuspension - Road wear- W<strong>in</strong>d erosion agricultural fields - W<strong>in</strong>d erosion natural areas- Management agricultural fields - Storage <strong>and</strong> h<strong>and</strong>l<strong>in</strong>g of goods- Construction <strong>and</strong> demolition activitiesEmissionsNational / sectoral totalsSpatially distributedModel Inputgridded map <strong>and</strong>/ormodule coupled to meteo dataIteration to test source strengths,test meteorological dependenciesAdjust accord<strong>in</strong>g to <strong>in</strong>sights,constra<strong>in</strong> emission strengthsMeasurements / observationsConcentration of crustal PM10 <strong>in</strong> ambient airannual average as well as specific episodesModel outputConcentration maps /Relative share crustal materialto total PM10Figure 1:Outl<strong>in</strong>e of the methodology to constra<strong>in</strong> the source strength of various crustal material sources contribut<strong>in</strong>g to PM10 us<strong>in</strong>g an atmospheric chemistry <strong>and</strong>transport model <strong>and</strong> observational data2 Emission functions <strong>and</strong> source strengthsEventually all different sources of crustal material (figure1) should contribute their own unique emission pattern<strong>and</strong> strength to the gridded data go<strong>in</strong>g <strong>in</strong>to the atmospherictransport model. So, for each of these emission causes anemission estimate <strong>and</strong>/or module that calculates emissionwith<strong>in</strong> the model needs to be constructed. To illustrate themethodology we present three examples.


H. A. C. Denier van der Gon et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 167• W<strong>in</strong>dblown dust <strong>from</strong> bare soils; A w<strong>in</strong>d velocity drivenfactor is applied to all bare soils follow<strong>in</strong>g the parameterizationof van Loon M. et al. (2005). This is a simplifiedversion of paramterizations developed to predictw<strong>in</strong>d blown dust <strong>from</strong> deserts. As a first approximationwe applied this function to all arable l<strong>and</strong>s accord<strong>in</strong>gto the CORINE l<strong>and</strong> use map (CORINE, 2003) but atonly 1/50 of the source strength because arable l<strong>and</strong>swill have a lower emission than cont<strong>in</strong>uous bare soilsor deserts. Furthermore we assume no emissions occuron ra<strong>in</strong>y days. Next, sensitivity studies will be done by<strong>in</strong>creas<strong>in</strong>g the bare soil area <strong>and</strong> adjust<strong>in</strong>g the sourcefunction. Obviously our first assumptions may easilybe an order of magnitude wrong <strong>and</strong> comparisons withmeasurement data <strong>in</strong> particular regions will be used totune the source strength.• Road wear or pavement wear; Pavements consist ma<strong>in</strong>ly<strong>from</strong> rock material <strong>and</strong> the contribution of pavementwear to the total PM10 emission factor is difficult toseparate <strong>from</strong> the contribution of w<strong>in</strong>dblown- or resuspendedsoil <strong>and</strong> other geological material. However <strong>in</strong> aroad tunnel the amount of w<strong>in</strong>dblown soil dust com<strong>in</strong>g<strong>from</strong> the shoulders or elsewhere will be limited <strong>and</strong> afirst approximation can be that all the crustal material<strong>in</strong> PM10 produced <strong>in</strong> the tunnel orig<strong>in</strong>ates <strong>from</strong> roadwear. Gillies J. A. et al. (2001) reported that ~12 % ofthe PM10 <strong>in</strong> the Sulpeveda tunnel was of geological orig<strong>in</strong>.Denier van der Gon H. A. C. et al. (2003) used thisobservation <strong>in</strong> comb<strong>in</strong>ation with the chemical analysisof PM10 formed <strong>in</strong> the the Maas tunnel (Rotterdam, TheNetherl<strong>and</strong>s) to derive an emission factor of 3 - 4 mg pervehicle kilometre (vkm) for crustal material <strong>from</strong> roadwear. Road wear will be dependent on the pavement materialbut also on the frequency of brak<strong>in</strong>g <strong>and</strong> corner<strong>in</strong>gcaus<strong>in</strong>g additional friction. In the tunnel environmentthis will be limited compared to the average urban traffic.Hence we see the tunnel road wear emission factoras a lower value. In the literature road wear emissionfactors are often <strong>in</strong> the range of 8 - 10 mg/vkm which isconsistent with 3 - 4 mg/vkm be<strong>in</strong>g a lower limit.• Resuspension by traffic; The material that is be<strong>in</strong>g resuspendedwill vary with the nature of the local circumstancesbut it is typically likely to <strong>in</strong>clude particles <strong>from</strong>vehicle tyre <strong>and</strong> brake dusts, primary exhaust emissionsthat have settled out of the atmosphere (perhaps adher<strong>in</strong>gto larger particles) <strong>and</strong> environmental dusts <strong>from</strong> manysources eg pollen, sea salt, construction work <strong>and</strong> w<strong>in</strong>dblown soils. Furthermore the contribution of resuspensionto total PM will be depedendent on the meteorologicalconditions; dur<strong>in</strong>g ra<strong>in</strong> <strong>and</strong>/or while the surfacesare wet the resuspension will be much lower. The mixof particles with vary<strong>in</strong>g chemical composition, dependencieson local <strong>and</strong> climatic conditions make this a dif-ficult source to quantify <strong>and</strong> generalize. However, t is swidely acknowledged that resuspesion is potentially avery important source <strong>in</strong> the same order of magnitudeas traffic exhaust emissions. In our first, explorative approachwe take an emission factor of 80 mg/vkm <strong>and</strong>than selectively switch this off on ra<strong>in</strong>y days.It should be noted that road wear <strong>and</strong> resuspension willboth be coupled vehicle kilometres driven, hence they cannotbe separated. Furthermore, as discussed above, not allresuspension will be crustal material. Therefore the 80 mg/vkm that we use as a first approximation for crustal PM10<strong>from</strong> traffic conta<strong>in</strong>s only the crustal fraction of resuspensionemissions <strong>and</strong> <strong>in</strong>cludes road wear.3 Spatially distributed emission mapsThe basic procedure to come to a high resolution griddedemission map that can be used as <strong>in</strong>put for a model isto redistribute total national sectoral emissions us<strong>in</strong>g highresolution distribution patterns, also called proxi data. TheTNO proxi data consist of recent geographical distributiondata for po<strong>in</strong>t sources <strong>and</strong> area sources <strong>and</strong> are describedby Visschedijk A. H. J. <strong>and</strong> Denier van der Gon H. A. C.(2005). For example, <strong>in</strong> the present study the emissionmaps for crustal material <strong>from</strong> road wear <strong>and</strong> resuspensionare made by calculat<strong>in</strong>g the total amount road wear <strong>and</strong>/or resuspension <strong>from</strong> annual amount of kilometres drivenby vehicle category (e.g. heavy duty vehicles, light dutyvehicles <strong>and</strong> passenger cars) with<strong>in</strong> a country taken <strong>from</strong>the CAFE base l<strong>in</strong>e scenario (Amman M. et al., 2005) <strong>and</strong>split <strong>in</strong> a highway, urban <strong>and</strong> rural part. For the spatial distributionof the emissions the highway part is distributedaccord<strong>in</strong>g to digitized maps of highways, us<strong>in</strong>g traffic <strong>in</strong>tensitiesby highway section for LDV <strong>and</strong> HDV <strong>from</strong> Eurostat(Eurostat, 2003). The rural part of the road transportemission is distributed accord<strong>in</strong>g to the digital maps of theEuropean rural road network. The urban part of the roadtransport emissions is distributed accord<strong>in</strong>g to a high resolutionpopulation density map (CIESIN, 2001).4 Model descriptionWe have used the LOTOS-EUROS model (Schaap M.et al., 2007) to calculate the crustal material concentrations<strong>in</strong> ambient air over Europe us<strong>in</strong>g meteorologicaldata <strong>from</strong> 1998 <strong>and</strong> 1999. The LOTOS-EUROS model is a3D-chemistry transport model developed to study the formation,transport <strong>and</strong> s<strong>in</strong>ks of oxidants, particulate <strong>matter</strong><strong>and</strong> heavy metals. LOTOS-EUROS is applied for theregion that spans <strong>from</strong> 10 °W to 40 °E <strong>and</strong> <strong>from</strong> 35 °Nto 70 °N with a spatial resolution of 0.5 x 0.25 degreeslon-lat, roughly correspond<strong>in</strong>g to 25 by 25 km. The model


168has been applied <strong>in</strong> numerous studies for particulate <strong>matter</strong>(Schaap M. et al., 2004; Schaap M. et al., 2007). The modelledPM10 concentration over Europe with the LOTOS-EUROS model <strong>in</strong> the year 2003 is shown <strong>in</strong> figure 2. Themodelled concentrations can be compared with measuredconcentrations <strong>and</strong> showed that the model follows the temporalpatterns correctly but that the absolute concentrationsare systematically underestimated. This is expla<strong>in</strong>ed by theomission of natural sources other than sea salt <strong>and</strong> resuspensionemissions <strong>in</strong> the model <strong>in</strong>put. When a comparisonis made for an almost exclusively anthropogenic componentlike PM2.5 sulphate aerosol, both absolute concentrations<strong>and</strong> temporal patterns are predicted correctly by themodel.The model <strong>in</strong>put <strong>in</strong> this study are gridded maps of crustalmaterial emitted as PM10 with 80 % of the particles <strong>in</strong>coarse mode (PM2.5 - 10) <strong>and</strong> 20 % of the particles belongto the f<strong>in</strong>e mode (PM2.5). The tracers for crustal material<strong>in</strong> the model are chemically <strong>in</strong>ert <strong>and</strong> deposition is modelledas f<strong>in</strong>e <strong>and</strong> coarse mode particles. For a full model descriptionwe refer to the model documentation by SchaapM. et al. (2007).5 M<strong>in</strong><strong>in</strong>g observational data to get additional <strong>in</strong>formationIn our approach (figure 1) we have too many unknownsto be directly successful. However we can derive importanth<strong>in</strong>ts <strong>from</strong> the observational data. For example, a remarkablefeature of the data compiled <strong>in</strong> table 1 s is the strongelevation of crustal material at the kerbside stations, suggest<strong>in</strong>gan important contribution of (resuspended) crustalmaterial by traffic. This implies that if we <strong>in</strong>tend to constra<strong>in</strong>e.g., the source strength of crustal material emissionsdue to w<strong>in</strong>d erosion us<strong>in</strong>g models <strong>and</strong> observational data,this cannot be done without <strong>in</strong>clud<strong>in</strong>g traffic emissions.5.1 Ambient PM10 concentration of crustal material <strong>in</strong>the Netherl<strong>and</strong>s2.5 5 7.5 10 15 20 2.5 5 7.5 10 15 20Figure 2:Modelled PM10 concentration over Europe <strong>in</strong> 2003, Left PM10 <strong>in</strong>clud<strong>in</strong>gsea salt aerosol but exclud<strong>in</strong>g other natural soil dust emissions <strong>and</strong> resuspension;right anthropogenic PM10For the Netherl<strong>and</strong>s additional <strong>in</strong>formation about crustalmaterial <strong>in</strong> ambient PM is derived <strong>from</strong> the data collected<strong>in</strong> the bronstof study (Visser H. et al., 2001). Visser Vsser H. etal. (2001) <strong>in</strong>vestigated the composition <strong>and</strong> orig<strong>in</strong> of airborneparticulate <strong>matter</strong> <strong>in</strong> the Netherl<strong>and</strong>s by collect<strong>in</strong>gsamples of the f<strong>in</strong>e fraction (PM2.5) <strong>and</strong> the coarse fraction(PM2.5 - 10) at six sites dur<strong>in</strong>g one year (1998 - 99).The samples were analysed for chemical composition, fora description of the measurement procedures <strong>and</strong> analyticalspecifications we refer to Visser H. et al. (2001). Thesedata will be used to ga<strong>in</strong> <strong>in</strong>formation about the nature of


H. A. C. Denier van der Gon et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 169the CM sources contribut<strong>in</strong>g to ambient PM10 <strong>in</strong> the Netherl<strong>and</strong>s.A number of elements are known to be present n <strong>in</strong>crustal material, the most important be<strong>in</strong>g Si, Al, Ca, K,Fe <strong>and</strong> Ti The strong correlations between these elements<strong>in</strong> PM samples analyzed by Visser H. et al. (2001) suggestthey orig<strong>in</strong>ate <strong>from</strong> the same source, especially Al, Si <strong>and</strong>Ti (data not shown). Clay m<strong>in</strong>erals mnerals <strong>in</strong> n soils sols <strong>and</strong> rock havecomplex alum<strong>in</strong>osilicate structures <strong>and</strong> although measur<strong>in</strong>gthe alum<strong>in</strong>ium <strong>and</strong> silicon content is relatively straightforward,the associated oxygen has to be estimated <strong>in</strong>directlyby assum<strong>in</strong>g a certa<strong>in</strong> oxidation state. Si <strong>and</strong> Al are themost abundant elements <strong>in</strong> crustal material <strong>and</strong> would bethe most robust tracers. A formula [1] was derived, derved, basedon the chemical composition of the f<strong>in</strong>e fraction of Dutchtop soils to calculate the contribution of crustal material(CM) us<strong>in</strong>g the concentrations of Al <strong>and</strong> Si.Mass CM = 0.49*[Si] + (2.36*[Si]+2.70*[Al]) [1]of Si alone if no Al data where available (table 2). The averageconcentration of CM <strong>in</strong> PM10 for the Netherl<strong>and</strong>s is~2.5 at the coast to ~ 5.5 µg/m 3 at the <strong>in</strong>l<strong>and</strong> sites.The contribution of crustal material to ambient PM10at the Dutch sites is w<strong>in</strong>d direction dependent (data notshown). However, the number of observations availableto calculate a w<strong>in</strong>d direction specific contribution is limited.To approximate the w<strong>in</strong>d direction dependency <strong>and</strong>at the same time cover a reasonable number of observationsthe samples have been split <strong>in</strong>to a cont<strong>in</strong>ental/l<strong>and</strong><strong>and</strong> sea derived orig<strong>in</strong> (table 3). The air masses with a morecont<strong>in</strong>ental/l<strong>and</strong> orig<strong>in</strong> show an elevated crustal materialcomponent compared to the sea derived air masses (2.9 vs1.8 µg/m 3 for de Zilk <strong>and</strong> 8.6 vs 3.0 µg/m 3 for Vredepeel,respectively). This may help us to identify source regionsus<strong>in</strong>g trajectories <strong>in</strong> the models for the particular days withelevated concentrations as well as <strong>in</strong>vestigat<strong>in</strong>g the dependencyon meteorological conditions.Al <strong>in</strong> PM10 [ng/m ]3250020001500100050000De ZilkVredepeelOverschieOvertooml<strong>in</strong>ear all data10002000 3000 4000 5000 6000Si <strong>in</strong> PM10 [ng/m 3]y = 0.34x + 912R = 0.97Table 2:Average annual contribution of CM to ambient PM10 concentrations atfour locationsLocationmethodnumberobservationsDeZilkCM_altVredepeelCM_altOverschieCM_altOvertoomCM_alt31.0 45.0 42.0 49.0avg (µg/m3) 2.4 5.4 5.0 3.3sd 2.5 4.7 3.9 2.2CM_alt = like CM eq[1] but miss<strong>in</strong>g Al data are estimated based on the Al to Si correlation(figure 3)Figure 3:Alum<strong>in</strong>um (Al) concentration as a function of Silicium (Si) <strong>in</strong> PM10 atfour locations <strong>in</strong> the Netherl<strong>and</strong>s (based on data <strong>from</strong> Visser H. et al.,2001)The number of analysis days <strong>in</strong> the study of Visser H. et al.(2001) with a complete elemental analysis of PM is ratherlimited. To bypass the problem of limited data availability,the strong correlation between Al <strong>and</strong> Si <strong>in</strong> the availabledata (fgure figure 3) is s used to calculate soil sol material materal on the basisbass5.2 Size fractionation of crustal material <strong>in</strong> PM10Another important feature that is needed for the modelsto predict the contribution of particulate emissions to ambientconcentrations is the size fractionation. The smallersize fractions are transported of longer distances <strong>and</strong> havea longer life time due to a slower deposition rate. We havestarted our <strong>in</strong>vestigations assum<strong>in</strong>g that 20 % of the CM is<strong>in</strong> the f<strong>in</strong>e fraction (PM2.5) of PM10. These assumptionsTable 3:The crustal material contribution to PM10 at de Zilk <strong>and</strong> Vredepeel at different w<strong>in</strong>d directionsDe ZilkVredepeelAll Cont<strong>in</strong>ental Sea All Cont<strong>in</strong>ental SeaW<strong>in</strong>d direction 0 -360 (0 - 180) (180 - 360) 0 - 360 (0 - 180, 315 - 360) (180 - 315)observations 31.0 18.0 13.0 45.0 19.0 26.0Average (µg/m 3 ) 2.4 2.9 1.8 5.4 8.6 3.0stdev 2.5 3.1 1.4 4.7 4.8 2.9


170can be ref<strong>in</strong>ed us<strong>in</strong>g <strong>in</strong>formation <strong>from</strong> measurements. Theaverage fraction of PM2.5 at the <strong>in</strong>l<strong>and</strong> site (Vredepeel)<strong>and</strong> coastal site (De Zilk) is 15 % <strong>and</strong> 21 %, respectively.However, a closer look reveals that this fraction is notstable but changes as a function of the total CM content(fgure figure 4). So, the more mportant important the CM contrbuton,contribution,the less relevant is the PM2.5 fraction. This <strong>in</strong>dicates thatevents of elevated CM contributions are probably highlycontrolled by sources <strong>in</strong> the vic<strong>in</strong>ity. In future sensitivitystudies we will vary the size fraction to see how this <strong>in</strong>fluencesthe sources contribut<strong>in</strong>g to our receptor po<strong>in</strong>ts. Weneed to further analyze the data to see if we can use this<strong>in</strong>formation to exclude certa<strong>in</strong> sources as be<strong>in</strong>g importantfor the Netherl<strong>and</strong>s.Fraction PM2.550 %40 %30 %20 %10 %0 %Figure 4:86 %De ZilkVredepeelPower (Vredepeel)-0.48y = 0.25x2R = 0.690 5 10 15 20Crustal PM10 [µg/m 3]The fraction of PM2.5 <strong>in</strong> crustal PM10 for two Dutch background stations6 First results <strong>and</strong> further stepsThe predicted concentration of crustal PM10 due to w<strong>in</strong>dblowndust <strong>from</strong> arable fields is presented <strong>in</strong> figure fgure 5. ThsThisfirst approximation results <strong>in</strong> annual contributions to PM10of ~ 0.2 µg/m 3 <strong>in</strong> the Netherl<strong>and</strong>s. This is small comparedto annual observed concentrations of 2 - 5 µg/m 3 . However,it should be noted that our emission function doesnot yet <strong>in</strong>clude emission due to l<strong>and</strong> management <strong>and</strong>, aswas expla<strong>in</strong>ed earlier, is highly uncerta<strong>in</strong>. The patterns <strong>in</strong>the map reflect a comb<strong>in</strong>ation of where arable l<strong>and</strong>s are<strong>and</strong> arid regions because the emission is switched off onra<strong>in</strong>y days.The predicted concentration of crustal PM10 due to resuspension<strong>and</strong> roadwear by traffic is presented <strong>in</strong> fgure figure 6.Here the patterns reflect where most kilometres are driven(big cities <strong>and</strong> densely populated regions) <strong>and</strong> predict acontribution of traffic to crustal PM10 <strong>in</strong> the Netherl<strong>and</strong>sof 0.3 - 1 µg/m 3 , aga<strong>in</strong> modest compared to the observedannual concentrations. Further <strong>in</strong>vestigations of publishedroad side measurements may help us to better def<strong>in</strong>e realisticestimates of the resuspension emission factor <strong>and</strong> thefraction of crustal material there<strong>in</strong>. Furthermore we mayvary the resuspension emission factor between highways,urban areas <strong>and</strong> rural, secondary roads. It is to be expectedthat a car or lorry driv<strong>in</strong>g over a rural road is caus<strong>in</strong>g moreresuspend<strong>in</strong>g of dust than the same vehicle be<strong>in</strong>g one ofthe 4.000 vehicles / hr pass<strong>in</strong>g a busy highway. It shouldbe <strong>in</strong>vestigated how sensitive the patterns of the predictedconcentrations are to such modifications <strong>and</strong> how sensitivethey are to certa<strong>in</strong> climatic conditions.7 Conclusions <strong>and</strong> OutlookCrustal material is an important component of the PM10<strong>and</strong> especially PM2.5 - 10 concentrations observed <strong>in</strong> theNetherl<strong>and</strong>s. It orig<strong>in</strong>ates <strong>from</strong> natural <strong>and</strong> anthropogenicsources. A better underst<strong>and</strong><strong>in</strong>g of the sources contribut<strong>in</strong>gto the crustal fraction <strong>in</strong> PM10 is important for underst<strong>and</strong><strong>in</strong>gthe ambient PM concentrations because the fraction ofPM that can be <strong>in</strong>fluenced by abatement measures <strong>in</strong> futurepolicy plans should <strong>in</strong>clude the anthropogenic sources ofthe crustal fraction such as resuspension of dust by traffic.Despite the importance of crustal material <strong>in</strong> total PM10mass, the sources are still poorly understood <strong>and</strong> not wellrepresented<strong>in</strong> emission <strong>in</strong>ventories. This is due to the factthat some sources can be def<strong>in</strong>ed as natural sources (e.g.,erosion) whilst others like re-suspension are not recognizedas primary emission but a re-emission. Separat<strong>in</strong>gthe source contributions is difficult because the uniquetracers for crustal material <strong>in</strong> PM10 samples (e.g., Si, Al,Ti) do not allow a dist<strong>in</strong>ction between the potential sourcesof this material. To make progress <strong>in</strong> our underst<strong>and</strong><strong>in</strong>gof the crustal material source strengths we need to comb<strong>in</strong>e<strong>in</strong>formation <strong>from</strong> different discipl<strong>in</strong>es. We present amethodology to comb<strong>in</strong>e the of <strong>in</strong>formation available <strong>from</strong>flux measurements, emission <strong>in</strong>ventories, geographical<strong>in</strong>formation systems, atmospheric transport models,<strong>and</strong>chemical analysis of ambient PM10 samples to explore <strong>and</strong>constra<strong>in</strong> source strengths of the various sources of crustalPM10. Crustal material is dom<strong>in</strong>antly found <strong>in</strong> the coarsefraction of PM10 (figure 4). Therefore, the coarse fraction(PM2.5 - 10) is the best fraction to study us<strong>in</strong>g the model.Even more so, because the coarse fraction is transportedover shorter distances imply<strong>in</strong>g that the distance of thereceptor site (where concentrations are measured) will berelatively close to source of orig<strong>in</strong>.Source functions <strong>and</strong> emission maps for other crustalPM10 sources need to be made <strong>and</strong> the predicted concentrationscan be superimposed on each other. Given the uncerta<strong>in</strong>tyis our first approximations <strong>and</strong> that the sourceswill add up we can conclude that it is certa<strong>in</strong>ly feasibleto come close to observed values. For most of the crustal


H. A. C. Denier van der Gon et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 171PM10 sources climatic conditions like precipitation <strong>and</strong>w<strong>in</strong>d are controll<strong>in</strong>g factors. The atmospheric dispersionmodels can be run with different years to match the momentsof campaigns with sufficient chemical analyticaldata. For example, the maps <strong>in</strong> figure 5 <strong>and</strong> figure 6 are theresult of us<strong>in</strong>g the meteorological data of 1998 <strong>and</strong> 1999 tomatch the sample dates of the Visser et al. (2001). In thisway we may be able to use chemical composition data fordifferent years <strong>from</strong> different regions.The temporal <strong>and</strong> spatial patterns of observations <strong>and</strong>model predictions will give important clues to whether thebalance between sources <strong>and</strong> the tim<strong>in</strong>g of there emissionsis correct <strong>in</strong> our appraoch. With<strong>in</strong> the uncerta<strong>in</strong>ties surround<strong>in</strong>gthis exploratory approach the balance <strong>in</strong> sourcecontributions can be optimized to fit the observations <strong>in</strong>terms of absolute annual concentrations as well as the temporalpatterns over the year. The result is a constra<strong>in</strong>t on thetotal source strength of crustal material <strong>and</strong> an <strong>in</strong>dicativerank<strong>in</strong>g of the importance of contribut<strong>in</strong>g sources <strong>in</strong> variousareas of Europe.AcknowledgementThis research is supported by the policy oriented researchprogramme particulate <strong>matter</strong> 2007 - 2009 (BOP) f<strong>in</strong>ancedDutch M<strong>in</strong>istry of Hous<strong>in</strong>g, Spatial Plann<strong>in</strong>g <strong>and</strong> the Environment.W<strong>in</strong>dblown dust PM1069N66N63N60N57N54N51N48N45N0.350.30.250.20.150.10.0542N39N36N5W0 5E 10E 15E 20E 25E 30E 35EGrADS:COLA/IGES 2007-07-20-12:11Figure 5:Predicted crustal PM10 over Europe us<strong>in</strong>g a first approximation of the w<strong>in</strong>dblown dust <strong>from</strong> arable l<strong>and</strong>s


172Traffic resuspension PM1069N66N63N60N57N54N51N48N45N310.30.10.030.0142N39N36N5W0 5E 10E 15E 20E 25E 30E 35EGrADS:COLA/IGES 2007-07-20-12:11Figure 6Predicted crustal PM10 over Europe us<strong>in</strong>g a first approximation of resuspended crustal material by trafficReferencesAmann M., Bertok I., Cofala J., Gyarfas F., Heyes C., KlimontZ.,Schöpp W., W<strong>in</strong>iwarter W. (2005). Basel<strong>in</strong>e Scenarios for theClean Air for Europe (CAFE) Programme, F<strong>in</strong>al Report, Correctedversion, February 2005, IIASA, Laxenburg, available at http://www.iiasa.ac.at/web-apps/tap/Ra<strong>in</strong>sWeb/CIESIN (2001). Gridded Population of the World (GWP) data set version2, Center for In-ternational Earth Science Geographic Information NetworkCIESIN, Inter-national Food Policy Research Institute (IFPRI),Columbia University, Palisades.CORINE (2003). CORINE L<strong>and</strong> Cover data base, M. Krynitz, EuropeanTopic Center on L<strong>and</strong> Cover (ETC/LC), File: 250mGrid.rtf, EuropeanEnvironment Agency (EEA), Copenhagen.Denier van der Gon, H. A. C., van het Bolscher M., Holl<strong>and</strong>er J. C.T., Spoelstra H. (2003). <strong>Particulate</strong> <strong>matter</strong> <strong>in</strong> the size range of 2.5 – 10microns <strong>in</strong> the Dutch urban environment, an exploratory study, TNOreport,R 2003/181..Eurostat (2003). European Road <strong>in</strong>frastructure, European road network,version 4, Infra-structure Layer RD Roads, GISCO Database, ThemeIN, Luxembourg.Gillies J. A, Gertler A. W., Sagebiel J. C., Dippel W. A. (2001). On-Road <strong>Particulate</strong> Matter (PM2.5 <strong>and</strong> PM10) Emissions <strong>in</strong> the SepulvedaTunnel, Los Angeles, California, Environmental science & technology35 1054-1063.Querol X., Alastuey A., Ruiz C. R., Art<strong>in</strong>anob B., Hansson H.C.,Harrison R. M., Bur<strong>in</strong>gh E., ten Br<strong>in</strong>k H. M., Lutz M., BruckmannP., Straehl P., Schneider J. (2004). Speciation <strong>and</strong> orig<strong>in</strong> ofPM10 <strong>and</strong> PM2.5 <strong>in</strong> selected European cities, Atmospheric Environment38, 6547–6555.Schaap M., Denier Van Der Gon H. A. C., Dentener F. J., VisschedijkA. J. H.. Van Loon M., ten Br<strong>in</strong>k H. M., Putaud J.-P., Guillaume B.,Liousse C., Builtjes P. J. H. (2004). Anthropogenic black carbon <strong>and</strong>f<strong>in</strong>e aerosol distribution over Europe, J. Geophys. Res., Vol. 109, No.D18, D18207,10.1029/2003JD004330,Schaap M., Sauter F., Timmermans R. M. A., Roemer M., VeldersG., Beck J., Builtjes P. J. H. (2007). The LOTOS-EUROS model:description, validation <strong>and</strong> latest developments, International Journalof Environmental Pollution (<strong>in</strong> press)van Loon M., Tarrason L., Posch M. (2005). Modell<strong>in</strong>g Base Cations <strong>in</strong>Europe, EMEP MSC-W Technical Report 2/05, EMEP, www.emep.<strong>in</strong>tVisschedijk A. H. J. <strong>and</strong> Denier van der Gon H. A. C. (2005). GriddedEuropean anthropogenic emission data for NO x, SO 2, NMVOC, NH 3,CO, PM10, PM2.5 <strong>and</strong> CH 4for the year 2000, TNO B&O-A Rapport2005/106.Visser H., Bur<strong>in</strong>gh E., van Breugel P. B. (2001). Composition <strong>and</strong> Orig<strong>in</strong>of Airborne <strong>Particulate</strong> Matter <strong>in</strong> the Netherl<strong>and</strong>s, RIVM report650010 029, RIVM, Bilthoven, Netherl<strong>and</strong>s.


D. Öttl et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 173PM emission factors for farm<strong>in</strong>g activities by means of dispersion model<strong>in</strong>gD. Öttl 1 <strong>and</strong> R. Funk 2AbstractIn this study emission factors for use <strong>in</strong> emission <strong>in</strong>ventoriesare provided for different agricultural operations.These are plow<strong>in</strong>g, harrow<strong>in</strong>g, disk<strong>in</strong>g, <strong>and</strong> cultivat<strong>in</strong>g.Emission factors were derived for PM10, PM2.5, <strong>and</strong> PM1.Measurements were conducted by the Leibniz-Centre forAgricultural L<strong>and</strong>scape Research (ZALF) <strong>in</strong> Müncheberg,Germany, while the emission factors were obta<strong>in</strong>ed withthe Lagrangian dispersion model GRAL (Graz LagrangianModel). The latter has been developed by the Institute forInternal Combustion Eng<strong>in</strong>es <strong>and</strong> Thermodynamics, GrazUniversity of Technology, Austria.Keywords: agricultural operations, PM emission factors,Particle model, farm<strong>in</strong>g activitiesIntroductionF<strong>in</strong>e particulate <strong>matter</strong> (PM) is nowadays be<strong>in</strong>g recognizedas one of the most critical pollutants regard<strong>in</strong>g thecompliance with air quality st<strong>and</strong>ards. In many studies itbecame evident, that the major source for high PM-concentrationsclose to the ground is traffic. However, it is recognizedthat there are many other sources (anthropogenic<strong>and</strong> natural), which can also contribute significantly to thetotal pollutant burden. Air quality observations <strong>in</strong>dicate thatthe so called background concentration of PM10 accountsfor roughly 50 % of the total observed concentrations evenwith<strong>in</strong> larger cities (Lenschow P. et al. 2001). In order toallow for a detailed source apportionment regard<strong>in</strong>g thebackground concentration, comprehensive emission <strong>in</strong>ventoriesare necessary. There exist only a few studies aboutPM emission factors <strong>from</strong> agricultural operations (HolménB.A. et al. 2001), <strong>and</strong> hence, these are not accounted for <strong>in</strong>emission <strong>in</strong>ventories. This study aims at provid<strong>in</strong>g emissionfactors for different k<strong>in</strong>ds of agricultural operationsnamely: plow<strong>in</strong>g, harrow<strong>in</strong>g, disk<strong>in</strong>g, <strong>and</strong> cultivat<strong>in</strong>g.Experimental set upThe experiments were all conducted by the Leibniz-Centre for Agricultural L<strong>and</strong>scape Research (ZALF) <strong>in</strong>Müncheberg, Germany. The observations consisted ofx,y (50,50)PM observationx,y (51,25)Last trackx,y (0,0)1 st tracktracks always <strong>from</strong>south to northNFigure 1:Sketch of the test field for the different agricultural operations1Air Quality Department of Styria, Austria2Leibniz-Centre for Agricultural L<strong>and</strong>scape Research (ZALF) Müncheberg, Germany


174a w<strong>in</strong>d vane <strong>and</strong> a cup anemometer 1 m above groundlevel, <strong>and</strong> a particle counter for PM10, PM2.5, <strong>and</strong> PM1(GRIMM 107 PTFE ENVIRONcheck). PM observationstook place at a height of 2 m above ground level close toa test field, which had an extension of 50 m x 50 m (figure1). In all experiments the tractor drove <strong>from</strong> south tonorth.PM emission factors for farm<strong>in</strong>g activities by meansof dispersion model<strong>in</strong>gFigure 2 shows the <strong>in</strong>vestigated agricultural operations.The soil type of test field can be characterized as s<strong>and</strong>ycambisol. The soil texture is given <strong>in</strong> table 1. It can be seen,that PM10 accounts for about 6 % of the total volume. Figure3 depicts a typical soil moisture distribution with<strong>in</strong>the test field dur<strong>in</strong>g the experiments. Little variation wasfound for the experiments, which took place between June<strong>and</strong> October 2004. It is clearly visible, that only the firstfew centimeters of the soil may significantly contribute toPM emissions, as the soil moisture is strongly <strong>in</strong>creas<strong>in</strong>gwith depth up to a constant value of about 5.5 %. Tests <strong>in</strong>a w<strong>in</strong>d tunnel revealed a critical value of about 2.5 % soilmoisture above which practically no PM emission takesplace.Table 1:Soil texture of the test fieldFraction Diameter (µm) Share (%)Coarse s<strong>and</strong> 630 - 2000 5.0Middle s<strong>and</strong> 200 - 600 37.9F<strong>in</strong>e s<strong>and</strong> 63 - 200 40.4Coarse silt 20 - 63 7.5Middle silt 6 - 20 3.3F<strong>in</strong>e silt 2 - 6 1.8Clay


D. Öttl et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 175soil depth (cm)00246810121416Figure 3:soil moisture (mass %)1 2 3 4 5 6 7Typical soil moisture distribution with<strong>in</strong> the test field dur<strong>in</strong>g the experimentsModel<strong>in</strong>g approachIn order to obta<strong>in</strong> PM emission factors the Lagrangi<strong>and</strong>ispersion model GRAL (Graz Lagrangian Model) hasbeen utilized. GRAL is a well-validated short range numericalmodel applicable for a wide range of w<strong>in</strong>d speeds <strong>and</strong>atmospheric stabilities. In this study the follow<strong>in</strong>g relationshipswere used to determ<strong>in</strong>e the turbulent velocities:( pu + qv) dt +σ u 2 pdt ξudu = −(1a)dv = −( − qu + pv) dt + σ v 2 pdt ξv0.5[ C ε dt] ξ w(1b)dw = a ⋅ dt +(1c)0 ⋅du, dv, <strong>and</strong> dw are the w<strong>in</strong>d fluctuations <strong>in</strong> x, y, <strong>and</strong> z-direction. ξ u, ξ v, <strong>and</strong> ξ ware <strong>in</strong>crements of a Wiener processwith zero mean, a st<strong>and</strong>ard deviation of one <strong>and</strong> a Gaussianprobability density function. dt is the time step, ε theensemble average rate of dissipation of turbulent k<strong>in</strong>eticenergy, C 0the universal constant set equal to 4 (WilsonJ.D. et al. 1996, Degrazia G. A. et al. 1998, Anfossi D. etal. 2000), a is the determ<strong>in</strong>istic acceleration term computedaccord<strong>in</strong>g to Franzese (Franzese P. et al. 1999), <strong>and</strong> σ u,v.arethe st<strong>and</strong>ard deviations of the horizontal w<strong>in</strong>d fluctuations.The latter are determ<strong>in</strong>ed <strong>in</strong> the surface layer by0.1 zσ u,v = u*⋅ 1+1.8 ⋅(2)LThe ensemble average rate of dissipation of turbulent k<strong>in</strong>eticenergy accord<strong>in</strong>g to Kaimal <strong>and</strong> F<strong>in</strong>nigan (Kaimal J.C. et al. 1994) is:1.50.67u* zε 1 0.5 (3) = +κz LIn eq. (2) <strong>and</strong> (3) u *denotes the friction velocity, K the <strong>von</strong>Karman constant, <strong>and</strong> L is the Mon<strong>in</strong>-Obukhov length. Thefriction velocity is determ<strong>in</strong>ed accord<strong>in</strong>g to Golder (GolderD. 1972) <strong>and</strong> the Mon<strong>in</strong>-Obukhov length accord<strong>in</strong>g toVenkatram (Venkatram A. 1996).Equations (1a) <strong>and</strong> (1b) were derived by Oettl (Oettl D.,et al. 2005) to account for horizontal me<strong>and</strong>er<strong>in</strong>g flows <strong>in</strong>low w<strong>in</strong>d speed conditions. The parameters p <strong>and</strong> q controlthe shape of the modelled autocorrelation function, whichusually shows oscillation behaviour <strong>in</strong> low w<strong>in</strong>d speedconditions <strong>and</strong> an exponential shape <strong>in</strong> higher w<strong>in</strong>d speedconditions (Anfossi D. et al. 2004, Hanna S. R. 1983). Accord<strong>in</strong>gto Anfossi (Anfossi D. et al. 2004) parameters p<strong>and</strong> q are def<strong>in</strong>ed as:2p = (4a)2( m + 1) ⋅T3mq = (4b)2( m + 1) ⋅T3T*⋅ mT 3 = for mean w<strong>in</strong>d speeds ū


176of cases occurr<strong>in</strong>g dur<strong>in</strong>g the daytime <strong>and</strong> nighttime. Thesampl<strong>in</strong>g was for the 10-m<strong>in</strong>ute period <strong>in</strong> the middle of the20-m<strong>in</strong>ute release. All <strong>in</strong> all 44 experiments were used <strong>in</strong>this study. As our <strong>in</strong>terest is on the model performance veryclose to the source, only the results for the 50 m sampl<strong>in</strong>garc are briefly discussed. Figure 4 depicts a comparison ofobserved <strong>and</strong> modeled maximum concentrations at 50 mdistance <strong>from</strong> the release po<strong>in</strong>t. The l<strong>in</strong>es <strong>in</strong>dicate the oneto one relationship <strong>and</strong> a deviation of +/- 30 %. As can beseen almost all cases fall with<strong>in</strong> this range of uncerta<strong>in</strong>ty.The coefficient of determ<strong>in</strong>ation was found to be 0.94.0.0250.020For each experiment an hourly average concentrationwas calculated by <strong>in</strong>tegrat<strong>in</strong>g the observed peaks <strong>and</strong> subtract<strong>in</strong>gthe estimated background concentration. From thedispersion simulation, emission factors <strong>in</strong> units of [kg h -1 ]<strong>and</strong> [kg] were obta<strong>in</strong>ed respectively. By division throughthe area of the test field the f<strong>in</strong>al emission factors <strong>in</strong> unitsof [mg m -2 ] could be derived. Table 2 lists the observedmeteorological conditions dur<strong>in</strong>g the tests. Although thestability class is subject to some uncerta<strong>in</strong>ty as it had to beestimated based on the w<strong>in</strong>d speed, cloud cover, time of theday, <strong>and</strong> season, model simulations apply<strong>in</strong>g other stabilityclasses showed only little <strong>in</strong>fluence on the concentration.The reason is the very close location of the PM measurementsite to the test field.Observed [s/m ]30.0150.0100.0050.0000.000 0.005 0.010 0.015 0.020 0.025GRAL [s/m ]Figure 4.Observed <strong>and</strong> modeled maximum concentrations at 50 m distance <strong>from</strong>the release po<strong>in</strong>t for the Prairie Grass Experiment (44 cases)ResultsTable 2:Observed meteorological conditions dur<strong>in</strong>g the experimentsPlow<strong>in</strong>g<strong>and</strong>pack<strong>in</strong>gW<strong>in</strong>dspeed[m s -1 ]W<strong>in</strong>ddirection[deg.]Stabilityclass(PGT)Relativehumidity[%]Temperature[°C]2.7 170 C 40 24Harrow<strong>in</strong>g 1.9 212 B 34 27Disk<strong>in</strong>g 3.1 96 D 45 13Cultivat<strong>in</strong>g 1.1 113 B 29 27Plow<strong>in</strong>g 2.9 13 D 53 27Emission factors for PM were obta<strong>in</strong>ed by modell<strong>in</strong>g thedispersion <strong>from</strong> the test field, treat<strong>in</strong>g it as an area source.It was assumed <strong>in</strong> the simulations, that the PM emissionsare <strong>in</strong>itially mixed up to 2 m above ground level due thetractor <strong>in</strong>duced turbulence. Figure 5 shows an example ofobserved PM10-concentrations for plow<strong>in</strong>g <strong>and</strong> pack<strong>in</strong>g.From the observed concentration m<strong>in</strong>ima dur<strong>in</strong>g the experiment,the background concentrations for PM10, PM2.5,<strong>and</strong> PM1 were determ<strong>in</strong>ed.30025020015010050PM10-observation [µg/m 3]x-position of the tractor [m]012:50 13:00 13:10 13:20 13:30 13:40Figure 5:Example of observed PM10-concentrations for plow<strong>in</strong>g <strong>and</strong> pack<strong>in</strong>gTable 3 lists the calculated emission factors for the differentagricultural operations for PM10, PM2.5, <strong>and</strong> PM1.Hav<strong>in</strong>g <strong>in</strong> m<strong>in</strong>d all the possible <strong>in</strong>fluenc<strong>in</strong>g factors onthe emissions such as dispersion model uncerta<strong>in</strong>ty, w<strong>in</strong>dspeed, relative humidity, soil moisture, l<strong>and</strong> preparation, itis somewhat surpris<strong>in</strong>g to f<strong>in</strong>d with one exception a relativelynarrow range for the emission factors. However, dur<strong>in</strong>gdry conditions emissions for similar activities can riseup by a factor of 10 as can be seen for plow<strong>in</strong>g.Table 3:Emission factors for PM10, PM2.5, <strong>and</strong> PM1 for different agriculturaloperationsPlow<strong>in</strong>g <strong>and</strong>pack<strong>in</strong>gPM10[mg m -2 ]PM2.5[mg m -2 ]PM1[mg m -2 ]120 5 1Harrow<strong>in</strong>g 82 29 1)


D. Öttl et al. / L<strong>and</strong>bauforschung Völkenrode Special Issue 308 177ReferencesAnfossi D., Oettl D., Degrazia G., Goulart A. (2004). An analysis ofsonic anemometer observations <strong>in</strong> low w<strong>in</strong>d speed conditions. Bound.-Layer Met., 114, 179-203.Anfossi D., Degrazia G., Ferrero E., Gryn<strong>in</strong>g S.E., Morselli M. G.,Tr<strong>in</strong>i Castelli S. (2000). Estimation of the Lagrangian structure functionconstant C0 <strong>from</strong> surface layer w<strong>in</strong>d data. Boundary-Layer Meteor.,95, 249-270.Barad M. L. (Editor) (1958). Project Prairie Grass, A field program <strong>in</strong>diffusion. A Geophysical Research Paper, No. 59, Vol I <strong>and</strong> II, ReportAFCRC-TR-58235, Air Force Cambridge Research Center, 439 pp.Degrazia G. A., Anfossi D. (1998). Estimation of the Kolmogorov constant<strong>from</strong> classical statistical diffusion theory. Atmos. Environ., 32,3611-3614.Franzese P., Luhar A. K., Borgas M. S. (1999). An efficient Lagrangianstochastic model of vertical dispersion <strong>in</strong> the convective boundarylayer. Atmos. Environ., 33, 2337-2345.Golder D. (1972). Relations among stability parameters <strong>in</strong> the surfacelayer. Boundary-Layer Meteor., 3, 47-58.Hanna S. R. (1983). Lateral turbulence <strong>in</strong>tensity <strong>and</strong> plume me<strong>and</strong>er<strong>in</strong>gdur<strong>in</strong>g stable conditions. J. Appl. Meteorol., 22, 1424-1430.Holmén B. A., James T. A., Ashbaugh L.L., Flocch<strong>in</strong>i R.G. (2001).Lidar-assisted measurement of PM10 emissions <strong>from</strong> agricultural till<strong>in</strong>g<strong>in</strong> California’s San Joaqu<strong>in</strong> Valley – Part II: emission factors. Atmos.Environ., 35, 3265-3277.Kaimal J. C., F<strong>in</strong>nigan J. J. (1994). Atmospheric boundary layer flows.Oxford University Press, 289pp.Lenschow P., Abraham H.-J., Kutzner K., Lutz M., Preuß J.-D.,Reichenbächer W. (2001): Some ideas about the sources of PM10.Atmos. Environ., 35, S23-S33.Oettl D., Goulart A., Degrazia G., Anfossi D. (2005). A new hypothesison me<strong>and</strong>er<strong>in</strong>g atmospheric flows <strong>in</strong> low w<strong>in</strong>d speed conditions. Atmos.Environ., 39, 1739 - 1748.Venkatram A. (1996). An exam<strong>in</strong>ation of the Pasquill-Gifford-Turnerdispersion scheme. Atmos. Environ., 8, 1283-1290.Wilson J. D., Sawford B. L. (1996). Review of Lagrangian stochasticmodels for trajectories <strong>in</strong> the turbulent atmosphere. Boundary-LayerMeteor., 78, 191-210.


178


179List of speakersAneja,V<strong>in</strong>ey P.Beletskaya,OlgaBünger,JürgenName Title InstitutionDenier van der Gon,Hugo A. C.Funk,RogerGrimm,EwaldGustafsson,GöstaHartung,JörgHaunold,WernerH<strong>in</strong>z,TorstenRuschel,Y<strong>von</strong>neHnilicova,HelenaKeder,Josefvan der Hoek,Klaas W.Karlowski,JerzyKlimont,ZbigniewL<strong>in</strong>denthal,GerfriedSchmidt,Mart<strong>in</strong>Nannen,ChristophRosenthal,EberhardMadsen,Peter VangsboÖttl,DietmarRomann,Mart<strong>in</strong>Schärer,BerndSchneider,FreidhelmTakai,HisamitsuProf. Dr.Dr.Dr.Dr.Prof.Prof. Dr.Dr.Dr.Dr.ProjectmanagementDr.Dr.Department of Mar<strong>in</strong>e, Earth, <strong>and</strong> Atmospheric SciencesUniversity HohenheimInstitute of Farm Management (410B)Berufsgenossenschaftliches Forschungs<strong>in</strong>stitut fürArbeitsmediz<strong>in</strong> (BGFA)Institut der Ruhr-Universität BochumTNO Built Environment <strong>and</strong> GeosciencesBus<strong>in</strong>ess unit Environment <strong>and</strong> HealthZALF MünchebergInstitut für Bodenl<strong>and</strong>schaftsforschungKuratorium für Technik und Bauwesen <strong>in</strong> derL<strong>and</strong>wirtschaft e. V. (KTBL)Dept. of Agricultural Biosystems <strong>and</strong> TechnologyInstitut für Tierhygiene, Tierschutz und NutztierethologieTierärztliche Hochschule HannoverInstitut für Atmosphäre und UmweltUniversität FrankfurtInstitut für Technologie und BiosystemtechnikBundesforschungsanstalt für L<strong>and</strong>wirtschaft (FAL)Czech Hydrometeorological InstituteNational Institute for Public Health <strong>and</strong> the Environment(RIVM)Institute for Build<strong>in</strong>gs Mechanisation <strong>and</strong> Electrificationof AgricultureInternational Institute for Applied Systems AnalysisPalas GmbGInstitut für L<strong>and</strong>technik, Universität BonnNational Environmental Research Institute (NERI)Amt d. Steiermärkischen L<strong>and</strong>esregierungFA17CReferat für LuftgüteüberwachungSympatec GmbHUmweltbundesamt - Federal Environment AgencyGrimm Aerosol Technik GmbH & Co. KGDepartment of Agricultural Eng<strong>in</strong>eer<strong>in</strong>gResearch Centre BygholmAdressTelephoneFaxRoom 5136, Jordan HallCampus Box 8208North Carol<strong>in</strong>a State UniversityRaleigh NC 27695-8208, U.S.A.+01 (919) 515-7808+01 (919) 515-7802Scharnhauser Straße 79D 73760 Ostfildern, Germany+49 711 459 22 567Bürkle-de-la-Camp-Platz 1D 44789 Bochum, Germany+49 (0)234 302-4556+49 (0)234 302-4505Iaan van Westenenk 501NL-7300 AH ApeldoornThe Netherl<strong>and</strong>s+31 55 5493 267+31 55 5493 252Eberswalder Straße 84D 15374 Müncheberg, Germany+49 33432 82321Bartn<strong>in</strong>gstraße 49D 64289 Darmstadt, Germany+49 6151 7001-156+49 6151 7001-123P.O. Box 86S 23053 Alnarp, Schweden+46 404 15488+46 404 154 75Bünteweg 17pD 30559 Hannover, Germany+49 511 953 8832+49 511 953 8588Altenhöferallee 1D 60438 Frankfurt, Germany+49 69 798 40 239Bundesallee 50D 38116 BraunschweigGermany+49 531 596 4202+49 531 596 4299E-mailVINEY_ANEJA@NCSU.edukate_mure@hotmail.combuenger@bgfa.deHugo.denierv<strong>and</strong>ergon@tno.nlrfunk@zalf.dee.grimm@ktbl.degosta.gustafsson@jbt.slu.seitt@tiho-hannover.dehaunold@iav.uni-frankfurt.detorsten.h<strong>in</strong>z@fal.dey<strong>von</strong>ne.ruschel@fal.deNa Sabatce 17,Hnilicova@chmi.cz143 06 Praha 4, Czech Republic+420 244 032 419+420 244 032 468 keder@chmi.czP. O. Box1NL 3720 BA BiltkovenThe Netherl<strong>and</strong>sul. Biskup<strong>in</strong>ska 67PL 60-463 Poznan, Pol<strong>and</strong>Schlossplatz 1A-2361 Laxenburg, Österreich+43 2236 807 547+43 2236 807 533Greschbachstraße 3bD 76229 Karlsruhe, Germany+49 721 96213 0+49 721 96213 33Nußallee 5D 53115 Bonn, GermanyFrederiksborgvej 399,4000 Roskilde, Denmark+45 4630 1154+45 4530 1214L<strong>and</strong>hausgasse 7A 8010 Graz, Österreich+43 316 877 3995Am Pulverhaus 1D 38678 Clausthal-ZellerfeldGermany+49 5323 717-234+49 5323 717-229Postfach 1406D 06813 Dessau, Germany+49 340 2103 2368+49 340 2104 2368Dorfstraße 9D 83404 A<strong>in</strong>r<strong>in</strong>g, Germany+49 8654 578 22+49 8654 578 35Schüttesvej 17DK 8700 Horsens, DanmarkKlaas.van.der.Hoek@rivm.nlj_karlowski@poczta.onet.pl ,jkarlo@ibmer.waw.plklimont@iiasa.ac.atmail@palas.dec.nannen@uni-bonn.derosenthal@uni-bonn.depvm@dmu.dkdietmar.oettl@stmk.gv.atmromann@sympatec.combernd.schaerer@uba.defsn@grimm-aerosol.comHisamitsu.Takai@agrsci.dk


Lieferbare SonderhefteSpecial issues available274275276278279280281Folkhard Isermeyer (Hrsg.) (2004)Ackerbau 2025Abdelaziz Ibrahim Abdelaziz Aly Omara (2004)Further development of a mobile w<strong>in</strong>d energy plant for a low-pressure irrigation systemGerold Rahmann . Hiltrud Nieberg . Susanne Drengemann . Alois Fenneker . Solveig March . Christ<strong>in</strong>a ZurekBundesweite Erhebung und Analyse der verbreiteten Produktionsverfahren, der realisierten Vermarktungswegeund der wirtschaftlichen sowie sozialen Lage ökologisch wirtschaftender Betriebeund Aufbau e<strong>in</strong>es bundesweiten Praxis-Forschungs-Netzes (2004)Maria del Carmen Lamas (2005)Factors affect<strong>in</strong>g the availability of uranium <strong>in</strong> soilsUlrich Dämmgen (Hrsg.) (2005)Bestimmung <strong>von</strong> Ammoniak-E<strong>in</strong>trägen aus der Luft und deren Wirkung auf Waldökosysteme(ANSWER-Projekt)Hans-Joachim Weigel und Ulrich Dämmgen (Hrsg.) (2005)Biologische Senken für atmosphärischen Kohlenstoff <strong>in</strong> Deutschl<strong>and</strong> — Tagungsb<strong>and</strong>Albert Sundrum <strong>and</strong> Friedrich Weißmann (eds.) (2005)Organic pig production <strong>in</strong> free range systems9,00€9,00€13,00€8,00€7,00€9,00€7,00€282Folkhard Isermeyer . Alex<strong>and</strong>er Gocht . Werner Kle<strong>in</strong>hanß . Bernd Küpker . Frank Offermann . Bernhard Osterburg .Joachim Riedel und Ulrich Sommer (2005)Vergleichende Analyse verschiedener Vorschläge zur Reform der Zuckermarktordnung7,00€283284285286287288290292Luit J. De Kok <strong>and</strong> Ewald Schnug (eds.) (2005)stProceed<strong>in</strong>gs of the 1 S<strong>in</strong>o-German Workshop on Aspects of Sulfur Nutrition of PlantsRa<strong>in</strong>er Oppermann <strong>and</strong> Gerold Rahmann (2005)Transform<strong>in</strong>g Rural CommunicationThree sociological case studies <strong>in</strong> a developed an urbanized rural area of northern Germany:regional partnership Lübeck bay, organic farm<strong>in</strong>g <strong>and</strong> nature protectionJyldyz Uzakbaeva (2005)Effect of different tree species on soil quality parameters <strong>in</strong> forest plantations of KyrgyzstanSilvia Haneklaus, Rose-Marie Rietz, Jutta Rogasik <strong>and</strong> Susanne Schroetter (eds.) (2005)Recent advances <strong>in</strong> <strong>in</strong> agricultural chemistryMaria del Carmen Rivas (2005)Interactions between soil uranium contam<strong>in</strong>ation <strong>and</strong> fertilazation with N, P <strong>and</strong> S on the uraniumcontent <strong>and</strong> uptake of corn, sunflower <strong>and</strong> beans, <strong>and</strong> soil microbiological parametersAlex<strong>and</strong>ra Izosimova (2005)Modell<strong>in</strong>g the <strong>in</strong>teraction between Calcium <strong>and</strong> Nickel <strong>in</strong> the soil-plant systemGerold Rahmann (Hrsg.) (2005)Ressortforschung für den Ökologischen L<strong>and</strong>bau 2005Franz-Josef Bockisch und Elisabeth Leicht-Eckardt (Hrsg.) (2006)Nachhaltige Herstellung und Vermarktung l<strong>and</strong>wirtschaftlicher Erzeugnisse11,00€7,00€8,00€11,00€8,00€8,00€9,00€15,00€293Judith Zucker (2006)Analyse der Leistungsfähigkeit und des Nutzens <strong>von</strong> Evaluationen der Politik zur Entwicklung ländlicher 12,00€Räume <strong>in</strong> Deutschl<strong>and</strong> und Großbritannien am Beispiel der e<strong>in</strong>zelbetrieblichen Investitionsförderung294Gerhard Flachowsky (Hrsg.) (2006)Möglichkeiten der Dekontam<strong>in</strong>ation <strong>von</strong> “Unerwünschten Stoffen nach Anlage 5 der Futtermittelverordnung(2006)”15,00€


verordnung (2006)”295296297298299300301302303304[304][304A][304][304 A]305306307308Hiltrud Nieberg und Heike Kuhnert (2006)Förderung des ökologischen L<strong>and</strong>baus <strong>in</strong> Deutschl<strong>and</strong> — St<strong>and</strong>, Entwicklung und <strong>in</strong>ternationalePerspektiveWilfried Brade und Gerhard Flachowsky (Hrsg.) (2006)Schwe<strong>in</strong>ezucht und Schwe<strong>in</strong>efleischerzeugung - Empfehlungen für die PraxisHazem Abdelnabby (2006)Investigations on possibilities to improve the antiphytopathogenic potential of soils aga<strong>in</strong>st the cystnematode Heterodera schachtii <strong>and</strong> the citrus nematode Tylenchulus semipenetransGerold Rahmann (Hrsg.) (2006)Ressortforschung für den Ökologischen L<strong>and</strong>bau 2006Franz-Josef Bockisch und Klaus-Dieter Vorlop (Hrsg.) (2006)Aktuelles zur MilcherzeugungAnalyse politischer H<strong>and</strong>lungsoptionen für den Milchmarkt (2006)Hartmut Ramm (2006)E<strong>in</strong>fluß bodenchemischer St<strong>and</strong>ortfaktoren auf Wachstum und pharmazeutische Qualität <strong>von</strong> Eichenmisteln(Viscum album auf Quercus robur und petraea)Ute Knierim, Lars Schrader und Andreas Steiger (Hrsg.) (2006)Alternative Legehennenhaltung <strong>in</strong> der Praxis: Erfahrungen, Probleme, LösungsansätzeClaus Mayer . Tanja Thio . Heike Schulze Westerath . Pete Ossent . Lorenz Gygax . Beat Wechsler undKathar<strong>in</strong>a Friedli (2007)Vergleich <strong>von</strong> Betonspaltenböden, gummimodifizierten Spaltenböden und Buchten mit E<strong>in</strong>streu <strong>in</strong> derBullenmast unter dem Gesichtspunkt der TiergerechtheitUlrich Dämmgen (Hrsg.) (2007)Calculations of Emissions <strong>from</strong> German Agriculture —National Emission Inventory Report (NIR) 2007 for 2005Introduction, Methods <strong>and</strong> Data (GAS-EM)TablesBerechnungen der Emissionen aus der deutschen L<strong>and</strong>wirtschaft —Nationaler Emissionsbericht (NIR) 2007 für 2005E<strong>in</strong>führung, Methoden und Daten (GAS-EM)TabellenJoachim Brunotte (2007)Konservierende Bedenbearbeitung als Beitrag zur M<strong>in</strong>derung <strong>von</strong> Bodenschadverdichtungen,Bodenerosion, Run off und Mykotox<strong>in</strong>bildung im GetreideUwe Petersen . Sab<strong>in</strong>e Kruse . Sven Dänicke und Gerhard Flachowsky (Hrsg.) (2007)Meilenste<strong>in</strong>e für die FuttermittelsicherheitBernhard Osterburg und Tania Runge (Hrsg.) (2007)Maßnahmen zur Reduzierung <strong>von</strong> Stickstoffe<strong>in</strong>trägen <strong>in</strong> Gewässer – e<strong>in</strong>e wasserschutzorientierteL<strong>and</strong>wirtschaft zur Umsetzung der Wasserrahmenrichtl<strong>in</strong>ieTorsten H<strong>in</strong>z <strong>and</strong> Kar<strong>in</strong> Tamoschat-Depolt (eds.) (2007)<strong>Particulate</strong> Matter <strong>in</strong> <strong>and</strong> <strong>from</strong> Agriculture14,00€12,00€8,00€9,00€8,00€12,00€11,00€12,00€8,00€16,00€14,00€10,00€15,00€12,00€Viele frühere Sonderhefte s<strong>in</strong>d auf Nachfrage weiterh<strong>in</strong> lieferbar.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!