13.07.2015 Views

Petrogenesis of Ultramafic Xenoliths from the 1800 Kaupulehu Flow ...

Petrogenesis of Ultramafic Xenoliths from the 1800 Kaupulehu Flow ...

Petrogenesis of Ultramafic Xenoliths from the 1800 Kaupulehu Flow ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

0022-3530/92 $3.00<strong>Petrogenesis</strong> <strong>of</strong> <strong>Ultramafic</strong> <strong>Xenoliths</strong> <strong>from</strong> <strong>the</strong> <strong>1800</strong><strong>Kaupulehu</strong> <strong>Flow</strong>, Hualalai Volcano, Hawaiiby CHEN-HONG CHEN*, DEAN C. PRESNALL, AND ROBERT J. STERNGeosciences Program, The University <strong>of</strong> Texas at Dallas, P.O. Box 830688, Richardson,Texas 75083(Received 5 August 1987; revised typescript accepted 20 June 1991)ABSTRACTThe <strong>1800</strong> <strong>Kaupulehu</strong> flow on Hualalai Volcano, Hawaii, contains abundant xenoliths <strong>of</strong> dunite,wehrlite, and olivine clinopyroxenite with minor gabbro, troctolite, anorthosite, and websterite. Thepetrography and mineral compositions <strong>of</strong> 41 dunite, wehrlite, and olivine clinopyTOxenite xenolithshave been studied, and clinopyroxene separates <strong>from</strong> eight <strong>of</strong> <strong>the</strong>se have been analyzed for Ba, K, Rb,Sr, rare earth elements, 87 Sr/* 6 Sr, and 143 Nd/ 14 *Nd. Temperatures <strong>of</strong> equilibration obtained byolivine-spinel and pyroxene geo<strong>the</strong>rmometry range <strong>from</strong> 1000 to 1200 °C. Mineralogical datacombined with published fluid inclusion data indicate depths <strong>of</strong> origin in <strong>the</strong> range <strong>of</strong> 8-30 km.The rarity <strong>of</strong> orthopyroxene, <strong>the</strong> presence <strong>of</strong> Fe-rich olivine (Fo g , _ 89 ) and clinopyroxene (Fs 3 _, 2 Xand <strong>the</strong> occurrence <strong>of</strong> high TiO 2 in spinel (0-9-2-8 wt.%) and clinopyroxene (0-35—1-33 wt.%) allindicate that <strong>the</strong> xenoliths are cumulates, not residues <strong>from</strong> partial fusion. The separated clinopyroxeneshave 87 Sr/* 6 Sr (0-70348-0-70367) and '"Nd/'^Nd (O-51293-O-51299) values that are different<strong>from</strong> Sr and Nd isotope ratios <strong>of</strong> Pacific abyssal basalts (< 0-7032 and > 0-5130, respectively). Also,clinopyroxenes and spinels in <strong>the</strong> xenoliths have generally higher TiO 2 contents (>O-35 and>0-91 wt.%, respectively) than <strong>the</strong>ir counterparts in abyssal cumulates (


164 CHEN-HONG CHEN ET AL.olivine clinopyroxenite, with gabbro, troctolite, anorthosite, websterite, and two-pyroxenegabbro being much less common. Bohrson & Clague (1988) studied <strong>the</strong> petrography andmineral compositions <strong>of</strong> some <strong>of</strong> <strong>the</strong> ultramafic xenoliths containing exsolved pyroxenes.Our study complements <strong>the</strong>irs and concentrates on <strong>the</strong> abundant dunites, wehrlites, andohvine clinopyroxenites. With one exception, sample 68KAP1, <strong>the</strong> pyroxenes in <strong>the</strong> samples<strong>of</strong> <strong>the</strong>se rocks that we have studied do not show exsolution.In his pioneering study, White (1966) interpreted ultramafic xenoliths in Hawaiian alkalicbasalts to be cumulates <strong>from</strong> basaltic magma, but he did not specify whe<strong>the</strong>r <strong>the</strong> magmawas <strong>of</strong> Hawaiian or mid-ocean ridge origin. Dunite, wehrlite, and olivine clinopyroxenitexenoliths <strong>from</strong> Hawaiian alkalic basalts, including those <strong>from</strong> <strong>the</strong> <strong>1800</strong> <strong>Kaupulehu</strong> flow,were interpreted by Jackson (1968) as being partly cumulates and partly texturally deformedrestites <strong>from</strong> partial melting <strong>of</strong> upper-mantle peridotite. On <strong>the</strong> basis <strong>of</strong> a wide andrelatively iron-rich range <strong>of</strong> olivine compositions (Fo g3 _ 90 ), Sen & Presnall (1980, 1986)argued that dunite xenoliths <strong>from</strong> Koolau Volcano, Oahu, are samples <strong>of</strong> cumulates <strong>from</strong>Koolau tholeiites even though <strong>the</strong> dunite shows deformation textures. Jackson et al. (1981)reached a similar conclusion for deformed dunites <strong>from</strong> <strong>the</strong> <strong>1800</strong> <strong>Kaupulehu</strong> flow.However,<strong>the</strong> similarity <strong>of</strong> 3 He/*He values (8 x atmospheric) between Hualalai ultramafic xenolithsand mid-ocean ridge basalts (MORBs) led Kaneoka & Takaoka (1978, 1980), Kyser &Rison (1982), and Rison & Craig (1983) to conclude that <strong>the</strong>se xenoliths are fragments <strong>of</strong>MORB-type oceanic crust. Dunite and wehrlite xenoliths <strong>from</strong> Mauna Kea have beeninterpreted by Atwill & Garcia (1985) as deformed cumulates <strong>from</strong> Hawaiian alkalicmagmas. On <strong>the</strong> basis <strong>of</strong> spinel and clinopyroxene compositions, Clague (1988) concludedthat dunite and wehrlite xenoliths <strong>from</strong> Loihi Seamount were crystallized <strong>from</strong> Hawaiianalkalic magmas.To clarify <strong>the</strong> origin <strong>of</strong> <strong>the</strong> <strong>Kaupulehu</strong> ultramafic xenoliths, we have carried out a detailedmineralogical, isotopic, and geochemical study. The petrography and mineral compositions<strong>of</strong> 46 dunite, wehrlite, and olivine clinopyroxenite xenoliths have been studied. Eightxenoliths were selected for determination <strong>of</strong> trace element concentrations (REE, K, Rb, Ba,and Sr) and isotopic (Sr and Nd) compositions <strong>of</strong> separated clinopyroxenes.SAMPLE LOCATIONThe investigated samples were collected <strong>from</strong> <strong>the</strong> xenolith beds in olivine-bearing alkalicbasalt <strong>of</strong> <strong>the</strong> <strong>1800</strong> <strong>Kaupulehu</strong> flow on <strong>the</strong> north slope <strong>of</strong> Hualalai Volcano (Fig. 1). Twooutcrops <strong>of</strong> <strong>the</strong> uppermost layer <strong>of</strong> xenoliths were sampled, one located ~ 120 m nor<strong>the</strong>ast<strong>of</strong> <strong>the</strong> Hue Hue telephone repeater station and <strong>the</strong> o<strong>the</strong>r ~ 120 m sou<strong>the</strong>ast <strong>of</strong> this station(Jackson & Clague, 1981). Samples with <strong>the</strong> prefixes A, B, and X were collected by <strong>the</strong> firstauthor. The remainder were supplied by D. A. Clague and B. Melson <strong>from</strong> <strong>the</strong> collection <strong>of</strong><strong>the</strong> late E. D. Jackson, now housed at <strong>the</strong> Smithsonian Institution, Washington, DC.PETROGRAPHYThe xenoliths typically are subrounded, but some are angular. They have a meandiameter <strong>of</strong> ~ 7 cm (Jackson et a/., 1981). Most consist <strong>of</strong> varying proportions <strong>of</strong> olivine,spinel, and clinopyroxene; a few also contain small amounts <strong>of</strong> plagioclase and orthopyroxene(Table 1). Two main types <strong>of</strong> xenoliths have been identified, (1) dunite and (2) wehrliteand olivine clinopyroxenite (15-85% clinopyroxene). Several xenoliths are composites <strong>of</strong>dunite and wehrlite. Two generations <strong>of</strong> olivine crystals are evident even in hand samples,one comprising large dark crystals and <strong>the</strong> o<strong>the</strong>r made up <strong>of</strong> smaller and lighter re-


ULTRAMAFIC XENOLITHS FROM THE KAUPULEHU FLOW 165\/rI)\I/1PACIFIC//OCEANM*y11)[1 'I I\ \ \,\ \ < *^\\\K Kailua\ \\\"7Vi\\\\\\\iiiV )\\\i/"•i\\/rAM ^^/As)v v \\ \ v» \//(1^^,^^^ ^.4000-'"oo\\ 0 5\ \\ \\N\/ —^ HUALALAI VOLCANO\v\km6, 6156° 155°45"<strong>1800</strong> KAUPULEHU FLOWXENOLITH BEDSFio. 1. Map <strong>of</strong> <strong>the</strong> island <strong>of</strong> Hawaii showing <strong>the</strong> <strong>1800</strong> <strong>Kaupulehu</strong> allcalic basaltic flow <strong>of</strong> Hualalai volcano (afterMoore et al^ 1987) and <strong>the</strong> site where <strong>the</strong> xenoliths for this study were collected.TABLE 1Modal percentages <strong>of</strong> minerals in <strong>Kaupulehu</strong> xenoliths*Sample no.ol cpx spX2X5AfX6X7X9§X10Xll§X12X14X21§X22§AlA3{AA§BlB3B4f§Dunitc98 pi999995981009790919792979692989192P122P17724238275PP31P2331411P123


166 CHEN-HONG CHEN ET AL.TABLE 1 (Continued)Sample no.olcpxHP65KAP16 (114370/17)166KAP1 (114743/1)168KAPl(114S76/l)t170K.AP2 (114970/2)75KAP5 (115032/1)75KAP6 (115032/2)75KAP7 (115032/3)**75KAP8 (115032/4)75KAP9(U5032/5)t97989396949896979811434—211WeMite and olivine clinopyroxeniteXIX3"X4X5Af§**X5§X8X17X20X23Q§B4f§6511463 (114385/13)§**65115153 (114386/29)t |)65KAP17 (114370/18)66KAP2(114743/2)§66KAP3 (114743/3)68KAP1 (114876/l)tT*71264080606675618130404021577215332970601540332539177060557943288565213122222—p—21p2——P————* Except where indicated, percentages are basedon counts <strong>of</strong> at least 7000 points.t Composite xenolith.X Present, but


ULTRAMAFIC XENOLITHS FROM THE KAUPULEHU FLOW 167Schwarzmann, 1977). The most common texture is characterized by kink-banded orstrained olivine porphyroclasts (1-5 mm) in a matrix <strong>of</strong> finer-grained (0-2-0-4 mm) recrystallized,undeformed olivine grains, some <strong>of</strong> which have rounded to polygonal shapesand well-defined triple junctions. All samples except 75KAP6 contain small amounts <strong>of</strong>clinopyroxene (augite and subcalcic augite, Table 1). It is pale green in thin section andtypically occurs as small (~ 30 /zm) interstitial grains. Clinopyroxene oikocrysts (up to1 mm across) with olivine inclusions occur in one sample (XI2), whereas clinopyroxenecrystals in samples AA, B4, and X4 are blocky and could possibly be cumulus (T. N. Irvine,pers. comm.). Opaque spinel grains <strong>of</strong> various shapes and sizes (20-400 /un) are ubiquitous.Some occur as small interstitial grains in <strong>the</strong> fine-grained matrix, some are euhedral orsubhedral grains included in olivine, and a few are enclosed in clinopyroxene. The euhedralhabit <strong>of</strong> spinel crystals in olivine indicates that <strong>the</strong>y crystallized relatively early. Orthopyroxenewas found only in composite xenolith 68KAP1 and plagioclase was found in onedunite xenolith (75KAP7). Both minerals are interstitial. Inclusions <strong>of</strong> CO 2 and silicateglass are common along healed micr<strong>of</strong>ractures in both clinopyroxene and olivine (Roedder,1965; Kirby & Green, 1980).Wehrlite and olivine clinopyroxeniteThree types <strong>of</strong> clinopyroxene-rich xenoliths were identified by Jackson et al. (1981):(1) those that have deformed kink-banded olivine and clinopyroxene in a matrix <strong>of</strong>recrystallized olivine; (2) those that have kink-banded olivine but undeformed clinopyroxene;and (3) those with undeformed cumulus olivine and intercumulus clinopyroxene. InTable 1, samples XI, X3, X4, X5, X17, X20, X23, Q, B4, 65115153, and 68KAP1 are texturetype 1. Samples X5A, X8, and 66KAP2 are texture type 2. Cumulus grain shapes andpostcumulus poikilitic textures are common in types 2 and 3. Deformed olivine grains aregenerally smaller (0-5-1-0 mm) than <strong>the</strong> porphyroclastic olivine in <strong>the</strong> dunite xenoliths.Modal mineral proportions for wehrlite and clinopyroxenite xenoliths are given in Table 1.As in <strong>the</strong> dunite xenoliths, trains <strong>of</strong> CO 2 and glass inclusions are common in <strong>the</strong>clinopyroxene and deformed olivine. Rare small interstitial grains <strong>of</strong> orthopyroxene (only insample 68KAP1), spinel, and plagioclase also occur.MINERAL COMPOSITIONSOlivineOlivine compositions in <strong>the</strong> dunite xenoliths range <strong>from</strong> Fo 81 4 to Fo 894 (Fig. 2 andTable 2). There is no compositional difference between <strong>the</strong> large deformed and smallrecrystallized grains in <strong>the</strong> same sample. Olivine compositions in wehrlite and olivineclinopyroxenite xenoliths are generally more iron rich (Fo 81 _ 84 . 7 ) than those in <strong>the</strong> dunites,but <strong>the</strong> two compositional ranges overlap (Fig. 2 and Tables 2 and 3). NiO contents(0-05-0-28 wt.%) in olivines <strong>from</strong> wehrlites and clinopyroxenites also overlap those <strong>from</strong>dunites (0-05-0-50 wt.%). Forsterite content and NiO content <strong>of</strong> olivine covary.SpinelExcept in samples X8, X9, X10, and Al, <strong>the</strong> chemical compositions <strong>of</strong> spinel grains withina single thin section are identical within analytical uncertainty (Tables 4 and 5). Despite <strong>the</strong>variations <strong>of</strong> spinel composition in some samples, a reasonably good positive correlation


168 CHEN-HONG CHEN ET AL.10nKaupulthu duniti xtnoliths<strong>Kaupulehu</strong> wthrlite & clinopyroxtnitt xtnolitht20-io 15 -cnn-1 10-u.Hawaiian tholti5 -I--rm n rr-i• 1 •10^5 - Hawaiian alkalic basaltsn n90 80 70 60 50 40nMole % Fo in olivineFIG. 2 Histogram <strong>of</strong> olivine compositions in Hawaiian rocks. Data for Hawaiian tholeutic and alkalic basalts are<strong>from</strong> L<strong>of</strong>gren et al. (1981). Xenolith data are <strong>from</strong> Tables 2 and 3.exists between Mg/(Mg -I- Fe 2 + ) in spinel and <strong>the</strong> forsterite content <strong>of</strong> coexisting olivine(Tables 2-5), which indicates equilibrium between spinel and coexisting olivine (Sigurdsson,1977). This correlation is similar to that observed for Mid-Atlantic Ridge basalts (Sigurdsson& Schilling, 1976), for Hawaiian basalts (Evans & Wright, 1972; Clague et al, 1980a;L<strong>of</strong>gren et al., 1981), and in <strong>the</strong> Stillwater complex (Jackson, 1969). The only zoned spinel isin sample X2 (Table 5), which shows increasing Mg/(Mg + Fe 2 + ) <strong>from</strong> core to rim.ClinopyroxeneWithin a single thin section, compositions <strong>of</strong> clinopyroxene grains in <strong>the</strong> Hualalaiultramafic xenoliths (Tables 6 and 7) are identical within analytical uncertainty. Figure 3


ULTRAMAFIC XENOLITHS FROM THE KAUPULEHU FLOW 169oo 'r- c^ ON


TABLE 2 (Continued)SiOjFeO*MgONiOCaOTotalSiFeMgNiCaTotal% Fo• TotalB339-4613-7246-740-30—100-220-9850-2861-7390006—3-01585-9Fe as FeO.B439-84151145150-210-26100-570-9960-3161-682000400073O0484-270KAP240-3912-8146-920-28009100-490-9990-2651-730000600023O0186-775KAP539-5712-4747-710-3501810O28098202591-765O0070O05301887-275KAP64074109748-5102801499-6475KAP739-78107547-61036—10O5075KAP839-9313-5246-2903301810O25Cations per 4 oxygens099802251-771000600043O0288-7099602251-776O007—3O04870099402821-7180O07O005300685-975KAP939-99141546-19022—10O55099402941-7120004—300685-36511515339-5615-72451802802110O950989O3291-683O0060006301183-765KAP16405712-4748O9023014101-50099202551-753O00500043O0887-366KAP139-6215-2845O8——99-98099503211-688——3O0584068KAP139-4314-7745-63——99-830990O3101-709——3O1084-6n3Ctiiz aozom Z fn-it--


ULTRAMAFIC XENOLITHS FROM THE KAUPULEHU FLOW 171Olrs r- m »n666 -.oo\O *H -H Sc* m Q O\ •I^oom ON X *o NO Iwp — »• omoi* v£ ^ ~


TABLE 3 (Continued)SiOjFeO*MgONiOCaOTotalSiFeMgNiCaTotal% Fo• TotalB439-35151945-900-100-19100-7309830-3171-70900020005301784-3Fe as FeO.66KAP339-7116O944-43—100-230-9980-3381-665—3-00283166KAP239-8514-7045-68—100-230-99603071-701—300484-765KAP1739-4216-3644-20—93-98Cations per099503451-664—3-00582-86511515339-9315-0045-70O17—10O804 oxygens099403121-6960003—3-00683-9651146339-3016-364419—99-85099403461-666—3-00682-868KAP139-7114-7145-57—99-99099503081-702—3-00584-775KAP939-8015-0845-33—10O21099603161-692—3-00484-375KAP1039-7216-4544-07016O2010O60099803461-650O00300053-00282-7oXmZxo zo o Xtnz


X10U)0051-3026-7325-8331-7901813-30Oil99-2916-5216-9210O94001603131O1206-5593-9954-54400496-365O03731-998XW008119'34-8818-3329-300151519—99-1215-5115-34100670024027612-6714-4653-5973-95300396-975—32O00Xll0131-3021-9337-5923-3001914-690029915102414O810O17004303198-4219-6802-5113-83700527131000732O01H50oXmZ<strong>of</strong>HXVi•v50OHXmC"0C rmXCr oTABLE 4Spinel compositions in dunite xenoliths (wt.%)X2(av.)X2(core)X2(rim)X6X7X9U)X9(2)SiOjTiO 2A1 2 O 3Cr,OjFeO*MnOMgOCaOTotalFe 2 O 3FeONew totalSiTiAlCrFe 3 +Fe 2 +MnMgCaTotal0-291-6715-2838-6333-750-259-84O0599-7213-98211710112O1000-4316181104793-6126075(M)725-032001932-0010351-6414-9738-3032-830331110—99-5215191916101-04O12004216021103313-9005-46800965-644—320010291 6414-8038-7935-700268-2400899-8013-5823-4810116O10104286O64106573-5536-823O0724-268002931-9950091-7233-4019-3329-9601514-46—991114-7316-7010O580028O40312-2604-7593-4534-34800406-709—32O00Oil1-3930 7025-30281501514-36_99-5313-3216-1610O86Cations per 48 oxygens00350329111576-29531554-255O0406-736—32O0200710827-7734-4319-5001215-9000498-917-4512-8099-6600230257103738-6251-7763-39200327-508001331-9990O91-3631-7529-2619-6801516-91—99-208-2212-28100020028031611-57771551-913317700397-795—32O00


174 CHEN-HONG CHEN ET AL.> O t- Tj- ON OO —o ON C-J — \c OvfN - «I ON VTVIO4 Ifo r- r- m r- »n ON6 d\ r> n TT o *i-- n r< ^- m » oo *orTOr- v> o^ o^ oo*—


11027-5528-7129-32—12-9799-6512-9417-671009402651O4087-27331214-7376-195—31-999ULT30>n Xrrt enorHc/i•npoO2Hn>c•vrmcrOTABLE 4 (Continued)70KAP2 75KAP7 65115153 68KAP1036167250227-2732-4001613-4810O3616-4317-61102O0011504019-4406-8993-9594-71300446-429—32O00. .1 _r ii :p , () () y p; () p . i yThe designations (1) and (2) for samples X9, XIO, and Al indicate single spot analyses <strong>of</strong> two extreme compositions.75KAP5 75KAP6 75KAP8 75KAP9 . _ l . i p g SiOj032021033032039033TiOj2-211102-091-921-351-49A1 2 O 3Cr 2 O 3FeO»MnOM-gOCaOTotalFe 2 O,FeONew total 24-69 3113 26-27 01514-24 Oil9912 1117 16-21 10O23 28-73 29-59 23-29 01415-51 01798-74 1079 13-58 99-82 18-84 39-47 23-81 01814-73 01799-62 1035 14-49 10O65 2303 32-38 27-65 01713-86 01099-43 12-51 16-39 10O68 19-67 36-27 28-92 0181302 01899-98 13-46 16-81 101-33 27-78 29-97 27-88 01613-86 00899-55 12-28 16-83 10O78 SiTiAlCrFe 3 +Fe 2 +MnMgCaTotal0104 0536 9-396 7-944 2-715 4-377 O041 6-851 O039 32O03 0067 0261 10711 7-397 2-569 3-591 O037 7-309 0057 31-999 0108 0516 7-288 1O240 2-557 3-977 0051 7-204 0060 32001 Cations per 48 oxygensO104 0469 8-816 8-312 3059 4-451 0047 6-708 0035 32-001 O128 0335 7-635 9-440 3-335 4-628 0051 6-388 0064 32004 0105 0357 10427 7O40 2-943 4-481 0043 6-576 O027 31-999 • Total Fe as FeO.including <strong>the</strong> zoned crystal.


176 CHEN-HONG CHEN ET AL.TABLE 5Spinel compositions in wehrlite and olivine clinopyroxenite xenoliths (wt.%)X8(1)X8(2)XI7X2375KAP10SiOjTiOjA1 2 O 3Cr 2 O 3FeO*MnOMgOCaOTotalFe 2 O,FeONew totalSiTiAlCTFe 3 +Fe 2 +MnMgCaTotal00811521-4032-7331-69017121900599-4615-4317-80101O0002702858-3318-5443-8364-91500405-999001731-9940151-4132-4919-5431-48015141899-4016-2016-90101-02Cations per 48 oxygens0047033111-9524-8203-8054-41100486-595—320090391O027-57250832-73O1812-9900599-9916-3717-99101-620124O240103596-3193-9284-79600406-169001731-992027O9143-42105328-47013160799-8014-3515-55101-230O800203151192-45931913-84300327075—320020331-84271522-9034-5001712-940159*9817-6818-59101-75O1050441102155-7774-2474-96100456-155005131-997• Total Fe as FeO.The designations (1) and (2) for sample X8 indicate single spot analyses <strong>of</strong> twoextreme compositions.shows <strong>the</strong> range <strong>of</strong> compositions. These clinopyroxenes are higher in A1 2 O 3 and Na 2 O(2-5-7-0 and 0-3-10 wt.%, respectively) than those <strong>from</strong> Koolau dunite xenoliths (21—2-7and


ULTRAMAFIC XENOLITHS FROM THE KAUPULEHU FLOW 177sOO *"H ^^^ ^^^ ^^^ OO ^^ flO ^^J-66666666» i3S:i —• OO d O P*" Oi SO,66? - •• -• -•-I — m v^t Op O OO O, - . _ . , . • so ^ cn rnOO ^ O O O OO ^^ OO O O ON^H Q Q Q Q Q Q Q Q ^f fT)— OsONOsmoor--r- ooooo vi ^r-r-vi^CN — ONOO moo —


TABLE 6 (Continued)SiOjTiO,A1 2 O 3Cr 2 O 3FcO*MgOCaONa 2 OTotalSiA1 IVAl"TiCrMgFe* +a NaTotalmgEnFsWoAA50350625-730656-1116-4619-7905210O231-8430156O091O0170-0190898OT870776O0374-02682-848-310041-7Bl50721-334-521-033-8116-30211009399-741-86001400055003700300891011708290066402588-448-56-4451B349-250985-740925-5316-6419-7608899-701-817018400660027O0270915017107810063405184-34909-141-8B451-250543-750915-6416-602O52O5099-711-887011300500015002609110174O810003640228404819-242-770KAP250880864170944-7316-922O6007399-83Cations per 61-8670132O048002400270926014508100052403186-449-27-743175KAP55O810744-471074-4716-7621-25058100-15oxygens1-85901410052002000310914013708330041402887048-57-344-275KAP652-620883021054-3217-60206006110O701-9060094003500240030095001310799O043401287-95O57O42-575KAP751-400844-261014-8317-2319-8508410O261-87401260057O0230029093601470775O059402686-45O47-941-775KAP951090674-790965-5416-5819-301O099-931-87101290078O0<strong>1800</strong>28O9050170075800714O2884-249-49-341-36511515351130754-261045-5815-8121-71055100021-869013200520021O03008610171O8500039402583-545-89-145-268KAP152O00353 910905-7817-4018-9906910O831-89801010067001000260947017707430049401884-35079-539-8nmz X z oowz fa*,• Total Fe as FeO.


ULTRAMAFIC XENOLITHS FROM THE KAUPULEHU FLOW 179n ( N Oi >o-H in ffi in6 \b \b os 6• r- r- r-


sTABLE 7 (Continued)SiO 3TiO 2AljO 3Cr 2 O 3FeO*MgOCaONa 3 OTotalSiM nA1 VITiCrMgFe 1 *CaNaTotalmgEnFsWo* TotalB451 290573-460955-6017-262O49049100-111-8820118O0320016O028094401720806O0354-03384-649-18-941-9Fe as FeO.66KAP35O880504-400395-9317-5819-3205699-561-871012900620014001109640182076100404-0348415O59-639-966KAP25O80O5


ULTRAMAFIC XENOLITHS FROM THE KAUPULEHU FLOW 181Fsdunitewehrllta& clinopyroxenite30Fio. 3. Clinopyroxene compositions for Hualalai lavas and <strong>Kaupulehu</strong> xenoliths plotted in <strong>the</strong>CaSiO 3 (wo)-MgSiO3(en)-FeSiO3(fs) triangle (mole percent). Clinopyroxene samples analyzed for trace elementsare labeled. Hualalai tholeiitic and alkalic basalt fields are <strong>from</strong> Bobrson & Clague (1988).TRACE ELEMENT AND ISOTOPIC COMPOSITIONSOF CLINOPYROXENESIsotopic analyses for Sr and Nd and <strong>the</strong> concentrations <strong>of</strong> K, Rb, Sr, Ba, and rare ear<strong>the</strong>lements (REE), in <strong>the</strong> clinopyroxene separates <strong>from</strong> four dunite, two wehrlite, and twoolivine clinopyroxenite samples are given in Table 9 (see Appendices A and B for analyticalmethods). All <strong>the</strong> separates were acid leached after careful hand-picking to remove possiblesurface contaminants. The investigated samples were chosen to cover <strong>the</strong> entire range <strong>of</strong>Mg/Fe for clinopyroxene in <strong>the</strong> Hualalai xenoliths (Tables 6 and 7). Except for dunitesample X14, REE concentrations <strong>of</strong> clinopyroxene in <strong>the</strong> dunite xenoliths are higher thanthose in clinopyroxene <strong>from</strong> wehrlite and clinopyroxenite xenoliths (Table 9 and Fig. 5). Alleight REE patterns are convex upward (Fig. 5). Except for Sr, <strong>the</strong> concentrations <strong>of</strong> o<strong>the</strong>rtrace elements (K, Rb, Ba), are very low (Table 9). The clinopyroxene separates have143 Nd/ 14 *Nd ranging <strong>from</strong> 0-51293 to 0-51299 and 87 Sr/ 86 Sr ranging <strong>from</strong> 0-70348 to0-70367.EQUILIBRATION TEMPERATURESBecause <strong>of</strong> <strong>the</strong> very limited occurrence <strong>of</strong> orthopyroxene, geo<strong>the</strong>rmometry based on anassumption <strong>of</strong> coexisting pyroxenes must rely entirely on clinopyroxene compositions, and<strong>the</strong>refore it yields only minimum temperatures. The method <strong>of</strong> Lindsley & Andersen (1983)gives values <strong>from</strong> 1000 to 1220 °C. On average, <strong>the</strong>y are ~55°C higher than valuesdetermined by <strong>the</strong> method <strong>of</strong> Kretz (1982) and about 130°C higher than those calculated by<strong>the</strong> procedure <strong>of</strong> Mysen (1976). One exceptional xenolith, dunite sample X2, has a relativelylow Lindsley-Anderson temperature <strong>of</strong> 915 °C. Sample 68KAP1, <strong>the</strong> only sample withcoexisting clinopyroxene and orthopyroxene, has a Lindsley-Andersen temperature <strong>of</strong>


182 CHEN-HONG CHEN ET AL.Abyssal Iherzolite& harzburgite20r-10-•1<strong>Kaupulehu</strong>/1'//xenolithsV0.2 0.4 0.6 0.8 1.0 1.2 1.4Wt. % TiO 2 in clinopyroxeneFIG. 4. Histogram <strong>of</strong> wt% TiO 2 in dinopyroxenes. Hualalai xenolitb data are <strong>from</strong> Tables 6 and 7. Abyssalperidotite data are <strong>from</strong> Clarke & Loubat (1977), Arai & Fujii (1979), Hamlyn & Bonatti (1980), Hebert et at.(1983), Dick & Bullen (1984), and Dick (1989).1185°C and a Kretz temperature <strong>of</strong> 1166°C, in good accord with values for <strong>the</strong> o<strong>the</strong>rultramafic xenoliths in which orthopyroxene is absentFour olivine-spinel <strong>the</strong>rmometers were tried. They give temperatures that are, onaverage, higher than those given by <strong>the</strong> Lindsley-Andersen pyroxene <strong>the</strong>rmometer by 13 °C


ULTRAMAFIC XENOLITHS FROM THE KAUPULEHU FLOW 183TABLE 8Orthopyroxene compositions (wt.%) in composite xenolith 68KAP1WehrlileDuniteSiOjTiOjA1 2 O 3Cr 2 O,FeO*MgOCaONa 2 OTotalSiAFAlTiCrMgFeCaNaTotalmfftEnFsWo52-950314-91025101330021-59O1310O29Cations per 6 oxygens1-86401360086000800071-576029800600009402684181-515-43154-780213-430339-873O401-34Oil10O471-91700830059000600091-586028900500007400684-682-41502-6* Total Fe as FeO.= MgxlOO/(Mg + Ft(Roeder et al., 1979), 73 °C (Fujii, 1978, with In k = 2\ 90 °C (Fabries, 1979), and 145 °C (Engi,1983, CO type diagram). Because <strong>the</strong> pyroxene temperatures are minimum values, <strong>the</strong>slightly higher olivine-spinel temperatures (except possibly <strong>the</strong> extremely high valuesobtained by <strong>the</strong> Engi procedure) are considered to be generally consistent with <strong>the</strong> pyroxenetemperatures. The large scatter <strong>of</strong> temperatures determined by <strong>the</strong> various <strong>the</strong>rmometersprecludes all but <strong>the</strong> simplest conclusion that <strong>the</strong> temperatures are in or only slightly below<strong>the</strong> magmatic range, a conclusion consistent with <strong>the</strong> general lack <strong>of</strong> pyroxene exsolution.This interpretation implies that <strong>the</strong> observed deformation and recrystallization, especiallyin <strong>the</strong> dunites, occurred at temperatures only slightly below <strong>the</strong> solidus.DEPTH OF FORMATIONRoedder (1965) found a minimum depth for trapping <strong>of</strong> CO 2 inclusions in oh'vine <strong>from</strong>Hualalai dunites <strong>of</strong> 8-15 km (Roedder, 1965). The association <strong>of</strong> olivine, plagioclase,orthopyroxene, and clinopyroxene in one Hualalai ultramafic xenolith (68KAP1, Table 1)indicates a maximum depth <strong>of</strong> formation <strong>of</strong> ~30 km, <strong>the</strong> maximum depth for stability <strong>of</strong>plagioclase lherzolite (Green & Hibberson, 1976; Presnall et al., 1979). These limits <strong>of</strong>~ 8-30 km correspond to lower-crust to uppermost-mantle depths in Hawaii. Because most<strong>of</strong> <strong>the</strong> xenoliths do not have plagioclase, <strong>the</strong> maximum depth must be considered to betentative.


Trace element concentrations and isotope ratios <strong>of</strong> clinopyroxene separatesX33-934-391-630642172191-040812410071-6451070367±5O512963±2481179-6058ClinopyroxeniteX53-503-071-080391-321-29O60O4436-70131-24O3070351±80512946±1782-682-3O60oXmzXo-* oXmzTABLE 9BlDuniteWehrlittB3X7X14Q6511463REE (ppm)CeNdSmEuGdDyErYbK (ppm)RbBaSr30-3132-8110-513159-449-624-472-8527-20-121-871-912-639-532-720-962-903-321-631 3215-30-101184-48-916-672-050-732-222-2911408615-70040674-65115111-70O612122-0409507117-70040639-13-623-751-31O491-691-6607906149-80161-743-44 814-861-68O571-881-8108106226-8O080937-6B7 Sr/"Sr'"Nd/'^Nd% Fo (ol)mg (cpx)% Na 2 O (cpx)O70361±90512931±2189-488-40930-70353±50-512985±1785-984-30-88070348±70512933±2084-683-5073070351±60512945±3881-481-4058070357±60512972±2083-482-8051070360±30512965±2383182-8043


ULTRAMAFIC XENOLITHS FROM THE KAUPULEHU FLOW 18510050o>£ 10oOXQ.O—-odunitewehrlite & clinopyroxeniteI I 1 i i iCe Nd SmEuGd Dy Er YbFIG. 5. Chondrite-nonnalized REE patterns for clinopyroxenes <strong>from</strong> dunite, clinopyroxenite, and wehrlitexenoliths in <strong>the</strong> <strong>Kaupulehu</strong> flow. Data are <strong>from</strong> Table 9.ORIGIN OF HUALALAI ULTRAMAFIC XENOLITHSIn discussing <strong>the</strong> origin <strong>of</strong> <strong>the</strong> Hualalai ultramafic xenoliths, we firstconsider whe<strong>the</strong>r <strong>the</strong>xenoliths are restites <strong>from</strong> partial melting <strong>of</strong> upper-mantle peridotite or cumulates formedby fractional crystallization <strong>of</strong> basaltic magma. We <strong>the</strong>n consider whe<strong>the</strong>r <strong>the</strong> basalticmagma was associated with Hawaiian volcanism or had oceanic crustal (MORB) affinities.Finally, for <strong>the</strong> case <strong>of</strong> a Hawaiian affinity, we consider whe<strong>the</strong>r <strong>the</strong> parental magmas werealkalic or tholeiitic.


186 CHEN-HONG CHEN ET AL.Residues <strong>of</strong> partial fusionOlivine <strong>from</strong> abyssal peridotites has a higher and narrower range <strong>of</strong> forsterite content(Fo 89 . 3 _ 91 . 6 ) than olivine <strong>from</strong> <strong>the</strong> <strong>Kaupulehu</strong> ultramafic xenoliths (Prinz et al., 1976;Sinton, 1979; Hebert et al, 1983; Dick & Fisher, 1984; Dick, 1989). A peridotite <strong>from</strong>Zabargad Island in <strong>the</strong> Red Sea, which has been proposed as a sample <strong>of</strong> undepletedoceanic mantle (Bonatti et al., 1986), shows an olivine composition range <strong>of</strong> Fo 87 . 3 _ 90 . 5 .The pyrolite model mantle composition <strong>of</strong> Ringwood (1975) has an olivine composition <strong>of</strong>Fo 90 , and Carter (1970) proposed that olivines <strong>from</strong> undepleted upper mantle beneathKilbourne Hole, New Mexico, has compositions <strong>of</strong> Fo g6 _ 88 . Thus, olivine in both depletedand undepleted upper-mantle peridotite is more Mg rich than most <strong>of</strong> <strong>the</strong> olivine in <strong>the</strong><strong>Kaupulehu</strong> ultramafic xenoliths. These differences are inconsistent with a mantle residueorigin for <strong>the</strong> <strong>Kaupulehu</strong> dunites and wehrlites.A similar argument can be made on <strong>the</strong> basis <strong>of</strong> <strong>the</strong> pyroxene compositions. Mostclinopyroxene <strong>from</strong> abyssal peridotites has a higher and narrower range <strong>of</strong> 100Mg/(Mg+ Fe) (89-5-92-8, Prinz et al, 1976; Symes et al, 1977; Arai & Fujii, 1979; Sinton, 1979;Hamlyn & Bonatti, 1980; Hebert et al, 1983; Dick & Fisher, 1984; Dick, 1989), than that <strong>of</strong>clinopyroxene <strong>from</strong> <strong>Kaupulehu</strong> ultramafic xenoliths (80-8-89-2, Table 7). Orthopyroxene<strong>from</strong> abyssal peridotites is normally more magnesian than En 86 (Prinz et al, 1976; Symes etal, 1977; Arai & Fujii, 1979; Sinton, 1979; Hamlyn & Bonatti, 198a, Hebert et al, 1983; Dick& Fisher, 1984; Dick, 1989), whereas <strong>the</strong> one orthopyroxene composition we have determined<strong>from</strong> a <strong>Kaupulehu</strong> xenolith is En 82 (Table 6). These differences argue against amantle residue origin.Figure 4 shows that <strong>the</strong> range <strong>of</strong> TiO 2 content <strong>of</strong> clinopyroxene in abyssal peridotites isvery low (


ULTRAMAFIC XENOLITHS FROM THE KAUPULEHU FLOW 187cumulates formed by crystallization <strong>of</strong> olivine and <strong>the</strong>n clinopyroxene + olivine <strong>from</strong> afractionating magma. Evidence will be presented below that <strong>the</strong> xenoliths were not allcrystallized <strong>from</strong> <strong>the</strong> same magma, but this complication would not significantly disturb <strong>the</strong>overall differences in Fe/Mg between rock types as long as <strong>the</strong> different parental magmaswere compositionally similar.A fur<strong>the</strong>r question concerns <strong>the</strong> MORB or Hawaiian affinity <strong>of</strong> <strong>the</strong> magmas <strong>from</strong> which<strong>the</strong> <strong>Kaupulehu</strong> cumulates crystallized. Bohrson & Clague (1988) have pointed out that <strong>the</strong>TiO 2 content <strong>of</strong> spinels in <strong>Kaupulehu</strong> xenoliths that <strong>the</strong>y studied is generally higher thantypical values (< 1 %) for spinels crystallized <strong>from</strong> MORBs. They used this difference toargue that <strong>the</strong> xenoliths did not crystallize <strong>from</strong> MORBs. Our results (Tables 4 and 5) areconsistent with <strong>the</strong>irs. Fur<strong>the</strong>rmore, if <strong>the</strong> clinopyroxene in <strong>the</strong> pyroxenite and wehrlitexenoliths is cumulus, as argued below, <strong>the</strong> concentration <strong>of</strong> Sr in <strong>the</strong> coexisting liquidswould be 313-703 ppm (using D, r = (M2; Arth, 1976). This is distinct <strong>from</strong> <strong>the</strong> average <strong>of</strong>127 ppm (L<strong>of</strong>gren et al, 1981) and 80-145 ppm (Sun et al, 1979) reported for MORBs.Pacific MORBs have low 87 Sr/ 86 Sr (O-513O) (Fig. 6).Strontium and Nd isotopic ratios <strong>of</strong> clinopyroxene in <strong>the</strong> <strong>Kaupulehu</strong> ultramafic xenolithsare distinct <strong>from</strong> those <strong>of</strong> East Pacific Rise basalts but are similar to those <strong>of</strong> o<strong>the</strong>rHawaiian basalts (Fig. 6). Therefore, a Hawaiian parentage for <strong>the</strong> ultramafic xenoliths isindicated. Clinopyroxene in two unusual gabbroic xenoliths <strong>from</strong> <strong>the</strong> <strong>Kaupulehu</strong> flow haslower 87 Sr/ 86 Sr (0-70285 ±6) and higher 143 Nd/ 144 Nd (0-51317±2) values (Clague & Chen,1986) than those <strong>of</strong> <strong>the</strong> ultramafic xenoliths. These two gabbroic xenoliths are distinct <strong>from</strong>o<strong>the</strong>r gabbroic xenoliths in <strong>the</strong> <strong>Kaupulehu</strong> flow and were interpreted by Clague & Chen asrare fragments <strong>of</strong> oceanic crust entrapped in this flow with o<strong>the</strong>r xenoliths <strong>of</strong> Hawaiianorigin..5133.5132.51315130EPRHawaiian basalts- • : /.5129• duniteO wehrlite + clinopyroxenite.5128.7020 .7025 .7030 .70358 7 Sr/ 86 SrI.7040 7045FIG. 6. Comparison <strong>of</strong> Nd and Sr isotopic compositions for <strong>Kaupulehu</strong> xenoliths with those <strong>of</strong> basalts <strong>from</strong>Hawaii and <strong>the</strong> East Pacific Rise (EPR). The fields for lavas are <strong>from</strong> Staudigel et al. (1984), Roden et al. (1984), andChen & Frey (1985).


188 CHEN-HONG CHEN ET AL.Kaneoka & Takaoka (1980), Kyser & Rison (1982), and Rison & Craig (1983) haveargued, on <strong>the</strong> basis <strong>of</strong> similar 3 He/*He values, that <strong>the</strong> Hualalai xenoliths are fragments <strong>of</strong>normal oceanic crust. However, a very wide range <strong>of</strong> 3 He/*He values [(6-6-32) x atmospheric]is found in Hawaiian basalts (Kaneoka & Takaoka, 1980, Kyser & Rison, 1982;Kurz et al, 1983, 1987, 1990; Rison & Craig, 1983; Lupton & Garcia, 1986), and manyHawaiian alkalic basalts have 3 He/ 4 He values similar to those <strong>of</strong> MORBs. These dataindicate that similarities <strong>of</strong> 3 He/*He between Hualalai ultramafic xenoliths and MORB arenot diagnostic <strong>of</strong> a normal oceanic crustal origin.We conclude, on <strong>the</strong> basis <strong>of</strong> TiO 2 content <strong>of</strong> <strong>the</strong> spinels, calculated Sr concentrations <strong>of</strong>coexisting liquids, and Nd and Sr isotopic data, that <strong>the</strong> Hualalai ultramafic xenoliths arenot fragments <strong>of</strong> oceanic crustal material produced at a spreading center.Cumulates <strong>from</strong> Hualalai magmasThe only remaining explanation for <strong>the</strong> origin <strong>of</strong> <strong>the</strong> Hualalai ultramafic xenoliths is that<strong>the</strong>y are cumulates crystallized <strong>from</strong> Hawaiian magmas. Because <strong>the</strong> vent for <strong>the</strong> <strong>Kaupulehu</strong>flow lies at least 25 km <strong>from</strong> any <strong>of</strong> <strong>the</strong> riftsextending <strong>from</strong> <strong>the</strong> summit areas <strong>of</strong> adjacentHawaiian volcanoes, <strong>the</strong> magmas <strong>from</strong> which <strong>the</strong> xenoliths crystallized are almost certainlyHualalai magmas. Hualalai has produced both tholeiitic and alkalic lavas, so a fur<strong>the</strong>rquestion concerns <strong>the</strong> type <strong>of</strong> magma involved. Bohrson & Clague (1988) concluded that<strong>the</strong> xenoliths in <strong>the</strong> <strong>Kaupulehu</strong> flow were crystallized <strong>from</strong> tholeiitic magmas, and Sen &Presnall (1986) reached a similar conclusion for dunite xenoliths <strong>from</strong> Koolau volcano onOahu. In this section we use major element, trace element, and isotopic data along withmineralogical and phase equilibrium relationships to re-examine this issue for <strong>the</strong> xenolithsin <strong>the</strong> <strong>Kaupulehu</strong> flow.Major element dataFigures 7 and 8 show that spinels in Koolau dunite xenoliths have generally high Cr/(Cr4-Al) ratios like those in Hualalai tholeiites but widely varying Fe 3+ /(Cr-I-Al + Fe 3 + ) likethose in Hualalai alkalic basalts. Evidently, comparisons between different volcanoes canyield inconsistent results. In any case, <strong>the</strong> complete separation <strong>of</strong> <strong>the</strong> Koolau spinelcomposition field <strong>from</strong> that <strong>of</strong> spinels <strong>from</strong> xenoliths in <strong>the</strong> <strong>Kaupulehu</strong> flow suggests adifferent origin for <strong>the</strong> two suites.Fodor et al. (1975) and L<strong>of</strong>gren et al. (1981) have shown that clinopyroxenes in Hawaiiantholeiitic basalts have lower normative wollastonite (Wo) content than those <strong>from</strong> Hawaiianalkalic basalts, and Bohrson & Clague (1988) have confirmed this relationship forHualalai lavas. As shown in Fig. 3, clinopyroxene compositions in <strong>the</strong> xenoliths rangeacross both <strong>the</strong> tholeiitic and alkalic clinopyroxene fields for Hualalai lavas, and in somecases lie outside both fields. Lavas elsewhere in Hawaii show somewhat larger clinopyroxenecomposition fields. An especially well-documented case is <strong>the</strong> transitional to alkalicEast Molokai stratigraphic section studied by Beeson (1976). He showed (see his fig.21) thatclinopyroxenes in <strong>the</strong> stratigraphically highest and most strongly alkalic lavas have aminimum CaSiO 3 proportion <strong>of</strong> ~41%, which decreases down-section to ~35% justabove <strong>the</strong> tholeiitic lavas. The minimum CaSiO 3 percentage we find for clinopyroxenes in<strong>the</strong> Hualalai xenoliths is ~39%. Thus, comparison with <strong>the</strong> East Molokai lavas leads to <strong>the</strong>conclusion that <strong>the</strong> parental magmas for <strong>the</strong> xenoliths were alkalic to transitional. The data<strong>from</strong> East Molokai suggest that <strong>the</strong> fields for clinopyroxenes <strong>from</strong> Hualalai lavas may beunrealistically small because <strong>of</strong> a limited sample size.


ULTRAMAFIC XENOLITHS FROM THE KAUPULEHU FLOW 1891001 1i i i1 1 1 180-Hualaiaitholeiitic basaltKoolau dunite\ ,-Abyssal basalt60 -" a peridotiteI•\ /20 -•* ^k ^F* m ^• ^^k m >• /• w1 ••i' /'••; Hualaiai alkalicbasalt<strong>Kaupulehu</strong> wehrlite &clinopyroxenite<strong>Kaupulehu</strong> duniteii1 1 1i i i i100 80 60 40 20Mg * 100\Mg • F« 2+ 'spinelFio. 7. Comparison <strong>of</strong> spinel compositions (cation ratios) in <strong>Kaupulehu</strong> ultramafic xenoliths (data <strong>from</strong> Tables 4and 5) with those in Hualaiai alkalic and tholeiitic basalts (data <strong>from</strong> Bohrson & Clague, 1988), Koolau dunitexenoliths (data <strong>from</strong> Sen & Presnall, 1986), and abyssal basalt and peridotite (data <strong>from</strong> Clarke & Loubat, 1977;And & Fujii, 1979; Hamlyn & Bonatti, 1980; OTJtonnell & Presnall, 1980; Hebert et al^ 1983; Dick & Bullen, 1984;Dick, 1989).Rare earth element dataUse <strong>of</strong> clinopyroxene rare earth element (REE) data to determine tholeiitic or alkalicparentage <strong>of</strong> <strong>the</strong> xenoliths is complicated by <strong>the</strong> possibility that <strong>the</strong> clinopyroxene couldrepresent ei<strong>the</strong>r a cumulus mineral in equilibrium with <strong>the</strong> parental magma or a crystallizedportion <strong>of</strong> <strong>the</strong> magma itself. In <strong>the</strong> latter case, <strong>the</strong> clinopyroxene could crystallize interstitially<strong>from</strong> trapped melt or as an adcumulus overgrowth on cumulus clinopyroxene. If <strong>the</strong>clinopyroxene is a cumulus mineral without postcumulus overgrowth, REE distributioncoefficients could be used to calculate REE concentrations in <strong>the</strong> parental magmas, and<strong>the</strong>se concentrations could <strong>the</strong>n be compared with REE concentrations in Hualaiai alkalicand tholeiitic lavas. However, if <strong>the</strong> clinopyroxene is partly or completely <strong>the</strong> result <strong>of</strong>


190 CHEN-HONG CHEN ET AL.AlHualalaitholtiitic basaltCr• -duniteo-wthrlltt & olivine clinopyroxenlteFIG. 8. Comparison <strong>of</strong> spinel compositions (cation ratios) in <strong>Kaupulehu</strong> ultramafic xenoliths (data <strong>from</strong> Tables 4and 5) with those in Hualalai alkalic and tholeiitic basalts (data <strong>from</strong> Bohrson & Clague (1988) and Koolau dunitexenoliths (data <strong>from</strong> Sen & Presnall, 1986).postcumulus crystallization, comparison <strong>of</strong> REE concentrations would be complicated by<strong>the</strong> possibility that part or all <strong>of</strong> <strong>the</strong> clinopyroxene would represent an unknown percentage<strong>of</strong> <strong>the</strong> magma, and its REE concentrations would be unrepresentative <strong>of</strong> <strong>the</strong> entire magma.Mineralogical and phase equilibrium data provide some evidence on <strong>the</strong> cumulus orpostcumulus origin <strong>of</strong> <strong>the</strong> clinopyroxene. On <strong>the</strong> basis <strong>of</strong> phase equilibrium relationships<strong>from</strong> 1 atm to 20 kb (Osborn & Tait, 1952; Presnall, 1966; Presnall et al., 1978), clinopyroxeneand olivine coprecipitate in proportions overwhelmingly dominated by clinopyroxene(80:20 to 90:10). Cumulates in layered intrusions such as <strong>the</strong> Duke Island complex, Alaska,and <strong>the</strong> Muskox intrusion in Canada confirm this relationship (Irvine, 1963, 1979). Thus,<strong>the</strong> very small amounts <strong>of</strong> clinopyroxene typically found in <strong>the</strong> <strong>Kaupulehu</strong> dunite xenolithsprobably crystallized <strong>from</strong> liquid trapped between <strong>the</strong> cumulus olivine grains. In contrast,<strong>the</strong> large percentages <strong>of</strong> clinopyroxene in <strong>the</strong> wehrlite and clinopyroxenite xenoliths areconsistent with a cumulus origin. In dunite samples AA, B4, and X14, <strong>the</strong> high percentage <strong>of</strong>clinopyroxene grains (5-8%), <strong>the</strong> blocky shapes <strong>of</strong> <strong>the</strong>se grains, and <strong>the</strong> relatively forsteritepoor(Fo 814 _ 84 . 2 ) olivine compositions suggest that <strong>the</strong>se xenoliths represent a transitiontoward an olivine-clinopyroxene cumulus assemblage.


ULTRAMAFIC XENOLITHS FROM THE KAUPULEHU FLOW 191To evaluate <strong>the</strong> bearing <strong>of</strong> <strong>the</strong> REE data on <strong>the</strong> cumulus vs. postcumulus origin <strong>of</strong> <strong>the</strong>clinopyroxene, we examine <strong>the</strong> consequences <strong>of</strong> assuming, contrary to <strong>the</strong> phase equilibriumand textural evidence presented above, that <strong>the</strong> clinopyroxene in all <strong>the</strong> xenoliths ispurely cumulus. On this assumption, distribution coefficients can be used to calculate REEpatterns for magmas that crystallized <strong>the</strong> clinopyroxenes, and <strong>the</strong>se patterns can becompared with those <strong>of</strong> alkalic and tholeiitic lavas <strong>from</strong> Hualalai. For <strong>the</strong>se calculations, weuse <strong>the</strong> preferred distribution coefficients (D) <strong>of</strong> Frey et al. (1978). As pointed out by Frey etal, <strong>the</strong>se coefficients are near <strong>the</strong> lower limit <strong>of</strong> published values, but are preferred becauseany contamination <strong>of</strong> analyzed mineral grains would lead to high values. Also, <strong>the</strong> Frey etal. preferred values are consistent with experimentally determined values <strong>of</strong> 0-19 for D Yb(Watson et al, 1987), 0-16 for D Gd (Green et al, 1971), and 0-13 for D^ (Ray et al, 1983).Figure 9 shows that <strong>the</strong> calculated REE patterns <strong>of</strong> presumed magmas that crystallizedclinopyroxenes in <strong>the</strong> wehrlite and clinopyroxenite samples are approximately parallel tothose <strong>of</strong> Hualalai alkalic lavas (Clague et al, 19805) but are at higher concentrations.Because REE concentrations <strong>of</strong> Hawaiian tholeiitic lavas typically are lower than those <strong>of</strong>Hawaiian alkalic lavas, <strong>the</strong> match <strong>of</strong> <strong>the</strong> calculated liquids with tholeiitic lavas would beeven worse. One might argue that <strong>the</strong> presence <strong>of</strong> phenocrysts in <strong>the</strong> lavas analyzed by20010lavas (7 samples)<strong>Kaupulehu</strong> flowCe Nd Sm Eu Gd Dy Er YbFIG. 9. Calculated REE patterns for liquids in equilibrium with <strong>Kaupulehu</strong> wehrlite and clinopyroxenitexenoliths based on <strong>the</strong> preferred distribution coefficients <strong>of</strong> Frey et al. (1978). Data for Hualalai mafic alkalic lavasare seven samples <strong>from</strong> Clague et al. (1980a) and two samples <strong>from</strong> L<strong>of</strong>gren et al. (1981).


192 CHEN-HONG CHEN ET AL.Clague et al. (19806) could raise <strong>the</strong> REE concentrations in <strong>the</strong> liquid fraction sufficiently tooverlap <strong>the</strong> concentrations <strong>of</strong> <strong>the</strong> calculated liquid compositions. In fact, <strong>the</strong> phenocrystproportions range <strong>from</strong> 5 to 15% (D. A. Clague, pers. comm.) and <strong>the</strong> REE patterns <strong>of</strong> <strong>the</strong>lavas reported by Clague et al. would be raised only an insignificant amount. The presumedmagmas that crystallized clinopyroxenes in <strong>the</strong> dunite samples are even more enriched inREE. Thus, <strong>the</strong> REE data are inconsistent with a purely cumulus origin for any <strong>of</strong> <strong>the</strong>clinopyroxenes. At least some postcumulus overgrowth must have occurred, even for <strong>the</strong>samples with <strong>the</strong> lowest REE concentrations.Figure 5 shows that REE patterns for clinopyroxene <strong>from</strong> <strong>the</strong> wehrlite and clinopyroxenitesamples are strongly convex upward and lie at lower concentrations than those <strong>of</strong> typicalHawaiian tholeiites (L<strong>of</strong>gren et al, 1981) and Hualalai alkalic lavas (compare Figs. 5 and 8).Therefore, although <strong>the</strong> REE data require at least some postcumulus crystallization, <strong>the</strong>yare consistent with <strong>the</strong> conclusion based on phase equilibrium and textural arguments that<strong>the</strong> clinopyroxene in <strong>the</strong>se xenoliths is cumulus. Clinopyroxene separates <strong>from</strong> dunitesamples Bl, B3, and X7 have REE concentrations that fall generally in <strong>the</strong> range <strong>of</strong> those forHualalai alkalic lavas (compare Figs. 5 and 8) and Hawaiian tholeiitic lavas (L<strong>of</strong>gren et al,1981), and are higher than those <strong>from</strong> <strong>the</strong> wehrlite and clinopyroxenite xenoliths (Fig. 5).This relationship is consistent with crystallization <strong>of</strong> <strong>the</strong>se clinopyroxenes as a postcumulusmineral interstitial to cumulus olivine.The REE pattern for clinopyroxene <strong>from</strong> dunite sample X14 differs <strong>from</strong> those <strong>of</strong>clinopyroxenes <strong>from</strong> <strong>the</strong> o<strong>the</strong>r dunite samples and shows <strong>the</strong> LREE depletion and generallylower REE concentrations typical <strong>of</strong> clinopyroxene <strong>from</strong> <strong>the</strong> wehrlite and clinopyroxenitesamples (Fig. 5). This feature is consistent with <strong>the</strong> earlier interpretation, based onpetrography and mineralogy, that this sample represents <strong>the</strong> transition between postcumuluscrystallization <strong>of</strong> clinopyroxene in <strong>the</strong> dunite xenoliths to cumulus crystallization in <strong>the</strong>wehrlite and clinopyroxenite xenoliths.One dunite xenolith, sample Bl, has clinopyroxene REE concentrations higher thanthose <strong>of</strong> typical Hawaiian tholeiites (L<strong>of</strong>gren et al, 1981), which indicates that <strong>the</strong> parentalmagma for this xenolith was alkalic. This is <strong>the</strong> only sample in which <strong>the</strong> REE data help toclarify <strong>the</strong> alkalic or tholeiitic character <strong>of</strong> <strong>the</strong> parental magma.Isotopic dataHelium, strontium, and neodymium isotopic data exist both for xenoliths <strong>from</strong> <strong>the</strong><strong>Kaupulehu</strong> flow and for Hualalai lavas. Kurz et al. (1983) found three dredged tholeiites<strong>from</strong> Hualalai to have 3 He/ 4 He values ranging <strong>from</strong> 14-4 to 17-6 times <strong>the</strong> atmosphericratio. Ten alkalic lavas, also <strong>from</strong> Hualalai, were found to have much lower values, ranging<strong>from</strong> 7-84 to 9-84 x atmospheric (Kurz et al, 1990). Data for five <strong>Kaupulehu</strong> xenoliths <strong>from</strong>Kurz et al. (1983), one <strong>from</strong> Rison & Craig (1983), and four <strong>from</strong> Kyser & Rison (1982) showa combined range <strong>of</strong> 3 He/*He <strong>from</strong> 8-60 to 9-60 x atmospheric, all clearly within <strong>the</strong> alkalicrange.If <strong>the</strong> xenoliths were crystallized <strong>from</strong> tholeiitic Hualalai magmas, <strong>the</strong>ir present alkalic3 He/ 4 He values might have been acquired by equilibration ei<strong>the</strong>r with <strong>the</strong> lithosphere inwhich <strong>the</strong>y crystallized ( 3 He/ 4 He = 8 x atmospheric) or with <strong>the</strong> host alkalic magma thattransported <strong>the</strong>m to <strong>the</strong> Earth's surface, or both. To evaluate <strong>the</strong>se possibilities, we use <strong>the</strong>data <strong>of</strong> Hart (1984) for diffusion <strong>of</strong> He in olivine. Tholeiitic volcanism at Hualalai began~ 500000 years ago (Clague & Dalrymple, 1987), so we assume a conservative age<strong>of</strong> t = 500000 years for formation <strong>of</strong> <strong>the</strong> xenoliths. If <strong>the</strong> temperature <strong>of</strong> <strong>the</strong> lithosphereis taken as 1100°C (approximately just below <strong>the</strong> solidus temperature <strong>of</strong> basalt at5-10 kb), <strong>the</strong> diffusion coefficient, D.<strong>of</strong>He in olivine is ~2x 10" 12 cm 2 s(Hart, 1984). Then


ULTRAMAFIC XENOLITHS FROM THE KAUPULEHU FLOW 193.5131.5130-4— Dunite"I—p--Clinopyroxenite and wehrliteTholeiites(14 flows)/.5120Alkalic basalts(12 flows)<strong>Kaupulehu</strong> flow(3 samples).5128.7035 .703687 Sr/ 86 Sr.7037 .7038FIG. 10. Comparison <strong>of</strong> Nd and Sr isotopic compositions for dinopyroxenes <strong>from</strong> <strong>Kaupulehu</strong> xenoliths (Table 9)with those <strong>of</strong> tholeiitic and alkalic lavas <strong>from</strong> Hualalai Volcano and <strong>the</strong> host <strong>Kaupulehu</strong> flow. Horizontal andvertical lines show analytical uncertainties. Fields for <strong>the</strong> lavas are <strong>from</strong> Stille et at. (1986) and K. H. Park &A. Zindler (pers. corrun.) and include <strong>the</strong> uncertainties in <strong>the</strong>ir analyses.<strong>the</strong> characteristic transport distance for diffusion [X = s/(Dt)'] is ~ 0-2 mm (H<strong>of</strong>mann &Hart, 1978). Thus, 3 He/ 4 He in dunite cumulates would not be significantly affected byexchange with <strong>the</strong> surrounding mantle.Helium isotope exchange with <strong>the</strong> host magma can be evaluated in a similar way. For thiscalculation, we assume a magma temperature <strong>of</strong> 1200°C (£> = 3 x 10" 10 cm 2 s) and axenolith diameter <strong>of</strong> 1-35 cm, <strong>the</strong> size range <strong>of</strong> xenoliths <strong>from</strong> <strong>the</strong> <strong>1800</strong> <strong>Kaupulehu</strong> flow(Clague, 1987). The time required for equilibration <strong>of</strong> 3 He/ 4 He would <strong>the</strong>n range <strong>from</strong> 25years to 32 000 years, depending on <strong>the</strong> size <strong>of</strong> <strong>the</strong> xenolith. The maximum exposure time <strong>of</strong><strong>the</strong> xenoliths to <strong>the</strong> host magma can be estimated <strong>from</strong> a calculation <strong>of</strong> <strong>the</strong> minimummagma flowvelocity required to counteract <strong>the</strong> settling velocity <strong>of</strong> <strong>the</strong> largest xenoliths andbring <strong>the</strong>m to <strong>the</strong> Earth's surface. By this procedure, Spera (1980) found a minimum magmavelocity <strong>of</strong> 1-7 km/h for <strong>the</strong> <strong>1800</strong> <strong>Kaupulehu</strong> magma. If <strong>the</strong> xenoliths were entrained <strong>from</strong> amaximum depth <strong>of</strong> 30 km, <strong>the</strong> maximum magma exposure time during transport to <strong>the</strong>Earth's surface would be only ~ 18 h. Thus, essentially no helium isotope exchange wouldhave occurred between <strong>the</strong> magma and <strong>the</strong> xenoliths. We conclude that <strong>the</strong> helium isotopicratios <strong>of</strong> <strong>the</strong> xenoliths are representative <strong>of</strong> <strong>the</strong>ir magmatic origin and are a very strongconstraint indicating that <strong>the</strong> parental magmas were alkalic.Figure 10 shows that on an 87 Sr/ 86 Sr vs. 143 Nd/ 144 Nd plot, all <strong>the</strong> ultramafic xenolithslie in <strong>the</strong> field <strong>of</strong> alkalic Hualalai lavas. Three <strong>of</strong> <strong>the</strong> dunites (Bl, B3, and X7) have anunambiguous Hualalai alkalic signature; <strong>the</strong> rest could be derived <strong>from</strong> ei<strong>the</strong>r alkalic or


194 CHEN-HONG CHEN ET AL.tholeiitic Hualalai magmas. None <strong>of</strong> <strong>the</strong> xenoliths have an unambiguous tholeiitic signature.The three dunites with a clear alkalic identity are also isotopically distinct <strong>from</strong> <strong>the</strong>irhost <strong>Kaupulehu</strong> lava (Fig. 10) and <strong>the</strong>refore were not crystallized <strong>from</strong> it This suggests that<strong>the</strong> o<strong>the</strong>r xenoliths with isotopic compositions analytically indistinguishable <strong>from</strong> that <strong>of</strong><strong>the</strong> <strong>Kaupulehu</strong> lava also may not have crystallized <strong>from</strong> it. In particular, <strong>the</strong> one dunitexenolith (sample Bl) having isotope ratios within <strong>the</strong> <strong>Kaupulehu</strong> field has a texture thatshows deformation, which clearly indicates a history before being picked up by <strong>the</strong><strong>Kaupulehu</strong> magma.Multiple parental magmasBohrson & Clague (1988) observed two sequences <strong>of</strong> crystallization in <strong>the</strong> <strong>Kaupulehu</strong>ultramafic xenoliths showing pyroxene exsolution. One order is: spinel; olivine; orthopyroxene;clinopyroxene; plagioclase. The o<strong>the</strong>r is <strong>the</strong> same except that <strong>the</strong> two pyroxenes appearsimultaneously. This difference suggests more than one parental magma. The ultramaficxenoliths without pyroxene exsolution studied here show a third sequence: spinel; olivine;clinopyroxene. Of particular significance is <strong>the</strong> fact that <strong>the</strong> xenoliths studied by Bohrson &Clague (1988) have a range <strong>of</strong> clinopyroxene mg values (82-4-85-5) that is completelyoverlapped by those in <strong>the</strong> wehrlite and clinopyroxenite samples we have studied(79-5-85-7). The former contain cumulus orthopyroxene; <strong>the</strong> latter do not. Therefore, morethan one parental magma is required. Finally, multiple parental magmas are indicated by<strong>the</strong> isotopic heterogeneity <strong>of</strong> <strong>the</strong> clinopyroxenes. Figure 6 and Table 9 show that clinopyroxenein dunite X7, dunite B3, and clinopyroxenite X3 are distinct on an 87 Sr/® 6 Sr vs.i43Nd/i44Ndp l o tBohrson & Clague (1988) argued convincingly for a tholeiitic parental magma for <strong>the</strong>xenoliths with pyroxene exsolution on <strong>the</strong> basis that <strong>the</strong>y contain cumulus enstatite. Thisconclusion is consistent with phase relationships both for natural tholeiite (Green &Ringwood, 1967) and for model system tholeiites (Presnall et al., 1978,1979; Sen & Presnall,1984; Presnall & Hoover, 1987; Liu & Presnall, 1990) as long as <strong>the</strong> pressure does notexceed ~11 kb. However, Bohrson & Clague (1988, p. 139) noted that <strong>the</strong>se xenolithscomprise only ~1% <strong>of</strong> <strong>the</strong> total xenolith population. Dunites, wehrlites, and olivineclinopyroxenites studied here make up ~ 60% <strong>of</strong> <strong>the</strong> xenolith population (Jackson et al.,1981), and because <strong>the</strong>y do not have cumulus orthopyroxene, we believe that <strong>the</strong>irparentage must be considered separately.Although we argue for <strong>the</strong> existence <strong>of</strong> multiple parental magmas, several features <strong>of</strong> <strong>the</strong>dunite, wehrlite, and olivine clinopyroxenite xenoliths support a coherent and commontype <strong>of</strong> origin that involves sequential crystallization <strong>of</strong> dunite, wehrlite, and olivineclinopyroxenite cumulates <strong>from</strong> alkalic to transition parental magmas. These features, some<strong>of</strong> which have already been discussed, are summarized as follows.(1) Olivine and clinopyroxene compositions are generally more magnesian in <strong>the</strong> dunitesthan in <strong>the</strong> wehrlites and olivine clinopyroxenites (Figs. 2 and 3), but a region <strong>of</strong> overlapoccurs. This region is marked by iron-rich dunites with blocky clinopyroxenes that arepossibly cumulus in origin. We have not found this textural feature among <strong>the</strong> moremagnesian dunite samples.(2) On a plot <strong>of</strong> modal percent clinopyroxene in dunite vs. percent forsterite in olivine, alarge scatter occurs; but <strong>the</strong> maximum percent clinopyroxene increases as <strong>the</strong> percentforsterite decreases (Tables 1 and 2). This is consistent with <strong>the</strong> introduction <strong>of</strong> smallamounts <strong>of</strong> cumulus clinopyroxene in <strong>the</strong> more iron-rich dunites.(3) Dunite sample XI4, which has very iron-rich olivine (Fo 81 . 4 ) and clinopyroxene thatappears to be cumulus, has a clinopyroxene REE plot like those for clinopyroxenes <strong>from</strong> <strong>the</strong>


ULTRAMAFIC XENOLITHS FROM THE KAUPULEHU FLOW 195wehrlite and olivine clinopyroxenite samples. Thus, it appears to represent <strong>the</strong> transitionbetween more magnesian dunite cumulates and <strong>the</strong> wehrlite-clinopyroxenite suite <strong>of</strong>cumulates.(4) Spinel compositions are similar in all <strong>the</strong> xenoliths but are generally more magnesianin <strong>the</strong> dunites than in <strong>the</strong> wehrlites and olivine clinopyroxenites (Fig. 7). This difference isconsistent with differences in <strong>the</strong> olivine and clinopyroxene compositions.(5) Spinel compositions indicate that <strong>the</strong> parental magmas were alkalic to transitional.Clinopyroxene compositions are not as definitive but are also consistent with this interpretation.(6) He and Sr isotope ratios both indicate alkalic to transitional parental magmas for <strong>the</strong>xenoliths, and <strong>the</strong> slight heterogeneity <strong>of</strong> Sr isotope ratios indicates several parentalmagmas.CONCLUDING STATEMENTThe samples <strong>from</strong> <strong>the</strong> xenolith beds <strong>of</strong> <strong>the</strong> <strong>1800</strong> <strong>Kaupulehu</strong> flow that we have studied arefar <strong>from</strong> an exhaustive representation <strong>of</strong> this rich and diverse accumulation <strong>of</strong> xenoliths. It isclear, both <strong>from</strong> our work and previous studies, that <strong>the</strong> magma sampled a wide range <strong>of</strong>materials including cumulates <strong>from</strong> both alkalic (this study) and tholeiitic (Bohrson &Clague, 1988) magma chambers and even an occasional fragment <strong>of</strong> oceanic crust (Clague& Chen, 1986). The locality represents a superb, but scrambled, sample <strong>of</strong> <strong>the</strong> deep interior<strong>of</strong> a mature Hawaiian volcano down to a depth <strong>of</strong> perhaps 30 km, and it deserves muchmore thorough documentation.Our conclusion regarding alkalic parental magmas stands in contrast to <strong>the</strong> conclusion <strong>of</strong>Sen & Presnall (1986) that <strong>the</strong> dunite xenoliths <strong>from</strong> Koolau volcano on Oahu have atholeiitic parentage. An interesting difference between <strong>the</strong> two dunite suites is <strong>the</strong> generallyhigher A1 2 O 3 content <strong>of</strong> clinopyroxenes in <strong>the</strong> dunites <strong>from</strong> Hualalai (2-48-7-02%) relativeto those <strong>from</strong> Koolau (1-37-2-67%), which suggests a different origin for <strong>the</strong> two suites. Thedifference could be caused by higher pressures <strong>of</strong> formation for <strong>the</strong> <strong>Kaupulehu</strong> xenoliths(O'Hara, 1967) or crystallization <strong>from</strong> more aluminous parental magmas. We have alsonoted that spinels <strong>from</strong> <strong>the</strong> Hualalai dunites have lower Cr/(Cr + Al) than those <strong>from</strong> <strong>the</strong>Koolau dunites.Extensive crystallization <strong>of</strong> olivine in <strong>the</strong> absence <strong>of</strong> pyroxenes and plagioclase has longbeen recognized to be an important part <strong>of</strong> <strong>the</strong> crystallization history <strong>of</strong> Hawaiian tholeiites(Macdonald, 1949; Powers, 1955; Wright, 1971) but it has not previously been recognized tobe important for Hawaiian alkalic magmas. Data presented here plus data <strong>from</strong> two o<strong>the</strong>rHawaiian volcanoes, Loihi (Clague, 1988) and Mauna Kea (Atwill & Garcia, 1985), stronglyindicate that it should be so recognized. Experimental data (Presnall et al, 1978, 1979;Presnall & Hoover, 1987) indicate that increasing alkalinity <strong>of</strong> <strong>the</strong> magma would progressivelyreduce its capacity for crystallization <strong>of</strong> olivine alone before <strong>the</strong> crystallization <strong>of</strong>clinopyroxene, but that this capacity still exists even for nepheline-normative magmas. Ourresults combined with data for xenoliths <strong>from</strong> o<strong>the</strong>r Hawaiian volcanoes (for example, Sen& Presnall, 1986; Clague, 1988; Sen, 1988) indicate that significant portions <strong>of</strong> <strong>the</strong> deepcores <strong>of</strong> Hawaiian volcanoes consist <strong>of</strong> ultramafic cumulates crystallized both <strong>from</strong> tholeiiticand <strong>from</strong> alkalic magmas.ACKNOWLEDGEMENTSThis work was supported by National Science Foundation Grants EAR-8018359, EAR-8212889, and EAR 8418685 to Presnall, and OCE-8415759 to Stern. We thank A. Zindler


196 CHEN-HONG CHEN ET AL.for providing access to his laboratory and for assistance with <strong>the</strong> Nd isotope analyses; K.-H.Park, G. Worner, A. Zindler, and D. Qague for permission to use unpublished Sr and Ndisotope data on Hualalai lavas; and D. A. Clague and W. G. Melson for facilitating access to<strong>the</strong> Jackson xenolith collection at <strong>the</strong> Smithsonian Institution, Washington, DC. We thankD. A. Clague for numerous conversations and two very helpful reviews at different stages <strong>of</strong>manuscript preparation, and we thank T. N. Irvine for helpful comments regarding cumulustextures. Journal reviews by A. Basu, M. O. Garcia, T. N. Irvine, and especially F. A. Freyled to significant improvements in <strong>the</strong> finalmanuscript. This paper is Contribution 526 <strong>of</strong><strong>the</strong> Geosciences Program, The University <strong>of</strong> Texas at Dallas.REFERENCESAlbee, A. L., & Ray, L., 1970. Correction factors for electron-probe microanalysis <strong>of</strong> silicates, oxides, carbonates,phosphates and sulfates. Anal. Chan. 42, 1408-14.Arai, S., & Fujii, T., 1979. Petrology <strong>of</strong> ultramafic rocks <strong>from</strong> site 395. Initial Reports <strong>of</strong> <strong>the</strong> Deep Sea DrillingProject, 45. Washington, DC: U.S. Government Printing Office, 587-94.Arth, J. G., 1976. Behavior <strong>of</strong> trace elements during magmatic process—a summary <strong>of</strong> <strong>the</strong>oretical models and <strong>the</strong>irapplication. J. Res. US. Geol. Sun. 4, 41-7.Atwill, T. M, & Garcia, M. O., 1985. <strong>Petrogenesis</strong> <strong>of</strong> ultramafic xenoliths <strong>from</strong> Mauna Kea: mantle or crust origin.Trans. Am. Geophys. Union 66, 1133.Basu, A. R., & Murthy, V. It, 1977. Ancient lithospheric lherzolite xenoliths in alkali basalt <strong>from</strong> Baja California.Earth Planet. Sci. Lett. 35, 239-46.Beeson, A. E^ 1976. Petrology, mineralogy, and geochemistry <strong>of</strong> <strong>the</strong> East Molokai volcanic series, Hawaii. U.S.Geol Surv. Pr<strong>of</strong>. Paper 961.Bence, A. E., & Albee, A. L., 1968. Empirical correction factors in electron microanalysis <strong>of</strong> silicates and oxides. J.Geol. 76, 382-403.Bohrson, W. A, & Clague, D. A., 1988. Origin <strong>of</strong> ultramafic xenoliths containing exsolved pyroxenes <strong>from</strong>Hualalai Volcano, Hawaii. Contr. Miner. Petrol. 100, 139-55.Bonatti, E., Ottonello, G, & Hamlyn, P. R, 1986. Peridotites <strong>from</strong> <strong>the</strong> island <strong>of</strong> Zabargad (St. John), Red Sea:petrology and geochemistry. J. Geophys. Res. 91, 599-631.Carter, J. L., 1970. Mineralogy and chemistry <strong>of</strong> <strong>the</strong> earth's upper mantle based on <strong>the</strong> partial fusion-partialcrystallization model. Bull. Geol. Soc. Am. 88, 556-70.Chen, C.-Y., & Frey, F. A., 1985. Trace element and isotopic geochemistry <strong>of</strong> lavas <strong>from</strong> Haleakala Volcano, EastMaui, Hawaii J. Geophys. Res. 90, 8743-68.Clague, D. A, 1987. Hawaiian xenolith populations, magma supply rates, and development <strong>of</strong> magma chambers.Bull. Volcanol. 49, 577-87.1988. Petrology <strong>of</strong> ultramafic xenoliths <strong>from</strong> Loihi Seamount, Hawaii J. Petrology 29, 1161-86.— Chen, C.-H., 1986. Ocean crust xenoliths <strong>from</strong> Hualalai Volcano, Hawaii. Geol. Soc. Am. Abstr. Prog. 18, 565.Dalrymple, G. B, 1987. The Hawaiian-Emperor volcanic chain. Part I. Geologic evolution. In: Decker, R.W., Wright, T. L., & Stauffer, P. H. (eds.) Volcanism in Hawaii. US. Geol Surv. Pr<strong>of</strong>. Paper 1350, 5-54.Fisk, M. R., & Bence, A. E., 1980a. Mineral chemistry <strong>of</strong> basalts <strong>from</strong> Ojin, Nintoku, and Suiko seamounts,leg 55, DSDP. Initial Reports <strong>of</strong> <strong>the</strong> Deep Sea Drilling Project, 55. Washington, DC: U.S. Government PrintingOffice, 607-37.Jackson, E. D_, & Wright, T. L_, 198Ofr. Petrology <strong>of</strong> Hualalai Volcano: implication for mantle composition.Bull. Volcanol. 43, 641-56.Clarke, D. B., & Loubat, H., 1977. Mineral analyses <strong>from</strong> <strong>the</strong> peridotite-gabbro-basalt complex at site 334, DSDPleg 37. Initial Reports <strong>of</strong> <strong>the</strong> Deep Sea Drilling Project, 37. Washington, DC: U.S. Government Printing Office,847-55.Dick, H. J. B., 1989. Abyssal peridotites, very slow spreading ridges and ocean ridge magmatism. In: Saunders,A. D., & Norry, M. J. (eds.) Magmatism in <strong>the</strong> Ocean Basins. Geol. Soc Spec. Publ. 42, 71-105.Bullen, T., 1984. Chromium spinel as a petrogenetic indicator in oceanic environments. Contr. Miner. Petrol.86, 54-76.Fisher, R. L, 1984. Mineralogical studies <strong>of</strong> <strong>the</strong> residues <strong>of</strong> mantle melting: abyssal and alpine peridotites. In;Komprobst, J. (ed.) Kimberlites II: The Mantle and Crust-Mantle Relationships. Amsterdam: Elsevier,295-308.Ehrenberg, S. N, 1982. Rare earth element geochemistry <strong>of</strong> garnet lherzolite and megacrystalline nodules <strong>from</strong>minette <strong>of</strong> <strong>the</strong> Colorado Plateau. Earth Planet. Sci. Lett. 57, 191-210.Engi, M, 1983. Equilibria involving Al-Cr spinel: Mg-Fe exchange with olivine: experiments, <strong>the</strong>rmometricanalysit, and consequences for geo<strong>the</strong>rmometry. Am. J. Sci. 283-A, 29-71.Evans, B. W, & Wright, T. I~, 1971 Composition <strong>of</strong> liquidus chromite <strong>from</strong> <strong>the</strong> 1959 (Kilauea lid) and 1965(Makaopuhi) eruptions <strong>of</strong> Kilauea volcano, Hawaii Am. Miner. 57, 217-30.


ULTRAMAFIC XENOLITHS FROM THE KAUPULEHU FLOW 197Fabrics, J., 1979. Spinel-olivine geo<strong>the</strong>rmometry in peridotites <strong>from</strong> ultramafic complexes. Contr. Miner. Petrol.69, 329-36.Feigenson, M. D, H<strong>of</strong>mann, A. W, & Spera, F. J., 1983. Case studies on <strong>the</strong> origin <strong>of</strong> basalt II. The transition <strong>from</strong>tholeiite to alkalic volcanism on Kohala Volcano, Hawaii. Ibid. 84, 390-405.Flanagan, E. J., 1973.1972 values for international geochemical reference standards. Geochim. Cosmochim. Acta 37,1189-200.Fodor, R. V, KeiL K., & Bunch, T. E, 1975. Contributions to <strong>the</strong> mineral chemistry <strong>of</strong> Hawaiian rocks IV.Pyroxenes in rocks <strong>from</strong> Haleakala and West Maui Volcanos, Maui, Hawaii. Contr. Miner. Petrol. 50,173-95.Frey, F. A^ Green, D. H., & Roy, S. D, 1978. Integrated models <strong>of</strong> basalt petrogenesis: a study <strong>of</strong> quartz tholeiitesto olivine melilitites <strong>from</strong> South Eastern Australia utilizing geochemical and experimental petrological data.J. Petrology 19, 453-513.Fujii, T., 1978. Fe-Mg partitioning between olivine and spinel. Carnegie Inst. Wash. Yearb. 76, 563-9.Gladney, E. S., Burns, C. E^ & Roelandts, I, 1983. 1982 compilation <strong>of</strong> elemental concentrations in eleven UnitedStates Geological Survey rock standards. Geostand. Nev/slett. 7, 3-226.Green, D. H, & Hibberson, W. O, 1976. The instability <strong>of</strong> plagioclase in peridotite at high pressure. Lithos3, 209-21.Ringwood, A. E_, 1967. The genesis <strong>of</strong> basaltic magmas. Contr. Miner. Petrol. 15, 103-90.Ware, N. G., Hibberson, W. O, Major, A, & Kiss, E., 1971. Experimental petrology and petrogenesis <strong>of</strong>Apollo 12 basalts. Proc. Second Lunar Sci. Conf. 1, 601-15.Green, H. W., 1979. Trace elements in <strong>the</strong> fluid phases <strong>of</strong> <strong>the</strong> Earth's mantle. Nature 227, 465-7.Hamlyn, P. R., & Bonatti, E., 1980. Petrology <strong>of</strong> mantle-derived ultramafics <strong>from</strong> <strong>the</strong> Owen Fracture Zone,Northwest Indian Ocean: implications for <strong>the</strong> nature <strong>of</strong> <strong>the</strong> oceanic upper mantle. Earth Planet. Sci. Lett.48, 65-79.Hart, S. R, 1971. K, Rb, Cs, Sr and Ba contents and Sr isotope ratios <strong>of</strong> ocean floor basalt Phil. Trans. R. Soc.Lond. A268, 573-87.1984. He diffusion in olivine. Earth Planet. Sd. Lett. 70, 297-302.Hebert, R., Bideau, D., & Hekinian, R., 1983. <strong>Ultramafic</strong> and mafic rocks <strong>from</strong> <strong>the</strong> Garret Transform Fault near13°3O'S on <strong>the</strong> East Pacific Rise: igneous petrology. Ibid. 65, 107-25.H<strong>of</strong>mann, A. W., & Hart, S. R., 1978. An assessment <strong>of</strong> local and regional isotopic equilibrium in <strong>the</strong> mantle. Ibid.38,44-61Irvine, T. N., 1963. Origin <strong>of</strong> <strong>the</strong> ultramafic complex at Duke Island, sou<strong>the</strong>astern Alaska. Miner. Soc. Am. Spec.Paper 1, 36-45.1979. Rocks whose composition is determined by crystal accumulation and sorting. In: The Evolution <strong>of</strong> <strong>the</strong>Igneous Rocks. Fiftieth Anniversary Perspectives. Princeton: Princeton University Press, 245-306.Irving, A^ & Frey, F. A., 1984. Trace element abundances in megacrysts and <strong>the</strong>ir host basalts: constraints onpartition coefficients and megacryst genesis. Geochim. Cosmochim. Acta 48, 1201-21.Jackson, E. D_, 1968. The character <strong>of</strong> <strong>the</strong> lower crust and upper mantle beneath <strong>the</strong> Hawaiian Islands. Proc.XXIII Int. Geol. Congr. 1, 135-50.1969. Chemical variation in coexisting chromite and olivine in chromitite zones <strong>of</strong> <strong>the</strong> Stillwater complex.Econ. Geol. Mon. 4, 41-71.Clague, D. A., 1981. The nodule beds <strong>of</strong> <strong>1800</strong>-1801 <strong>Kaupulehu</strong> flow, Hualalai Volcano, Hawaii. US. Geol.Surv. Misc. Field Studies Map MF-I355.Clague, D. A., Engleman, E., Friesen, W. B, & Norton, D., 1981. <strong>Xenoliths</strong> in <strong>the</strong> alkalic basalt flows <strong>from</strong>Hualalai Volcano, Hawaii. US. Geol. Surv. Open-File Rep. 81-1031.Kaneoka, I., & Takaoka, N., 1978. Excess 129 Xe and high 3 He/*He ratios in olivine phenocrysts <strong>of</strong> Kapuho lavaand xenolithic dunites <strong>from</strong> Hawaii. Earth Planet. Sci. Lett. 39, 382-6.1980. Rare gas isotopes in Hawaiian ultramafic nodules and volcanic rocks: constraint on geneticrelationship. Science 208, 1366-8.Kirby, S. H, & Green, H. W., Ill, 1980. Dunite xenoliths <strong>from</strong> Hualalai Volcano: evidence for mantle diapiric flowbeneath <strong>the</strong> island <strong>of</strong> Hawaii. Am. J. Set 280-A, 550-75.Kretz, R., 1981 Transfer and exchange equilibria in a portion <strong>of</strong> <strong>the</strong> pyroxene quadrilateral as deduced <strong>from</strong>natural and experimental data. Geochim. Cosmochim. Acta 46, 411-21.Kurz, M. D, Colodner, D., Trull, T. W., Moore, R. B., & O'Brien, K., 1990. Cosmic ray exposure dating with in situproduced cosmogenic 3 He: results <strong>from</strong> young Hawaiian lava flows. Earth Planet. Sci. Lett. 97, 177-89.Garcia, M. O, Frey, F. A, & O'Brien, P. A, 1987. Temporal helium isotopic variations within Hawaiianvolcanoes: basalts <strong>from</strong> Mauna Loa and Haleakala. Ibid. 51, 2905-14.Jenkins, W. J, Hart, S. R., & Clague, D. A, 1983. Helium isotopic variations in volcanic rocks <strong>from</strong> LoihiSeamount and <strong>the</strong> Island <strong>of</strong> Hawaii. Ibid. 66, 388-406.Kyser, T. K, & Rison, W., 1981 Systematic <strong>of</strong> rare gas isotopes in basic lavas and ultramafic xenoliths. J. Geophys.Res.. SI, 5611-30.Lindsley, D. H., & Andersen, D. J., 1983. A two-pyroxene <strong>the</strong>rmometer. Ibid. 88, A887-9O6.Liu, T.-C, & Presnall, D. C, 1990. Liquidus phase relationships on <strong>the</strong> join anorthite-forsterite-quartz at 20 kbarwith applications to basalt petrogenesis and igneous sapphirine. Contr. Miner. Petrol. 104, 735-41L<strong>of</strong>gren, G. G., Bence, A. E., Duke, M. B n Dungan, M. A, Green, J. C, Haggerty, S. E, Haskin, L. A^ Irving, A. J.,


198 CHEN-HONG CHEN ET AL.Lipman, P. W., Naldrett, A. J., Papike, J. J., Reid, A. M., Rhodes, J. M., Taylor, S. It, & Vaniman, D. T., 1981.Petrology and chemistry <strong>of</strong> terrestrial, lunar and meteoritic basalts. In: Basaltic Volcanism on <strong>the</strong> TerrestrialPlanets. New York: Pergamon Press, 132-60.Lupton, J. E., & Garcia, M. O., 1986. Helium isotopes in submarine basalts <strong>from</strong> <strong>the</strong> island <strong>of</strong> Hawaii. Trans. Am.Geophys. Union 67, 1271.Macdonald, G. A., 1949. Hawaiian petrographic province. Bull. Geol. Soc. Am. 60, 1541-96.Ma<strong>the</strong>z, E. A, Dietrich, V. J., & Irving, A. J., 1984. The geochemistry <strong>of</strong> carbon in mantle peridotites. Geochim.Cosmochim. Acta 48, 1849-60.Merrier, J.-C. C, & Nicolas, A., 1975. Textures and fabrics <strong>of</strong> upper-mantle peridotites as illustrated by xenoliths<strong>from</strong> basalts. J. Petrology 16, 454-87.Moore, R. B., Clague, D. A^ Rubin, M., & Bohrson, W. A, 1987. Hualalai Volcano: a preliminary summary <strong>of</strong>geologic, petrologic, and geophysical data. US. Geol. Surv. Pr<strong>of</strong>. Paper 1350, 571-86.Mysen, B. O, 1976. Experimental determination <strong>of</strong> some gcochcmical parameters relating to conditions <strong>of</strong>equilibration <strong>of</strong> peridotite in <strong>the</strong> upper mantle. Am. Miner. 61, 677-83.1979. Trace-element partitioning between garnet peridotite minerals and water-rich vapor, experimental data<strong>from</strong> 5 to 30 kb. Am. Miner. 64, 274-87.O'Donnell, T. H., & Presnall, D. C, 1980. Chemical variations <strong>of</strong> <strong>the</strong> glass and mineral phases in basalts dredged<strong>from</strong> 25°-3O°N along <strong>the</strong> Mid-Atlantic Ridge. Am. J. Sci. 280-X, 845-68.O'Hara, M. J., 1967. Mineral parageneses in ultrabasic rocks. In: Wyllie, P. J. (ed.) <strong>Ultramafic</strong> and Related Rocks.New York: John Wiley, 393-403.Osborn, E. F., & Tait, D. B., 1952. The system diopside-forsterite-anorthite. Am. J. Sci. Bowen Vol., 413-33.Pike, J. E. N, & Schwarzmann, E. C, 1977. Classification <strong>of</strong> textures in ultramafic xenoliths. J. Geol. 85, 49-61.Powers, H. A, 1955. Composition and origin <strong>of</strong> basaltic magma <strong>of</strong> <strong>the</strong> Hawaiian Islands. Geochim. Cosmochim.Acta 7, 77-107.Presnall, D. G, 1966. The join forsterite-diopside-iron oxide and its bearing on <strong>the</strong> crystallization <strong>of</strong> basaltic andultramafic magmas. Am. J. Sci. 264, 753-809.Dixon, J. R., O'Donnell, T. H., & Dixon, S. A., 1979. Generation <strong>of</strong> mid-ocean ridge tholeiites. J. Petrology20, 3-35.Dixon, S. A., Dixon, J. R., O'Donnell, T. H., Brenner, N. L, Schrock, R. L., & Dycus, D. W., 1978. Liquidusphase relations on <strong>the</strong> join diopside-forsterite-anorthite <strong>from</strong> 1 atm to 20 kbar <strong>the</strong>ir bearing on <strong>the</strong>generation and crystallization <strong>of</strong> basaltic magma. Contr. Miner. Petrol. 66, 203-20.Hoover, J. D, 1987. High pressure phase equilibrium constraints on <strong>the</strong> origin <strong>of</strong> mid-ocean ridge basalts. In:Mysen, B. O. (ed.) Magmatic Processes: Physicochemical Principles. Geochem. Soc. Spec. Publ. 1, 75-88.Prinz, M., Keil, K., Green, J. A, Reid, A. M., Bonatti, E., & Honnorez, J., 1976. <strong>Ultramafic</strong> and mafic dredgedsamples <strong>from</strong> <strong>the</strong> Equatorial Mid-Atlantic Ridge and fracture zones. J. Geophys. Res. 81, 4087-103.Ray, G. L., Shimizu, N., & Hart, S. R., 1983. An ion microprobe study <strong>of</strong> <strong>the</strong> partitioning <strong>of</strong> trace elements betweenclinopyroxene and liquid in <strong>the</strong> system diopside-albite-anorthite. Geochim. Cosmochim. Acta 47, 2131-40.Richter, D. H., & Murata, K. J., 1961. <strong>Xenoliths</strong> nodules in <strong>the</strong> <strong>1800</strong>-1801 <strong>Kaupulehu</strong> flow <strong>of</strong> Hualalai Volcano.U.S. Geol. Surv. Pr<strong>of</strong>. Paper 424B, B215-17.Ringwood, A. E., 1975. Composition and Petrology <strong>of</strong> <strong>the</strong> Earth's Mantle. New York: McGraw-Hill.Rison, W., & Craig, H., 1983. Helium isotopes and mantle volatiles in Loihi Seamount and Hawaiian Islandbasalts and xenoliths. Earth Planet. Sci. Lett. 66, 407-26.Roden, M. F., Frey, F. A., & Clague, D. A, 1984. Geochemistry <strong>of</strong> tholeiitic and alkalic lavas <strong>from</strong> <strong>the</strong> KoolauRange, Oahu, Hawaii: implications for Hawaiian volcanism. Ibid. 69, 141-58.Roedder, E, 1965. Liquid CO 2 inclusions in olivine-bearing nodules and phenocrysts <strong>from</strong> basalts. Am. Miner.50, 1746-82.Roeder, P. L, Campbell, I. M., & Jamieson, H. E., 1979. A re-evaluation <strong>of</strong> <strong>the</strong> olivine-spinel <strong>the</strong>rmometry. Contr.Miner. Petrol. 68, 325-34.Schneider, M. E, & Eggler, D. H, 1986. Fluids in equilibrium with peridotite minerals: implications for mantlemetasomatism. Geochim. Cosmochim. Acta 50, 711-24.Sen, G. 1988. <strong>Petrogenesis</strong> <strong>of</strong> spinel lherzolite and pyroxenite suite xenoliths <strong>from</strong> <strong>the</strong> Koolau shield, Oahu,Hawaii: implications for petrology <strong>of</strong> <strong>the</strong> post-eruptive lithosphere beneath Oahu. Contr. Miner. Petrol.100, 61-91.Presnall, D. C, 1980. Dunite nodules <strong>from</strong> <strong>the</strong> Koolau shield, Hawaii: crystal cumulates <strong>from</strong> a tholeiiticmagma chamber. Geol. Soc. Am. Abstr. Prog. 12, 519.1984. Liquidus phase relationships on <strong>the</strong> join anorthite-forsterite-quartz at 10 kbar with applicationsto basalt petrogenesis. Contr. Miner. Petrol. 85, 404-8.1986. <strong>Petrogenesis</strong> <strong>of</strong> dunite xenoliths <strong>from</strong> Koolau Volcano, Oahu, Hawaii: implications for Hawaiianvolcanism. J. Petrology T7, 197-217.Shimizu, N., 1974. An experimental study <strong>of</strong> <strong>the</strong> partitioning <strong>of</strong> K, Rb, Cs, Sr and Ba between clinopyroxene andliquid at high pressure. Geochim. Cosmochim. Acta 38, 1789-98.Sigurdsson, H_, 1977. Spinels in leg 37 basalts and peridotites: phase chemistry and zoning. Initial Reports <strong>of</strong> <strong>the</strong>Deep Sea Drilling Project, 37. Washington, DC: U.S. Government Printing Office, 883-91.Schilling J.-G-, 1976. Spinels in Mid-Atlantic ridge basalts: chemistry and occurrence. Earth Planet. Sci. Lett.29, 7-20.


ULTRAMAFIC XENOLITHS FROM THE KAUPULEHU FLOW 199Sinton, J. M, 1979. Petrology <strong>of</strong> (Alpine-type) peridotites <strong>from</strong> site 395, DSDP leg 45. Initial Reports <strong>of</strong> <strong>the</strong> DeepSea Drilling Project, 45. Washington, DC: U.S. Government Printing Office, 595-601.Spera, F. J., 1980. Aspects <strong>of</strong> magma transport. In: Hargraves, R. B. (ed.) Physics <strong>of</strong>Magmatic Processes. Princeton:Princeton University Press, 265-323.Staudigel, H., Zindler, A^ Hart, S. R, Leslie, T., Chen, C.-Y., & Clague, D. A., 1984. Systematics <strong>of</strong> a juvenileintraplate volcano: Pb, Nd, and Sr isotope ratios <strong>of</strong> basalts <strong>from</strong> Loihi Seamount, Hawaii Earth Planet. Sci.Lett. 69, 13-29.Stern, R. J, & Bibee, L. D., 1984. Esmcralda Bank: geochemistry <strong>of</strong> an active submarine volcano in <strong>the</strong> MarianaIsland Arc. Contr. Miner. Petrol. 86, 159-69.Stille, P., Unruh, D. M, & Tatsumoto, M n 1986. Pb, Sr, Nd, and Hf isotopic constraints on <strong>the</strong> origin <strong>of</strong> Hawaiianbasalts and evidence for a unique mantle source. Geochim. Cosmochim. Acta 50, 2303-19.Sun, S. S., Nesbitt, R. W., & Sharaskin, A. Y, 1979. Geochemical characteristics <strong>of</strong> mid-ocean ridge basalts. EarthPlanet. ScL Lett. 44, 119-38.Symes, R. F., Beva, J. C, & Hutchison, R., 1977. Phase chemistry studies on gabbro and peridotite rocks <strong>from</strong> site334, DSDP leg 37. Initial Reports <strong>of</strong> <strong>the</strong> Deep Sea Drilling Project, 37. Washington, DC: U.S. GovernmentPrinting Office, 841-5.Takahashi, E., & Kushiro, L, 1983. Melting <strong>of</strong> a dry peridotite at high pressures and basalt magma genesis. Am.Miner. 68, 859-79.Watson, E. B., Othman, D. B, Luck, J. M, & H<strong>of</strong>mann, A. W., 1987. Partitioning <strong>of</strong> U, Pb, Cs, Yb, Hf, Re and Osbetween chromian diopsidic pyroxene and haplobasaltic liquid. Chem. Geol. 62, 191-208.Wendlandt, R. F., & Harrison, W. J., 1979. Rare earth partitioning between immiscible carbonate and silicateliquids and CO 2 vapor results and implication for <strong>the</strong> formation <strong>of</strong> light rare-earth enriched rocks. Contr.Miner. Petrol. 69, 409-19.White, R. W., 1966. <strong>Ultramafic</strong> inclusions in basaltic rocks <strong>from</strong> Hawaii Ibid. 12, 245-314.Wright, T. L., 1971. Chemistry <strong>of</strong> Kilauea and Mauna Loa lava in space and time. U.S. Geol. Surv. Pr<strong>of</strong>. Paper735, 40 pp.Zindler, A^ & Jagouts, E, 1988. Mantle cryptology. Geochim. Cosmochim. Acta 52, 319-32.Staudigel, H, & Batiza, R., 1984. Isotope and trace element geochemistry <strong>of</strong> young Pacific seamounts:implications for <strong>the</strong> scale <strong>of</strong> upper mantle heterogeneity. Earth Planet. Sci. Lett. 70, 175-95.Hart, S. R., Endres, R., & Goldstein, S., 1983. Nd and Sr isotopic study <strong>of</strong> a mafic layer <strong>from</strong> Rondaultramafic complex. Nature 304, 226-30.APPENDIX A: ANALYTICAL METHODSAll mineral compositions were determined at <strong>the</strong> University <strong>of</strong> Texas at Dallas with an ARL-EMXelectron microprobe equipped with a Tracor-Nor<strong>the</strong>rn TN-2000 automation system. The acceleratingpotential was 15 kV, <strong>the</strong> beam current was 0-15-0-20/JA, and <strong>the</strong> beam diameter was < 1 //m. Thedata reduction procedure <strong>of</strong> Bence & Albee (1968) and <strong>the</strong> correction factors <strong>of</strong> Albee & Ray (1970)were used for all analyses. Each analysis listed in <strong>the</strong> tables is an average <strong>of</strong> 7-15 spot analyses.For <strong>the</strong> isotopic and trace element analyses, <strong>the</strong> clinopyroxene separates <strong>from</strong> dunite, wehrlite, andolivine clinopyroxenite xenoliths were hand-picked, crushed in an agate mortar, and sieved. The100-300 /xm size fraction was <strong>the</strong>n re-picked under 40 x magnification until no fur<strong>the</strong>r impuritiescould be seen. To avoid possible altered materials and contamination along grain boundaries andmineral surfaces, acid washing was carried out by <strong>the</strong> procedure <strong>of</strong> Zindler & Jagouts (1988), asfollows. The separates were sequentially washed ultrasonically in distilled water for 1 h, washed in hot(100 °Q 2-5 N HC1 for 30 min, washed in cold (room temperature) 5% HF for 10 min, rinsed fivetimeswith cold 2-5 N HC1, and finally rinsed fivetimes with distilled water. This procedure was establishedafter <strong>the</strong> results <strong>of</strong> a leaching experiment outlined in Appendix B. Distilled reagents were used for <strong>the</strong>washing and o<strong>the</strong>r chemical procedures.The trace element and Sr isotopic analyses were performed at <strong>the</strong> University <strong>of</strong> Texas at Dallas.Both 6-in (for K, Rb, and Sr contents and 87 Sr/ 86 Sr) and 12-in (for REE and Ba contents) radius solidsourcemass spectrometers were used. Eight clinopyroxene separates and <strong>the</strong> USGS standard BCR-1were analyzed for REE, K, Rb, Sr, and Ba by isotope dilution after <strong>the</strong> methods <strong>of</strong> Hart (1971) andShimizu (1974). For each clinopyroxene analysis, 400-600 mg <strong>of</strong> acid-washed sample were used.Values <strong>of</strong> 87 Sr/ 86 Sr were normalized to 86 Sr/ 88 Sr = 0-11940 and corrected relative to 0-70800 for <strong>the</strong> E+ ASrCOa standard.Neodymium isotopic measurements were carried out at Lamont-Doherty Geological Observatory<strong>of</strong> Columbia University, on a modified V.G. Micromass 30 mass spectrometer (Zindler el al~, 1984).Values <strong>of</strong> 143 Nd/ 144 Nd were normalized to 146 Nd/'"Nd=0-72190 and corrected relative to 0512645for <strong>the</strong> BCR-1 standard.


200 CHEN-HONG CHEN ET AL.TABLETrace element analyses <strong>of</strong> USGS standard BCR-1 basalt (ppm)Alin(2)WKRbSrBaCeNdSmEuGdDyErYb1397147-632767053-528-36-591-916-566-293-583-321413047-432968253-928-546-452-006-676-063-513-511400046-633067553-9296-61-946-66-33-593-3614000±700471 ±0-633O±5678 ±1653-7 ±0-828-7 ±0-66-58±0-17l-96±0-056-68±0-136-35 ±0-123 61 ±0093-39 ±008(1) This study, mean <strong>of</strong> three analyses except for Sr, Gd, and Yb (twoanalyses).(2) Stern & Bibee (1984).(3) Flanagan (1973).(4) Consensus values (Gladney et at, 1983).The rare earth element and o<strong>the</strong>r trace element contents <strong>of</strong> <strong>the</strong> BCR-1 standard (Table Al) are ingood agreement with those <strong>from</strong> o<strong>the</strong>r authors (Flanagan, 1973; Stern & Bibee, 1984) and <strong>the</strong>consensus values (Gladney et al, 1983). Total blanks (in nanograms) determined at <strong>the</strong> University <strong>of</strong>Texas at Dallas are as follows: K (63), Rb (0-1), Sr (2-6), Ba (4-5), Ce (0-5), Nd (0-3), Sm (0-05), Gd (006),Er (0-05), and Yb (007).APPENDIX B: SOURCES OF CONTAMINATION OFCLINOPYROXENE SEPARATESDespite care taken to obtain <strong>the</strong> purest possible clinopyroxene separates, certain contaminantsmight contribute to <strong>the</strong>ir trace element contents. Potential contaminants are grain surface materials,glass or fluid inclusions, and o<strong>the</strong>r mineral inclusions such as amphibole, mica, or apatite. Possiblegrain surface materials could include basaltic glass that penetrated into <strong>the</strong> clinopyroxene during orafter entrapment <strong>of</strong> <strong>the</strong> xenolith in <strong>the</strong> host magma or liquid trapped between mineral grains whencrystallization or recrystallization occurred. Also, CO 2 and silicate glass inclusions (Roedder, 1965;Kirby & Green, 1980, Ma<strong>the</strong>z et al., 1984) may contain significant amounts <strong>of</strong> minor and traceelements such as K, Rb, La, Ce, and U (Green, 1979). Although Mysen (1979) and Wendlandt &Harrison (1979) suggested that CO 2 -rich fluids are an important carrier <strong>of</strong> trace elements in <strong>the</strong>mantle, Schneider & Eggler (1986) argued that trace elements are not concentrated in H 2 O-CO 2fluids and instead are carried by silicate melts.Basaltic glass and surface materials along grain boundaries can be dissolved easily in 2-5 N HC1 anddilute 5% HF (Shimizu, 1974; Zindler et al^ 1983). In fact, analysis <strong>of</strong> leachates shows that even weakacids can remove K, Rb, Ba, La, Ce, and o<strong>the</strong>r elements that enter minerals in ultramafic rocks, andalso can change Sr and Pb isotopic compositions (Basu & Murthy, 1977; Ehrenberg, 1982; Zindler etal, 1983). To test for contamination by CO 2 and silicate glass inclusions, an acid leaching experimentwas applied to <strong>the</strong> clinopyroxene separate <strong>from</strong> wehrlite sample X3. The separate was analyzed afterinitial washing in distilled water, <strong>the</strong>n after washing in HC1 and HF, and finally after crashing andwashing again in HO (Table Bl). After <strong>the</strong> first acid washing, <strong>the</strong> separated clinopyroxene grainswould be expected to be devoid <strong>of</strong> surface contamination, but CO 2 and silicate glass inclusions inside<strong>the</strong> clinopyroxene grains would still be intact The final step <strong>of</strong> crashing and acid washing wasdesigned to evaluate REE and o<strong>the</strong>r trace element contents in <strong>the</strong> inclusions.The three analyses have almost identical REE contents (Table Bl). A similar result on <strong>the</strong> Lacontent in Hualalai ultramafic xenoliths was reported by Ma<strong>the</strong>z et al. (1984). Except for Ce, <strong>the</strong>leachate has an REE pattern that is parallel to and below that <strong>of</strong> <strong>the</strong> clinopyroxene. The similarity <strong>of</strong>


ULTRAMAFIC XENOLITHS FROM THE KAUPULEHU FLOW 201TABLETrace element concentrations <strong>of</strong>wehrlite X3 clinopyroxene separateBlAfterH 2 O wash*After firstacid was/itAfter secondacid wash%Firstleachate^Calculated |measuredCeNdSmEuGdDyErYbKRbSrBa3-774-361-630-632162121-0407842-601244-761-923-934-391 630642172191-0408124100845131-633-814-421-630642-232-241-080842<strong>1800</strong>840310954-713-621180451-501 3606404510723-91105-2346-151-0461004099510110999102609931031O99011301O301-240* Washed ultrasonically in distilled water for 1 h.f Washed for 30 min in hot (100 °Q 2-5 N HC1 and 10 min in cold 5% HF, rinsed withcold 2-5 N HC1 and distilled water five times.X First acid-washed clinopyroxene was pulverized and washed a second time in hot(100 °Q 2-5 N HQ for 30 min.§ Leachate after first add wash.|| Weight <strong>of</strong> pyroxene after first acid wash is 98-28% <strong>of</strong> <strong>the</strong> weight <strong>of</strong> pyroxene afterH 2 O wash. Similarly, <strong>the</strong> weight <strong>of</strong> leachate after <strong>the</strong> first acid wash is 1-72% <strong>of</strong> <strong>the</strong>weight <strong>of</strong> pyroxene after <strong>the</strong> water wash. Each calculated value is <strong>the</strong> weighted sum <strong>of</strong>element concentrations <strong>of</strong> cpx and leachate after <strong>the</strong> first acid wash. Measured values are<strong>from</strong> column 1.its REE pattern to those <strong>of</strong> <strong>the</strong> H 2 O-washed and first acid-washed clinopyroxene separates stronglysuggests that most <strong>of</strong> <strong>the</strong> REE in <strong>the</strong> leachate are <strong>from</strong> dissolved clinopyroxene. The large decrease <strong>of</strong>K, Rb, and Ba contents <strong>from</strong> <strong>the</strong> H 2 O-washed to <strong>the</strong> first acid-washed sample is confirmed by <strong>the</strong>high values <strong>of</strong> <strong>the</strong>se elements in <strong>the</strong> leachate, but <strong>the</strong> leachate is only slightly richer in Sr and Ce.Differences between <strong>the</strong> calculated and measured concentrations in clinopyroxene (column 5 in TableBl) are very small (0-3%) except for Ce, Rb, and Ba (4-6, 13, and 24%, respectively). A similarobservation for a leaching experiment on Ronda peridotites was reported by Zindler et al. (1983), andwas explained by an uneven distribution <strong>of</strong> contaminants. Also, <strong>the</strong> REE concentrations <strong>of</strong> clinopyroxeneafter <strong>the</strong> first and second acid washing are not measurably different.Silicate glass inclusions were probably still intact after <strong>the</strong> hot 2-5 N HC1 was used in <strong>the</strong> secondacid-washing process without <strong>the</strong> help <strong>of</strong> HF. If <strong>the</strong>se silicate glass inclusions represent trappedbasaltic magmas, as suggested by Roedder (1965), <strong>the</strong>ir contamination effect on <strong>the</strong> trace elementcontents <strong>of</strong> clinopyroxene can be estimated <strong>from</strong> representative concentrations <strong>of</strong> trace elements inbasaltic liquids and <strong>the</strong> amount <strong>of</strong> included glass. To calculate <strong>the</strong> amount <strong>of</strong> included glass, it isassumed that K and Rb in clinopyroxene are derived totally <strong>from</strong> silicate glass inclusions. Theproportion <strong>of</strong> glass inclusions can <strong>the</strong>n be calculated simply by dividing K or Rb contents <strong>from</strong>clinopyroxene by representative concentrations in basaltic magmas.Because trace element concentrations for <strong>the</strong> host alkalic basalt are not available, a calculationinvolving <strong>the</strong> firstacid-washed clinopyroxene and a prehistoric Hualalai lava [sample 32 <strong>of</strong> Clague etal. (1980b)] is used to estimate <strong>the</strong> extent <strong>of</strong> <strong>the</strong> contamination effect. This prehistoric Hualalai lava ischosen because it has <strong>the</strong> lowest K/Ce and Rb/Ce among <strong>the</strong> reported Hualalai alkalic basalts, whichallows an estimate <strong>of</strong> <strong>the</strong> largest contamination effect. The calculation shows that <strong>the</strong> Ce contaminationin all cases is


202 CHEN-HONG CHEN ET AL.analyzed Hawaiian basalt. In this case, <strong>the</strong> maximum Ce contamination would be 5% for clinopyroxene<strong>from</strong> <strong>the</strong> dunite xenoliths and 18% for clinopyroxene <strong>from</strong> <strong>the</strong> wehrlite and clinopyroxenitexenoliths.Because <strong>of</strong> <strong>the</strong> extremely high REE contents observed in apatite (for example, up to 1540 ppm Ce;Irving & Frey, 1984), REE concentrations <strong>of</strong> clinopyroxene would need a significant correction if <strong>the</strong>ycontain apatite inclusions. Even though a search with an optical microscope revealed no suchinclusions, it is instructive to examine some consequences <strong>of</strong> assuming that apatite is present in <strong>the</strong>analyzed clinopyroxenes. Jackson et al. (1981) listed whole-rock P 2 O 3 concentrations along withmodal proportions <strong>of</strong> clinopyroxene for 17 <strong>Kaupulehu</strong> ultramafic xenoliths. If all <strong>the</strong> P 2 O 5 is due toapatite inclusions and if apatite inclusions are preferentially concentrated in <strong>the</strong> clinopyroxene, apositive correlation would exist between P 2 O 5 concentration and <strong>the</strong> modal amount <strong>of</strong> clinopyroxene.No such correlation exists. Thus, ei<strong>the</strong>r apatite is preferentially concentrated in o<strong>the</strong>r phases oralong grain boundaries or it is uniformly distributed throughout If <strong>the</strong> abundance <strong>of</strong> apatiteinclusions in clinopyroxene is assumed to be representative <strong>of</strong> <strong>the</strong> abundance <strong>of</strong> apatite inclusions in<strong>the</strong> xenolith as a whole (<strong>the</strong> worst case), <strong>the</strong> effect on REE concentrations can be calculated <strong>from</strong> <strong>the</strong>whole-rock P 2 O 5 concentrations and representative REE concentrations in apatite. For this calculation,we use O01 wt.% P 2 O 5 in <strong>Kaupulehu</strong> dunite xenoliths and 002%^.% P 2 O 3 in <strong>Kaupulehu</strong>wehrlite xenoliths (Jackson et al., 1981) and 1540 ppm Ce in apatite (Irving & Frey, 1984). Themaximum contribution <strong>of</strong> Ce in apatite to <strong>the</strong> total Ce in dunite clinopyroxene would be 4%. Forcjinopyroxene-rich xenoliths, <strong>the</strong> maximum contribution would be 23%. Thus, <strong>the</strong> REE patterns inFig. 5 would not be significantly modified. O<strong>the</strong>r mineral inclusions such as mica, if present, would notsignificantly affect <strong>the</strong> measured clinopyroxene REE values, because <strong>of</strong> <strong>the</strong>ir much lower REEcontents than those <strong>of</strong> apatite (Irving & Frey, 1984).From <strong>the</strong> above arguments, we conclude that grain surface materials contain substantial amounts<strong>of</strong> K, Rb, and Ba but only minor amounts <strong>of</strong> Sr and Ce. These surface contaminants are readilyremoved by leaching. Also, we conclude that contamination <strong>from</strong> inclusions does not seriously affect<strong>the</strong> analytical results. Thus, we report <strong>the</strong> REE and trace element contents <strong>of</strong> clinopyroxenes obtainedafter <strong>the</strong> first acid wash.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!