04.12.2012 Views

PolyChain® GT Timing Belts - Walther Flender

PolyChain® GT Timing Belts - Walther Flender

PolyChain® GT Timing Belts - Walther Flender

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

THE POWER OF [E]MOTION<br />

<strong>PolyChain®</strong> <strong>GT</strong> <strong>Timing</strong> <strong>Belts</strong>


<strong>Walther</strong> <strong>Flender</strong> Gruppe<br />

PolyChain ® <strong>GT</strong> <strong>Timing</strong> <strong>Belts</strong><br />

Page Page 02<br />

THE POWER OF [E]MOTION<br />

We are in motion for you …<br />

… with innovative, new service ideas and individual system solutions<br />

which we develop together with you. The <strong>Walther</strong> <strong>Flender</strong><br />

Group stands for expertise, experience and commitment. With top<br />

class technology and craftsman’s know-how in the areas of drive<br />

and conveyor technology, bearing, clamping, and sintering technology,<br />

in addition to the automotive sector. We‘re looking forward<br />

to do more for you.<br />

The <strong>Walther</strong> <strong>Flender</strong> Group – we are packaged know-how for drive,<br />

conveyor, bearing and clamping technology as well as automotive<br />

technology. For more than 70 years as a family company and a<br />

market leader for timing belt drives, we have been offering a complete<br />

product range: from individually manufactured single parts,<br />

to drive assemblies and ready-to-install components, to industryspecific<br />

complete solutions.<br />

Complete expertise from engineering to implementation<br />

A large proportion of our business today is made up of special<br />

solutions. Experienced engineers from our development department,<br />

but also mechatronic engineers and technicians advise you<br />

comprehensively and develop a tailored concept based on your<br />

requirements and assisted by powerful 3D CAD programs. The<br />

products are tested in our own laboratories for their operational<br />

characteristics under various conditions of use, and complete assemblies<br />

are tested by means of computer supported simulations.<br />

During this process we work closely together with you in order to<br />

achieve the optimum result.<br />

Comprehensive quality management<br />

The entire <strong>Walther</strong> <strong>Flender</strong> Group with its four divisions is certified<br />

to DIN EN ISO 9001:2000 and therefore fulfils the high quality<br />

standards required by all of our customers. But you can expect<br />

even more from us. Because individual quality assurance agreements<br />

such as special sampling arrangements or companyspecific<br />

performance clauses are equally a given for us. We are pleased to<br />

make our quality management documentation available to you, in<br />

order to ensure the maximum transparency.<br />

New requirements bring new solutions<br />

Markets are changing ever more quickly today. We help to shape<br />

progress with innovations, flexibility and high service consciousness.<br />

Our own company development department is involved with<br />

new materials, processes and designs in order to optimise quality<br />

and efficiency even more.<br />

Service – as evident as it is first class<br />

Availability is a key for business success. That is what we stand for<br />

– with our logistics and project execution on the basis of the most<br />

modern ERP systems. Furthermore, our consultants are accessible<br />

to support you at all times. In the after-sales area, we support you<br />

for example in adjusting the belt tension, checking the running<br />

behaviour, or with important installation tips.<br />

The <strong>Walther</strong> <strong>Flender</strong> Group – core skills<br />

Drive technology: <strong>Timing</strong> belt drives, non-positive belt drives,<br />

frequency inverters, gears, assemblies Conveyor technology:<br />

Conveyor units, machine covers, system components Clamping<br />

and bearing technology: Clamping sets, adjusting rings, sliding<br />

bearings Automotive: Steering parts, wheel bearing sets, timing<br />

belts, wiper blades, sensors<br />

Further important information and news about the <strong>Walther</strong> <strong>Flender</strong> Group can also be found on the Internet at<br />

www.walther-flender-gruppe.de


<strong>Walther</strong> <strong>Flender</strong> Gruppe<br />

PolyChain ® <strong>GT</strong> <strong>Timing</strong> <strong>Belts</strong><br />

Table of contents Page<br />

Introduction 04<br />

General features 05<br />

A glance at practice 06<br />

Design characteristics 07<br />

<strong>Timing</strong> belts 07<br />

Design & components 07<br />

Models 08<br />

<strong>Timing</strong> belt pulleys 10<br />

Standard timing belt pulleys 10<br />

<strong>Timing</strong> belt pulleys – custom models 10<br />

Manufacturing guidelines 11<br />

Assembly & maintenance 14<br />

Technical data 17<br />

Power output values & belt lengths 17<br />

<strong>Timing</strong> belt pitch 8M<strong>GT</strong> 17<br />

<strong>Timing</strong> belt pitch 14M<strong>GT</strong> 20<br />

Calculation & formulas 23<br />

Standard line of timing belt pulleys 28<br />

Pitch 8 mm 28<br />

Pitch 14 mm 30<br />

Models 32<br />

Clamping sets 33<br />

General features 34<br />

Calculation instructions 34<br />

Hub coefficient K 36<br />

Description of models & tables 37<br />

Causes of malfunctions 43<br />

Product overview<br />

Project data sheet<br />

Important notice: <strong>PolyChain®</strong> timing belts are not suitable for use in<br />

aircraft drive systems or other drive systems where a defective belt<br />

could result in bodily injury.<br />

Suitable protective measures must be taken to encapsulate exposed<br />

drive systems from unintended access!<br />

Note: All information in this catalogue is subject to change.<br />

Technical details subject to change. Errors excepted.<br />

44<br />

45<br />

Page Page 03


<strong>Walther</strong> <strong>Flender</strong> Gruppe<br />

PolyChain ® <strong>GT</strong> <strong>Timing</strong> <strong>Belts</strong> PAGE Page Page 04<br />

4<br />

Introduction<br />

The new <strong>PolyChain®</strong> timing belt systems<br />

present a line of timing belts that ensure<br />

up to 8 times higher power transmission<br />

as compared with classic drive systems;<br />

with the same space requirements, up to<br />

30 % more power can be transmitted than<br />

with conventional <strong>PolyChain®</strong> <strong>GT</strong> belts.<br />

<strong>PolyChain®</strong> synchronous belts can be used<br />

in existing <strong>PolyChain®</strong> <strong>GT</strong> drive systems;<br />

they use the same pulleys and require no<br />

modifications to the drive.<br />

In addition to the existing <strong>PolyChain®</strong> <strong>GT</strong>2<br />

belts, with tensile fibres made of aramid<br />

fiber, <strong>Walther</strong> <strong>Flender</strong> Antriebstechnik<br />

GmbH has expanded its product portfolio<br />

to include the new <strong>PolyChain®</strong> <strong>GT</strong><br />

Carbon belt. The tensile member of this<br />

belt is made of carbon fibres, which enables<br />

the transmission of very high forces in<br />

a compact design.<br />

The <strong>PolyChain®</strong> <strong>GT</strong>2 belt construction<br />

is based on an innovative technological<br />

design. The polyurethane mixture used<br />

for the body and teeth of the belt is new<br />

and unique. PolyChain belts are therefore<br />

resistant to many oils, chemicals and fluids,<br />

which means that they have clear advantages<br />

over rubber timing belts in operating<br />

conditions where they are exposed to<br />

these substances.<br />

Example: Paint stripper drive unit for skid conveyor systems<br />

<strong>PolyChain®</strong> timing belts are available with<br />

pitches of 8 mm and 14 mm and, with<br />

a reliable power transmission of up to<br />

950 kW, they set completely new standards<br />

in many areas of mechanical engineering.<br />

The completely maintenance-free and<br />

smooth-running <strong>PolyChain®</strong> belts are especially<br />

suitable as a replacement for slowrunning<br />

chain drives with high torques.


<strong>Walther</strong> <strong>Flender</strong> Gruppe<br />

PolyChain ® <strong>GT</strong> <strong>Timing</strong> <strong>Belts</strong> PAGE Page Page 05<br />

5<br />

General features<br />

Positive power transmission<br />

The positive meshing of the <strong>PolyChain®</strong><br />

belt teeth in the teeth of the drive pulleys<br />

ensures the positive synchronous transmission<br />

of power. Slippage and related deviations<br />

in speed are eliminated.<br />

Constant angular velocity<br />

The <strong>PolyChain®</strong> timing belt wraps around<br />

the timing belt pulley in a circular pattern<br />

and not in the form of a polygon, preventing<br />

periodic fluctuations and vibrations.<br />

Cost effectiveness<br />

Due to the high transmission capacity<br />

of <strong>PolyChain®</strong> timing belt drive systems,<br />

the pulley diameter and width can be<br />

reduced substantially as compared with<br />

other drive elements, saving additional<br />

installation space within the machine<br />

constructions.<br />

With efficiency ratings as high as 98 %,<br />

<strong>PolyChain®</strong> timing belts are modern drive<br />

train elements that fully meet the trend for<br />

energy-saving drive units.<br />

Power and speed range<br />

The power range of <strong>PolyChain®</strong> timing<br />

belts extends from slow-running drive<br />

units with extremely high torques, such<br />

as those that are typical for heavy chain<br />

drives, to high-performance drive units<br />

with several hundred kW. Belt speeds of<br />

more than 30 m/s are possible, in which<br />

case it may be necessary to provide suitable<br />

sound insulation.<br />

.<br />

.<br />

No maintenance<br />

While chain drives generally have to be<br />

lubricated and require complex lubricating<br />

systems even for relatively low peripheral<br />

speeds, the <strong>PolyChain®</strong> timing belt drive<br />

unit operates entirely without lubrication.<br />

This minimizes the design and equipment<br />

requirements, in addition to eliminating<br />

contamination from the area around the<br />

drive unit.<br />

Noise level<br />

The <strong>PolyChain®</strong> timing belt drive satisfies<br />

requirements for low noise levels, as confirmed<br />

by extensive tests in cooperation<br />

with technical universities. The noise level<br />

is reduced by the special profile of the Poly-<br />

Chain® timing belt and by the capability of<br />

Drehzahl der kleinsten Scheibe (1/min)<br />

Speed of the smallest pulley (1/min)<br />

Drehzahl der kleinsten Scheibe (1/min)<br />

10000<br />

5000<br />

1000<br />

100<br />

10<br />

10000<br />

5000<br />

1000<br />

100<br />

10<br />

PC-8M<strong>GT</strong>2<br />

PC-14M<strong>GT</strong>2<br />

0,1 1 10 100 1000<br />

Berechnungsleistung (kW)<br />

Calculated power output (kW)<br />

Diagram 1: Selection diagram: belt pitch <strong>PolyChain®</strong> <strong>GT</strong>2<br />

Speed of the smallest pulley (1/min)<br />

PCC-8M<strong>GT</strong>C<br />

PCC-14M<strong>GT</strong>C<br />

maintaining the same power transmission<br />

with a narrower belt than those used in<br />

other systems. At high belt speeds, various<br />

options are available for reducing noise;<br />

please ask our application engineers.<br />

Constant belt tension<br />

Since <strong>PolyChain®</strong> timing belts do not elongate<br />

due to permanent plastic deformation<br />

when used within the permissible power<br />

range, the belt tension remains constant<br />

once the belt has been adjusted. Due to<br />

minimal stretching during the wear-in<br />

period, the belt tension can decrease<br />

slightly; one-time re-tightening is necessary<br />

only in exceptional cases, eliminating<br />

expensive and time-consuming maintenance<br />

at regular intervals.<br />

0,1 1 10 100 1000<br />

Berechnungsleistung (kW)<br />

Calculated power output (kW)<br />

Diagram 2: Selection diagram: belt pitch <strong>PolyChain®</strong> <strong>GT</strong> Carbon TM<br />

10000<br />

.<br />

10000<br />

.


<strong>Walther</strong> <strong>Flender</strong> Gruppe<br />

PolyChain Page<br />

® <strong>GT</strong> <strong>Timing</strong> <strong>Belts</strong> PAGE 06<br />

A glance at practice<br />

From a belt width of 125 mm to 68 mm: Efficient and costeffective<br />

drive technology due to innovative carbon tensile<br />

member<br />

By using the new <strong>PolyChain®</strong> Carbon TM timing belt in a heavyduty<br />

metal saw, the drive technology engineers at <strong>Walther</strong> <strong>Flender</strong><br />

Antriebstechnik achieved cost reductions of up to 25 % and therefore<br />

more than satisfied the customer‘s requirement for a highperformance<br />

and economical timing belt drive system.<br />

With a maximum saw blade diameter of 2.2 meters, the metal saw<br />

of a well-known Austrian component manufacturer is certainly<br />

one of the largest saws on the market. The customer designed the<br />

saw with a time-tested <strong>PolyChain®</strong> timing belt drive unit. The belt<br />

width was 125 mm. Due to the maximum transferable power of<br />

517.4 kW, the <strong>PolyChain®</strong> timing belt used for the system achieved<br />

a safety factor of 3.27.<br />

Based on the product presentation of the new <strong>PolyChain®</strong> <strong>GT</strong><br />

Carbon belt and extensive technical advice from the <strong>Walther</strong><br />

<strong>Flender</strong> Antriebstechnik sales engineers, the customer decided to<br />

rethink the existing drive unit and to have it checked by the WF<br />

drive technology engineers.<br />

An analysis of the existing design showed that the drive unit was<br />

overrated with the aforementioned safety factor. A safety factor<br />

of 2.0 is fully adequate for this type of drive unit. As a result, one<br />

of two alternative designs with the new <strong>PolyChain®</strong> <strong>GT</strong> Carbon<br />

timing belt was chosen.<br />

The design of the belt drive unit made optimal use of the advantages<br />

of the new <strong>PolyChain®</strong> <strong>GT</strong> Carbon TM timing belt.<br />

The WF drive technology engineers designed a drive with identical<br />

technology to the existing drive unit with a safety factor of 3.06,<br />

optimizing the system with an adequate safety factor of 2.3. In<br />

the first case, the use of the Carbon timing belt made it possible<br />

to reduce the original belt width from 125 mm to 90 mm, which<br />

reduces costs by about 14 % due to the smaller belt pulleys. In the<br />

optimized design, a timing belt with a width of 68 mm already<br />

achieves the required drive power. This even made it possible to<br />

reduce the costs by 25 %.<br />

The timing belt is driven via the corresponding PolyChain timing<br />

belt pulleys. The belt pulleys are equipped with special teeth that<br />

are precision-cut in the gear hobbing process. Only original timing<br />

belt pulley hobbing cutters are used. Only these original tools<br />

ensure a reliable and long-lasting timing belt drive unit.<br />

The modified timing belt drive unit has passed all test runs so far<br />

and the customer is already convinced of the high performance of<br />

the carbon belt and the advanced technological expertise of the<br />

<strong>Walther</strong> <strong>Flender</strong> drive technology engineers.


<strong>Walther</strong> <strong>Flender</strong> Gruppe<br />

PolyChain Page<br />

® <strong>GT</strong> <strong>Timing</strong> <strong>Belts</strong> PAGE 07<br />

Design characteristics<br />

<strong>Timing</strong> belts<br />

Design & components<br />

1. The tensile member of the <strong>PolyChain®</strong><br />

<strong>GT</strong> Carbon TM belt is made of carbon fibres,<br />

as opposed to the <strong>PolyChain®</strong> <strong>GT</strong>2 belt,<br />

which has a tensile member consisting<br />

of aramid fibres. Both fibre types give<br />

the belts their outstanding performance<br />

properties. In addition to exceptional bending<br />

fatigue strength, the tensile members<br />

feature high notch impact strength so<br />

they also resist impacts and vibrations.<br />

Unlike polyester, aramid and carbon fibres<br />

are thermally stable and can be used at<br />

extreme temperatures. They are chemically<br />

neutral and therefore resistant to oils,<br />

chemicals, dirt and corrosion. Both aramid<br />

and carbon fibres have a higher E-module<br />

than steel cord, with minimal stretching.<br />

2 3<br />

2. The elastic mixture from which the<br />

back and the cogs of the belt are made is<br />

a polyurethane specially developed and<br />

optimized for good adhesion to the cord<br />

and fabric.<br />

It is:<br />

• highly resistant to chemicals, oils and dirt<br />

• highly resistant to abrasion and therefore<br />

extremely durable<br />

• fully serviceable even at extreme<br />

temperatures (–54 °C to + 85 °C)<br />

3. The surface of the <strong>PolyChain®</strong> belt is a<br />

specially woven and impregnated nylon<br />

fabric, which reduces friction on the timing<br />

belt pulleys and prevents heat build-up.<br />

This highly abrasion-resistant fabric makes<br />

the <strong>PolyChain®</strong> belt absolutely maintenance-free<br />

and smooth-running. During<br />

the wear-in period, the nylon fabric, which<br />

is specially impregnated in the production<br />

process, can show minimal signs<br />

of abrasion, especially at very high belt<br />

speeds. This abrasion is wholly acceptable<br />

and usually stops after only a few hours of<br />

operation.<br />

Note:<br />

With the <strong>PolyChain®</strong> <strong>GT</strong> Carbon belt, idler pulleys can be used as reverse idlers. However, <strong>PolyChain®</strong> <strong>GT</strong>2 belts are sensitive to<br />

the use of reverse idlers. Please observe the handling instructions especially with respect to storage and assembly.<br />

1


<strong>Walther</strong> <strong>Flender</strong> Gruppe<br />

PolyChain Page<br />

® <strong>GT</strong> <strong>Timing</strong> <strong>Belts</strong> PAGE 08<br />

Models<br />

Endless design<br />

Pitches<br />

<strong>PolyChain®</strong> endless timing belts are manufactured with 8 mm and<br />

14 mm pitches and are available in a large assortment of lengths<br />

and widths.<br />

The main dimensions of the timing belt are:<br />

Pitch – Pitch length – Width<br />

The timing belt pitch is the distance in millimeters between two<br />

adjacent tooth centres, measured on the timing belt pitch line.<br />

The pitch length is the total circumference of the timing belt in<br />

millimeters, measured on the belt pitch line. The theoretical pitch<br />

line of a <strong>PolyChain®</strong> timing belt is in the centre of the tensile<br />

member.<br />

The available timing belt lengths and standard widths are listed on<br />

pages 19 and 22.<br />

Dimensions<br />

Pitch (mm)<br />

h s<br />

t<br />

(mm)<br />

h t<br />

(mm)<br />

Width tolerances<br />

For both 8 mm and 14 mm pitches, the tolerance is ±3 % of the<br />

belt width.<br />

Length tolerances<br />

(in relation to the centre distance of axes; specified in mm)<br />

Belt length Tolerance<br />

h S<br />

(mm)<br />

8 8 3.4 5.9<br />

14 14 6.0 10.2<br />

h t<br />

t<br />

up to 762 +/- 0,30<br />

above 762 to 1016 +/- 0,33<br />

above 1,016 to 1,270 +/- 0,38<br />

above 1,270 to 1,524 +/- 0,41<br />

above 1,524 to 1,778 +/- 0,43<br />

above 1,778 +/– 0.43 mm ± 0.03 mm<br />

for every 254 mm<br />

level for 1778 mm and above<br />

To use <strong>PolyChain®</strong> timing belts with fixed centre distances of axes,<br />

please consult our application engineers.<br />

Weights per metre in kg for <strong>PolyChain®</strong> <strong>GT</strong>2<br />

Pitch<br />

(mm)<br />

Weights per metre in kg for <strong>PolyChain®</strong> Carbon TM<br />

The weights per metre can vary slightly depending on the belt<br />

construction and the tolerance positions.<br />

The ordering designation includes the pitch, pitch length and<br />

belt width:<br />

<strong>PolyChain®</strong> <strong>GT</strong>2<br />

Example: PC-8M<strong>GT</strong> 640 - 12<br />

or PC-14M<strong>GT</strong> 1190 - 37<br />

<strong>PolyChain®</strong> <strong>GT</strong> Carbon TM<br />

Example: PC-8M<strong>GT</strong> 640 - 12 Carbon<br />

or PC-14M<strong>GT</strong> 1190 - 37 Carbon<br />

Pitch<br />

(mm)<br />

Belt width (mm)<br />

12 20 21 36 37 62 68 90 125<br />

8 0.057 - 0.099 0.170 - 0.293 - - -<br />

14 - 0.158 - - 0.292 - 0.536 0.709 0.985<br />

Pitch<br />

(mm)<br />

Belt width (mm)<br />

12 20 21 36 37 62 68 90 125<br />

8 0.056 - 0.099 0.169 - 0.291 - - -<br />

14 - 0.158 - - 0.292 - 0.537 0.711 0.987<br />

Pitch length<br />

(mm)<br />

Width<br />

(mm)<br />

8 M 640 12<br />

14 M 1190 37


<strong>Walther</strong> <strong>Flender</strong> Gruppe<br />

PolyChain ® <strong>GT</strong> <strong>Timing</strong> <strong>Belts</strong><br />

Open-ended model (LongLength)<br />

Pitches<br />

<strong>PolyChain®</strong> <strong>GT</strong>2 Long Length (LL) timing belts are available with<br />

8 mm and 14 mm pitches.<br />

Dimensions and weights<br />

Designation Standard<br />

widths<br />

(mm)<br />

For information about dimensioning for special applications<br />

requiring other dimensions, please consult our application<br />

engineers.<br />

Technical information<br />

Permissible tangential loads in newtons<br />

(8M: 21 mm belt width, 14M: 37 mm belt width)<br />

* Minimum number of teeth 22 (8M) or 28 (14M)<br />

Minimum tensile strength in newtons<br />

Ordering designation<br />

The ordering designation includes the belt width, pitch length<br />

and roll length:<br />

Example:<br />

Weight per<br />

metre in g<br />

(10 mm<br />

belt width)<br />

Number of pulley teeth<br />

Pitch 22 26 28 30 34 38 40 ≥ 44 ≥ 52<br />

8M 3097* 3151 3206 3237 3269 3278<br />

14M 9900* 10 204 10400 10599<br />

Belt width in mm<br />

Pitch 12 20 21 36 37<br />

8M 5787 11 254 19291<br />

14M 20568 38054<br />

PC-21-LL-8M 30M<br />

Maximum<br />

roll<br />

length<br />

t<br />

(mm)<br />

h t<br />

(mm)<br />

Width (mm) Pitch (mm) Roll length (mm)<br />

21 8M 30M<br />

Technical data of the <strong>PolyChain®</strong> Carbon TM Long Length timing<br />

belt is available on request.<br />

h S<br />

(mm)<br />

PC-LL-8M 12 21 36 47.0 30 m 8 3.4 5.9<br />

PC-LL-14M 20 37 37 30 m 14 6.0 10.2<br />

PAGE Page 09


<strong>Walther</strong> <strong>Flender</strong> Gruppe<br />

PolyChain ® <strong>GT</strong> <strong>Timing</strong> <strong>Belts</strong> PAGE 10<br />

<strong>Timing</strong> belt pulleys<br />

<strong>PolyChain®</strong> timing belt pulleys are equipped with special precision-cut<br />

teeth in the gear hobbing process. Only original timing<br />

belt pulley hobbing cutters are used. Only these original tools<br />

ensure a reliable and long-lasting timing belt drive unit.<br />

Only <strong>PolyChain®</strong> timing belts and <strong>PolyChain®</strong> timing belt<br />

pulleys with the same pitch can be used together.<br />

The main features of the timing belt pulley are:<br />

Number of teeth, pitch, width, design<br />

The pitch of the timing belt pulley is measured on the pitch<br />

diameter and is the distance between the centres of two adjacent<br />

hollows. The pulley pitch diameter is always outside the outer diameter<br />

of the timing belt pulley and is congruent with the timing<br />

belt pitch line.<br />

Pitch diameter<br />

Outer diameter<br />

Pitch<br />

<strong>Timing</strong> belt pulleys – standard and custom models<br />

Pitch line<br />

Standard timing belt pulleys are adequate for the requirements of<br />

many drive systems with respect to functionality and space conditions<br />

and are available on a short-term basis.<br />

For heavy-duty, precise drives requiring exact positioning, however,<br />

we recommend custom timing belt pulleys that we manufacture<br />

according to your drawings. Numerous custom teeth are available,<br />

for example for essentially backlash-free or quiet drive systems.<br />

In addition to the standard cast, aluminum and steel timing belt<br />

pulleys, pulleys made of numerous other materials, also with surface<br />

treatment, are available. Please ask our application engineers.<br />

Due to the high specific bearing percentage, standard aluminum<br />

(e.g. AlZn5,5MgCu) should generally be surface treated, for example<br />

hard coated, to ensure high wear resistance.<br />

For shaft and hub connections, we offer an extensive line of<br />

self-centring clamping sets: an overview of models can be found<br />

starting on page 37.<br />

Standard timing belt pulleys<br />

The information on pages 23 to 26 describes our extensive line of<br />

standard timing belt pulleys with and without taper lock clamping<br />

bushes.<br />

Standard pulleys are available for the following belt widths:<br />

Pitch designation 8M 14M<br />

Nominal belt<br />

width in mm<br />

Standard timing belt pulleys are statically balanced; for drive<br />

systems with v > 30 m /s, please ask.<br />

Ordering designation<br />

The ordering designation for <strong>PolyChain®</strong> timing belt pulleys<br />

includes the following:<br />

Pitch Number of<br />

teeth<br />

12 37<br />

21 68<br />

36 90<br />

62 125<br />

8M - 48S - 36 3F<br />

Pulley width designation<br />

(mm)<br />

<strong>Timing</strong> belt pulleys – custom models<br />

Design<br />

8M 48 36 3F<br />

Although the <strong>PolyChain®</strong> standard timing belt pulleys are available<br />

with different numbers of teeth and pulley designs for a broad<br />

range of applications, many applications require custom solutions<br />

with specially designed pulleys.<br />

We have adapted our production facilities to accommodate<br />

such solutions.<br />

We can deliver any timing belt pulley you require, based on your<br />

drawings; special processing, such as grinding, balancing or surface<br />

treatment, is also available.


<strong>Walther</strong> <strong>Flender</strong> Gruppe<br />

PolyChain ® <strong>GT</strong> <strong>Timing</strong> <strong>Belts</strong> PAGE 11<br />

Manufacturing guidelines<br />

Due to the high belt loads and speeds that can occur, the use of<br />

non-wearing materials is preferable.<br />

We offer an extensive selection of pulleys made of steel, sintered<br />

metal and polymer, in addition to high-strength aluminum.<br />

The specified minimum pulley diameters should always be<br />

observed: 60 mm for 8 mm pitch and 130 mm for 14 mm pitch.<br />

Recommended pulley widths<br />

Tooth code<br />

designation<br />

8M<br />

14M<br />

Pulley<br />

width<br />

designation *<br />

Smallest tooth<br />

width<br />

G<br />

mm<br />

Smallest pulley<br />

width with<br />

rim flanges**<br />

E<br />

mm<br />

12 14 18<br />

21 23 27<br />

36 38 42<br />

62 65 70<br />

20 23 27<br />

37 40 46<br />

68 71 77<br />

90 95 101<br />

125 130 136<br />

* Corresponds to the nominal belt width in mm.<br />

** The specified pulley widths include a material allowance for<br />

producing the rim flanges and should always be taken into<br />

account.


<strong>Walther</strong> <strong>Flender</strong> Gruppe<br />

PolyChain ® <strong>GT</strong> <strong>Timing</strong> <strong>Belts</strong><br />

Position & shape tolerances<br />

The tooth surface quality, dimensional accuracy and pitch accuracy<br />

and the position and shape tolerances of the timing belt pulley<br />

have a significant influence on how smooth the drive system<br />

operates.<br />

Since the outer diameter of the pulleys is also surface milled<br />

during the hobbing process, turning produces blanks that are<br />

larger than the finished product.<br />

In finished state, the outer diameter has an especially close<br />

tolerance.<br />

– Tolerances of standard timing belt pulleys<br />

Outer diameter (mm) Permissible deviation (mm)<br />

above to<br />

50 100 + 0.10<br />

101 175 + 0.13<br />

176 300 + 0.15<br />

301 500 + 0.18<br />

501 800 + 0.20<br />

– Tolerances for custom timing belt pulleys<br />

all dimensions in mm<br />

Outer diameter (mm) Permissible Permissible<br />

Rough<br />

above to tolerance concentricity tolerance allowance da+<br />

50 100 + 0.08 0.05<br />

101 150 + 0.10 0.07<br />

151 200 + 0.12 0.1<br />

201 300 + 0.15 0.12 + 1.0 mm<br />

301 500 + 0.18 0.03 pro<br />

501 . . . + 0.20 100 mm<br />

– Run-out tolerance<br />

Outer diameter range<br />

(mm)<br />

Permissible deviations<br />

(mm)<br />

to 101.60 0.10<br />

above 101.60 0.1 + 0.1 mm<br />

to 250.00 per 100 mm outer diameter<br />

0.25 + 0.05 mm<br />

above 251.00 per 100 mm outer diameter<br />

– Bore dimensions of standard pulleys<br />

We recommend a tolerance in the range of IT 7 for the final bore.<br />

– Temperature expansion coefficient a<br />

of the timing belt pulley materials<br />

Thermal effects of the drive system can cause thermal expansion<br />

of the pulley diameters, which can affect the belt<br />

tension. Therefore, you should take into account the following<br />

thermal expansion coefficients in case of extreme tempera ture<br />

fluctuations:<br />

Steel: 12,0 · 10 –6 1/K<br />

Aluminum: 23,5 · 10 –6 1/K<br />

– Balancing<br />

Rotationally symmetric timing belt pulleys machined on all sides<br />

for standard drive systems do not need to be balanced.<br />

High-speed timing belt pulleys for precise drive systems are<br />

balanced according to DIN/ISO 1940 (previously VDZ 2060).<br />

In case of a quality grade of less than 6.3, please contact our<br />

application engineers.<br />

Runout<br />

Concentricity<br />

Outer diameter<br />

PAGE 12


<strong>Walther</strong> <strong>Flender</strong> Gruppe<br />

PolyChain ® <strong>GT</strong> <strong>Timing</strong> <strong>Belts</strong> PAGE 13<br />

Rim flanges<br />

Rim flanges for belt guidance<br />

Poly Chain® timing belt pulley drive systems are designed with<br />

a double flanged pulley for guiding the timing belt. To reduce<br />

costs, the smaller timing belt pulley is frequently provided for this<br />

purpose.<br />

It should be noted, however, that the driven timing belt pulley<br />

should always be equipped with double flanges, since this makes<br />

it easier to guide the slack side. For very large centre distances<br />

of axes (> 8 · d) and transmission ratios of 1 : 3 or higher and for<br />

vertical shaft positions, both timing belt pulleys should have<br />

double flanges.<br />

We offer an extensive standard line of galvanized steel flanges;<br />

please use the rim flange dimensions in the following tables for<br />

your design.<br />

The rim flanges are bevelled for better guidance of the timing<br />

belt when it runs onto the pulley. Straight rim flanges sometimes<br />

have the disadvantage that, if the shaft is not aligned precisely,<br />

the belt tooth can run onto the inside edge of the flange, resulting<br />

in premature wear. Therefore, we do not recommend using straight<br />

rim flanges without a bevel.<br />

Poly Chain® 8M<br />

Number of teeth Code A (mm) B (mm) C (mm) s (mm)<br />

22 18 L 48 54 60 1.5<br />

23 14 H 47 57 63 1.5<br />

24 15 H 51 60.5 66.5 1.5<br />

25 16 H 53 64 71 1.5<br />

26 – 27 17 H 57 68 75 1.5<br />

28 – 29 18 H 60 72 79 1.5<br />

30 19 H 64 76 83 1.5<br />

31 – 32 20 H 68 79 87 1.5<br />

33 21 H 73 84 91 1.5<br />

34 – 35 22 H 76 88 93 1.5<br />

36 23 H 79 91 97 1.5<br />

37 – 38 24 H 82.5 96 103 1.5<br />

39 – 40 25 H 87 100 106 1.5<br />

41 – 42 26 H 91 105 111 1.5<br />

43 27 H 97 109 115 1.5<br />

44 – 45 28 H 99 114 119 1.5<br />

46 – 48 30 H 107 121 127 1.5<br />

49 – 51 32 H 116 129 135 1.5<br />

52 – 53 33 H 120 134 140 1.5<br />

54 – 55 34 H 126 139 146 1.5<br />

56 – 57 36 H 132 145 152 1.5<br />

58 – 61 38 H 140 154 160 1.5<br />

62 – 64 40 H 148 161 168 1.5<br />

65 – 67 42 H 156 170 176 1.5<br />

68 – 70 44 H 164 177 184 1.5<br />

71 – 73 46 H 172 186 192 1.5<br />

74 – 77 48 H 180 195 200 1.5<br />

78 – 83 L216 190 – 216 2<br />

84 – 92 L238 200 – 238 2<br />

93 L260 210 – 260 2.5<br />

94 – 99 L260 S 230 – 260 2<br />

100 – 107 L280 230 – 280 2.5<br />

xmin = 6.0 mm<br />

Ø C ± 0.5<br />

D min = 0.5<br />

Ø B ± 0.5<br />

Ø A ± 0.15<br />

D<br />

8°min<br />

25°max<br />

S<br />

x min.<br />

Outer Ø<br />

D min : Minimum material overlap for functional rolling of rim flange<br />

Note: depending on the angle, the outer edge of the rim flange<br />

may not be flush with the front face of the timing belt pulley!<br />

Poly Chain® 14M<br />

Number of teeth Code A (mm) B (mm) C (mm) s (mm)<br />

28 L138 105 – 138 2.5<br />

29 – 30 L142 90 – 142 2.5<br />

31 – 32 L156 105 – 156 2.5<br />

33 – 34 L172 115 – 172 2.5<br />

35 – 38 L186 130 – 186 2.5<br />

39 – 43 L200 144 – 200 2.5<br />

44 – 46 L215 160 – 215 2.5<br />

47 – 49 L230 190 – 230 2.5<br />

50 – 52 L242 185 – 242 2.5<br />

53 – 55 L260 210 – 260 2.5<br />

56 – 59 L280 230 – 280 2.5<br />

60 – 64 L300 250 – 300 2.5<br />

65 – 68 L320 260 – 320 2.5<br />

69 – 73 L340 280 – 340 2.5<br />

74 – 79 L372 300 – 372 2.5<br />

80 – 84 L385 330 – 385 2.5<br />

85 – 92 L420 360 – 420 2.5<br />

> 92 no standard flange, flange has to be adapted.<br />

xmin = 6.0 mm


<strong>Walther</strong> <strong>Flender</strong> Gruppe<br />

PolyChain ® <strong>GT</strong> <strong>Timing</strong> <strong>Belts</strong> PAGE 14<br />

Assembly & maintenance<br />

Installation<br />

Proper handling during installation of the timing belt is very<br />

important. Avoid bending, twisting, winding or kinking the belts.<br />

Under no circumstances should force be applied to put the timing<br />

belt on the pulleys.<br />

Installation guidelines<br />

For the belt to run straight, it is essential to carefully align the<br />

shafts and timing belt pulleys so they are parallel. Impermissible<br />

deviations from parallel cause different edge tensions in the belt,<br />

causing the belt to run off toward the side with the highest tension<br />

or to run up against the flange. At high speeds, the latter can<br />

cause excessive noise and excessive wear of the belt. In the case of<br />

larger centre distances of axes, it is more difficult to align the shafts<br />

precisely, increasing the tendency for the timing belt to run off to<br />

one side. Therefore, take measures to ensure that the belt does not<br />

run off the face of the timing belt pulleys. It may be necessary to<br />

move the driven pulley slightly.<br />

Electrical conductivity<br />

Tests have shown that <strong>PolyChain®</strong> timing belts do not conduct<br />

electricity under dynamic operating conditions. This can result<br />

in static electricity with uncontrolled malfunctions. If <strong>PolyChain®</strong><br />

timing belts are used in potentially explosive areas, we recommend<br />

taking measures to ensure that no electrical charge can<br />

occur before operating the system. This means that the entire<br />

system has to be properly earthed.<br />

Ambient influences<br />

Temperatures<br />

<strong>PolyChain®</strong> timing belts can generally be used in a temperature<br />

range between –54 °C and +85 °C. For operating conditions outside<br />

of this temperature range, please contact us.<br />

Chemical resistance<br />

Field and lab tests guarantee resistance against many acids, caustic<br />

solutions, grease and oil. Of course, the service life and durability of<br />

the timing belt also depend on the concentration of the substance<br />

to which it is exposed (e.g. droplets, spray or constant immersion).<br />

For special applications, please ask our application engineers.<br />

Adjustment tolerances<br />

Since fixed (non-adjustable) centre distances of axes can be<br />

recommended only for slow-running drive systems, the use of<br />

a <strong>PolyChain®</strong> timing belt drive system requires that the timing<br />

belt can easily be installed and that the belt tension can be<br />

precisely adjusted. The mounting dimension must allow for easy<br />

mounting of the belt on a timing belt pulley with rim flanges.<br />

max. 0.25°<br />

max. 5 min. / 1 m<br />

The minimum dimensions for the respective centre distances of<br />

axes are listed in the tables below. The travel of the centre distance<br />

of axes for mounting and adjustment of the belt tension is shown<br />

in the right column.<br />

Adjustment tolerances without rim flange<br />

Belt length<br />

(mm)<br />

to<br />

1000<br />

from 1000<br />

up to 1780<br />

from 1780<br />

up to 2540<br />

from 2540<br />

up to 3300<br />

from 3300<br />

up to 4600<br />

Travel (mm) for<br />

mounting the<br />

timing belt<br />

Adjustment tolerances with rim flange<br />

Pitch Rim flanges on one<br />

timing belt pulley<br />

(mm)<br />

Travel (mm) for<br />

adjusting the timing<br />

belt tension<br />

1.8 0.8<br />

2.8 0.8<br />

3.3 1.0<br />

4.1 1.0<br />

5.3 1.3<br />

Rim flanges on both<br />

timing belt pulleys<br />

(mm)<br />

8 mm 21.8 33.3<br />

14 mm 31.2 50.0<br />

Fixed centre distance of axes<br />

<strong>Belts</strong> with a pitch of 8M can be used up to a pitch length of<br />

ca. 1,600 mm for slow running drives (n ≤ 100 rpm) with fixed centre<br />

distances of axes; the tolerance for the centre distance of axes<br />

should be within the calculated range of 0 to –0.2 mm. Since the<br />

pulley diameter should also be within close tolerances, please ask<br />

our application engineers.<br />

Idlers<br />

Idlers should only be used on drive systems with a fixed centre<br />

distance of axes and should be mounted on the inside of the slack<br />

side. We recommend using idlers with up to 40 teeth. For larger<br />

diameters, smooth idlers without teeth can also be used. An idler<br />

exerting force on the back should not be used with aramid belts,<br />

since they have a negative effect on the service life due to the<br />

special construction of the timing belts. For carbon belts, the minimum<br />

diameter for outer idlers is 70 mm for a pitch of 8 mm and<br />

150 mm for a pitch of 14 mm. Inner idlers should not be smaller<br />

than the smallest power transmitting timing belt pulley. To maximize<br />

the number of meshing teeth on the small timing belt pulley,<br />

it is recommended to position the idler near the large pulley on<br />

the slack side. If the belt touches the idler with only one tooth, this<br />

can result in high noise levels. It is better to have several belt teeth<br />

mesh with the pulley.


<strong>Walther</strong> <strong>Flender</strong> Gruppe<br />

PolyChain ® <strong>GT</strong> <strong>Timing</strong> <strong>Belts</strong> PAGE 15<br />

Belt tension<br />

The Poly Chain® timing belt needs a certain tension during operation<br />

to maintain reliable engagement of the teeth also under<br />

intermittent loads and temporary overloads. Unnecessarily high<br />

initial tension reduces the service life of the drive system, increases<br />

wear on the bearings and the teeth, and also increases the noise<br />

level. Insufficient tension can prevent the belt teeth from meshing<br />

properly in the pulley teeth, which can even cause the belt to<br />

skip in case of an overload. Depending on the application and the<br />

particular dynamic peak loads, the belt tension can deviate from<br />

the calculated initial tension, so that the calculation provided here<br />

should be used only as a recommendation for standard applications.<br />

This applies especially to drive systems with extreme impact<br />

and pulse loads; in this case, please contact us.<br />

Calculation of the static initial load<br />

F St = K · P + m · v 2<br />

v<br />

F St [N] = Static initial tension<br />

P [kW] = Installed motor power output<br />

v [m/s] = Belt speed<br />

m = Factor for weight per metre, see table<br />

K = Constant for compensating for<br />

impact loads<br />

K = 600 max. initial tension for compensating for pulse loads<br />

Pitch Belt width (mm) m Y<br />

8 mm 12 0.057 80<br />

21 0.098 140<br />

36 0.167 240<br />

62 0.290 413<br />

14 mm 20 0.158 245<br />

37 0.291 454<br />

68 0.536 834<br />

90 0.711 1103<br />

125 0.986 1530<br />

Table: Calculation factors for belt tension<br />

If the transmission capacity is significantly higher than the calculated<br />

capacity of the belt, the calculations can result in incorrect<br />

belt tensions. In this case, please use the minimum initial tensions<br />

specified in the following table:<br />

Pitch Belt width (mm)<br />

8 mm<br />

14 mm<br />

Min. F st<br />

Values (N)<br />

12 125<br />

21 220<br />

36 375<br />

62 645<br />

20 530<br />

37 980<br />

68 1800<br />

90 2380<br />

125 3310<br />

Table: Minimum initial tension of <strong>PolyChain®</strong> timing belts<br />

Checking the belt tension<br />

Two methods can be used for checking the belt tension:<br />

1. Frequency measurement and 2. Test load method<br />

1. Frequency measurement<br />

A precise method for pre-setting the correct belt tension is to<br />

measure the frequency with the WF Tension Meter (Figure 1) or<br />

the Gates-Sonic Tension Meter (Figure 2). With a sensing head<br />

that is held above the installed belt it is possible to measure the<br />

frequency at the pre-tensioned belt in order to achieve the optimum<br />

belt tension.<br />

The calculated oscillation frequency f [Hz] depends on the freely<br />

oscillating span length L [m], the static initial tension load FSt [N]<br />

and the weight per meter m [kg/m] of the belt and corresponds<br />

to the relationship<br />

f = 1 · √ F St<br />

2 · L m<br />

For a detailed description of the instruments and detailed calculation<br />

documentation, please contact our application engineers.<br />

2. Test load method<br />

Calculation of deflection<br />

S = √A2 – [ dwG – d 2<br />

wk ]<br />

2<br />

S : Span length for test force measurement (mm)<br />

d : Deflection (mm)<br />

dwk : Pitch diameter of the small pulley (mm)<br />

dwG : Pitch diameter of the large pulley (mm)<br />

FP : Test force (N)<br />

A : Centre distance of axes (mm); separate tables are available<br />

for the calculation and will be provided on request.<br />

If the span tension is set correctly, the deflection is<br />

d ~ 1 / 100 · S<br />

Calculation of test force<br />

Figure 1:<br />

WF Tension Meter<br />

S<br />

d<br />

FP<br />

Figure 2:<br />

Gates Sonic Tension<br />

Meter 507C<br />

F St + S · Y F P : Test force (N)<br />

F P = l w F St : Static initial tension<br />

25 l w : Pitch length (mm)<br />

Y : Constant (see table)<br />

Adjusting the initial tension<br />

For the calculated test force, the deflection should be ca. 1/100 of<br />

the span length [mm] of the test force measurement. It may be<br />

necessary to correct the belt tension.


<strong>Walther</strong> <strong>Flender</strong> Gruppe<br />

PolyChain ® <strong>GT</strong> <strong>Timing</strong> <strong>Belts</strong> PAGE 16<br />

Storage & maintenance<br />

<strong>PolyChain®</strong> timing belts require no special maintenance. During the wear-in period of heavy-duty drive systems there may be some<br />

reduction in the belt tension; in this case, it is necessary to retighten the belts only once with 50 % of the original initial tension.<br />

When storing belts, they should never be kinked or folded tightly, because this can damage the tensile members. Therefore, we recommend<br />

that timing belts be stored in the original package until needed; during storage, belts should be protected from extreme temperatures,<br />

humidity and UV radiation.<br />

Clamping elements<br />

For secure fastening of the timing belt pulley to the shaft, you can<br />

use the conventional feather key connection or any number of<br />

frictionally engaged, removable clamping elements for all standard<br />

bore dimensions.<br />

In addition to the TL (TaperLock®) bushes used primarily for standard<br />

pulleys, we offer an extensive line of cylindrical inner and outer<br />

clamping sets, which are especially suitable to fulfil requirements<br />

for optimal true running properties.<br />

Please note the required minimum hub and minimum wall thicknesses<br />

to ensure reliable use of the clamping sets; please contact<br />

us before using aluminum pulleys.<br />

Further information on our clamping sets can be found starting<br />

on page 33.<br />

Advantages of the positive locking cylindrical clamping<br />

elements:<br />

– Easy mounting and removal<br />

Mounting and removal by tightening or loosening the clamping<br />

screws using conventional tools. A precise torque can be achieved<br />

by using a torque wrench.<br />

Oil the clamping set lightly when mounting it. Do not use oil containing<br />

molybdenum disulfide and do not use grease.<br />

– Backlash-free connection<br />

The clamping sets provide a positive-locking, backlash-free connection<br />

that can be released at any time.<br />

– Large machining tolerances<br />

The following fitting combinations are recommended:<br />

Tolerances in the shaft diameter: h 7/h 9<br />

Tolerances in the hub bore diameter: H 7/H 9<br />

Surface roughness ≤ RZ 16<br />

The runout error is between 0.02 and 0.04 mm, depending on the<br />

model; all clamping elements listed here are self-centring.<br />

– High fatigue strength<br />

No weakening of the shaft and pulley bore by keyways.<br />

– Easy adjustment<br />

Since no profile end mating is necessary, the components can<br />

be fastened at a precise angle in any required position.<br />

– Overload protection<br />

If the maximum torque is exceeded, slippage of the clamping<br />

set prevents damage to the connected parts. Repeated slipping<br />

should be avoided.<br />

– Economical connection<br />

An economical shaft/hub connection, due to ease of<br />

manufacturing the smooth cylindrical shaft and bore fit.


<strong>Walther</strong> <strong>Flender</strong> Gruppe<br />

PolyChain ® <strong>GT</strong> <strong>Timing</strong> <strong>Belts</strong> PAGE 17<br />

Technical data<br />

Power output values & belt lengths<br />

<strong>Timing</strong> belt pitch PC - 8M<strong>GT</strong> and PC - 8M<strong>GT</strong> Carbon<br />

Calculation of the dimensions and design of belt drive units can<br />

be based on the motor side (motor power output) and on the<br />

load side (load collectives). Both calculations – depending on<br />

the existing safety factors, desired service life or any load- side<br />

efficiency losses – can result in designs for drive systems with<br />

Maximum permissible tangential loads<br />

The values listed in the following tables represent the operationally<br />

useable tangential loads. The listed values apply to quasistatic<br />

loads, i.e. for low speed ranges (n ≤ 100 rpm) with the use of<br />

timing belt pulleys with at least 34 teeth.<br />

<strong>PolyChain®</strong> <strong>GT</strong>2<br />

Belt width (mm) 12 21 36 62<br />

Fzul (N) 2012 3521 6037 10397<br />

Power output in kW / 12 mm belt width<br />

Note: The following power output data was obtained in extensive<br />

series of tests on the basis of defined service life values and<br />

includes safety factors that were defined internally beforehand<br />

to achieve the corresponding service life. Therefore, the power<br />

<strong>PolyChain®</strong> <strong>GT</strong>2<br />

Speed<br />

of the<br />

small<br />

pulley<br />

different overall widths. In addition to the load value calculation,<br />

therefore, we also recommend that you use the following power<br />

output table to compare the actual tangential loads with the<br />

maximum permissible loads.<br />

The initial tensions for mounting of the belts are already included<br />

in the power output values and do not have to be subtracted from<br />

the listed values.<br />

<strong>PolyChain®</strong> <strong>GT</strong> Carbon <br />

Power output of the small timing belt pulley<br />

Belt width (mm) 12 21 36 62<br />

Fzul (N) 2404 4208 7213 12431<br />

output data cannot be compared directly with data of other<br />

manufacturers; if you have any questions, please contact our<br />

application engineers.<br />

22 25 28 30 32 34 36 38 40 45 48 50 56 60 64 75 80<br />

56.02 63.66 71.30 76.39 81.49 86.58 91.67 96.77 101.86 114.59 122.23 127.32 142.60 152.79 162.97 190.99 203.72<br />

10 0.10 0.12 0.14 0.15 0.16 0.17 0.18 0.19 0.20 0.23 0.24 0.25 0.29 0.31 0.33 0.39 0.41<br />

20 0.16 0.18 0.21 0.23 0.24 0.26 0.28 0.29 0.31 0.35 0.38 0.40 0.45 0.48 0.51 0.60 0.64<br />

40 0.25 0.30 0.34 0.37 0.40 0.43 0.46 0.48 0.51 0.58 0.63 0.66 0.74 0.80 0.85 1.00 1.07<br />

60 0.34 0.40 0.46 0.50 0.54 0.58 0.62 0.66 0.70 0.80 0.86 0.90 1.02 1.09 1.17 1.38 1.48<br />

100 0.51 0.60 0.70 0.76 0.82 0.88 0.94 1.00 1.07 1.22 1.31 1.37 1.54 1.66 1.78 2.10 2.25<br />

200 0.90 1.07 1.24 1.35 1.47 1.58 1.69 1.80 1.91 2.19 2.35 2.46 2.78 3.00 3.21 3.79 4.05<br />

300 1.26 1.51 1.75 1.91 2.07 2.23 2.39 2.55 2.71 3.10 3.33 3.49 3.95 4.26 4.56 5.39 5.76<br />

400 1.61 1.92 2.24 2.45 2.66 2.86 3.07 3.27 3.48 3.98 4.28 4.48 5.08 5.47 5.87 6.93 7.41<br />

500 1.94 2.33 2.71 2.97 3.22 3.47 3.72 3.97 4.22 4.84 5.21 5.45 6.18 6.66 7.13 8.43 9.02<br />

600 2.26 2.72 3.17 3.47 3.77 4.07 4.36 4.66 4.95 5.68 6.11 6.39 7.25 7.81 8.37 9.90 10.58<br />

700 2.58 3.11 3.63 3.97 4.31 4.65 4.99 5.33 5.66 6.50 6.99 7.32 8.30 8.94 9.59 11.33 12.12<br />

730 2.67 3.22 3.76 4.12 4.47 4.83 5.18 5.53 5.87 6.74 7.25 7.59 8.61 9.28 9.95 11.76 12.58<br />

800 2.89 3.48 4.07 4.46 4.84 5.23 5.61 5.99 6.36 7.30 7.86 8.23 9.33 10.06 10.78 12.75 13.63<br />

900 3.19 3.85 4.50 4.93 5.36 5.79 6.21 6.63 7.05 8.09 8.71 9.12 10.35 11.15 11.96 14.13 15.11<br />

1,000 3.49 4.22 4.93 5.41 5.88 6.34 6.81 7.27 7.73 8.88 9.56 10.01 11.35 12.23 13.11 15.50 16.58<br />

1,200 4.07 4.93 5.77 6.33 6.88 7.43 7.98 8.53 9.07 10.41 11.21 11.74 13.31 14.35 15.38 18.18 19.44<br />

1,400 4.64 5.62 6.59 7.23 7.86 8.50 9.12 9.75 10.37 11.91 12.82 13.43 15.23 16.42 17.60 20.79 22.22<br />

1,460 4.81 5.82 6.83 7.49 8.15 8.81 9.46 10.11 10.76 12.35 13.30 13.93 15.80 17.03 18.25 21.56 23.04<br />

1,600 5.19 6.30 7.39 8.11 8.83 9.54 10.24 10.95 11.65 13.38 14.41 15.09 17.11 18.44 19.76 23.34 24.94<br />

1,800 5.73 6.96 8.17 8.97 9.77 10.56 11.34 12.12 12.90 14.82 15.96 16.71 18.95 20.42 21.88 25.83 27.58<br />

2,000 6.27 7.61 8.94 9.82 10.69 11.56 12.42 13.28 14.13 16.23 17.48 18.30 20.75 22.36 23.96 28.25 30.16<br />

2,400 7.30 8.88 10.44 11.48 12.50 13.52 14.53 15.53 16.52 18.98 20.44 21.40 24.25 26.13 27.97 32.93 35.13<br />

2,800 8.29 10.11 11.90 13.08 14.25 15.41 16.57 17.71 18.85 21.65 23.30 24.39 27.63 29.74 31.82 37.38 39.82<br />

2,880 8.49 10.35 12.19 13.40 14.60 15.79 16.97 18.14 19.30 22.17 23.86 24.98 28.28 30.44 32.57 38.24 40.73<br />

3,200 9.26 11.30 13.31 14.64 15.95 17.26 18.55 19.83 21.10 24.22 26.07 27.28 30.87 33.20 35.50 41.58<br />

3,500 9.97 12.18 14.35 15.78 17.20 18.60 20.00 21.38 22.74 26.10 28.08 29.38 33.21 35.70 38.14<br />

4,000 11.11 13.59 16.03 17.63 19.22 20.79 22.34 23.88 25.40 29.12 31.31 32.75 36.96 39.68<br />

4,500 12.22 14.97 17.66 19.43 21.17 22.90 24.60 26.29 27.95 32.02 34.39 35.95<br />

5,000 13.30 16.30 19.23 21.16 23.06 24.93 26.78 28.60 30.40 34.78 37.32 38.98<br />

5,500 14.34 17.58 20.76 22.83 24.88 26.89 28.87 30.83 32.74 37.40<br />

Max. power output = (Table output + additional output) x length factor x width factor


<strong>Walther</strong> <strong>Flender</strong> Gruppe<br />

PolyChain ® <strong>GT</strong> <strong>Timing</strong> <strong>Belts</strong> PAGE 18<br />

<strong>PolyChain®</strong> <strong>GT</strong> Carbon <br />

Power output of the small timing belt pulley<br />

Speed<br />

Number of teeth<br />

of the 22 25 28 30 32 34 36 38 40 45 48 50 56 60 64 75 80<br />

small<br />

pulley<br />

56.02 63.66 71.30 76.39 81.49 86.58 91.67<br />

Pitch diameter<br />

96.77 101.86 114.59 122.23 127.32 142.60 152.79 162.97 190.99 203.72<br />

10 0.11 0.13 0.15 0.17 0.18 0.19 0.21 0.22 0.23 0.26 0.28 0.30 0.34 0.36 0.39 0.46 0.49<br />

20 0.17 0.21 0.24 0.26 0.28 0.31 0.33 0.35 0.37 0.42 0.45 0.48 0.54 0.58 0.62 0.74 0.79<br />

40 0.29 0.34 0.40 0.44 0.48 0.51 0.55 0.59 0.63 0.72 0.77 0.81 0.92 0.99 1.07 1.27 1.36<br />

60 0.39 0.47 0.55 0.61 0.66 0.71 0.76 0.82 0.87 1.00 1.08 1.13 1.28 1.39 1.49 1.77 1.89<br />

100 0.59 0.72 0.84 0.93 1.01 1.09 1.17 1.26 1.34 1.54 1.66 1.74 1.98 2.14 2.30 2.74 2.93<br />

200 1.06 1.29 1.53 1.68 1.83 1.99 2.14 2.29 2.44 2.82 3.05 3.20 3.64 3.94 4.24 5.04 5.41<br />

300 1.50 1.84 2.17 2.40 2.62 2.84 3.06 3.28 3.50 4.05 4.37 4.59 5.23 5.66 6.09 7.25 7.78<br />

400 1.92 2.36 2.80 3.09 3.38 3.67 3.95 4.24 4.53 5.24 5.66 5.94 6.78 7.34 7.89 9.41 10.09<br />

500 2.33 2.87 3.41 3.77 4.12 4.47 4.83 5.18 5.53 6.40 6.92 7.27 8.30 8.98 9.66 11.51 12.35<br />

600 2.73 3.37 4.01 4.43 4.85 5.27 5.68 6.10 6.51 7.54 8.16 8.57 9.78 10.59 11.39 13.59 14.58<br />

700 3.12 3.86 4.59 5.08 5.56 6.05 6.53 7.01 7.48 8.67 9.38 9.85 11.25 12.18 13.11 15.63 16.77<br />

800 3.50 4.34 5.17 5.72 6.27 6.81 7.36 7.90 8.44 9.78 10.58 11.11 12.70 13.75 14.79 17.65 18.93<br />

900 3.88 4.81 5.74 6.35 6.96 7.57 8.18 8.78 9.38 10.88 11.77 12.36 14.13 15.30 16.46 19.64 21.07<br />

1,000 4.25 5.28 6.30 6.98 7.65 8.32 8.99 9.65 10.32 11.96 12.95 13.60 15.54 16.83 18.11 21.61 23.18<br />

1,200 4.98 6.20 7.41 8.21 9.00 9.80 10.59 11.37 12.16 14.10 15.27 16.04 18.33 19.86 21.37 25.49 27.34<br />

1,400 5.69 7.10 8.49 9.41 10.33 11.25 12.16 13.06 13.97 16.21 17.55 18.43 21.08 22.83 24.57 29.30 31.43<br />

1,600 6.39 7.98 9.56 10.60 11.64 12.67 13.70 14.73 15.75 18.28 19.79 20.79 23.78 25.75 27.71 33.04 35.44<br />

1,800 7.08 8.85 10.61 11.77 12.93 14.08 15.22 16.37 17.50 20.32 22.00 23.12 26.44 28.63 30.81 36.72 39.38<br />

2,000 7.75 9.71 11.64 12.92 14.20 15.46 16.73 17.98 19.23 22.34 24.18 25.41 29.06 31.47 33.86 40.34 43.24<br />

2,400 9.07 11.38 13.67 15.18 16.69 18.19 19.68 21.16 22.63 26.29 28.46 29.91 34.19 37.02 39.82 47.39 50.77<br />

2,800 10.36 13.02 15.65 17.39 19.12 20.84 22.56 24.26 25.95 30.15 32.64 34.29 39.19 42.41 45.60 54.20 58.02<br />

3,200 11.61 14.61 17.59 19.55 21.51 23.45 25.38 27.29 29.20 33.92 36.71 38.56 44.05 47.65 51.21 60.76<br />

3,500 12.53 15.79 19.01 21.14 23.26 25.36 27.45 29.53 31.59 36.69 39.70 41.70 47.61 51.48 55.30<br />

4,000 14.03 17.71 21.34 23.74 26.13 28.49 30.84 33.17 35.48 41.19 44.56 46.79 53.36 57.66<br />

4,500 15.49 19.58 23.62 26.28 28.92 31.54 34.14 36.71 39.27 45.56 49.27 51.71<br />

5,000<br />

5,500<br />

16.92<br />

18.31<br />

21.41<br />

23.19<br />

25.84<br />

28.00<br />

28.76<br />

31.17<br />

31.65<br />

34.31<br />

34.51<br />

37.41<br />

37.35<br />

40.48<br />

40.16<br />

43.51<br />

42.95<br />

46.52<br />

49.79<br />

53.87<br />

53.81 56.45<br />

Max. power output = (Table output + additional output) x length factor x width factor<br />

Design information on page 23<br />

Additional power output [kW] for step-down ratio<br />

<strong>PolyChain®</strong> <strong>GT</strong>2:<br />

Speed of the<br />

small pulley<br />

1<br />

to<br />

1.04<br />

1.05<br />

to<br />

1.11<br />

1.12<br />

to<br />

1.19<br />

1.2<br />

to<br />

1.3<br />

1.31<br />

to<br />

1.45<br />

1.46<br />

to<br />

1.65<br />

1.66<br />

to<br />

1.99<br />

2<br />

to<br />

2.63<br />

2.64<br />

to<br />

4.47<br />

200 0.00 0.01 0.03 0.04 0.05 0.07 0.08 0.09 0.10<br />

300 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16<br />

400 0.00 0.03 0.05 0.08 0.10 0.13 0.16 0.18 0.21<br />

500 0.00 0.03 0.07 0.10 0.13 0.16 0.20 0.23 0.26<br />

600 0.00 0.04 0.08 0.12 0.16 0.20 0.23 0.27 0.31<br />

700 0.00 0.05 0.09 0.14 0.18 0.23 0.27 0.32 0.36<br />

730 0.00 0.05 0.09 0.14 0.19 0.24 0.28 0.33 0.38<br />

800 0.00 0.05 0.10 0.16 0.21 0.26 0.31 0.36 0.42<br />

900 0.00 0.06 0.12 0.18 0.23 0.29 0.35 0.41 0.47<br />

1,000 0.00 0.06 0.13 0.20 0.26 0.33 0.39 0.46 0.52<br />

1,200 0.00 0.08 0.16 0.23 0.31 0.39 0.47 0.55 0.62<br />

1,400 0.00 0.09 0.18 0.27 0.36 0.46 0.55 0.64 0.73<br />

1,460 0.00 0.09 0.19 0.28 0.38 0.47 0.57 0.66 0.76<br />

1,600 0.00 0.10 0.21 0.31 0.42 0.52 0.62 0.73 0.83<br />

1,800 0.00 0.12 0.23 0.35 0.47 0.59 0.70 0.82 0.94<br />

2,000 0.00 0.13 0.26 0.39 0.52 0.65 0.78 0.91 1.04<br />

2,400 0.00 0.16 0.31 0.47 0.62 0.78 0.94 1.09 1.25<br />

2,800 0.00 0.18 0.36 0.55 0.73 0.91 1.09 1.27 1.46<br />

2,880 0.00 0.19 0.37 0.56 0.75 0.94 1.12 1.31 1.50<br />

3,200 0.00 0.21 0.42 0.62 0.83 1.04 1.25 1.46 1.66<br />

3,500 0.00 0.23 0.46 0.68 0.91 1.14 1.37 1.59 1.82<br />

4,000 0.00 0.26 0.52 0.78 1.04 1.30 1.56 1.82 2.08<br />

4,500 0.00 0.29 0.59 0.88 1.17 1.46 1.76 2.05 2.34<br />

5,000 0.00 0.32 0.65 0.98 1.30 1.63 1.95 2.28 2.60<br />

5,500 0.00 0.36 0.72 1.07 1.43 1.79 2.15 2.50 2.86<br />

Additional power output [kW] for step-down ratio<br />

<strong>PolyChain®</strong> Carbon TM:<br />

Speed of the<br />

small pulley<br />

1.00 1.02 1.05 1.10 1.15 1.21 1.30 1.43 1.64 2.15<br />

1.02 1.05 1.10 1.15 1.21 1.30 1.43 1.64 2.15<br />

and<br />

over<br />

20 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01<br />

40 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.02<br />

60 0.00 0.00 0.01 0.01 0.01 0.02 0.02 0.02 0.03 0.03<br />

100 0.00 0.01 0.01 0.02 0.02 0.03 0.04 0.04 0.05 0.05<br />

200 0.00 0.01 0.02 0.04 0.05 0.06 0.07 0.08 0.09 0.11<br />

300 0.00 0.02 0.04 0.05 0.07 0.09 0.11 0.12 0.14 0.16<br />

400 0.00 0.02 0.05 0.07 0.09 0.12 0.14 0.17 0.19 0.21<br />

500 0.00 0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27<br />

600 0.00 0.04 0.07 0.11 0.14 0.18 0.21 0.25 0.28 0.32<br />

700 0.00 0.04 0.08 0.12 0.17 0.21 0.25 0.29 0.33 0.37<br />

800 0.00 0.05 0.09 0.14 0.19 0.24 0.28 0.33 0.38 0.43<br />

900 0.00 0.05 0.11 0.16 0.21 0.27 0.32 0.37 0.43 0.48<br />

1,000 0.00 0.06 0.12 0.18 0.24 0.30 0.36 0.42 0.47 0.53<br />

1,200 0.00 0.07 0.14 0.21 0.28 0.36 0.43 0.50 0.57 0.64<br />

1,400 0.00 0.08 0.17 0.25 0.33 0.42 0.50 0.58 0.66 0.75<br />

1,600 0.00 0.10 0.19 0.29 0.38 0.47 0.57 0.66 0.76 0.85<br />

1,800 0.00 0.11 0.21 0.32 0.43 0.53 0.64 0.75 0.85 0.96<br />

2,000 0.00 0.12 0.24 0.36 0.47 0.59 0.71 0.83 0.95 1.07<br />

2,400 0.00 0.14 0.28 0.43 0.57 0.71 0.85 1.00 1.14 1.28<br />

2,800 0.00 0.17 0.33 0.50 0.66 0.83 1.00 1.16 1.33 1.50<br />

3,200 0.00 0.19 0.38 0.57 0.76 0.95 1.14 1.33 1.52 1.71<br />

3,500 0.00 0.21 0.41 0.62 0.83 1.04 1.25 1.45 1.66 1.87<br />

4,000 0.00 0.24 0.47 0.71 0.95 1.19 1.42 1.66 1.90 2.14<br />

4,500 0.00 0.27 0.53 0.80 1.07 1.34 1.60 1.87 2.14 2.40<br />

5,000 0.00 0.30 0.59 0.89 1.19 1.48 1.78 2.08 2.37 2.67<br />

5,500 0.00 0.33 0.65 0.98 1.30 1.63 1.96 2.28 2.61 2.94


<strong>Walther</strong> <strong>Flender</strong> Gruppe<br />

PolyChain ® <strong>GT</strong> <strong>Timing</strong> <strong>Belts</strong> PAGE 19<br />

Standard lengths and length correction<br />

factors S 6<br />

Standard widths 12, 21, 36, 62 mm<br />

Pitch length<br />

(mm)<br />

Length<br />

correction<br />

factor<br />

Number<br />

of teeth<br />

640 0.79 80<br />

720 0.83 90<br />

800 0.87 100<br />

896 0.91 112<br />

960 0.94 120<br />

1,000 0.96 125<br />

1,040 0.97 130<br />

1,120 1.00 140<br />

1,200 1.03 150<br />

1,224 1.03 153<br />

1,280 1.05 160<br />

1,440 1.10 180<br />

1,600 1.14 200<br />

1,760 1.17 220<br />

1,792 1.18 224<br />

2,000 1.22 250<br />

2,200 1.26 275<br />

2,240 1.26 280<br />

2,400 1.29 300<br />

2,520 1.31 315<br />

2,600 1.32 325<br />

2,800 1.35 350<br />

2,840 1.36 355<br />

3,048 1.38 381<br />

3,200 1.40 400<br />

3,600 1.45 450<br />

4,000 1.49 500<br />

4,400 1.52 550<br />

4,480 1.53 560<br />

Width factor S 7<br />

Belt width 12 21 36 62<br />

Width factor 1 1.75 3.00 5.17<br />

<strong>Timing</strong> belts in custom lengths*<br />

Number<br />

of teeth<br />

Length<br />

(mm)<br />

Number<br />

of teeth<br />

Length<br />

(mm)<br />

31 248 57 456<br />

36 288 60 480<br />

44 352 68 544<br />

52 416 76 608<br />

* Length correction factors and permissible power output data<br />

available on request; may necessitate longer delivery times and<br />

minimum purchase quantities.<br />

<strong>Timing</strong> belt pulley diameter<br />

Number<br />

of teeth<br />

Pitch ø<br />

(mm)<br />

Outer ø<br />

(mm)<br />

22 56.02 54.42<br />

23 58.57 56.97<br />

24 61.12 59.52<br />

25 63.66 62.06<br />

26 66.21 64.61<br />

27 68.75 67.15<br />

28 71.30 69.70<br />

29 73.85 72.25<br />

30 76.39 74.79<br />

31 78.94 77.34<br />

32 81.49 79.89<br />

33 84.03 82.43<br />

34 86.58 84.98<br />

35 89.13 87.53<br />

36 91.67 90.07<br />

37 94.22 92.62<br />

38 96.77 95.17<br />

39 99.31 97.71<br />

40 101.86 100.26<br />

41 104.41 102.81<br />

42 106.95 105.35<br />

43 109.50 107.90<br />

44 112.05 110.44<br />

45 114.59 112.99<br />

46 117.14 115.54<br />

47 119.68 118.08<br />

48 122.23 120.63<br />

49 124.78 123.18<br />

50 127.32 125.72<br />

51 129.87 128.27<br />

52 132.42 130.82<br />

53 134.96 133.36<br />

54 137.51 135.91<br />

55 140.06 138.46<br />

56 142.60 141.00<br />

57 145.15 143.55<br />

58 147.70 146.10<br />

59 150.24 148.64<br />

60 152.79 151.19<br />

61 155.33 153.74<br />

62 157.88 156.28<br />

63 160.43 158.83<br />

64 162.97 161.37<br />

65 165.52 163.92<br />

66 168.07 166.47<br />

67 170.61 169.01<br />

68 173.16 171.56<br />

69 175.71 174.11<br />

70 178.25 176.65<br />

71 180.80 179.20<br />

Number<br />

of teeth<br />

Pitch ø<br />

(mm)<br />

Outer ø<br />

(mm)<br />

72 183.35 181.75<br />

73 185.89 184.29<br />

74 188.44 186.84<br />

75 190.99 189.39<br />

76 193.53 191.93<br />

77 196.08 194.48<br />

78 198.62 197.03<br />

79 201.17 199.57<br />

80 203.72 202.12<br />

81 206.26 204.66<br />

82 208.81 207.21<br />

83 211.36 209.76<br />

84 213.90 212.30<br />

85 216.45 214.85<br />

86 219.00 217.40<br />

87 221.54 219.94<br />

88 224.09 222.49<br />

89 226.64 225.04<br />

90 229.18 227.58<br />

91 231.73 230.13<br />

92 234.28 232.68<br />

93 236.82 235.22<br />

94 239.37 237.77<br />

95 241.92 240.32<br />

96 244.46 242.86<br />

97 247.01 245.41<br />

98 249.55 247.95<br />

99 252.10 250.50<br />

100 254.65 253.05<br />

101 257.19 255.59<br />

102 259.74 258.14<br />

103 262.29 260.69<br />

104 264.83 263.23<br />

105 267.38 265.78<br />

106 269.93 268.33<br />

107 272.47 270.87<br />

108 275.02 273.42<br />

109 277.57 275.97<br />

110 280.11 278.51<br />

111 282.66 281.06<br />

112 285.21 283.61<br />

113 287.75 286.15<br />

114 290.30 288.70<br />

115 292.85 291.24<br />

116 295.39 293.79<br />

117 297.94 296.36<br />

118 300.48 298.88<br />

119 303.03 301.43<br />

120 305.58 303.98


<strong>Walther</strong> <strong>Flender</strong> Gruppe<br />

PolyChain ® <strong>GT</strong> <strong>Timing</strong> <strong>Belts</strong> PAGE 20<br />

<strong>Timing</strong> belt pitch PC – 14M<strong>GT</strong> and PC – 14M<strong>GT</strong> Carbon<br />

Calculation of the dimensions and design of belt drive units can be<br />

based on the motor side (motor power output) and on the load<br />

side (load collectives). Both calculations – depending on the existing<br />

safety factors, desired service life or any load-side efficiency<br />

losses – can result in designs for drive systems with different over-<br />

Maximum permissible tangential loads<br />

The values listed in the following tables represent the operationally<br />

useable tangential loads. The listed values apply to quasistatic<br />

loads, i.e. for low speed ranges (n ≤ 100 rpm) with the use of<br />

timing belt pulleys with at least 34 teeth.<br />

<strong>PolyChain®</strong> <strong>GT</strong>2<br />

Belt width (mm) 37 68 90 125<br />

Fzul (N) 11289 20747 27460 38138<br />

Power output in kW / 20 mm belt width<br />

Note: The following power output data was obtained in extensive<br />

series of tests on the basis of defined service life values and<br />

includes safety factors that were defined internally beforehand<br />

to achieve the corresponding service life. Therefore, the power<br />

Poly Chain® <strong>GT</strong>2<br />

Speed of the<br />

small pulley<br />

Max. power output = (Table output + additional output) x length factor x width factor<br />

Design information on page 23<br />

all widths. In addition to the load value calculation, therefore,<br />

we also recommend that you use the following power output<br />

table to compare the actual tangential loads with the maximum<br />

permissible loads.<br />

The initial tensions for mounting of the belts are already included<br />

in the power output values and do not have to be subtracted from<br />

the listed values.<br />

<strong>PolyChain®</strong> <strong>GT</strong> Carbon<br />

Belt width (mm) 37 68 90 125<br />

Fzul (N) 13829 25416 33639 46720<br />

output data cannot be compared directly with data of other<br />

manufacturers; if you have any questions, please contact our<br />

application engineers.<br />

Power output of the small timing belt pulley<br />

Number of teeth<br />

28 30 32 34 36 38 40 44 48 50 56 60 64<br />

Pitch diameter<br />

124.78 133.69 142.60 151.52 160.43 169.34 178.25 196.08 213.90 222.82 249.55 267.38 285.21<br />

10 0.72 0.77 0.83 0.89 0.95 1.00 1.06 1.17 1.29 1.34 1.51 1.62 1.73<br />

20 1.10 1.19 1.29 1.38 1.47 1.56 1.65 1.83 2.01 2.10 2.36 2.54 2.71<br />

40 1.80 1.95 2.10 2.26 2.41 2.56 2.71 3.02 3.32 3.46 3.91 4.20 4.50<br />

80 3.05 3.32 3.59 3.86 4.13 4.39 4.66 5.18 5.71 5.97 6.74 7.25 7.76<br />

100 3.64 3.97 4.30 4.62 4.94 5.26 5.58 6.21 6.84 7.15 8.08 8.70 9.31<br />

200 6.40 6.99 7.57 8.16 8.74 9.31 9.88 11.02 12.15 12.71 14.38 15.49 16.58<br />

300 8.95 9.78 10.62 11.44 12.26 13.08 13.89 15.51 17.11 17.90 20.26 21.83 23.38<br />

400 11.36 12.44 13.50 14.56 15.62 16.67 17.71 19.78 21.83 22.85 25.87 27.87 29.86<br />

500 13.68 14.98 16.28 17.57 18.85 20.12 21.39 23.90 26.38 27.61 31.28 33.70 36.10<br />

600 15.92 17.45 18.97 20.48 21.98 23.47 24.95 27.89 30.79 32.24 36.53 39.35 42.16<br />

700 18.09 19.84 21.58 23.30 25.02 26.72 28.41 31.77 35.09 36.74 41.63 44.86 48.05<br />

730 18.73 20.55 22.35 24.14 25.92 27.68 29.44 32.92 36.36 38.07 43.14 46.48 49.79<br />

800 20.21 22.17 24.12 26.06 27.99 29.90 31.80 35.56 39.29 41.13 46.61 50.22 53.80<br />

900 22.27 24.45 26.61 28.76 30.89 33.01 35.11 39.27 43.39 45.43 51.48 55.46 59.41<br />

1,000 24.30 26.68 29.05 31.40 33.73 36.05 38.35 42.91 47.41 49.64 56.25 60.60 64.90<br />

1,200 28.23 31.02 33.79 36.54 39.26 41.97 44.66 49.97 55.22 57.81 65.50 70.54 75.52<br />

1,400 32.02 35.21 38.37 41.50 44.61 47.69 50.75 56.79 62.74 65.69 74.39 80.09 85.71<br />

1,460 33.13 36.43 39.71 42.96 46.18 49.37 52.53 58.79 64.95 68.00 77.00 82.88 88.69<br />

1,600 35.68 39.26 42.80 46.30 49.78 53.22 56.64 63.38 70.01 73.29 82.96 89.27 95.48<br />

1,800 39.24 43.19 47.10 50.97 54.80 58.59 62.35 69.76 77.04 80.63 91.20 98.08 104.83<br />

2,000 42.70 47.01 51.27 55.49 59.67 63.80 67.89 75.94 83.83 87.71 99.12 106.52 113.76<br />

2,400 49.33 54.33 59.28 64.16 68.98 73.75 78.45 87.69 96.70 101.11 114.00<br />

2,800 55.60 61.26 66.84 72.35 77.77 83.11 88.37 98.66 108.63 113.49<br />

2,880 56.82 62.61 68.31 73.93 79.46 84.91 90.28 100.76 110.90<br />

3,200 61.55 67.82 73.99 80.06 86.02 91.88 97.64 108.83<br />

3,500 65.79 72.50 79.08 85.54 91.87 98.08 104.16<br />

4,000 72.48 79.84 87.04 94.08 100.95


<strong>Walther</strong> <strong>Flender</strong> Gruppe<br />

PolyChain ® <strong>GT</strong> <strong>Timing</strong> <strong>Belts</strong> PAGE 21<br />

Poly Chain® Carbon<br />

Power output of the small timing belt pulley<br />

Speed of the<br />

small pulley 28 30 32 34 36 38 40<br />

Number of teeth<br />

44 48<br />

Pitch diameter<br />

50 56 60 64 72 75 80<br />

124.78 133.69 142.60 151.52 160.43 169.34 178.25 196.08 213.90 222.82 249.55 267.38 285.21 320.86 334.23 356.51<br />

10 0.88 0.94 1.01 1.08 1.15 1.22 1.29 1.42 1.56 1.62 1.82 1.96 2.09 2.35 2.45 2.62<br />

20 1.37 1.48 1.59 1.70 1.81 1.92 2.03 2.25 2.46 2.57 2.89 3.10 3.32 3.74 3.89 4.16<br />

40 2.28 2.47 2.65 2.84 3.03 3.21 3.40 3.76 4.13 4.31 4.85 5.21 5.56 6.27 6.54 6.98<br />

60 3.13 3.39 3.65 3.91 4.17 4.42 4.68 5.19 5.69 5.94 6.69 7.19 7.68 8.66 9.03 9.63<br />

100 4.73 5.13 5.53 5.93 6.32 6.72 7.11 7.88 8.66 9.04 10.19 10.94 11.70 13.20 13.75 14.68<br />

200 8.45 9.18 9.90 10.62 11.34 12.05 12.76 14.17 15.57 16.26 18.34 19.71 21.07 23.77 24.78 26.44<br />

300 11.93 12.97 14.00 15.02 16.04 17.06 18.07 20.08 22.07 23.06 26.00 27.95 29.89 33.72 35.15 37.52<br />

400 15.26 16.59 17.92 19.24 20.56 21.86 23.16 25.75 28.31 29.58 33.36 35.87 38.35 43.27 45.10 48.14<br />

500 18.47 20.10 21.72 23.32 24.92 26.51 28.09 31.23 34.35 35.89 40.49 43.53 46.55 52.52 54.74 58.41<br />

600 21.59 23.51 25.41 27.29 29.17 31.04 32.89 36.58 40.23 42.04 47.43 50.99 54.52 61.51 64.10 68.40<br />

700 24.65 26.84 29.01 31.17 33.32 35.46 37.59 41.80 45.98 48.05 54.21 58.28 62.31 70.28 73.24 78.14<br />

800 27.63 30.10 32.54 34.98 37.39 39.79 42.18 46.92 51.61 53.94 60.85 65.41 69.93 78.86 82.17 87.65<br />

900 30.56 33.30 36.01 38.71 41.39 44.05 46.70 51.94 57.14 59.71 67.36 72.40 77.40 87.26 90.91 96.95<br />

1,000 33.44 36.44 39.42 42.37 45.31 48.23 51.13 56.88 62.57 65.39 73.76 79.27 84.73 95.49 99.47 106.05<br />

1,200 39.06 42.58 46.07 49.54 52.98 56.40 59.80 66.52 73.17 76.46 86.22 92.64 98.98 111.46 116.07 123.67<br />

1,400 44.53 48.55 52.55 56.51 60.44 64.34 68.22 75.88 83.45 87.19 98.28 105.55 112.73 126.82 132.01 140.55<br />

1,600 49.85 54.37 58.85 63.29 67.70 72.07 76.41 84.98 93.43 97.61 109.96 118.04 126.00 141.58 147.30 156.68<br />

1,800 55.05 60.05 65.01 69.92 74.78 79.61 84.39 93.84 103.13 107.72 121.27 130.11 138.80 155.73<br />

2,000 60.13 65.60 71.02 76.38 81.70 86.96 92.18 102.46 112.57 117.55 132.21 141.76 151.12<br />

2,400 69.97 76.35 82.65 88.88 95.05 101.14 107.17 119.03 130.62 136.32 153.00<br />

2,800 79.41 86.64 93.78 100.83 107.78 114.65 121.42 134.70 147.61 153.92<br />

3,200 88.47 96.51 104.43 112.23 119.92 127.48 134.93 149.45<br />

3,500 95.02 103.64 112.11 120.43 128.62 136.66 144.56<br />

4,000 105.49 114.99 124.30 133.43 142.36 151.10<br />

Max. power output = (Table output + additional output) x length factor x width factor<br />

Design information on page 23<br />

Additional power output [kW] for step-down ratio<br />

Poly Chain® <strong>GT</strong>2<br />

Speed of<br />

the small<br />

pulley<br />

1<br />

to<br />

1.04<br />

1.05<br />

to<br />

1.11<br />

1.12<br />

to<br />

1.19<br />

1.2<br />

to<br />

1.3<br />

1.31<br />

to<br />

1.45<br />

1.46<br />

to<br />

1.65<br />

1.66<br />

to<br />

1.99<br />

2<br />

to<br />

2.63<br />

2.64<br />

to<br />

4.47<br />

200 0.00 0.07 0.15 0.22 0.29 0.37 0.44 0.51 0.59<br />

300 0.00 0.11 0.22 0.33 0.44 0.55 0.66 0.77 0.88<br />

400 0.00 0.15 0.29 0.44 0.59 0.74 0.88 1.03 1.18<br />

500 0.00 0.18 0.37 0.55 0.74 0.92 1.10 1.29 1.47<br />

600 0.00 0.22 0.44 0.66 0.88 1.10 1.32 1.54 1.76<br />

700 0.00 0.26 0.52 0.77 1.03 1.29 1.54 1.80 2.06<br />

730 0.00 0.27 0.54 0.81 1.07 1.34 1.61 1.88 2.15<br />

800 0.00 0.29 0.59 0.88 1.18 1.47 1.77 2.06 2.35<br />

900 0.00 0.33 0.66 0.99 1.32 1.65 1.99 2.32 2.65<br />

1,000 0.00 0.37 0.74 1.10 1.47 1.84 2.21 2.57 2.94<br />

1,200 0.00 0.44 0.88 1.32 1.76 2.21 2.65 3.09 3.53<br />

1,400 0.00 0.51 1.03 1.54 2.06 2.57 3.09 3.60 4.12<br />

1,460 0.00 0.54 1.07 1.61 2.15 2.68 3.22 3.76 4.29<br />

1,600 0.00 0.59 1.18 1.77 2.35 2.94 3.53 4.12 4.71<br />

1,800 0.00 0.66 1.32 1.99 2.65 3.31 3.97 4.63 5.29<br />

2,000 0.00 0.74 1.47 2.21 2.94 3.68 4.41 5.15 5.88<br />

2,400 0.00 0.88 1.77 2.65 3.53 4.41 5.30 6.18 7.06<br />

2,800 0.00 1.03 2.06 3.09 4.12 5.15 6.18 7.21 8.24<br />

2,880 0.00 1.06 2.12 3.18 4.24 5.30 6.35 7.41 8.47<br />

3,200 0.00 1.18 2.36 3.53 4.71 5.88 7.06 8.24 9.41<br />

3,500 0.00 1.29 2.58 3.86 5.15 6.44 7.72 9.01 10.30<br />

4,000 0.00 1.47 2.94 4.41 5.88 7.35 8.83 10.30 11.77<br />

Additional power output [kW] for step-down ratio<br />

Poly Chain® Carbon TM<br />

Speed of<br />

the small<br />

pulley<br />

1<br />

to<br />

1.03<br />

1.03<br />

to<br />

1.10<br />

1.10<br />

to<br />

1.19<br />

1.19<br />

to<br />

1.30<br />

1.30<br />

to<br />

1.45<br />

1.45<br />

to<br />

1.67<br />

1.67<br />

to<br />

2.02<br />

2.02<br />

to<br />

2.69<br />

2.69<br />

to<br />

4.64<br />

4.64<br />

and<br />

above<br />

20 0.00 0.01 0.02 0.02 0.03 0.04 0.05 0.05 0.06 0.07<br />

40 0.00 0.02 0.03 0.05 0.06 0.08 0.09 0.11 0.12 0.14<br />

60 0.00 0.02 0.05 0.07 0.09 0.11 0.14 0.16 0.18 0.20<br />

100 0.00 0.04 0.08 0.11 0.15 0.19 0.23 0.26 0.30 0.34<br />

200 0.00 0.08 0.15 0.23 0.30 0.38 0.45 0.53 0.61 0.68<br />

300 0.00 0.11 0.23 0.34 0.45 0.57 0.68 0.79 0.91 1.02<br />

400 0.00 0.15 0.30 0.45 0.61 0.76 0.91 1.06 1.21 1.36<br />

500 0.00 0.19 0.38 0.57 0.76 0.95 1.13 1.32 1.51 1.70<br />

600 0.00 0.23 0.45 0.68 0.91 1.14 1.36 1.59 1.82 2.04<br />

700 0.00 0.27 0.53 0.79 1.06 1.32 1.59 1.85 2.12 2.38<br />

800 0.00 0.30 0.61 0.91 1.21 1.51 1.82 2.12 2.42 2.72<br />

900 0.00 0.34 0.68 1.02 1.36 1.70 2.04 2.38 2.72 3.06<br />

1,000 0.00 0.38 0.76 1.13 1.51 1.89 2.27 2.65 3.03 3.41<br />

1,200 0.00 0.45 0.91 1.36 1.82 2.27 2.72 3.18 3.63 4.09<br />

1,400 0.00 0.53 1.06 1.59 2.12 2.65 3.18 3.71 4.24 4.77<br />

1,600 0.00 0.61 1.21 1.82 2.42 3.03 3.63 4.24 4.84 5.45<br />

1,800 0.00 0.68 1.36 2.04 2.72 3.41 4.09 4.77 5.45 6.13<br />

2,000 0.00 0.76 1.51 2.27 3.03 3.78 4.54 5.30 6.05 6.81<br />

2,400 0.00 0.91 1.82 2.72 3.63 4.54 5.45 6.36 7.26 8.17<br />

2,800 0.00 1.06 2.12 3.18 4.24 5.30 6.36 7.42 8.48 9.53<br />

3,200 0.00 1.21 2.42 3.63 4.84 6.06 7.26 8.48 9.69 10.90<br />

3,500 0.00 1.33 2.65 3.97 5.30 6.62 7.94 9.27 10.59 11.92<br />

4,000 0.00 1.51 3.03 4.54 6.06 7.57 9.08 10.59 12.11 13.62


<strong>Walther</strong> <strong>Flender</strong> Gruppe<br />

PolyChain ® <strong>GT</strong> <strong>Timing</strong> <strong>Belts</strong> PAGE 22<br />

Standard lengths and length correction factors S 6<br />

Standard widths 37, 68, 90, 125 mm<br />

Pitch length (mm) Length correction factor Number of teeth<br />

994 0.68 71<br />

1,120 0.73 80<br />

1,190 0.75 85<br />

1,260 0.77 90<br />

1,400 0.81 100<br />

1,568 0.85 112<br />

1,610 0.86 115<br />

1,750 0.89 125<br />

1,890 0.92 133<br />

1,960 0.94 140<br />

2,100 0.96 150<br />

2,240 0.99 160<br />

2,310 1.00 165<br />

2,380 1.01 170<br />

2,450 1.02 175<br />

2,520 1.03 180<br />

2,590 1.04 185<br />

2,660 1.05 190<br />

2,800 1.07 200<br />

3,136 1.12 224<br />

3,304 1.14 236<br />

3,360 1.14 240<br />

3,500 1.16 250<br />

3,850<br />

1.19 275<br />

3,920 1.20 280<br />

4,326 1.24 309<br />

4,410 1.25 315<br />

Custom widths available on request.<br />

Width factor S 7<br />

Belt width 37 68 90 125<br />

Width factor 1.85 3.40 4.50 6.25<br />

<strong>Timing</strong> belt pulley diameter<br />

Number Pitch ø Outer ø<br />

of teeth (mm) (mm)<br />

28 124.78 121.98<br />

29 129.23 126.43<br />

30 133.69 130.89<br />

31 138.15 135.35<br />

32 142.60 139.80<br />

33 147.06 144.26<br />

34 151.52 148.72<br />

35 155.97 153.17<br />

36 160.43 157.63<br />

37 164.88 162.09<br />

38 169.34 166.54<br />

39 173.80 171.00<br />

40 178.25 175.45<br />

41 182.71 179.91<br />

42 187.17 184.37<br />

43 191.62 188.82<br />

44 196.08 193.28<br />

45 200.54 197.74<br />

46 204.99 202.19<br />

47 209.45 206.65<br />

48 213.90 211.11<br />

49 218.36 215.56<br />

50 222.82 220.02<br />

51 227.27 224.47<br />

52 231.73 228.93<br />

53 236.19 233.39<br />

54 240.64 237.84<br />

55 245.10 242.30<br />

56 249.55 246.76<br />

57 254.01 251.21<br />

58 258.47 255.67<br />

59 262.92 260.12<br />

60 267.38 264.58<br />

61 271.84 269.04<br />

62 276.29 273.49<br />

63 280.75 277.95<br />

64 285.21 282.41<br />

65 289.66 286.86<br />

66 294.12 291.32<br />

67 298.57 295.78<br />

68 303.03 300.23<br />

69 307.49 304.69<br />

70 311.94 309.14<br />

71 316.40 313.60<br />

72 320.86 318.06<br />

73 325.31 322.51<br />

74 329.97 326.97<br />

Number Pitch ø Outer ø<br />

of teeth (mm) (mm)<br />

75 334.23 331.43<br />

76 338.68 335.88<br />

77 343.14 340.34<br />

78 347.59 344.80<br />

79 352.05 349.25<br />

80 356.51 353.71<br />

81 360.96 358.16<br />

82 365.42 362.62<br />

83 369.88 367.08<br />

84 374.33 371.53<br />

85 378.79 375.99<br />

86 383.25 380.45<br />

87 387.70 384.90<br />

88 392.16 389.36<br />

89 396.61 393.82<br />

90 401.07 398.27<br />

91 405.53 402.73<br />

92 409.98 407.18<br />

93 414.44 411.64<br />

94 418.90 416.10<br />

95 423.35 420.55<br />

96 427.81 425.01<br />

97 432.26 429.47<br />

98 436.72 433.92<br />

99 441.17 438.37<br />

100 445.63 442.83<br />

101 450.09 447.29<br />

102 454.55 451.75<br />

103 459.00 456.20<br />

104 463.46 460.66<br />

105 467.92 465.12<br />

106 472.37 469.57<br />

107 476.83 474.03<br />

108 481.28 478.49<br />

109 485.74 482.94<br />

110 490.20 487.40<br />

111 494.65 491.85<br />

112 499.11 496.31<br />

113 503.57 500.77<br />

114 508.02 505.22<br />

115 512.48 509.68<br />

116 516.94 514.14<br />

117 521.39 518.59<br />

118 525.85 523.05<br />

119 530.30 527.51<br />

120 534.76 531.96


<strong>Walther</strong> <strong>Flender</strong> Gruppe<br />

PolyChain ® <strong>GT</strong> <strong>Timing</strong> <strong>Belts</strong> PAGE 23<br />

Calculation & formulas<br />

Calculation<br />

General<br />

The basis for determining the timing belt dimensions is a calculation<br />

method that takes the following influences into account:<br />

* Power<br />

* Torques<br />

* Speed<br />

* Duty cycle of the drive system<br />

* Operating characteristics<br />

* Number of meshing teeth<br />

* Transmission ratio<br />

* Centre distance of axes<br />

All data concerning the transmitted torque, the speed and the<br />

length of a <strong>PolyChain®</strong> timing belt relates to the pitch line, which<br />

is assumed to be centre of the tensile member. The pitch line is<br />

precisely defined and is identical to the pitch diameter on the timing<br />

belt pulley. Half the difference in diameter between the pitch<br />

diameter and outer diameter is equal to the size of the belt tooth<br />

root to the centre of the tensile body.<br />

Project data sheet<br />

During the design and the later dimensioning of a drive system,<br />

you should remember that optimum use of the transmission<br />

capacity, long service life and high efficiency are possible only if<br />

the actual operating conditions are known, so that critical conditions<br />

can already be taken into account during the design stage.<br />

The project data sheet on page 44 is provided to help you with<br />

this task.<br />

Preliminary selection<br />

Use the diagram on page 5 to make a preliminary selection of the<br />

suitable belt pitch.<br />

Belt width<br />

Taking into account the inherent load of the timing belt, it is<br />

always a good idea to select a belt width that is smaller than the<br />

diameter of the smallest timing belt pulley. A wider timing belt, if<br />

mounted incorrectly, is more likely to cause varying edge tensions,<br />

which can prevent optimum running of the belt. In borderline<br />

cases, it is often better to select a larger pitch instead of a wider<br />

belt. If this is not possible, we recommend a belt pitch in 2 parallel<br />

running belt segments (of the same length), to reduce the<br />

transverse rigidity of the belt in combination with the small pulley<br />

diameters.<br />

Pulley diameter<br />

Use pulleys with the largest diameters possible! This makes optimal<br />

use of the power output range of the belt at high peripheral<br />

speeds. Pulleys with larger diameters have less bending stress and<br />

the belt does not have to be as wide.<br />

Safety factors<br />

The table on page 25 shows load factors that include the drive<br />

characteristics of various machine types as an increased safety<br />

factor.<br />

In addition to these safety factors, it can be extremely important<br />

to include starting and stopping processes together with the corresponding<br />

mass effects of the respective drive system as a design<br />

criterion for the safety considerations. Especially during stopping<br />

or locking processes, mass effect can cause inertia forces that are<br />

far above the maximum permissible tangential loads of the belts<br />

listed in the power output tables (pages 17 and 20).<br />

The use of suitable regulators (e.g. a soft start ramp controller for<br />

starting and stopping) or the use of suitable overload protection<br />

can greatly reduce the mass effect to optimize fail-safe operation.<br />

Abbreviations<br />

a<br />

a<br />

A<br />

b<br />

b R<br />

B<br />

B W<br />

C spez<br />

d B<br />

d a<br />

d w<br />

d wk<br />

d wg<br />

e<br />

F a<br />

F b<br />

F B<br />

F H<br />

F P<br />

F R<br />

F t<br />

F U<br />

F V<br />

F zul<br />

g<br />

h S<br />

h t<br />

i<br />

l w<br />

l t<br />

M<br />

m<br />

m L<br />

m R<br />

m ges<br />

m Z<br />

m Z, red<br />

n<br />

n MOT<br />

P<br />

P B<br />

P N<br />

S Bruch<br />

S G<br />

S 1<br />

S 2<br />

S 3<br />

S 4<br />

S 5<br />

S 6<br />

S 7<br />

t<br />

v<br />

z<br />

z e<br />

z g<br />

z k<br />

Temperature expansion coefficient<br />

Acceleration<br />

Centre distance of axes<br />

Braking deceleration<br />

Belt width<br />

Pulley width<br />

Flexural fatigue<br />

Specific spring constant<br />

Bore diameter<br />

Outer diameter<br />

Pitch diameter<br />

Pitch diameter of small pulley<br />

Pitch diameter of large pulley<br />

Stretching<br />

Acceleration force<br />

Braking force<br />

Driving force, calculated<br />

Lifting force<br />

Test load for belt tension<br />

Friction force<br />

Span tension<br />

Tangential load<br />

Initial tension<br />

Maximum permissible tangential load<br />

Acceleration of gravity<br />

Belt thickness<br />

Tooth height<br />

Transmission ratio<br />

Pitch length<br />

Taut side<br />

Torque<br />

Mass<br />

Mass of load<br />

Mass of belt<br />

Total weight<br />

Mass of timing belt pulley<br />

Reduced mass of timing belt pulley<br />

Speed<br />

Motor speed<br />

Power output<br />

Calculated power output<br />

Rated power output<br />

Security against fracture<br />

Total application factor<br />

Load factor<br />

Tooth mesh factor<br />

Transmission allowance<br />

Bending factor<br />

Special application factor<br />

Belt length factor<br />

Belt width factor<br />

Pitch<br />

Speed<br />

Number of belt pulleys<br />

Number of meshing teeth<br />

Number of teeth, large pulley<br />

Number of teeth, small pulley<br />

1/K<br />

m/s 2<br />

mm<br />

m/s 2<br />

mm<br />

mm<br />

1/s<br />

N<br />

mm<br />

mm<br />

mm<br />

mm<br />

mm<br />

%<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

N<br />

m/s 2<br />

mm<br />

mm<br />

mm<br />

mm<br />

Nm<br />

kg<br />

kg<br />

kg<br />

kg<br />

kg<br />

kg<br />

l/min<br />

l/min<br />

kW<br />

kW<br />

kW<br />

m/s<br />

(The formula collection applies to all timing belt catalogs;<br />

therefore, it is possible that not all abbreviations occur in<br />

this catalog).


<strong>Walther</strong> <strong>Flender</strong> Gruppe<br />

PolyChain ® <strong>GT</strong> <strong>Timing</strong> <strong>Belts</strong> PAGE 24<br />

Formulas<br />

Torque<br />

M = P · 9.55 · 103 = F U · d W [Nm]<br />

n 2 · 10 3<br />

Power output<br />

P = M · n = F U · v [kW]<br />

9.55 · 103 10 3<br />

Tangential load<br />

F U = P · 103 = M · 2 · 10 3 [N]<br />

v d w<br />

Speed<br />

n = 19.1 · 103 · v [min -1 ]<br />

d w<br />

Peripheral speed<br />

v = d w · n m<br />

19.1 · 103 s<br />

Acceleration force<br />

F a = m · a [N]<br />

Braking force<br />

F b = m · b [N]<br />

n, v<br />

Lifting force<br />

F H = m · g [N]<br />

Friction force<br />

F R = m · g · µ [N]<br />

Mass<br />

n, v = const.<br />

m = m L + m R + m Zred [kg]<br />

with m R = I W · m G<br />

Reduced mass of timing belt pulley<br />

mZred = mZ · ( 1 + dB 2<br />

) [kg]<br />

2 da<br />

2<br />

Mass of timing belt pulley<br />

mZ = (d 2 –<br />

a d 2) · p · B · V<br />

B [kg]<br />

4 · 106<br />

V = density<br />

Stretching<br />

e = DI · 100 [%]<br />

It<br />

Flexural fatigue<br />

B w = v · z · 103 [1/s]<br />

I w<br />

v = d0 . π . n = d0 . n<br />

60 19,1<br />

startup braking<br />

t a = v<br />

a<br />

sa = v2<br />

2 . a<br />

t = s<br />

v<br />

s = v . t<br />

t ges = t a + t + t b<br />

s ges = s a + s + s b<br />

Motion equations for acceleration and stopping processes<br />

t, s<br />

t a<br />

S a<br />

t b<br />

S b<br />

: startup time<br />

: startup path<br />

: braking time<br />

: braking path


<strong>Walther</strong> <strong>Flender</strong> Gruppe<br />

PolyChain ® <strong>GT</strong> <strong>Timing</strong> <strong>Belts</strong> PAGE 25<br />

Load factor S 1<br />

The load factor S 1 is found in the intersecting point of the<br />

previously classified driven machine (row) and in the machine<br />

Driven machines Drive<br />

For machines not listed, select a safety factor that most nearly<br />

corresponds to one of the listed groups.<br />

Class The different types of driven machines<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

filling systems, measuring devices, medical<br />

instruments<br />

floor cleaning equipment, sewing machines,<br />

office machines, light-duty woodworking<br />

machines, band saws, drills and lathes<br />

conveyor systems for small packages, wood slats,<br />

presses, lathes, washing machines, heavy-duty<br />

woodworking machines, sawing machines<br />

stirring machines for viscous liquids, dough<br />

mixers, conveyor belts: coal, sand, ore, shaft<br />

drives, drills, lathes, screwdrivers, peeling<br />

machines, grinding machines, circular saws,<br />

planing machines, paper machines (except<br />

masticators) pressing-embossing machines,<br />

shears, printing presses, centrifugal pumps and<br />

compressors, vibration machines<br />

tile-moulding machines, conveyor belts, fans,<br />

generators, centrifugal blowers, elevators / lifting<br />

gear, extruders<br />

brick and clay machines, conveyor systems:<br />

flat and bucket lifts/worm screws, centrifuges,<br />

hammer mills, paper machines, textile machines<br />

class of the driven machine in question, taking into account the<br />

duty cycle (column).<br />

AC and three-phase motors, normal<br />

starting torque, e.g. with short circuit<br />

rotor motors, compound DC motors,<br />

internal combustion engines with more<br />

than 4 cylinders<br />

short-term<br />

operation<br />

3 – 8 hours<br />

daily<br />

normal<br />

operation<br />

8 – 16 hours<br />

daily<br />

continuous<br />

operation<br />

16 – 24 hours<br />

daily<br />

AC and three-phase motors, high<br />

starting torque, e.g. single-phase and<br />

synchronous motors, three-phase<br />

braking motors, hydraulic motors,<br />

internal combustion engines with up to<br />

4 cylinders<br />

short-term<br />

operation<br />

3 – 8 hours<br />

daily<br />

normal<br />

operation<br />

8 – 16 hours<br />

daily<br />

continuous<br />

operation<br />

16 – 24 hours<br />

daily<br />

1.0 1.2 1.4 1.2 1.4 1.6<br />

1.1 1.3 1.5 1.3 1.5 1.7<br />

1.2 1.4 1.6 1.6 1.8 2.0<br />

1.3 1.5 1.7 1.6 1.8 2.0<br />

1.4 1.6 1.8 1.8 2.0 2.2<br />

1.5 1.7 1.9 1.9 2.1 2.3<br />

7 pulverising machines, ventilators for mines 1.6 1.8 2.0 2.0 2.2 2.4<br />

8<br />

piston compressors, mills: ball mill, rubble mill<br />

and sawmill equipment, piston pumps<br />

1.7 1.9 2.1 2.1 2.3 2.5<br />

The listed safety factors can be used as reference values for numerous applications, but they cannot replace a detailed technical assessment<br />

of the particular application.


<strong>Walther</strong> <strong>Flender</strong> Gruppe<br />

PolyChain ® <strong>GT</strong> <strong>Timing</strong> <strong>Belts</strong> PAGE 26<br />

Calculation method<br />

To select a suitable <strong>PolyChain®</strong> <strong>GT</strong>2 timing belt drive system, you<br />

need the following data:<br />

1. Power output and type of drive machine and driven machine<br />

2. Operation time<br />

3. Speed of drive machine and driven machine<br />

4. Centre distance of axes of the drive system<br />

Step 1:<br />

Determine the calculated power output<br />

A. To determine the calculated power output, firs you have to define<br />

the load factor S 1 of the drive from the table on page 25.<br />

B. Multiply this load factor times the input power. The result is the<br />

calculated power output required for defining the belt drive.<br />

P B = P N · S 1<br />

Step 2:<br />

Select the timing belt pitch<br />

A. Enter the calculated power output in the “Selection diagram for<br />

belt pitch” (page 5) on the horizontal axis. Use the speed of the<br />

faster shaft (or of the small timing belt pulley) for the vertical<br />

axis.<br />

B. The timing belt belt pitch for further calculations can be found<br />

at the point where the two factors intersect. If the point of<br />

intersection is near the separation between 8 mm and 14 mm<br />

pitch, it is recommended to calculate the drive system for both<br />

pitches and to use the drive system that is best suited for your<br />

application.<br />

Step 3:<br />

Select the timing belt width<br />

For all transmission and reduction drive systems<br />

A. The power output tables on pages 17 and 20 contain the values<br />

for the smallest standard belt width. A different width factor has<br />

to be used for larger belt widths. The column on the left side of<br />

the power output table contains the speed of the small timing<br />

belt pulley; the line above the table contains the number of<br />

teeth of the timing belt pulley and its pitch diameter. The power<br />

output of the timing belt can be found at the point where the<br />

pulley speed and the number of pulley teeth intersect.<br />

B. Select a belt width and determine the corresponding power<br />

output. Multiply this power output value times the timing belt<br />

length correction factor S 6 , which can be found in the table under<br />

the power output table* to determine the corrected power<br />

output.<br />

P KORR = P TAB, S.17ff. · S 6 · S 7<br />

* Factors S 6 and S 7 are explained on pages 19 and 22.<br />

If the corrected power output is equal to or greater than the calculated<br />

power output, this belt width can be used. If not, repeat this<br />

step with the next larger timing belt width. If the largest belt width<br />

does not produce satisfactory results, you should use a larger timing<br />

belt pulley or, if possible, a larger pitch.<br />

P KORR > P B · S 2<br />

Note:<br />

Depending on the degree of acceleration and braking torque and<br />

the frequency of reversal of motion, the timing belt pulley diameter<br />

should be as large as possible with a minimum of 12 meshing teeth.<br />

If the number of meshing teeth is less than 6, this has to be compensated<br />

for with the correction factor S 2 in the drive calculation.<br />

Tooth mesh factor S 2<br />

Number of meshing teeth 5 4 3 2<br />

S2 1.25 1.66 2.5 5.0<br />

Number of meshing teeth Ze on the small pulley:<br />

Ze = Z k [<br />

3 – d wg – d wk ]<br />

6 A<br />

C. If the calculation results in several possible combinations<br />

of timing belt pulleys, you should observe the following<br />

principles:<br />

a. A larger timing belt pulley diameter requires a smaller timing<br />

belt width.<br />

b. The belt width should not be greater than the diameter<br />

of the smallest timing belt pulley.<br />

c. Large timing belt pulley diameters reduce wear on the bearings<br />

and shaft.<br />

Step 4:<br />

Installation and belt tension<br />

Due to the low stretching tendency of the tensile member,<br />

<strong>PolyChain®</strong> <strong>GT</strong>2 belts generally require no re-tightening. Adjustments<br />

must be made during installation of the belts to compensate<br />

for production tolerances and to set a specified initial tension.<br />

The recommended radial settings of the centre distance of axes<br />

are listed on page 14.<br />

Step 5:<br />

Calculation of initial belt tension<br />

The initial required tension is calculated based on the equations<br />

on page 13.<br />

Step 6:<br />

Select the drive components<br />

Based on the calculated drive system data and geometries, you can<br />

select a suitable drive component combination from the standard<br />

line of pulleys. In special cases, it may be necessary to manufacture<br />

custom pulleys according to your drawing specifications.


<strong>Walther</strong> <strong>Flender</strong> Gruppe<br />

PolyChain ® <strong>GT</strong> <strong>Timing</strong> <strong>Belts</strong> PAGE 27<br />

Sample calculation<br />

Drive data<br />

Drive:<br />

Three-phase motor, high starting torque P = 5 kW at<br />

n 1 = 1750 min-1<br />

Duty cycle 6 hours daily<br />

Step-up ratio<br />

Step 1:<br />

Determine the calculated power output P B<br />

Output:<br />

Woodworking machine, n 2 = 2150 min-1<br />

Centre distance of axes ca. 430 mm.<br />

Calculation steps Results<br />

A. Type of drive machine: You will find the drive motor used in the third class<br />

in the table on page 15.<br />

B. Load factor from table (woodworking machines): 1,6.<br />

C. Calculated power output = Load factor x drive power<br />

P B = S 1 x P N<br />

Step 2:<br />

Select the pitch<br />

From the “Selection diagram for belt pitch” on page 5<br />

you see that: at 8 kW and 2150 min -1 a pitch of 8 mm is recommended.<br />

Select the combination of timing belt pulleys, timing belt length,<br />

Calculate the centre distance of axes:<br />

1. Calculation of the transmission ratio<br />

i = 2150 = 1.23<br />

1750<br />

2. Select the number of pulley teeth<br />

based on the required transmission i<br />

e.g. z 1 = 34; z 2 = 28 i = 1.214<br />

3. Select the timing belt length analogous to the existing pitch lengths of the<br />

pitch 8M<br />

e.g. I w = 1120 mm<br />

4. Calculate the centre distance of axes with the corresponding factors<br />

(Separate formula collection, to be provided on request)<br />

A = 435.93 mm<br />

Step 3:<br />

Select the belt width<br />

In the power output table on page 17, for a timing belt pulley with 28 teeth<br />

at a speed of 2,150 min -1 a power output of P TAB, z 1 = P TAB · S 6 · S 7 = 14,8 kW<br />

is specified for a belt width of 21 mm. This power output is higher than<br />

the calculated power output P B = 8 kW, multiplied by the tooth mesh<br />

factor (S 2 = 1)<br />

Step 4:<br />

Installation and mounting data<br />

According to the tables on page 14, the minimum travel of a shaft to the initial<br />

belt tension is –2.8 mm/+0.8 mm.<br />

Step 5:<br />

Calculation of initial belt tension<br />

Use the equation on page 15.<br />

Load factor S 1 = 1.6<br />

Calculated power output = 1.6 x 5 = 8 kW<br />

Belt pitch = 8 mm<br />

i = 1.23<br />

selected:<br />

z 1 8M - 34 S<br />

z 2 8M - 28 S<br />

selected:<br />

<strong>Timing</strong> belt length = 1120 mm<br />

Centre distance of axes: 435.93 mm<br />

Belt width b = 21 mm<br />

Minimum travel to belt tension:<br />

–2.8 mm / +0.8 mm<br />

Deflection force = 12.6 N<br />

Deflection = 4.4 mm


<strong>Walther</strong> <strong>Flender</strong> Gruppe<br />

PolyChain ® <strong>GT</strong> <strong>Timing</strong> <strong>Belts</strong> PAGE 28<br />

Standard line of timing belt pulleys<br />

Pitch 8 mm<br />

Poly Chain® 8M-12 All dimensions in mm<br />

<strong>Timing</strong> belt<br />

pulley designation<br />

Number<br />

of<br />

teeth<br />

<strong>Timing</strong><br />

belt pulley<br />

type<br />

Bush<br />

number<br />

Max.<br />

bore<br />

holes<br />

Diameter<br />

Pitch Outer<br />

Comment: The timing belt pulleys are available in grey cast iron or<br />

steel. Both types provide the required durability and reliability. We<br />

reserve the right to deliver standard pulleys in either version.<br />

In case of peripheral speeds higher than 40 m/s, please contact our<br />

application engineers.<br />

Rim<br />

flange<br />

A B E F K L M Weight<br />

(kg)<br />

Mass<br />

moment of<br />

inertia 10-4 (kgm2 )<br />

8M-22S-12 22 1F* VB/12 28** 56.02 54.42 60 – 43 10 20 – 30 – 0.42 1.44<br />

8M-25S-12 25 2F* 1108 28 63.66 62.06 70 – 49 2 20 – 22 – 0.43 2.11<br />

8M-28S-12 28 2F* 1108 28 71.30 69.70 75 – 56 2 20 – 22 – 0.60 3.79<br />

8M-30S-12 30 2F* 1210 32 76.39 74.79 82,5 – 60 5 20 – 25 – 0.67 5.16<br />

8M-32S-12 32 2F* 1610 42 81.49 79.89 87 – 66 5 20 – 25 – 0.77 6.55<br />

8M-34S-12 34 2F* 1610 42 86.58 84.98 91 – 69 5 20 – 25 – 0.88 8.27<br />

8M-36S-12 36 2F* 1610 42 91.67 90.07 97 – 76 5 20 – 25 – 1.02 11.06<br />

8M-38S-12 38 2F* 1610 42 96.77 95.17 102 – 78 5 20 – 25 – 1.15 13.52<br />

8M-40S-12 40 2F* 1610 42 101.86 100.26 106 – 85 5 20 – 25 – 1.19 15.38<br />

8M-45S-12 45 2F* 2012 50 114.59 112.99 120 – 92 12 20 – 32 – 1.76 27.16<br />

8M-48S-12 48 2F* 2012 50 122.23 120.63 128 – 103 12 20 – 32 – 2.16 39.27<br />

8M-50S-12 50 2F* 2012 50 127.32 125.72 135 – 104 12 20 _ 32 – 2.28 43.43<br />

8M-56S-12 56 2F* 2012 50 142.60 141.00 150 – 104 12 20 – 32 – 2.83 66.17<br />

8M-60S-12 60 2F* 2012 50 152.79 151.19 158 – 111 12 20 – 32 _ 3.24 87.72<br />

8M-64S-12 64 2F* 2012 50 162.97 161.37 168 – 111 12 20 – 32 – 3.51 103.96<br />

8M-75S-12 75 2* 2012 50 190.99 189.39 – – 111 12 20 – 32 – 4.57 182.30<br />

8M-80S-12 80 2* 2012 50 203.72 202.12 – – 111 12 20 – 32 – 5.13 234.08<br />

8M-90S-12 90 2* 2012 50 229.18 227.58 – – 111 12 20 – 32 – 6.37 372.11<br />

Poly Chain® 8M-21 All dimensions in mm<br />

<strong>Timing</strong> belt<br />

pulley designation <br />

Number<br />

of<br />

teeth<br />

<strong>Timing</strong><br />

belt pulley<br />

type<br />

Bush<br />

number<br />

Max.<br />

bore<br />

holes<br />

Diameter<br />

Pitch Outer<br />

Rim<br />

flange<br />

A B E F K L M Weight<br />

(kg)<br />

Mass<br />

moment of<br />

inertia 10-4 (kgm2 )<br />

8M-22S-21 22 1F* VB/12 28** 56.02 54.42 60 – 43 10 30 – 40 – 0.57 1.99<br />

8M-25S-21 25 1F* 1108 28 63.66 62.06 70 – – – 30 8 22 – 0.60 2.92<br />

8M-28S-21 28 3F* 1210 32 71.30 69.70 75 – – – 30 5 25 – 0.75 4.80<br />

8M-30S-21 30 3F* 1210 32 76.39 74.79 82,5 – – – 30 5 25 – 0.83 6.42<br />

8M-32S-21 32 3F* 1610 42 81.49 79.89 87 – – – 30 5 25 – 0.97 8.40<br />

8M-34S-21 34 3F* 1610 42 86.58 84.89 91 – – – 30 5 25 – 1.12 10.83<br />

8M-36S-21 36 3F* 1610 42 91.67 90.07 97 – – – 30 5 25 – 1.29 13.99<br />

8M-38S-21 38 3F* 1610 42 96.77 95.17 102 – – – 30 5 25 – 1.34 16.02<br />

8M-40S-21 40 3F* 1610 42 101.86 100.26 106 – – – 30 5 25 – 1.50 19.74<br />

8M-45S-21 45 2F* 2012 50 114.59 112.99 120 – 92 2 30 – 32 – 2.03 32.88<br />

8M-48S-21 48 2F* 2012 50 122.23 120.63 128 – 103 2 30 – 32 – 2.24 42.90<br />

8M-50S-21 50 2F* 2012 50 127.32 125.72 135 – 104 2 30 – 32 – 2.42 49.20<br />

8M-56S-21 56 2F* 2012 50 142.60 141.00 150 – 111 2 30 – 32 – 3.20. 80.30<br />

8M-60S-21 60 2F* 2517 60 152.79 151.19 158 – 124 15 30 – 45 – 4.66 127.25<br />

8M-64S-21 64 2F* 2517 60 162.97 161.37 168 – 124 15 30 – 45 – 5.28 158.77<br />

8M-75S-21 75 2* 2517 60 190.99 189.39 – – 124 15 30 – 45 – 6.77 276.69<br />

8M-90S-21 80 2* 2517 60 203.72 202.12 – – 124 15 30 – 45 – 7.61 353.26<br />

8M-80S-21 90 9* 2517 60 229.18 227.58 – 198 124 – 30 7.5 45 7.5 8.57 499.05<br />

8M-112S-21 112 9* 2517 60 285.21 283.61 – 253 124 – 30 7.5 45 7.5 12.50 1155.88<br />

8M-140S-21 140 10* 3020 75 356.51 354.91 – 324 150 – 30 7.5 51 10.5 12.79 1699.74<br />

* Illustrations of the types of timing belt pulley can be found on page 32.<br />

** DIN 6885 T3<br />

VB/12 = pre-bore (min. diameter 12 mm)<br />

In some cases, the use of standard pulleys – depending on the<br />

bore diameter and loads – can exceed the slipping torques of the<br />

Taper Lock® clamping bushes. At higher torque loads, therefore,<br />

compliance with the maximum permissible values should be<br />

ensured.


<strong>Walther</strong> <strong>Flender</strong> Gruppe<br />

PolyChain ® <strong>GT</strong> <strong>Timing</strong> <strong>Belts</strong> PAGE 29<br />

Poly Chain® 8M-36 All dimensions in mm<br />

<strong>Timing</strong> belt<br />

pulley designation <br />

Number<br />

of<br />

teeth<br />

<strong>Timing</strong><br />

belt pulley<br />

type<br />

Bush<br />

number<br />

Max.<br />

bore<br />

holes<br />

Diameter<br />

Pitch Outer<br />

Rim<br />

flange<br />

A B E F K L M Weight<br />

(kg)<br />

Mass<br />

moment of<br />

inertia 10-4 (kgm2 )<br />

8M-25S-36 25 1F* VB/12 32 63.66 62.06 70 – 49 10 45 – 55 – 1.02 4.65<br />

8M-28S-36 28 3F* 1210 32 71.30 69.70 75 – – – 45 – – – 1.11 6.92<br />

8M-30S-36 30 3F* 1610 42 76.39 74.79 82,5 – – – 45 – – – 1.22 9.26<br />

8M-32S-36 32 3F* 1610 42 81.49 79.89 87 – – – 45 – – – 1.45 12.37<br />

8M-34S-36 34 3F* 1610 42 86.58 84.98 91 – – – 45 – – – 1.66 15.77<br />

8M-36S-36 36 3F* 1610 42 91.67 90.07 97 – – – 45 – – – 1.90 20.28<br />

8M-38S-36 38 3F* 1610 42 96.77 95.17 102 – – – 45 – – – 2.21 26.28<br />

8M-40S-36 40 3F* 2012 50 101.86 100.26 106 – – – 45 – – – 2.36 31.19<br />

8M-45S-36 45 3F* 2012 50 114.59 112.99 120 – – – 45 – – – 3.07 50.17<br />

8M-48S-36 48 3F* 2012 50 122.23 120.63 128 – – – 45 – – – 3.30 62.31<br />

8M-50S-36 50 3F* 2012 50 127.32 125.72 135 – – – 45 – – – 3.58 72.25<br />

8M-56S-36 56 3F* 2517 60 142.60 141.00 150 – – – 45 – – – 4.48 115.19<br />

8M-60S-36 60 3F* 2517 60 152.79 151.19 158 – – – 45 – – – 5.30 157.20<br />

8M-64S-36 64 3F* 2517 60 162.97 161.37 168 – – – 45 – – – 6.19 191.32<br />

8M-75S-36 75 2* 3020 75 190.99 189.39 – – 150 6 45 – 51 – 8.72 392.22<br />

8M-80S-36 80 2* 3020 75 203.72 202.12 – – 150 6 45 – 51 – 9.96 505.75<br />

8M-90S-36 90 9* 3020 75 229.18 227.58 – 197 150 – 45 3 51 3 10.41 636.42<br />

8M-112S-36 112 9* 3020 75 285.21 283.61 – 253 150 – 45 3 51 3 14.01 1326.76<br />

8M-140S-36 140 10* 3020 75 356.51 354.91 – 324 150 – 45 3 51 3 11.98 1747.45<br />

8M-168S-36 168 10* 3525 100 427.81 426.21 – 396 198 – 45 10 65 10 23.91 4693.42<br />

8M-192S-36 192 10* 3525 100 488.92 487.32 – 457 198 – 45 10 65 10 26.53 7055.91<br />

Poly Chain® 8M-62<br />

<strong>Timing</strong> belt<br />

pulley designation <br />

Number<br />

of<br />

teeth<br />

<strong>Timing</strong><br />

belt pulley<br />

type<br />

Bush<br />

number<br />

Max.<br />

bore<br />

holes<br />

Diameter<br />

Pitch Outer<br />

Comment: The timing belt pulleys are available in grey cast iron or<br />

steel. Both types provide the required durability and reliability. We<br />

reserve the right to deliver standard pulleys in either version.<br />

In case of peripheral speeds higher than 40 m/s, please contact our<br />

application engineers.<br />

Rim<br />

flange<br />

A B E F K L M Weight<br />

(kg)<br />

All dimensions in mm<br />

Mass<br />

moment of<br />

inertia 10-4 (kgm2 )<br />

8M-30S-62 30 1F* VB/20 42 76.39 74.79 82,5 – 63 12 72 – 84 – 2.45 16.25<br />

8M-32S-62 32 1F* VB/20 50** 81.49 79.89 87 – 68 12 72 – 84 – 2.82 21.31<br />

8M-34S-62 34 1F* VB/20 55** 86.58 84.98 91 – 69 12 72 – 84 – 3.17 28.47<br />

8M-36S-62 36 1F* VB/20 60** 91.67 90.07 97 – 76 12 72 – 84 – 3.52 34.89<br />

8M-38S-62 38 1F* VB/20 60 96.77 95.17 102 – 78 12 72 – 84 – 3.91 44.51<br />

8M-40S-62 40 3F* 2012 50 101.86 100.26 106 – – – 72 – – – 3.76 49.43<br />

8M-45S-62 45 3F* 2012 50 114.59 112.99 120 – – – 72 – – – 4.88 79.37<br />

8M-48S-62 48 3F* 2517 60 122.23 120.63 128 – – – 72 – – – 5.52 105.81<br />

8M-50S-62 50 3F* 2517 60 127.32 125.72 135 – – – 72 – – – 6.03 123.91<br />

8M-56S-62 56 6F* 2517 60 142.60 141.00 150 111 - – 72 13.5 45 13.5 5.43 152.66<br />

8M-60S-62 60 6F* 2517 60 152.79 151.19 158 121 – – 72 13.5 45 13.5 6.33 204.79<br />

8M-64S-62 64 6F* 2517 60 162.97 161.37 168 131 – – 72 13.5 45 13.5 7.11 258.10<br />

8M-75S-62 75 6* 3020 75 190.99 189.39 – 159 – – 72 10.5 51 10.5 9.99 485.34<br />

8M-80S-62 80 6* 3020 75 203.72 202.12 – 172 – – 72 10.5 51 10.5 11.44 628.73<br />

8M-90S-62 90 6* 3020 75 229.18 227.58 – 197 – – 72 10.5 51 10.5 14.94 1045.29<br />

–<br />

8M-112S-62 112 7* 3020 75 285.21 283.61 – 253 150 – 72 10.5 51 10.5 14.94 1540.46<br />

8M-140S-62 140 7* 3525 100 356.51 354.91 – 324 198 – 72 3.5 65 3.5 24.77 3953.51<br />

8M-168S-62 168 8* 3525 100 427.81 426.21 – 396 198 – 72 3.5 65 3.5 28.39 5812.58<br />

8M-192S-62 192 8* 3525 100 488.92 487.32 – 457 198 – 72 3.5 65 3.5 32.18 8880.82<br />

* Illustrations of the types of timing belt pulley can be found on page 32.<br />

** DIN 6885 T3<br />

VB/12 = pre-bore (min. diameter 12 mm)<br />

In some cases, the use of standard pulleys – depending on the<br />

bore diameter and loads – can exceed the slipping torques of the<br />

Taper Lock® clamping bushes. At higher torque loads, therefore,<br />

compliance with the maximum permissible values should be<br />

ensured.


<strong>Walther</strong> <strong>Flender</strong> Gruppe<br />

PolyChain ® <strong>GT</strong> <strong>Timing</strong> <strong>Belts</strong> PAGE 30<br />

Pitch 14 mm<br />

Poly Chain® 14M-37 All dimensions in mm<br />

<strong>Timing</strong><br />

belt pulley<br />

designation<br />

Number<br />

of<br />

teeth<br />

<strong>Timing</strong><br />

belt pulley<br />

type<br />

Bush<br />

number<br />

Max.<br />

bore<br />

holes<br />

Diameter<br />

Pitch Outer<br />

Comment: The timing belt pulleys are available in grey cast iron or<br />

steel. Both types provide the required durability and reliability. We<br />

reserve the right to deliver standard pulleys in either version.<br />

In case of peripheral speeds higher than 40 m/s, please contact our<br />

application engineers.<br />

Rim<br />

flange<br />

A B E F K L M Weight<br />

(kg)<br />

Mass<br />

moment of<br />

inertia 10-4 (kgm2 )<br />

14M-28S-37 28 5F* 2012 50 124.78 121,98 128 88 – – 51 – 32 19 2.97 62.80<br />

14M-30S-37 30 6F* 2517 60 133.69 130.89 138 98 – – 51 3 45 3 3.81 84.85<br />

14M-32S-37 32 6F* 2517 60 142.60 139.80 154 100 – – 51 3 45 3 4.53 116.65<br />

14M-34S-37 34 6F* 2517 60 151.52 148.72 160 109 – – 51 3 45 3 5.06 142.79<br />

14M-36S-37 36 5F* 2517 60 160.43 157.63 168 117 – – 51 – 45 6 5.92 172.60<br />

14M-38S-37 38 5F* 2517 60 169.34 166.54 183 126 – – 51 – 45 6 6.51 230.24<br />

14M-40S-37 40 5F* 2517 60 178.25 175.45 188 135 – – 51 – 45 6 7.31 288.92<br />

14M-44S-37 44 3F* 3020 75 196.08 193.28 211 – – – 51 – – – 9.44 452.35<br />

14M-48S-37 48 3F* 3020 75 213.90 211.11 226 – – – 51 – – – 11.44 646.57<br />

14M-50S-37 50 3F* 3020 75 222.82 220.02 240 – – – 51 – – – 12.62 780.73<br />

14M-56S-37 56 7F* 3020 75 249.55 246.76 256 207 144 – 51 0 51 0 12.70 973.88<br />

14M-60S-37 60 7* 3020 75 267.38 264.58 – 224 159 – 51 0 51 0 14.23 1191.25<br />

14M-64S-37 64 7* 3020 75 285.21 282.41 – 242 159 – 51 0 51 0 15.58 1489.35<br />

14M-72S-37 72 7* 3020 75 320.86 318.06 – 278 159 – 51 0 51 0 17.24 2099.86<br />

14M-80S-37 80 7* 3020 75 356.51 353.71 – 314 159 – 51 0 51 0 20.32 3097.72<br />

90<br />

14M-90S-37 8* 3020 75 401.07 398.27 – 360 159 – 51 0 51 0 29.85 6445.74<br />

14M-112S-37 112 8* 3020 75 499.11 496.31 – 456 159 – 51 0 51 0 27.43 9264.40<br />

14M-140S-37 140 10* 3525 100 623.89 621.09 – 581 206 – 51 7 65 7 33.55 15022.96<br />

14M-168S-37 168 10* 3525 100 748.66 745.87 – 706 206 – 51 7 65 7 64.50 47001.90<br />

14M-192S-37 192 10* 4030 115 855.61 852.82 – 812 215 – 51 12.5 76 12.5 83.82 81467.11<br />

Poly Chain® 14M-68<br />

<strong>Timing</strong><br />

belt pulley<br />

designation<br />

Number<br />

of<br />

teeth<br />

<strong>Timing</strong><br />

belt pulley<br />

type<br />

Bush<br />

number<br />

Max.<br />

bore<br />

holes<br />

Diameter<br />

Pitch Outer<br />

Rim<br />

flange<br />

A B E F K L M Weight<br />

(kg)<br />

All dimensions in mm<br />

Mass<br />

moment of<br />

inertia 10-4 (kgm2 )<br />

14M-34S-68 34 1F* VB/40 100 151.52 148.72 160 – 132 20 84 – 104 – 6.25 234.69<br />

14M-36S-68 36 1F* VB/40 110** 160.43 157.63 168 – 131 20 84 – 104 – 6.68 273.17<br />

14M-38S-68 38 1F* VB/40 115** 169.34 166.54 183 – 141 20 84 – 104 – 7.46 359.51<br />

14M-40S-68 40 1F* VB/40 125** 178.25 175.45 188 – 156 20 84 – 104 – 7.81 430.15<br />

14M-44S-68 44 6F* 3020 75 196.08 193.28 211 153 – – 84 16.5 51 16.5 11.54 604.33<br />

14M-48S-68 48 5F* 3020 75 213.90 211.11 226 171 – – 84 – 51 33 13.74 850.56<br />

14M-50S-68 50 6F* 3525 100 222.82 220.02 240 180 – – 84 9.5 65 9.5 16.63 1110.47<br />

14M-56S-68 56 6F* 3525 100 249.55 246.76 256 207 – – 84 9.5 65 9.5 21.15 1740.42<br />

14M-60S-68 60 6* 3525 100 267.38 264.58 – 224 – – 84 9.5 65 9.5 24.28 2250.33<br />

14M-64S-68 64 6* 3525 100 285.21 282.41 – 242 – – 84 9.5 65 9.5 27.86 2925.48<br />

14M-72S-68 72 7* 3525 100 320.86 318.06 – 278 – – 84 9.5 65 9.5 25.74 3353.92<br />

14M-80S-68 80 7* 3525 100 356.51 353.71 – 314 – – 84 9.5 65 9.5 29.86 4827.78<br />

14M-90S-68 90 8* 3525 100 401.07 398.27 – 360 – – 84 9.5 65 9.5 31.24 6694.20<br />

14M-112S-68 112 8* 3525 100 499.11 496.31 – 456 – – 84 9.5 65 9.5 39.25 13299.34<br />

14M-140S-68 140 8* 3525 100 623.89 621.09 581 – – 84 9.5 65 9.5 40.87 21569.65<br />

14M-168S-68 168 8* 3525 100 748.66 745.87 – 706 – – 84 9.5 65 9.5 73.30 58491.40<br />

14M-192S-68 192 8* 4030 115 855.61 852.82 – 812 – – 84 4 76 4 94.21 99321.99<br />

* Illustrations of the types of timing belt pulley can be found on page 32.<br />

** DIN 6885 T3<br />

VB/40 = pre-bore (min. diameter 12 mm)<br />

In some cases, the use of standard pulleys – depending on the<br />

bore diameter and loads – can exceed the slipping torques of the<br />

Taper Lock® clamping bushes. At higher torque loads, therefore,<br />

compliance with the maximum permissible values should be<br />

ensured.


<strong>Walther</strong> <strong>Flender</strong> Gruppe<br />

PolyChain ® <strong>GT</strong> <strong>Timing</strong> <strong>Belts</strong> PAGE 31<br />

Poly Chain® 14M-90 All dimensions in mm<br />

<strong>Timing</strong><br />

belt pulley<br />

designation<br />

Number<br />

of<br />

teeth<br />

<strong>Timing</strong><br />

belt<br />

pulley<br />

type<br />

Bush<br />

number<br />

Max.<br />

bore<br />

holes<br />

Diameter<br />

Pitch Outer<br />

Comment: The timing belt pulleys are available in grey cast iron or<br />

steel. Both types provide the required durability and reliability.<br />

We reserve the right to deliver standard pulleys in either version.<br />

In case of peripheral speeds higher than 40 m/s, please contact our<br />

application engineers.<br />

Rim<br />

flange<br />

A B E F K L M Weight<br />

(kg)<br />

Mass<br />

moment of<br />

inertia 10-4 (kgm2 )<br />

14M-36S-90 36 1F* VB/50 110** 160.43 157.63 168 – 131 30 106 – 136 – 8.15 333.81<br />

14M-38S-90 38 1F* VB/50 115** 169.34 166.50 183 – 141 30 106 – 136 – 9.73 467.27<br />

14M-40S-90 40 1F* VB/50 125** 178.25 175.45 188 – 156 30 106 – 136 – 10.29 564.50<br />

14M-44S-90 44 1F* VB/50 140** 196.08 193.28 211 – 169 30 106 – 136 – 11.92 805.17<br />

14M-48S-90 48 6F* 3525 100 213.90 211.11 226 171 – – 106 20 66 20 16.76 1069.46<br />

14M-50S-90 50 6F* 3525 100 222.82 220.02 240 180 – – 106 20 66 20 18.38 1272.88<br />

14M-56S-90 56 6F* 3525 100 249.55 246.76 256 207 – – 106 20 66 20 23.46 2016.82<br />

14M-60S-90 60 6* 3525 100 267.38 264.58 – 224 – – 106 20 66 20 26.53 2558.85<br />

14M-64S-90 64 6* 3525 100 285.21 282.41 – 242 – – 106 20 66 20 30.30 3308.24<br />

14M-72S-90 72 7* 3525 100 320.86 318.06 – 278 178 – 106 20 66 20 26.36 3633.18<br />

14M-80S-90 80 7* 4030 115 356.51 353.71 – 314 215 – 106 15 76 15 35.61 5650.71<br />

14M-90S-90 90 7* 4030 115 401.07 398.27 – 360 215 – 106 15 76 15 41.90 7979.09<br />

14M-112S-90 112 8* 4535 125 499.11 469.31 – 456 215 – 106 8 90 8 70.89 23322.89<br />

14M-140S-90 140 8* 4535 125 623.89 621.09 – 581 215 – 106 8 90 8 74.56 39744.58<br />

14M-168S-90 168 8* 5040 130** 748.66 745.87 – 706 267 – 106 2 102 2 109.24 77064.15<br />

14M-192S-90 192 8* 5040 130** 855.61 852.82 – 812 267 – 106 2 102 2 126.05 119340.31<br />

Poly Chain® 14M-125<br />

<strong>Timing</strong><br />

belt pulley<br />

designation<br />

Number<br />

of<br />

teeth<br />

<strong>Timing</strong><br />

belt<br />

pulley<br />

type<br />

Bush<br />

number<br />

Max.<br />

bore<br />

holes<br />

Diameter<br />

Pitch Outer<br />

Rim<br />

flange<br />

A B E F K L M Weight<br />

(kg)<br />

All dimensions in mm<br />

Mass<br />

moment of<br />

inertia 10-4 (kgm2 )<br />

14M-38S-125 38 1F* VB/50 115** 169.34 166.54 183 – 141 20 141 – 161 – 11.74 566.16<br />

14M-40S-125 40 1F* VB/50 125** 178.25 175.45 188 – 156 20 141 – 161 – 12.23 673.08<br />

14M-44S-125 44 1F* VB/50 140** 196.08 193.28 211 – 169 20 141 – 161 – 14.46 981.64<br />

14M-48S-125 48 1F* VB/50 160** 213.90 211.11 226 – 185 20 141 – 161 – 14.70 1239.87<br />

14M-50S-125 50 6F* 3525 100 222.82 220.02 240 180 – – 141 38 65 38 20.93 1527.53<br />

14M-56S-125 56 6F* 3525 100 249.55 246.76 256 207 – – 141 38 65 38 25.91 2366.65<br />

14M-60S-125 60 6* 4030 115 267.38 264.58 – 224 – – 141 32.5 76 32.5 30.92 3083.08<br />

14M-64S-125 64 6* 4030 115 285.21 282.41 – 242 – – 141 32.5 76 32.5 35.34 3979.74<br />

14M-72S-125 72 7* 4030 115 320.86 318.06 – 278 215 – 141 32.5 76 32.5 37.71 5201.08<br />

14M-80S-125 80 7* 4030 115 356.51 353.71 – 314 215 – 141 32.5 76 32.5 42.02 7133.19<br />

14M-90S-125 90 7* 4030 115 401.07 398.27 – 360 215 – 141 32.5 76 32.5 51.29 11031.63<br />

14M-112S-125 112 8* 4535 125 499.11 496.31 – 456 215 – 141 26 89 26 65.64 22771.41<br />

14M-140S-125 140 8* 4535 125 623.89 621.09 – 581 215 – 141 26 89 26 67.90 38083.37<br />

14M-168S-125 168 8* 5040 125 748.66 745.87 – 706 267 – 141 19.5 102 19.5 120.66 90872.96<br />

14M-192S-125 192 8* 5040 125 855.61 825.82 – 812 267 – 141 19.5 102 19.5 142.39 144192.26<br />

* Illustrations of the types of timing belt pulley can be found on page 32.<br />

** DIN 6885 T3<br />

VB/40 = pre-bore (xmin. diameter 40 mm)<br />

In some cases, the use of standard pulleys – depending on the<br />

bore diameter and loads – can exceed the slipping torques of the<br />

Taper Lock® clamping bushes. At higher torque loads, therefore,<br />

compliance with the maximum permissible values should be<br />

ensured.


<strong>Walther</strong> <strong>Flender</strong> Gruppe<br />

PolyChain ® <strong>GT</strong> <strong>Timing</strong> <strong>Belts</strong> PAGE 32<br />

Models<br />

Type 1F Type 2 Type 2F Type 3F Type 5F Type 6 Type 6F<br />

Type 7 Type 7F Type 8 Type 9 Type 9F Type 10


Clamping sets


<strong>Walther</strong> <strong>Flender</strong> Gruppe<br />

Clamping sets Page 34<br />

General features<br />

MLC clamping sets provide a positive-locking, backlash-free<br />

connection that can be released at any time. This protects components<br />

such as the shaft and hub from damage from the phenomenon<br />

known as excursion. The applications of the MLC clamping<br />

sets range from construction machinery to robots. Distinguishing<br />

features include easy mounting and removal with standard tools<br />

and easy adjustment without profile end mating. MLC clamping<br />

sets transfer torques and axial forces frictionally and backlash-free<br />

between cylindrical shafts and bore holes of the drive elements.<br />

MLC clamping sets feature the following advantages over positive<br />

locking connections:<br />

Calculation instructions<br />

Transmission elements<br />

For dimensioning of a connection between the shaft and hub,<br />

the maximum occurring loads (rated value x load factor) have<br />

to be reliably determined and included in the calculation.<br />

The transmissible values listed in the table for M t and F AX apply<br />

to the tightening torques M S and cannot be transmitted simultaneously.<br />

For simultaneous acting torque and axial load, the resulting value<br />

M R has to be calculated. This value cannot be greater than the<br />

transmissible torque M t.<br />

The resulting transmitted torque in the case of simultaneous<br />

action of torque and axial force is<br />

M R = √M B 2 + (FAB · d/2) 2 (Nm)<br />

Condition: M R ≤ M t<br />

Symbols<br />

d = shaft diameter (mm)<br />

D = inner hub diameter (mm)<br />

A = hub/clamping set contact surface (mm 2 )<br />

H, H 1, H 2, H 3 = width dimensions (mm)<br />

L = overall width with screws<br />

F AX = transmissible axial force without torque (kN)<br />

• Low-cost manufacture of the cylindrical press fits for the<br />

clamping sets on shafts and hubs<br />

• Backlash-free connection; can be accurately positioned axially<br />

and peripherally<br />

• Reduces notch effect<br />

• Small shaft diameter due to use of the full, non-weakened<br />

shaft diameter<br />

• Extremely fail-safe under changing and intermittent loads<br />

• Convenient and reliable dimensioning of the clamping sets<br />

• Easy to install and remove using standard tools<br />

• Can be reused and exchanged for numerous applications<br />

• Ready-to-install and adaptable line of models<br />

• Excellent squareness and concentricity<br />

• Prevents fretting corrosion<br />

• Higher power transmission than feather keys<br />

Operational overloads that cause the clamping set to slip are<br />

not permitted.<br />

Information on calculation for specific models is provided<br />

separately.<br />

The transmissible forces and torques are based on the axial<br />

initial tension of the screws exerted positively through the<br />

conical surfaces as normal radial forces onto the shaft and hub<br />

connection.<br />

Every user has to use a torque wrench to carefully check the<br />

tightening torques M S.<br />

M t = transmissible torque (Nm)<br />

M S = tightening torque per screw (Nm)<br />

M B = rated torque to be transmitted (Nm)<br />

F AB = axial force to be transmitted (kN)<br />

p W = surface pressure on the shaft (N/mm 2 )<br />

p W = surface pressure on the hub (N/mm 2 )


<strong>Walther</strong> <strong>Flender</strong> Gruppe<br />

Clamping sets Page 35<br />

Hub calculation<br />

The hub material is subjected to tensile stress by the pressure of<br />

the clamping set in the bore. The required outer hub diameter depends<br />

on the material, the installation position of the clamping set<br />

and the surface pressure in the hub bore. To keep the stress within<br />

the flexible range, the yield point R p0,2 is the permissible material<br />

property value.<br />

The following table shows hub diameter factors based on the<br />

three parameters mentioned above. The hub factor X is determined<br />

based on the installation position. The calculated surface<br />

pressure p N can be taken from the table with the selected clamping<br />

set type. The corresponding hub coefficient for these two values<br />

is found under the yield point of the hub material in the table.<br />

The product of the hub coefficient and the outer diameter D of the<br />

clamping set is the minimum outer hub diameter.<br />

D N = D · K<br />

Installation situation<br />

Single clamping sets without<br />

hub centring for shortest hub<br />

width B ≥ H (length of the adjacent<br />

clamping rings)<br />

Single clamping sets without<br />

hub centring with width<br />

B ≥ 2 · H and multiple clamping<br />

sets with hub centring and<br />

width B ≥ H (1 + z)<br />

z = number of clamping sets<br />

Single clamping sets with hub<br />

centring for hub width B ≥ 2 · H<br />

Hub factor<br />

X = 1<br />

X = 0,8<br />

X = 0,6<br />

When selecting the hub material, take into account that the calculated<br />

surface pressure pN cannot be greater than the yield point<br />

R p0,2.<br />

Examples<br />

1. Hub material C 35<br />

Yield point 270 N/mm 2<br />

Clamping set MLC 5000 A 45 x 75<br />

Factor x = 1, p N = 120 N/mm 2<br />

Outer hub diameter D N = 75 x 1.62 = ca. 122 mm<br />

2. Hub material GG 25<br />

Yield point 180 N/mm 2<br />

Clamping set MLC 7000 55 x 85<br />

Factor x = 1, p N = 80 N/mm 2<br />

Outer hub diameter D N = 85 x 1.62 = ca. 138 mm<br />

If the hub is weakened by bores or threads, the following<br />

applies: X = 0,8 for B ≥ 2H or B ≥ H 1 (1 + z)<br />

X = 1 for B = H or B = H 1 · z


<strong>Walther</strong> <strong>Flender</strong> Gruppe<br />

Clamping sets Page 36<br />

Hub coefficient K<br />

Surface<br />

pressure<br />

pN N/mm2 Yield point Rp0,2 of the hub material (N/mm<br />

Hub<br />

factor<br />

X<br />

2 )<br />

150<br />

GG 22<br />

180<br />

GG 25<br />

GG 38<br />

200<br />

GG 30<br />

<strong>GT</strong>S 35<br />

220<br />

GS 45<br />

St 37-2<br />

250<br />

GGG 40<br />

GS 52<br />

270 300<br />

Hub materials<br />

St 50-2 GGG 50<br />

C 35 St 60-2<br />

350<br />

GGG 60<br />

GS 62<br />

400<br />

GGG 70<br />

GS 70<br />

450<br />

AlZn 5,5 MgCu<br />

25 CrMo4<br />

600<br />

42CrMo4<br />

AlCu4MgSi<br />

C 45 St 70-2 C 60<br />

0.6 1.29 1.26 1.21 1.19 1.16 1.15 1.13 1.11 1.10 1.09 1.07<br />

60 0.8 1.40 1.31 1.25 1.24 1.23 1.21 1.19 1.16 1.13 1.12 1.09<br />

1 1.53 1.43 1.37 1.33 1.29 1.26 1.23 1.19 1.17 1.15 1.11<br />

0.6 1.31 1.26 1.23 1.21 1.19 1.16 1.14 1.12 1.11 1.10 1.08<br />

65 0.8 1.45 1.36 1.31 1.29 1.25 1.23 1.21 1.17 1.15 1.13 1.10<br />

1 1.61 1.46 1.41 1.36 1.31 1.29 1.25 1.21 1.19 1.1 1.13<br />

0.6 1.35 1.27 1.25 1.23 1.19 1.17 1.16 1.13 1.12 1.11 1.08<br />

70 0.8 1.49 1.39 1.35 1.31 1.26 1.24 1.21 1.19 1.16 1.14 1.11<br />

1 1.66 1.51 1.46 1.41 1.35 1.31 1.26 1.23 1.21 1.18 1.14<br />

0.6 1.31 1.29 1.26 1.24 1.21 1.19 1.16 1.15 1.13 1.12 1.09<br />

75 0.8 1.53 1.43 1.37 1.33 1.29 1.26 1.23 1.19 1.17 1.15 1.12<br />

1 1.75 1.56 1.49 1.43 1.37 1.34 1.31 1.26 1.21 1.19 1.14<br />

0.6 1.40 1.32 1.29 1.26 1.22 1.21 1.19 1.16 1.14 1.12 1.09<br />

80 0.8 1.59 1.46 1.40 1.36 1.31 1.28 1.25 1.21 1.19 1.16 1.12<br />

1 1.82 1.62 1.54 1.47 1.40 1.37 1.32 1.27 1.23 1.21 1.15<br />

0.6 1.43 1.35 1.31 1.28 1.24 1.22 1.20 1.17 1.15 1.13 1.10<br />

85 0.8 1.64 1.50 1.43 1.39 1.33 1.30 1.27 1.23 1.20 1.17 1.13<br />

1 1.91 1.68 1.58 1.51 1.43 1.40 1.35 1.29 1.25 1.22 1.16<br />

0.6 1.47 1.37 1.33 1.29 1.26 1.23 1.21 1.18 1.16 1.14 1.10<br />

90 0.8 1.70 1.54 1.47 1.41 1.35 1.32 1.29 1.24 1.21 1.19 1.14<br />

1 2.01 1.74 1.63 1.55 1.47 1.42 1.37 1.31 1.27 1.23 1.17<br />

0.6 1.50 1.40 1.35 1.31 1.27 1.25 1.22 1.19 1.16 1.15 1.11<br />

95 0.8 1.76 1.58 1.50 1.44 1.38 1.35 1.31 1.26 1.22 1.20 1.15<br />

1 2.12 1.81 1.69 1.60 1.50 1.45 1.40 1.33 1.28 1.25 1.18<br />

0.6 1.54 1.42 1.37 1.33 1.29 1.26 1.23 1.20 1.17 1.15 1.12<br />

100 0.8 1.82 1.62 1.54 1.47 1.40 1.37 1.32 1.27 1.23 1.21 1.15<br />

1 2.25 1.88 1.74 1.64 1.54 1.49 1.42 1.35 1.30 1.26 1.19<br />

0.6 1.57 1.45 1.40 1.35 1.30 1.28 1.25 1.21 1.18 1.16 1.12<br />

105 0.8 1.89 1.67 1.57 1.51 1.43 1.39 1.34 1.29 1.25 1.22 1.16<br />

1 2.39 1.96 1.80 1.69 1.57 1.52 1.45 1.37 1.32 1.28 1.20<br />

0.6 1.61 1.48 1.42 1.37 1.32 1.29 1.26 1.22 1.19 1.17 1.13<br />

110 0.8 1.97 1.72 1.61 1.54 1.45 1.41 1.36 1.30 1.26 1.23 1.17<br />

1 2.56 2.05 1.87 1.74 1.61 1.55 1.48 1.39 1.34 1.29 1.21<br />

0.6 1.65 1.51 1.44 1.37 1.34 1.31 1.27 1.23 1.20 1.18 1.13<br />

115 0.8 2.05 1.77 1.65 1.57 1.48 1.44 1.38 1.32 1.27 1.24 1.18<br />

1 2.76 2.14 1.94 1.80 1.65 1.59 1.51 1.42 1.35 1.31 1.22<br />

0.6 1.70 1.54 1.47 1.40 1.35 1.32 1.29 1.24 1.21 1.19 1.14<br />

120 0.8 2.14 1.82 1.70 1.61 1.51 1.46 1.40 1.34 1.29 1.25 1.19<br />

1 3.01 2.25 2.01 1.85 1.70 1.62 1.54 1.44 1.37 1.32 1.23<br />

0.6 1.74 1.57 1.49 1.44 1.37 1.34 1.30 1.25 1.22 1.19 1.14<br />

125 0.8 2.25 1.88 1.74 1.64 1.54 1.49 1.42 1.35 1.30 1.26 1.19<br />

1 3.33 2.36 2.09 1.92 1.74 1.66 1.57 1.46 1.39 1.34 1.25<br />

0.6 1.79 1.60 1.52 1.46 1.39 1.36 1.31 1.26 1.23 1.20 1.15<br />

130 0.8 2.36 1.94 1.79 1.68 1.57 1.51 1.45 1.37 1.31 1.28 1.20<br />

1 3.75 2.50 2.18 1.98 1.79 1.70 1.60 1.49 1.41 1.36 1.26<br />

0.6 1.84 1.62 1.55 1.48 1.41 1.37 1.33 1.28 1.24 1.21 1.16<br />

135 0.8 2.49 2.01 1.84 1.72 1.60 1.54 1.47 1.39 1.33 1.20 1.21<br />

1 4.37 2.66 2.28 2.05 1.84 1.74 1.63 1.51 1.43 1.37 1.27<br />

0.6 1.89 1.67 1.57 1.51 1.43 1.39 1.34 1.29 1.25 1.22 1.16<br />

140 0.8 2.64 2.08 1.89 1.76 1.63 1.55 1.49 1.40 1.34 1.30 1.22<br />

1 5.40 2.84 2.39 2.13 1.89 1.79 1.67 1.54 1.45 1.39 1.28<br />

0.6 1.95 1.70 1.60 1.53 1.45 1.41 1.36 1.30 1.26 1.23 1.17<br />

145 0.8 2.81 2.16 1.95 1.81 1.66 1.59 1.51 1.42 1.36 1.31 1.23<br />

1 7.67 3.06 2.51 2.22 1.95 1.83 1.70 1.56 1.47 1.41 1.29<br />

0.6 2.01 1.74 1.63 1.55 1.47 1.42 1.37 1.31 1.27 1.24 1.17<br />

150 0.8 3.01 2.25 2.01 1.85 1.70 1.62 1.54 1.44 1.37 1.32 1.24<br />

1 - 3.33 2.66 2.31 2.01 1.88 1.74 1.59 1.49 1.42 1.30<br />

0.6 2.07 1.78 1.66 1.58 1.49 1.44 1.39 1.32 1.28 1.25 1.18<br />

155 0.8 3.26 2.34 2.07 1.90 1.73 1.66 1.56 1.46 1.39 1.34 1.24<br />

1 - 3.67 2.81 2.41 2.07 1.93 1.78 1.62 1.52 1.44 1.31<br />

0.6 2.14 1.82 1.70 1.61 1.51 1.46 1.40 1.34 1.29 1.25 1.19<br />

160 0.8 3.56 2.44 2.14 1.95 1.77 1.68 1.59 1.48 1.40 1.35 1.25<br />

1 - 4.13 3.01 2.53 2.14 1.99 1.82 1.65 1.54 1.48 1.32<br />

0.6 2.22 1.87 1.73 1.63 1.53 1.48 1.42 1.35 1.30 1.26 1.19<br />

165 0.8 3.97 2.56 2.22 2.01 1.81 1.72 1.61 1.50 1.42 1.36 1.26<br />

1 - 4.81 3.24 2.66 2.22 2.05 1.87 1.68 1.56 1.48 1.34


<strong>Walther</strong> <strong>Flender</strong> Gruppe<br />

Clamping sets Page 37<br />

Description of models & tables<br />

MLC 3000<br />

This clamping set is self-centring with<br />

excellent concentricity. The extremely<br />

small outer diameter is space-saving<br />

and suitable for small wheel diameters.<br />

The spacer ring between the outer<br />

flange and the hub maintains the fitting<br />

position in the axial direction to enable<br />

exact positioning without a shaft collar.<br />

The push-off threads in the outer flanges<br />

are used for dismantling.<br />

H<br />

d<br />

D<br />

Size Dimensions Screws Torque<br />

Axial<br />

force<br />

FAX kN<br />

Surface<br />

pressures<br />

pw N/mm2 pN N/mm2 d x D<br />

mm<br />

D1 mm<br />

H<br />

mm<br />

H1 mm<br />

H2 mm<br />

L<br />

mm<br />

DIN 912<br />

12.9<br />

M S<br />

Nm<br />

Mt Nm<br />

6 x 14 25 10 19.5 21 24 M 3 2 14 4.8 201 86<br />

8 x 15 27 11.5 22 25 29 M 4 5 28 7 197 105<br />

9 x 16 28 14 22 26 30 M 4 5 41 9 192 108<br />

10 x 16 29 14 22 26 30 M 4 5 46 9 173 108<br />

11 x 18 32 13.5 23 26 30 M 4 5 50 9 164 100<br />

12 x 18 32 13.5 23 26 30 M 4 5 55 9 150 100<br />

14 x 23 38 14 23 26 30 M 4 5 64 9 123 75<br />

15 x 24 44 16 33 36 42 M 6 15 150 19 208 130<br />

16 x 24 44 16 33 36 42 M 6 15 150 19 195 130<br />

17 x 25 45 16 33 36 42 M 6 15 162 19 184 125<br />

17 x 26 47 18 33 38 44 M 6 17 180 23 187 122<br />

18 x 26 47 18 33 38 44 M 6 17 200 23 173 120<br />

19 x 27 48 18 33 38 44 M 6 17 210 23 171 120<br />

20 x 28 49 18 33 38 44 M 6 17 220 23 168 120<br />

22 x 32 54 25 40 45 51 M 6 17 250 23 102 70<br />

24 x 34 56 25 40 45 51 M 6 17 270 23 99 70<br />

25 x 34 56 25 40 45 51 M 6 17 280 23 95 70<br />

28 x 39 61 25 40 45 51 M 6 17 500 34 125 90<br />

30 x 41 62 25 40 45 51 M 6 17 520 34 115 84<br />

32 x 43 65 25 40 45 51 M 6 17 730 46 155 115<br />

35 x 47 69 30 45 50 56 M 6 17 800 46 109 81<br />

38 x 50 72 30 45 50 56 M 6 17 900 46 100 76<br />

40 x 53 75 30 45 50 56 M 6 17 900 46 95 72<br />

42 x 55 78 32 51 57 65 M 8 41 1800 84 164 125<br />

45 x 59 85 40 59 65 73 M 8 41 1900 84 117 89<br />

48 x 62 87 45 64 70 78 M 8 41 2000 84 97 75<br />

50 x 65 92 45 64 70 78 M 8 41 2600 105 117 90<br />

55 x 71 98 50 69 75 83 M 8 41 2900 105 90 70<br />

60 x 77 104 50 69 75 83 M 8 41 3100 105 90 70<br />

65 x 84 111 50 69 75 83 M 8 41 3400 105 78 60<br />

70 x 90 119 60 84 91 101 M 10 83 5800 170 103 80<br />

75 x 95 126 60 84 91 101 M 10 83 6200 170 89 70<br />

80 x 100 131 65 89 96 106 M 10 83 7800 200 100 80<br />

85 x 106 137 65 89 96 106 M 10 83 8500 200 87 70<br />

90 x 112 143 65 89 96 106 M 10 83 11200 250 112 90<br />

95 x 120 153 65 89 96 106 M 10 83 11800 250 101 80<br />

100 x 125 162 65 94 102 114 M 12 145 14600 300 119 95<br />

110 x 140 180 90 120 128 140 M 12 145 16000 300 78 61<br />

120 x 155 198 90 120 128 140 M 12 145 17400 300 71 55<br />

Recommended shaft/hub fitting tolerances h8/H8


<strong>Walther</strong> <strong>Flender</strong> Gruppe<br />

Clamping sets Page 38<br />

MLC 5,000 A<br />

H2<br />

H1<br />

L<br />

H<br />

H2<br />

H3<br />

H1<br />

H<br />

d<br />

Model 5000A<br />

D<br />

Self-centring clamping sets for larger torques<br />

with small, self-locking taper angles.<br />

The diameters are the same as for the MLC<br />

1000, but have a significantly higher transmission<br />

force.<br />

Type B prevents axial displacement<br />

between the shaft and hub by means of a<br />

stop ring, thus ensuring exact positioning<br />

in the axial direction. Due to the additional<br />

friction between the hub and the outer<br />

ring, the transmissible load is somewhat<br />

lower.<br />

MLC 5000 B<br />

d<br />

Model 5000B<br />

D<br />

D1<br />

Size Dimensions Screws Torque<br />

Axial<br />

force<br />

Surface pressures<br />

d x D<br />

mm<br />

H<br />

mm<br />

H1 mm<br />

H2 mm<br />

L<br />

mm<br />

DIN 912<br />

12.9<br />

MS Nm<br />

Mt Nm<br />

FAX kN<br />

pw N/mm2 pN N/mm2 20 x 47 26 37 42 48 M 6 17 530 52 259 110<br />

22 x 47 26 37 42 48 M 6 17 580 52 235 110<br />

24 x 50 26 37 42 48 M 6 17 630 52 208 100<br />

25 x 50 26 37 42 48 M 6 17 660 52 200 100<br />

28 x 55 26 37 42 48 M 6 17 740 52 196 100<br />

30 x 55 26 37 42 48 M 6 17 790 52 183 100<br />

32 x 60 26 37 42 48 M 6 17 1200 70 225 120<br />

35 x 60 26 37 42 48 M 6 17 1300 70 206 120<br />

38 x 65 26 37 42 48 M 6 17 1300 70 188 110<br />

40 x 65 26 37 42 48 M 6 17 1400 70 179 110<br />

42 x 75 30 46 51 59 M 8 41 2000 100 214 120<br />

45 x 75 30 46 51 59 M 8 41 2200 100 200 120<br />

48 x 80 30 46 51 59 M 8 41 3200 130 250 150<br />

50 x 80 30 46 51 59 M 8 41 3300 130 240 150<br />

55 x 85 30 46 51 59 M 8 41 3600 130 216 140<br />

60 x 90 30 46 51 59 M 8 41 3900 130 195 130<br />

65 x 95 30 46 51 59 M 8 41 4300 130 175 120<br />

70 x 110 40 54 60 70 M 10 83 7500 210 204 130<br />

75 x 115 40 54 60 70 M 10 83 8000 210 199 130<br />

80 x 120 40 54 60 70 M 10 83 8500 210 180 120<br />

85 x 125 40 54 60 70 M 10 83 11400 270 221 150<br />

90 x 130 40 54 60 70 M 10 83 12000 270 202 140<br />

95 x 135 40 54 60 70 M 10 83 12600 280 192 135<br />

100 x 145 45 61 68 80 M 12 145 15000 300 189 130<br />

110 x 155 45 61 68 80 M 12 145 16500 300 169 120<br />

120 x 165 45 61 68 80 M 12 145 22500 370 193 140<br />

130 x 180 45 61 68 80 M 12 145 29000 450 208 150<br />

140 x 190 50 68 76 90 M 14 210 32000 460 176 130<br />

150 x 200 50 68 76 90 M 14 210 41000 550 200 150<br />

160 x 210 50 68 76 90 M 14 210 44000 550 184 140<br />

170 x 225 50 68 76 90 M 14 210 54500 640 212 160<br />

180 x 235 50 68 76 90 M 14 210 57500 640 196 150<br />

Recommended shaft/hub fitting tolerances h8/H8<br />

Size Dimensions Screws Torque<br />

Axialkraft<br />

Surface pressures<br />

d x D<br />

mm<br />

D1 mm<br />

H<br />

mm<br />

H1 mm<br />

H2 mm<br />

H3 mm<br />

L<br />

mm<br />

DIN 912<br />

12.9<br />

MS Nm<br />

Mt Nm<br />

FAX kN<br />

pw N/mm2 pN N/mm2 20 x 47 53 26 37 42 31 48 M 6 17 320 33 165 70<br />

22 x 47 53 26 37 42 31 48 M 6 17 360 33 150 70<br />

24 x 50 56 26 37 42 31 48 M 6 17 390 33 146 70<br />

25 x 50 56 26 37 42 31 48 M 6 17 400 33 140 70<br />

28 x 55 61 26 37 42 31 48 M 6 17 450 33 118 60<br />

30 x 55 61 26 37 42 31 48 M 6 17 490 33 110 60<br />

32 x 60 66 26 37 42 31 48 M 6 17 690 43 131 70<br />

35 x 60 66 26 37 42 31 48 M 6 17 750 43 120 70<br />

38 x 65 71 26 37 42 31 48 M 6 17 820 43 120 70<br />

40 x 65 71 26 37 42 31 48 M 6 17 860 43 114 70<br />

42 x 75 81 30 46 51 35 59 M 8 41 1300 60 125 70<br />

45 x 75 81 30 46 51 35 59 M 8 41 1400 60 117 70<br />

48 x 80 86 30 46 51 35 59 M 8 41 2000 80 150 90<br />

50 x 80 86 30 46 51 35 59 M 8 41 2000 80 144 90<br />

55 x 85 91 30 46 51 35 59 M 8 41 2200 80 139 90<br />

60 x 90 96 30 46 51 35 59 M 8 41 2400 80 120 80<br />

65 x 95 101 30 46 51 35 59 M 8 41 2600 80 102 70<br />

70 x 110 119 40 54 60 45 70 M 10 83 4600 130 126 80<br />

75 x 115 124 40 54 60 45 70 M 10 83 5000 130 123 80<br />

80 x 120 129 40 54 60 45 70 M 10 83 5200 130 105 70<br />

85 x 125 134 40 54 60 45 70 M 10 83 7000 170 132 90<br />

90 x 130 139 40 54 60 45 70 M 10 83 7400 170 116 80<br />

95 x 135 144 40 54 60 46 70 M 10 83 7800 170 114 80<br />

100 x 145 155 45 61 68 52 80 M 12 145 9800 190 116 80<br />

110 x 155 165 45 61 68 52 80 M 12 145 10700 190 99 70<br />

120 x 165 175 45 61 68 52 80 M 12 145 14600 240 124 90<br />

130 x 180 188 45 61 68 52 80 M 12 145 19000 300 138 100<br />

140 x 190 199 50 68 76 58 90 M 14 230 23000 330 122 90<br />

150 x 200 209 50 68 76 58 90 M 14 230 30000 400 133 100<br />

160 x 210 219 50 68 76 58 90 M 14 230 32000 400 131 100<br />

170 x 225 234 50 68 76 58 90 M 14 230 39000 460 146 110<br />

180 x 235 244 50 68 76 58 90 M 14 230 41000 460 131 100<br />

Recommended shaft/hub fitting tolerances h8/H8


<strong>Walther</strong> <strong>Flender</strong> Gruppe<br />

Clamping sets Page 39<br />

MLC 5006<br />

L<br />

H2<br />

H1<br />

L<br />

H2<br />

H3<br />

H<br />

H1<br />

H<br />

d<br />

d<br />

Model 5006<br />

D<br />

This is the least expensive and most<br />

popular of all clamping sets. It differs<br />

from the MLC 5000 in that it has a shorter<br />

installation length, making it more suitable<br />

for narrow, disk-shaped wheel hubs. The<br />

diameters are the same. The MLC 5007 has<br />

a larger flange diameter as a stop for axial<br />

positioning of the hub. The friction between<br />

the outer ring and the hub reduces<br />

the transferred torque as compared with<br />

the MLC 5006. Both models are self-centring<br />

and self-locking in the clamping state.<br />

Due to the high demand, these models are<br />

always in stock.<br />

MLC 5007<br />

Model 5007<br />

D<br />

D1<br />

Size Dimensions Screws Torque<br />

Axial<br />

force<br />

Surface pressures<br />

d x D<br />

mm<br />

H<br />

mm<br />

H1 mm<br />

H2 mm<br />

L<br />

mm<br />

DIN 912<br />

12.9<br />

MS Nm<br />

Mt Nm<br />

FAX kN<br />

pw N/mm2 pN N/mm2 18 x 47 17 25 28 34 M 6 14 370 41 366 140<br />

19 x 47 17 25 28 34 M 6 14 390 41 346 140<br />

20 x 47 17 25 28 34 M 6 14 410 41 329 140<br />

22 x 47 17 25 28 34 M 6 14 450 41 299 140<br />

24 x 50 17 25 28 34 M 6 14 490 41 271 130<br />

25 x 50 17 25 28 34 M 6 14 510 41 260 130<br />

28 x 55 17 25 28 34 M 6 14 570 41 236 120<br />

30 x 55 17 25 28 34 M 6 14 610 41 220 120<br />

32 x 60 17 25 28 34 M 6 14 880 55 272 145<br />

35 x 60 17 25 28 34 M 6 14 960 55 249 145<br />

38 x 65 17 25 28 34 M 6 14 1000 55 231 135<br />

40 x 65 17 25 28 34 M 6 14 1100 55 219 135<br />

42 x 75 20 30 33 41 M 8 35 2200 105 339 190<br />

45 x 75 20 30 33 41 M 8 35 2400 105 317 190<br />

48 x 80 20 30 33.5 41 M 8 35 2500 105 292 175<br />

50 x 80 20 30 33.5 41 M 8 35 2600 105 280 175<br />

55 x 85 20 30 33.5 41 M 8 35 2900 105 255 165<br />

60 x 90 20 30 33.5 41 M 8 35 3100 105 233 155<br />

65 x 95 20 30 33.5 41 M 8 35 3400 105 219 150<br />

70 x 110 24 36 40 50 M 10 70 6000 170 275 175<br />

75 x 115 24 36 40 50 M 10 70 6400 170 261 170<br />

80 x 120 24 36 40 50 M 10 70 6800 170 240 160<br />

85 x 125 24 36 40 50 M 10 70 9000 210 279 190<br />

90 x 130 24 36 40 50 M 10 70 9600 210 267 185<br />

95 x 135 24 36 40 50 M 10 70 10200 210 263 185<br />

100 x 145 26 40 44 56 M 12 115 12000 235 247 170<br />

110 x 155 26 40 44 56 M 12 115 13000 260 225 160<br />

120 x 165 26 40 44 56 M 12 115 16000 270 227 165<br />

130 x 180 34 48 52 64 M 12 115 23000 350 215 155<br />

140 x 190 34 50 54 68 M 14 185 25000 360 204 150<br />

150 x 200 34 50 54 68 M 14 185 30000 400 207 155<br />

160 x 210 34 50 54 68 M 14 185 38800 480 223 170<br />

Recommended shaft/hub fitting tolerances h8/H8<br />

Size Dimensions Screws Torque<br />

AxialkraftFlächenpresungen<br />

d x D<br />

mm<br />

D1 mm<br />

H<br />

mm<br />

H1 mm<br />

H2 mm<br />

H3 mm<br />

L<br />

mm<br />

DIN 912<br />

12.9<br />

MS Nm<br />

Mt Nm<br />

FAX kN<br />

pw N/mm2 pN N/mm2 18 x 47 53 17 25 28 22 34 M 6 17 290 32 261 100<br />

19 x 47 53 17 25 28 22 34 M 6 17 300 32 247 100<br />

20 x 47 53 17 25 28 22 34 M 6 17 320 32 235 100<br />

22 x 47 53 17 25 28 22 34 M 6 17 350 32 214 100<br />

24 x 50 56 17 25 28 22 34 M 6 17 390 32 208 100<br />

25 x 50 56 17 25 28 22 34 M 6 17 400 32 200 100<br />

28 x 55 61.4 17 25 28 22 34 M 6 17 450 32 177 90<br />

30 x 55 61.4 17 25 28 22 34 M 6 17 490 32 165 90<br />

32 x 60 67 17 25 28 22 34 M 6 17 700 43 206 110<br />

35 x 60 67 17 25 28 22 34 M 6 17 760 43 189 110<br />

38 x 65 72 17 25 28 22 34 M 6 17 820 43 171 100<br />

40 x 65 72 17 25 28 22 34 M 6 17 870 43 163 100<br />

42 x 75 84 20 30 33 25 41 M 8 41 1700 80 250 140<br />

45 x 75 84 20 30 33 25 41 M 8 41 1800 80 233 140<br />

48 x 80 89 20 30 33.5 24 41 M 8 41 1900 80 217 130<br />

50 x 80 89 20 30 33.5 24 41 M 8 41 2000 80 208 130<br />

55 x 85 94 20 30 33.5 24 41 M 8 41 2200 80 185 120<br />

60 x 90 99 20 30 33.5 24 41 M 8 41 2400 80 180 120<br />

65 x 95 104 20 30 33.5 24 41 M 8 41 2600 80 161 110<br />

70 x 110 119 24 36 40 29 41 M 10 83 4600 130 204 130<br />

75 x 115 124 24 36 40 29 50 M 10 83 5000 130 199 130<br />

80 x 120 129 24 36 40 29 50 M 10 83 5300 130 180 120<br />

85 x 125 134 24 36 40 29 50 M 10 83 7000 160 221 150<br />

90 x 130 139 24 36 40 29 50 M 10 83 7400 160 202 140<br />

95 x 135 144 24 36 40 29 50 M 10 83 7800 160 185 130<br />

100 x 145 154 26 40 44 31 56 M 12 145 9700 200 203 140<br />

110 x 155 164 26 40 44 31 56 M 12 145 10700 200 183 130<br />

120 x 165 174 26 40 44 31 56 M 12 145 14600 242 206 150<br />

130 x 180 189 34 48 52 39 64 M 12 145 19000 300 180 130<br />

140 x 190 199 34 50 54 39 68 M 14 230 23000 330 190 140<br />

150 x 200 209 34 50 54 39 68 M 14 230 24500 330 173 130<br />

160 x 210 219 34 50 54 39 68 M 14 230 31300 390 197 150<br />

180 x 235 244 44 60 64 49 78 M 14 230 35000 390 144 110<br />

200 x 260 269 44 60 64 49 78 M 14 230 49000 500 143 110<br />

Recommended shaft/hub fitting tolerances h8/H8


<strong>Walther</strong> <strong>Flender</strong> Gruppe<br />

Clamping sets Page 40<br />

MLC 7000<br />

This model, similar to the MLC 4000 series,<br />

can withstand very high loads and is especially<br />

suitable for a smaller diameter range<br />

and a shorter installation length.<br />

The diameter gradations are the same.<br />

These clamping sets are self-centring and<br />

self-locking with excellent concentricity<br />

and runout properties, also compared with<br />

resulting torques. The very small taper<br />

angles mean that the clamping travel is<br />

relatively large. The inner clamping ring<br />

requires greater axial clearance for release<br />

(s = 0.02 · d).<br />

L<br />

H2<br />

H<br />

Model 7000<br />

d<br />

D<br />

Size Dimensions Screws Torque Axial force Surface pressures<br />

d x D<br />

mm<br />

H<br />

mm<br />

H2 mm<br />

L<br />

mm<br />

DIN 912<br />

-12.9<br />

MS Nm<br />

Mt Nm<br />

FAX kN<br />

pw N/mm2 pN N/mm2 25 x 50 41 45 51 M 6 17 700 55 160 80<br />

30 x 55 41 45 51 M 6 17 1200 70 165 90<br />

35 x 60 41 45 51 M 6 17 1400 70 154 90<br />

40 x 65 41 45 51 M 6 17 2000 90 163 100<br />

45 x 75 41 45 51 M 8 41 3200 140 217 130<br />

50 x 80 58 62 70 M 8 41 3600 140 128 80<br />

55 x 85 58 62 70 M 8 41 4000 140 124 80<br />

60 x 90 58 62 70 M 8 41 5400 170 135 90<br />

65 x 95 58 62 70 M 8 41 5800 170 132 90<br />

70 x 110 70 76 86 M 10 83 10300 280 157 100<br />

75 x 115 70 76 86 M 10 83 11000 280 153 100<br />

80 x 120 70 76 86 M 10 83 14000 340 165 110<br />

85 x 125 70 76 86 M 10 83 15000 340 162 110<br />

90 x 130 70 76 86 M 10 83 16000 310 144 100<br />

95 x 135 70 76 86 M 10 83 17000 340 142 100<br />

100 x 145 92 98 110 M 12 145 26000 500 145 100<br />

110 x 155 92 98 110 M 12 145 29000 500 141 100<br />

120 x 165 92 98 110 M 12 145 36400 600 151 110<br />

130 x 180 108 114 128 M 14 230 45400 700 138 100<br />

140 x 190 108 114 128 M 14 230 57000 800 149 110<br />

150 x 200 108 114 128 M 14 230 70000 900 160 120<br />

160 x 210 108 114 128 M 14 230 75000 900 144 110<br />

170 x 225 132 146 162 M 16 355 95000 1100 132 100<br />

180 x 235 132 146 162 M 16 355 115000 1200 144 110<br />

190 x 250 132 146 162 M 16 355 121500 1200 132 100<br />

200 x 260 132 146 162 M 16 355 128000 1200 130 100<br />

220 x 285 132 146 162 M 16 355 140500 1200 117 90<br />

240 x 305 132 146 162 M 16 355 210000 1500 140 110<br />

260 x 325 134 148 164 M 16 355 255000 196 225 180<br />

280 x 355 165 177 197 M 20 690 368000 262 241 190<br />

300 x 375 165 177 197 M 20 690 430000 292 244 195<br />

Recommended shaft/hub fitting tolerances h8/H8<br />

Further information is available at www.maschinenlager.de


<strong>Walther</strong> <strong>Flender</strong> Gruppe<br />

Clamping sets Page 41<br />

Taper Lock® clamping bushes<br />

In addition to the cylindrical clamping elements listed here, we also offer an extensive line of conical TL clamping elements.<br />

Installation<br />

Clean and degrease all exposed<br />

surfaces. Fit pulley and bush, align<br />

holes and screw in screws loosely.<br />

Push pulley with bush onto the<br />

shaft, align and tighten screws<br />

evenly to the correct torque according<br />

to the table.<br />

The empty bores should be filled<br />

with grease to prevent penetration<br />

by foreign objects.<br />

1008 to 3030<br />

Disassembly<br />

Remove screws, insert one as a pushoff<br />

screw into the hole with a half<br />

thread in the bush and tighten.<br />

This loosens the Taper Lock® bush.<br />

Remove the loosened pulley unit<br />

– without impact to prevent<br />

damage to the machine – by hand.<br />

3525 to 5050<br />

If high torques have to be transmitted and no feather key is used,<br />

the Taper Lock® clamping bush can be driven further into the conical<br />

bore by lightly tapping with a hammer, using a suitable sleeve<br />

or wooden block. Afterwards, the screws can be tightened a bit<br />

more. This procedure can be repeated.<br />

* The specified slipping torques were measured on test stands.<br />

The screws were tightened to the corresponding torque.<br />

Taper Lock® is a trademark of J. H. Fenner and Co. Ltd.<br />

Mounting bores<br />

Disassembly bores<br />

008 1108 1210 1610 1615 2012 2517 3020 3030 Model 3525 3535 4030 4040 4535 4545 5040 5050<br />

5.6 5.6 20 20 20 30 50 90 90 Torque [Nm] 115 115 170 170 190 190 270 270<br />

2 2 2 2 2 2 2 2 2 Number of screws 3 3 3 3 3 3 3 3<br />

1/4“ 1/4“ 3/8“ 3/8“ 3/8“ 7/16“ 1/2“ 5/8“ 5/8“ Screw ø (inches) 1/2“ 1/2“ 5/8“ 5/8“ 3/4“ 3/4“ 7/8“ 7/8“<br />

3 3 5 5 5 6 6 8 8 Hexagon SLW (mm) 10 10 12 12 14 14 14 14<br />

Taper Lock®<br />

clamping bush<br />

1008<br />

1108<br />

1210<br />

1610<br />

+<br />

1615<br />

2012<br />

2517<br />

Bush bore<br />

(mm)<br />

Slipping torque<br />

(Nm*)<br />

Clamping force<br />

N<br />

12 29 3990<br />

19 51 4940<br />

24 66 5490<br />

12 28 –<br />

19 49 4630<br />

24 64 5220<br />

28 79 5720<br />

16 82 8840<br />

19 105 9800<br />

24 142 10900<br />

32 210 12300<br />

19 98 –<br />

24 135 9570<br />

38 240 11900<br />

42 265 12700<br />

24 165 11500<br />

38 310 14400<br />

42 340 15700<br />

48 400 –<br />

50 420 16700<br />

24 220 –<br />

38 380 17000<br />

42 430 18500<br />

48 510 –<br />

55 600 21000<br />

60 670 22300<br />

Taper Lock®<br />

clamping bush<br />

3020<br />

+<br />

3030<br />

3525<br />

+<br />

3535<br />

4030<br />

+<br />

4040<br />

4535<br />

+<br />

4545<br />

5040<br />

+<br />

5050<br />

Bush bore Slipping torque Clamping force<br />

(mm)<br />

(Nm*)<br />

N<br />

38 520 23900<br />

48 730 26100<br />

55 890 29900<br />

60 970 31500<br />

75 1300 34500<br />

42 1000 41000<br />

60 1580 49800<br />

75 2150 54800<br />

90 2600 59000<br />

48 1700 –<br />

60 2300 70200<br />

75 3150 77200<br />

100 4400 89400<br />

55 2500 79600<br />

75 3900 93000<br />

100 5500 107700<br />

110 6300 –<br />

75 3950 91800<br />

100 5650 106600<br />

125 7370 119500


<strong>Walther</strong> <strong>Flender</strong> Gruppe<br />

Clamping sets Page 42<br />

Taper Lock® clamping bushes<br />

Bush<br />

no.<br />

1008<br />

1108<br />

1210<br />

1310<br />

1610<br />

1615<br />

2012<br />

2517<br />

3020<br />

3030<br />

Bush bore<br />

mm<br />

10<br />

11 12<br />

14 16<br />

18 19 20 22<br />

24 25<br />

10<br />

11 12<br />

14 16<br />

18 19 20 22<br />

24 25<br />

28<br />

11 12<br />

14 16<br />

18 19 20 22<br />

24 25 28 30<br />

32<br />

14 16<br />

18 19 20 22<br />

24 25 28 30<br />

32<br />

35<br />

14 15 16<br />

18 19 20 22<br />

24 25 28 30<br />

32 35 38<br />

40 42<br />

14 16<br />

18 19 20 22<br />

24 25 28 30<br />

32 35 38<br />

40 42<br />

14 16<br />

18 19 20 22<br />

24 25 28 30<br />

32 35 38<br />

40 42<br />

45 48 50<br />

16<br />

18 19 20 22<br />

24 25 28 30<br />

32 35 38<br />

40 42<br />

45 48 50<br />

55<br />

60<br />

25 28 30<br />

32 35 38<br />

40 42<br />

45 48 50<br />

55<br />

60 65<br />

70 75<br />

35 38<br />

40 42<br />

45 48 50<br />

55<br />

60 65<br />

70 75<br />

* Bore with flat groove<br />

Keyway<br />

mm<br />

wide deep<br />

3<br />

4<br />

5<br />

6<br />

8<br />

3<br />

4<br />

5<br />

6<br />

8<br />

8<br />

4<br />

5<br />

6<br />

8<br />

10<br />

5<br />

6<br />

8<br />

10<br />

10<br />

5<br />

6<br />

8<br />

10<br />

12<br />

5<br />

6<br />

8<br />

10<br />

12<br />

5<br />

6<br />

8<br />

10<br />

12<br />

14<br />

5<br />

6<br />

8<br />

10<br />

12<br />

14<br />

16<br />

18<br />

8<br />

10<br />

12<br />

14<br />

16<br />

18<br />

20<br />

10<br />

12<br />

14<br />

16<br />

18<br />

20<br />

4 hole 5 hole<br />

1.4<br />

1.8<br />

2.3<br />

2.8<br />

1.3*<br />

1.4<br />

1.8<br />

2.3<br />

2.8<br />

3.3<br />

1.3*<br />

1.8<br />

2.3<br />

2.8<br />

3.3<br />

3.3<br />

2.3<br />

2.8<br />

3.3<br />

3.3<br />

1.3*<br />

2.3<br />

2.8<br />

3.3<br />

3.3<br />

3.3<br />

2.3<br />

2.8<br />

3.3<br />

3.3<br />

1.3*<br />

2.3<br />

2.8<br />

3.3<br />

3.3<br />

3.3<br />

3.8<br />

2.3<br />

2.8<br />

3.3<br />

3.3<br />

3.3<br />

3.8<br />

4.3<br />

4.4<br />

3.3<br />

3.3<br />

3.3<br />

3.8<br />

4.3<br />

4.3<br />

4.9<br />

3.3<br />

3.3<br />

3.8<br />

4.3<br />

4.4<br />

4.9<br />

Bush<br />

length<br />

mm<br />

22.3<br />

22.3<br />

25.4<br />

25.4<br />

25.4<br />

38.1<br />

31.8<br />

44.5<br />

50.8<br />

76.2<br />

Approx.<br />

weight<br />

kg<br />

0.15<br />

to<br />

0.08<br />

0.18<br />

to<br />

0.10<br />

0.17<br />

to<br />

0.30<br />

0.19<br />

to<br />

0.33<br />

0.42<br />

to<br />

0.20<br />

0.60<br />

to<br />

0.25<br />

0.80<br />

to<br />

0.38<br />

1.7<br />

to<br />

0.80<br />

2.8<br />

to<br />

1.5<br />

4.0<br />

to<br />

2.1<br />

Largest<br />

diameter<br />

mm<br />

35<br />

38<br />

47.5<br />

51<br />

57<br />

57<br />

70<br />

85.5<br />

108<br />

108<br />

Bush<br />

no.<br />

Bush bore<br />

mm<br />

Keyway<br />

mm<br />

wide deep<br />

Bush<br />

length<br />

mm<br />

Approx.<br />

weight<br />

kg<br />

Largest<br />

diameter<br />

mm<br />

35 38 10 3.3<br />

5.5<br />

40 42 12 3.3<br />

45 48 50 14 3.8<br />

55 16 4.3<br />

3525 60 65 18 4.4 64 to 127<br />

70 75 20 4.9<br />

80 85 22 5.4<br />

90 95 25 5.4<br />

100 28 4.4* 1.8<br />

35 38 10 3.3<br />

6.6<br />

40 42 12 3.3<br />

45 48 50 14 3.8<br />

3535<br />

55<br />

60 65<br />

16<br />

18<br />

4.3<br />

4.4<br />

88.9<br />

to<br />

127<br />

70 75 20 4.9<br />

80 85 22 5.4<br />

90 25 5.4 3.2<br />

40 42 12 3.3<br />

7.4<br />

45 48 50 14 3.8<br />

55 16 4.3<br />

60 65 18 4.4<br />

4030 70 75 20 4.9 76 to 146<br />

80 85 22 5.4<br />

90 95 25 5.4<br />

100 105 110 28 6.4<br />

115 32 5.4* 4.2<br />

40 42 12 3.3<br />

10.1<br />

45 48 50 14 3.8<br />

55 16 4.3<br />

4040<br />

60 65<br />

70 75<br />

18<br />

20<br />

4.4<br />

4.9<br />

101.6<br />

to<br />

146<br />

80 85 22 5.4<br />

90 95 25 5.4<br />

100 28 6.4 5.2<br />

55 16 4.3<br />

10.7<br />

60 65 18 4.4<br />

70 75 20 4.9<br />

4535 80 85 22 5.4 89 to 162<br />

90 95 25 5.4<br />

100 105 110 28 6.4<br />

115 120 125 32 7.4 4.2<br />

55 16 4.3<br />

13.2<br />

60 65 18 4.4<br />

4545<br />

70 75<br />

80 85<br />

20<br />

22<br />

4.9<br />

5.4<br />

114.3<br />

to<br />

162<br />

90 95 25 5.4<br />

100 105 110 28 6.4 7.4<br />

70 75 20 4.9<br />

12.2<br />

80 85 22 5.4<br />

5040 90 95 25 5.4 102 to 178<br />

100 105 110 28 6.4<br />

115 120 125 32 7.4 6.2<br />

70 75 20 4.9<br />

15.2<br />

80 85 22 5.4<br />

5050 90 95 25 5.4 127 to 178<br />

100 105 110 28 6.4<br />

115 120 125 32 7.4 9.2


<strong>Walther</strong> <strong>Flender</strong> Gruppe<br />

Clamping sets Page 43<br />

Causes of malfunctions<br />

Fault Cause Solution<br />

Excessive noise levels Misalignment of pulleys<br />

Excessive belt tension<br />

Overload of drive system<br />

Worn timing belt pulley<br />

Incorrect pulley profile<br />

Rim flange stop face too large<br />

Air displacement in hollows<br />

Visible belt elongation Reduction of centre distance of axes due to loosening of<br />

the shaft bearings or timing belt pulley mounting<br />

Pulley wear (outer diameter)<br />

Overload of drive system<br />

Heat-up and subsequent cooling of drive system<br />

Excessive change in the timing belt material<br />

(melting, softening)<br />

Belt runs off to side Belt runs off the side of the timing belt pulley<br />

Excessive wear on side of belt<br />

Loosening of rim flanges Misalignment of pulleys, resulting in excessive axial forces Align pulleys<br />

Excessive wear on side<br />

of belt<br />

Incorrect axis parallelism or change in the centre<br />

distance of axes due to insufficient strength of<br />

bearings and axles<br />

Rim flanges defective or not bevelled<br />

Damage due to incorrect handling<br />

<strong>Timing</strong> belt too wide<br />

Premature tooth wear Initial tension too high or too low<br />

Belt runs off over rim flange<br />

Incorrect belt profile for timing belt pulley<br />

Worn timing belt pulley<br />

<strong>Timing</strong> belt pulley surface too rough<br />

Overload<br />

Excessive damage due to foreign objects<br />

Shearing of belt teeth Not enough teeth meshing<br />

Overload of drive system<br />

Worn timing belt pulley<br />

Incorrect belt profile for timing belt pulley<br />

Insufficient belt tension<br />

Extreme shock loads<br />

Broken belt <strong>Timing</strong> belt pulley diameter too small<br />

Overload of drive system<br />

Foreign objects<br />

Incorrect handling of timing belt during installation,<br />

belt damaged from kinking or bending<br />

Abnormal wear of<br />

timing belt pulley (outer<br />

diameter or tooth flanks)<br />

Increased belt tension or overload<br />

of drive system<br />

<strong>Timing</strong> belt pulley diameter too small<br />

Incorrect profile<br />

Foreign objects<br />

Cracks in tooth back Temperature too low<br />

Temperature too high<br />

Aggressive chemicals<br />

Increased temperature Initial tension too high or too low<br />

Incorrect timing belt profile or timing belt pulley profile<br />

Outer diameter too large<br />

Vibrations Initial tension too high or too low<br />

Loose timing belt pulley<br />

Vibrations in the slack side<br />

Align pulleys<br />

Reduce initial tension<br />

Increase belt width<br />

Replace timing belt pulley<br />

Correct profile<br />

Use of standard rim flanges with bending radius<br />

Custom profile<br />

Reset centre distance of axes and reinforce mounting<br />

Replace timing belt pulley<br />

Redesign drive system<br />

Check thermal expansion coefficient and use other<br />

materials, if necessary<br />

Reduce temperatures to permissible range<br />

Align drive system correctly<br />

Align drive system correctly<br />

Check axis parallelism and/or increase strength<br />

of axles and bearings<br />

Align or replace rim flanges<br />

Follow procedure in assembly instructions<br />

Use timing belt pulleys with correct width<br />

Correct initial tension<br />

Align timing belt pulley/correct initial tension<br />

Use <strong>PolyChain®</strong> timing belt pulleys<br />

Replace timing belt pulley<br />

Replace timing belt pulley<br />

System must be redesigned<br />

<strong>Timing</strong> belt cover<br />

Increase number of pulley teeth or use<br />

smaller pitch<br />

Increase belt width<br />

Replace timing belt pulley<br />

Use correct tooth profile<br />

Set correct belt tension<br />

System must be redesigned<br />

Increase pulley diameter or belt power output<br />

Use wider timing belt<br />

Protective drive cover<br />

Comply with installation instructions<br />

Reduce initial tension or increase belt width;<br />

redesign system, if necessary<br />

Use correct timing belt pulleys<br />

Use correct drive system<br />

Protective drive cover<br />

Avoid low temperatures<br />

Avoid high temperatures<br />

Protective drive cover<br />

Set correct initial belt tension<br />

Use correct drive system<br />

Correct outer diameter<br />

Set correct initial belt tension<br />

Re-attach timing belt pulleys and mount according to<br />

specifications<br />

Install a tangential tension pulley


<strong>Walther</strong> <strong>Flender</strong> Gruppe<br />

Clamping sets Page 44<br />

Product overview<br />

WF timing belt drive systems<br />

WF timing belts are available in 5 basic systems for diverse transmission requirements.<br />

The powerful PowerGrip® <strong>GT</strong>3 and PolyChain belt systems ensure compact power density<br />

with high cost effectiveness.<br />

Shaped belts and flex belts in fixed lengths of your choice or as polyurethane metre ware<br />

in a wide range of pitches are available as an ideal transmission solution for almost all<br />

transport and conveyor requirements. These timing belts can additionally be supplied<br />

with cams or various coatings on the reverse.<br />

Special range of WF timing belt pulleys<br />

Special builds of timing belt pulleys based on customer drawings can be produced on the<br />

most modern manufacturing machinery. A wide selection of materials and moulded parts<br />

in plastic, sintered materials, or die-cast complete the range for series applications.<br />

WF shaft couplings<br />

Various ranges of shaft couplings in torsion-proof or torsionally flexible versions are<br />

available for a multiplicity of applications.<br />

WF drive assemblies<br />

Supported by 3D CAD systems and their corresponding calculation software, <strong>Walther</strong><br />

<strong>Flender</strong> Antriebstechnik develops and supplies complete assemblies for diverse drive<br />

technology requirements. At the request of the customer, existing designs are optimised<br />

in terms of technology and efficiency. An example of this is the unit shown adjacent,<br />

which conveys paper webs.<br />

WF conveyor rollers<br />

<strong>Walther</strong> <strong>Flender</strong> Antriebstechnik designs and builds conveyor rollers for heavy weights<br />

especially for skid transport in the automotive industry. Two models are shown as<br />

examples (driven on one and both sides).<br />

WF transmissions<br />

The WF range of transmissions includes worm gears, straight bevel and cylindrical gears<br />

and right angled gears for high torques up to 1,000,000 Nm. All types are available in<br />

a practical range of sizes, with or without motors.


<strong>Walther</strong> <strong>Flender</strong> Gruppe<br />

Clamping sets Page 45<br />

Project data sheet<br />

Data sheet for calculating<br />

<strong>Walther</strong> <strong>Flender</strong> GmbH<br />

Postfach 13 02 80<br />

Schwarzer Weg 100 –107<br />

40593 Düsseldorf<br />

Fax: +49.(0)211.70 07-339<br />

E-Mail: info@walther-flender.de<br />

Application:<br />

Existing drive system with<br />

to be replaced by<br />

Drive data:<br />

Type<br />

Belt drive systems<br />

Company<br />

Name / Department<br />

Street / P.O. Box<br />

Zip code / City<br />

Phone<br />

Fax<br />

E-mail<br />

yes no Requirement Quantity/year<br />

Driving machine<br />

(e.g. electric motor)<br />

Make<br />

Model<br />

Working machine<br />

(e.g. machine tool)<br />

Speed n 1 min -1 n 2 min -1<br />

Power output P kW P kW P max kW<br />

Torque Braking torque Nm Starting torque Nm<br />

Starting characteristics<br />

(e.g. torque flow, starting type)<br />

Type of load<br />

uniform<br />

non-uniform<br />

alternating<br />

reversing<br />

Pulley diameter Pitch diameter d w1 mm Pitch diameter d w2 mm<br />

Permissible diameter range<br />

Max. permissible pulley width<br />

Outer diameter d a1 mm Outer diameter d a2 mm<br />

from mm to mm from mm to mm<br />

mm mm<br />

Transmission ratio i i min i max to step-down step-up<br />

Existing centre distance of axes a mm Centre distance adjustment range mm fixed<br />

Centre distance of axes range (for new design) a min mm a max mm<br />

Idlers / guide pulleys inner pulley load side<br />

outer pulley lostum<br />

Pulley diameter d w mm d a mm<br />

Shaft arrangement horizontal vertical<br />

Operating conditions:<br />

Chemical influences (e.g. oil, dust, etc.)<br />

Ambient temperature °C<br />

Daily operating hours hours/day Number of times switched on / off daily<br />

Desired noise level dBA


Notizen


Notizen


<strong>Walther</strong> <strong>Flender</strong> Gruppe<br />

Schwarzer Weg 100–107<br />

40593 Düsseldorf<br />

Deutschland<br />

Tel. : +49.(0)211.70 07- 00<br />

Fax: +49.(0)211.70 07-227<br />

E-Mail: info@walther-flender.de<br />

www.walther-flender-gruppe.de<br />

PolCha_en_Nov_09

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!