05.12.2012 Views

Enabling 60GHz MMIC Design

Enabling 60GHz MMIC Design

Enabling 60GHz MMIC Design

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Taiyo Yuden <strong>MMIC</strong><br />

Transmitter/Receiver <strong>Design</strong><br />

Review and Measurement<br />

Results<br />

Authors: T.Ogino, T.Ogino,<br />

A. Kanai, K. Nakajima, K. Ohta: Ohta:<br />

Taiyo Yuden<br />

Aki Nakatani: Nakatani:<br />

Ansoft<br />

Alain Michael:Ansoft<br />

Michael: Ansoft France<br />

Moriaki Ueno: Ueno:<br />

Ansoft Japan<br />

Presenter: Philip Smith: Ansoft<br />

Page-1


Contents<br />

1. Millimeter-Wave<br />

Millimeter Wave <strong>MMIC</strong>s<br />

• <strong>Design</strong> Environment<br />

• Measurement/Evaluation Technologies<br />

2. <strong>Design</strong> and Evaluation<br />

• Millimeter-Wave<br />

Millimeter Wave <strong>MMIC</strong>s<br />

Summary<br />

3. Summary<br />

Page-2


<strong>Design</strong> Environment<br />

Millimeter-Wave<br />

Millimeter Wave <strong>MMIC</strong>s<br />

Measurement/Evaluation<br />

Technologies<br />

Page-3


<strong>60GHz</strong><br />

Millimeter Wave applications<br />

• Video Transmission Systems<br />

• Wireless link for BS/CS satellite broadcasts<br />

• Communication among Buildings<br />

• 7GHz band available without license.<br />

• Japan: 59-66GHz USA: 57-64GHz<br />

• Less interference with other wireless systems<br />

77GHz Automotive Radar<br />

94GHz Image Sensor, High Resolution Radar<br />

Page-4


Characteristics of Millimeter-Wave<br />

Millimeter Wave<br />

Circuits<br />

Frequency > 30GHz<br />

Short Wavelength<br />

Parasitic Components<br />

On the order of pH/fF<br />

Cannot be ignored<br />

Accuracy of<br />

Elements/Circuits/Connections<br />

Process/Mounting/Measurement…<br />

Superior Measurement/Evaluation technolog echnologies ies<br />

are necessary at Millimeter-Wave<br />

Millimeter Wave frequencies.<br />

frequencies<br />

Page-5


<strong>Design</strong> Features of<br />

Millimeter-Wave<br />

Millimeter Wave <strong>MMIC</strong>s<br />

Characterization of all <strong>MMIC</strong><br />

circuit blocks is critical.<br />

Systems, Tr characteristics, VCO, Mixer, LNA, PA, Filters, Antennas…<br />

Development; Cost; Faster<br />

time to market…<br />

Millimeter-Wave circuit design requires<br />

robust development environment<br />

Page-6


<strong>Design</strong> Development<br />

Environments for<br />

Millimeter-Wave<br />

Millimeter Wave <strong>MMIC</strong>s<br />

Page-7


Establishment of<br />

Millimeter-Wave Millimeter Millimeter-Wave Wave <strong>MMIC</strong> <strong>Design</strong><br />

Environments<br />

UMS<br />

Information Supplement<br />

TAIYO YUDEN<br />

Requests, Proposals<br />

Ansoft<br />

Development of DK for AD<br />

UMS PH15 design kit<br />

Ansoft <strong>Design</strong>er / Nexxim ver.3<br />

Page-8


Millimeter-Wave Millimeter Wave <strong>MMIC</strong> <strong>Design</strong> Environments<br />

<strong>MMIC</strong> Foundry<br />

United Monolithic Semiconductors (UMS)<br />

GaAs Foundry Service at UMS<br />

� Excellent track record in manufacturing<br />

Millimeter-Wave <strong>MMIC</strong>s<br />

� Proprietary technologies and expertise<br />

- 0.25um and 0.15um<br />

pHEMT<br />

- 2um HBT<br />

- Schottky diode<br />

Supporting processes including:<br />

- Air bridges<br />

- MIM capacitors<br />

- TaN and TiWSi resistors<br />

- 100um thinning<br />

- Via-holes<br />

� <strong>Design</strong> manuals and <strong>Design</strong> Kit<br />

80GHz Support<br />

PH15 Process<br />

� Quality Control System for Wafers by PCM:<br />

– Test production<br />

– ASIC<br />

� Additional Service Available:<br />

– 100% on-wafer testing (DC, RF and Power)<br />

– Dicing and Sorting<br />

– Visual Inspection<br />

Page-9


Millimeter-Wave Millimeter Wave <strong>MMIC</strong> <strong>Design</strong> Environments<br />

Ansoft <strong>Design</strong>er /Nexxim Nexxim ver. 3<br />

NEXXIM Circuit<br />

Simulator<br />

High speed<br />

Nonlinear Analysis<br />

Layout changes are<br />

reflected in real time.<br />

••Speed Speed up up design process<br />

••High-Speed High-Speed Nonlinear Analysis<br />

••Seamless Seamless integration<br />

••Circuit Circuit analysis<br />

••Layout Layout<br />

••Electromagnetic Electromagnetic Field Simulation<br />

DESIGNER<br />

Integrated Environment<br />

• Schematic Editor<br />

• Layout Editor<br />

• System / 2.5D Planar EM<br />

Co-simulation<br />

with Planar EM and<br />

HFSS<br />

Page-10


UMS PH15 DK for AD/Nexxim ver. 3<br />

Passive Element Example<br />

GaAs Resistance: Part name=PH15RES<br />

Unit: 1um<br />

FixR=yes<br />

W/L changed to meet resistance value<br />

FixR=no<br />

Resistance value changed to meet size<br />

ph15res_T is changed<br />

R is changed according to temperature.<br />

Min Size of W/L: 10um<br />

These changes are reflected to the<br />

Layout in real time.<br />

Page-11


UMS PH15 DK for AD/Nexxim ver.3<br />

Nonlinear Element Elemen Example<br />

PH15 HOTFET: Part name=PH15HFET<br />

Schematic<br />

&<br />

Layout<br />

Page-12


UMS PH15 DK for AD/Nexxim ver.3<br />

Microstrip Elements<br />

Page-13


Millimeter-Wave Band<br />

Measurement/Evaluation<br />

Technologies<br />

Page-14


Millimeter-Wave Millimeter Wave Band<br />

Measurement/Evaluation Technology<br />

Technology for High Resolution Measurement<br />

Open<br />

SOLT<br />

Calibration<br />

Load<br />

Short Through<br />

Electrical Length 1 degree = 5um @ <strong>60GHz</strong><br />

(Thickness of GaAs Substrate 100um)<br />

Contact position must be accurately controlled<br />

Page-15


Reference<br />

Plane<br />

Measurement/Evaluation Technology of<br />

Millimeter-Wave Millimeter Wave Band<br />

Technology for Accurate Compensation<br />

DUT<br />

Reference<br />

Plane<br />

Measurement Data<br />

DUT<br />

Pad Data DUT Data<br />

Page-16


Electrical Length<br />

Electrical Length<br />

and Magnitude<br />

De-embedding<br />

Compensation Method<br />

Phase Loss<br />

Impedance<br />

Mismatch<br />

Equivalent Circuit for Pad De-embedding<br />

De embedding<br />

Page-17


Thru<br />

Pad<br />

Extraction of pad data<br />

Open Short<br />

Equivalent circuit<br />

Excess<br />

Inductance<br />

De-embedding<br />

Easier?<br />

more accurate?<br />

Page-18


Problem Definition<br />

Zu1<br />

Zu<br />

2<br />

Measurement References<br />

Z<br />

Unknown Circuit<br />

tanh<br />

2<br />

λ γ<br />

tanh<br />

2<br />

λ γ<br />

Zu 3<br />

C<br />

C<br />

Zu<br />

3<br />

2ZCcosechγλ Symmetric Plane<br />

Z<br />

2ZCcosechγλ Transmission Line: Characteristic Impedance and<br />

Transmission coefficients are known<br />

Zu<br />

2<br />

Zu1<br />

Page-19


Uses two<br />

different length<br />

lines with pads<br />

Easy-to Easy to-use use approach<br />

using Ansoft <strong>Design</strong>er<br />

Length1 Length2<br />

Pad<br />

S-parameter<br />

Known<br />

Transmission Lines<br />

de-embedding<br />

Page-20


Principle of this method<br />

Virtual Open and Short Conditions<br />

Page-21


Easy-to Easy to-use use approach<br />

using Ansoft <strong>Design</strong>er<br />

Ideal Data (two different length lines)<br />

100um<br />

from HFSS<br />

150um<br />

Measured Data (two different length lines with pads)<br />

Algorithm integration in AD project<br />

Case A 200um<br />

Case B 300um<br />

Page-22


Verifying Ver ing the Connector Extraction with<br />

Measured Results<br />

Reference Line<br />

Page-23


<strong>Design</strong> and Evaluation of<br />

Millimeter-Wave<br />

Millimeter Wave <strong>MMIC</strong>s<br />

Page-24


PHCAPN<br />

Port1 1 2<br />

2<br />

1 Port2<br />

ref<br />

C=0.198pF<br />

W=24um<br />

L=25um<br />

ref<br />

Measurement<br />

Capacitors<br />

Port1 1 2<br />

2<br />

1 Port2<br />

ref<br />

ref<br />

Pad Equivalent<br />

Circuit<br />

PHCAPN<br />

Port1 Port2<br />

C=0.198pF<br />

W=24um<br />

L=25um<br />

Capacitor<br />

Page-25


Capacitor Photograph<br />

Port1 Port2<br />

Port3<br />

1 2 Port1 Port2 2<br />

1<br />

Port4<br />

ref<br />

PHCAPN<br />

C=0.198pF<br />

W=24um<br />

L=25um<br />

Measurement Data<br />

de-embedding Pad Data<br />

ref<br />

Capacitors<br />

S11<br />

S21<br />

Measurement<br />

Simulation<br />

Measurement<br />

Simulation<br />

Measurement and<br />

Simulation agree well.<br />

Page-26


Port1<br />

Vg<br />

L23<br />

100nH<br />

L24<br />

100nH<br />

0 0<br />

100pF<br />

S<br />

PH15HFET<br />

N=6<br />

Wu=40um<br />

Measurement Data<br />

Port3 1 2<br />

1 2<br />

2<br />

1 Port4<br />

ref<br />

ref<br />

0 0<br />

0<br />

0<br />

Vd<br />

100pF<br />

de-embedding Pad Data<br />

A<br />

ref<br />

Port2<br />

FET<br />

FET Photograph<br />

Page-27


FET<br />

S11 S12<br />

S21<br />

Measurement<br />

Simulation<br />

Simulation<br />

Measurement<br />

S22<br />

Simulation<br />

Measurement<br />

Simulation<br />

Measurement<br />

Page-28


Port1<br />

EM model<br />

Layout<br />

Port2<br />

Open Stub<br />

Open Stub Photograph<br />

Simulation<br />

Measurement<br />

Measurement corresponds with Simulation.<br />

Page-29


IF<br />

Evaluation of<br />

<strong>MMIC</strong> components<br />

・Filter<br />

・LNA<br />

・PA<br />

・Mixer<br />

Tx Rx<br />

Mixer<br />

Lo<br />

AMP<br />

~<br />

BPF<br />

PA<br />

RF<br />

RF<br />

~<br />

BPF LNA<br />

Mixer IF<br />

Lo<br />

Page-30


RF<br />

~<br />

BPF<br />

LNA<br />

Lo<br />

Mixer<br />

Measurement<br />

IF<br />

Filter<br />

Simulation<br />

Simulation Measurement<br />

Simulation : -2.7dB@<strong>60GHz</strong><br />

Measurement : -2.0dB@<strong>60GHz</strong><br />

Page-31


Rx<br />

RF<br />

~<br />

BPF<br />

LNA<br />

Lo<br />

Mixer<br />

IF<br />

LNA<br />

Four Stage LNA<br />

Size 2.2mm×2.8mm<br />

Vd = 2.5V Id = 130mA<br />

LNA Photograph<br />

Page-32


Rx<br />

RF<br />

~<br />

BPF<br />

LNA<br />

Gain [dB ] / N oise Figure [dB ]<br />

Lo<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

Mixer<br />

IF<br />

LNA<br />

Gain<br />

Measurement : 22.1dB@<strong>60GHz</strong><br />

Simulation : 21.8dB@<strong>60GHz</strong><br />

NF<br />

Measurement : 3.9dB@<strong>60GHz</strong><br />

Simulation : 3.2dB@<strong>60GHz</strong><br />

0<br />

55 57 59 61 63 65<br />

Frequency [G H z]<br />

Measurement comparatively corresponds with Simulation.<br />

Page-33


IF<br />

UMS Ph15 V20<br />

Port1<br />

Mixer<br />

Lo<br />

Pad1<br />

1 2<br />

3<br />

1 2<br />

3<br />

1 2<br />

3<br />

1 2<br />

3<br />

1 2<br />

3<br />

3<br />

2 1<br />

AMP<br />

S<br />

1 2<br />

3<br />

1 2<br />

3<br />

1 2<br />

3<br />

Pad1<br />

1 2<br />

3<br />

~<br />

BPF<br />

1 2 3<br />

4<br />

Pad1<br />

1 2<br />

3<br />

1 2<br />

3<br />

1 2<br />

3<br />

1 2<br />

3<br />

S<br />

PA<br />

1 2<br />

3<br />

1 2<br />

3<br />

1 2<br />

3<br />

1 2<br />

3<br />

Pad1<br />

3<br />

2 1<br />

RF<br />

3<br />

2 1<br />

Pad1<br />

1 2<br />

3<br />

1 2<br />

3<br />

1 2<br />

3<br />

1 2<br />

3<br />

S<br />

1 2<br />

3<br />

1 2<br />

3<br />

1 2<br />

3<br />

1 2<br />

3<br />

Pad1<br />

3<br />

2 1<br />

PA<br />

Port2<br />

Three Stage PA<br />

Size 2.2mm×2.8mm<br />

Vd = 2.5V Id = 85mA<br />

PA Photograph<br />

Page-34


IF<br />

Mixer<br />

Lo<br />

AMP<br />

~<br />

~<br />

BPF PA RF<br />

Simulation<br />

Measurement<br />

PA<br />

Measurement<br />

Simulation<br />

Simulation : 15.5dB@<strong>60GHz</strong><br />

Measurement : 15.0dB@<strong>60GHz</strong><br />

Measurement comparatively corresponds with Simulation.<br />

Page-35


IF<br />

Mixe<br />

r<br />

Lo<br />

AMP<br />

~<br />

~<br />

BPF PA RF<br />

Gain<br />

PA<br />

Simulation<br />

Pout<br />

Simulation<br />

Simulation P1dB 16.3dBm @Pin=1dBm<br />

Page-36


IF<br />

Mixer<br />

Lo<br />

AMP<br />

~<br />

Size 2.2mm×2.8mm<br />

RF:<strong>60GHz</strong><br />

Lo:29.5GHz<br />

BPF PA RF<br />

Measurement<br />

Simulation<br />

Mixer<br />

Mixer Photograph<br />

IF:1.0GHz<br />

Simulation<br />

Measurement<br />

Simulation<br />

Measurement<br />

Measurement corresponds relatively well with Simulation.<br />

Page-37


IF<br />

Pad<br />

Lo<br />

RF<br />

Circuit <strong>Design</strong> of<br />

Transmitter and Receiver<br />

High speed calculation is necessary to<br />

analyze large scale integrated circuits!<br />

A<br />

A<br />

Transmitter<br />

A<br />

V<br />

A<br />

V<br />

V<br />

A<br />

A<br />

V<br />

A<br />

A<br />

Tx Photograph<br />

Page-38


Conditions:<br />

Simulated Transmitter Results<br />

RF Frequency : <strong>60GHz</strong><br />

Lo Frequency : 29.5GHz<br />

IF Frequency : 1GHz<br />

Power Sweep : -20dBm~0dBm<br />

Harmonics : 5<br />

Nexxim is able to analyze large scale integrated circuits.<br />

Page-39


� Taiyo Yuden<br />

• Material/Lamination Technologies<br />

• Various products using these technologies<br />

� Taiyo Yuden provides<br />

• High Frequency Products, Technology and Services<br />

� Millimeter-Wave <strong>MMIC</strong><br />

• UMS PH15 <strong>Design</strong> kit<br />

Summary<br />

• Ansoft <strong>Design</strong>er / Nexxim ver.3<br />

• measurement corresponds well with simulation<br />

Page-40


Contact Us<br />

� About This Presentation and Taiyo Yuden Products:<br />

� Taiyo Yuden Web Site:<br />

– http://www.yuden.co.jp/products/index.html<br />

� About Ansoft Products and Technologies:<br />

– Contact: Mark Viglione Ansoft Austin, Texas<br />

– mviglione@ansoft.com<br />

Page-41

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!