30.07.2015 Views

The terminology of larval cestodes or metacestodes

The terminology of larval cestodes or metacestodes

The terminology of larval cestodes or metacestodes

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Systematic Parasitology 52: 1–33, 2002.© 2002 Kluwer Academic Publishers. Printed in the Netherlands.1<strong>The</strong> <strong>terminology</strong> <strong>of</strong> <strong>larval</strong> <strong>cestodes</strong> <strong>or</strong> meta<strong>cestodes</strong>Lenta Chervy ∗Central Lab<strong>or</strong>at<strong>or</strong>y <strong>of</strong> General Ecology, Bulgarian Academy <strong>of</strong> Sciences, S<strong>of</strong>ia, BulgariaAccepted f<strong>or</strong> publication 13th August, 2001Abstract<strong>The</strong> <strong>terminology</strong> associated with the nomenclature <strong>of</strong> <strong>larval</strong> <strong>or</strong> meta<strong>cestodes</strong> is reviewed as well as the variousm<strong>or</strong>phological and developmental characters used to define different types <strong>of</strong> <strong>larval</strong> <strong>cestodes</strong>. Based on a review<strong>of</strong> the literature, the key characters differentiating the types <strong>of</strong> <strong>larval</strong> <strong>cestodes</strong> are the presence <strong>of</strong> a primary lacunaand the invagination/retraction <strong>of</strong> the scolex. <strong>The</strong> presence <strong>of</strong> a cercomer and <strong>of</strong> a bladder-like enlargement <strong>of</strong> the<strong>larval</strong> cestode were considered to be useful secondary characteristics. Using these characters, six basic types <strong>of</strong><strong>larval</strong> <strong>cestodes</strong> were identified: the procercoid, an alacunate f<strong>or</strong>m which cannot develop further until ingested by asecond intermediate host; the plerocercus, an alacunate f<strong>or</strong>m with a retracted scolex; the plerocercoid, an alacunatef<strong>or</strong>m with an everted scolex; the merocercoid, an alacunate f<strong>or</strong>m with an invaginated scolex; the cysticercoid,a lacunate f<strong>or</strong>m with a retracted scolex; and the cysticercus, a lacunate f<strong>or</strong>m with an invaginated scolex. <strong>The</strong>diversity <strong>of</strong> <strong>larval</strong> types within the broad classifications <strong>of</strong> cysticercoid and cysticercus can be differentiated by theuse <strong>of</strong> appropriate prefixes. Deficiencies in knowledge <strong>of</strong> specific types <strong>of</strong> <strong>larval</strong> <strong>cestodes</strong> are identified and furtheravenues <strong>of</strong> research are indicated.Introduction<strong>The</strong> complexity <strong>of</strong> the <strong>terminology</strong> applied to <strong>larval</strong><strong>cestodes</strong> <strong>or</strong> meta<strong>cestodes</strong> has been lamented by virtuallyall reviewers <strong>of</strong> this topic (e.g. Voge, 1967;Freeman, 1973; Jarecka, 1975). However, attemptsto rationalise the names applied to <strong>larval</strong> <strong>cestodes</strong>have <strong>of</strong>ten resulted in the introduction <strong>of</strong> m<strong>or</strong>e newterms further complicating the situation (e.g. Freeman,1973) with the unf<strong>or</strong>tunate result that the <strong>terminology</strong>is not widely utilised (Scholz, 1999). Additional attemptsto rationalise <strong>terminology</strong> (e.g. Jarecka, 1975)have challenged the understanding <strong>of</strong> widely acceptedfeatures <strong>of</strong> metacestode development, such as those<strong>of</strong> the ‘metacestode’ and ‘cercomer’. Again, thesechanges have been adopted by some auth<strong>or</strong>s (e.g.Hoberg et al., 1997) but are not universally accepted(e.g. Freeman, 1973). A further complication is thatit is sometimes difficult to extract a definition <strong>of</strong> apurp<strong>or</strong>tedly novel type <strong>of</strong> <strong>larval</strong> cestode <strong>or</strong> even the∗ Pseudonym f<strong>or</strong> the contribut<strong>or</strong>s <strong>of</strong> a w<strong>or</strong>kshop on metacestode<strong>terminology</strong>, chaired by I. Beveridge, which took place during theThird International W<strong>or</strong>kshop f<strong>or</strong> Tapew<strong>or</strong>m Systematics, S<strong>of</strong>ia,Bulgaria, 20-24 July, 1999 (Organiser: B.B. Ge<strong>or</strong>giev).modification <strong>of</strong> a classical term from the paper inwhich the new <strong>or</strong> modified term is presented <strong>or</strong> the existingterm re-defined (e.g. ‘plerocercoid’ in Freeman,1973). In addition, in competing systems <strong>of</strong> <strong>terminology</strong>,the same term can have different meanings(Freeman, 1973; Jarecka, 1975). Nevertheless, somefeatures and terms remain consistent in all competingsystems f<strong>or</strong> the <strong>terminology</strong> <strong>of</strong> meta<strong>cestodes</strong>.<strong>The</strong> aims <strong>of</strong> this review are: (i) to compare thevarious systems <strong>of</strong> <strong>terminology</strong>; (ii) to determine areas<strong>of</strong> agreement and disagreement among variousproposals f<strong>or</strong> <strong>larval</strong> cestode <strong>terminology</strong>; (iii) f<strong>or</strong> areas<strong>of</strong> disagreement, to analyse the characters whichhave been utilised in developing the <strong>terminology</strong> andtheir homology, identifying characters which are plesiom<strong>or</strong>phic<strong>or</strong> apom<strong>or</strong>phic both within and betweengroups; and (iv) to attempt to resolve areas <strong>of</strong> disagreement.Hopefully any new system would be predictivewithin a phylogenetic context and facilitate phylogeneticresolution within the eu<strong>cestodes</strong> generally. Inproposing any revised system <strong>of</strong> <strong>terminology</strong>, a subsidiaryaim is to avoid the unnecessary introduction <strong>of</strong>new terms. Apart from this principle, the one underlyingideological view adopted in this review is that


2espoused by Joyeux & Baer (1961, p. 450) in theircomprehensive review <strong>of</strong> cestode life-cycles known atthat time, namely that ‘nous espérons gagner en clartéen les reduisant au minimum’ (literally, we hope togain clarity by reducing them to a minimum). Such ananalysis might result in a system <strong>of</strong> nomenclature thatis both functional, is based on the criterion <strong>of</strong> homologyand provides phylogenetic insights. <strong>The</strong> currentreview results from a w<strong>or</strong>kshop held during the 3rd InternationalW<strong>or</strong>kshop f<strong>or</strong> Tapew<strong>or</strong>m Systematics, heldin S<strong>of</strong>ia in 1999 at which agreement was reached thata simpler system <strong>of</strong> nomenclature f<strong>or</strong> <strong>larval</strong> <strong>cestodes</strong>was needed, even if m<strong>or</strong>phological and developmentaldetails have not yet been resolved.<strong>The</strong> review utilises the taxonomic arrangement f<strong>or</strong>the <strong>cestodes</strong> proposed by Khalil et al. (1994) butaccepts the cyclophyllidean family Gryp<strong>or</strong>hynchidae,following Spasskii & Spasskaya (1973) and Hoberget al. (1999).Hist<strong>or</strong>ical account <strong>of</strong> existing systems <strong>of</strong><strong>terminology</strong>Origins<strong>The</strong> existing <strong>terminology</strong> f<strong>or</strong> <strong>larval</strong> <strong>cestodes</strong> has developedover a considerable period <strong>of</strong> time and atits inception utilised generic names. <strong>The</strong> first wasScolex, applied by Müller (1787) f<strong>or</strong> <strong>larval</strong> tetraphyllideans.Zeder (1800, 1803) divided the <strong>larval</strong><strong>cestodes</strong> known at his time into two groups, monocephalic<strong>cestodes</strong> to which he applied the genericname Cysticercus and polycephalic <strong>cestodes</strong> f<strong>or</strong> whichthe name Polycephalus was used. Rudolphi (1819,pp. 177, 536) retained the genus Cysticercus but replacedPolycephalus with two new names, Coenurus,f<strong>or</strong> polycephalic <strong>larval</strong> <strong>cestodes</strong> in which proliferationwas ‘exogenous’ and Echinococcus f<strong>or</strong> <strong>cestodes</strong>in which proliferation was considered to be ‘endogenous’.<strong>The</strong>se genera were placed in the <strong>or</strong>der Cystica,which was separate from that <strong>of</strong> the adult tapew<strong>or</strong>ms,the <strong>or</strong>der Cestoidea. At the time, there was virtuallyno understanding <strong>of</strong> cestode life-cycles and littlecomprehension that the ‘cystic’ f<strong>or</strong>ms were the <strong>larval</strong>stages <strong>of</strong> the Cestoidea. This was particularly thecase in the Tetraphyllidea where species <strong>of</strong> Scolexexhibited strikingly different m<strong>or</strong>phology to the c<strong>or</strong>respondingadults. <strong>The</strong> generic names Dithyridium andTetrathyridium were also erected by Rudolphi (1819,p. 559), the first f<strong>or</strong> a cestode <strong>of</strong> uncertain identityfrom the liver <strong>of</strong> a lizard and the second from a partridge;neither was allocated to an <strong>or</strong>der. <strong>The</strong> genusScolex was used by Rudolphi (1819, pp. 124, 198)to include a variety <strong>of</strong> <strong>larval</strong> tetraphyllidean <strong>cestodes</strong>,although the genus was placed in the Cestoidea ratherthan in the Cystica. Subsequently, Diesing (1850) subdividedthe genus Cysticercus into those with armedscoleces, retained in Cysticercus, and those with unarmedscoleces, placed in a new genus Pietocystis,a division subsequently suppressed by Villot (1883,p. 5). Thus the nomenclature used at this stage waspurely descriptive, utilised the most obvious charactersavailable (monocephaly versus polycephaly)and predated any detailed understanding <strong>of</strong> the basiclife-cycles <strong>of</strong> <strong>cestodes</strong>.CysticercoidsLeuckart (1876) introduced the term cysticercoid f<strong>or</strong>a variety <strong>of</strong> <strong>larval</strong> <strong>cestodes</strong> known at the time, mainlyfrom invertebrates, differentiating them primarily ‘intheir minuteness and in the absence <strong>of</strong> fluid’. <strong>The</strong> termwas subsequently used as a generic name, Cysticercoides(e.g. Braun, 1894, p. 1559)Villot (1883) considered that Leuckart‘s group<strong>of</strong> cysticercoids was highly heterogeneous and re<strong>or</strong>ganisedthem such that only parasites <strong>of</strong> invertebrateswere involved. This involved moving Gryp<strong>or</strong>hynchus,a <strong>larval</strong> stage without cercomer, foundin fresh-water fish and now known to be a gryp<strong>or</strong>hynchid,to the ‘cysticerci’ and utilising a number<strong>of</strong> new generic names f<strong>or</strong> remaining <strong>larval</strong> f<strong>or</strong>ms. <strong>The</strong>first group, with two genera, was characterised byendogenous development. Polycercus was proposedf<strong>or</strong> the polycephalic larva described by Metchnikov(1869) from Lumbricus terrestris, which are larvae<strong>of</strong> a dilepidid genus. Monocercus was erected f<strong>or</strong>Cysticercus arionis <strong>of</strong> von Siebold (1850) found inthe mollusc Arion empiric<strong>or</strong>um, and now consideredto be the dilepidid Molluscotaenia crassiscolex (seeGulyaev & K<strong>or</strong>nienko, 1998).<strong>The</strong> second group, characterised by exogenousdevelopment included the genera Cercocystis, Cryptocystis,Urocystis and Staphylocystis. Cercocystis waserected f<strong>or</strong> a cysticercoid found in Tenebrio molit<strong>or</strong>by Stein (1875), named Cysticercus tenebrionis, andthought to be the <strong>larval</strong> stage <strong>of</strong> the hymenolepididRodentolepis microstoma. Cryptocystis contained C.trichodectis, a larva found in the body-cavity <strong>of</strong> thedog louse Trichodectes canis by Melnikov (1869) andnow known to be the <strong>larval</strong> stage <strong>of</strong> Dipylidium can-


3inum (= Taenia cucumerina). Both Leuckart (1876)and Moniez (1880) noted that the scolex was invaginated,as occurs in Echinococcus, rather than retractedas in the related cysticercoids. Urocystis and Staphylocystiswere both erected f<strong>or</strong> polycephalic larvae foundin a variety <strong>of</strong> invertebrates, which are now knownto be <strong>larval</strong> stages <strong>of</strong> hymenolepidids from shrews(Joyeux & Baer, 1961).<strong>The</strong> terms employed by Zeder (1800), Rudolphi(1819), Villot (1877, 1882, 1883), Braun (1883)and other auth<strong>or</strong>s were inc<strong>or</strong>p<strong>or</strong>ated by Braun (1894,p. 1,567) into his synopsis <strong>of</strong> types <strong>of</strong> <strong>larval</strong> <strong>cestodes</strong>(Table 1). Subsequently, most <strong>of</strong> the names ceased tobe used as generic names but were retained in slightlymodified f<strong>or</strong>ms to describe types <strong>of</strong> <strong>larval</strong> <strong>cestodes</strong>.A full list <strong>of</strong> such names was provided by Freeman(1973).Terms f<strong>or</strong> pseudophyllideans and trypan<strong>or</strong>hynchsOriginating from studies on the life cycles <strong>of</strong> pseudophyllidean<strong>cestodes</strong> came the term procercoid todescribe the first <strong>larval</strong> stage in the crustacean intermediatehost (Janicki & Rosen, 1917) characterisedby the lack <strong>of</strong> a primary lacuna and the presence <strong>of</strong> atail-like appendage termed the cercomer. <strong>The</strong> pseudophyllideanstage in the second, vertebrate intermediatehost was termed a plerocercoid by Braun (1883) andwas also used subsequently as a generic name, Plerocercoides(e.g. Braun, 1894, p. 1,559). Plerocercoidswere characterised as having a solid body and havingthe future scolex develop externally (Figure 1).<strong>The</strong> term plerocercus was also proposed by Braun(1883) f<strong>or</strong> the <strong>larval</strong> stage <strong>of</strong> trypan<strong>or</strong>hynch <strong>cestodes</strong>,in which the scolex f<strong>or</strong>ms retracted within a blastocyst.Dollfus (1946, p. 66) provided a detailed comparison<strong>of</strong> the structure <strong>of</strong> plerocerci and plerocercoids; his<strong>or</strong>iginal drawings having been utilised subsequentlyby Wardle & McLeod (1952, p. 296) and Campbell& Beveridge (1994, p. 54). Dollfus (1946) utilised f<strong>or</strong>his illustration <strong>of</strong> a plerocercoid, a species <strong>of</strong> Phyllobothrium,showing invagination <strong>of</strong> the scolex withinthe pars proliferans <strong>of</strong> the scolex. Wardle & McLeod(1952, p. 66) subsequently defined a plerocercoid ashaving an invaginated scolex. However, most plerocercoidshave an evaginated scolex, such as those<strong>of</strong> Diphyllobothrium, Triaenoph<strong>or</strong>us and Abothrium(See Rosen 1919, p. 261, plate I, figure 3, p. 273, plateIII, figure 5) as well as the tetraphyllideans Scolexpolym<strong>or</strong>phus and S. pleuronectis. Hence, the term plerocercoidhas been used f<strong>or</strong> <strong>larval</strong> stages with bothinvaginated and non- invaginated scoleces. In addition,S. bothriosimplex, with a single apical sucker, isprobably the <strong>larval</strong> stage <strong>of</strong> a tetrabothriidean (Hoberg,1987), further complicating the the analysis <strong>of</strong> theearly application <strong>of</strong> this term.An additional term, merocercoid, f<strong>or</strong> the <strong>larval</strong>stage <strong>of</strong> Triaenoph<strong>or</strong>us nodulosus was attributed toJanicki by Rosen (1919, p. 298), although the publication<strong>of</strong> the name was not cited. Rosen (1919)dismissed Janicki‘s use <strong>of</strong> a novel term, insisting thatthe larva in question was a plerocercoid. <strong>The</strong> termappears not to have been employed subsequently f<strong>or</strong>pseudophyllidean larvae.In a review <strong>of</strong> types <strong>of</strong> cestode larvae, Fuhrmann(1933) used the terms procercoid and plerocercoidf<strong>or</strong> stages <strong>of</strong> pseudophyllidean life-cycles, as wellas the older terms cysticercus and cysticercoid (inc<strong>or</strong>p<strong>or</strong>atingcryptocystis and cercocystis), plerocercusand dithyridium (f<strong>or</strong> Mesocestoides), in additionto the new term merocercus f<strong>or</strong> the metacestode<strong>of</strong> the lecanicephalidean genus Lecanicephalum (seeFuhrmann, 1933, p. 240).Particular terms f<strong>or</strong> meta<strong>cestodes</strong> were not necessarilyrestricted to a single taxonomic group ascysticercus was applied not only to the meta<strong>cestodes</strong><strong>of</strong> taeniids but also to tetraphyllidean meta<strong>cestodes</strong>(Mon<strong>or</strong>ygma grimaldii). Rudolphi (1819) had previouslyapplied the term cysticercus to the metacestode<strong>of</strong> another tetraphyllidean, Phyllobothrium delphini.An additional feature <strong>of</strong> Fuhrmann‘s (1933)description <strong>of</strong> cestode <strong>larval</strong> stages was that he referredto both Dithyridium and Gryp<strong>or</strong>hynchus asplerocercoids; that is, he applied the term plerocercoidto bothriate and acetabulate meta<strong>cestodes</strong>, andhe (p. 202) clearly distinguished between meta<strong>cestodes</strong>with invaginated scoleces (zurükgezogen) andwithdrawn scoleces (zurückzieht).Fuhrmann’s (1933) terms f<strong>or</strong> meta<strong>cestodes</strong> werewidely adopted in western Europe and were addedto by Joyeux & Baer (1945), who proposed the termmerocercoid f<strong>or</strong> the metacestode <strong>of</strong> the cyclophyllideancestode Catenotaenia pusilla, characterised bythe possession <strong>of</strong> an apical sucker which is lost duringdevelopment in the adult. <strong>The</strong>y were apparentlyunaware <strong>of</strong> its pri<strong>or</strong> use by Rosen (1917) f<strong>or</strong> pseudophyllideans.Dollfus’ (1942) classic monograph onthe Trypan<strong>or</strong>hyncha firmly established the use <strong>of</strong> theterm plerocercus f<strong>or</strong> trypan<strong>or</strong>hynch meta<strong>cestodes</strong>, althoughthe term was ign<strong>or</strong>ed by Joyeux & Baer (1961)and Wardle & McLeod (1951) in favour <strong>of</strong> plero-


4Figure 1. Schematic representation <strong>of</strong> patterns <strong>of</strong> <strong>larval</strong> development in the <strong>or</strong>ders (A) Caryophyllidea, (B) Pseudophyllidea, (C) Haplobothriidea,(D) Trypan<strong>or</strong>hyncha, (E) Tetraphyllidea and (F) Nippotaeniidea.


5Table 1. Names <strong>of</strong> <strong>larval</strong> <strong>cestodes</strong> utilised by Braun (1894) in one <strong>of</strong> the earliestsynopses <strong>of</strong> <strong>terminology</strong> together and their <strong>or</strong>igins.Group I Cysticerci Original use <strong>of</strong> term:1. Cysticercus Zeder (1800)2. Coenurus Rudolphi (1819)3. Echinococcus Rudolphi (1819)Group II Cysticercoids Original use <strong>of</strong> term: Leuckart (1867)Sub-group (a) - with endogenous development1. Polycercus based on the description <strong>of</strong> a <strong>larval</strong> cestode in anannelid, Lumbricus, by Metchnik<strong>of</strong>f (1869) (=Paricterotaenia) (Dilepididae).2. Monocercus based on a cysticercoid from a mollusc, Arionempiric<strong>or</strong>um, by von Siebold (1850), nowMolluscotaenia (Dilepididae).Sub-group (b) - with exogenous development1. Cercocystis based on cysticercoids developing in a beetle,Tenebrio molit<strong>or</strong>, described by Stein (1975),probably the larva <strong>of</strong> Rodentolepis microstoma.2. Staphylocystis based on cysticercoids found in a myriapod,Glomeris limbatus, by Villot (1877), adultStaphylocystis pistillum, in shrews.3. Urocystis based on cysticercoids found in myriapods G.conspers and G. marginata by Villot (1882).4. Cryptocystis based on the larvae <strong>of</strong> Dipylidium caninum(= Taenia cucumerina) in a louse, Trichodectescanis, described by Melnikov (1869).cercoid. Dollfus (1946) also excluded the athecatetrypan<strong>or</strong>hynchs (Homeacanthoidea) from the types <strong>of</strong><strong>cestodes</strong> characterised by a plerocercoid, referring tothem instead as postlarvae. <strong>The</strong> most comprehensivesummary <strong>of</strong> cestode life-cycles published in the subsequentdecades, that <strong>of</strong> Joyeux & Baer (1961), furtherestablished the use <strong>of</strong> the terms procercoid, plerocercoid,cysticercus and cysticercoid in the westernEuropean literature (Figures 1,2).Skrjabin and colleaguesA significant elab<strong>or</strong>ation <strong>of</strong> the traditional terms wasmade by Russian w<strong>or</strong>kers under the leadership <strong>of</strong> K.I.Skrjabin. Skrjabin & Mathevossian (1942) divided thedevelopment <strong>of</strong> the metacestode <strong>of</strong> hymenolepididsinto six stages: (1) the oncosphere; (2) the megalosphere(with a central cavity termed the primarylacuna); (3) the metamere, subdivided into caput, collum,soma and cerca <strong>or</strong> cercomer <strong>of</strong> other auth<strong>or</strong>s;(4) scolexogeny, during which the rostellum and suckersbegin development in the caput; (5) the stage <strong>of</strong>‘invagination’ in which the caput and collum are retractedwithin the soma; and (6) the fully-developedcysticercoid, termed a larvicyst. <strong>The</strong> term larvicysthad been coined by Skrjabin (1937) to denote anymetacestode <strong>of</strong> the <strong>or</strong>der Cyclophyllidea, irrespective<strong>of</strong> its final structure. Skrjabin & Mathevossian (1945)also used the spelling ‘larvocyst’.Larvicysts <strong>of</strong> hymenolepidids were subdivided bySkrjabin & Mathevossian (1942) into various m<strong>or</strong>phologicalcharacters based in part on the w<strong>or</strong>k <strong>of</strong> Villot(1883) (Table 2), the key characters being: (1) presence<strong>or</strong> absence <strong>of</strong> a cercomer; (2) ratio <strong>of</strong> length <strong>of</strong>cercomer to the rest <strong>of</strong> the cysticercoid; (3) structure<strong>of</strong> the membranes investing the scolex; and (4) mode<strong>of</strong> scolex f<strong>or</strong>mation (e.g. by budding). <strong>The</strong> termsthey adopted to describe cysticercoids, taken in partfrom earlier auth<strong>or</strong>s, were staphylocyst, urocyst, cer-


6Table 2. Terms used in the literature, other than procercoid, plerocercoid, plerocercus, cysticercoid and cysticercus, to describecyclophyllidean <strong>larval</strong> stages. <strong>The</strong> table excludes terms used by Jarecka (1970) and Freeman (1973).Family Term Description, example ReferenceHymenolepididaestaphylocyst mycelium-like, polycephalic Skrjabin & Mathevossian (1942)urocyst new cysts budded from base Skrjabin & Mathevossian (1942)cercocyst long cercomer Skrjabin & Mathevossian (1942)ramicercus branched cercomer Skrjabin & Mathevossian (1942)microcercus reduced cercomer, Hymenolepis nana Skrjabin & Mathevossian (1942)diplocyst no cercomer, Aploparaksis crassirostris Skrjabin & Mathevossian (1942)fl<strong>or</strong>icyst caudate diplocyst, Aploparaksis birulai Bondarenko & Kontrimavichus (1976)Dilepididaeacerocyst no primary lacuna, Dilepis undula Gulyaev (1997b)monocercus cercomer degenerates into globules Villot (1883); Gabrion & Helluy (1982);Gulyaev & K<strong>or</strong>nienko (1998)cryptocercus cercomer degenerates into globulespolycercus cercomer f<strong>or</strong>ms enclosing cyst Villot (1883); Gulyaev & K<strong>or</strong>nienko (1998)cercoscolex Gryp<strong>or</strong>hynchinae Jarecka (1971a,b)strobilocyst segmented region in metacestode, Laterip<strong>or</strong>us Shapkin & Gulyaev (1973)Anoplocephalidaeamphicyst Linstowiinae Spasskii (1951)Taeniidae (s.l.)coenurus polycephalic cysticercus Abuladze (1964)strobilocercus segmented region <strong>of</strong> metacestode, Taenia taeniaef<strong>or</strong>mis Abuladze (1964)fimbriocercus T. martis, T. mustelae, T. twitchelli, T. brachyacantha K<strong>or</strong>nyushin & Sharpilo (1986)armatetrathyridium T. polyacantha Abuladze (1964)hemistrobilocercus T. rileyi Rausch (1981)coenurostrobilocercus T. krepk<strong>or</strong>g<strong>or</strong>ski Agapova (1950)hydatid Echinococcus granulosus Rudolphi (1819); Abuladze (1964)alveohydatid Alveococcus multilocularis Abuladze (1964)Paruterinidaecladothyridium Cladotaenia, Paruterina Abuladze (1964)Mesocestoididaetetrathyridium Mesocestoides spp. Voge (1967)Amabiliidaeascocercus Gulyaev (1989)Catenotaeniidaemerocercoid Catenotaenia pusilla Joyeux & Baer (1945)cocyst and monocercus, but included the new termsramicercus, microcercus and diplocyst.In the series <strong>of</strong> texts, Essentials <strong>of</strong> cestodology, additionalterms were utilised (Table 2). Spasskii (1951)in a review <strong>of</strong> the Anoplocephalata utilised the termamphicyst first proposed by him (Spaskii, 1949) f<strong>or</strong>the larvae <strong>of</strong> linstowiids. Abuladze (1964) utilised avariety <strong>of</strong> terms f<strong>or</strong> taeniid larvae (then encompassingthe genera Cladotaenia and Paruterina, whichare currently placed in the Paruterinidae) (Table 2),using in addition to the traditional terms cysticercus,coenurus and echinococcus (= hydatid), those <strong>of</strong> strobilocercus,alveohydatid, armatetrathyridium andcladothyridium. To these have been added fimbriocercusby K<strong>or</strong>nyushin & Sharpilo (1986), hemistrobilocercusby Rausch (1981) and coenurostrobilocercusby Agapova (1950).


Figure 2. Schematic representation <strong>of</strong> patterns <strong>of</strong> <strong>larval</strong> development in the <strong>or</strong>ders Proteocephalidea and Cyclophyllidea, the latter beingillustrated by representatives <strong>of</strong> the families (<strong>or</strong> sub-families) Paruterinidae, Taeniidae, Linstowiinae, Dipylidiinae, Gryp<strong>or</strong>hynchidae,Hymenolepididae, Davaineidae, Dilepididae, Anoplocephalidae and Amabiliidae.7


8Jarecka and FreemanTwo additional systems <strong>of</strong> <strong>larval</strong> cestode <strong>terminology</strong>were developed essentially contemp<strong>or</strong>aneously(Jarecka, 1970a,b, 1975; Freeman, 1973) and sharea common feature, derived from Moniez (1880) andVillot (1883), namely that features observable duringdevelopment, particularly the presence <strong>or</strong> absence <strong>of</strong>a cercomer and a primary lacuna are given considerablesignificance. Beyond this commonality, theydiffer in that the system <strong>of</strong> Freeman (1973) subsequentlyrelied on <strong>larval</strong> cestode m<strong>or</strong>phology alone,while that <strong>of</strong> Jarecka (1975) inc<strong>or</strong>p<strong>or</strong>ated, as a feature,whether the cestode larva occurred in its first <strong>or</strong> secondintermediate host (Table 3).In the system proposed by Jarecka (1970a,b,1975), <strong>larval</strong> <strong>cestodes</strong> in the first intermediate hostwere termed cercoids, while those in a second intermediatehost were termed metacercoids. Cercoidscould possess a cercomer, but, by definition, metacercoidslacked a cercomer. Cercoids were sub-dividedinto the: (1) procercoid, which is bothriate but lacksa primary lacuna (gymnosomic in the <strong>terminology</strong><strong>of</strong> Jarecka, 1975); (2) cercoscolex, which is acetabulate,lacks a primary lacuna and has a withdrawn<strong>or</strong> retracted scolex (= Gryp<strong>or</strong>hynchus <strong>of</strong> earlier auth<strong>or</strong>s);(3) cysticercoid, which has a primary lacuna(cystosomic in the <strong>terminology</strong> <strong>of</strong> Jarecka, 1975), isacetabulate and has a withdrawn scolex; and (4) cysticercus,which is acetabulate, invaginated and lacks acercomer. <strong>The</strong> metacercoid, in the second intermediatehost, lacks a cercomer and may be either a bothriateplerocercoid <strong>or</strong> an acetabulate plerocercus. <strong>The</strong>system <strong>of</strong> <strong>terminology</strong> proposed by Jarecka (1970a,b,1975) thus retains the traditional terms cysticercus,cysticercoid and plerocercoid. Procercoid was <strong>or</strong>iginallyapplied to the caudate (= with cercomer) stages<strong>of</strong> pseudophyllideans in the first intermediate hostpri<strong>or</strong> to development <strong>of</strong> the bothria (Janicki & Rosen,1917). <strong>The</strong> re-definition <strong>of</strong> the term by Jarecka (1975)meant that it also included the caudate, bothriate <strong>larval</strong><strong>cestodes</strong> <strong>of</strong> caryophyllideans and overcame theanomaly, f<strong>or</strong> pseudophyllideans, <strong>of</strong> development ineither two intermediate hosts (e.g. Diphyllobothrium,Ligula; see Janicki & Rosen, 1917; Rosen 1920) <strong>or</strong>a single intermediate host (e.g. Bothriocephalus; seeRobert et al. 1988; Scholz, 1997). Her term ‘cercoscolex’described proteocephalidean meta<strong>cestodes</strong>(Scholz, 1997) as well as those <strong>of</strong> the family Gryp<strong>or</strong>hynchidae.<strong>The</strong> term plerocercus, previously appliedto trypan<strong>or</strong>hynch meta<strong>cestodes</strong> retracted withina bladder-like cysts (Dollfus, 1942), was used f<strong>or</strong>unspecified acetabulate <strong>cestodes</strong> in the second intermediatehost. Under her system, trypan<strong>or</strong>hynchanmeta<strong>cestodes</strong> would have been termed plerocercoids.A subsequent modification <strong>of</strong> this system was proposedby Gulyaev (1997a) to include presumed stagesin the evolution <strong>of</strong> <strong>larval</strong> <strong>cestodes</strong>, in which Spasskii’s(1951) term amphicyst, f<strong>or</strong> linstowiid meta<strong>cestodes</strong>,was added to the range <strong>of</strong> cercoids, tetrathyridiumwas added to the range <strong>of</strong> metacercoids and theterm plerocercoid was replaced by blastocyst f<strong>or</strong> trypan<strong>or</strong>hynchmeta<strong>cestodes</strong> (Table 4). Gulyaev (1997a)introduced two additional terms (Table 4), protolarvaf<strong>or</strong> meta<strong>cestodes</strong> lacking a primary lacuna and larvacystoidsf<strong>or</strong> meta<strong>cestodes</strong> lacking a cercomer <strong>or</strong>bladder, but retained the term larvacyst (= larvicyst)<strong>of</strong> Skrjabin (1937) f<strong>or</strong> cysticercoids, cysticerci and theblastocysts <strong>of</strong> trypan<strong>or</strong>hynchs.<strong>The</strong> system utilised by Freeman (1973) (Table 3)differed in that, while inc<strong>or</strong>p<strong>or</strong>ating the absence <strong>or</strong>presence <strong>of</strong> a primary lacuna (termed ‘primitive’and ‘neoteric’, respectively) and the presence <strong>or</strong> absence<strong>of</strong> a cercomer, the number <strong>of</strong> intermediate hostswas essentially disregarded and the m<strong>or</strong>phology <strong>of</strong>the <strong>larval</strong> cestode only was considered. In Freeman’ssystem (1973), the traditional terms procercoid, cysticercus,cysticercoid and plerocercus were retained.Several new terms were used by Freeman (1973). Precysticercuswas coined f<strong>or</strong> meta<strong>cestodes</strong> without acercomer, with a primary lacuna and in which thescolex was invaginated (e.g. Linstowiidae). This termis synonymous with amphicyst <strong>of</strong> Spasskii (1951)and Gulyaev (1997a). <strong>The</strong> term neoplerocercoid wascoined f<strong>or</strong> trypan<strong>or</strong>hynch meta<strong>cestodes</strong> lacking a blastocyst(Freeman, 1973, p. 511), currently allocated tothe sub<strong>or</strong>der Homeacanthoidea by Campbell & Beveridge(1994). However, Freeman (1973, p. 521) alsosuggested that the same term, neoplerocercoid (pp.521, 528-9), could be applied to anoplocephalid andhymenolepidid meta<strong>cestodes</strong> based upon the development<strong>of</strong> the scolex from the ‘f<strong>or</strong>e body’ (p. 521) andlacking a cercomer in their fully-developed f<strong>or</strong>m. Itmay be that Freeman intended to use the term neoplerocercusf<strong>or</strong> trypan<strong>or</strong>hynchs and neoplercercoidf<strong>or</strong> cyclophyllideans, but that there are typographicalerr<strong>or</strong>s in the published paper. Freeman’s term postplerocercoidwas coined f<strong>or</strong> <strong>larval</strong> <strong>cestodes</strong> such as those<strong>of</strong> Ligula, in which evidence <strong>of</strong> segmentation is apparentin the <strong>larval</strong> stage. <strong>The</strong> other term coined by Freeman(1973) was strobilocysticercoid f<strong>or</strong> Laterip<strong>or</strong>us,in which segmentation is present in the <strong>larval</strong> cestode.


9Table 3. Comparison <strong>of</strong> the systems <strong>of</strong> nomenclature <strong>of</strong> cestode developmental stages adopted by Jarecka (1970a,b,1975) and Freeman (1973a,b).Jarecka (1970a,b, 1975) Freeman (1973)1. Oncosphere 1. Oncosphere2. Cercoid 2. Metacestode(stage in first intermediate host)(a) procercoid(a) procercoid(bothriate, no primary lacuna)(no lacuna <strong>or</strong> scolex)(b) cercoscolex(no primary lacuna, acetabulate, invaginated <strong>or</strong> withdrawn)(c)cysticercoid(lacuna, acetabulate scolex retracted)(d) cysticercus(lacuna, no cercomer, inverted scolex, bladder)(b) plerocercoid I, II, III, etc.(no lacuna, with scolex)(c) cysticercoid(lacuna, acetabulate scolex retracted)(d) cysticercus(lacuna, no cercomer, inverted bladder)3. Metacercoid (e) precysticercus(stage in second intermediate host)(lacuna, invaginated, no cercomer <strong>or</strong> bladder)(a) plerocercoid(bothriate)(b) plerocercus(acetabulate)(f) precysticercoid(? no lacuna, retracted, cercomer)(g) plerocercus(no lacuna, retracted, bothriate)(h) neopleroceroid(no lacuna, bothriate)This term parallels strobilocysticercus (= strobilocercus)f<strong>or</strong> the <strong>larval</strong> cestode <strong>of</strong> Taenia taeniaef<strong>or</strong>mis andrelated members <strong>of</strong> the genus Taenia.<strong>The</strong> term plerocercoid was used by Freeman(1973) f<strong>or</strong> a wide range <strong>of</strong> both bothriate and acetabulatemeta<strong>cestodes</strong>, thereby broadening its application,although Fuhrmann (1933) had previously used theterm f<strong>or</strong> certain acetabulate f<strong>or</strong>ms. Among the newnames suggested by Freeman (1973, Table IV), themost commonly used term is plerocercoid. However,a precise definition <strong>of</strong> it is difficult to derive from thetext <strong>of</strong> the paper (Jarecka, 1975), as Freeman (1973,p. 509) defined it simply as a metacestode without aprimary lacuna. F<strong>or</strong> additional m<strong>or</strong>phological details,Freeman (1973) suggested the addition <strong>of</strong> a series<strong>of</strong> prefixes to describe the basic m<strong>or</strong>phological features(e.g. caudate, acetabulate, bothriate, rostellate,anacanthate, etc.) (Table 5).Both Jarecka (1975) and Freeman (1973) had theopp<strong>or</strong>tunity to comment on one another’s proposalsand their respective criticisms are instructive.(a) Jarecka (1975) criticised the <strong>terminology</strong> <strong>of</strong>Freeman (1973) f<strong>or</strong> not inc<strong>or</strong>p<strong>or</strong>ating the intermediatehost stage, although Freeman does deal withparatenic hosts by numbering the plerocercoids, I, II<strong>or</strong> III, depending upon the number <strong>of</strong> second intermediate/paratenichosts in the life-cycle. However, this isimpossible f<strong>or</strong> any cestode whose entire life-cycle hasnot yet been elucidated.(b) Jarecka (1975) also avoided the term metacestode,using cercoid and metacercoid instead. Freeman(1973) restricted the term ‘larva’ to the developmentalstage present within the cestode egg, whileJarecka (1973) considered this stage to be the firststagelarva and those within intermediate hosts tobe second- <strong>or</strong> third-stage larvae. Metacestode mayappear to be etymologically inappropriate, since itscommon zoological use means behind <strong>or</strong> hindermostas applied to the th<strong>or</strong>acic segments <strong>of</strong> insects (pro-,meso-, meta-). Wardle & McLeod (1952) suggestedthe term metacestode to indicate a ‘changing’ cestode(Freeman, 1973), a meaning f<strong>or</strong> the prefix ‘meta-’encompassed within the various uses <strong>of</strong> the term ac-


10Table 4. System <strong>of</strong> nomenclature <strong>of</strong> cestode <strong>larval</strong> stages proposedby Gulyaev (1997a) based on that <strong>of</strong> Jarecka (1975) withevolutionary stages addedFirst intermediate hostMeta<strong>cestodes</strong>Second intermediate hostCercoid Metacercoids PostlarvaProcercoidCercoscolexPlerocercoidProtolarvaAmphicyst Tetrathyridium LarvacystoidCysticercus Blastocyst LarvacystCysticercoidcepted by the Sh<strong>or</strong>ter Oxf<strong>or</strong>d Dictionary and utilisedin zoological terms such as metam<strong>or</strong>phosis. Cercoidis a useful term in that it is a component <strong>of</strong> many <strong>of</strong>the names <strong>of</strong> known <strong>larval</strong> f<strong>or</strong>ms, but suffers from thedisadvantage that not all names (e.g. cysticercus) aref<strong>or</strong>med from it. Because <strong>of</strong> differences <strong>of</strong> opinion, theneutral term larva is used in this review.(c) Freeman (1973) objected to Jarecka’s (1970)division <strong>of</strong> <strong>larval</strong> <strong>cestodes</strong> into cercoids and metacercoids(cercoids which have lost their cercomer) on thegrounds that many groups <strong>of</strong> <strong>cestodes</strong> do not possesscercomers in the early stages <strong>of</strong> development. Jarecka(1975) and Jarecka et al. (1981), however, have arguedthat, based on the earlier views <strong>of</strong> Janicki & Rosen(1917), all <strong>cestodes</strong> possess cercomers but they differin f<strong>or</strong>m. Jarecka et al. (1981) argued that the cercomers<strong>of</strong> procercoids, the cyst walls <strong>of</strong> cysticercoidsand the bladders <strong>of</strong> cysticerci are homologous, as theyall possess microvilli on their surfaces and they aretheref<strong>or</strong>e modifications <strong>of</strong> the cercomer. An additionalpotential objection to the system <strong>of</strong> Jarecka (1975)would be that it does not deal with paratenic hosts,a phenomenon which is common within the Pseudophyllidea(e.g. Mueller, 1938; Robert et al., 1988) andin the Proteocephalidea (e.g. Biserkov & Genov, 1988;Biserkov & Kostadinova, 1997).(d) One particular term, cercoscolex, warrantsspecific comment as it has an extremely confusedusage. It was coined by Jarecka (1970a,b) f<strong>or</strong> caudate,non-lacunate cestode larvae with invaginatedscoleces, which lose their cercomers in a secondintermediate host and was applied to the generaValip<strong>or</strong>a, Paradilepis and Neogryp<strong>or</strong>hynchus, currentlyincluded in the family Gryp<strong>or</strong>hynchidae (seeSpasskii & Spasskaya (1973) f<strong>or</strong> definition <strong>of</strong> theGryp<strong>or</strong>hynchinae) thereby conf<strong>or</strong>ming with the usageby Leuckart (1876) and Villot (1883) under the term‘gryp<strong>or</strong>hynchus’ <strong>or</strong> ‘gryp<strong>or</strong>hynque’. In 1975, Jareckaexpanded the definition to include other acetabulatemeta<strong>cestodes</strong> lacking a primary lacuna (e.g. Proteocephalidea)as well as those in which the primarylacuna was a transit<strong>or</strong>y feature (Dipylidium). Jareckaet al. (1981) subsequently extended the term to includethe dilepidid genera Paricterotaenia and Anomotaenia,which have withdrawn scoleces and to anymetacestode with microtriches rather than microvillion the cyst wall. <strong>The</strong>y subsequently asserted (Jareckaet al., 1984) that this metacestode was typical f<strong>or</strong>dilepidids. Freeman (1973) by contrast used the termprecysticercoid f<strong>or</strong> the meta<strong>cestodes</strong> <strong>of</strong> Choanotaeniaand other related dilepidid genera. Gabrion & Helluy(1982) reviewed the m<strong>or</strong>phogenesis <strong>of</strong> meta<strong>cestodes</strong><strong>of</strong> the Dilepididae and concluded that the term monocercus<strong>of</strong> Villot (1883) applied to 31 dilepidid speciesin which an elongate cercomer disintegrated into globuleswhich persist in the metacestode. <strong>The</strong>y consideredthat the monocercus was characteristic <strong>of</strong> the Dilepididae.<strong>The</strong> <strong>terminology</strong> applied to meta<strong>cestodes</strong> <strong>of</strong> theDilepididae is theref<strong>or</strong>e particularly complex.M<strong>or</strong>e recent additionsM<strong>or</strong>e recent modifications to these systems <strong>of</strong> <strong>terminology</strong>are essentally restricted to cysticerci andcysticercoids. However, significant advances in understanding<strong>of</strong> the life-cycles <strong>of</strong> terabothriideans,in which the <strong>larval</strong> stage was recognised as auniacetabulo-plerocercoid (Hoberg, 1987; Galkin,1996), have also been made without the introduction


11Table 5. Nomenclature employed by Freeman (1973) to describe the <strong>larval</strong> stages <strong>of</strong> <strong>cestodes</strong>, as modified byUbelaker (1983).Cestode taxon Definition ExampleTermHymenolepididae/Anoplocephalidae/Davaineidae/Dilepididaerostello-cysticercoidwith rostellumarostello-cysticercoid no rostellum Anoplocephalinaeanacanth<strong>or</strong>ostello-cysticercoid without hooks Hymenolepis diminutaacanth<strong>or</strong>ostello-cysticercoid with hooks Hymenolepis nanacaudate-cysticercoidwith cercomeracaudate-cysticercoidwithout cercomerlongicaudate-cysticercoid with long cercomer Drepanidotaenia lanceolatabrevicaudate-cysticercoid with sh<strong>or</strong>t cercomer Raillietina spp.circumcaudate-cysticercoidAploparaksis spp.micranth<strong>or</strong>ostello-cysticercoid with small hooks Davainea proglottinaprecysticercoidChoanotaenia spp.Taeniidaeheteracantho-cysticercustwo rows <strong>of</strong> dissimilar hooks Taenia soliumhomeacantho-cysticercus hooks similar Foss<strong>or</strong>, Mon<strong>or</strong>odotaeniaanacantho-cysticercus lacking hooks Taenia saginatastrobilo-cysticercus segmentation in metacestode Taenia taeniaef<strong>or</strong>mis, T. polyacanthamulticephalo-cysticercus multiple scoleces Taenia serialisGryp<strong>or</strong>hynchidaeacanthacetabulo-plerocercoidLinstowiinaeprecysticercusMesocestoididaeinvaginated acetabulo-plerocercoidValip<strong>or</strong>aOoch<strong>or</strong>isticaMesocestoidesNippotaeniideauni-acetabulo-plerocercoidProteocephalideaglandacetabulo-plerocercoidOphiotaenia filaroidesinvaginated acetabulo-plerocercoid plerocercoid I C<strong>or</strong>allotaenia minutamet-acetabulo-plerocercoid plerocercoid IIculci-acetabulo-plerocercoidProteocephalus parallacticusPseudophyllideaacaudate bothrio-plerocercoidstrobilobothriate-plerocercoidEubothrium salveliniDiphyllobothrium dendriticumHaplobothriideatentaculo-plerocercoidCaryophyllideacaudate post-plerocercoidSpathebothriidea(a)caudate–adultArchigetes, CaryophyllaeusCyathocephalus, BothrimonusTetraphyllideabothrio - plerocercoidTrypan<strong>or</strong>hynchatentaculo - plerocercoidneoplerocercoidLacist<strong>or</strong>hynchus tenuis


12<strong>of</strong> novel names.Cysticerci and their modificationsA variety <strong>of</strong> terms have been utilised to describemono- and polycephalic cysticerci (Table 2), andthese have recently been reviewed by Hoberg et al.(2000). <strong>The</strong>y recognised, apart from the cysticercus,the coenurus in which new scoleces develop by invaginationinto a central bladder (Taenia multiceps, T.serialis), the fimbriocercus, an elongate unsegmentedlarva (T. brachyacantha, T. martis, T. polyacantha)(includes armatetrathyridium) and strobilocercus, witha strobilate collum (including hemistrobilocercus andcoenurostrobilocercus) (T rileyi, T. parva, T. taeniaef<strong>or</strong>mis).<strong>The</strong>y identified a further group <strong>of</strong> species(T. endoth<strong>or</strong>acicus, T. selousi, T. twitchelli) in whichscoleces are b<strong>or</strong>ne on long stalks that arise by exogenousbudding from a central bladder which laterregresses, but f<strong>or</strong> which no name was provided. Inaddition, the terms echinococcus and alveococcusremain f<strong>or</strong> specialised <strong>larval</strong> <strong>cestodes</strong> <strong>of</strong> the genusEchinococcus which are also modified cysticerci.Cysticercoids and their modificationsA number <strong>of</strong> new terms have been introduced f<strong>or</strong> cysticercoidssuch that the literature on this topic is confusing.Not only have numerous terms been coined,<strong>of</strong>ten without acknowledgment <strong>of</strong> a pre-existing term,but existing terms have been applied inc<strong>or</strong>rectly andthe identity <strong>of</strong> <strong>cestodes</strong> described based on <strong>larval</strong>f<strong>or</strong>ms has <strong>of</strong>ten been disputed, thus jeopardising theapplication <strong>of</strong> the <strong>terminology</strong>. Consequently, theprincipal terms used to describe cysticercoids arebriefly reviewed.(a) Monocephalic cysticercoids1. Cercocyst (Figure 3A)<strong>The</strong> cercocyst, <strong>or</strong>iginally described by Villot(1883), was based on a <strong>larval</strong> cestode with a prominent,broad cercomer found in the beetle Tenebriomolit<strong>or</strong>. It was presumed to be Hymenolepis microstoma,the development <strong>of</strong> which was describedin greater detail by Caley (1974). Cysticercoidswith cercomers longer than the soma, but withoutlateral outgrowths were considered to be cercocystsby Skrjabin & Mathevossian (1942). Considerablevariation occurs within this group as thecercomer may be long and slender <strong>or</strong> may be extremelybroad. Numerous hymenolepidid generahave cysticercoids <strong>of</strong> this type, including Cladogynia(=Flamingolepis) (see Gabrion, 1981), Dicranotaenia(see Neradová-Valkounová, 1971),Di<strong>or</strong>chis (see Czaplinski & Szelenbaum-Cielecka,1986), Drepanidotaenia (see Ruszkowski, 1932),Fimbriaria (see Neradová-Valkounová, 1971 (describedas a monocercus); Krashnoshchekov &Pluzhnikov, 1984), Fimbriarioides (see Maksimova,1976), Gastrotaenia (see Wisniewski,1971), Hymenolepis diminuta (see Voge, 1960;Gabrion, 1981), H. (s.l.) haldemani (see Bondarenkoet al., 1987), H. citelli (see Voge, 1956),Microsomacanthus (Hymenolepis (s.l.) hopkinsi)(see McLaughlin & Burt, 1970), (H.(s.l.) stylosa)(see Gabrion, 1981, 1977), Nematoparataenia(see Wisniewski, 1971), Parabisaccanthes (seeJarecka, 1960, cited as Drepanidotaenia; Kotecki,1967; Maksimova, 1972), Pseudhymenolepis (seeGabrion, 1981; Jiang et al., 1990), Retinometra(see Jarecka, 1960; Maksimova, 1972; Szelenbaum,1972), Rodentolepis (see Prokopič,1971; Ebermann, 1976), Triodontolepis (seeMatsaberidze et al., 1986), Staphylocystis (seeGabrion, 1981), Wardoides (see Kotecki, 1967);and some species <strong>of</strong> Wardium (e.g. W. aequabile,W. arctowskii, W. fusa, W. parap<strong>or</strong>ale) (seeGabrion, 1981; Jarecka, 1960, 1984; Maksimova,1986). Cercocysts are thus widespread in the Hymenolepididaeand the maj<strong>or</strong>ity known are from<strong>cestodes</strong> occurring as the adult stage in aquaticbirds. No differentiation has been made betweenspecies which undergo scolex development pri<strong>or</strong>to retraction (‘protocephalic’ scolex development<strong>of</strong> Greaves et al., 1989) (e.g. H. diminuta, seeVoge, 1960) and those in which scolex developmentoccurs following retraction (‘epicephalic’scolex development) (R. microstoma, see Goodchild& Stulken, 1970). Greaves et al. (1989) andJarecka (1975) considered the f<strong>or</strong>mer mode <strong>of</strong> developmentprimitive <strong>or</strong> plesiom<strong>or</strong>phic. Cercocystsalso occur in the life-cycle <strong>of</strong> the progynotaeniidgenus Gynandrotaenia (see Gvozdev & Maksimova,1979).2. Microcercus (Figure 3B)Microcercus was a term used initially by Skrjabin& Mathevossian (1942) to designate cysticercoids‘whose caudal annex is greatly reduced, being considerablysh<strong>or</strong>ter than the soma’ (p. 85). <strong>The</strong>yselected Rodentolepis fraterna as the exemplarf<strong>or</strong> this type <strong>of</strong> cysticercoid. R. fraterna has ash<strong>or</strong>t, broad cercomer in mammalian hosts, but a


13broad and elongate cercomer in coleopteran hosts(Voge & Heyneman, 1957; Schiller, 1959; Voge,1961; Joyeux & Baer, 1961). In addition, bothH. citelli and Microsomacanthus ductilis have cercomersjust slightly sh<strong>or</strong>ter than the soma (Voge,1961; Burt & Jarecka, 1984), indicating that therelative size <strong>of</strong> the cercomer may be difficult toevaluate in certain cases. <strong>The</strong> intention <strong>of</strong> thedefinition proposed by Skrjabin & Mathevossian(1942) to distinguish cysticercoids with a greatlyreduced cercomer is readily applicable to those <strong>of</strong>the davaineid genera Raillietina (seeWetzel, 1934;Voge, 1960; Bartel, 1965) and Davainea (see Wetzel,1932; Abdou, 1958). <strong>The</strong> criterion does notapply to all davaineids as Ophryocotyle has anelongate cercomer (Burt, 1962). <strong>The</strong>ref<strong>or</strong>e, the definition<strong>of</strong> a microcercus is potentially useful, buthas been misapplied in the literature.3. Diplocyst (Figure 3C)<strong>The</strong> diplocyst was defined initially by Skrjabin& Mathevossian (1942) as a cysticercoid with nocercomer <strong>or</strong> ‘caudal annex’ in which there aretwo separate retractions into the soma. <strong>The</strong> descriptionwas based on a cysticercoid describedby Mrázek (1906) from earthw<strong>or</strong>ms. Skrjabin& Mathevossian (1942) nominated Aploparaksiscrassirostris as a representative <strong>of</strong> this type <strong>of</strong>cysticercoid.Most species exhibiting the development <strong>of</strong> adiplocyst belong to Aploparaksis, a hymenolepididgenus parasitic mainly in charadriif<strong>or</strong>m birdsand the diplocyst is found in oligochaets. Bondarenko& Kontrimavichus (1976a,b) consideredthat five species <strong>of</strong> Aploparaksis (A. bulbocirrus,A. groenlandica, A. furcigera, A. polystictae andA. taimyrensis) exhibited this type <strong>of</strong> development(see also Demshin, 1976; Gulyaev, 1977)to which can be added A. australis (see Bondarenko,1989), A. clangulae (see Bondarenko &Kondratyeva, 1985), A. filum (see Demshin, 1981;Bondarenko, 1990), A. kulachkovae (see Bondarenko,1987), A. pseud<strong>of</strong>ilum (see Bondarenko,1990) and A. sanjuanensis (see Demshin, 1985).Bondarenko & Kontrimavichus (1976) describedfour variants <strong>of</strong> the typical diplocyst. A ‘caudatediplocyst’ was considered to be present inA. brachyphallos and A. crassirostris (see Bondarenko& Kontrimavichus, 1976a; Demshin,1984), while a variant, the fl<strong>or</strong>icyst, in which thecysticercoid was partially embedded in the cercomer,resembling a closed flower, was present inA. birulai (see Bondarenko & Krasnoschchekov,1978). <strong>The</strong> ramicercus (Figure 3D), in which thecercomer has 6-10 digitate appendages, was firstnamed by Skrjabin & Mathevossian (1942), basedon a cysticercoid described from Lumbriculus byMrázek (1907). Bondarenko & Kontrimavichus(1976b) identified a ramicercus in A. <strong>or</strong>ientalis andA. secessivus as well as in Wardium chaunense,while Demshin (1971) identified a similar caudatelarva in A. dujardini. Finally, a <strong>larval</strong> f<strong>or</strong>m wasfound in A. xemae in which multiple cysticercoidsbud from the cercomer, becoming detached at anearly stage <strong>of</strong> development (Bondarenko & Kontrimavichus,1976b); this <strong>larval</strong> stage was termedan autotomicrocercus and was compared with thestaphylocyst and urocyst (vide infra). A comparable<strong>larval</strong> f<strong>or</strong>m was also described in Wardiumfreyei by Bondarenko (1977).Gulyaev (1989) coined the term ascocercus f<strong>or</strong>the <strong>larval</strong> stage <strong>of</strong> amabiliids. However, the larvaappears to be identical with a diplocyst exceptthat the scolex may only be partly retracted, <strong>or</strong>there may be some indication <strong>of</strong> segmentation. <strong>The</strong>term ascocercus alludes to the elongate stalked cystwithin which the larva develops. However, ascocercusis simply a min<strong>or</strong> variant <strong>of</strong> the diplocyst.4. Monocercus (Figure 3E)<strong>The</strong> term ‘monocercus’ was <strong>or</strong>iginally erected byVillot (1882) f<strong>or</strong> Cysticercus arionis found ina mollusc by von Siebold (1850), characterisedby numerous globular structures around the cysticercoid.Mrázek (1907) indicated that during itsdevelopment the cercomer fragmented into globuleswhich persisted within the <strong>larval</strong> cestode.Gabrion et al. (1976), Gabrion (1981) and Gabrion& MacDonald (1980) studied the development <strong>of</strong>similar <strong>larval</strong> <strong>cestodes</strong> <strong>of</strong> Anomotaenia constricta,A. brevis, Paricterotaenia p<strong>or</strong>osa and Eurycestusavocati, all <strong>of</strong> which exhibited a similar f<strong>or</strong>m <strong>of</strong>development and defined a monocercus as being amonocephalic cysticercoid in which a primary lacunais present, the scolex develops externally andretracts, following which the cercomer detachesand fragments. <strong>The</strong>y considered that this type <strong>of</strong><strong>larval</strong> development was restricted to the Dilepididaeand, in a review <strong>of</strong> the literature, showedthat a similar mode <strong>of</strong> <strong>larval</strong> development occurredadditionally in the genera Amoebotaenia(see Joyeux & Baer, 1936), Trichocephaloides (see


14Tomilovskaya, 1975), Rauschitaenia and Sacciuterina(see Demshin 1968, 1976). To these specieshave subsequently been added Anomotaenia globulusby Demshin (1977) and A. micracantha byJarecka et al. (1984) (as a cercoscolex).Other dilepidid <strong>cestodes</strong> exhibit relatively min<strong>or</strong>variations on the basic pattern <strong>of</strong> m<strong>or</strong>phogenesisshown in a monocercus. In Dilepis undula, a sh<strong>or</strong>tcercomer develops, detaches from the soma butdoes not become subdivided into a series <strong>of</strong> globularstructures (Gulyaev, 1997). <strong>The</strong> term acerocystwas used f<strong>or</strong> this mode <strong>of</strong> development (Gulyaev,1997).<strong>The</strong> development <strong>of</strong> the larvae <strong>of</strong> Laterip<strong>or</strong>us resemblesthat <strong>of</strong> Dilepis, the only difference beingthat the collum <strong>of</strong> the larva is segmented (Shapkin& Gulyaev, 1973; Gulyaev, 1989). <strong>The</strong> termsstrobilocercoid (see Gabrion, 1981, p. 130) <strong>or</strong>strobilocysticercoid (see Freeman, 1973) havebeen applied to this <strong>larval</strong> f<strong>or</strong>m.In other dilepidids, Choanotaenia infundibulum(see H<strong>or</strong>sfall & Jones, 1937; Voge, 1961) aswell as in Molluscotaenia crassiscolex and M. estavarensis(both f<strong>or</strong>merly species <strong>of</strong> Choanotaenia)(see Jourdane, 1972; Gabrion, 1981), there isno cercomer at any stage <strong>of</strong> their development. <strong>The</strong>term microcyst would be an appropriate apellationf<strong>or</strong> these <strong>larval</strong> <strong>cestodes</strong>.<strong>The</strong> adult stages <strong>of</strong> Villot’s <strong>or</strong>iginal cysticercoidsplaced in the genus Monocercus, M. arionisand M. glomeridis, have not been establishedwith certainty. Villot (1883) suggested that theymight be ‘Taenia arionis’, a cestode <strong>of</strong> birds, andTaenia crassiscolex, now Molluscotaenia, respectively.Joyeux & Baer (1936) attributed Monocercusglomeridis to Anomotaenia constricta, aconclusion rejected by Gabrion (1981, p. 93) onthe basis <strong>of</strong> lack <strong>of</strong> experimental completion <strong>of</strong> thelife-cycle.Gulyaev & K<strong>or</strong>nienko (1998) concluded thatMonocercus glomeridis was the intermediate stage<strong>of</strong> Molluscotaenia crassiscolex and made thegenus Molluscotaenia a synonym <strong>of</strong> Monocercus.<strong>The</strong>y also concluded that it was no longer appropriateto use the term monocercus as Gabrion(1981) had done, and proposed the replacementterm cryptocercus. <strong>The</strong>ir synonymy is not followedhere since the ‘type-species’ <strong>of</strong> the genusMonocercus is presumably M. arionis and its adultstage remains to be determined.(b) Polycephalic cysticercoids1. Polycercus (Figure 3F)<strong>The</strong> genus Polycercus was erected <strong>or</strong>iginally byVillot (1883) f<strong>or</strong> a polycephalic <strong>larval</strong> stage foundin an earthw<strong>or</strong>m by Metchnik<strong>of</strong>f (1869) under thename Polycercus lumbrici. <strong>The</strong> adult was subsequentlyidentified as Paricterotaenia paradoxa(Dilepididae), which is currently treated as a synonym<strong>of</strong> P. lumbrici (i.e. Bona, 1994). <strong>The</strong> development<strong>of</strong> the <strong>larval</strong> stages has been describedby Scott (1965), Demshin (1981), Gulyaev & K<strong>or</strong>nienko(1998) and Gulyaev (2000). <strong>The</strong>re is nocercomer, the cysticercoid develops at one pole<strong>of</strong> the larva following retraction, a primary lacunaf<strong>or</strong>ms and the scolex is subsequently retracted. <strong>The</strong>polycercus is theref<strong>or</strong>e a polycephalic f<strong>or</strong>m <strong>of</strong> thediplocyst.2. Staphylocyst (Figure 3G)<strong>The</strong> genus Staphylocystis was created by Villot(1877) f<strong>or</strong> the <strong>larval</strong> stage <strong>of</strong> S. (= Hymenolepis)pistillum, a cestode parasite <strong>of</strong> shrews. <strong>The</strong> <strong>larval</strong>stage, found in the diplopod Glomeris conspersa,was characterised as being a polycephaliclarva with individual cysticercoids in the f<strong>or</strong>m <strong>of</strong>a bunch <strong>of</strong> grapes (Villot, 1877). <strong>The</strong> illustrationsprovided here are based on those <strong>of</strong> Joyeux & Baer(1961). Skrjabin & Mathevossian (1942) describedthe larvicyst as resembling ‘a kind <strong>of</strong> mycelium’,which is not consistent with the description givenby Villot (1883).3. Urocyst (Figure 3H)Urocystis Villot, 1880 was created f<strong>or</strong> a polycephaliccysticercoid found in Glomeris limbatusin which cysticercoids bud and detach from thematernal tissue. <strong>The</strong> adult <strong>of</strong> Urocystis proliferwas identified by Kisielewska (1960) as Pseudodi<strong>or</strong>chisprolifer in shrews. <strong>The</strong> urocyst is a multilobedparenchymatous mass from which cysticercoidsdevelop on elongate pedicels, detaching pri<strong>or</strong>to the completion <strong>of</strong> development. This phenomenonresembles that <strong>of</strong> the autotomicrocercus describedin the monocephalic Aploparaksis xernaeby Bondarenko & Kontrimavichus (1976b).<strong>The</strong> development <strong>of</strong> the <strong>larval</strong> stage <strong>of</strong> Hymenolepis(=Staphylepis) cantaniana was describedin detail by Jones & Alicata (1935) and wastermed a urocyst by Wardle & McLeod (1952).<strong>The</strong> fully-developed larva resembles a mycelium


15from which cysticercoids bud <strong>of</strong>f. If this larva isincluded under the term urocyst, then the definitionneeds to be broadened to include <strong>larval</strong> bodieswhich are either compact <strong>or</strong> filamentous.<strong>The</strong> above review <strong>of</strong> systems <strong>of</strong> nomenclature f<strong>or</strong> <strong>larval</strong><strong>cestodes</strong> demonstrates that they are both complexand confusing. One possible method f<strong>or</strong> eliminatingthe current confusion is to analyse the specific m<strong>or</strong>phological<strong>or</strong> developmental characters which havebeen utilised in the systems erected to date, to selectdifferential characters on the basis <strong>of</strong> their robustness<strong>or</strong> their intrinsic predictive values and to develop asystem <strong>of</strong> nomenclature based on explicit characters,appropriately ranked. <strong>The</strong> following section theref<strong>or</strong>eanalyses these values in the characters whichhave been used to describe different types <strong>of</strong> <strong>larval</strong><strong>cestodes</strong>.Characters used in the analysis <strong>of</strong> cestode larvaHist<strong>or</strong>ically, the principal characters used to differentiate<strong>larval</strong> <strong>cestodes</strong> have been: (1) the presence <strong>or</strong>absence <strong>of</strong> a primary lacuna; (2) the presence <strong>or</strong> absence<strong>of</strong> a cercomer; (3) whether the cestode scolexis retracted <strong>or</strong> invaginated; (4) whether a ‘bladder’ ispresent in the metacestode; (5) the type <strong>of</strong> host and(6) whether the larva is mono- <strong>or</strong> polycephalic. Aseventh character, whether meta<strong>cestodes</strong> are bothriate<strong>or</strong> acetabulate, warrants little further comment as thischaracter (<strong>or</strong> character pair) is relatively well defined.<strong>The</strong> primary lacunaIn many groups <strong>of</strong> cyclophyllidean <strong>cestodes</strong>, a cavity,termed a primary lacuna, develops in the earlystages <strong>of</strong> m<strong>or</strong>phogenesis, the megalosphere stage <strong>of</strong>Skrjabin & Mathevossian (1942). <strong>The</strong> term, as ‘lacunaprimitiva’, was first proposed by Grassi & Ravelli(1892) and its f<strong>or</strong>mation has been reviewed in detail byVoge (1967) and Šlais (1973). In the genus Dipylidium,the primary lacuna is a transit<strong>or</strong>y structure andbecomes filled with parenchymatous cells (Venard,1938; Marshall, 1967).<strong>The</strong> potential difficulty in utilising this characteris that detailed studies <strong>of</strong> cestode m<strong>or</strong>phogenesis maybe required to determine its existence and inconsistenciesexist in descriptions <strong>of</strong> its occurrence in theLinstowiinae, the Dilepididae and the Paruterinidae.In addition, it is not always possible to determinefrom the published descriptions <strong>of</strong> cestode life-cycleswhether <strong>or</strong> not a primary lacuna has actually been observed.However, Gabrion (1975, 1981) has shownthat it is possible, by careful histological <strong>or</strong> ultrastructuralexamination <strong>of</strong> fully-developed larvae, todemonstrate the presence <strong>of</strong> a primary lacuna. Difficultiesencountered in the Linstowiinae, Dilepididaeand Paruterinidae are theref<strong>or</strong>e considered in greaterdetail:(a) Linstowiinae. A primary lacuna has been rep<strong>or</strong>tedin Ooch<strong>or</strong>istica vacuolata (see Hickman, 1963),O. deserti (see Milleman, 1955) and Atriotaenia procyonis(see Gallati, 1959), but was considered ‘indistinct’in O. osher<strong>of</strong>fi by Widmer & Olsen (1967). Conn(1985) did not observe a primary lacuna in O. anolisbut attributed this to a lack <strong>of</strong> serial histologicalsections <strong>of</strong> developing meta<strong>cestodes</strong>. Rendt<strong>or</strong>ff (1948)did not observe <strong>or</strong> illustrate a primary lacuna in Mathevotaeniaratti.(b) Dilepididae. A primary lacuna has been describedin a number <strong>of</strong> genera, such as Anomotaenia (seeGabrion, 1975; Gabrion & Gabrion, 1976), Paricterotaenia(see Krasnoshchekov & Tomilovskaya,1978; Gabrion & Helluy, 1982) and Choanotaeniainfundibulum (see Gutberlet, 1916; H<strong>or</strong>sfall &Jones, 1937). <strong>The</strong> structure was not rep<strong>or</strong>ted in Molluscotaeniacrassiscolex and M. estavarensis (bothf<strong>or</strong>merly members <strong>of</strong> Choanotaenia) (see Jourdane,1972, 1977) although it was observed in M. crassiscolexby Rawson & Rigby (1960). In a re-investigation<strong>of</strong> the life-cycle <strong>of</strong> this cestode, Gabrion (1981) provideda micrograph <strong>of</strong> a histological section <strong>of</strong> thedeveloping larva (plate 13d) which clearly shows aprimary lacuna. It may be that in some dilepidids, aswith linstowiids, that sections are required to demonstratethe existence <strong>of</strong> a lacuna. Gulyaev (1997b) failedto find a primary lacuna in the developing larva <strong>of</strong>Dilepis undula, describing the alacunate final f<strong>or</strong>m asan acerocyst. However, no sections appear to havebeen examined.(c) Paruterinidae. Freeman (1957, 1959) did not observea primary lacuna during development <strong>of</strong> themeta<strong>cestodes</strong> <strong>of</strong> members <strong>of</strong> the genera Paruterinaand Cladotaenia. However, Šlais (1973) has suggestedthat, since Freeman (1959) first examined developingmeta<strong>cestodes</strong> 8-10 days after infection, a temp<strong>or</strong>ary lacunamay have developed and disappeared during this


16period. Development during this early period has notbeen examined since. In the paruterinid Metroliastheslucida, a primary lacuna, termed an ‘invagination cavity’,is apparently present (Jones, 1936), thus differingfrom other known paruterinid life-cycles.<strong>The</strong> presence <strong>or</strong> absence <strong>of</strong> a primary lacuna canusually be determined from careful observation <strong>of</strong>fully-developed larvae, but there is obviously bothconfusion within taxa (e.g. Linstowiinae) and inconsistencieswhich require m<strong>or</strong>e detailed investigation(Dilepididae), preferably with the aid <strong>of</strong> serial sections.Reviews by Brooks et al. (1991), Hoberg et al.(1999) and Beveridge (2001) suggest that the absence<strong>of</strong> the primary lacuna is plesiom<strong>or</strong>phic, whileits occurrence may be a homoplasious character.<strong>The</strong> cercomerFreeman (1973) defined the cercomer, following traditionalusage <strong>of</strong> the term, as a ‘tail’ f<strong>or</strong>med at the posteri<strong>or</strong>end <strong>of</strong> a <strong>larval</strong> cestode, usually containing theoncospheral hooks. Jarecka et al. (1981), by contrast,defined the cercomer as the region <strong>of</strong> the metacestodecovered with microvilli rather than microtriches. <strong>The</strong>yconsidered that all <strong>cestodes</strong> thus possess a cercomerwhich may be modified and may not always exhibitthe classical f<strong>or</strong>m <strong>of</strong> a ‘tail’. Because ultrastructuralobservations are unavailable f<strong>or</strong> most <strong>cestodes</strong>, theclassical definition, adopted by Freeman (1973), is them<strong>or</strong>e practicable. <strong>The</strong> phylogenetic significance <strong>of</strong> thecercomer in eu<strong>cestodes</strong> has been discussed by Gulyaev(1996).<strong>The</strong> presence <strong>of</strong> a cercomer appears to be characteristic<strong>of</strong> many but not all basal <strong>cestodes</strong>, althoughit may be lost during development. A study <strong>of</strong> earlymetacestode development is <strong>of</strong>ten necessary to determinewhether <strong>or</strong> not the cercomer has been present(Scholz, 1999). Difficulties <strong>of</strong> interpretation <strong>or</strong> inconsistenciesoccur currently within the Proteocephalidea,Trypan<strong>or</strong>hyncha, Dilepididae, Davaineidae and Paruterinidaeand these difficulties warrant comment:(a) Proteocephalidea. In species <strong>of</strong> Proteocephalus,the cercomer may remain attached to the metacestode<strong>or</strong> may detach as early as 1-3 days after infection <strong>of</strong>the intermediate host (Scholz, 1999). No cercomer hasbeen observed in certain species, but these observationsrequire confirmation (Scholz, 1999).(b) Trypan<strong>or</strong>hyncha. A cercomer was described inGrillotia (see Ruskowski, 1934) but not in Lacist<strong>or</strong>hynchus(see Mudry & Dailey, 1971; Sakanari &Moser, 1989). However, in Prochristianella and Poecilancistrium,Mattis (1986) noted the existence <strong>of</strong>a sh<strong>or</strong>t, stout cercomer, which may have been overlookedin the earlier studies <strong>or</strong> not interpreted as acercomer.(c) Dilepididae. Gabrion (1981) and Gabrion & Helluy(1982) noted that in the genera Amoebotaenia,Trichocephaloides, Rauschitaenia, Paricterotaenia,Eurycestus, Sacciuterina and Anomotaenia, the cercomerdisintegrates into globules which persist withina metacestode, termed a monocercus by Villot (1882)and described in greater detail by Mrázek (1907).Acc<strong>or</strong>ding to Wardle & McLeod (1952), the termcryptocystis would be used to describe such meta<strong>cestodes</strong>.It should be noted, however, that cryptocystiswas first applied to the metacestode <strong>of</strong> Dipylidiumcaninum (see Villot, 1882, 1883). Gulyaev & K<strong>or</strong>nienko(1998) recognised three types <strong>of</strong> meta<strong>cestodes</strong>within the Dilepididae, the monocercus in which acercomer is vestigial, the cryptocercus (cryptocystis)defined above as a monocercus and the polycercus,defined by them not merely as a polycephalic f<strong>or</strong>mas proposed <strong>or</strong>iginally (Villot, 1882, 1883) but onein which the cercomer f<strong>or</strong>ms part <strong>of</strong> the wall <strong>of</strong> thecyst which encloses the developing metacestode. <strong>The</strong>latter f<strong>or</strong>m <strong>of</strong> development was also shown to occurin the f<strong>or</strong>mation <strong>of</strong> the diplocyst <strong>of</strong> the hymenolepididAploparaksis furcigera by Gulyaev (1997c).In Dilepis and Laterip<strong>or</strong>us a cercomer is presentinitially but becomes detached from the body <strong>of</strong> thelarva (Gulyaev, 1997b, 1998). A cercomer is lackingin Molluscotaenia crassiscolex and M. estavarensis(f<strong>or</strong>merly Choanotaenia) (Jourdane, 1972, 1975).Gabrion (1981, p.123) noted that the apparent observation<strong>of</strong> a cercomer in M. crassiscolex by Rawson &Rigby (1960) was due to their misidentification <strong>of</strong> thecystic vesicle pri<strong>or</strong> to scolex retraction.In a further type <strong>of</strong> dilepidid <strong>larval</strong> stage, thepolycercus, the scoleces develop endogenously. <strong>The</strong>reis no tail-like cercomer (Scott, 1965; Demshin, 1981)but the outer ‘cyst wall’ could be considered thecercomer (sensu Jarecka, 1975).Gabrion & Helluy (1982) cited five species <strong>of</strong>dilepidid <strong>cestodes</strong> in which the cercomer persistedin fully-developed larvae. Of these, Dilepis undulahas been discussed and Metroliasthes lucida is currentlyplaced in the Paruterinidae. <strong>The</strong> three remain-


17ing species are Choanotaenia infundibulum, C. citrusand Anomotaenia cumillaris. A small, possibly detachedcercomer was shown in C. infundibulum byVoge (1961, figure 2), although Gutberlet (1916, figure12) illustrated a fully-developed cercomer. In appearstheref<strong>or</strong>e that an intact, persistent cercomer isuncommon in the Dilepididae.(d) Davaineidae. In Davainea and Raillietina (seeWetzel, 1932, 1934) the cercomer may be very sh<strong>or</strong>tand may not persist in fully-developed meta<strong>cestodes</strong>.Wardle & McLeod (1952) regarded davaineids as agroup in which there may be no cercomer and usedthe term cercocystis to describe their meta<strong>cestodes</strong>,although, as <strong>or</strong>iginally defined (Villot, 1883), thisterm was f<strong>or</strong> cysticercoids which had a prominent cercomer.(e) Paruterinidae. No cercomer develops in the generaParuterina and Cladotaenia (see Freeman, 1957,1959), while a cercomer develops in Metroliasthes lucida(see Jones, 1936).In summary, the presence <strong>or</strong> absence <strong>of</strong> a cercomerremains to be determined in several cestode groups,its lack <strong>of</strong> persistence <strong>or</strong> reduced size probably contributingto some <strong>of</strong> the differences <strong>of</strong> interpretationobserved in the literature. Both Hoberg et al. (1999)and Beveridge (2001) presented evidence that loss <strong>of</strong>the cercomer may be a homoplasious condition.Scolex retraction and invaginationIn most basal <strong>or</strong>ders <strong>of</strong> <strong>cestodes</strong>, the scolex developsexternally and there is no retraction <strong>or</strong> invagination<strong>of</strong> the scolex. However, in a number <strong>of</strong> groups, somef<strong>or</strong>m <strong>of</strong> invagination <strong>or</strong> retraction <strong>of</strong> the scolex occurs.Whether fully-developed scoleces are invaginated <strong>or</strong>retracted figured prominently in classical definitions<strong>of</strong> cysticercoids and cysticerci (e.g. Leuckart, 1876;Fuhrmann, 1933), although the terms were used interchangeablyby Wardle & McLeod (1952). It was aprominent feature in the discussions <strong>of</strong> types <strong>of</strong> <strong>larval</strong><strong>cestodes</strong> in the reviews <strong>of</strong> Voge (1967) and Šlais(1973). Freeman (1973), by contrast, did not includethis character in his phylogenetic analysis. Freeman(1973) (p. 502) stated that the scolex is labile and‘there is some evidence that the scolex <strong>of</strong> the metacestodemay evert and retract as need be’. <strong>The</strong> evidencepresented f<strong>or</strong> this statement was derived from paperson proteocephalidean life-cycles, but problems alsoexist in some tetraphyllidean <strong>cestodes</strong> and possibly thelecanicephalideans.(a) Proteocephalidea. Freeman’s (1973) concerns <strong>of</strong>the value <strong>of</strong> this character stem from data published byHerde (1938), Befus & Freeman (1973) and Rysavy(1961). <strong>The</strong> paper <strong>of</strong> Herde (1938) rep<strong>or</strong>ted the development<strong>of</strong> Ophiotaenia perspicua and describedhow developing meta<strong>cestodes</strong>, examined under a microscope,may evert their scoleces and in doing so,pass through a transit<strong>or</strong>y phase in which the scolexappears to be ‘withdrawn’. Herde (1938, p. 288)stated that ‘older specimens show a tendency to keepthe scolex continuously invaginated’, indicating thatthe variation noted is related primarily to developingmeta<strong>cestodes</strong>. Befus & Freeman (1973, p. 252) notedthat in fully-developed meta<strong>cestodes</strong> <strong>of</strong> C<strong>or</strong>allobothriumparafimbriatum, ‘scoleces ... may extend outand pull back into the body repeatedly’. <strong>The</strong> photographthey presented (figure 2) <strong>of</strong> a metacestode ‘withretracted scolex’ is, however, that <strong>of</strong> an invaginatedscolex. In the case <strong>of</strong> C<strong>or</strong>allotaenia minutia, theystated (p. 253) that "the scoleces either retract <strong>or</strong> invaginateinto the mid-body’, but no illustrations wereprovided. Thus there is evidence that in some proteocephalideanmeta<strong>cestodes</strong> the scolex may invert <strong>or</strong>evert, but there is no evidence that it is consistentlyretracted.(b) Trypan<strong>or</strong>hyncha. Similar limited evidence is availablef<strong>or</strong> the Trypan<strong>or</strong>hyncha (see Dollfus, 1942), butagain, systematic evidence is lacking.(c) Pseudophyllidea. In pseudophyllidean <strong>cestodes</strong>,the scolex <strong>of</strong> the plerocercoid is not inverted <strong>or</strong> invaginated(Rosen, 1919). <strong>The</strong>re is however a smallapical invagination which has even been interpretedas a third bothrium (Rosen, 1919). <strong>The</strong> presence <strong>of</strong>this small apical invagination may have contributed toconfusion over whether <strong>or</strong> not the scolex <strong>of</strong> pseudophyllideanplerocercoids is invaginated (Wardle &McLeod, 1952).(d) Tetraphyllidea. In most known tetraphyllidean<strong>cestodes</strong>, the scolex is neither withdrawn n<strong>or</strong> invaginated(e.g. Scolex polym<strong>or</strong>phus, S. pleuronectis)(Euzet, 1959; Chambers et al., 2000). In Phyllobothrium,Mon<strong>or</strong>ygma, Rhinebothrium and Rhodobothrium,however, the scolex appears to be invaginated(Dollfus, 1942, 1964; Anthouard, 1963; Chamberset al., 2000), although this is not always clear (Doll-


18fus, 1964; Campbell & Carvajal, 1979; Carvajalet al, 1982). Phyllobothrium delphini, Mon<strong>or</strong>ygmaand Rhodobothrium have relatively long ‘invaginationcanals’ and, as the scolex begins to evaginate, it mayappear to pass through a stage in which the scolex is‘retracted’. An analogous situation exists with taeniidmeta<strong>cestodes</strong> in which the scolex <strong>of</strong> the cysticercus isinvaginated with a fluid-filled bladder. A partly evaginatedscolex may appear to be ‘retracted’, as is shownin the illustration <strong>of</strong> the evaginating scolex <strong>of</strong> Taeniapisif<strong>or</strong>mis by Benham (1901) (reproduced by Wardle& McLeod, 1952, figure 56E).(e) Lecanicephalidea. Inf<strong>or</strong>mation f<strong>or</strong> some <strong>of</strong> thesmaller cestode groups is limited, but scanningelectron micrographs <strong>of</strong> Polypocephalus and Tylocephalumby Butler (1985) show clearly that in thelecanicephalideans, the scolex is retracted within asolid blastocyst.Freeman’s (1973) extrapolations from observations onspecies <strong>of</strong> proteocephalideans may theref<strong>or</strong>e provideinsufficient grounds f<strong>or</strong> rejecting the use <strong>of</strong> the character<strong>of</strong> the scolex being ‘invaginated’ <strong>or</strong> ‘retracted’(= withdrawn), particularly in other cestode groups.One difficulty with utilising this character is that terms‘invaginated’, ‘retracted’ and ‘withdrawn’ are usedapparently interchangeably in some publications (e.g.Wardle & McLeod, 1952) and the illustrations <strong>of</strong>meta<strong>cestodes</strong> <strong>of</strong>ten do not permit the reader to determinewhether the scolex is withdrawn <strong>or</strong> inverted (e.g.Jones, 1936). However, in contrast to opinions in somerecent literature, it may be a useful character.BladdersIn cysticerci, in ‘cystidean’ trypan<strong>or</strong>hynchs (members<strong>of</strong> the sub<strong>or</strong>ders Heteracanthoidea, Otobothrioideaand Poecilacanthoidea in the classification <strong>of</strong>Campbell & Beveridge, 1994) and in the tetraphyllideanspecies Mon<strong>or</strong>ygma grimaldii and Phyllobothriumdelphini, as well as in the genus Rhodobothrium,the scolex <strong>of</strong> the metacestode is surrounded by afluid-filled ‘bladder’.<strong>The</strong> ontogenesis <strong>of</strong> the bladder has been extensivelystudied in taeniid <strong>cestodes</strong> (Šlais, 1973) andrepresents a secondary enlargement <strong>of</strong> the primarylacuna (Wardle & McLeod, 1952). Trypan<strong>or</strong>hynchslack a primary lacuna (Ruskowski, 1934; Riser, 1956;Mudry & Dailey, 1971; Mattis, 1986) and the bladderis presumed theref<strong>or</strong>e to be a secondary development(Dollfus, 1942; Freeman, 1973, p. 503), followingthe albeit speculative scheme <strong>of</strong> <strong>larval</strong> developmentf<strong>or</strong> this group proposed by van Beneden (1850). Mosttetraphyllideans lack a bladder, the known early developmentalstages lack a primary lacuna (Euzet, 1959;Mudry & Daily, 1971), and the development <strong>of</strong> thebladder in P. delphini, M. grimaldii and Rhodobothriumis presumed to be a secondary character. <strong>The</strong>bladder <strong>of</strong> meta<strong>cestodes</strong> is probably theref<strong>or</strong>e not homologousacross <strong>or</strong>ders, but lack <strong>of</strong> detailed studies <strong>of</strong>tetraphyllidean and trypan<strong>or</strong>hynch life-cycles preventsany firm conclusions from being drawn. Evidence infavour <strong>of</strong> the bladder being a homoplasious characteris provided from the molecular studies reviewed byMariaux & Olson (2001).HostsTwo features <strong>of</strong> the hosts <strong>of</strong> <strong>larval</strong> <strong>cestodes</strong> have beenutilised in the current schemes <strong>of</strong> <strong>terminology</strong>, thesebeing whether the larva is in the first <strong>of</strong> second intermediatehost (Jarecka, 1970, 1975) and whether thehost is an invertebrate <strong>or</strong> a vertebrate. <strong>The</strong> variousproblems associated with determining whether <strong>or</strong> nota host is the first <strong>or</strong> second intermediate host have beenalluded to above. <strong>The</strong> type <strong>of</strong> host currently presentsintractable problems. <strong>The</strong>re is evidence unquestionably<strong>of</strong> restriction <strong>of</strong> certain types <strong>of</strong> <strong>larval</strong> <strong>cestodes</strong>to particular host groups, such as Aploparaksis inoligochaets <strong>or</strong> cysticerci (and their modifications) inmammals. However, numerous exceptions to generalisedpatterns also exist; f<strong>or</strong> example, the occurrence<strong>of</strong> ‘linstowiine’ type <strong>larval</strong> <strong>cestodes</strong> in both coleopterans(Milleman, 1955; Hickman, 1963; Widmer &Olsen, 1967; Conn, 1985) and mammals (Beveridgeet al., 1975). <strong>The</strong> extent to which the host <strong>of</strong> a <strong>larval</strong>cestode can be inc<strong>or</strong>p<strong>or</strong>ated into a system <strong>of</strong> <strong>terminology</strong>is theref<strong>or</strong>e disputable both from the<strong>or</strong>eticaland practical perspectives, and warrants much m<strong>or</strong>edetailed investigation.Mono- and polycephalic larvaePolycephalic larvae occur within the cysticercoid andcysticercus groupings. <strong>The</strong>se characteristics are relativelywell defined and are obviously homoplasious,but may have utility as secondary characters.Having described the various m<strong>or</strong>phological charactersused to characterise <strong>larval</strong> <strong>cestodes</strong>, their strengthsand deficiencies, the subsequent step is to choose


19characters upon which a system <strong>of</strong> cestode <strong>larval</strong><strong>terminology</strong> can most reliably be based.Selection <strong>of</strong> charactersOf the principal m<strong>or</strong>phological characters which canbe derived from the development <strong>of</strong> the <strong>larval</strong> cestode,none is without problems <strong>of</strong> interpretation with respectto some cestode taxa. <strong>The</strong> <strong>or</strong>igins <strong>of</strong> ‘bladders’ cannotbe resolved until further details <strong>of</strong> the life-cycles <strong>of</strong>marine <strong>cestodes</strong> are elucidated, but the fact that tetraphyllideansand trypan<strong>or</strong>hynchs lack a primary lacunasuggests that ‘bladders’ in these <strong>or</strong>ders are not homologouswith the ‘bladders’ present in meta<strong>cestodes</strong> <strong>of</strong>the Taeniidae.<strong>The</strong> primary lacuna is a feature <strong>of</strong> the earlystages <strong>of</strong> metacestode development, but, as Gabrion& Gabrion (1976) and Gabrion (1981) have shown,histological <strong>or</strong> ultrastructural sections <strong>of</strong> the fullydevelopedmetacestode can reveal the pri<strong>or</strong> existence<strong>of</strong> a primary lacuna. Thus, while there are some deficienciesin knowledge <strong>of</strong> the existence <strong>of</strong> such astructure, they can potentially be overcome by carefulexamination <strong>of</strong> <strong>larval</strong> <strong>cestodes</strong> even if the entiredevelopment <strong>of</strong> the cestode cannot be observed. <strong>The</strong>apparent presence <strong>or</strong> absence <strong>of</strong> a primary lacunawithin some Dilepididae remains to be resolved.Similarly, careful examination <strong>of</strong> the fullydeveloped<strong>larval</strong> cestode must reveal whether <strong>or</strong> notthe scolex is invaginated <strong>or</strong> withdrawn and developmentalstages are not required to demonstrate this feature.<strong>The</strong>re may be difficulties associated with somespecies <strong>of</strong> the Proteocephalidea and Tetraphyllidea,but these are currently limited to a small number <strong>of</strong>species, and in non-mobile stages, the metacestodeis probably either fully-evaginated <strong>or</strong> inverted; the‘retracted’ stage in these <strong>cestodes</strong> is presumably a temp<strong>or</strong>arysituation seen only in the cases <strong>of</strong> <strong>cestodes</strong> withinverted scoleces in the process <strong>of</strong> everting the scolex,although further investigations are obviously required.<strong>The</strong> cercomer may persist in the final stage <strong>of</strong>the <strong>larval</strong> cestode, but may in some groups becomereduced <strong>or</strong> disappear. <strong>The</strong> presence <strong>of</strong> a cercomercan theref<strong>or</strong>e be established in some groups only bycareful observation <strong>of</strong> cestode development, since thecercomer <strong>of</strong> some proteocephalideans is lost as rapidlyas 1-3 days after infection <strong>of</strong> the intermediate host(Scholz, 1999). Host associations appear to requiremuch m<strong>or</strong>e careful analysis bef<strong>or</strong>e they can be utilisedwith confidence.Based on these observations and due obviouslyto significant deficiencies in knowledge <strong>of</strong> development,any character-based system f<strong>or</strong> the classification<strong>of</strong> <strong>larval</strong> <strong>cestodes</strong> is likely to be <strong>of</strong> greatest utilityif it is founded primarily on the presence <strong>of</strong> a primarylacuna and the retraction/invagination <strong>of</strong> thescolex, since these are at least observable in the fullydeveloped<strong>larval</strong> cestode. <strong>The</strong> presence <strong>or</strong> absence <strong>of</strong>a cercomer (apart from the way in which the structureis defined) may only be determinable from detailedstudies <strong>of</strong> life-cycles (and possibly ultrastructure) and,while <strong>of</strong> considerable significance, may represent apractical handicap in determining the relationships <strong>of</strong><strong>cestodes</strong> based on life-cycle characters. From a purelypragmatic point <strong>of</strong> view, theref<strong>or</strong>e, this character iscurrently <strong>of</strong> limited use. It may also be an homoplasiouscharacter (Hoberg et al., 1997; Beveridge,2001).An additional feature <strong>of</strong> developmental stages <strong>of</strong><strong>cestodes</strong> belonging to the families Hymenolepididaeand Dilepididae is the extent to which the scolex developspri<strong>or</strong> to retraction. In the Hymenolepididae, scolexdevelopment can be completed pri<strong>or</strong> to retraction, <strong>or</strong>the scolex can complete its development following retraction(Šlais, 1973). A similar division exists in dilepidid<strong>cestodes</strong> (Gabrion & Helluy, 1982). Amongstacaudate <strong>larval</strong> <strong>cestodes</strong>, taeniids undergo scolex developmentfollowing invagination <strong>of</strong> the scolex canal(Freeman, 1973), whereas linstowiids, as well asthe unplaced genus Anoplotaenia, undergo scolex invaginationafter partial development <strong>of</strong> the suckersexternally (Hickman, 1963; Beveridge et al., 1975).Thus this character varies within maj<strong>or</strong> groups and,whilst potentially useful in the future, is too po<strong>or</strong>lyunderstood to utilise in any current character-basedproposals f<strong>or</strong> the <strong>terminology</strong> <strong>of</strong> <strong>larval</strong> <strong>cestodes</strong>.A number <strong>of</strong> additional potentially promising m<strong>or</strong>phologicalfeatures <strong>of</strong> <strong>larval</strong> <strong>cestodes</strong> cannot be inc<strong>or</strong>p<strong>or</strong>atedas characters at this time due to lack <strong>of</strong>comparative data. <strong>The</strong> retraction <strong>of</strong> the scolex <strong>of</strong> manyhymenolepidid <strong>cestodes</strong> is a highly complex process,involving hypertrophy <strong>of</strong> muscle systems, the development<strong>of</strong> a ‘fibrous’ layer in the cyst wall and theclosure <strong>of</strong> the opening through which the scolex iswithdrawn (Collin, 1970; Baron, 1971; Cayley, 1974,1976; Richards & Arme, 1984a,b; Rogan & Richards,1987). In addition, the distribution <strong>of</strong> microtriches andmicrovilli on fully-developed <strong>cestodes</strong> <strong>of</strong>fers the possibility<strong>of</strong> additional characters (Crowe et al., 1974;Gabrion & Gabrion, 1976; Jarecka et al., 1981; Mac-Kinnon & Burt, 1983; Rogan & Richards, 1987), but


20Figure 3. Schematic representation <strong>of</strong> development <strong>of</strong> different types <strong>of</strong> cysticercoids. A, cercocysticercoid (redrawn from Prokopic, 1971:Rodentolepis erinacei); B, microcysticercoid (modified from Freeman, 1973); C, diplocysticercoid (modified from Gulyaev, 1977: Aploparaksisfurcigera); D, ramicysticercoid (caudate diplocysticercoid) (modified from Demshin, 1985: Aploparaksis sachalinensis); E, monocysticercoid(modified from Gabrion, 1975: Anomotaenia constricta); F, polycysticercoid (a polycephalic diplocysticercoid) (modified from Scott, 1965;Demshin, 1981: Monocercus lumbrici); G, staphylocysticercoid (redrawn from Joyeux & Baer, 1961); H, urocysticercoid (modified from Jones& Alicata, 1935: Hymenolepis cantaniana).


21Figure 4. Schematic representations <strong>of</strong> six f<strong>or</strong>ms <strong>of</strong> <strong>larval</strong> <strong>cestodes</strong>. A. Procercoid; B, Plerocercoid; C, Merocercoid (redrawn from Dollfus,1942); D, Plerocercus (redrawn from Dollfus, 1942); E, Cysticercoid (redrawn from Gabrion, 1981); F, Cysticercus (redrawn from Gabrion,1981).the development <strong>of</strong> too few <strong>cestodes</strong> has been studiedin detail to date to allow general usage <strong>of</strong> thesecharacters.<strong>The</strong> preceding arguments theref<strong>or</strong>e justify the use<strong>of</strong> only two primary characters f<strong>or</strong> the current classification<strong>of</strong> <strong>larval</strong> <strong>cestodes</strong>: (1) presence <strong>of</strong> a primarylacuna; (2) scolex developing externally <strong>or</strong> retracted/inverted.Secondary characters <strong>of</strong> potential butcurrently limited in application are (1) presence <strong>of</strong> acercomer and (2) presence <strong>of</strong> a bladder, as these eithermay not be determinable (1) <strong>or</strong> may be homoplasious(2).Using the primary characters identified above, sixputative life-cycles are possible. Since no life-cyclesare known in which a primary lacuna develops butthe scolex is not withdrawn <strong>or</strong> invaginated (Freeman,


221973), this possibility has been eliminated, leavingfive life-cycle types f<strong>or</strong> which examples are known(Figure 4):1. No primary lacuna, scolex <strong>of</strong> metacestode everted(plerocercoid) (Figure 4B);2. No primary lacuna, scolex retracted (plerocercus)(Figure 4D);3. No primary lacuna, scolex invaginated (some plerocercoids,tetrathyridium, cladothyridium, cercoscolex)(Figure 4C);4. Primary lacuna present, scolex retracted (cysticercoid)(Figure 4E);5. Primary lacuna present, scolex invaginated (cysticercus)(Figure 4F).Terms exist already f<strong>or</strong> several <strong>of</strong> these developmentalseries. Cestodes with no primary lacunaand with everted scoleces (e.g. Pseudophyllidea) (1)have previously been termed plerocercoids. Cestodes(usually) with a primary lacuna and a retractedscolex have been termed cysticercoids (4).Cestodes with a primary lacuna and an invaginatedscolex have been termed cysticerci (5). Cestodes withno primary lacuna and a retracted scolex (2) havebeen termed plerocerci (Trypan<strong>or</strong>hyncha, see Dollfus,1942), blastocysts (Trypan<strong>or</strong>hyncha, see Gulyaev,1997a), <strong>or</strong> merocerci (some lecanicephalideans, seeFuhrmann, 1933; Joyeux & Baer, 1961). Cestodeswith no primary lacuna and an invaginated scolex(3) have been termed plerocercoids (Phyllobothriidae),tetrathyridia (Mesocestoides, see Voge, 1967), merocercoids(Catenotaenia, see Joyeux & Baer, 1945),cladothyridia (Cladotaenia, Paruterina, see Abuladze,1964) <strong>or</strong> cercoscoleces (gryp<strong>or</strong>hynchids, see Jarecka,1970a,b). Thus using these five broad categ<strong>or</strong>iesf<strong>or</strong> <strong>larval</strong> development, it is evident that all knownmeta<strong>cestodes</strong> can be accommodated within them (Table6). <strong>The</strong> sources on which the allocation <strong>of</strong> the varioustaxa <strong>of</strong> <strong>cestodes</strong> to a particular m<strong>or</strong>phologicallydefined group <strong>of</strong> meta<strong>cestodes</strong> are as follows:plerocercoid: Spathebothriidea (see Sandeman &Burt, 1972), Caryophyllidea (see Mackiewicz, 1972(Figure 1A); Demshin, 1978; Demshin & Dvoyadkin,1981; Scholz, 1991, 1993), Pseudophyllidea (seeFreeman, 1973) (Figure 1B), Trypan<strong>or</strong>hyncha (Homeacanthoidea)(see Dollfus, 1942), Haplobothriidea(see Essex, 1929 (Figure 1C); Thomas, 1930), Proteocephalidea(see Scholz, 1999) (Figure 2A), Tetraphyllidea(see Euzet, 1959; Cake, 1976; Mudry & Dailey,1971) (Figure 1E), Nippotaeniidea (see Demshin,1985) (Figure 1F), Nematotaeniidae (see Joyeux,1924); plerocercus (= merocercus): Diphyllidea (seeRuskowski, 1928; Cake, 1976), Trypan<strong>or</strong>hyncha (Heteracanthoidea,Otobothrioidea, Poecilacanthoidea)(see Dollfus, 1942) (Figure 1D), Lecanicephalidea(Tylocephalum, Polypocephalus) (see Cake, 1976,1979; Butler, 1985; Brockerh<strong>of</strong>f & Jones, 1995); merocercoid(= tetrathyridium): Mesocestoididae (seeVoge, 1967), Catenotaeniidae (see Joyeux & Baer,1945), Gryp<strong>or</strong>hynchidae (see Jarecka, 1970a,b) (Figure2F), Paruterinidae: Paruterina, Cladotaenia (seeFreeman, 1957, 1959) (Figure 2B), Proteocephalidea(in part) (see Scholz, 1999) (Figure 2A), Tetraphyllidea:Anthobothrium, Phyllobothrium, Mon<strong>or</strong>ygma,Rhodobothrium (see Dollfus, 1964; Cake,1976) (Figure 1E); cysticercoid: Anoplocephalinae(see Stunkard, 1937, 1961; Denegri et al., 1998)(Figure 2G), Thysanosomatinae (see Denegri et al.,1998), Progynotaeniidae (see Gvozdev & Maksimova,1979), Dioecocestidae (see Ryzhikov & Tolkacheva,1981), Amabiliidae (see Rees, 1973a,b; Gulyaev,1989) (Figure 2H), Davaineidae (see Freeman, 1973;MacKinnon & Burt, 1983), Dilepididae (see Gabrion& Helluy, 1982), Hymenolepididae (see Šlais, 1973);cysticercus: Taeniidae (Abuladze, 1964) (Figure 2C),Linstowiinae (see Hickman, 1963; Milleman, 1955;Conn, 1985) (Figure 2D), Dipylidiidae (see Venard,1938; Marshall, 1967) (Figure 2E), Paruterinidae:Metroliasthes (see Jones, 1936).Some <strong>or</strong>ders such as the Tetrabothriidea aredifficult to accommodate since although the fullydevelopedmetacestode is well described (see f<strong>or</strong>example Hoberg, 1987; Galkin, 1996), whether aprimary lacuna is present <strong>or</strong> absent remains to bedetermined.Of the various names available f<strong>or</strong> each group,cysticercus subsumes the terms amphicyst (Spasskii,1949, 1951) and precysticercus (Freeman, 1973), cysticercoidsubsumes precysticercoid (Freeman, 1973),ascocercus (Gulyaev, 1989), multicercus and monocercus(Gabrion & Helluy, 1982), while plerocercoidcovers the collective <strong>larval</strong> names Scolex pleuronectisand S. polym<strong>or</strong>phus. F<strong>or</strong> group names <strong>of</strong> Type 2 <strong>larval</strong><strong>cestodes</strong>, plerocercus is the oldest name. F<strong>or</strong> theType 3 group <strong>of</strong> <strong>cestodes</strong>, tetrathyridium, coined as ageneric name by Rudolphi (1819), is the older name,but merocercoid is m<strong>or</strong>e consistent with related terms,and is preferred on this basis.<strong>The</strong> arrangement <strong>of</strong> cestode taxa under these collective<strong>larval</strong> names warrants several comments. <strong>The</strong>first and most obvious comment is that all known,


23Table 6. Suggested terms f<strong>or</strong> <strong>larval</strong> <strong>cestodes</strong> derived from the primary m<strong>or</strong>phological characters (primary lacuna, scolex retracted <strong>or</strong> invaginated) applied to know cestode taxa (<strong>or</strong>ders,families, genera <strong>or</strong> species).Proceroid Pleroceroid Plerocerus Merocercoid Cysticercoid CysticercusLarval <strong>cestodes</strong> lacking Lacking primary Lacking primary Lacking primary Primary lacuna Primary lacunasolex and primary lacuna, scolex lacuna, scolex lacuna, scolex present, scolex present scolexlacuna, requiring external retracted invaginated retracted invaginatedadditionalintermediate hostSpathebothriideaCaryophyllidea Diphyllidea Mesocestoides Anoplocephalinae TaeniidaeThysanosomatinae LinstowiinaePseudophyllidea CatenotaeniidaeHomeacanthoidea (Trypan<strong>or</strong>hyncha) Heteracanthoidea, Otobothrioidea, Poecilacanthoidea Progynotaeniidae(Trypan<strong>or</strong>hyncha) Gryp<strong>or</strong>hynchidae DipylidiidaeAmabiliidaeHaplobothriidea Paruterina/Cladotaenia Dioecocestidae (?)MetroliasthesDavaineidaeProteocephalidea (p.p.) Proteocephalidea DilepididaeTetraphyllidea (p.p.) Mon<strong>or</strong>ygma HymenolepididaeNippotaeniidea Lecanicephalidea RhodobothriumNematotaeniidae PhyllobothriumRhinebothriumOther namesapplied in the Scolex pleuronectis merocercus tetrathyridium precysticercoid amphicystliterature Scolex polym<strong>or</strong>phus blastocyst cladothyridium ascocercus precysticercuspost-larva tentaculo-plerocercoid cercoscolex monocercus cryptocystmulticercus


24Figure 5. Schematic representations <strong>of</strong> types <strong>of</strong> taeniid larvae apart from the cysticercus. A, coenurus; B, hydatid; C, strobilocercus withdistinct segmentation; D, fimbriocercus (=armatetrathyridium) redrawn from Šlais (1973); E, un-named polycephalic larva <strong>of</strong> Taenia twitchelliredrawn from Rausch (1977).completely developed <strong>larval</strong> f<strong>or</strong>ms can be groupedwithin five simple, if broad, categ<strong>or</strong>ies f<strong>or</strong> whichnames already exist. <strong>The</strong> sole maj<strong>or</strong> example <strong>of</strong> <strong>larval</strong>cestode development not encompassed by this series<strong>of</strong> categ<strong>or</strong>ies is the <strong>larval</strong> stage which is typically caudate,lacking a primary lacuna <strong>or</strong> a scolex, and whichdoes not proceed in its <strong>larval</strong> development until ingestedby a subsequent intermediate host. <strong>The</strong> termprocercoid has traditionally been employed f<strong>or</strong> thisgroup <strong>of</strong> <strong>larval</strong> <strong>cestodes</strong> (Figure 4A) and is utilisedhere in this f<strong>or</strong>m (Freeman, 1973), but not as utilisedby Jarecka (1975) f<strong>or</strong> fully-developed, bothriate, caudatemeta<strong>cestodes</strong> (e.g. Caryophyllidea).Secondly, the c<strong>or</strong>relation between <strong>larval</strong> f<strong>or</strong>mand cestode taxonomic group is not absolute. <strong>The</strong>Trypan<strong>or</strong>hyncha have plerocerci as meta<strong>cestodes</strong> ifthey belong to the sub<strong>or</strong>ders Heteracanthoidea, Otobothrioidea<strong>or</strong> Poecilacanthoidea, but plerocercoids(<strong>or</strong> post-larvae) if they belong to the Homeacanthoidea.Most Tetraphyllidea have plerocercoids asmeta<strong>cestodes</strong>, but those with scoleces inverted (Mon<strong>or</strong>ygmagrimaldii, Phyllobothrium delphini, Rhinebothrium,Rhodobothrium) have merocercoids. Proteocephalideansmay have two types <strong>of</strong> <strong>larval</strong> <strong>cestodes</strong>,plerocercoids <strong>or</strong> merocercoids. <strong>The</strong> distinction presentedhere between plerocercoids and merocercoidsis the most tenuous <strong>of</strong> the proposed divisions andwarrants considerably m<strong>or</strong>e study bef<strong>or</strong>e it should beaccepted. However, the lack <strong>of</strong> c<strong>or</strong>relation betweenmetacestode type and taxonomic groups provides no


25new difficulties f<strong>or</strong> this system <strong>of</strong> metacestode nomenclatureand also exists in the classifications <strong>of</strong> Rudolphi(1819) and Fuhrmann (1933).A third feature <strong>of</strong> the proposed groupings is the factthat the character <strong>of</strong> the adult holdfast being differentfrom that <strong>of</strong> the <strong>larval</strong> stage, as occurs in the Onchobothriidae,the Catenotaeniidae and the Tetrabothriidea,has been ign<strong>or</strong>ed. Inclusion <strong>of</strong> the ontogeny <strong>of</strong>the holdfast could alter the proposed groupings.<strong>The</strong> aggregation <strong>of</strong> cestode taxa with cysticercoidsas meta<strong>cestodes</strong> presents no novelties. By contrast,the collection <strong>of</strong> cestode taxa considered as havingcysticerci as meta<strong>cestodes</strong> is novel as it includes thetraditional group <strong>of</strong> taeniid <strong>cestodes</strong>, with bladders,but also includes linstowiids, whose meta<strong>cestodes</strong>have f<strong>or</strong>merly been described as amphicysts (Spasski,1951) <strong>or</strong> precysticerci (Freeman, 1973) as well asthat <strong>of</strong> Dipylidium which has had various appellationsbut which was <strong>or</strong>iginally termed a cryptocyst (Villot,1883).While the suggested system <strong>of</strong> classification <strong>of</strong>meta<strong>cestodes</strong> has obvious maj<strong>or</strong> advantages, the principal<strong>of</strong> which is that all known <strong>larval</strong> <strong>cestodes</strong> canbe accommodated within six categ<strong>or</strong>ies, there are alsopotential deficiencies. <strong>The</strong>se are (1) that the characters<strong>of</strong> the cercomer and bladder are not taken intoaccount; (2) that one traditional categ<strong>or</strong>y, cysticercus,which is widely utilised in the applied literature,has been violated by the addition <strong>of</strong> cestode taxawhich do not possess the characteristic bladder <strong>of</strong>the taeniid cysticercus <strong>or</strong> its polycephalic modifications;and (3) that the nomenclature <strong>of</strong> the various<strong>larval</strong> stages, particularly the endings <strong>of</strong> names, isinconsistent.(1) <strong>The</strong> potential difficulty <strong>of</strong> the secondary character<strong>of</strong> ‘presence <strong>of</strong> a cercomer’ can be easily overcomeusing the model <strong>of</strong> Freeman (1973) in whichthe prefix ‘caudate’ is applied. This is useful withinthe cysticercoids since some are caudate at the end <strong>of</strong>their development, some are acaudate <strong>or</strong> the cercomermay be reduced. <strong>The</strong> plerocercoids <strong>of</strong> pseudophyllideans(acaudate) can be distinguished readily fromthose <strong>of</strong> caryophyllideans (caudate) with this prefix,as can various f<strong>or</strong>ms <strong>of</strong> meta<strong>cestodes</strong> within the Proteocephalidea.Similarly, the singular metacestode <strong>of</strong>Dipylidium can be distinguished from traditional cysticerciby the addition <strong>of</strong> the prefix ‘caudate’. Thus,the optional use <strong>of</strong> the prefix ‘caudate’ can overcomemost <strong>of</strong> these objections. In the case <strong>of</strong> the larva <strong>of</strong>D. caninum, the extent <strong>of</strong> differences between its developmentand a traditional cysticercus could be usedto argue f<strong>or</strong> a special term, in which case cryptocystwould be the most appropriate (Villot, 1883).(2) <strong>The</strong> feature <strong>of</strong> a ‘bladder’ presents the greatestdifficulty within the group <strong>of</strong> meta<strong>cestodes</strong> heredefined as cysticerci, since the taeniid cysticerci havetraditionally been defined as possessing bladders, <strong>or</strong>secondary enlargements <strong>of</strong> the primary lacuna (Wardle& McLeod, 1952), while the newly added linstowiid‘amphicysts’ do not. In this instance, the use <strong>of</strong> Freeman’s(1973) term ‘precysticercus’ would allow a distinctionbetween the taeniid cysticerci and linstowiidprecysticerci, with an allusion to the hypothesis thatthe bladder is a secondary development (Gulyaev,1997a), although this evolutionary hypothesis has yetto be established.<strong>The</strong> presence <strong>of</strong> a bladder is less significant a problemin plerocerci, since plerocerci without bladders arecurrently restricted to species <strong>of</strong> Polypocephalus andTylocephalum (Lecanicephalidea). ‘Pre-plerocercus’would be a possible term f<strong>or</strong> such meta<strong>cestodes</strong>.Within the merocercoid group, only four phyllobothriidgenera <strong>of</strong> tetraphyllideans <strong>of</strong> the 54 known genera(Euzet, 1994) possess bladders.Thus, while no unif<strong>or</strong>mly satisfact<strong>or</strong>y f<strong>or</strong>mula f<strong>or</strong><strong>terminology</strong> exists, the use <strong>of</strong> the prefixes ‘caudate’and ‘pre-’ suitably accommodates most <strong>of</strong> the difficultiesarising from the inclusion <strong>of</strong> the secondarycharacters. It has the advantage that the use <strong>of</strong> prefixesis optional and does not abrogate the broad classes<strong>of</strong> meta<strong>cestodes</strong> defined. It also overcomes the secondobjection raised above, namely that traditional,widely applied terms such as cysticercus f<strong>or</strong> taeniid<strong>larval</strong> <strong>cestodes</strong> do not have to change to conf<strong>or</strong>m withthe proposed system.(3) <strong>The</strong> third potential objection, namely that the<strong>terminology</strong> <strong>of</strong> the proposed <strong>larval</strong> <strong>cestodes</strong> is etymologicallyinconsistent, is a separate matter. Mostterms f<strong>or</strong> <strong>larval</strong> <strong>cestodes</strong> are based on the Greek‘cerca’, meaning tail. <strong>The</strong> Latin suffix ‘-oid’ simplyindicates a likeness. Thus a procercoid, etymologically,is a <strong>larval</strong> cestode which is not fully developed.A plerocercoid is a <strong>larval</strong> cestode which has a ‘repletetail’, <strong>or</strong> is a non-lacunate <strong>larval</strong> cestode. Whilesomewhat inappropriate to describe acaudate pseudophyllidean<strong>larval</strong> <strong>cestodes</strong>, it is firmly entrenched. Inthe usage <strong>of</strong> Wardle & McLeod (1952), both types<strong>of</strong> <strong>larval</strong> <strong>cestodes</strong> with primary lacunae have the prefix‘cysti-’. ‘Cysticercus’ may allude appropriately tothe bladder <strong>of</strong> taeniid meta<strong>cestodes</strong>, but since theylack a cercomer, the suffix (‘– cercus’) is somewhatinappropriate. However, it is firmly entrenched. ‘Cys-


26ticercoids’ generally possess a cercomer at some stage<strong>of</strong> their development but lack a ‘bladder’. <strong>The</strong> prefixsupposedly alludes to the primary lacuna (Wardle &McLeod, 1952), but this was not known at the timethat the name (‘lacuna primitiva’ <strong>of</strong> Grassi & Rovelli,1892) was applied by Leuckart (1876). Hence the etymologyis dubious. Likewise, ‘plerocercus’ scarcelydiffers from plerocercoid in meaning (Joyeux & Baer,1961), but also indicates a metacestode lacking a primarylacuna. <strong>The</strong> argument being developed here isthat several <strong>of</strong> the current, firmly entrenched termsf<strong>or</strong> <strong>larval</strong> <strong>cestodes</strong> are, from an etymological point<strong>of</strong> view, not completely appropriate, but are widelyaccepted. <strong>The</strong>ref<strong>or</strong>e, to argue f<strong>or</strong> the standardisation<strong>of</strong> nomenclature purely on etymological grounds ishazardous and could lead to increased confusion.An additional tradition is one in which metacestodenames ending in ‘–us’ (cysticercus, plerocercus)indicate the existence <strong>of</strong> a bladder, while names endingin ‘–oid’ indicate the absence <strong>of</strong> a bladder. However,no f<strong>or</strong>mal written presentation <strong>of</strong> this view canbe found! In the current re-arrangement <strong>of</strong> m<strong>or</strong>phologicalpri<strong>or</strong>ities, the presence <strong>of</strong> a bladder is <strong>of</strong> reducedsignificance, since it may be homoplasious, whilethe invagination <strong>or</strong> retraction <strong>of</strong> a scolex is acc<strong>or</strong>dedgreater significance than in the recent literature. Underthis system, cysticercus, a retained term, is appliedto meta<strong>cestodes</strong> in which the scolex is invaginated,while cysticercoid is applied to meta<strong>cestodes</strong> in whichthe scolex is retracted, although both have a primarylacuna <strong>or</strong> ‘cyst’ (sensu Wardle & McLeod, 1952).Procercoid and plerocercoid, which have either noscolex development <strong>or</strong> an everted scolex, have alsobeen retained as names f<strong>or</strong> <strong>larval</strong> <strong>cestodes</strong>. <strong>The</strong>ref<strong>or</strong>e,changing the name ‘plerocercus’ to a term ending in‘-oid’ to be consistent with cysticercoid, the othergroup name in which scoleces are retracted wouldeliminate one inconsistency, but would introduce anotherwith the entrenched term plerocercoid which hasan everted <strong>or</strong> invaginated scolex. Similarly, attemptingto find an alternative to ‘merocercoid’ f<strong>or</strong> <strong>larval</strong><strong>cestodes</strong> with inverted scoleces but lacking a primarylacuna presents obstacles since none <strong>of</strong> the existingnames (tetrathyridium, cladothyridium, cercoscolex)has a ‘−us’ suffix.<strong>The</strong> most parsimonious solution to this etymologicalmaze is to retain the tradition <strong>of</strong> ‘cyst-’ indicating(usually) the presence <strong>of</strong> a primary lacuna and ‘plero-’indicating the absence <strong>of</strong> a primary lacuna. <strong>The</strong> existingterm plerocercus can be used in place <strong>of</strong> merocercus,since this adequately covers both the encystedtrypan<strong>or</strong>hynchs and lecanicephalideans, and the comparableterm ‘merocercoid’ coined f<strong>or</strong> catenotaeniidsby Joyeux & Baer (1945) can be used f<strong>or</strong> tetrathyridia,cladothyridia and cercoscoleces, all <strong>of</strong> which lackbladders and are invaginated. Merocercoid favours no<strong>or</strong>der over the other and while not the older term,provides the greatest etymological unif<strong>or</strong>mity.In the final analysis, <strong>terminology</strong> represents findingcompromises between entrenched usage and etymologicalconsistency. <strong>The</strong> proposal suggested here isa compromise but seems to be an appropriate middlecourse between these two ideals, and will undoubtedlyattract criticism from either <strong>of</strong> the two possibleentrenched extreme positions.Based on the arguments presented above, thefollowing definitions are suggested f<strong>or</strong> meta<strong>cestodes</strong>identified on the basis <strong>of</strong> m<strong>or</strong>phological characteristics:Procercoid (Figure 4A) metacestode without scolexand primary lacuna, usually caudate, in which developmentcannot proceed until ingested by a secondintermediate host.Plerocercoid (Figure 4B) metacestode with (at leastpartial) scolex development (bothriate <strong>or</strong> acetabulate),scolex evaginated, non-lacunate, with <strong>or</strong> without cercomer,infective to definitive host.Merocercoid (Figure 4C) metacestode lacking a primarylacuna, in which scolex is invaginated, caudate<strong>or</strong> acaudate, usually without bladder (except inRhodobothrium, Phyllobothrium, Mon<strong>or</strong>ygma (Tetraphyllidea)).Plerocercus (Figure 4D) metacestode lacking a primarylacuna, in which scolex is withdrawn; caudate(disputed), with <strong>or</strong> without bladder.Cysticercoid (Figure 4E) metacestode with primarylacuna, scolex retracted,with cercomer <strong>or</strong> reduced cercomer.Cysticercus (Figure 4F) metacestode with primary lacuna,scolex invaginated, with <strong>or</strong> without cercomerand bladder.Within the two latter groups, cysticerci and cysticercoids,considerable m<strong>or</strong>phological diversity exists.Some within-group diversity can be indicatedsimply by the use <strong>of</strong> prefixes based on existing names.Cysticerci<strong>The</strong> terms utilised by Hoberg et al. (2000) have beenadopted. <strong>The</strong>se are:f<strong>or</strong> monocephalic cysticerci -cysticercus


27fimbriocercus (including armatetrathyridium)strobilocercusand f<strong>or</strong> polycephalic cysticerci -coenurusechinococcus (including alveococcus)Coenurostrobilocercus and hemistrobilocercus areincluded under strobilocercus.<strong>The</strong> names <strong>of</strong> the monocephalic cysticerci haveunif<strong>or</strong>m endings clearly indicating that they belong tothe same group <strong>of</strong> <strong>larval</strong> <strong>cestodes</strong>. This is not true <strong>of</strong>the polycephalic f<strong>or</strong>ms, but the terms coenurus andechinococcus are too firmly entrenched to contemplatealtering.F<strong>or</strong> modifications <strong>of</strong> the cysticercus, the followingterms are proposed: precysticercus f<strong>or</strong> paruterinidand linstowiine <strong>cestodes</strong> (includes amphicyst,cladothyridium) and cryptocysticercus f<strong>or</strong> the larva<strong>of</strong> Dipylidium.CysticercoidsAs described above, numerous terms have been coinedto describe different types <strong>of</strong> cysticercoids. Two basictypes <strong>of</strong> <strong>larval</strong> development are discernible, that exhibitedby the cercocyst, microcyst and monocercus inwhich a scolex f<strong>or</strong>ms externally and then is retractedwithin the body <strong>of</strong> the larva and another, exhibitedby the diplocyst in which two layers <strong>of</strong> <strong>larval</strong> tissueeventually surround the scolex. Within each developmentaltype, f<strong>or</strong>ms exist which are caudate <strong>or</strong> acaudateand mono-<strong>or</strong> polycephalic. All <strong>of</strong> the names used f<strong>or</strong>cysticercoids (cercocyst, microcyst, diplocyst, ramicercus,monocyst, polycyst, staphylocyst and urocyst)can be altered so that each has the ending - cercoid,thus denoting they are modifications <strong>of</strong> the basic cysticercoidplan. <strong>The</strong> proposed terms are:Monocephalic larvae -cercocysticercoid f<strong>or</strong> caudate cysticercoidsmicrocysticercoid f<strong>or</strong> acaudate cysticercoids <strong>or</strong> f<strong>or</strong>those with a vestigial cercomer (microcercus)diplocysticercoid f<strong>or</strong> cysticercoids in which thescolex is enveloped by two layers <strong>of</strong> <strong>larval</strong> tissue(=diplocyst) (includes ascocercus)ramicysticercoid f<strong>or</strong> caudate diplocysticercoids (includesfl<strong>or</strong>icyst)monocysticercoid f<strong>or</strong> caudate cysticercoids in whichthe cercomer disintegrates into globules during development(= monocercus) (includes acerocyst, strobilocercoid,cryptocercus)Polycephalic larvae -polycysticercoid f<strong>or</strong> polycephalic diplocysticercoids(= polycyst)staphylocysticercoid f<strong>or</strong> polycephalic cysticercoidsdeveloping in the f<strong>or</strong>m <strong>of</strong> a bunch <strong>of</strong> grapes (= staphylocyst)urocysticercoid f<strong>or</strong> polycephalic cysticercoids exhibitinga mycelium-like development from whichcysticercoids bud <strong>of</strong>f (= urocyst, autotomicrocercus)F<strong>or</strong> all <strong>of</strong> these types <strong>of</strong> cysticercoid, the use <strong>of</strong> theprefix is optional. If the prefix is not used, the <strong>larval</strong>cestode is clearly identifiable as a cysticercoid, whileuse <strong>of</strong> the prefix provides additional inf<strong>or</strong>mation.Conclusion<strong>The</strong> current review <strong>of</strong> <strong>terminology</strong> <strong>of</strong> <strong>larval</strong> <strong>cestodes</strong>proposes a system based primarily on m<strong>or</strong>phologicalfeatures determinable from the fully-developed <strong>larval</strong>cestode, namely the existence <strong>of</strong> a primary lacunaand the retraction <strong>or</strong> invagination <strong>of</strong> the scolex. <strong>The</strong>presence <strong>of</strong> a bladder is utilised as a secondary characterbecause the structure is probably non-homologousbetween <strong>or</strong>ders <strong>of</strong> <strong>cestodes</strong>. <strong>The</strong> presence <strong>of</strong> a cercomerduring development is currently utilised as asecondary character because it may be lost during developmentand may theref<strong>or</strong>e be secondarily absent infully-developed <strong>larval</strong> <strong>cestodes</strong>. Using these m<strong>or</strong>phologicaland developmental features, six groups <strong>of</strong> <strong>larval</strong><strong>cestodes</strong> are recognised, each <strong>of</strong> which is defined.<strong>The</strong> advantage <strong>of</strong> the proposed system is that it reducesthe number <strong>of</strong> types <strong>of</strong> <strong>larval</strong> <strong>cestodes</strong> to a small numbers<strong>of</strong> groups, although the most appropriate termsapplicable to these groups are not always apparent.Those applied to min<strong>or</strong> cestode groups (plerocercusand merocercoid) remain arguable.<strong>The</strong> current proposals, while undoubtedly imperfect,represent an attempt to simplify the understanding<strong>of</strong> <strong>larval</strong> <strong>cestodes</strong> and their <strong>terminology</strong> as well asprotecting entrenched usage <strong>of</strong> terms in applied fields<strong>of</strong> parasitology. <strong>The</strong>y will, hopefully, provide the basisf<strong>or</strong> a sustained discussion <strong>of</strong> the rational use <strong>of</strong> termsin describing known meta<strong>cestodes</strong>. <strong>The</strong> deficiencies inour current knowledge are also exposed and it is clearthat a comprehensive system <strong>of</strong> <strong>terminology</strong> cannot beproposed until some <strong>of</strong> these gaps are filled. Apartfrom deficiencies in the knowledge <strong>of</strong> life-cycles <strong>of</strong>large <strong>or</strong>ders <strong>of</strong> tapew<strong>or</strong>ms, the role <strong>of</strong> the type <strong>of</strong> hostas well as homologies between various components <strong>of</strong><strong>larval</strong> <strong>cestodes</strong> remains to be resolved. As inf<strong>or</strong>mationaccumulates, the proposed system will undoubtedlyrequire modification. However, if the reasoning upon


28which it is based is clearly exposed, modifications canbe made relatively easily.Acknowledgements<strong>The</strong> auth<strong>or</strong> wishes to acknowledge the contributions<strong>of</strong> the following to discussions <strong>of</strong> metacestode <strong>terminology</strong>in S<strong>of</strong>ia: I. Beveridge, V.Y. Biserkov, R.A.Bray, J. N. Caira, K.S. Eom, L. Euzet, B. Ge<strong>or</strong>giev,T. Genov, D.I. Gibson, V. Ivanov, C.J. Healy, K.Jensen, A. Jones, M.K. Jones, Y. Kong, V. K<strong>or</strong>nyushin,J. Mariaux, M. von Nickisch-Rosenegk, T. Scholz,S.R. Stoitsova, P. Swiderski, G.A. Tyler, C. Vaucherand G.P. Vasileva, and to R. Campbell, E. Hoberg,S. Gardner, T. Mattis and R. Overstreet, who kindlycommented on the first draft <strong>of</strong> the manuscript.ReferencesAbdou, A.H. (1958) Studies on the development <strong>of</strong> Davaineaproglottina in the intermediate host. Journal <strong>of</strong> Parasitology, 44,484–487.Abuladze, K.I. (1964) [Taeniata <strong>of</strong> animals and man and diseasescaused by them]. Osnovy Tsestodologii. Moskva: Izdatel’stvoNauka, 4, 530 pp. [In Russian, English translation, 1970, IsraelProgram f<strong>or</strong> Scientific Translations, 549 pp.].Anthouard, M. (1963) Contribution à l’étude de Proboscidosaccusenigmaticus Gallien de Mactra solida L. Thèse de la Faculté desSciences de l’ Université de Nancy, 42 pp.Agapova, A.I. (1950) [A new type <strong>of</strong> <strong>larval</strong> cestode structure].Izvestiya Akademia Nauk Kazakhstan SSR, 8, 242–245. (InRussian).Baron, P.J. (1971) On the histology, histochemistry and ultrastructure<strong>of</strong> the cysticercoid <strong>of</strong> Raillietina cesticillus (Molin, 1858)Fuhrmann, 1920 (Cestoda, Cyclophyllidea). Parasitology, 62,233–245.Bartel, M.H. (1965) <strong>The</strong> life cycle <strong>of</strong> Raillietina (R.) loeweni Barteland Hansen, 1964 (Cestoda) from the black-tailed jackrabbit,Lepus calif<strong>or</strong>nicus melanotis Mearns. Journal <strong>of</strong> Parasitology,51, 800–806.Befus, A.D. & Freeman, R.S. (1973) Life cycles <strong>of</strong> two c<strong>or</strong>allobothriin<strong>cestodes</strong> (Proteocephaloidea) from Algonquin Park, Ontario.Canadian Journal <strong>of</strong> Zoology, 51, 249–257.Beneden, P.J. van (1850) Recherches sur la faune litt<strong>or</strong>ale de Belgique(Cestoides). Mémoires de l’Académie Royale des Sciencesde Belgique, 25, 1–200.Beveridge, I. (2001) <strong>The</strong> use <strong>of</strong> life-cycle characters in studies <strong>of</strong>the evolution <strong>of</strong> <strong>cestodes</strong>. In: Littlewood, D.T.J. & Bray, R.A.(Eds) Interrelationships <strong>of</strong> the platyhelminths. London: Tayl<strong>or</strong> &Francis, pp. 250–256.Beveridge, I., Rickard, M.D., Greg<strong>or</strong>y, G.G. & Munday, B.L. (1975)Studies on Anoplotaenia dasyuri Beddard, 1911 (Cestoda: Taeniidae),a parasite <strong>of</strong> the Tasmanian devil: observations on theegg and metacestode. International Journal f<strong>or</strong> Parasitology, 5,257–267.Biserkov, V. & Genov, T. (1988) On the life-cycle <strong>of</strong> Ophiotaeniaeuropaea Odening, 1963 (Cestoda: Ophiotaeniidae).Khelmintologiya, 25, 7–14.Biserkov, V. & Kostadinova, A. (1997) Development <strong>of</strong> the plerocercoidI <strong>of</strong> Ophiotaenia europaea in reptiles. InternationalJournal f<strong>or</strong> Parasitology, 27, 1513–1516.Bona, F.V. (1994) Family Dilepididae Railliet and Henry, 1909. In:Khalil, L.F., Jones, A. & Bray, R.A. (Eds) Keys to the cestodeparasites <strong>of</strong> vertebrates. Wallingf<strong>or</strong>d: CAB International, pp.443–554.Bondarenko, S.K. (1987) [Aploparaksis kulachkovae sp.n. (Cestoda,Hymenolepididae), a new parasite <strong>of</strong> Anatidae]. Parazitologiya,21, 121–126 (In Russian).Bondarenko, S.K. (1989) [Aploparaksis australis Johnston, 1911and its life cycle]. Acta Parasitologica Lituanica, 23, 99–114 (InRussian).Bondarenko, S.K. (1990a) [Type species <strong>of</strong> the genus Aploparaksis(Cestoda, Hymenolepididae), A. filum, and its life cycle].Parazitologiya, 24, 379–389 (In Russian).Bondarenko, S.K. (1990b) [Aploparaksis pseud<strong>of</strong>ilum (Clerc, 1902)non Gasowska, 1931 and its postembryonal development].Parazitologiya, 24, 509–517 (In Russian).Bondarenko, S.K. (1997) [<strong>The</strong> life cycle <strong>of</strong> Wardium fryei (Cestoda:Hymenolepididae).] Parazitologiya, 31, 142–156 (In Russian).Bondarenko, S.K. & Kondratyeva, L. (1985) [On the cestode fauna<strong>of</strong> the genus Aploparaksis Clerc, 1903 (Hymenolepididae) <strong>of</strong>birds <strong>of</strong> the family Anatidae.] Acta Parasitologica Lituanica, 21,77–86 (In Russian).Bondarenko, S.K., Kondratyeva, L. & Hoberg, E.P. (1987) [<strong>The</strong> gullparasite Hymenolepis (s.l.) haldemani Schiller, 1951 and its lifecycle]. Acta Parasitologica Lituanica, 22, 82–91 (In Russian).Bondarenko, S.K. & Kontrimavichus, V.L. (1976a) [<strong>The</strong> life cycles<strong>of</strong> Aploparaksis birulai Linstow, 1905 and Aploparaksisbrachyphallos (Krabbe, 1869)]. Parazitologiya, 10, 163–169 (InRussian).Bondarenko, S.K. & Kontrimavichus, V.L. (1976b). Polym<strong>or</strong>phism<strong>of</strong> larvae <strong>of</strong> the genus Aploparaksis Clerc, 1903 (Hymenolepididae).Folia Parasitologica, 23, 39–44.Bondarenko, S.K. & Kontrimavichus, V.L. (1977). Post-embryonicdevelopment <strong>of</strong> Wardium chaunense Bondarenko & Kontrimavichus,1977 (Cestoda: Hymenolepididae) in the intermediatehost. Folia Parasitologica, 24, 337–342.Bondarenko, S.K. & Kontrimavichus, V.L. (1978). Life-cycle <strong>of</strong> thecestode Wardium calumnacantha (Schmidt, 1963) comb. n. (Hymenolepididae)from common snipe, Gallinago gallinago (L.).Folia Parasitologica, 25, 35–39.Bondarenko, S.K. & Krasnoshchekov, G.P. (1978) [Postembryonicdevelopment <strong>of</strong> the cestode Aploparaksis birulai (Hymenolepididae)]Zoologicheskii Zhurnal, 57, 485–494 (In Russian).Braun, M. (1883) Zur Entwicklungsgeschichte des breiten Bandwürmes(Bothriocephalus latus Brem.). Würzburg, 64 pp.Braun, M. (1894) Cestodes. In Bronn, H.G. (Ed.) Klassen undOrdnungen des Thier-Reichs. Vol.IV, Abteilung I. Leipzig: C.F.Winter’sche Verlagshandlung, pp. 927–1731.Brockerh<strong>of</strong>f, A. & Jones, M.K. (1995) Ultrastructure <strong>of</strong> the scolexand tentacles <strong>of</strong> the metacestode <strong>of</strong> Polypocephalus species(Lecanicephalidae) from the blue-swimmer crab P<strong>or</strong>tunus pelagicus.International Journal f<strong>or</strong> Parasitology, 25, 1077–1088.Brooks, D.R., Hoberg, E.P. & Weekes, P. J. (1991) Preliminaryphylogenetic systematic analysis <strong>of</strong> the maj<strong>or</strong> lineages <strong>of</strong> theEucestoda (Platyhelminthes, Cercomeria). Proceedings <strong>of</strong> theBiological Society <strong>of</strong> Washington, 104, 651–668.Butler, S.A. (1985) Taxonomy and biology <strong>of</strong> some tetraphyllidean<strong>cestodes</strong> from M<strong>or</strong>eton Bay. PhD thesis, University <strong>of</strong>Queensland.


29Burt, M.D.B. (1962) A contribution to the knowledge <strong>of</strong> the cestodegenus Ophryocotyle Friis, 1870. Journal <strong>of</strong> the Linnean Society,Zoology, 45, 645–668.Burt, M.D.B. & Jarecka, L. (1984) Studies on the life cycle <strong>of</strong> Hymenolepisductilis Linton, 1927 and on the ultrastructure <strong>of</strong> itscysticercoid tegument. Acta Parasitologica Polonica, 29, 35–42.Cake, E.W. (1976) A key to <strong>larval</strong> <strong>cestodes</strong> in shallow water benthicmollusks <strong>of</strong> the n<strong>or</strong>thern Gulf <strong>of</strong> Mexico. Proceedings <strong>of</strong> theHelminthological Society <strong>of</strong> Washington, 43, 160–171.Cake, E.W. (1979) Polypocephalus sp. (Cestoda: Lecanicephalidea):a description <strong>of</strong> tentaculo-plerocercoids from bay scallops <strong>of</strong> then<strong>or</strong>theastern Gulf <strong>of</strong> Mexico. Proceedings <strong>of</strong> the HelminthologicalSociety <strong>of</strong> Washington, 46, 165–170.Campbell, R.A. & Beveridge, I. (1994) Order Trypan<strong>or</strong>hynchaDiesing, 1863. In: Khalil, L.F., Jones, A. & Bray, R.A. (Eds)Keys to the cestode parasites <strong>of</strong> vertebrates. Wallingf<strong>or</strong>d: CABInternational, pp. 51–148.Campbell, R.A. & Carvajal, G. (1979) Synonymy <strong>of</strong> the phyllobothriidgenera Rhodobothrium Linton, 1889, InermiphyllidiumRiser, 1955, and Sphaerobothrium Euzet, 1959 (Cestoda:Tetraphyllidea). Proceedings <strong>of</strong> the Helminthological Society <strong>of</strong>Washington, 46, 88–97.Carvajal, J., Barroz, C. & Santander, G. (1982) In vitro culture <strong>of</strong>Rhodobothrium mesodesmatum (Cestoda: Tetraphyllidea), parasite<strong>of</strong> a Chilean clam. Proceedings <strong>of</strong> the HelminthologicalSociety <strong>of</strong> Washington, 49, 226–230.Cayley, J. (1974) <strong>The</strong> functional significance <strong>of</strong> scolex retractionand subsequent cyst f<strong>or</strong>mation in the cysticercoid larva <strong>of</strong>Hymenolepis microstoma. Parasitology, 68, 207–227.Cayley, J. (1976) Ultrastructural studies <strong>of</strong> the cysticercoid <strong>of</strong>Moniezia expansa (Anoplocephalidae) with special reference tothe development <strong>of</strong> the cyst. Zeitschrift für Parasitenkunde, 48,251–262.Chambers, C.B., Cribb, T.H. & Jones, M. (2000) Tetraphyllideanmeta<strong>cestodes</strong> <strong>of</strong> teleosts <strong>of</strong> the Great Barrier Reef, and the use<strong>of</strong> in vitro cultivation to identify them. Folia Parasitologica, 47,285–292.Collin, W.K. (1970) Electron microscopy <strong>of</strong> postembryonic stages<strong>of</strong> the tapew<strong>or</strong>m, Hymenolepis citelli. Journal <strong>of</strong> Parasitology,56, 1159–1170.Conn, D.B., (1985) Life cycle and postembryonic development <strong>of</strong>Ooch<strong>or</strong>istica anolis (Cestoda: Linstowiidae). Journal <strong>of</strong> Parasitology,71, 10–16.Crowe, D.G., Burt, M.D.B. & Scott, J.S. (1974) On the ultrastructure<strong>of</strong> the polycercus larva <strong>of</strong> Paricterotaenia paradoxa(Cestoda: Cyclophyllidea). Canadian Journal <strong>of</strong> Zoology, 52,1397–1405.Czaplinski, B. & Szelenbaum-Cielecka, D. (1986) M<strong>or</strong>phologicaland biological studies on Di<strong>or</strong>chis danutae Czapliniski, 1956and D. asiatica Spassky, 1963 (Cestoda, Hymenolepididae). ActaParasitologica Polonica, 30, 127–142.Demshin, N.I. (1971) [Oligochaets and leeches as intermediate,facultative and reservoir hosts <strong>of</strong> helminths <strong>of</strong> domestic andwild animals in the Prim<strong>or</strong>sk region, USSR.] Parazity zhivotnykhi rastenii Dal’nego Vostoka. Vladivostok: AkademiyaNauk SSSR. Sibirskoe Otdelenie. Dal’nevostochnoe KnizhnoeIzdatel’stvo, pp. 34–69. (In Russian).Demshin, N.I. (1976) [Larval development <strong>of</strong> a cestode Sacciuterinastellifera (Dilepididae)]. Zoologicheskii Zhurnal, 55, 17–22. (InRussian).Demshin, N.I. (1978) [Biology <strong>of</strong> Khawia japonensis (Caryophyllidea,Cestoda), a parasite <strong>of</strong> the Amur carp]. Parazitologiya, 12,493–496. (In Russian).Demshin, N.I. (1981) [<strong>The</strong> development <strong>of</strong> the metacestode Polycercusparadoxa (Rud., 1802) Spasskaya & Spasskii, 1970 (Dilepididae)in Oligochaeta.] In: Mamaev, Y.L. & Demshin, N.I. (Eds)Biologia i systematika gel’mintov zhivotnykh Dal’nego Vostoka.Vladivostok: Dal’nevostochnyi Nauchnyi Tsentr, pp. 12–23. (InRussian).Demshin, N.I. (1984) [Postembryonal development <strong>of</strong> the cestodeAploparaksis crassirostris (Hymenolepididae)]. Parazitologiya,18, 40–46. (In Russian).Demshin, N.I. (1985a) [Postembryonic development <strong>of</strong> the cestodeNippotaenia m<strong>or</strong>gurndae (Nippotaeniidea, Nippotaeniidae)].Parazitologiya, 19, 39–43. (In Russian).Demshin, N.I. (1985b) [Postembryonic development <strong>of</strong> two species<strong>of</strong> the genus Aploparaksis (Cestoda, Cyclophyllidea, Hymenolepididae)].Zoologicheskii Zhurnal, 64, 16–23. (In Russian).Demshin, N.I. & Dv<strong>or</strong>yadkin, V.A. (1981) [<strong>The</strong> development <strong>of</strong>Markevitschia sagittata (Cestoidea: Caryophyllidae), a parasite<strong>of</strong> the Amur wild carp, in the external medium and in theintermediate host]. Parazitologiya, 15, 113–117. (In Russian).Denegri, G., Bernadina, W., Pérez-Serrano, J. & Rodríguez-Caabeiro, F. (1998) Anoplocephalid <strong>cestodes</strong> <strong>of</strong> veterinary andmedical significance: a review. Folia Parasitologica, 45, 1–8.Diesing, K.M. (1850) Systema helminthum. Vindobona, 680 pp.Dollfus, R.-P. (1942). Etudes critiques sur les Tétrarhynques duMuséum de Paris. Archives du Muséum National d’HistoireNaturelle, Paris, 6 sér., 19, 1–466.Dollfus, R.-P. (1964). A propos de la récolte, a Banyuls d’uncystique de cestode chez Tursiops truncatus (Montagu, 1821).Les cystiques de <strong>cestodes</strong> chez les cétacés et pinnipèdes. Vie etMilieu, Suppl.17, 177–204.Ebermann, E. (1976) Oribatiden als Zwischenwirte des BandwurmesHymenolepis asymetrica Janitzki, 1904 (Hymenolepididae).Zoologische Jahrbücher, Abteilung Systematik, 103,105-116.Essex, H.E. (1929) <strong>The</strong> life-cycle <strong>of</strong> Haplobothrium globulif<strong>or</strong>meCooper, 1914. Science, 69, 677–678.Euzet, L. (1959) Recherches sur les <strong>cestodes</strong> tétraphyllides dessélaciens des côtes de France. Thèse présentée à la Faculté desSciences de Montpellier (1956), Montpellier: Gause, Graille &Castelnau, 263 pp.Euzet, L. (1994) Order Tetraphyllidea Carus, 1863. In: Khalil, L.F.,Jones, A. & Bray, R.A. (Eds) Keys to the cestode parasites <strong>of</strong>vertebrates. Wallingf<strong>or</strong>d: CAB International, pp. 149–194.Fischer, H. & Freeman, R.S. (1969) Penetration <strong>of</strong> parenteral plerocercoids<strong>of</strong> Proteocephalus ambloplitis (Leidy) into the gut <strong>of</strong>small mouth bass. Journal <strong>of</strong> Parasitology, 55, 766–774.Freeman, R.S. (1957) Life cycle and m<strong>or</strong>phology <strong>of</strong> Paruterinarauschi n.sp. and P. candelabraria (Goeze, 1782) (Cestoda) fromowls, and significance <strong>of</strong> plerocercoids in the <strong>or</strong>der Cyclophyllidea.Canadian Journal <strong>of</strong> Zoology, 35, 349–370.Freeman, R.S. (1959) On the taxonomy <strong>of</strong> the genus Cladotaenia,the life hist<strong>or</strong>ies <strong>of</strong> C. globifera (Batsch, 1786) and C. circiYamaguti, 1935, and a note on distinguishing between the plerocercoids<strong>of</strong> the genera Paruterina and Cladotaenia. CanadianJournal <strong>of</strong> Zoology, 37, 317–340.Freeman, R.S. (1973) Ontogeny <strong>of</strong> <strong>cestodes</strong> and its bearing on theirphylogeny and systematics. Advances in Parasitology, 11, 481-557.Fuhrmann, O. (1933) Cestoidea. In: Kükenthal W. (Ed.) Handbuchder Zoologie: eine Naturgeschichte der Stämne des Tierreichs.Berlin: Walter de Gruyter & Co., pp. 141–416.Gabrion, C. (1975) Etude expérimentale du développement larvaired’Anomotaenia constricta (Molin, 1858) Cohn, 1900


30chez un coléoptère Pimelia sulcata Ge<strong>of</strong>fr. Zeitschrift für Parasitenkunde,47, 249–262.Gabrion, C. (1977) Etude expérimentale du développement larvaired’Hymenolepis stylosa (Rudolphi, 1809) Railliet, 1899 (Cestode,Cyclophyllide). Annales de Parasitologie Humaine et Comparée,52, 117–130.Gabrion, C. (1981) Ontogenèse de <strong>cestodes</strong> cyclophyllides. Etudem<strong>or</strong>phogénétique du dévelopment post-oncosphéral. Thèseprésentée à l’Université des Sciences et Techniques du Languedoc,332 pp.Gabrion, C. & Gabrion, J. (1976) Etude ultrastructurale de lalarve de Anomotaenia constricta (Cestoda, Cyclophyllidea).Zeitschrift für Parasitenkunde, 49, 161–177.Gabrion, C. & Helluy, S. (1982) Développement larvaire de Paricterotaeniap<strong>or</strong>osa (Cestoda: Cyclophyllidea, Dilepididae) chezdes diptères du genre Chironomus, hôtes expérimentaux. Annalesde Parasitologie Humaine et Comparée, 57, 33–52.Gabrion, C. & MacDonald, G. (1980) Artemia sp. (Crustacé, Anostracé),hôte intermédiaire d’Eurycestus avoceti Clark, 1954(Cestode Cyclophyllide). Annales de Parasitologie Humaine etCompareé, 55, 327–331.Gabrion, C., Plateaux, L. & Quentin, C. (1976) Anomotaenia brevis(Clerc, 1902) Fuhrmann, 1908, Cestode Cyclophyllide, parasitede Leptoth<strong>or</strong>ax nylanderi (F<strong>or</strong>ster) Hyménoptère, F<strong>or</strong>micidé.Annales de Parasitologie Humaine et Compareé, 51, 407–420.Galkin, A.K. (1996) [<strong>The</strong> post<strong>larval</strong> development <strong>of</strong> the scolex <strong>of</strong>Tetrabothrius erostris (Cestoda: Tetrabothriidea) and phylogeneticessentials <strong>of</strong> this process]. Parazitologiya, 30, 315–323 (InRussian).Gallati, W.W. (1959) Life hist<strong>or</strong>y, m<strong>or</strong>phology and taxonomy <strong>of</strong>Atriotaenia (Ershovia) procyonis (Cestoda: Linstowiidae), aparasite <strong>of</strong> the raccoon. Journal <strong>of</strong> Parasitology, 45, 363–377.Goodchild, C.G. & Stullken, R.E. (1970) Hymenolepis microstoma:cysticercoid m<strong>or</strong>phogenesis. Transactions <strong>of</strong> the AmericanMicroscopical Society, 89, 224–229.Grassi, G.B. & Rovelli, H. (1892) Ricerche embriologische suiCestodi. Atti della Accademia Gioenia di Scienze Naturali inCatonia, 4, 1–109.Greaves, T.A., Jarecka, L. & Burt, M.D.B. (1989). On the life cycle<strong>of</strong> Hymenolepis evaginata Barker & Andrews, 1915 (Cestoda:Cyclophyllidea), a parasite <strong>of</strong> muskrats, Ondatra zibethica (L.,1766). Canadian Journal <strong>of</strong> Zoology, 67, 502–504.Gulyaev, V.D. (1989) [New m<strong>or</strong>pho-ecological types <strong>of</strong> cysticercoidsin <strong>cestodes</strong> <strong>of</strong> the sub-family Schistotaeniinae Johri, 1959].In: Fed<strong>or</strong>ov, K.P. (Ed.) Ekologiya gelmintov pozvonochnykhSibiri. Sb<strong>or</strong>nik nauchnykh trudov. Novosibirsk: Nauka SibirskoeOtdelenie, pp. 199–213. (In Russian).Gulyaev, V.D. (1996) [Origin <strong>of</strong> basic characters in m<strong>or</strong>phologyand ontogenesis <strong>of</strong> tapew<strong>or</strong>ms (Cestoda). 2. Cercomer homologyin <strong>cestodes</strong> and <strong>or</strong>igin <strong>of</strong> intercalary parasitic larva-cercoid].Zoologicheskii Zhurnal, 75, 961–971. (In Russian).Gulyaev, V.D. (1997a) [Classification <strong>of</strong> meta<strong>cestodes</strong> as a system<strong>of</strong> life-f<strong>or</strong>ms characteristic to cestode parasitic larvae].Byulleten Moskovskogo Obshchestva Ispyiatelei Prirodi OtdelBiologicheskii, 102, 26–33. (In Russian).Gulyaev, V.D. (1997b) [Development <strong>of</strong> the metacestode <strong>of</strong> Dilepisundula (Cestoda, Cyclophyllidea, Dilepididae), a primitive nonlacunarcysticercoid]. Zoologicheskii Zhurnal, 76, 985–991. (InRussian).Gulyaev, V.D. (1997c) [Larvogenesis <strong>of</strong> diplocyst <strong>of</strong> Aploparaksisfurcigera (Rud., 1819) Fuhrmann, 1926 (Cestoda, Hymenolepididae)].Parazitologiya, 11, 17–22. (In Russian).Gulyaev, V.D. (1998) [Development <strong>of</strong> the metacestode <strong>of</strong> Laterip<strong>or</strong>usclerci (Cestoda, Cyclophyllidea, Dilepididae]. ZoologicheskiiZhurnal, 77, 1103–1110. (In Russian).Gulyaev, V.D. (2000) [On gemmation <strong>of</strong> Polycercus paradoxa (Cestoda,Cyclophyllidea) metacestode generations.] ZoologicheskiiZhurnal, 79, 1013–1019. (In Russian).Gulyaev, V.D. & K<strong>or</strong>nienko, S.A. (1998) [On m<strong>or</strong>phological peculiarities<strong>of</strong> monocercus cysticercoids (Cestoda: Cyclophyllidea:Dilepididae)] Parazitologiya, 32, 141–145. (In Russian).Gutberlet, J.E. (1916) M<strong>or</strong>phology <strong>of</strong> adult and <strong>larval</strong> <strong>cestodes</strong> frompoultry. Transactions <strong>of</strong> the American Microscopical Society, 35,23–44.Gvozdev, E.V. & Maksimova, A.P. (1979) [M<strong>or</strong>phology and developmentalcycle <strong>of</strong> the cestode Gynandrotaenia stammeri (Cestoidea,Cyclophyllidea), a parasite <strong>of</strong> Phoenicopterus roseus].Parazitologiya, 13, 56–60. (In Russian).Herde, K.E. (1938) Early development <strong>of</strong> Ophiotaenia perspicuaLaRue. Transactions <strong>of</strong> the American Microscopical Society, 57,282–291.Hickman, J.L. (1963) <strong>The</strong> biology <strong>of</strong> Ooch<strong>or</strong>istica vacuolata Hickman(Cestoda). Papers and Proceedings <strong>of</strong> the Royal Society <strong>of</strong>Tasmania, 97, 81–104.Hoberg, E.P. (1987) Recognition <strong>of</strong> larvae <strong>of</strong> the Tetrabothriidae(Eucestoda): implications f<strong>or</strong> the <strong>or</strong>igins <strong>of</strong> tapew<strong>or</strong>ms in marinehomeotherms. Canadian Journal <strong>of</strong> Zoology, 65, 997–1000.Hoberg, E.P., Jones, A. & Bray, R.A. (1999) Phylogenetic analysisamong the families <strong>of</strong> the Cyclophyllidea (Eucestoda) based oncomparative m<strong>or</strong>phology, with new hypotheses f<strong>or</strong> co-evolutionin vertebrates. Systematic Parasitology, 42, 51–73.Hoberg, E.P., Jones, A., Rausch, R.L., Eom, K.S. & Gardner, S.L.(2000) A phylogenetic hypothesis f<strong>or</strong> species <strong>of</strong> the genus Taenia(Eucestoda: Taeniidae). Journal <strong>of</strong> Parasitology, 86, 89–98.Hoberg, E.P., Mariaux, J., Justine, J.-L., Brooks, D.R. & Weekes,P.J. (1997) Phylogeny <strong>of</strong> the <strong>or</strong>ders <strong>of</strong> the Eucestoda (Cercomerom<strong>or</strong>phae)based on comparative m<strong>or</strong>phology: hist<strong>or</strong>ical perspectivesand a new w<strong>or</strong>king hypothesis. Journal <strong>of</strong> Parasitology,83, 1128–1147.H<strong>or</strong>sfall, M.W. & Jones, M.F. (1937) <strong>The</strong> life hist<strong>or</strong>y <strong>of</strong> Choanotaeniainfundibulum, a cestode parasitic in chickens. Journal <strong>of</strong>Parasitology, 23, 435–450.Janicki, C. von (1920) Grundlinien einer Cercomer <strong>The</strong><strong>or</strong>ie zurM<strong>or</strong>phologie der Trematoden und Cestoden. Festschrift fürZschokke, No. 30, Basel, 20 pp.Janicki, C. von & Rosen, F. (1917) Le cycle évolutif du Dibothriocephaluslatus L. Recherches expérimentales et observation.Bulletin de la Société Neuchâteloise des Sciences Naturelles, 42,19–53.Jarecka, L. (1960) Life cycles <strong>of</strong> tapew<strong>or</strong>ms from lakes Goldapiwoand Mamry Polnócne. Acta Parasitologica Polonica, 8, 47–66.Jarecka, L (1970a) Life cycle <strong>of</strong> Valip<strong>or</strong>a campylancristrota (Wedl,1855) Baer and Bona 1958–1960 (Cestoda - Dilepididae) andthe description <strong>of</strong> cercoscolex - a new type <strong>of</strong> cestode larva. Bulletinde l’Académie Polonaise des Sciences, Classe II, Série desSciences Biologiques, 18, 99–102.Jarecka, L. (1970b) On the life cycles <strong>of</strong> Paradilepis scolecina(Rud., 1819) Hsü, 1935 and Neogryp<strong>or</strong>hynchus cheilancristotus(Wedl, 1855) Baer & Bona, 1958-1960 (Cestoda: Dilepididae).Bulletin de l’Académie Polonaise des Sciences, Classe II, Sériedes Sciences Biologiques, 18, 159–163.Jarecka, L. (1975) Ontogeny and evolution <strong>of</strong> <strong>cestodes</strong>. Acta ParasitologicaPolonica, 23, 93–114.Jarecka, L (1984) Development <strong>of</strong> Hymenolepis arctowskii Jarecka& Ostas, 1984 (Cestoda, Hymenolepididae) in the intermediate


31host Branchinecta gaini Daday (Branchiopoda) <strong>of</strong> the Antarctic.Acta Parasitologica Polonica, 29, 337–342.Jarecka, L., Bance, G.N. & Burt, M.D.B. (1984) On the life cycle<strong>of</strong> Anomotaenia micracantha dominicana (Railliet et Henry,1912) with ultrastructural evidence supp<strong>or</strong>ting the definitioncercoscolex f<strong>or</strong> dilepidid larvae (Cestoda, Dilepididae). ActaParasitologica Polonica, 29, 27–34.Jarecka, L., Michajlow, W. & Burt, M.D.B. (1981) Comparativeultrastructure <strong>of</strong> cestode larvae and Janicki’s cercomer the<strong>or</strong>y.Acta Parasitologica Polonica, 28, 65–72.Jiang, T., Jin, Z., Wu, H. & Cui, C. (1990) A study <strong>of</strong> the life cycleand epidemiology <strong>of</strong> Pseudanoplocephala crawf<strong>or</strong>di Baylis,1927. Journal <strong>of</strong> Helminthology, 64, 54–61.Jones, M.F. (1936) Metroliasthes lucida, a cestode <strong>of</strong> gallif<strong>or</strong>mbirds, in arthropod and avian hosts. Proceedings <strong>of</strong> theHelminthological Society <strong>of</strong> Washington, 3, 26–30.Jones, M.F. & Alicata, J.E. (1935) Development and m<strong>or</strong>phology <strong>of</strong>the cestode, Hymenolepis cantaniana, in coleopteran and avianhosts. Journal <strong>of</strong> the Washington Academy <strong>of</strong> Science, 25, 237–247.Jourdane, J. (1972) Etude expérimentale du cycle biologiquede deux espèces de Choanotaenia intestinaux de S<strong>or</strong>icidae.Zeitschrift für Parasitenkunde, 38, 333–343.Jourdane, J. (1977) Ecologie du développement et de la transmissiondes plathelminthes parasites de S<strong>or</strong>icidae pyrénéens. Mémoiresdu Muséum National d’Histoire Naturelle, Nouvelle Série, SérieA, Zoologie, 103, 1–171.Joyeux, C. (1924) Recherches sur le cycle évolutif des Cylindrotaenia.Annales de Parasitologie Humaine et Comparée, 2,74–81.Joyeux, C. & Baer, J.G. (1945) M<strong>or</strong>phologie, évolution et positionsystématique de Catenotaenia pusilla (Goeze, 1782) cestodeparasite de rongeurs. Revue Suisse de Zoologie, 52, 13–51.Joyeux, C. & Baer, J.G. (1961) Classe des Cestodes. In: Grassé,P.-P. (Ed.) Traité de Zoologie. Vol. 4. Fasc. 1. Plathelminthes,Mésozoaires, Acanthocéphales, Némertiens. Paris: Masson, pp.347–560.Khalil, L.F., Jones, A. & Bray, R.A. (1994) Keys to the cestodeparasites <strong>of</strong> vertebrates. Wallingf<strong>or</strong>d: CAB International, 751pp.Kisielewska, K. (1960) Life cycle <strong>of</strong> the tapew<strong>or</strong>m Pseudodi<strong>or</strong>chisprolifer (Villot, 1890) comb. nova (= Pseudodi<strong>or</strong>chis multispinosaZarnowski, 1955). Acta Parasitologica Polonica, 8,197–204.K<strong>or</strong>nyushin, V.V. & Sharpilo, L.D. (1986) [A new genus <strong>of</strong> taeniid(Cestoda: Taeniidae), a parasite <strong>of</strong> mustelids]. Vestnik Zoologii,3, 10–16. (In Russian).Kotecki, N.R. (1964) Life cycle <strong>of</strong> Parabisaccanthes philactes(Schiller, 1951) Spassky et Reznik, 1963 in the intermediate host.Acta Parasitologica Polonica, 12, 373–378.Kotecki, N.R. (1967) <strong>The</strong> development <strong>of</strong> larvae <strong>of</strong> Wardoides nyrocae(Yamaguti, 1935) Spassky, 1962 in the intermediate hosts.Acta Parasitologica Polonica, 14, 357–363.Krasnoshchekov, G.P. & Pluzhnikov, L.T. (1984) [Ultrastructure<strong>of</strong> cysticercoids <strong>of</strong> Fimbriaria fasciolaris (Hymenolepididae)].Parazitologiya, 18, 47–52. (In Russian).Krasnoshchekov, G.P. & Tomilovskaya, N.S. (1978) M<strong>or</strong>phologyand development <strong>of</strong> the cysticercoid <strong>of</strong> Paricterotaenia p<strong>or</strong>osa(Rud., 1810) (Cestoda: Dilepididae). Parazitologiya, 12, 108–115. (In Russian).Leuckart, R. (1876) Die menschlichen Parasiten und die von ihnenherrührenden Krankreiten. Vol.2. Leipzig & Heidelb, pp. 513–882. (English Translation by W.E. Hoyles (1886). Edinburgh:Young J. Pentland, 771 pp.).Mackiewicz, J.S. (1972) Caryophyllidea (Cestoidea): a review.Experimental Parasitology, 31, 417–512.MacKinnon, B.M. & Burt, M.D.B. (1983) Polym<strong>or</strong>phism <strong>of</strong> microtrichesin the cysticercoid <strong>of</strong> Ophryocotyle insignis Lönnberg,1890 from the limpet Patella vulgata. Canadian Journal <strong>of</strong>Zoology, 61, 1062–1070.Maksimova, A.P. (1972) [<strong>The</strong> development <strong>of</strong> the <strong>cestodes</strong>,Retinometra guberiana Czaplinski, 1965 and Parabisaccanthesphilactes (Schiller, 1951) in the intermediate host]. Parazitologiya,6, 283–290. (In Russian).Maksimova, A.P. (1976) [A new cestode, Fimbriarioides tad<strong>or</strong>naesp. n. from Tad<strong>or</strong>na tad<strong>or</strong>na and its development in theintermediate host]. Parazitologiya, 10, 17–24. (In Russian).Maksimova, A.P. (1986) [On the m<strong>or</strong>phology and life cycle <strong>of</strong>the cestode Wardium fusa (Cestoda, Hymenolepididae)]. Parazitologiya,20, 157–159. (In Russian).Mariaux, J. & Olson, P.D. (2001) Cestode systematics in themolecular era. In: Littlewood, D.T.J. & Bray, R.A. (Eds) Interrelationships<strong>of</strong> the platyhelminths. London: Tayl<strong>or</strong> & Francis, pp.127–134.Marshall, A.G. (1967) <strong>The</strong> cat flea, Ctenocephalides felis felis(Bouché, 1835), as an intermediate host f<strong>or</strong> <strong>cestodes</strong>. Parasitology,57, 419-430.Matsaberidze, G, Prokopic, J. & Zarkua, G. (1986) Life cycle <strong>of</strong> thetapew<strong>or</strong>m Triodontolepis kurashvilii Prokopic et Matsaberidze,1971. Folia Parasitologica, 33, 65–68.Mattis, T.E. (1986) Development <strong>of</strong> two tetrarhynchidean <strong>cestodes</strong>from the n<strong>or</strong>thern Gulf <strong>of</strong> Mexico. Ph D Dissertation, University<strong>of</strong> Southern Mississippi.McLaughlin, J.D. & Burt, M.D.B. (1970) Observations on them<strong>or</strong>phology and life cycle <strong>of</strong> Hymenolepis hopkinsi Schiller,1951 (Cestoda: Cyclophyllidea), a parasite <strong>of</strong> black ducks (Anasrubripes Brewster). Canadian Journal <strong>of</strong> Zoology, 48, 1043–1046.Melnikov, N. (1869) Über die Jugendzustände der Taenia cucumerina.Archiv für Naturgeschichte, 35, 62–69.Metchnikov, E. (1869) Entwicklungsgeschichtliche Beiträge.Bulletin de l’Académie, Impériale des Sciences de Saint-Pétersbourg, 13, 284–300.Millemann, R.E. (1955) Studies on the life hist<strong>or</strong>y and biology <strong>of</strong>Ooch<strong>or</strong>istica deserti n. sp. (Cestoda: Linstowiidae) from desertrodents. Journal <strong>of</strong> Parasitology, 41, 424–440.Moniez, R. (1880) Essai monographique sur les cysticèrques.Travaux de l’Institut zoologique de Lille de la Station Maritimede Wimereux, Paris, 3, 1–190.Mrázek, A. (1916) Cestoden - Studien. II. Die m<strong>or</strong>phologischeBedeutung der Cestoden-Larven. Zoologische Jahrbücher, 39,515–584.Mueller, J.F. (1938) <strong>The</strong> life hist<strong>or</strong>y <strong>of</strong> Diphyllobothrium mansonoidesMueller, 1935, and some considerations with regard tosparganosis in the United States. American Journal <strong>of</strong> TropicalMedicine, 18, 41–66.Mueller, O.F. (1787) Verzeichniss der bisher entdeckten Eingeweidewürmerder Thiere, in welchen sie gefunden wurden, undbesten Schriften die dieselben erwähnen. Naturf<strong>or</strong>scher (Halle),22, 33–86.Mudry, D.R. & Dailey, M.D. (1971) Postembryonic development<strong>of</strong> certain tetraphyllidean and trypan<strong>or</strong>hynchan <strong>cestodes</strong> witha possible alternative life cycle f<strong>or</strong> the <strong>or</strong>der Trypan<strong>or</strong>hyncha.Canadian Journal <strong>of</strong> Zoology, 49, 1249–1253.Murai, É., Ten<strong>or</strong>a, F. & Stanek, M. (1989) Atypical strobilocercus(Cestoda: Taeniidae), a parasite in experimental stocks <strong>of</strong> Ondatrazibethicus (Rodentia). Miscellanea Zoologica Hungarica, 5,21–27.


32Neradová-Valkounová, J. (1971) Studies <strong>of</strong> the life-hist<strong>or</strong>y <strong>of</strong>some <strong>cestodes</strong> <strong>of</strong> water birds (Hymenolepididae: Fimbriariafasciolaris, Dicranotaenia c<strong>or</strong>onula). Folia Parasitologica, 18,303–313.Prokopic, J. (1971) <strong>The</strong> life cycle <strong>of</strong> the cestode Rodentolepiserinacei (Gmelin, 1789). Folia Parasitologica, 18, 27–32.Rausch, R.L. (1977) <strong>The</strong> specific distinction <strong>of</strong> Taenia twitchelliSchwartz, 1924 from T. martis (Zeder, 1803) (Cestoda: Taeniidae).Excerta Parasitologica en Mem<strong>or</strong>ia del Doct<strong>or</strong> EduardoCaballero y Caballero. Instituto de Biologia. PublicacionesEspeciales, 4, 357–366.Rausch, R.L. (1981) M<strong>or</strong>phological and biological characteristics<strong>of</strong> Taenia rileyi Loewen, 1929 (Cestoda: Taeniidae). CanadianJournal <strong>of</strong> Zoology, 59, 653–666.Rawson, D. & Rigby, J.E. (1960) <strong>The</strong> functional anatomy <strong>of</strong> the cysticercoid<strong>of</strong> Choanotaenia crassiscolex (Linstow, 1890) (Dilepididae)from the digestive gland <strong>of</strong> Oxychilus cellarius (Müll.)(Stylomatoph<strong>or</strong>a), with some observations on developmentalstages. Parasitology, 50, 453–468.Rees, G. (1973a) <strong>The</strong> ultrastructure <strong>of</strong> the cysticercoid <strong>of</strong> Tatriaoctacantha Rees, 1973 (Cyclophyllidea: Amabiliidae) from thehaemocoel <strong>of</strong> the damsel-fly nymphs Pyrrhosoma nymphula,Sulz and Enallagma cyathigerum, Charp. Parasitology, 66,85–103.Rees, G. (1973b) Cysticercoids <strong>of</strong> three species <strong>of</strong> Tatria (Cyclophyllidea:Amabiliidae) including T. octacantha sp. nov. fromthe haemocoele <strong>of</strong> the damsel-fly nymphs Pyrrhosoma nymphula,Sulz and Enallagma cyathigerum, Charp. Parasitology,66, 423–446.Rendt<strong>or</strong>ff, R.C. (1948) Investigations <strong>of</strong> the lifecycle <strong>of</strong> Ooch<strong>or</strong>isticaratti, a cestode from rats and mice. Journal <strong>of</strong> Parasitology,34, 243–252.Richards, K.S. & Arme, C. (1984a) Maturation <strong>of</strong> the scolex syncytiumin the metacestode <strong>of</strong> Hymenolepis diminuta, with specialreference to microthrix f<strong>or</strong>mation. Parasitology, 88, 341–349.Richards, K.S. & Arme, C. (1984b) An ultrastructural analysis<strong>of</strong> cyst wall development in the metacestode <strong>of</strong> Hymenolepisdiminuta (Cestoda). Parasitology, 89, 537–566.Riser, N.W. (1956) Early <strong>larval</strong> stages <strong>of</strong> two <strong>cestodes</strong> from elasmobranchfishes. Proceedings <strong>of</strong> the Helminthological Society <strong>of</strong>Washington, 23, 120–124.Robert, F., Renaud, F., Mathieu, E. & Gabrion, C. (1988) Imp<strong>or</strong>tance<strong>of</strong> the paratenic host in the biology <strong>of</strong> Bothriocephalusgregarius (Cestoda, Pseudophyllidea), a parasite <strong>of</strong> the turbot.International Journal f<strong>or</strong> Parasitology, 18, 611–621.Rogan, M.T. & Richards, K.S. (1987) Echinococcus granulosus:changes in the surface ultrastructure during protoscolexf<strong>or</strong>mation. Parasitology, 94, 359–367.Rosen, F. (1919) Le développement des <strong>cestodes</strong>. 1. Le cycle évolutifdes bothriocéphales. Etude sur l’<strong>or</strong>igine des Cestodes et leursétats larvaires. Bulletin de la Société Neuchâteloise des SciencesNaturelles, 43, 241–300.Rosen, F. (1920) Recherches sur le développement embryonnairedes <strong>cestodes</strong>. II. Le cycle évolutif de la Ligule et quelquesquestions générales sur le développement des Bothriocephales.Bulletin de la Société Neuchâteloise des Sciences Naturelles, 44,259–280.Rudolphi, C.A. (1819) Entozo<strong>or</strong>um synopsis cui accedunt mantissaduplex et indices locupletissimi. Berolini, 811 pp.Ruskowski, J.S. (1928) Etudes sur le cycle évolutif et sur la structuredes <strong>cestodes</strong> de mer. 1 - Echinobothrium benedeni n. sp.,ses larves et son hôte intermédiaire Hyppolyte varians Leach.Bulletin International de l’Académie Polonaise des Sciences etdes Lettres, Classe des Sciences Mathématiques et Naturelles,Série B, Sciences Naturelles, 7, 719–738.Ruskowski, J.S. (1934) Etudes sur le cycle évolutif et sur la structuredes <strong>cestodes</strong> de mer. 3ème partie. Le cycle évolutif du TétrarhynqueGrillotia erinaceus van Beneden, 1858. Mémoires del’Académie Polonaise des Sciences et des Lettres, Classe des SciencesMathématiques et Naturelles, Série B, Sciences Naturelles,6, 1–10.Ryzhikov, K.M. & Tolkacheva, L.M. (1981) [Acoleata - tapew<strong>or</strong>msfrom birds] Osnovy Tsestodologii. Moskva: Nauka, 10, 216 pp.(In Russian).Sakanari, J.A. & Moser, M. (1989) Complete life cycle <strong>of</strong> theelasmobranch cestode, Lacist<strong>or</strong>hynchus dollfusi Beveridge andSakanari, 1987 (Trypan<strong>or</strong>hyncha). Journal <strong>of</strong> Parasitology, 75,806–808.Sandeman, I.M. & Burt, M.D.B. (1972) Biology <strong>of</strong> Bothrimonus(= Diplocotyle) (Pseudophyllidea: Cestoda): ecology, life cycle,and evolution; a review and synthesis. Journal <strong>of</strong> the FisheriesResearch Board <strong>of</strong> Canada, 29, 1381–1395.Schiller, E.L. (1959) Experimental studies on m<strong>or</strong>phological variationin the cestode genus Hymenolepis. I. M<strong>or</strong>phology and development<strong>of</strong> the cysticercoid <strong>of</strong> H. nana in Tribolium confusum.Experimental Parasitology, 8, 91–118.Scholz, T. (1991) Early development <strong>of</strong> Khawia sinesis Hsü, 1935(Cestoda: Caryophyllidea), a carp parasite. Folia Parasitologica,38, 133–142.Scholz, T. (1993) On the development <strong>of</strong> Khawia baltica Szidat,1942 (Cestoda: Lytocestidae), a parasite <strong>of</strong> tench, Tinca tinca(L.). Folia Parasitologica, 40, 99–103.Scholz, T. (1997) Life-cycle <strong>of</strong> Bothriocephalus claviceps, a specificparasite <strong>of</strong> eels. Journal <strong>of</strong> Helminthology, 71, 241–248.Scholz, T. (1999) Life cycles <strong>of</strong> species <strong>of</strong> species <strong>of</strong> ProteocephalusWeinland 1858 (Cestoda: Proteocephalidae), parasites<strong>of</strong> fishes in the Palearctic Region: a review. Journal <strong>of</strong>Helminthology, 73, 1–20.Scott, J.S. (1965) <strong>The</strong> development and m<strong>or</strong>phology <strong>of</strong> Polycercuslumbrici (Cestoda: Cyclophyllidea). Parasitology, 55, 127–143.Shapkin, V.A. & Gulyaev, V.D. (1973) [On the biology <strong>of</strong> <strong>cestodes</strong><strong>of</strong> the genus Laterip<strong>or</strong>us Fuhrmann]. Parazitologiya, 7,509–512. (In Russian).Siebold, C.T. von (1850) Über den Generationswechsel der Cestodennebst einer Revision der Gattung Tetrarhynchus. Zeitschriftfür Wissenschaftliche Zoologie, 2, 198–253.Skrjabin, K.I. & Mathevossian, E.M. (1942) Stages in the postembryonicdevelopment <strong>of</strong> <strong>cestodes</strong> <strong>of</strong> the family Hymenolepididaeand an attempt to establish m<strong>or</strong>phological types <strong>of</strong> their larvicysts.Comptes Rendus de l’Académie des Sciences de l’URSS,35, 83–85.Skrjabin, K.I. & Mathevossian, E.M. (1945) [Hymenolepidid <strong>cestodes</strong><strong>of</strong> domestic and game birds]. Moskva, 488 pp. (In Russian).Šlais, J. (1973) Functional m<strong>or</strong>phology <strong>of</strong> cestode larvae. Advancesin Parasitology, 11, 395–480.Spasskii, A.A. (1951) Anoplocephalata. Osnovy TsestodologiiMoskva: Akademiya Nauk SSSR, 1, 735 pp. [In Russian, Englishtranslation, Israel Program f<strong>or</strong> Scientific Translations, Jerusalem,1961, 783 pp.]Spasskii, A.A. & Spasskaya, L.P. (1973) [Gryp<strong>or</strong>hynchinae n. subf.in Cestoda, Cyclophyllidea]. Izvestia Akademii Nauk MoldavskoiSSR. Seriya Biologicheskikh i Khimicheskikh Nauk, 5, 56-58. (InRussian).Stein F. (1852) Beiträge zur Entwickelungsgeschichte der Eingeweidewürmer.Zeitschrift für Wissenschaftlichen Zoologie, 4, 196–214.


33Stunkard, H.W. (1937) <strong>The</strong> life cycle <strong>of</strong> anoplocephaline <strong>cestodes</strong>.Journal <strong>of</strong> Parasitology, 23, 569.Stunkard, H.W. (1961) Cycloskrjabinia tab<strong>or</strong>ensis (Loewen, 1934),a cestode from the red bat, Lasiurus b<strong>or</strong>ealis (Müller, 1776), anda review <strong>of</strong> the Family Anoplocephalidae. Journal <strong>of</strong> Parasitology,41, 847–855.Szelenbaum, D. (1972) Studies on the life cycle <strong>of</strong> Retinometrafulicatrae Czaplinski et Czaplinski, 1972 (Cestoda, Hymenolepididae).Acta Parasitologica Polonica, 20, 367–374.Thomas, L.J. (1930) Notes on the life hist<strong>or</strong>y <strong>of</strong> Haplobothriumglobulif<strong>or</strong>me Cooper, a tapew<strong>or</strong>m <strong>of</strong> Amia calva L. Journal <strong>of</strong>Parasitology, 16, 140–144.Tomilovskaya, N.S. (1975) [On the postembryonic development<strong>of</strong> Trichocephaloides megalocephala (Krabbe, 1869) (Cestoda:Dilepididae).] Paraziticheskie Organizmy Severo-Vostoka Azii,Vladivostok, pp. 233-240. (In Russian).Ubelaker, J.E. (1983) Meta<strong>cestodes</strong>: m<strong>or</strong>phology and development.In: Arme, C. & Pappas, P.W. (Eds) Biology <strong>of</strong> the Eucestoda.London: Academic Press, pp. 139–176.Venard, C.E. (1938) M<strong>or</strong>phology, bionomics, and taxonomy <strong>of</strong> thecestode Dipylidium caninum. Annals <strong>of</strong> the New Y<strong>or</strong>k Academy<strong>of</strong> Science, 37, 273–328.Villot, F.C.A. (1877) Migrations et métam<strong>or</strong>phoses des ténias desmusaraignes. Annales des Sciences Naturelles, Zoologie, 6èmesérie, 8, 1–19.Villot, F.C.A. (1882) Classification des cystiques des ténias fondéesur les divers modes de f<strong>or</strong>mation de la vésicule caudale.Montpellier, 9 pp. (N.V.).Villot, F.C.A. (1883) Mémoire sur les cystiques des ténias. Annalesdes Sciences Naturelles et de Zoologie, 15, 1–61.Voge, M. (1956) Studies on the life hist<strong>or</strong>y <strong>of</strong> Hymenolepis citelli(McLeod, 1933) (Cestoda: Cyclophyllidea). Journal <strong>of</strong> Parasitology,43, 485–500.Voge, M. (1960a) Studies in cysticercoid histology. IV. Observationson histogenesis in the cysticercoid <strong>of</strong> Hymenolepis diminuta(Cestoda: Cyclophyllidea). Journal <strong>of</strong> Parasitology, 46, 717–725.Voge, M. (1960b) Studiees (sic) in cysticercoid histology. III.Observations on the fully developed cysticercoid <strong>of</strong> Raillietinacesticillus (Cestoda: Cyclophyllidea). Proceedings <strong>of</strong> theHelminthological Society <strong>of</strong> Washington, 27, 271–274.Voge, M. (1961) Studies on cysticercoid histology. VI. Observationson the fully developed cysticercoid <strong>of</strong> Choanotaeniainfundibulum (Cestoda: Cyclophyllidea). Proceedings <strong>of</strong> theHelminthological Society <strong>of</strong> Washington, 28, 35–37.Voge, M. (1967) <strong>The</strong> post-embryonic developmental stages <strong>of</strong><strong>cestodes</strong>. Advances in Parasitology, 11, 707–730.Voge, M. & Heyneman, D. (1957) Development <strong>of</strong> Hymenolepisnana and Hymenolepis diminuta (Cestoda: Hymenolepididae) inthe intermediate host Tribolium confusum. University <strong>of</strong> Calif<strong>or</strong>niaPublications in Zoology, 59, 549–580.Wardle, R.A. & McLeod, J.A. (1952) <strong>The</strong> zoology <strong>of</strong> tapew<strong>or</strong>ms.New Y<strong>or</strong>k: Hafner Publishing Company, 780 pp.Wetzel, R. (1932) Zurkenntnis der weniggliedrigen HühnerbandwurmesDavainea proglottina. Archiv für Wissenschaftliche undPraktische Teilheilkunde, 65, 595–625.Wetzel, R. (1934) Untersuchungen über den Entwicklungskreis desHüherbandwurmes Raillietina cesticillus (Molin, 1858). Archivfür Wissenschaftliche und Praktische Tierheilkunde, 68, 221–232.Widmer, E.A. & Olsen, O.W. (1967) <strong>The</strong> life hist<strong>or</strong>y <strong>of</strong> Ooch<strong>or</strong>isticaosher<strong>of</strong>fi Megitt, 1934 (Cyclophyllidea: Anoplocephalidae).Journal <strong>of</strong> Parasitology, 53, 343–349.Wisniewski, R.J. (1971) Studies on the development <strong>of</strong> Nematoparataeniasouthwelli Fuhrmann, 1934 and Gastrotaeniaparacygni Czaplinski & Ryzikov, 1966 (Cestoda: Hymenolepididae)in the intermediate hosts. Acta Parasitologica Polonica,19, 49–61.Zeder, J.G.H. (1800) Erster Nachtrag zur Naturgeschichte derEingewiedewürmer, mit Zufassen und Anmerkungen herausgegeben.Leipzig, 320 pp. + xx.Zeder, J.G.H. (1803) Anleitung zur Naturgeschichte der Eingeweidewürmer.Bamberg, 432 pp. + xvi.Note added in pro<strong>of</strong>Since submission <strong>of</strong> this paper, a significant contributionto the identification <strong>of</strong> <strong>larval</strong> gryp<strong>or</strong>hynchids infish from Mexico has been published by T. Scholz &G. Salgado-Maldonado (2001). Meta<strong>cestodes</strong> <strong>of</strong> thefamily Dilepididae (Cestoda: Cyclophyllidea) parasitisingfish in Mexico. Systematic Parasitology, 49,23–40.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!