06.12.2012 Views

Vehicle Vibration and Ride - Department of Mechanical Engineering ...

Vehicle Vibration and Ride - Department of Mechanical Engineering ...

Vehicle Vibration and Ride - Department of Mechanical Engineering ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Vehicle</strong> <strong>Vibration</strong> <strong>and</strong> <strong>Ride</strong> - 1<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

R.G. Longoria<br />

Spring 2012<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin


ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

Overview<br />

• 1 DOF ¼-car ride model<br />

• Terrain descriptions for vibration<br />

• R<strong>and</strong>om excitation <strong>of</strong> ¼-car model<br />

• 2DOF ¼-car ride model<br />

• Appendix A (base-excited models)<br />

• Appendix B (human response to vibration)<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin


Sources <strong>of</strong> <strong>Vibration</strong> <strong>and</strong> Noise<br />

Interaction <strong>of</strong> a ground vehicle with,<br />

– road roughness<br />

– aerodynamic forces<br />

– engine <strong>and</strong> driveline dynamics<br />

– tire/wheel assembly imbalance dynamics<br />

can induce vehicle body vibration <strong>and</strong> noise.<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin


ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

<strong>Ride</strong> <strong>and</strong> Noise<br />

• <strong>Ride</strong> quality refers to<br />

– the sensation or feel <strong>of</strong> the passenger<br />

– tactile <strong>and</strong> visual vibrations in frequency range from 0 to 25<br />

Hz (low)<br />

• Noise refers to<br />

– aural vibrations<br />

– frequency range 25 to 20,000 Hz (high)<br />

• <strong>Ride</strong> <strong>and</strong> noise are perceived differently by humans, so<br />

there is a need to adopt methods that help quantify <strong>and</strong><br />

control.<br />

• See Appendix B for more on human response (ref.<br />

Wong, Ch. 7).<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin


A ¼ car model can help build insight<br />

Isolation <strong>of</strong> the body from the forces generated by the ground unevenness - tire<br />

provides some help in this respect (ride control)<br />

Control <strong>of</strong> tire normal forces on the ground - by following the ground surface, the tires<br />

will have traction <strong>and</strong> lateral control (road holding control)<br />

Karnopp <strong>and</strong> Heess (1991)<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

Wong (2001)<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin


Key analysis can begin with even simpler system<br />

models illustrating isolation function<br />

You can show that:<br />

The frequency response tells us how the<br />

amplitude or phase <strong>of</strong> the response will<br />

depend on the frequency <strong>of</strong> the forcing<br />

function, y(t) (which we can relate to the<br />

terrain pr<strong>of</strong>ile, y(x), <strong>and</strong> the forward<br />

velocity, V).<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

2 2<br />

Z ks + ( ωb)<br />

Zɺ<br />

= =<br />

2 2 2<br />

Y ( k − mω ) + ( bω) Yɺ<br />

Zɺ<br />

Yɺ<br />

Underst<strong>and</strong>ing <strong>of</strong> transfer<br />

functions <strong>and</strong> frequency<br />

response is essential.<br />

Good isolation<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin


The ¼-car model can provide insight into several<br />

key measures <strong>of</strong> vehicle ride<br />

These measures are discussed in Wong (2001) <strong>and</strong> summarized in notes provided<br />

on <strong>Vehicle</strong> <strong>Ride</strong>.<br />

Transmissibility Ratio<br />

mus<br />

mass ratio =<br />

m<br />

TR ( 2 ⋅π ⋅f , 0.05)<br />

2<br />

TR ( 2 ⋅π ⋅f , 0.10)<br />

2<br />

TR ( 2 ⋅π ⋅f , 0.20)<br />

2<br />

TR ( 2 ⋅π ⋅f , 0.75)<br />

2<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

s<br />

0.01<br />

1 . 10 3<br />

1 . 10 4<br />

10<br />

1<br />

0.1<br />

A lighter unsprung mass<br />

provides better vibration<br />

isolation in the midfrequency<br />

range.<br />

Varying mass ratio<br />

0.1 1 10 100<br />

f<br />

Frequency (Hz)<br />

At higher frequencies,<br />

you may ‘feel’ more<br />

with lighter unsprung<br />

mass.<br />

The 1/4 car model is also helpful in introducing the role that controllable or<br />

active elements can play in vehicle suspensions.<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin


Overview <strong>of</strong> <strong>Vibration</strong> Models<br />

• 1 DOF: “Base Excitation” – to guide initial<br />

model formulation<br />

• Road surface pr<strong>of</strong>iles – to underst<strong>and</strong> how you<br />

specify road-induced excitation<br />

• 2 DOF: ¼-car Model – the ‘st<strong>and</strong>ard’ vertical<br />

vibration model<br />

• 2 DOF: Pitch <strong>and</strong> Bounce Model<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin


1 DOF<br />

2 DOF<br />

<strong>Vehicle</strong> <strong>Vibration</strong> Models<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

2 DOF for pitch <strong>and</strong> bounce<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin<br />

7 DOF<br />

15 DOF


1 DOF “Base Excitation”<br />

dy dy dx dy<br />

yɺ = = ⋅ = ⋅V<br />

dt dx dt dx<br />

y( x ) = given road pr<strong>of</strong>ile<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

Vertical<br />

<strong>Vibration</strong>:<br />

pɺ = mz ɺɺ = F − mg<br />

z<br />

F = F + F = k x + b( yɺ − zɺ<br />

)<br />

s<br />

s c s s<br />

xɺ = ∆ v = yɺ − zɺ<br />

Note: this variable represents the compression/extension<br />

<strong>of</strong> the spring element (not its total length).<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin


1 DOF “Base Excitation”<br />

Z k + ( ωb)<br />

=<br />

Y ( k − mω ) + ( bω)<br />

2<br />

s<br />

2<br />

2 2 2<br />

3<br />

mbω<br />

tanψ<br />

=<br />

( k − mω ) + ( bω)<br />

2 2 2<br />

Z<br />

z( t) = ⋅Yo ⋅sin( ωt −ψ<br />

)<br />

Y<br />

y( t) = Y sin( ωt)<br />

o<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

Z<br />

Y<br />

Frequency Response for Base Excitation<br />

b<br />

ζ =<br />

b<br />

c<br />

These curves show the effect <strong>of</strong> damping, although all curves go<br />

through,<br />

ω ω =<br />

n<br />

2<br />

See Appendix A.<br />

Ref.: W.T. Thomson, “Theory <strong>of</strong> <strong>Vibration</strong> with<br />

Applications”, Prentice-Hall, 1993.<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin


Using the 1 DOF Model<br />

• To use the 1 DOF model, the input forcing<br />

function needs to be specified. This is simply a<br />

function <strong>of</strong> time.<br />

• Compute amplitude <strong>of</strong> output given input.<br />

• For a ground vehicle, we’d like to tie the input<br />

to the type <strong>of</strong> surface being traversed.<br />

• To do this, you need to relate the input to a<br />

description <strong>of</strong> the ground surface, <strong>and</strong> you also<br />

need to consider the ground speed.<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin


Description <strong>of</strong> Road Surface Pr<strong>of</strong>iles<br />

Consider a vehicle traveling with constant speed, V.<br />

To travel between two points X apart takes time,<br />

τ =<br />

X V<br />

The wavenumber <strong>of</strong> the road, γ, is a measure <strong>of</strong> the<br />

rate <strong>of</strong> change with respect to distance or length.<br />

In time, we relate period, T, to frequency, ω. In<br />

space, we relate wavenumber, γ, to wavelength, λ.<br />

T<br />

= 2π<br />

ω<br />

[ ω ] = rad<br />

sec<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

λ = 2π<br />

γ<br />

[ γ ] = rad<br />

m<br />

Units: Units:<br />

‘cycles’/distance<br />

Road pr<strong>of</strong>ile<br />

A road can then be described by a<br />

spectrum that is a function <strong>of</strong><br />

wavenumber.<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin


Forcing Frequency from Road Pr<strong>of</strong>ile<br />

Now we can see that a spatial cycle <strong>of</strong> wavelength, λ, is traversed<br />

by a vehicle during a period, T, given by<br />

T = λ<br />

V<br />

But this period, T, is related to frequency, ω, so we can write,<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

2π 2π ⋅V ⎡2π ⎤<br />

ω = = = V γV<br />

T λ ⎢<br />

=<br />

⎣ λ ⎥<br />

⎦<br />

So you can relate frequency, ω, to a forward vehicle velocity<br />

using the wavenumber-based description <strong>of</strong> a road pr<strong>of</strong>ile.<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin


Road Elevation Pr<strong>of</strong>ile Descriptions<br />

Surveys <strong>of</strong> roads use power spectral densities<br />

plotted as functions <strong>of</strong> wavenumber.<br />

Road pr<strong>of</strong>iles show a drop with spatial<br />

frequency, as shown here.<br />

How do you interpret this graph?<br />

What kind <strong>of</strong> change do you ‘expect’ to see in<br />

front <strong>of</strong> you over the next inch/cm, foot/m, or<br />

mile?<br />

Could you look at a graph like this <strong>and</strong> say:<br />

“For my vehicle, this environment will be no<br />

problem.” ?<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

γ = 2π<br />

λ<br />

Gillespie (1992)<br />

What if this was flat?<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin


Wong (2001)<br />

Road Descriptions as PSD<br />

For high γ<br />

you can get<br />

high<br />

variations.<br />

Note, Wong uses Ω here instead <strong>of</strong> γ.<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

You can develop basic functions to<br />

quantify these spectra.<br />

For example, S ( γ ) C γ −<br />

=<br />

g sp<br />

For vehicle vibration, you can<br />

convert this to units <strong>of</strong> frequency<br />

by the relation,<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin<br />

N<br />

1<br />

Sg ( f ) = Sg<br />

( γ )<br />

V


Data for Road PSD Functions<br />

S ( γ ) C γ −<br />

=<br />

g sp<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

N<br />

From Wong (Chapter 7)<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin


What can you do with all <strong>of</strong> this?<br />

For a linear system (the vehicle vibration model), you can compute<br />

the response (vibrations) by using the road pr<strong>of</strong>ile spectrum (with<br />

frequency transformation).<br />

The vibration<br />

S ( f ) = H ( f ) S ( f )<br />

v g<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

2<br />

Your linear<br />

vibration<br />

model<br />

The input<br />

Then, you can use measures,<br />

such as:<br />

spectrum f2<br />

rms vibration S( f ) df<br />

= ∫<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin<br />

f<br />

1


1 DOF System Base-Excited<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

by R<strong>and</strong>om Road Input (1)<br />

Consider the base-excited system as a<br />

model <strong>of</strong> a vehicle being driven over<br />

a road that has a road pr<strong>of</strong>ile given<br />

by, 2 2<br />

mm 100 mm<br />

Sg ( γ ) = 100 =<br />

cycles/m 2π rad/m<br />

100<br />

2⋅π = 15.915<br />

10 6 ⋅Sg<br />

( γ)<br />

20<br />

10<br />

constant<br />

0<br />

0 1 2<br />

γ<br />

wavenumber<br />

γ =<br />

2π<br />

λ<br />

Z<br />

Y<br />

This PSD is re-written in terms <strong>of</strong><br />

angular frequency using,<br />

1 ω<br />

Sg ( ω) = Sg<br />

( γ = )<br />

V V<br />

In this case,<br />

Sg<br />

2<br />

100 1 mm<br />

( ω)<br />

=<br />

2π V rad/s<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin


H ( ω)<br />

n<br />

1 DOF System Base-Excited<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

by R<strong>and</strong>om Road Input (2)<br />

Use the PSD as input to the transfer<br />

function previously derived <strong>and</strong> now<br />

expressed in the form,<br />

Let,<br />

2<br />

Z 1 + (2 ςr)<br />

= =<br />

Y (1 − r ) + (2 ςr)<br />

2 2 2<br />

ω c k<br />

r = ; ς = ; ωn<br />

=<br />

ω 2 km m<br />

ω = 2 π (1.5) rad/sec<br />

n<br />

ζ = 0.1<br />

H ( ω)<br />

Hmag2( r)<br />

This is the squared result for this case.<br />

2<br />

5<br />

0<br />

Z<br />

Y<br />

0 2 4<br />

r<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin


Now apply the relation:<br />

10 6 ⋅Sg<br />

( γ)<br />

20<br />

10<br />

0<br />

0 1 2<br />

1 DOF System Base-Excited<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

by R<strong>and</strong>om Road Input (3)<br />

S ( ω) = H ( ω) S ( ω)<br />

Hmag2( r)<br />

z g<br />

5<br />

0<br />

0 2 4<br />

γ 2<br />

r<br />

S ( ω )<br />

H ( ω)<br />

S ( ω)<br />

g<br />

Assume:<br />

V = 30 km/hr<br />

This is the<br />

power spectral<br />

density (PSD)<br />

<strong>of</strong> the mass<br />

velocity.<br />

2<br />

10 6 ⋅Sv<br />

( ω )<br />

100<br />

10<br />

1<br />

10 6 ⋅Sv<br />

( ω )<br />

z<br />

100<br />

10<br />

1<br />

0.1<br />

0 10 20<br />

0.1<br />

0 10 20<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin<br />

ω<br />

ω


1 DOF System Base-Excited<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria ω<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

by R<strong>and</strong>om Road Input (4)<br />

From the response PSD, you can compute the st<strong>and</strong>ard deviation <strong>and</strong> root-meansquare<br />

values.<br />

10 6 ⋅Sv<br />

( ω )<br />

Sz ( ω)<br />

100<br />

10<br />

1<br />

0.1<br />

0 10 20<br />

10 6 ⋅Sv<br />

( ω )<br />

100<br />

10<br />

1<br />

0.1<br />

ω<br />

0 10 20<br />

∞<br />

2<br />

z = ∫ z<br />

0<br />

σ S ( ω) dω<br />

Area under PSD σ v2<br />

RMS<br />

Use “practical” end<br />

points for integration.<br />

⌠<br />

:= ⎮<br />

⌡<br />

20⋅Hza 0⋅Hza Sv( ω)<br />

dω<br />

σv2 150. mm 2<br />

=<br />

σv2 = 12.25 mm<br />

Units: rad/sec<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin


1 DOF System Base-Excited<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

by R<strong>and</strong>om Road Input (5)<br />

As a continuation, consider now a<br />

road pr<strong>of</strong>ile described by the<br />

relation, N<br />

S ( γ ) C γ −<br />

=<br />

g sp<br />

For the same example, you will<br />

find the input takes the form<br />

shown to the right. In this case,<br />

for V =<br />

30 km/hr<br />

σv2 21.241mm 2<br />

=<br />

σv2 = 4.609mm<br />

10 6 ⋅Sy<br />

( ω )<br />

10 6 ⋅Sv<br />

( ω )<br />

1 . 10 3<br />

10<br />

1<br />

0.1<br />

0 5 10<br />

100<br />

10<br />

1<br />

0.1<br />

0.01<br />

ω<br />

0 10 20<br />

ω<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin


Example: Problem 7.5 (Wong)<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin


Example: Problem 7.5 (Wong)<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin


ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

Summary<br />

• The base-excited model should be used to underst<strong>and</strong><br />

the basic vibration problem in a ¼-car vehicle model.<br />

• The transmissibility ratio illustrates the frequency<br />

response <strong>of</strong> the base-excited mass-spring-damper<br />

system (see also Appendix B).<br />

• Road pr<strong>of</strong>iles can be transformed into input forcing<br />

power spectral densities which ‘drive’ the system.<br />

• Basic functions provide a way to estimate the response<br />

spectrum <strong>and</strong> critical values such as the rms velocity<br />

or acceleration.<br />

• <strong>Vehicle</strong> ride models can become more complex as you<br />

add the effect <strong>of</strong> additional masses, etc.<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin


ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

¼ Car Models for <strong>Ride</strong><br />

• The ¼ car model is used for modeling the vertical vibration <strong>of</strong> a<br />

vehicle, taking 1/4 th <strong>of</strong> the sprung mass <strong>and</strong> incorporating<br />

associated unsprung mass (effective tire, axle, etc.).<br />

• The mathematical (vibration) model is derived by applying<br />

Newton’s law to each mass, identifying the forces induced on<br />

each mass (see next slide).<br />

• This leads to a 2 degree <strong>of</strong> freedom (DOF) model.<br />

• For linear analysis, it is convenient to follow the traditional<br />

model, as outlined in Wong <strong>and</strong> summarized in the following<br />

slides. This analysis utilizes the 2 nd order form <strong>of</strong> the equations.<br />

• For cases where the suspension elements become nonlinear, or<br />

to study the effect <strong>of</strong> semi-active or active suspension elements,<br />

it is convenient to formulate the equations as a set <strong>of</strong> 1 st order<br />

‘state’ equations. These can be used directly in simulation <strong>and</strong><br />

or control system analysis.<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin


¼ Car <strong>Vehicle</strong> Model<br />

2 DOF Model for Sprung <strong>and</strong> Unsprung Mass<br />

From Wong<br />

For sprung mass:<br />

m ɺɺ z + c ( zɺ − zɺ ) + k ( z − z ) = Vertical Forces on Sprung Mass<br />

s 1 sh 1 2 s 1 2<br />

For unsprung mass:<br />

m ɺɺ z + c ( zɺ − zɺ ) + k ( z − z ) + c zɺ + k z = F( t) = c zɺ + k z<br />

us 2 sh 2 1 s 2 1 t 2 tr 2 1 0 tr 0<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

Excitations from aerodynamics<br />

<strong>and</strong> engine <strong>and</strong> driveline are<br />

applied to sprung mass.<br />

Tire/wheel imbalance forces are<br />

applied to unsprung mass.<br />

How do you find these terms?<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin


Wong, Fig. 7.5<br />

− m ω + k −k<br />

¼ Car <strong>Vehicle</strong> Model<br />

Finding the Natural Frequencies<br />

s<br />

2<br />

n s s<br />

−ks 2<br />

− msωn + ks + ktr<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

To find the natural frequencies, take the undamped,<br />

unforced system,<br />

m ɺɺ z + k ( z − z ) = 0<br />

s 1 s 1 2<br />

m ɺɺ z + k ( z − z ) + k z = 0<br />

us 2 s 2 1 tr 2<br />

Assume the response <strong>of</strong> each variable will take form,<br />

=<br />

0<br />

z = Z cosω<br />

t<br />

1 1<br />

z = Z cosω<br />

t<br />

2 2<br />

Plug into the equations above leads to two equations valid for any Z 1 <strong>and</strong> Z 2 so long as,<br />

n<br />

n<br />

Characteristic equation<br />

+ 2 natural frequencies.<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin


ω<br />

f<br />

ω<br />

f<br />

n1<br />

n1<br />

n2<br />

n2<br />

¼ Car <strong>Vehicle</strong> Model<br />

Calculating the Natural Frequencies<br />

4<br />

ω ( m m ) + ω −m k − m k − m k + k k = 0<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

( )<br />

n s us n s s s tr us s s tr<br />

= 6.563 rad/sec<br />

= 1.045 Hz<br />

= 66.19 rad/sec<br />

=<br />

10.54 Hz<br />

Two solutions:<br />

f<br />

n1,2<br />

ω<br />

ω<br />

2<br />

n1<br />

2<br />

n2<br />

=<br />

=<br />

ωn1,2<br />

=<br />

2π<br />

B − B − 4AC<br />

1<br />

2<br />

1 1 1<br />

2A<br />

B + B − 4AC<br />

1<br />

2<br />

1 1 1<br />

1<br />

1<br />

1<br />

1<br />

2A<br />

1<br />

A = m m<br />

s us<br />

B = m k + m k + m k<br />

C = k k<br />

s s s tr us s<br />

s tr<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin


f<br />

¼ Car <strong>Vehicle</strong> Model<br />

Approximating the Natural Frequencies<br />

1 1 ksktr 1 RR<br />

− = =<br />

2π m k + k 2π<br />

m<br />

n s<br />

f<br />

n−us =<br />

1<br />

2π<br />

s s tr s<br />

k + k<br />

m<br />

s tr<br />

us<br />

See also Gillespie (1992), p. 148<br />

RR = ride rate<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

For a typical passenger car, the sprung mass can<br />

be an order <strong>of</strong> magnitude larger than unsprung<br />

mass, while the suspension stiffness is an order <strong>of</strong><br />

magnitude lower than the equivalent tire stiffness.<br />

Case 1: Neglect m us, find equivalent stiffness (RR)<br />

Case 2: Assume vehicle acts like ‘big inertia’ <strong>and</strong><br />

mus bounces between ground <strong>and</strong> inertia<br />

f<br />

f<br />

n−s n−us = 1.045 Hz<br />

= 10.53 Hz<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin


Using ¼ car approximations<br />

• Unsprung mass is <strong>of</strong>ten an order <strong>of</strong> magnitude higher than<br />

sprung mass (for passenger vehicles).<br />

• Damping ratio in shock absorbers is usually in the range 0.2 to<br />

0.4.<br />

• Damping in tire is usually very small.<br />

• You can approximate damped natural frequency with natural<br />

frequency in many cases.<br />

ς =<br />

2<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

c<br />

km<br />

2<br />

ω = ω 1−<br />

ς<br />

d n<br />

NOTE: With a computer, easy enough to solve these problems, but sometimes it is<br />

good to get ‘feel’ for magnitudes.<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin


Static Deflection vs. Natural Frequency<br />

For ‘st<strong>and</strong>ard’ passenger vehicles, you can approximate sprung natural frequency<br />

from static deflection.<br />

10<br />

2<br />

fn− s =<br />

∆<br />

From Gillespie (1992)<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

f<br />

1 1 k k 1 k<br />

− = ≈<br />

2π m k + k 2π<br />

m<br />

n s<br />

s tr s<br />

s s tr s<br />

1 ks<br />

10<br />

fn− s g<br />

2π<br />

W<br />

≈ ≈ ∆<br />

∆ = static deflection<br />

∆ =<br />

mg<br />

k<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin<br />

ktr >><br />

ks


Insight into Wheel Hop Resonance<br />

Resonance <strong>of</strong> the unsprung mass<br />

f<br />

n−us ≐<br />

1<br />

2π<br />

k + k<br />

s tr<br />

m<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

us<br />

Typical wheel hop resonance<br />

W wheel<br />

m us<br />

:=<br />

:= 100⋅lbf Kt 1000 lbf<br />

:= ⋅ Ks 100<br />

in<br />

lbf<br />

:= ⋅<br />

in<br />

W wheel<br />

g<br />

f n_us<br />

f n_us<br />

:=<br />

1<br />

2⋅π ⋅<br />

K t<br />

= 10.372Hz<br />

+<br />

m us<br />

K s<br />

ς ∝<br />

Gillespie (1992)<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin<br />

1<br />

m


Example: Problem 7.1 (Wong)<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

NOTE: In 4 th ed., these equation<br />

numbers are 7.20 <strong>and</strong> 7.21,<br />

respectively.<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin


Example: Problem 7.1 (cont.)<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

NOTE: In 4 th ed., these equation numbers are 7.22 <strong>and</strong> 7.24,<br />

respectively.<br />

NOTE: In 4 th ed., these<br />

equation numbers are 7.23 <strong>and</strong><br />

7.25, respectively.<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin


Insight from Transfer Functions<br />

Linear transfer functions allow for analysis in the frequency<br />

domain, <strong>and</strong> the relationships between different variables<br />

provide insight into different suspension characteristics:<br />

• <strong>Vibration</strong> isolation – response <strong>of</strong> sprung mass to ground input<br />

• Suspension travel – deflection <strong>of</strong> suspension spring or relative<br />

displacement between sprung <strong>and</strong> unsprung mass with respect<br />

to road surface pr<strong>of</strong>ile<br />

• Road-holding – critically depends on the normal force acting<br />

between the tire <strong>and</strong> the road surface (dynamic tire deflection)<br />

*Reference Wong, Ch. 7, pp. 442-453<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin


ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

Transfer Functions<br />

for ¼ Car Model - <strong>Vibration</strong> Isolation 1<br />

Transmissibility Ratio<br />

mus<br />

mass ratio =<br />

m<br />

s<br />

TR ( 2 ⋅π ⋅f , 0.05)<br />

2<br />

TR ( 2 ⋅π ⋅f , 0.10)<br />

2<br />

TR ( 2 ⋅π ⋅f , 0.20)<br />

2<br />

TR ( 2 ⋅π ⋅f , 0.75)<br />

2<br />

0.01<br />

1 . 10 3<br />

1 . 10 4<br />

10<br />

1<br />

0.1<br />

A lighter unsprung mass<br />

provides better vibration<br />

isolation in the midfrequency<br />

range.<br />

Varying mass ratio<br />

0.1 1 10 100<br />

f<br />

Frequency (Hz)<br />

You may ‘feel’ more<br />

higher frequency<br />

vibration with a lighter<br />

unsprung mass.<br />

This is a measure <strong>of</strong> “vibration isolation”, or the response <strong>of</strong> the sprung mass to<br />

the excitation from the ground. Here we look at the effect <strong>of</strong> the ratio <strong>of</strong><br />

unsprung to sprung mass (0.05, 0.1, 0.2, 0.75).<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin


ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

Transfer Functions<br />

for ¼ Car Model - <strong>Vibration</strong> Isolation 2<br />

ktr<br />

stiffness ratio =<br />

k<br />

As expected, a stiffer tire<br />

(relative to suspension)<br />

transmits more force to<br />

sprung mass.<br />

A higher stiffness ratio corresponds to a<br />

s<strong>of</strong>ter suspension spring stiffness.<br />

S<strong>of</strong>ter suspension provides better<br />

overall isolation, except in mid region.<br />

s<br />

In this region, you get<br />

better isolation with a<br />

stiffer tire.<br />

Varying stiffness ratio<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin


ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

Transfer Functions<br />

for ¼ Car Model - <strong>Vibration</strong> Isolation 3<br />

Varying damping<br />

Higher damping is better<br />

in the vicinity <strong>of</strong> the<br />

natural frequency <strong>of</strong> the<br />

sprung mass.<br />

In this region, you get<br />

better isolation with<br />

lower damping ratio.<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin


ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

Transfer Functions<br />

for ¼ Car Model - Suspension Travel<br />

( z − z )<br />

This is measured by deflection<br />

<strong>of</strong> the suspension spring or by<br />

relative displacement <strong>of</strong> the<br />

sprung <strong>and</strong> unsprung masses.<br />

Effect <strong>of</strong> tire to suspension<br />

stiffness is shown.<br />

2 1 max<br />

z<br />

0<br />

Varying stiffness ratio<br />

This helps identify “rattle space”.<br />

At frequencies below<br />

the natural frequency <strong>of</strong><br />

the sprung mass, a<br />

s<strong>of</strong>ter suspension leads<br />

to higher suspension<br />

travel.<br />

Stiff suspension<br />

S<strong>of</strong>t suspension<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin


ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

Transfer Functions<br />

for ¼ Car Model - Dynamic Tire Deflection<br />

( z − z )<br />

0 2 max<br />

z<br />

0<br />

Wong (2001)<br />

Not good!<br />

This is a measure <strong>of</strong> “road holding”, since the dynamic tire deflection ratio<br />

shown is a measure <strong>of</strong> the normal force on the ground contact.<br />

Light damping<br />

Bad shock<br />

absorber?<br />

Varying damping ratio<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin


ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

Transfer Functions<br />

for ¼ Car Model - Dynamic Tire Deflection<br />

See Problem 7.6<br />

( z − z )<br />

0 2 max<br />

z<br />

0<br />

Wong (2001)<br />

Better vibration isolation with s<strong>of</strong>ter suspension, but to get better roadholding<br />

at a frequency <strong>of</strong> excitation close to the unsprung mass natural<br />

frequency, a stiffer suspension spring should be used.<br />

Varying stiffness ratio<br />

Stiffer suspension<br />

leads to better<br />

road holding.<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin


Example: Problem 7.6 (Wong)<br />

k δ = (total weight)= m g + m g<br />

tr tr s us<br />

2π 2π ⋅V ⎡2π ⎤<br />

ω = = = V γV<br />

T λ ⎢<br />

=<br />

⎣ λ ⎥ V =<br />

f λ<br />

⎦<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

NOTE: In 4 th ed.,<br />

this is Fig. 7.17.<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin


Example: Off-road axle change<br />

A former student relayed this story:<br />

• He <strong>and</strong> friends did <strong>of</strong>f-road driving in jeeps.<br />

• A friend changed the st<strong>and</strong>ard CJ-7 axle to<br />

heavier Toyota L<strong>and</strong> Cruiser axles.<br />

• Why would he do that?<br />

• These performed well <strong>of</strong>f-road, but after a year,<br />

the chassis cracked.<br />

• Can you explain why this happened?<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin


Simulation <strong>of</strong> ¼ Car Model<br />

• We can envision at least two cases where we<br />

must absolutely utilize computer simulation for<br />

the basic ¼ car model:<br />

– To find time-domain response to irregular surface<br />

pr<strong>of</strong>iles<br />

– To find response given suspension <strong>and</strong>/or tire<br />

nonlinearities<br />

• To arrive at the appropriate model, you must:<br />

– Convert the 2 nd order equations into 1 st order form<br />

– Derive directly as 1 st order equations (bond graph?)<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin


1<br />

2<br />

3<br />

3 Ways to Use a ¼ Car Model<br />

Intuitive underst<strong>and</strong>ing based on<br />

approximations <strong>and</strong> knowledge <strong>of</strong><br />

natural frequencies <strong>and</strong> their<br />

relative magnitudes.<br />

Derive <strong>and</strong> develop transfer<br />

functions between variables <strong>of</strong><br />

interest.<br />

Develop differential equations for<br />

direct numerical integration.<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

Approach Result/Usage<br />

Underst<strong>and</strong>ing <strong>of</strong> the influence <strong>of</strong><br />

sprung <strong>and</strong> unsprung masses, etc., on<br />

suspension performance.<br />

Insight into vibration isolation,<br />

suspension travel, <strong>and</strong> road holding<br />

capabilities.<br />

Time-domain simulations, allow<br />

nonlinear effects, active system<br />

integration, transient evaluation.<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin


ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

Summary<br />

• Basic 1 <strong>and</strong> 2 DOF models provide good tools for studying the<br />

dependence <strong>of</strong> ride performance on component parameter<br />

values.<br />

• <strong>Ride</strong> analysis focuses on vibrational response <strong>of</strong> a vehicle to<br />

road excitation, allowing study <strong>of</strong> the dependence on the<br />

distribution <strong>of</strong> mass, stiffness, <strong>and</strong> damping.<br />

• The transfer function models can also show how some<br />

objectives can be at odds with others (introducing the need for<br />

controls).<br />

• It can take time <strong>and</strong> experience to use basic models effectively,<br />

so nonlinear simulation ends up being a strong tool that can help<br />

overcome difficulties with building insight.<br />

• Later we will examine how active elements <strong>and</strong> feedback<br />

principles are used in controlled suspensions.<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin


ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

References<br />

1. W.T. Thomson, “Theory <strong>of</strong> <strong>Vibration</strong> with Applications”, Prentice-Hall, 1993.<br />

2. Gillespie, T.D., Fundamentals <strong>of</strong> <strong>Vehicle</strong> Dynamics, SAE, Warrendale, PA, 1992.<br />

3. Liljedahl, et al, “Tractors <strong>and</strong> their power units,” ASAE, St. Joseph, MI, 1996.<br />

4. Wong, J.Y., Theory <strong>of</strong> Ground <strong>Vehicle</strong>s, John Wiley <strong>and</strong> Sons, Inc., New York,<br />

2001.<br />

5. Karnopp, D. <strong>and</strong> G. Heess, “Electonically Controllable <strong>Vehicle</strong> Suspensions,”<br />

<strong>Vehicle</strong> System Dynamics, Vol. 20, No. 3-4, pp. 207-217, 1991.<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin


ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

Appendix A<br />

Base-excited model <strong>and</strong> analysis<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin


ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

Appendix A – 1 Ref. Thomson, 1993<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin


ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

Appendix A – 2 Ref. Thomson, 1993<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin


ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

Appendix A – 3<br />

b<br />

ζ =<br />

b<br />

c<br />

Ref. Thomson, 1993<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin


ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

Appendix B<br />

Human response to vibration<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin


Human Response <strong>and</strong> Perception<br />

• Subjective ride measurements<br />

• Shaker table tests (mostly sinusoidal,<br />

multidirectional)<br />

• <strong>Ride</strong> simulator tests - can induce<br />

multidirectional vehicle motion<br />

• <strong>Ride</strong> measurements in vehicles<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin


Vertical <strong>Vibration</strong><br />

Limits<br />

From <strong>Ride</strong> <strong>and</strong> <strong>Vibration</strong> Data<br />

Manual (SAE).<br />

“Janeway’s comfort criterion” -<br />

based on sinusoidal vibration<br />

(single frequency)<br />

1-6 Hz: “jerk” should not exceed 12.6<br />

m/s 3 .<br />

6-20 Hz: peak acceleration less than 0.33<br />

m/s 2<br />

20-60 Hz: peak velocity less than 2.7<br />

mm/s<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

Wong (2001)<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin


ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

St<strong>and</strong>ards: ISO 2631<br />

• For evaluation <strong>of</strong> vibrational environments in<br />

transport vehicles <strong>and</strong> in industry.<br />

• Three distinct limits are defined for whole-body<br />

vibration in 1 to 80 Hz frequency range.<br />

– Exposure limits (safety related)<br />

– Fatigue or decreased pr<strong>of</strong>iciency (efficiency)<br />

– Reduced comfort<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin


Vertical vibration<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

ISO 2631<br />

Transverse vibration<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin


ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

Octave B<strong>and</strong>s<br />

1 Octave b<strong>and</strong>s are geometrically related by the recursive relation, 2 k n+<br />

=<br />

Where the two frequencies, f n <strong>and</strong> f n+1 are successive b<strong>and</strong> limits (lower <strong>and</strong> upper),<br />

<strong>and</strong> the index k is a positive integer or a fraction according to a whole octave or<br />

fractional octave.<br />

For example, if k = 1, the ratio between successive b<strong>and</strong>s is 2. If k = 1/3, then the<br />

ratio between the upper <strong>and</strong> lower b<strong>and</strong> limits is 1.26.<br />

Associated with each b<strong>and</strong> is a center frequency, fc, which is given by the geometric<br />

mean,<br />

f = f f<br />

c n+ 1 n<br />

An octave b<strong>and</strong>width is,<br />

f f BW<br />

n+ 1 − n = (b<strong>and</strong>width)<br />

Contrast this with a decade. If you advance a decade, it is a 10-times increase.<br />

f<br />

f<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin<br />

n


Other Issues <strong>and</strong> Definitions<br />

• Below 1 Hz exposure leads to motion sickness,<br />

so different st<strong>and</strong>ards are set for 0.1 to 1 Hz.<br />

• Absorbed power is a common st<strong>and</strong>ard, found<br />

by product <strong>of</strong> vibration force <strong>and</strong> velocity<br />

transmitted to human body.<br />

• Absorbed power is used especially in<br />

specifying military vehicle vibration tolerance<br />

levels. For example, 6 W is sometimes referred<br />

to as the maximum amount a human can be<br />

exposed to (<strong>and</strong> still do their job).<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin


<strong>Vehicle</strong> <strong>Ride</strong> Transfer Functions<br />

From Bekker (1969)<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

<strong>Vehicle</strong> System Dynamics <strong>and</strong> Control<br />

h=Hinterseite=front, v = Vorderseite=rear<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> <strong>Engineering</strong><br />

The University <strong>of</strong> Texas at Austin

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!