23.11.2012 Views

04 Steering And Turning Vehicles - Department of Mechanical ...

04 Steering And Turning Vehicles - Department of Mechanical ...

04 Steering And Turning Vehicles - Department of Mechanical ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Steering</strong> and <strong>Turning</strong> <strong>Vehicles</strong><br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

Pr<strong>of</strong>. R.G. Longoria<br />

Spring 2012<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin


• <strong>Steering</strong> mechanisms<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

Overview<br />

• Differentially-steered vehicle – kinematic<br />

• Ackermann steered vehicle – kinematic<br />

• Simulation examples<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin


Classical steering mechanisms<br />

δ =<br />

H<br />

5 th wheel<br />

steering<br />

'hand wheel' angle<br />

‘turntable steering’<br />

•Likely developed by the Romans, and preceded only by a 2<br />

wheel cart.<br />

•Consumes space<br />

•Poor performance – unstable<br />

•Longitudinal disturbance forces have large moment arms<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

•Articulated-vehicle steering<br />

•Tractors, heavy industrial<br />

vehicles<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin


Common <strong>Steering</strong> Mechanisms<br />

Differential steer Synchro-drive Tricycle<br />

What is minimum<br />

# <strong>of</strong> actuators?<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

…and some systems also employ Ackermann-type.<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin


Kinematic model <strong>of</strong> single-axle turning vehicle<br />

Y<br />

Recall the simple 2D turning vehicle with kinematic state quantified by,<br />

y<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

x<br />

ψ<br />

X<br />

X<br />

[ ] †<br />

qI<br />

= X Y ψ<br />

The velocities in the local (body-fixed) reference frame<br />

are transformed into a global frame by the rotation<br />

matrix,<br />

⎡ cosψ sinψ 0⎤<br />

R(<br />

ψ ) =<br />

⎢<br />

−sinψ<br />

cosψ 0<br />

⎥<br />

⎢ ⎥<br />

⎢⎣ 0 0 1⎥⎦<br />

and the velocities are then,<br />

Inverting, we arrive at the velocities in the global reference frame,<br />

qɺ = R( ψ ) ⋅qɺ<br />

I<br />

qɺ = Ψ( ψ ) ⋅qɺ<br />

where,<br />

⎡cosψ −sinψ<br />

0⎤<br />

Ψ(<br />

ψ ) =<br />

⎢<br />

sinψ cosψ 0<br />

⎥<br />

⎢ ⎥<br />

⎢⎣ 0 0 1⎥⎦<br />

Let’s apply these relations to the case <strong>of</strong> a single-axis vehicle that has two wheels<br />

differentially driven with controlled speed.<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin<br />

I


Y<br />

Recall: position and velocity in inertial frame<br />

We defined the vehicle’s kinematic state in the inertial frame by,<br />

l2<br />

y<br />

B<br />

l1<br />

x<br />

ψ<br />

So, for our simple (single-axle) vehicle,<br />

the velocities in the inertial frame in<br />

terms <strong>of</strong> the wheel velocities are,<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

X<br />

X<br />

Velocities in the local (body-fixed)<br />

reference frame are transformed<br />

into the inertial frame by the<br />

rotation matrix,<br />

or, specifically, qɺ = R( ψ ) ⋅qɺ<br />

I<br />

q<br />

I<br />

⎡ X ⎤<br />

=<br />

⎢<br />

Y<br />

⎥<br />

⎢ ⎥<br />

⎢⎣ ψ ⎥⎦<br />

⎡ cosψ sinψ 0⎤<br />

R(<br />

ψ ) =<br />

⎢<br />

−sinψ<br />

cosψ 0<br />

⎥<br />

⎢ ⎥<br />

⎢⎣ 0 0 1⎥⎦<br />

Inverting, we arrive at the velocities in the global reference<br />

frame,<br />

⎡ Xɺ ⎤ ⎡U ⎤ ⎡cosψ ⎢ ⎥<br />

qɺ I = Yɺ ⎢<br />

V<br />

⎥<br />

( ψ )<br />

⎢<br />

⎢ ⎥ =<br />

⎢ ⎥<br />

= Ψ ⋅ qɺ<br />

=<br />

⎢<br />

sinψ ⎢ψ ⎥<br />

⎣<br />

ɺ<br />

⎦<br />

⎢⎣ Ω⎥⎦<br />

⎢⎣ 0<br />

−sinψ<br />

cosψ 0<br />

0⎤<br />

⎡ vx<br />

⎤<br />

0<br />

⎥ ⎢<br />

v<br />

⎥<br />

⎥ ⎢ y ⎥<br />

1⎥⎦<br />

⎢⎣ ω ⎥ z ⎦<br />

qɺ<br />

I<br />

⎡ Rw l2Rw ⎤<br />

⎢ ( ω1 + ω2)cos ψ − ( ω1 −ω2<br />

)sinψ<br />

2<br />

B<br />

⎥<br />

⎡Xɺ ⎤ ⎢ ⎥<br />

⎢ ⎥ Rw l2Rw = Yɺ<br />

⎢ ( ω1 ω2)sin ψ ( ω1 ω2)cos ψ ⎥<br />

⎢ ⎥ = + + −<br />

⎢ 2<br />

B<br />

⎥<br />

⎢ψ ⎥<br />

⎣<br />

ɺ<br />

⎦ ⎢ ⎥<br />

⎢<br />

Rw<br />

( ω1 −ω2<br />

)<br />

⎥<br />

⎢⎣ B<br />

⎥⎦<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin


Example: Differentially-driven basic vehicle<br />

For a kinematic model <strong>of</strong> a differentially-driven vehicle, we assume there is no slip, and<br />

that the wheels have controllable speeds, ω 1 and ω 2 . If the CG is on the rear axle,<br />

the velocities in the global reference frame are,<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

Y<br />

y<br />

X<br />

x<br />

ψ<br />

B = track width<br />

qɺ<br />

I<br />

l = L<br />

l<br />

1<br />

2<br />

=<br />

0<br />

⎡ Rw<br />

⎤<br />

⎢ ( ω1 + ω2) cosψ<br />

2<br />

⎥<br />

⎡Xɺ ⎤ ⎢ ⎥<br />

⎢ ⎥ Rw<br />

= Yɺ<br />

⎢ ( ω1 ω2)sin ψ ⎥<br />

⎢ ⎥ = +<br />

⎢ 2<br />

⎥<br />

⎢ψ ⎥<br />

⎣<br />

ɺ<br />

⎦ ⎢ ⎥<br />

⎢<br />

Rw<br />

( ω1 −ω2<br />

) ⎥<br />

⎢⎣ B<br />

⎥⎦<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin


Simulation <strong>of</strong> the differentially-steered single-axle vehicle trajectory<br />

A simple code in Matlab to compute and plot out the vehicle trajectory is given below.<br />

% Differentially-steered kinematic vehicle model<br />

% Requires right (#1) and left (#2) wheel velocities, omegaw1 and omegaw2,<br />

% as controlled inputs for single axle, to be passed as global parameters<br />

% Wheel radius, R_w, and axle track width, B, are also required<br />

% Updated 2/20/12 RGL<br />

function Xidot = DS_vehicle(t,Xi)<br />

global R_w B omegaw1 omegaw2<br />

X = Xi(1); Y = Xi(2); psi = Xi(3);<br />

% NOTE: these are global coordinates<br />

% These equations assume CG on single axle<br />

Xdot = 0.5*cos(psi)*R_w*(omegaw1+omegaw2);<br />

Ydot = 0.5*sin(psi)*R_w*(omegaw1+omegaw2);<br />

psidot = R_w*(omegaw1-omegaw2)/B;<br />

Xidot=[Xdot;Ydot;psidot];<br />

% test_DS_vehicle.m<br />

clear all<br />

global R_w B omegaw1 omegaw2<br />

% Rw = wheel radius, B = track width<br />

% omegaw1 = right wheel speed<br />

R_w = 0.05; B = 0.18;<br />

omegaw1 = 4; omegaw2 = 2;<br />

Xi0=[0,0,0];<br />

[t,Xi] = ode45(@DS_vehicle,[0 10],Xi0);<br />

N = length(t);<br />

figure(1)<br />

plot(Xi(:,1),Xi(:,2)), axis([-1.0 1.0 -0.5 1.5]), axis('square')<br />

xlabel('X'), ylabel('Y')<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

Vehicle trajectory in XY<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin


Simulation <strong>of</strong> differentially-steered vehicle with 2D animation<br />

A code in Matlab to plot out the vehicle trajectory including a simple graphing animation <strong>of</strong><br />

the vehicle body/orientation is provided on the course log. This provides visual feedback on<br />

the model results.<br />

The key elements <strong>of</strong> this code are:<br />

Y<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

-1 -0.5 0<br />

X<br />

0.5 1<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

1. Specify and plot initial location<br />

and orientation <strong>of</strong> the vehicle CG.<br />

2. Initiate some ‘handle graphics’<br />

functions for defining the ‘body’.<br />

3. Perform a fixed wheel speed<br />

simulation loop to find state, q.<br />

4. The state <strong>of</strong> the robot is used to<br />

define the position and orientation<br />

<strong>of</strong> the vehicle over time.<br />

5. A simple routine is used to<br />

animate 2D motion <strong>of</strong> the vehicle<br />

by progressive plotting <strong>of</strong> the<br />

body/wheel positions.<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin


Lankensperger/‘Ackermann’-type steering<br />

‘knuckle’<br />

1. <strong>Steering</strong> arm<br />

2. Drag link<br />

3. Idler arm<br />

4. Tie rod/rack<br />

5. <strong>Steering</strong> wheel<br />

6. <strong>Steering</strong> shaft<br />

7. <strong>Steering</strong> box<br />

8. Pitman arm<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

Rigid axle with<br />

kingpin<br />

Divided track rods<br />

for independent<br />

suspension.<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin


<strong>Turning</strong> at low (Ackermann) speed<br />

• What is low-speed?<br />

– Negligible centrifugal forces<br />

– Tires need not develop lateral<br />

forces<br />

• Pure rolling, no lateral sliding<br />

(minimum tire scrub).<br />

• For proper geometry in the turn,<br />

the steer angles, δ, are given by:<br />

L L<br />

δo ≅ < δi<br />

≅<br />

R + B R − B<br />

2 2<br />

• The average value (small angles)<br />

is the Ackerman angle,<br />

δ =<br />

Ackermann<br />

L<br />

R<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

L<br />

δ o<br />

B<br />

δ i<br />

R<br />

Simple relationship between<br />

heading and steering wheel angle.<br />

Ref. Wong, Ch. 5<br />

Turn Center<br />

“Ackermann steering geometry”<br />

cotδ o − cotδ<br />

i = B<br />

L<br />

δ = steer angle <strong>of</strong> outside wheel<br />

o<br />

δ = steer angle <strong>of</strong> inside wheel<br />

i<br />

B = track<br />

L = wheelbase<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin


Wheel slip angle definition<br />

A positive slip angle is said to give a<br />

negative force on the wheel (to the left).<br />

Gillespie (1992)<br />

*To align the wheel with heading direction<br />

(vector), you would have to go –α.<br />

The lateral force should simply always<br />

oppose the motion – the lateral force is a<br />

dissipative force!<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

Fy = Cα ⋅α<br />

The slip angle is the angle between the<br />

wheel’s direction <strong>of</strong> heading (wheel plane)<br />

and its direction <strong>of</strong> travel. So, to compute<br />

the slip angle, need to track tire velocity<br />

components, as shown below.<br />

Excerpt from Liljedahl, et al (1996)<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin


Additional notes/comments on Ackermann steering<br />

• At low speed the wheels will roll without slip angle.<br />

• If the rear wheels have no slip angle, the center <strong>of</strong> the turn lies<br />

on the projection <strong>of</strong> the rear axle. Each front steered wheel has<br />

a normal to the wheel plane that passes through the same center<br />

<strong>of</strong> the turn. This is what Ackermann geometry dictates.<br />

• Correct Ackermann reduces tire wear and is easy on terrain.<br />

• Ackermann steering geometry leads to steering torques that<br />

increase with steer angle. The driver gets feedback about the<br />

extent to which wheels are turned. With parallel steer, the trend<br />

is different, becoming negative (not desirable in a steering<br />

system – positive feedback).<br />

• Off-tracking <strong>of</strong> the rear wheels, ∆, is related to this geometry.<br />

The ‘∆’ is R[1-cos(L/R)], or approximately L 2 /(2R).<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin


Using the basic geometry <strong>of</strong> Ackermann steering<br />

L<br />

δ o<br />

B<br />

δ i<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

Can you pass the vehicle<br />

through a given position?<br />

1. Assume low-speed turning<br />

2. Project along rear-axle<br />

3. Define R = L/δ max<br />

4. Project from CG<br />

5. Project ideal turning path<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin


Example: 2D vehicle with front-steered wheel<br />

A wheeled vehicle is said to have kinematic (or Ackermann) steering when a wheel is<br />

actually given a steer angle, δ, as shown. A kinematic model for the steered basic vehicle<br />

in the inertial frame is given by the equations,<br />

‘tricycle’<br />

Xɺ = v cosψ = Rwω<br />

cosψ<br />

Y<br />

δ<br />

Yɺ x<br />

= vsin = R sin<br />

ψ ω ψ<br />

v<br />

ψɺ = tanδ<br />

L<br />

where it is assumed that the wheels do not slip, so we<br />

can control the rotational speed and thus velocity at each<br />

wheel-ground contact.<br />

So, the input ‘control variables’ are velocity, v=R w ω,<br />

and steer angle, δ.<br />

In this example, the CG is located on the rear axle.<br />

These kinematic equations can be readily simulated.<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

w<br />

y<br />

Note:<br />

L<br />

1<br />

v = v + v<br />

2<br />

vt<br />

ωz = ψɺ<br />

=<br />

L<br />

vt<br />

tanδ<br />

=<br />

v<br />

( )<br />

1 2<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin<br />

ψ<br />

L = wheel base<br />

X<br />

X


Derivation <strong>of</strong> equations<br />

Y<br />

y<br />

L<br />

ψ<br />

δ<br />

1<br />

v = v + v<br />

2<br />

( )<br />

1 2<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

x<br />

L = wheel base<br />

X<br />

X<br />

Note that the forward velocity at the front wheel<br />

is simply, v, but because <strong>of</strong> kinematic steering<br />

the velocity along the path <strong>of</strong> the wheel must be,<br />

v<br />

ωz = tanδ<br />

L<br />

v δ<br />

=<br />

v<br />

cosδ<br />

This means that the lateral velocity at the front<br />

steered wheel must be,<br />

v = vδ sinδ = v tanδ<br />

Now we can find the angular velocity about the CG, which is located at the<br />

center <strong>of</strong> the rear axle as,<br />

t<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin


Example: simulation and animation <strong>of</strong> steered tricycle kinematic model<br />

% -----------------------------------------------------<br />

% tricycle_model.m<br />

% revised 2/21/12 rgl<br />

% ----------------------------------------------------function<br />

qdot = tricycle_model(t,q)<br />

global L vc delta_radc delta_max_deg R_w<br />

% L is length between the front wheel axis and rear wheel axis [m]<br />

% vc is speed command<br />

% delta_radc is the steering angle command<br />

% State variables<br />

x = q(1); y = q(2); psi = q(3);<br />

% Control variables<br />

v = vc;<br />

delta = delta_radc;<br />

% kinematic model<br />

xdot = v*cos(psi);<br />

ydot = v*sin(psi);<br />

psidot = v*tan(delta)/L;<br />

qdot = [xdot;ydot;psidot];<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

% Physical parameters <strong>of</strong> the tricycle<br />

L = 2.<strong>04</strong>0; % Length between the front wheel axis and rear wheel axis [m]<br />

B = 1.164; % Distance between the rear wheels [m]<br />

m_max_rpm = 8000; % Motor max speed [rpm]<br />

gratio = 20; % Gear ratio<br />

R_w = 13/39.37; % Radius <strong>of</strong> wheel [m]<br />

% desired turn radius<br />

R_turn = 3*L;<br />

delta_max_rad = L/R_turn; % Maximum steering angle [deg]<br />

R = 6.12 m<br />

δ = 0.33 rad = 19.1 deg<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin


Summary <strong>of</strong> kinematic vehicle turning<br />

• The models introduced here provide additional review <strong>of</strong><br />

fundamental kinematics principles and how they can be applied<br />

to vehicle systems.<br />

• The concepts <strong>of</strong> differential and Ackermann steering are<br />

demonstrated through simulations.<br />

• The kinematic models are commonly used in mobile robot<br />

applications for path planning, estimation, and control.<br />

• These kinematic models cannot tell you anything about the<br />

effect <strong>of</strong> forces or stability.<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin


Vehicle directional stability<br />

Directional stability refers to a vehicle’s ability to<br />

stabilize its direction <strong>of</strong> motion against disturbances.<br />

So, we are typically concerned with:<br />

•Unforced transient operations (natural response)<br />

•Forced response – aperiodic inputs (step, ramp, etc.)<br />

•Forced response – periodic forcing (sine)<br />

•Steady-state directional response<br />

We’ll discuss both lateral and longitudinal stability.<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin


2D vehicle <strong>of</strong> Rocard<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

One <strong>of</strong> the earliest analyses <strong>of</strong> vehicle stability was<br />

conducted by Y. Rocard (1954) (Steeds, 1960).<br />

The vehicle was simplified as a rigid rectangular<br />

frame with a wheel at each corner and the plane <strong>of</strong><br />

each wheel is vertical and parallel to the frame.<br />

The steering force is assumed to be directly related to<br />

slip angle,<br />

F = Kα<br />

and the contact forces are assumed not to be affected<br />

by vehicle motion.<br />

There is no steering angle in this model.<br />

First, let’s review the lateral forces using modern<br />

notation.<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin


Lateral tire forces induced by slip angles<br />

The slip angle, α, is derived using body-fixed variables.<br />

α δ<br />

− 1 y 1 z<br />

f = f − tan ⎜ ⎟<br />

vx<br />

α<br />

⎛ l Ω − v ⎞<br />

−1<br />

2 z y<br />

r = tan ⎜ ⎟<br />

vx<br />

⎝ ⎠<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

Wong (2001)<br />

⎛ v + l Ω ⎞<br />

⎝ ⎠<br />

From Liljedahl, et al (1996)<br />

v 1 y l<br />

− ⎛ + 1Ωz<br />

⎞<br />

− α f = tan ⎜ ⎟ −δ<br />

f<br />

⎝ vx<br />

⎠<br />

v 1 y l<br />

− ⎛ − 2Ω<br />

z ⎞<br />

− α r = tan ⎜ ⎟ −<br />

�<br />

δ r<br />

⎝ vx<br />

⎠<br />

rear steer<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin


Tire cornering forces<br />

• The slip angle, α, is the angle between direction <strong>of</strong><br />

heading and direction <strong>of</strong> travel <strong>of</strong> a wheel (OA).<br />

• A lateral force, F yα , also referred to as a cornering<br />

force (camber angle <strong>of</strong> the wheel is zero), is<br />

generated at a tire-surface interface, but this may not<br />

be collinear with the applied force at the wheel<br />

center.<br />

• A torque is induced, referred to as a self-aligning<br />

torque. This torque helps a steered wheel return to<br />

its original position after a turn.<br />

• The distance between these two applied forces is<br />

called the pneumatic trail.<br />

• The self-aligning torque is given by the product <strong>of</strong><br />

the cornering force and the pneumatic trail.<br />

• For more on self-aligning moment and pneumatic<br />

trail, see Wong, Section 1.4.<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

t p<br />

Fs<br />

Fyα “…side slip is due to the<br />

lateral elasticity <strong>of</strong> the<br />

tire.”<br />

Fs<br />

Fyα Wong<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin


Typical data on tire cornering forces<br />

“linear region”<br />

Fig. 1.23 from Wong<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

α<br />

Maximum cornering forces:<br />

•passenger car tires: 18 degrees<br />

•racing car tires: 6 degrees<br />

(Wong)<br />

Fig. 1.24 from Wong<br />

Ratio to normal load<br />

α<br />

Variables that impact cornering force:<br />

•Normal load<br />

•Inflation pressure<br />

•Lateral load transfer<br />

•Size<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin


Cornering stiffness and coefficient<br />

• The cornering stiffness will depend on tire<br />

properties such as:<br />

– tire size and type (e.g., radial, bias-ply, etc.),<br />

– number <strong>of</strong> plies,<br />

– cord angles,<br />

– wheel width, and<br />

– tread.<br />

• Dependence on load is taken into account<br />

through the cornering coefficient,<br />

where Fz is the vertical load.<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

CC<br />

α =<br />

C<br />

α<br />

F<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin<br />

z


Cornering stiffness and coefficients<br />

Cornering stiffness for car, light truck<br />

and heavy truck tires<br />

Fig. 1.27 from Wong<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

Effect <strong>of</strong> normal load<br />

on the cornering<br />

coefficient<br />

Fig. 1.28 from Wong<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin


Now, Rocard’s linearized model<br />

Rocard derived two 2nd order ODEs for this<br />

problem*, and for linear approximations found<br />

the characteristic equation,<br />

( )<br />

2 2<br />

s + Rs + S s = 0<br />

2 2<br />

⎡ ⎤<br />

2 ⎛ a ⎞ ⎛ b ⎞<br />

R = ⎢K1 ⎜1+ K 2 ⎟ + 3 ⎜1+ 2 ⎟⎥<br />

MV ⎣ ⎝ k ⎠ ⎝ k ⎠⎦<br />

2<br />

4 K1K3 ( a + b) 2( K1a − K3b) S = − 2 2<br />

Mk<br />

( MkV )<br />

A critical speed<br />

is defined by:<br />

V<br />

=<br />

2 1 3<br />

c<br />

1 − 3<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

2<br />

2 K K ( a + b)<br />

M ( K a K b)<br />

*Refer to Steeds handout for details; we’ll<br />

come back to this later<br />

Stable for all speeds if:<br />

2<br />

I = Mk<br />

K b > K a<br />

3 1<br />

•choose the position <strong>of</strong> the mass center <strong>of</strong> the<br />

vehicle and the steering force characteristics for<br />

the front and rear tires<br />

•If the steering force are equal, then stability is<br />

assured if b is greater than a, or putting the CG in<br />

front <strong>of</strong> the midpoint <strong>of</strong> the wheelbase.<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin


Directional Stability per Rocard<br />

Let’s match this up with modern notation:<br />

V<br />

2<br />

2<br />

2 2 K1K3 ( a + b)<br />

f α rα<br />

c = =<br />

M K1a − K3b M C f α L1 − Crα L2<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

K = C<br />

2C<br />

C L<br />

( ) ( )<br />

1<br />

K = C<br />

R factor = Cr L2 − C f L1<br />

> 0 (for stability at all speeds)<br />

α α<br />

So, only compute a critical speed if R factor is less than or equal to zero.<br />

A critical speed is defined by,<br />

3<br />

f α<br />

rα<br />

(Steeds, 1960)<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin


The ‘Bicycle’ or Single-Track Model<br />

Adapted from Wong<br />

How would you add a disturbance?<br />

Need to determine the ‘external forces’.<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

•Assume: symmetric vehicle, no roll or pitch<br />

•Represent the two wheels on the front and rear<br />

axles by a single equivalent wheel.<br />

•The bicycle model will have at least three states:<br />

–forward translational momentum or velocity <strong>of</strong><br />

the CG<br />

–lateral translational momentum or velocity <strong>of</strong> the<br />

CG<br />

–yaw angular momentum or velocity about the CG<br />

Refer to Wong, Chapter 5, Eqs. 5.25 – 5.27:<br />

( ɺ ) �<br />

m vx −VyΩ z = Fxf cos( δ f ) + Fxr − Fyf<br />

sin( δ f )<br />

����� �����<br />

( ɺ )<br />

front drive rear drive lateral force effect<br />

m v + V Ω = F + F cos( δ ) + F sin( δ )<br />

y x z yr yf f xf f<br />

I Ω ɺ = l F cos( δ ) − l F + l F sin( δ )<br />

z z 1 yf f 2 yr 1 xf f<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin


Z<br />

tan<br />

−1<br />

⎛ y 2 z ⎞<br />

⎜ ⎟ = δ r −α<br />

r<br />

vx<br />

α r<br />

Y<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

x t<br />

v − l Ω<br />

⎝ ⎠<br />

l 2<br />

vy<br />

l 1<br />

y<br />

y t<br />

A more general ‘bicycle’ model schematic<br />

ωz<br />

x<br />

β<br />

vx<br />

α f δf<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin<br />

X<br />

v −1 ⎛ y ⎞<br />

β = sideslip = tan ⎜ ⎟<br />

⎝ vx<br />

⎠<br />

tan<br />

ψ<br />

v + l Ω<br />

− 1 ⎛ y 1 z ⎞<br />

⎜ ⎟ = δ f −α<br />

f<br />

vx<br />

⎝ ⎠


Reduced bicycle model: 2 DOF by assuming V x = constant = V<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

v = V<br />

x<br />

δ = δ = small steering angle<br />

f<br />

( ɺ ) �<br />

m vx −VyΩ z = Fxf cos( δ f ) + Fxr − Fyf<br />

sin( δ f )<br />

����� �����<br />

mvɺ = F + F + F δ − mv Ω<br />

y yr yf xf f x z �<br />

∼0<br />

I zΩ ɺ<br />

z = l1Fyf − l2Fyr + l1Fxf δ f<br />

���<br />

Note how δ falls out, but it enters again in the lateral forces, since,<br />

v 1 y l1 z vy l<br />

− ⎛ + Ω ⎞ ⎛ + 1Ωz<br />

⎞<br />

α f = δ f − tan ⎜ ⎟ ≈ δ f − ⎜ ⎟<br />

⎝ vx ⎠ ⎝ vx<br />

⎠<br />

front drive rear drive lateral force effect<br />

∼0<br />

l 1 2Ω z − vy l2Ω z − v<br />

− y<br />

⎛ ⎞ ⎛ ⎞<br />

αr<br />

= tan ⎜ ⎟ ≈ ⎜ ⎟<br />

⎝ vx ⎠ ⎝ vx<br />

⎠<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin


As before, we can calculate vehicle trajectory calculations<br />

Recall, these models solve for forward and lateral velocity and yaw<br />

velocity, resulting from input steer angles, δ, relative to the bodyfixed<br />

axes.<br />

To find the trajectory <strong>of</strong> the CG in the Earth-based coordinates, we<br />

use transformation equations for basic 2-D trajectory simulations,<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

Xɺ = v cos( ψ ) − v sin( ψ )<br />

x y<br />

Yɺ = v sin( ψ ) + v cos( ψ )<br />

ψɺ<br />

= Ω<br />

x y<br />

z<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin


Example: directional stability with zero steer + disturbance<br />

• We examine directional stability, reviewing Steeds’ form <strong>of</strong><br />

Rocard’s (linearized) model (see class handout), which is<br />

essentially the bicycle model with steer angle, δ = 0.<br />

• Determine if this vehicle with baseline parameter data given<br />

(next slide) is stable, and compare with results from a<br />

simulation <strong>of</strong> the bicycle model subjected to a force<br />

‘perturbation’ at the front wheel applied in the +y direction.<br />

• Additional ‘car specification’ data is provided as Appendix B.<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin


Example: baseline vehicle parameter data (from simple_bicycle.m)<br />

(In Matlab script form)<br />

% Baseline values<br />

g = 9.81;<br />

L = 3.075; L1 = 1.568; L2 = L-L1;<br />

% Inertia parameters<br />

m = 1945; % total mass, kg<br />

W = m*g; % weight, N<br />

iyaw = 0.992; % yaw dynamic index<br />

% the following is a defined relation between yaw dynamic index and<br />

% the yaw moment <strong>of</strong> inertia (see Dixon reference and table <strong>of</strong> car specs)<br />

Iz = iyaw*m*L1*L2; % moment <strong>of</strong> inertia about z, kg-m^2<br />

Wf = L2*W/L; % static weight on front axle<br />

Wr = L1*W/L; % static weight on rear axle<br />

% Refer to Wong, Section 1.4 for guide to the following parameters<br />

CCf = 0.171*180/pi; % front corning stiffness coefficient, /rad<br />

CCr = 0.5*0.181*180/pi; % rear corning stiffness coefficient, /rad<br />

Cf = CCf*Wf/2; % corning stiffness per tire, N/rad (front)<br />

Cr = CCr*Wr/2; % rear cornering stiffness per tire, N/rad (rear)<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin


Disturbance force application<br />

if (t>=tdon & t


For Nominal Case, Vehicle Stabilizes<br />

Given case:<br />

R factor = 4200.4<br />

V c = non-existent<br />

v x =V= 5L/sec<br />

A lateral pulse disturbance is<br />

applied at front wheel.<br />

Afterwards, the vehicle<br />

stabilizes (lateral and yaw<br />

velocities go to zero).<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

4 x 10-3 Lateral Velocity<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

0 5 10 15<br />

50<br />

0<br />

-50<br />

Position<br />

0 50 100 150 200<br />

6 x 10-3 Yaw Velocity<br />

4<br />

2<br />

0<br />

-2<br />

0 5 10 15<br />

x 10-3 Yaw<br />

3<br />

2<br />

1<br />

0<br />

0 5 10 15<br />

Used: simple_bicycle.m<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin


Change rear ‘lateral stiffness’ (i.e., the cornering stiffness values <strong>of</strong> tires)<br />

In this case, the rear lateral<br />

stiffness was cut in half.<br />

R factor = −33814.<br />

V c = 18.2 m/s<br />

Let (since vehicle is now<br />

unstable for V > Vc)<br />

V = 1.2* V c =21.8<br />

After the pulse disturbance,<br />

the vehicle does not stabilize.<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

50<br />

0<br />

-50<br />

Lateral Velocity<br />

-100<br />

0 5 10 15<br />

100<br />

50<br />

0<br />

-50<br />

Position<br />

0 100 200<br />

15<br />

10<br />

5<br />

Yaw Velocity<br />

0<br />

0 5 10 15<br />

15<br />

10<br />

5<br />

Yaw<br />

0<br />

0 5 10 15<br />

Used: simple_bicycle.m<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin


Example: a double lane change using simple bicycle model<br />

Using the stable case for the<br />

‘simple_bicycle’ model, an<br />

‘open loop’ lane change is<br />

achieved by:<br />

(put right into function file):<br />

% double lane change<br />

if (t=1 & t=2 & t=3 & t=4 & t=5 & t=6) deltaf = 0; end;<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

1<br />

0.5<br />

0<br />

-0.5<br />

Lateral Velocity<br />

-1<br />

0 2 4 6 8<br />

6<br />

4<br />

2<br />

0<br />

Position<br />

-2<br />

0 50 100 150<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

Yaw Velocity<br />

-0.4<br />

0 2 4 6 8<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

Yaw<br />

-0.4<br />

0 2 4 6 8<br />

Used: simple_bicycle_lanechange.m<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin


Bicycle model summary<br />

• The classic bicycle (or single-track) model forms the basis for<br />

understanding steering and steering control.<br />

• Lateral forces induced by tires depend on wheel slip angle and<br />

play a key role in lateral stability. See also the Rocard handout.<br />

• We saw earlier that longitudinal traction (driving or braking)<br />

influences lateral forces, so driven bicycle models (where there<br />

are traction/braking forces) require us to model the coupling<br />

between longitudinal and lateral tire forces (friction ellipse).<br />

• In extreme maneuvers, for example, it would be possible to<br />

predict yaw instability if lateral forces were significantly<br />

reduced.<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin


ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

References<br />

1. Den Hartog, J.P., Mechanics, Dover edition.<br />

2. Dixon, J.C., Tires, Suspension and Handling (2nd ed.), SAE, Warrendale, PA,<br />

1996.<br />

3. Greenwood, D.T., Principles <strong>of</strong> Dynamics, Prentice-Hall, 1965.<br />

4. Gillespie, T.D., Fundamentals <strong>of</strong> Vehicle Dynamics, SAE, Warrendale, PA, 1992.<br />

5. Hibbeler, Engineering Mechanics: Dynamics, 9th ed., Prentice-Hall.<br />

6. Meriam, J.L. and L.G. Kraige, Engineering Mechanics: Dynamics (4th ed.), Wiley<br />

and Sons, Inc., NY, 1997.<br />

7. Rocard, Y., “L’instabilite en Mecanique”, Masson et Cie, Paris, 1954.<br />

8. Segel, L., “Theoretical Prediction and Experimental Substantiation <strong>of</strong> the<br />

Response <strong>of</strong> the Automobile to <strong>Steering</strong> Control,” The Institution <strong>of</strong> <strong>Mechanical</strong><br />

Engineers, Proceedings <strong>of</strong> the Automobile Division, No. 7, pp. 310-330, 1956-7.<br />

9. Steeds, W., Mechanics <strong>of</strong> Road <strong>Vehicles</strong>, Iliffe and Sons, Ltd., London, 1960.<br />

10. Wong, J.Y., Theory <strong>of</strong> Ground <strong>Vehicles</strong>, John Wiley and Sons, Inc., New York,<br />

2001 (3rd ed.).<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin


ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

APPENDIX<br />

Example Car Specifications*<br />

*Table C.1 from J.C. Dixon, “Tires, Suspension and Handling” (2 nd ed.), SAE, Warrendale, PA, 1996.<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin


ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

Appendix:<br />

More on <strong>Steering</strong> Mechanisms<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin


DaNI: 4-wheeled, differentially driven<br />

•Motor: Tetrix DC (handout)<br />

•Gear Ratio: 2:1<br />

•Shaft Diameter: 4.73 mm<br />

•Wheel Diameter: 100 mm<br />

•Wheel base: 133 mm.<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

Under what conditions would you need to<br />

use a dynamic model?<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin


General <strong>Steering</strong> System Requirements<br />

• A steering system should be insensitive to disturbances from the ground/road<br />

while providing the driver/controller with essential ‘feedback’ as needed to<br />

maintain stability.<br />

• The steering system should achieve the required turning geometry. For<br />

example, it may be required to satisfy the Ackermann condition.<br />

• The vehicle should be responsive to steering corrections.<br />

• The orientation <strong>of</strong> the steered wheels with respect to the vehicle should be<br />

maintained in a stable fashion. For example, passenger vehicles require that<br />

the steered wheels automatically return to a straight-ahead stable equilibrium<br />

position.<br />

• It should be possible to achieve reasonable handling without excessive<br />

control input (e.g., a minimum <strong>of</strong> steering wheel turns from one locked<br />

position to the other).<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin


Passenger <strong>Steering</strong> Requirements<br />

• Driver should alter steering wheel angle to keep deviation from course low.<br />

• Correlation between steering wheel and driving direction is not linear due to:<br />

a) turns <strong>of</strong> the steering wheel, b) steered wheel alterations, c) lateral tire<br />

loads, and d) alteration <strong>of</strong> driving direction.<br />

• Driver must steer to account for compliance in steering system, chassis, etc.,<br />

as well as need to change directions.<br />

• Driver uses visual as well as ‘haptic’ feedback. For example, roll inclination<br />

<strong>of</strong> vehicle body, vibration, and feedback through the steering wheel (effect <strong>of</strong><br />

self-centering torque on wheels).<br />

• It is believed that the feedback from the steering torque coming back up<br />

through the steering system from the wheels is the most important<br />

information used by many drivers.<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin


Ref. Milliken & Milliken<br />

Impact <strong>of</strong> <strong>Steering</strong> Geometry<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

B = 0.56<br />

L<br />

Ref. Wong<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin


Ref. Wong<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

<strong>Steering</strong> Results and<br />

Error in Ackermann<br />

B = 0.56<br />

L<br />

“<strong>Steering</strong> error curves” for a front beam axle<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin


Impact on <strong>Steering</strong> Geometry<br />

<strong>of</strong> using Ackermann in High Speed<br />

A car with a steering geometry chosen for low-speed (Ackermann)<br />

will not be as effective at higher vehicle speeds.<br />

In a high speed turn, the inside tire will have a lower normal force,<br />

which means it could achieve the same amount <strong>of</strong> lateral cornering<br />

force with a smaller slip angle.<br />

Using Ackermann will result in more instances in which the inside<br />

tire is dragged along at too high a slip angle, unnecessarily raising<br />

the temperature and slowing the vehicle down with excessive slip<br />

induced drag.<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin


1. <strong>Steering</strong> arm<br />

2. Drag link<br />

3. Idler arm<br />

4. Tie rod/rack<br />

5. <strong>Steering</strong> wheel<br />

6. <strong>Steering</strong> shaft<br />

7. <strong>Steering</strong> box<br />

8. Pitman arm<br />

<strong>Steering</strong> Systems – Rigid Axle<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

Rack and pinion is not suitable for steering wheels on rigid<br />

front axles, as the axles tend to move in the longitudinal<br />

direction. This movement between the wheels and steering<br />

system can induce unintended steering action.<br />

Only steering gears (1) with rotational movement are used.<br />

Design must minimize effects from motion.<br />

7<br />

8<br />

2<br />

1<br />

You may see some older model<br />

Toyota Land Cruisers that use<br />

this type <strong>of</strong> steering design.<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin


Heisler (1999)<br />

Axle-Beam <strong>Steering</strong> Linkage<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin


Heisler (1999)<br />

Axle-Beam <strong>Steering</strong> Linkage<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin


Front Axle and Tie Rod Assembly<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

From: J.W. Durstine, “The Truck <strong>Steering</strong> System From<br />

Hand Wheel to Road Wheel”, SAE, SP-374, 1973 (L. Ray<br />

Bukendale Lecture).<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin


<strong>Steering</strong> Gearbox and Ratio<br />

The gearbox provides the primary means for reducing the rotational input from<br />

the steering wheel and the steering axis.<br />

<strong>Steering</strong> wheel to road wheel ratios may vary<br />

with angle, but have values <strong>of</strong> 15:1 in passenger<br />

cars and may go as high as 36:1 for heavy<br />

trucks.<br />

Rack and pinions are commonly designed to<br />

have a variable gear ratio depending on steer<br />

angle.<br />

The actual steer ratio can be influenced by<br />

steering system effects, such as compliance.<br />

The plot here from Gillespie shows how much<br />

this can change.<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

Experimentally measured steering<br />

ratio on a truck.<br />

From Gillespie (Fig. 8.18).<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin


3 <strong>Steering</strong> arms<br />

7 Tie rod joints<br />

8 <strong>Steering</strong> rack<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

Rack-and-Pinion – 1<br />

Used on most passenger cars and some light trucks,<br />

as well as on some heavier and high speed vehicles.<br />

Used on vehicles with independent suspensions.<br />

<strong>Steering</strong> ratio is ratio <strong>of</strong> pinion revolutions to rack travel.<br />

Some advantages: simple, manufacturing ease,<br />

efficient, minimal backlash, tie rods can be joined<br />

to rack, minimal compliance, compact, eliminate<br />

idler arm and intermediate rod<br />

Some disadvantages: sensitive to impacts, greater<br />

stress in tie rod, since it is efficient you feel<br />

disturbances, size <strong>of</strong> steering angle depends on rack<br />

travel so you have short steering arms and higher<br />

forces throughout, cannot be used on rigid axles<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin


Heisler (1999)<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

Rack-and-Pinion – 2<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin


Split track-rod with relay-rod<br />

ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

Heisler (1999)<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin


ME 360/390 – Pr<strong>of</strong>. R.G. Longoria<br />

Vehicle System Dynamics and Control<br />

Summary<br />

• <strong>Steering</strong> mechanisms were reviewed briefly<br />

• <strong>Steering</strong> geometry – how do you select steering<br />

system?<br />

• <strong>Steering</strong> control – how does it translate into<br />

steering mechanism design?<br />

• There is a complex relationship to suspension<br />

(see Segel, Gillespie)<br />

<strong>Department</strong> <strong>of</strong> <strong>Mechanical</strong> Engineering<br />

The University <strong>of</strong> Texas at Austin

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!