06.09.2015 Views

Effect of Phyllosilicate Minerals on the Rheology, Colloidal and ...

Effect of Phyllosilicate Minerals on the Rheology, Colloidal and ...

Effect of Phyllosilicate Minerals on the Rheology, Colloidal and ...

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Phyllosilicate</str<strong>on</strong>g> <str<strong>on</strong>g>Minerals</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Rheology</strong>,<br />

<strong>Colloidal</strong> <strong>and</strong> Flotati<strong>on</strong> Behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> Chalcopyrite<br />

Mineral<br />

Saeed. Farrokhpay* <strong>and</strong> Bulelwa Ndlovu<br />

JKMRC, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Queensl<strong>and</strong>, 40 Isles Road, Indooroopilly, QLD 4068, Australia<br />

* Email: s.farrokhpay@uq.edu.au<br />

Abstract- The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> phyllosilicate minerals, namely<br />

illite, muscovite, talc, kaolinite <strong>and</strong> m<strong>on</strong>tmorill<strong>on</strong>ite, <strong>on</strong> <strong>the</strong><br />

flotati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chalcopyrite were investigated. For this<br />

purpose, <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se phyllosilicate minerals <strong>on</strong> <strong>the</strong><br />

froth stability, rheological properties, zeta potential as well<br />

as copper flotati<strong>on</strong> grade <strong>and</strong> recovery was investigated. It<br />

was found that various phyllosilicate minerals behave<br />

differently when added to <strong>the</strong> chalcopyrite slurries,<br />

however, <strong>the</strong>y all caused <strong>the</strong> flotati<strong>on</strong> grade to be reduced,<br />

albeit at different levels.<br />

The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> different phyllosilicate minerals <strong>on</strong> <strong>the</strong> froth<br />

stability <str<strong>on</strong>g>of</str<strong>on</strong>g> chalcopyrite slurry followed <strong>the</strong> order <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

m<strong>on</strong>tmorill<strong>on</strong>ite> muscovite >illite > kaolinite, talc. The<br />

effect <strong>on</strong> <strong>the</strong> rheology <str<strong>on</strong>g>of</str<strong>on</strong>g> chalcopyrite slurries was more or<br />

less negligible, except for m<strong>on</strong>tmorill<strong>on</strong>ite where <strong>the</strong><br />

suspensi<strong>on</strong> behaviour shifted from near Newt<strong>on</strong>ian to<br />

pseudoplastic.<br />

The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> phyllosilicate minerals <strong>on</strong> <strong>the</strong> zeta potential <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

chalcopyrite particles was also varied. While 30%<br />

m<strong>on</strong>tmorill<strong>on</strong>ite <strong>and</strong> kaolinite had a very minimal effect,<br />

additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 30% muscovite to <strong>the</strong> chalcopyrite slurry<br />

resulted in <strong>the</strong> zeta potential values being closer to <strong>the</strong><br />

pure muscovite suggesting full surface coverage <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

chalcopyrite particles.<br />

M<strong>on</strong>tmorill<strong>on</strong>ite <strong>and</strong> talc had <strong>the</strong> most deleterious effect<br />

<strong>on</strong> chalcopyrite flotati<strong>on</strong>. The deleterious effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

m<strong>on</strong>tmorill<strong>on</strong>ite is attributed to both rheology <strong>and</strong> froth<br />

stability. The deleterious effect <str<strong>on</strong>g>of</str<strong>on</strong>g> muscovite is also<br />

attributed to <strong>the</strong> surface coatings <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> chalcopyrite<br />

particles.<br />

Keywords: <str<strong>on</strong>g>Phyllosilicate</str<strong>on</strong>g> minerals, chalcopyrite, flotati<strong>on</strong>,<br />

clays<br />

I. INTRODUCTION<br />

The difficulty <str<strong>on</strong>g>of</str<strong>on</strong>g> treating ores in <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> clay minerals<br />

is well known in <strong>the</strong> mineral processing industry [1, 2]. Clay<br />

minerals have been named as <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> main problems in<br />

leaching <strong>and</strong> milling processes due to <strong>the</strong>ir small size, which<br />

causes a higher viscosity in grinding <strong>and</strong> also blocks <strong>the</strong><br />

leaching path [3]. The situati<strong>on</strong> is hardly better in froth<br />

flotati<strong>on</strong>. For example, bent<strong>on</strong>ite can greatly depress coal<br />

flotati<strong>on</strong> by reducing <strong>the</strong> froth stability [4]. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> clay<br />

minerals <strong>on</strong> froth stability in flotati<strong>on</strong> has been recently<br />

reviewed [2].<br />

The various deleterious roles <str<strong>on</strong>g>of</str<strong>on</strong>g> clay minerals in froth flotati<strong>on</strong><br />

have been investigated by a number <str<strong>on</strong>g>of</str<strong>on</strong>g> authors [5-7]. The<br />

effects include i) surface coating <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> mineral surfaces [8],<br />

ii) increasing reagent c<strong>on</strong>sumpti<strong>on</strong> due to <strong>the</strong>ir high surface<br />

area [9], iii) transferring large quantities <str<strong>on</strong>g>of</str<strong>on</strong>g> clay minerals into<br />

<strong>the</strong> c<strong>on</strong>centrate during <strong>the</strong> flotati<strong>on</strong> process, iv) increasing<br />

pulp viscosity [4], <strong>and</strong> v) changing froth stability (decreasing<br />

or increasing) [5, 10]. Even so, <strong>the</strong>re is still no clear<br />

underst<strong>and</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> specific effects <str<strong>on</strong>g>of</str<strong>on</strong>g> different phyllosilicate<br />

minerals <strong>on</strong> froth flotati<strong>on</strong>. This is perhaps due to <strong>the</strong><br />

complexity that arises when dealing with multicomp<strong>on</strong>ent ore<br />

systems as has <str<strong>on</strong>g>of</str<strong>on</strong>g>ten been <strong>the</strong> case in <strong>the</strong> menti<strong>on</strong>ed studies.<br />

Moreover, different phyllosilicate minerals are likely to<br />

present dissimilar effects <strong>on</strong> flotati<strong>on</strong>, due to varying inherent<br />

hydrophobic or rheological properties.<br />

Froth stability is a key parameter in c<strong>on</strong>trolling <strong>and</strong> optimising<br />

<strong>the</strong> mineral grade <strong>and</strong> recovery in flotati<strong>on</strong>. It not <strong>on</strong>ly<br />

depends <strong>on</strong> <strong>the</strong> fro<strong>the</strong>r type <strong>and</strong> c<strong>on</strong>centrati<strong>on</strong>, but also <strong>on</strong> <strong>the</strong><br />

amount <strong>and</strong> nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> suspended particles (particle<br />

hydrophobicity <strong>and</strong> size) [11]. These are <strong>the</strong>n inherent<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> minerals <strong>and</strong> mineral type in <strong>the</strong> slurry. O<strong>the</strong>r<br />

parameters which could influence froth stability include <strong>the</strong><br />

quality <str<strong>on</strong>g>of</str<strong>on</strong>g> process water, gas dispersi<strong>on</strong>, particle c<strong>on</strong>tact angle,<br />

c<strong>on</strong>diti<strong>on</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> flotati<strong>on</strong> feed particles with various chemical<br />

reagents, froth height, temperature, salt c<strong>on</strong>centrati<strong>on</strong>, particle<br />

size <strong>and</strong> froth retenti<strong>on</strong> time [11, 12]. The froth stability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

mineral slurries has been successfully investigated at<br />

laboratory scale using a “froth column” [13, 14]. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

phyllosilicate minerals <strong>on</strong> froth stability can be examined in a<br />

similar manner.


The suspensi<strong>on</strong> rheology is also important in determining <strong>the</strong><br />

hydrodynamics <strong>and</strong> dispersi<strong>on</strong> properties within <strong>the</strong> pulp<br />

phase. This, in turn, affects <strong>the</strong> minerals reporting to <strong>the</strong><br />

c<strong>on</strong>centrate. The rheological properties <str<strong>on</strong>g>of</str<strong>on</strong>g> mineral slurries are<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> great practical importance in many mineral processing<br />

applicati<strong>on</strong>s as <strong>the</strong>y are useful indicators <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> degree <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

aggregati<strong>on</strong> <strong>and</strong> dispersi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> particles within that suspensi<strong>on</strong><br />

[15, 16]. For example, <strong>the</strong> design <strong>and</strong> operati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pumping<br />

systems <str<strong>on</strong>g>of</str<strong>on</strong>g> particulate suspensi<strong>on</strong>s is based <strong>on</strong> <strong>the</strong> viscosity<br />

<strong>and</strong> yield stress values. In such an applicati<strong>on</strong>, knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> yield stress is significant in ensuring <strong>the</strong> successful start-up<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a pumping system from a static shut down c<strong>on</strong>diti<strong>on</strong>. The<br />

viscosity is an indicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> pumping requirements <strong>and</strong><br />

ease <str<strong>on</strong>g>of</str<strong>on</strong>g> flow <strong>the</strong>reafter. Studies linking <strong>the</strong> mineralogical<br />

c<strong>on</strong>tent <strong>and</strong> rheological resp<strong>on</strong>se have identified phyllosilicate<br />

gangue minerals as major c<strong>on</strong>tributors towards ore flow<br />

behaviour [17, 18]. This is supported by fundamental studies<br />

which have been c<strong>on</strong>ducted <strong>on</strong> pure phyllosilicate mineral<br />

suspensi<strong>on</strong>s, reporting significantly higher viscosities <strong>and</strong><br />

yield stresses in <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> phyllosilicate minerals<br />

(particularly swelling clays <strong>and</strong> serpentine minerals) compared<br />

to n<strong>on</strong>-phyllosilicate mineral suspensi<strong>on</strong>s (e.g. quartz) [19,<br />

20]. The importance <str<strong>on</strong>g>of</str<strong>on</strong>g> rheology in mineral processing has<br />

also recently been reviewed [21].<br />

This study seeks to investigate <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> different<br />

phyllosilicate minerals (namely illite, muscovite, talc,<br />

kaolinite <strong>and</strong> m<strong>on</strong>tmorill<strong>on</strong>ite) <strong>on</strong> <strong>the</strong> flotati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chalcopyrite<br />

mineral. By using such a simplified model mineral system,<br />

ra<strong>the</strong>r than an ore comprising multicomp<strong>on</strong>ent mineral<br />

systems, <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> different phyllosilicate minerals can<br />

be better elucidated.<br />

II.<br />

A. Material<br />

MATERIAL AND EXPERIMENTALS METHODS<br />

Pure chalcopyrite, illite, talc, kaolinite, m<strong>on</strong>tmorill<strong>on</strong>ite <strong>and</strong><br />

muscovite were used in this study. Chalcopyrite single<br />

mineral, with a purity <str<strong>on</strong>g>of</str<strong>on</strong>g> more than 98%, was obtained from<br />

Ward’s Science (USA). Kaolinite Q38 (pre-ground) was<br />

provided by Unimin Australia Limited. All o<strong>the</strong>r phyllosilicate<br />

samples were obtained in a pre-ground form Ward’s Science.<br />

Potassium amyl xanthate (PAX) <strong>and</strong> MIBC, were used as<br />

collector <strong>and</strong> fro<strong>the</strong>r, respectively, in copper flotati<strong>on</strong>.<br />

Brisbane tap water was used throughout <strong>the</strong> study.<br />

B. Flotati<strong>on</strong><br />

200g <str<strong>on</strong>g>of</str<strong>on</strong>g> chalcopyrite was ground to P80 <str<strong>on</strong>g>of</str<strong>on</strong>g> 75 micr<strong>on</strong>s <strong>and</strong><br />

suspended in a 1L bottom driven flotati<strong>on</strong> cell. The flotati<strong>on</strong><br />

tests were c<strong>on</strong>ducted at 20% solid (by weight) at a pH <str<strong>on</strong>g>of</str<strong>on</strong>g> 8.<br />

This is within <strong>the</strong> pH range at which most industrial flotati<strong>on</strong><br />

runs are c<strong>on</strong>ducted. 100 g/t sodium alkyl xanthate (PAX) <strong>and</strong><br />

40 ppm MIBC were used as collector <strong>and</strong> fro<strong>the</strong>r, respectively.<br />

The pH was m<strong>on</strong>itored <strong>and</strong> adjusted if needed using KOH <strong>and</strong><br />

HCl. Three c<strong>on</strong>centrates were collected at 10 sec<strong>on</strong>ds intervals<br />

over 1, 3 <strong>and</strong> 5 minutes (cumulative).<br />

C. Froth stability tests<br />

Chalcopyrite was ground to P80 <str<strong>on</strong>g>of</str<strong>on</strong>g> 75 micr<strong>on</strong>s for froth<br />

stability tests. Varying c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> each phyllosilicate<br />

were added to <strong>the</strong> pure chalcopyrite <strong>and</strong> <strong>the</strong> froth stability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

each slurry was assessed (at laboratory scale) using a specially<br />

designed froth stability column [22, 23]. The froth column<br />

c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> a 100 cm high acrylic column, with square 10 cm ×<br />

10 cm secti<strong>on</strong>, in which pulp samples are introduced for<br />

testing foaming proprieties. The column is provided with an<br />

impeller to ensure sufficient pulp agitati<strong>on</strong> <strong>and</strong> a porous plate<br />

at <strong>the</strong> bottom for uniform air diffusi<strong>on</strong>. Air flow is regulated<br />

by means <str<strong>on</strong>g>of</str<strong>on</strong>g> a flow-meter, <strong>and</strong> <strong>the</strong> same Jg as in flotati<strong>on</strong><br />

(1 cm/s) was maintained during <strong>the</strong> tests. A 2 L sample was<br />

c<strong>on</strong>diti<strong>on</strong>ed with <strong>the</strong> collector <strong>and</strong> fro<strong>the</strong>r <strong>and</strong> placed into <strong>the</strong><br />

apparatus. Once <strong>the</strong> pulp sample was introduced into <strong>the</strong><br />

column, <strong>the</strong> stirrer was turned <strong>on</strong>, in order to ensure sufficient<br />

agitati<strong>on</strong> <strong>and</strong> avoid settling <str<strong>on</strong>g>of</str<strong>on</strong>g> particles. At time t = 0, air was<br />

turned <strong>on</strong>, <strong>and</strong> froth height against time was measured, until<br />

an equilibrium value for <strong>the</strong> froth height H f0 was reached. At<br />

this point, air was turned <str<strong>on</strong>g>of</str<strong>on</strong>g>f, <strong>and</strong> froth decay measured. The<br />

half-life <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> froth, i.e. <strong>the</strong> time needed for <strong>the</strong> froth to<br />

collapse to half its equilibrium height, was taken as an<br />

indicator for froth stability.<br />

D. <strong>Rheology</strong> measurements<br />

The rheology <str<strong>on</strong>g>of</str<strong>on</strong>g> suspensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> chalcopyrite-phyllosilicate<br />

mixtures was analysed using an Ant<strong>on</strong> Paar DR301 rheometer.<br />

In each case, 60 mL <str<strong>on</strong>g>of</str<strong>on</strong>g> slurry was taken from <strong>the</strong> flotati<strong>on</strong> cell.<br />

Each suspensi<strong>on</strong> was stirred using a magnetic stirrer, ensuring<br />

homogeneity <strong>and</strong> suspensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> particles prior to rheology<br />

testing. Measurements were c<strong>on</strong>ducted in triplicate for each<br />

slurries using a cup <strong>and</strong> bob geometry. The shear rate was<br />

adjusted from 2 to 300 s -1 , <strong>and</strong> <strong>the</strong>n reverse from 300 to 2 s -1<br />

<strong>and</strong> no significant hysteresis observed. The same tests were<br />

c<strong>on</strong>ducted <strong>on</strong> <strong>the</strong> flotati<strong>on</strong> tailings. Different equivalent<br />

c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> pure chalcopyrite suspensi<strong>on</strong>s were also<br />

tested to determine if changes in rheological behaviour were<br />

due to ei<strong>the</strong>r increasing total solid c<strong>on</strong>centrati<strong>on</strong> or to <strong>the</strong><br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> clay additi<strong>on</strong>.<br />

E. Zeta potential measurements<br />

The zeta potential <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> chalcopyrite <strong>and</strong> phyllosilicate mineral<br />

samples was measured as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pH using a <strong>Colloidal</strong><br />

Dynamics ZetaProbe. 100 grams <str<strong>on</strong>g>of</str<strong>on</strong>g> chalcopyrite was ground to<br />

obtain P80 <str<strong>on</strong>g>of</str<strong>on</strong>g> 38 µm. The suspensi<strong>on</strong> was prepared <strong>and</strong> in<br />

0.001M NaCl soluti<strong>on</strong>. The pH was reduced from 10.5 to 4.5,<br />

using 0.2 M HCl <strong>and</strong> NaOH soluti<strong>on</strong>s to adjust <strong>the</strong> pH<br />

accordingly during measurement.<br />

III.<br />

RESULTS AND DISCUSSIONS


A. Flotati<strong>on</strong><br />

Figure 1 shows <strong>the</strong> changes in Cu grade <str<strong>on</strong>g>of</str<strong>on</strong>g> chalcopyrite up<strong>on</strong><br />

<strong>the</strong> additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> varying c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> each phyllosilicate.<br />

The Cu flotati<strong>on</strong> recovery was unchanged at about 90%, with<br />

or without additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phyllosilicate minerals. However, <strong>the</strong><br />

Cu grades were lower in <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> all tested<br />

phyllosilicate minerals. The Cu grade <str<strong>on</strong>g>of</str<strong>on</strong>g> pure chalcopyrite<br />

flotati<strong>on</strong> is 34.8% (calculated based <strong>on</strong> Cu in CuFeS 2 ). Figure<br />

1 shows that with <strong>the</strong> additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> maximum tested amount<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> illite, kaolinite <strong>and</strong> muscovite, <strong>the</strong> Cu grade decreases (from<br />

34.8%) to about 30%, 28% <strong>and</strong> 26.5%, respectively. The Cu<br />

grade decreases dramatically to 22% when 30% <str<strong>on</strong>g>of</str<strong>on</strong>g> talc or 15%<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>tmorill<strong>on</strong>ite was added to <strong>the</strong> chalcopyrite flotati<strong>on</strong>.<br />

Talc is known to be hydrophobic <strong>and</strong> <strong>on</strong>e may expect it to<br />

float during mineral flotati<strong>on</strong>. Therefore, it is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten depressed<br />

in industry by using a depressant such as CMC or guar gum<br />

[24].<br />

<strong>the</strong> froth stability results may need fur<strong>the</strong>r validati<strong>on</strong> as talc<br />

had a str<strong>on</strong>g tendency to stick to <strong>the</strong> froth column walls during<br />

testing, making analysis particularly difficult.<br />

Figure 2: <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> phyllosilicate minerals (illite , kaolinite ■, muscovite ▲,<br />

m<strong>on</strong>tmorill<strong>on</strong>ite ●, <strong>and</strong> talc x) <strong>on</strong> <strong>the</strong> froth stability (half-life) <str<strong>on</strong>g>of</str<strong>on</strong>g> chalcopyrite<br />

suspensi<strong>on</strong><br />

Figure 1: <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> phyllosilicate minerals (illite , kaolinite ■, muscovite ▲,<br />

m<strong>on</strong>tmorill<strong>on</strong>ite ●, <strong>and</strong> talc x) <strong>on</strong> <strong>the</strong> copper grade in chalcopyrite flotati<strong>on</strong><br />

(Cu flotati<strong>on</strong> recovery unchanged at about 90%).<br />

C. <strong>Rheology</strong><br />

Figure 3 shows <strong>the</strong> rheograms <str<strong>on</strong>g>of</str<strong>on</strong>g> pure chalcopyrite<br />

suspensi<strong>on</strong>s at increasing solid c<strong>on</strong>centrati<strong>on</strong>. These tests were<br />

c<strong>on</strong>ducted to gauge whe<strong>the</strong>r any changes in rheology could be<br />

attributed to chalcopyrite or to <strong>the</strong> added phyllosilicate<br />

minerals. The results show a similar rheological trend for<br />

chalcopyrite c<strong>on</strong>centrati<strong>on</strong>s between 20 to 30%. However,<br />

<strong>the</strong>re is a c<strong>on</strong>siderable increase in <strong>the</strong> slurry viscosity at 40%<br />

solid by weight. These results suggest that in <strong>the</strong> range <str<strong>on</strong>g>of</str<strong>on</strong>g> total<br />

solids c<strong>on</strong>centrati<strong>on</strong> up to 30% (by wt.), any change in <strong>the</strong><br />

chalcopyrite slurry rheology, after additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phyllosilicate<br />

minerals is indeed due to <strong>the</strong> phyllosilicate additi<strong>on</strong> <strong>and</strong> not a<br />

result <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> increased solid c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> chalcopyrite.<br />

In order to underst<strong>and</strong> <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> phyllosilicate minerals <strong>on</strong><br />

<strong>the</strong> chalcopyrite flotati<strong>on</strong>, froth stability, rheology <strong>and</strong> zeta<br />

potential measurements were c<strong>on</strong>ducted, which are discussed<br />

in <strong>the</strong> following secti<strong>on</strong>s.<br />

B. Froth stability<br />

Figure 2 shows <strong>the</strong> changes in froth half-life (froth stability)<br />

up<strong>on</strong> <strong>the</strong> additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> different phyllosilicate minerals. It can be<br />

seen that m<strong>on</strong>tmorill<strong>on</strong>ite <strong>and</strong> muscovite have a noticeable<br />

effect <strong>on</strong> <strong>the</strong> froth stability <str<strong>on</strong>g>of</str<strong>on</strong>g> chalcopyrite suspensi<strong>on</strong>. The<br />

froth height increases by 20-25% with <strong>the</strong> additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

m<strong>on</strong>tmorill<strong>on</strong>ite <strong>and</strong> muscovite to <strong>the</strong> mineral suspensi<strong>on</strong>. On<br />

<strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, illite has less effect, <strong>and</strong> both kaolinite <strong>and</strong> talc<br />

have a negligible effect. Therefore, <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> different<br />

phyllosilicate minerals <strong>on</strong> <strong>the</strong> froth stability <str<strong>on</strong>g>of</str<strong>on</strong>g> chalcopyrite<br />

suspensi<strong>on</strong> follows <strong>the</strong> order <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>tmorill<strong>on</strong>ite> muscovite><br />

illite> kaolinite <strong>and</strong> talc. M<strong>on</strong>tmorill<strong>on</strong>ite dem<strong>on</strong>strated <strong>the</strong><br />

most noticeable effect <strong>on</strong> froth stability <strong>and</strong>, at <strong>the</strong> same time,<br />

it has a major deleterious effect <strong>on</strong> chalcopyrite flotati<strong>on</strong><br />

(Figure 1). Talc, <strong>on</strong> <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, which has <strong>the</strong> same effect<br />

<strong>on</strong> <strong>the</strong> copper flotati<strong>on</strong> grade seems to have a very minimal<br />

effect <strong>on</strong> <strong>the</strong> froth stability. It should be noted, however, that<br />

Figure 3: <strong>Rheology</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chalcopyrite slurry as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> solid%; for 20%▲,<br />

30% □, <strong>and</strong> 40% ○.<br />

Figures 4 <strong>and</strong> 5 also show <strong>the</strong> rheograms <str<strong>on</strong>g>of</str<strong>on</strong>g> suspensi<strong>on</strong>s<br />

c<strong>on</strong>taining chalcopyrite <strong>and</strong> varying c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> each<br />

phyllosilicate. The results show that <strong>the</strong>re is no marginal<br />

rheological effect observed for all phyllosilicate minerals o<strong>the</strong>r<br />

than m<strong>on</strong>tmorill<strong>on</strong>ite.<br />

Figure 5 shows that m<strong>on</strong>tmorill<strong>on</strong>ite c<strong>on</strong>siderably affects <strong>the</strong><br />

chalcopyrite slurry rheology. Additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 5 to 10%<br />

m<strong>on</strong>tmorill<strong>on</strong>ite causes a slight change in <strong>the</strong> rheology <str<strong>on</strong>g>of</str<strong>on</strong>g>


chalcopyrite slurry. However, a different rheological<br />

behaviour with a yield stress is observed by additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 15%<br />

m<strong>on</strong>tmorill<strong>on</strong>ite. The significant change in <strong>the</strong> rheology can<br />

be related to <strong>the</strong> c<strong>on</strong>siderable effect m<strong>on</strong>tmorill<strong>on</strong>ite had <strong>on</strong><br />

<strong>the</strong> froth stability, compared to <strong>the</strong> o<strong>the</strong>r four phyllosilicate<br />

minerals tested in this study. In fact, when <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

phyllosilicate minerals <strong>on</strong> <strong>the</strong> rheology <str<strong>on</strong>g>of</str<strong>on</strong>g> chalcopyrite slurry<br />

are compared to each o<strong>the</strong>r, <strong>the</strong> prominent effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

m<strong>on</strong>tmorill<strong>on</strong>ite is very clear.<br />

The extreme rheological effects observed for m<strong>on</strong>tmorill<strong>on</strong>ite<br />

are in agreement with <strong>the</strong> results <str<strong>on</strong>g>of</str<strong>on</strong>g> Ndlovu et al. [25], which<br />

dem<strong>on</strong>strated a ‘critical’ c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> < 4% by volume for<br />

pure m<strong>on</strong>tmorill<strong>on</strong>ite, while this occurs at much higher<br />

c<strong>on</strong>centrati<strong>on</strong>s for <strong>the</strong> o<strong>the</strong>r minerals in <strong>the</strong>ir pure form (><br />

15% solids by volume).<br />

Figure 4: <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> kaolinite, illite, talc <strong>and</strong> muscovite <strong>on</strong> <strong>the</strong> chalcopyrite<br />

slurry (20 wt%) rheology as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> solid% <str<strong>on</strong>g>of</str<strong>on</strong>g> phyllosilicate minerals<br />

(0% +, 10% □, 20%▲ <strong>and</strong> 30% ●).


Figure 7 shows <strong>the</strong> zeta potential curves <str<strong>on</strong>g>of</str<strong>on</strong>g> suspensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

each phyllosilicate <strong>and</strong> chalcopyrite-phyllosilicate mixtures (at<br />

varying mixture c<strong>on</strong>centrati<strong>on</strong>s). The results show that <strong>the</strong> zeta<br />

potential <str<strong>on</strong>g>of</str<strong>on</strong>g> chalcopyrite with 30% m<strong>on</strong>tmorill<strong>on</strong>ite <strong>and</strong><br />

kaolinite is very close to that <str<strong>on</strong>g>of</str<strong>on</strong>g> pure chalcopyrite particles.<br />

However, additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 30% muscovite to <strong>the</strong> chalcopyrite<br />

suspensi<strong>on</strong> results in zeta potential values closer to <strong>the</strong> pure<br />

muscovite, which may suggest full surface coverage <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

chalcopyrite particles with muscovite. Additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 30% talc<br />

<strong>and</strong> illite to <strong>the</strong> chalcopyrite suspensi<strong>on</strong> also results in zeta<br />

potential values shifting between that <str<strong>on</strong>g>of</str<strong>on</strong>g> chalcopyrite <strong>and</strong><br />

<strong>the</strong>se phyllosilicate minerals, as <strong>on</strong>e may expect from partial<br />

surface coatings <str<strong>on</strong>g>of</str<strong>on</strong>g> chalcopyrite particles. A similar behaviour<br />

can be seen when 10% <str<strong>on</strong>g>of</str<strong>on</strong>g> all phyllosilicate minerals is added<br />

to <strong>the</strong> chalcopyrite suspensi<strong>on</strong>.<br />

Figure 5: <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> M<strong>on</strong>tmorill<strong>on</strong>ite (0% +, 5% □, 10%▲, <strong>and</strong> 15% ●) <strong>on</strong> <strong>the</strong><br />

chalcopyrite slurry (20 wt%) rheology.<br />

D. Zeta potential<br />

Figure 6 shows <strong>the</strong> zeta potential curves <str<strong>on</strong>g>of</str<strong>on</strong>g> pure<br />

chalocopyrite. The results show that <strong>the</strong> zeta potential <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

chalcopyrite is about -25 mV at pH above 8.5. However below<br />

pH <str<strong>on</strong>g>of</str<strong>on</strong>g> 8.5, <strong>the</strong> zeta potential becomes less negative, reaching<br />

<strong>the</strong> iso electric point (iep) at pH about 5.5. Therefore, it is<br />

negatively charged across <strong>the</strong> pH examined in this project (pH<br />

8). The iep <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-oxidized chalcopyrite in different salt<br />

soluti<strong>on</strong>s has been reported to be between pH 4-5 [12]. The<br />

observed zeta potential is <strong>the</strong>n within <strong>the</strong> range <str<strong>on</strong>g>of</str<strong>on</strong>g> previously<br />

reported values. However, Peng <strong>and</strong> Zhang [26] have reported<br />

<strong>the</strong> iep <str<strong>on</strong>g>of</str<strong>on</strong>g> chalcopyrite, after grinding with peroxide, exhibited<br />

at around pH 8.5, indicating str<strong>on</strong>g oxidati<strong>on</strong>. Sulfide minerals<br />

get oxidised quickly <strong>and</strong> <strong>the</strong>refore <strong>the</strong> zeta potential does vary.<br />

Figure 6: Zeta potential <str<strong>on</strong>g>of</str<strong>on</strong>g> chalcopyrite (repeated 4 times with 95%<br />

c<strong>on</strong>fidence).<br />

CONCLUSIONS<br />

Various phyllosilicate minerals were found to behave<br />

differently when added to <strong>the</strong> chalcopyrite slurry, however,<br />

<strong>the</strong>y all caused <strong>the</strong> flotati<strong>on</strong> grade to be reduced. Additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> maximum tested amount <str<strong>on</strong>g>of</str<strong>on</strong>g> illite, kaolinite <strong>and</strong> muscovite<br />

caused <strong>the</strong> Cu grade to decrease (from 34.8%) to about 30%,<br />

28% <strong>and</strong> 26.5%, respectively (at <strong>the</strong> same flotati<strong>on</strong> recovery).<br />

The Cu grade was also decreased dramatically to about 22%<br />

when 30% talc or 15% m<strong>on</strong>tmorill<strong>on</strong>ite was added to <strong>the</strong><br />

chalcopyrite flotati<strong>on</strong>. Therefore, <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> phyllosilicate<br />

minerals <strong>on</strong> <strong>the</strong> flotati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chalcopyrite can be ranked as talc,<br />

m<strong>on</strong>tmorill<strong>on</strong>ite> muscovite> kaolinite> illite.<br />

The ranking for different phyllosilicate minerals <strong>on</strong> <strong>the</strong> froth<br />

stability <str<strong>on</strong>g>of</str<strong>on</strong>g> chalcopyrite slurry followed <strong>the</strong> order <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

m<strong>on</strong>tmorill<strong>on</strong>ite > muscovite >illite > kaolinite, talc.<br />

An increase in <strong>the</strong> c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> each phyllosilicate mineral<br />

resulted in more complex suspensi<strong>on</strong> rheology, but <strong>the</strong> effect<br />

was negligible except for m<strong>on</strong>tmorill<strong>on</strong>ite where <strong>the</strong><br />

suspensi<strong>on</strong> behaviour shifted from near Newt<strong>on</strong>ian to<br />

pseudoplastic.<br />

The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> phyllosilicate minerals <strong>on</strong> <strong>the</strong> zeta potential <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

chalcopyrite particles was varied. While 30% m<strong>on</strong>tmorill<strong>on</strong>ite<br />

<strong>and</strong> kaolinite had a very minimal effect, additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 30%<br />

muscovite to <strong>the</strong> chalcopyrite slurry resulted in <strong>the</strong> zeta<br />

potential values being closer to <strong>the</strong> pure muscovite suggesting<br />

full surface coverage <str<strong>on</strong>g>of</str<strong>on</strong>g> chalcopyrite particles. Additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

30% talc <strong>and</strong> illite to <strong>the</strong> chalcopyrite suspensi<strong>on</strong> also resulted<br />

in zeta potential values shifting between that <str<strong>on</strong>g>of</str<strong>on</strong>g> chalcopyrite<br />

<strong>and</strong> <strong>the</strong>se phyllosilicate minerals, as <strong>on</strong>e may expect from<br />

partial surface coverage.<br />

M<strong>on</strong>tmorill<strong>on</strong>ite <strong>and</strong> talc were found to have <strong>the</strong> most effect<br />

<strong>on</strong> chalcopyrite flotati<strong>on</strong>. From this study, <strong>the</strong> deleterious<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>tmorill<strong>on</strong>ite can be related to both rheology <strong>and</strong><br />

froth stability. The deleterious effect <str<strong>on</strong>g>of</str<strong>on</strong>g> muscovite can also be<br />

related to <strong>the</strong> surface coatings <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> chalcopyrite particles (as<br />

observed in <strong>the</strong> zeta potential results) which also affect <strong>the</strong><br />

froth stability. There is no evidence in this study to support <strong>the</strong>


Kaolinite<br />

Illite<br />

Talc<br />

deleterious effect <str<strong>on</strong>g>of</str<strong>on</strong>g> talc, however, <strong>on</strong>e may relate it to <strong>the</strong><br />

ability <str<strong>on</strong>g>of</str<strong>on</strong>g> talc to float <strong>and</strong> decrease <strong>the</strong> c<strong>on</strong>centrati<strong>on</strong> grade, as<br />

it is a naturally hydroph<strong>on</strong>e phyllosilicate mineral.<br />

M<strong>on</strong>tmorill<strong>on</strong>ite <strong>and</strong> talc were found to have <strong>the</strong> most effect<br />

<strong>on</strong> chalcopyrite flotati<strong>on</strong>. From this study, <strong>the</strong> deleterious<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>tmorill<strong>on</strong>ite can be related to both rheology <strong>and</strong><br />

froth stability. The deleterious effect <str<strong>on</strong>g>of</str<strong>on</strong>g> muscovite can also be<br />

related to <strong>the</strong> surface coatings <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> chalcopyrite particles (as<br />

observed in <strong>the</strong> zeta potential results) which also affect <strong>the</strong><br />

froth stability. There is no evidence in this study to support <strong>the</strong><br />

deleterious effect <str<strong>on</strong>g>of</str<strong>on</strong>g> talc, however, <strong>on</strong>e may relate it to <strong>the</strong><br />

ability <str<strong>on</strong>g>of</str<strong>on</strong>g> talc to float <strong>and</strong> decrease <strong>the</strong> c<strong>on</strong>centrati<strong>on</strong> grade, as<br />

it is a naturally hydroph<strong>on</strong>e phyllosilicate mineral.<br />

The study undertaken here was c<strong>on</strong>ducted in a simplistic<br />

manner. Indeed, <strong>the</strong> phyllosilicate minerals behave differently<br />

with different effects <strong>on</strong> flotati<strong>on</strong> performance. While not<br />

underpinning <strong>the</strong> specific effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> minerals, this study<br />

has aided in better underst<strong>and</strong>ing <strong>the</strong> exact effects <str<strong>on</strong>g>of</str<strong>on</strong>g> each<br />

mineral. More rigorous analysis would be required for in<br />

depth underst<strong>and</strong>ing.<br />

ACKNOWLEDGMENT<br />

The authors would like to acknowledge Yang Jiang, Annie<br />

Nguyen <strong>and</strong> Elisheba Radke for practical testwork during <strong>the</strong>ir<br />

summer vacati<strong>on</strong> project at <strong>the</strong> JKMRC.<br />

Muscovite<br />

M<strong>on</strong>tmorill<strong>on</strong>ite<br />

Figure 7: Zeta potential <str<strong>on</strong>g>of</str<strong>on</strong>g> chalcopyrite (●), phyllosilicate (as marked) (■),<br />

<strong>and</strong> chalcopyrite/ phyllosilicate mixed suspensi<strong>on</strong>s (10% ▲; <strong>and</strong> 30% ◊<br />

phyllosilicate).<br />

REFERENCES<br />

[1] Cruz, N, Peng, Y, Farrokhpay, S, <strong>and</strong> Bradshaw, D: Interacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> clay<br />

minerals in copper-gold flotati<strong>on</strong>: Part 1 - rheological properties <str<strong>on</strong>g>of</str<strong>on</strong>g> clay<br />

mineral suspensi<strong>on</strong>s in <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> flotati<strong>on</strong> reagents, Miner. Eng.,<br />

50-51, pp. 30–37, 2013.<br />

[2] Farrokhpay, S <strong>and</strong> Bradshaw, D: <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> clay minerals <strong>on</strong> froth stability<br />

in mineral flotati<strong>on</strong>: a review, in Proceeding <str<strong>on</strong>g>of</str<strong>on</strong>g> XXVI Internati<strong>on</strong>al<br />

Mineral Processing C<strong>on</strong>gress, New Delhi, 2012, pp. 4601-4611.<br />

[3] Tremolada, J, Dzioba, R, Bernardo-Sánchez, A, <strong>and</strong> Menéndez-Aguado,<br />

JM: The Preg-robbing <str<strong>on</strong>g>of</str<strong>on</strong>g> gold <strong>and</strong> silver by clays during cyanidati<strong>on</strong><br />

under agitati<strong>on</strong> <strong>and</strong> heap leaching c<strong>on</strong>diti<strong>on</strong>s, Int. J. Miner. Process., 94,<br />

pp. 67-71, 2010.<br />

[4] Arnold, BJ <strong>and</strong> Aplan, FF: The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> clay slimes <strong>on</strong> coal flotati<strong>on</strong>,<br />

part I: <strong>the</strong> nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> clay, Int. J. Miner. Process., 17, pp. 225-242,<br />

1986.<br />

[5] Bulatovic, SM: H<strong>and</strong>book <str<strong>on</strong>g>of</str<strong>on</strong>g> Flotati<strong>on</strong> Reagents: Chemistry, Theory <strong>and</strong><br />

Practice: Flotati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Sulphide Ores, Elsevier, Bost<strong>on</strong>, 2007.<br />

[6] Bulatovic, SM, Wyslouzil, DM, <strong>and</strong> Kant, C: <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> clay slimes <strong>on</strong><br />

copper, molybdenum flotati<strong>on</strong> from porphyry ores, in Proceeding <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Copper 99-Cober 99 Internati<strong>on</strong>al C<strong>on</strong>ference, Phoenix, 1999, pp. 95-<br />

111.<br />

[7] Jorjani, E, Barkhordari, HR, Tayebi Khorami, M, <strong>and</strong> Fazeli, A: <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> aluminosilicate minerals <strong>on</strong> copper–molybdenum flotati<strong>on</strong> from<br />

Sarcheshmeh porphyry ores, Miner. Eng., 24, pp. 754-759, 2011.<br />

[8] Tao, D, Dopico, PG, Hines, J, <strong>and</strong> Kennedy, D: An experimental study <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

clay binders in fine coal froth flotati<strong>on</strong>, in Proceeding <str<strong>on</strong>g>of</str<strong>on</strong>g> Internati<strong>on</strong>al<br />

Coal Preparati<strong>on</strong> C<strong>on</strong>gress, Lexingt<strong>on</strong>, USA, Society for Mining,<br />

Metallurgy, <strong>and</strong> Explorati<strong>on</strong> (SME), 2010, pp. 478-487.<br />

[9] Cazerlend, KA <strong>and</strong> Uork, LB: Flotati<strong>on</strong> principals, Metallurgizdaf,<br />

Russia, pp. 1958.<br />

[10] Dippenaar, A: The <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Particles <strong>on</strong> <strong>the</strong> Stability <str<strong>on</strong>g>of</str<strong>on</strong>g> Flotati<strong>on</strong> Froth,<br />

Report No. 81, IMM, South Africa, pp. 1988.<br />

[11] Farrokhpay, S: The significance <str<strong>on</strong>g>of</str<strong>on</strong>g> froth stability in mineral flotati<strong>on</strong>- a<br />

review, Adv. Colloid Interface Sci., 166, pp. 1-7, 2011.


[12] Sinche G<strong>on</strong>zalez, MM, Fornasiero, D, <strong>and</strong> Levay, G: <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> water<br />

quality <strong>on</strong> chalcopyrite <strong>and</strong> molybdenite flotati<strong>on</strong> in Proceeding <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Chemeca, Adelaide, 2010, pp.<br />

[13] Farrokhpay, S <strong>and</strong> Zanin, M: Synergic effect <str<strong>on</strong>g>of</str<strong>on</strong>g> collector <strong>and</strong> fro<strong>the</strong>r <strong>on</strong><br />

froth stability <strong>and</strong> flotati<strong>on</strong> recovery – an industrial case, in Proceeding<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 11 th Mill Operators' C<strong>on</strong>ference, Hobart, The Australasian Institute <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Mining <strong>and</strong> Metallurgy AusiMM, 2012, pp. 145-150.<br />

[14] Zanin, M, Wightman, E, Grano, SR, <strong>and</strong> Franzidis, J-P: Froth stability<br />

as a performance indicator in sulphide minerals flotati<strong>on</strong> plants, in<br />

Proceeding <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemeca 2007: Academia <strong>and</strong> Industry - Streng<strong>the</strong>ning<br />

<strong>the</strong> Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>, Melbourne, 2007, pp. 350-357.<br />

[15] Johns<strong>on</strong>, SB, Franks, GV, Scales, PJ, Boger, DV, <strong>and</strong> Healy, TW:<br />

Surface chemistry-rheology relati<strong>on</strong>ships in c<strong>on</strong>centrated mineral<br />

suspensi<strong>on</strong>s, Int. J. Miner. Process., 58, pp. 267-304, 2000.<br />

[16] Luckham, PF <strong>and</strong> Rossi, S: The colloidal <strong>and</strong> rheological properties <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

bent<strong>on</strong>ite suspensi<strong>on</strong>s, Adv. Colloid Interface Sci., 82, pp. 43-92, 1999.<br />

[17] Burdukova, E, Becker, M, Ndlovu, B, Mokgethi, B, <strong>and</strong> Degl<strong>on</strong>, DA:<br />

Relati<strong>on</strong>ship between slurry rheology <strong>and</strong> its mineralogical c<strong>on</strong>tent, in<br />

Proceeding <str<strong>on</strong>g>of</str<strong>on</strong>g> XXIV Internati<strong>on</strong>al <str<strong>on</strong>g>Minerals</str<strong>on</strong>g> Processing C<strong>on</strong>gress,<br />

Beijing, China Scientific Book Service Co. Ltd Beijing, 2008, pp. 2169-<br />

2178.<br />

[18] Shabalala, NZP, Harris, M, Leal Filho, LS, <strong>and</strong> Degl<strong>on</strong>, DA: <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

slurry rheology <strong>on</strong> gas dispersi<strong>on</strong> in a pilot-scale mechanical flotati<strong>on</strong><br />

cell, Miner. Eng., 24, pp. 1448-1453, 2011.<br />

[19] Ndlovu, BN, Becker, M, Forbes, E, Degl<strong>on</strong>, DA, <strong>and</strong> Franzidis, JP: The<br />

influence <str<strong>on</strong>g>of</str<strong>on</strong>g> phyllosilicate mineralogy <strong>on</strong> <strong>the</strong> rheology <str<strong>on</strong>g>of</str<strong>on</strong>g> mineral<br />

slurries, Miner. Eng., 24, pp. 1314-1322, 2011.<br />

[20] Ndlovu, BN, Forbes, E, Becker, M, Degl<strong>on</strong>, DA, Franzidis, JP, <strong>and</strong><br />

Laskowski, JS: The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> chrysotile mineralogical properties <strong>on</strong> <strong>the</strong><br />

rheology <str<strong>on</strong>g>of</str<strong>on</strong>g> chrysotile suspensi<strong>on</strong>s Miner. Eng., 24, pp. 1004-1009,<br />

2011.<br />

[21] Farrokhpay, S: The importance <str<strong>on</strong>g>of</str<strong>on</strong>g> rheology in mineral flotati<strong>on</strong>: a<br />

review, Miner. Eng., 36–38, pp. 272–278, 2012.<br />

[22] Zanin, M <strong>and</strong> Grano, S: Selecting fro<strong>the</strong>rs for <strong>the</strong> flotati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> specific<br />

ores by means <str<strong>on</strong>g>of</str<strong>on</strong>g> batch scale foaming tests, in Proceeding <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Metallurgical Plant Design <strong>and</strong> Operating Strategies (MetPlant), Perth,<br />

2006, pp. 339-349.<br />

[23] Farrokhpay, S <strong>and</strong> Zanin, M: An investigati<strong>on</strong> into <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> water<br />

quality <strong>on</strong> froth stability, Adv. Powder Technol., 23, pp. 493-497, 2012.<br />

[24] Morris, GE, Fornasiero, D, <strong>and</strong> Ralst<strong>on</strong>, J: Polymer depressants at <strong>the</strong><br />

talc-water interface: adsorpti<strong>on</strong> iso<strong>the</strong>rm, micr<str<strong>on</strong>g>of</str<strong>on</strong>g>lotati<strong>on</strong> <strong>and</strong><br />

electrokinetic studies, Int. J. Miner. Process., 67, pp. 211-227, 2002.<br />

[25] Ndlovu, BN, Farrokhpay, S, Forbes, E, Becker, M, Bradshaw, D, <strong>and</strong><br />

Degl<strong>on</strong>, DA: A preliminary rheological classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phyllosilicate<br />

group minerals, Miner. Eng., 10.1016/j.mineng.2013.06.004, pp. in<br />

press.<br />

[26] Peng, Y <strong>and</strong> Zhao, S: The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> surface oxidati<strong>on</strong> <strong>on</strong> cupper sulfide<br />

minerals <strong>on</strong> clay slime coating flotati<strong>on</strong>, Miner. Eng., 24, pp. 1687-1693,<br />

2011.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!