13.02.2013 Views

effect of solution concentration and co-solvent ratio on electrospun ...

effect of solution concentration and co-solvent ratio on electrospun ...

effect of solution concentration and co-solvent ratio on electrospun ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

EFFECT OF SOLUTION CONCENTRATION AND CO-SOLVENT<br />

RATIO ON ELECTROSPUN PEG FIBERS<br />

Hazim J. Haroosh, Deeptangshu S. Chaudhary <str<strong>on</strong>g>and</str<strong>on</strong>g> Gord<strong>on</strong> D. Ingram<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemical Engineering, Curtin University, Perth, WA 6845, Australia<br />

Corresp<strong>on</strong>ding author’s E-mail address: d.chaudhary@curtin.edu.au<br />

ABSTRACT<br />

Electrospinning is a unique method for the synthesis <str<strong>on</strong>g>of</str<strong>on</strong>g> nan<str<strong>on</strong>g>of</str<strong>on</strong>g>ibers from polymer <str<strong>on</strong>g>soluti<strong>on</strong></str<strong>on</strong>g>s,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> is suitable for a broad range <str<strong>on</strong>g>of</str<strong>on</strong>g> polymeric materials. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> its flexibility,<br />

<strong>electrospun</strong> nan<str<strong>on</strong>g>of</str<strong>on</strong>g>ibers have been obtained from various polymeric systems <str<strong>on</strong>g>and</str<strong>on</strong>g> for a wide<br />

range <str<strong>on</strong>g>of</str<strong>on</strong>g> applicati<strong>on</strong>s. Poly (ethylene gly<str<strong>on</strong>g>co</str<strong>on</strong>g>l), PEG, is widely used in the biomedical field,<br />

especially in tissue growth, because <str<strong>on</strong>g>of</str<strong>on</strong>g> its unique properties, including lack <str<strong>on</strong>g>of</str<strong>on</strong>g> toxicity <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

good bio<str<strong>on</strong>g>co</str<strong>on</strong>g>mpatibility. However, due to its low molecular weight, the electrospinning <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

PEG has not been studied widely – the very low vis<str<strong>on</strong>g>co</str<strong>on</strong>g>sity <str<strong>on</strong>g>of</str<strong>on</strong>g> the spinning <str<strong>on</strong>g>soluti<strong>on</strong></str<strong>on</strong>g> hinders<br />

electrospinning <str<strong>on</strong>g>and</str<strong>on</strong>g> can instead lead to electrospraying (a process <str<strong>on</strong>g>of</str<strong>on</strong>g> bead formati<strong>on</strong>). This<br />

research work focuses <strong>on</strong> <strong>electrospun</strong> high molecular weight PEG nan<str<strong>on</strong>g>of</str<strong>on</strong>g>ibers <str<strong>on</strong>g>and</str<strong>on</strong>g> nanomesh<br />

made from six different <str<strong>on</strong>g><str<strong>on</strong>g>co</str<strong>on</strong>g>ncent<str<strong>on</strong>g>ratio</str<strong>on</strong>g>n</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> PEG dissolved in a 2:1<br />

chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm:methanol mixture, al<strong>on</strong>g with an investigati<strong>on</strong> into the <str<strong>on</strong>g>effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>co</str<strong>on</strong>g>-<str<strong>on</strong>g>solvent</str<strong>on</strong>g> <str<strong>on</strong>g>ratio</str<strong>on</strong>g><br />

<strong>on</strong> the fiber diameters <str<strong>on</strong>g>and</str<strong>on</strong>g> morphology at different <str<strong>on</strong>g><str<strong>on</strong>g>co</str<strong>on</strong>g>ncent<str<strong>on</strong>g>ratio</str<strong>on</strong>g>n</str<strong>on</strong>g>s. The results showed that<br />

for PEG <str<strong>on</strong>g><str<strong>on</strong>g>co</str<strong>on</strong>g>ncent<str<strong>on</strong>g>ratio</str<strong>on</strong>g>n</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 25–35% wt/v, a bimodal distributi<strong>on</strong> in the fibrous structure<br />

<str<strong>on</strong>g>co</str<strong>on</strong>g>uld be obtained. For the same formulati<strong>on</strong>, uniform fiber morphology was obtained with<br />

two distinct diameters, a large 400-500 nm structure <str<strong>on</strong>g>and</str<strong>on</strong>g> a significantly smaller 40-60 nm<br />

structure. The increase in the polymer <str<strong>on</strong>g><str<strong>on</strong>g>co</str<strong>on</strong>g>ncent<str<strong>on</strong>g>ratio</str<strong>on</strong>g>n</str<strong>on</strong>g> did not affect the <str<strong>on</strong>g>soluti<strong>on</strong></str<strong>on</strong>g><br />

<str<strong>on</strong>g>co</str<strong>on</strong>g>nductivity; however, an increase in the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm increased the average fiber<br />

diameter due to reduced electrical <str<strong>on</strong>g>co</str<strong>on</strong>g>nductivity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soluti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> increased <str<strong>on</strong>g>soluti<strong>on</strong></str<strong>on</strong>g> vis<str<strong>on</strong>g>co</str<strong>on</strong>g>sity.<br />

From a <str<strong>on</strong>g>co</str<strong>on</strong>g>mparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the electrical <str<strong>on</strong>g>co</str<strong>on</strong>g>nductivity to the vis<str<strong>on</strong>g>co</str<strong>on</strong>g>sity <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>soluti<strong>on</strong></str<strong>on</strong>g>, it is<br />

suggested that the vis<str<strong>on</strong>g>co</str<strong>on</strong>g>sity played a dominant role in <str<strong>on</strong>g>co</str<strong>on</strong>g>ntrolling fiber morphology.<br />

Scanning Electr<strong>on</strong> Micros<str<strong>on</strong>g>co</str<strong>on</strong>g>py, X-ray Diffracti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Differential Scanning Calorimetry<br />

studies were used to characterize <str<strong>on</strong>g>and</str<strong>on</strong>g> to underst<str<strong>on</strong>g>and</str<strong>on</strong>g> the structure-property relati<strong>on</strong>ship <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the polymer.<br />

INTRODUCTION<br />

The highly versatile technique called electrospinning <str<strong>on</strong>g>co</str<strong>on</strong>g>mbines two techniques, namely<br />

electrospraying <str<strong>on</strong>g>and</str<strong>on</strong>g> spinning (Agarwal et al., 2008). Electrospinning has received much<br />

<str<strong>on</strong>g>co</str<strong>on</strong>g>nside<str<strong>on</strong>g>ratio</str<strong>on</strong>g>n in the last decade, not <strong>on</strong>ly because <str<strong>on</strong>g>of</str<strong>on</strong>g> its versatility in spinning a broad<br />

variety <str<strong>on</strong>g>of</str<strong>on</strong>g> polymeric fibers, but also due to its ability to produce fibers in the nanometer to<br />

micr<strong>on</strong> range <str<strong>on</strong>g>co</str<strong>on</strong>g>nsistently (Bhardwaj <str<strong>on</strong>g>and</str<strong>on</strong>g> Kundu, 2010; Cui et al., 2010). These fibers have<br />

extremely high specific surface area due to their small diameters, <str<strong>on</strong>g>and</str<strong>on</strong>g> nan<str<strong>on</strong>g>of</str<strong>on</strong>g>iber mats can be<br />

extremely porous with good pore inter<str<strong>on</strong>g>co</str<strong>on</strong>g>nnecti<strong>on</strong>. These unique characteristics, in additi<strong>on</strong><br />

to the functi<strong>on</strong>alities <str<strong>on</strong>g>of</str<strong>on</strong>g> the polymers themselves, support the potential use <str<strong>on</strong>g>of</str<strong>on</strong>g> nan<str<strong>on</strong>g>of</str<strong>on</strong>g>ibers<br />

with many desirable properties in advanced applicati<strong>on</strong>s (Jian et al., 2008; Zhang et al.,<br />

2007).


H. Haroosh, D. Chaudhary , G. Ingram<br />

In electrospinning, a high electrical field is applied to the droplet <str<strong>on</strong>g>of</str<strong>on</strong>g> a fluid <str<strong>on</strong>g>soluti<strong>on</strong></str<strong>on</strong>g><br />

flowing from the tip <str<strong>on</strong>g>of</str<strong>on</strong>g> a needle, which acts as <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the electrodes. This leads to droplet<br />

deformati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> to the producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a charged <str<strong>on</strong>g>co</str<strong>on</strong>g>ne <str<strong>on</strong>g>of</str<strong>on</strong>g> droplets that accelerate towards a<br />

<str<strong>on</strong>g>co</str<strong>on</strong>g>unter-electrode <str<strong>on</strong>g>co</str<strong>on</strong>g>llector. The process leads to the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> unbroken fibers <strong>on</strong> the<br />

<str<strong>on</strong>g>co</str<strong>on</strong>g>llector (Agarwal et al., 2008; Frenot <str<strong>on</strong>g>and</str<strong>on</strong>g> Chr<strong>on</strong>akis, 2003).<br />

Biodegradable, hydrophobic polymers normally have good mechanical strength but<br />

lack affinity for biological cells, while hydrophilic polymers generally have high cell<br />

affinity (Jiang et al., 2004). In additi<strong>on</strong>, natural biopolymers generally <str<strong>on</strong>g>of</str<strong>on</strong>g>fer better<br />

bio<str<strong>on</strong>g>co</str<strong>on</strong>g>mpatibility <str<strong>on</strong>g>and</str<strong>on</strong>g> biodegradability than synthetic polymers, <str<strong>on</strong>g>and</str<strong>on</strong>g> are more suitable for<br />

biomedical applicati<strong>on</strong>s. Furthermore, materials from natural sources are advantageous<br />

because <str<strong>on</strong>g>of</str<strong>on</strong>g> their inherent properties <str<strong>on</strong>g>of</str<strong>on</strong>g> biological re<str<strong>on</strong>g>co</str<strong>on</strong>g>gniti<strong>on</strong>, including presentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

receptor-binding lig<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> susceptibility to cell-triggered proteolytic degradati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

remolding (Li et al., 2006; Yao et al., 2007). However, electrospinning <str<strong>on</strong>g>of</str<strong>on</strong>g> these natural<br />

biopolymers is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten difficult <str<strong>on</strong>g>co</str<strong>on</strong>g>mpared to synthetic polymers because their processability<br />

is practically poor <str<strong>on</strong>g>and</str<strong>on</strong>g> the fibers dem<strong>on</strong>strate low mechanical strength, especially in their<br />

swollen state (Jiang et al., 2004). PEG is a hydrophilic <str<strong>on</strong>g>and</str<strong>on</strong>g> water-soluble polymer (Wang et<br />

al., 2006). PEG otherwise known as poly(oxyethylene) or poly(ethylene oxide) (PEO), is a<br />

synthetic polyether that is readily available in a range <str<strong>on</strong>g>of</str<strong>on</strong>g> molecular weights. Materials with<br />

Mw


H. Haroosh, D. Chaudhary , G. Ingram<br />

range <str<strong>on</strong>g>of</str<strong>on</strong>g> 25–28 kV. The electrospinning process was carried out at 24ºC. The resulting<br />

fibers were deposited <strong>on</strong> a flat aluminum foil <str<strong>on</strong>g>co</str<strong>on</strong>g>llector. The distance between the needle tip<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the target was 13 cm. The thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> the fiber mat ranged from 350 to 490 µm.<br />

Characterizati<strong>on</strong> techniques<br />

The vis<str<strong>on</strong>g>co</str<strong>on</strong>g>sity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>soluti<strong>on</strong></str<strong>on</strong>g> was measured by using a Vis<str<strong>on</strong>g>co</str<strong>on</strong>g> 88 vis<str<strong>on</strong>g>co</str<strong>on</strong>g>meter from Malvern<br />

Instruments (UK). It has a built-in temperature sensor <str<strong>on</strong>g>and</str<strong>on</strong>g> uses double gap geometry to<br />

provide extra sensitivity for measuring low-vis<str<strong>on</strong>g>co</str<strong>on</strong>g>sity fluids. The electrical <str<strong>on</strong>g>co</str<strong>on</strong>g>nductivity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the <str<strong>on</strong>g>soluti<strong>on</strong></str<strong>on</strong>g> was measured by using a WP-81 Waterpro<str<strong>on</strong>g>of</str<strong>on</strong>g> C<strong>on</strong>ductivity meter (TPS,<br />

Australia). The morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>electrospun</strong> nan<str<strong>on</strong>g>of</str<strong>on</strong>g>ibers was observed with an Evo 40XVP<br />

scanning electr<strong>on</strong> micros<str<strong>on</strong>g>co</str<strong>on</strong>g>pe (Zeiss, Germany) <str<strong>on</strong>g>and</str<strong>on</strong>g> the accelerating voltage was set at<br />

5 kV. Before SEM observati<strong>on</strong>, the samples were sputter-<str<strong>on</strong>g>co</str<strong>on</strong>g>ated with platinum. Fiber<br />

diameter was calculated from the SEM images by using an in-house developed scanning<br />

program, which analyses a minimum <str<strong>on</strong>g>of</str<strong>on</strong>g> 150 fibers from multiple scanned SEM images.<br />

The X-ray diffracti<strong>on</strong> measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> the prepared samples were performed in a<br />

Bruker Dis<str<strong>on</strong>g>co</str<strong>on</strong>g>ver 8 diffractometer (Germany) operating at 40 kV <str<strong>on</strong>g>and</str<strong>on</strong>g> 40 mA using Cu-Kα<br />

radiati<strong>on</strong> that was m<strong>on</strong>ochromatised with a graphite sample m<strong>on</strong>ochromator with a 2θ<br />

range from 5° to 35° at a scanning rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.05°/s. Thermal analysis was performed using a<br />

DSC6000 Perkin Elmer (USA) differential scanning calorimeter with Cry<str<strong>on</strong>g>of</str<strong>on</strong>g>ill liquid<br />

nitrogen <str<strong>on</strong>g>co</str<strong>on</strong>g>oling system. Approximately 10 mg <str<strong>on</strong>g>of</str<strong>on</strong>g> fiber was sealed in aluminum pans <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

the thermal behavior was analyzed during heating <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>co</str<strong>on</strong>g>oling between 10°C <str<strong>on</strong>g>and</str<strong>on</strong>g> 190°C<br />

with a ramp rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 10°C/min.<br />

RESULTS AND DISCUSSION<br />

Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> PEG <str<strong>on</strong>g><str<strong>on</strong>g>co</str<strong>on</strong>g>ncent<str<strong>on</strong>g>ratio</str<strong>on</strong>g>n</str<strong>on</strong>g><br />

During the process <str<strong>on</strong>g>of</str<strong>on</strong>g> electrospinning, a number <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters can greatly influence the<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the generated fibers. Am<strong>on</strong>g various parameters, the polymer <str<strong>on</strong>g><str<strong>on</strong>g>co</str<strong>on</strong>g>ncent<str<strong>on</strong>g>ratio</str<strong>on</strong>g>n</str<strong>on</strong>g> is<br />

the most significant factor in the process (Xie <str<strong>on</strong>g>and</str<strong>on</strong>g> Buschle Diller, 2010; Yao et al., 2007).<br />

Figure 1a <str<strong>on</strong>g>and</str<strong>on</strong>g> b show that using PEG at <str<strong>on</strong>g><str<strong>on</strong>g>co</str<strong>on</strong>g>ncent<str<strong>on</strong>g>ratio</str<strong>on</strong>g>n</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 15 <str<strong>on</strong>g>and</str<strong>on</strong>g> 20%, respectively, with a<br />

2:1 chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm:methanol <str<strong>on</strong>g>solvent</str<strong>on</strong>g> led to the formati<strong>on</strong> bead structures. This <str<strong>on</strong>g>co</str<strong>on</strong>g>uld be<br />

because <str<strong>on</strong>g>of</str<strong>on</strong>g> the low vis<str<strong>on</strong>g>co</str<strong>on</strong>g>sity at those PEG <str<strong>on</strong>g><str<strong>on</strong>g>co</str<strong>on</strong>g>ncent<str<strong>on</strong>g>ratio</str<strong>on</strong>g>n</str<strong>on</strong>g>s as shown in Fig. 2a. There is a<br />

lower limit to the polymer <str<strong>on</strong>g><str<strong>on</strong>g>co</str<strong>on</strong>g>ncent<str<strong>on</strong>g>ratio</str<strong>on</strong>g>n</str<strong>on</strong>g> or vis<str<strong>on</strong>g>co</str<strong>on</strong>g>sity that must be exceeded for successful<br />

electrospinning, as extensive molecular entanglements are prerequisites for the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a stable <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>co</str<strong>on</strong>g>ntinuous charged jet (Chen et al., 2010; Chuangchote et al., 2009). At low<br />

polymer <str<strong>on</strong>g><str<strong>on</strong>g>co</str<strong>on</strong>g>ncent<str<strong>on</strong>g>ratio</str<strong>on</strong>g>n</str<strong>on</strong>g>s, the degree <str<strong>on</strong>g>of</str<strong>on</strong>g> chain entanglement is not high enough to withst<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

the Coulombic stretching force acting <strong>on</strong> the charged jet, causing the jet to break up into<br />

smaller jets that, as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> surface tensi<strong>on</strong>, then break up further <str<strong>on</strong>g>and</str<strong>on</strong>g> form beads<br />

(Arayanarakul et al., 2006).<br />

Figures 1c, d <str<strong>on</strong>g>and</str<strong>on</strong>g> e dem<strong>on</strong>strate that increasing the PEG <str<strong>on</strong>g><str<strong>on</strong>g>co</str<strong>on</strong>g>ncent<str<strong>on</strong>g>ratio</str<strong>on</strong>g>n</str<strong>on</strong>g> to 25, 30 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

35%, respectively, leads to the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fibrous structures. Interestingly, the structures<br />

<str<strong>on</strong>g>co</str<strong>on</strong>g>ntain mixtures <str<strong>on</strong>g>of</str<strong>on</strong>g> fibers <str<strong>on</strong>g>of</str<strong>on</strong>g> two more-or-less uniform diameters, a large average diameter<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> a small average diameter, with the same morphology. Figures 1c, d <str<strong>on</strong>g>and</str<strong>on</strong>g> e show<br />

homogenous fibers with large average diameters <str<strong>on</strong>g>of</str<strong>on</strong>g> 540, 490 <str<strong>on</strong>g>and</str<strong>on</strong>g> 405 nm, respectively. This<br />

trend is in <str<strong>on</strong>g>co</str<strong>on</strong>g>ntrast to results reported elsewhere that show that high polymer <str<strong>on</strong>g><str<strong>on</strong>g>co</str<strong>on</strong>g>ncent<str<strong>on</strong>g>ratio</str<strong>on</strong>g>n</str<strong>on</strong>g>s<br />

3


H. Haroosh, D. Chaudhary , G. Ingram<br />

lead to larger fiber diameters (Chen et al., 2009; Hsu et al., 2010; Li et al., 2006; Qian et al.,<br />

2010; Spasova et al., 2007; Um et al., 2004), while for the smaller diameter fibers group,<br />

higher PEG <str<strong>on</strong>g><str<strong>on</strong>g>co</str<strong>on</strong>g>ncent<str<strong>on</strong>g>ratio</str<strong>on</strong>g>n</str<strong>on</strong>g>s produced thicker fibers: PEG <str<strong>on</strong>g><str<strong>on</strong>g>co</str<strong>on</strong>g>ncent<str<strong>on</strong>g>ratio</str<strong>on</strong>g>n</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 25, 30 <str<strong>on</strong>g>and</str<strong>on</strong>g> 35%<br />

produced small fibers <str<strong>on</strong>g>of</str<strong>on</strong>g> average diameter 39, 48 <str<strong>on</strong>g>and</str<strong>on</strong>g> 57 nm <str<strong>on</strong>g>and</str<strong>on</strong>g> minimum diameters <str<strong>on</strong>g>of</str<strong>on</strong>g> 25,<br />

29 <str<strong>on</strong>g>and</str<strong>on</strong>g> 34 nm, respectively. In additi<strong>on</strong>, Fig. 3a <str<strong>on</strong>g>and</str<strong>on</strong>g> b show the network structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

small fibers, while Fig. 3c <str<strong>on</strong>g>and</str<strong>on</strong>g> d illustrate the interacti<strong>on</strong> between the small <str<strong>on</strong>g>and</str<strong>on</strong>g> large fibers,<br />

where it is noted that the small fibers lie <strong>on</strong> the surface <str<strong>on</strong>g>of</str<strong>on</strong>g> the large fibers <str<strong>on</strong>g>and</str<strong>on</strong>g> help to link<br />

them together.<br />

Fig. 1: SEM micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>electrospun</strong> PEG fibers using a 2:1 chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm:methanol<br />

<str<strong>on</strong>g>solvent</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> various PEG <str<strong>on</strong>g><str<strong>on</strong>g>co</str<strong>on</strong>g>ncent<str<strong>on</strong>g>ratio</str<strong>on</strong>g>n</str<strong>on</strong>g>s: (a) 15%, (b) 20%, (c) 25%, (d) 30%, (e) 35% <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

(f) 40%. The scale in the micrographs is 10 µm.<br />

Fig. 2: Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> PEG <str<strong>on</strong>g><str<strong>on</strong>g>co</str<strong>on</strong>g>ncent<str<strong>on</strong>g>ratio</str<strong>on</strong>g>n</str<strong>on</strong>g> <strong>on</strong> (a) vis<str<strong>on</strong>g>co</str<strong>on</strong>g>sity <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) electrical <str<strong>on</strong>g>co</str<strong>on</strong>g>nductivity <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

<str<strong>on</strong>g>soluti<strong>on</strong></str<strong>on</strong>g> for a 2:1 chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm:methanol <str<strong>on</strong>g>solvent</str<strong>on</strong>g>.<br />

4


H. Haroosh, D. Chaudhary , G. Ingram<br />

Fig. 3: SEM micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> the small diameter structure for <strong>electrospun</strong> PEG. The scale in<br />

(a) <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) is 100 nm, while in (c) <str<strong>on</strong>g>and</str<strong>on</strong>g> (d) it is 1000 nm <str<strong>on</strong>g>and</str<strong>on</strong>g> 2000 nm, respectively. The key<br />

informati<strong>on</strong> given by (c) <str<strong>on</strong>g>and</str<strong>on</strong>g> (d) is the morphology <str<strong>on</strong>g>and</str<strong>on</strong>g> the way fibers are linked.<br />

Interestingly, when the PEG <str<strong>on</strong>g><str<strong>on</strong>g>co</str<strong>on</strong>g>ncent<str<strong>on</strong>g>ratio</str<strong>on</strong>g>n</str<strong>on</strong>g> reaches 40%, the smaller fibers in the<br />

structure disappear <str<strong>on</strong>g>co</str<strong>on</strong>g>mpletely <str<strong>on</strong>g>and</str<strong>on</strong>g> the formulati<strong>on</strong> produces a m<strong>on</strong>o-disperse nan<str<strong>on</strong>g>of</str<strong>on</strong>g>iber<br />

matrix with beads, as seen in Fig. 1f. It can be seen that within the matrix, the large fibers<br />

have inhomogeneous diameters <str<strong>on</strong>g>and</str<strong>on</strong>g> the average fiber diameter was found to be 730 nm,<br />

which is significantly higher than the diameters produced at lower PEG <str<strong>on</strong>g><str<strong>on</strong>g>co</str<strong>on</strong>g>ncent<str<strong>on</strong>g>ratio</str<strong>on</strong>g>n</str<strong>on</strong>g>s.<br />

Further, as shown in Figure 2b, above 25% polymer <str<strong>on</strong>g><str<strong>on</strong>g>co</str<strong>on</strong>g>ncent<str<strong>on</strong>g>ratio</str<strong>on</strong>g>n</str<strong>on</strong>g> there is no significant<br />

increase in the electrical <str<strong>on</strong>g>co</str<strong>on</strong>g>nductivity <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>soluti<strong>on</strong></str<strong>on</strong>g>, indicating that the dominant factor<br />

influencing the fiber structure was the <str<strong>on</strong>g>soluti<strong>on</strong></str<strong>on</strong>g> vis<str<strong>on</strong>g>co</str<strong>on</strong>g>sity. This is typical behavior since it is<br />

known that higher vis<str<strong>on</strong>g>co</str<strong>on</strong>g>sities generally leads to failure in forming a polymer jet, as the<br />

electric force is not able to ‘carry’ the thick <str<strong>on</strong>g>soluti<strong>on</strong></str<strong>on</strong>g> (Um et al., 2004).<br />

Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>co</str<strong>on</strong>g>-<str<strong>on</strong>g>solvent</str<strong>on</strong>g> <str<strong>on</strong>g>ratio</str<strong>on</strong>g><br />

Selecting an appropriate <str<strong>on</strong>g>solvent</str<strong>on</strong>g> system is crucial for successful electrospinning (Han et al.,<br />

2010; Hsu et al., 2010). From Fig. 4, it can be seen that the <str<strong>on</strong>g>ratio</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>co</str<strong>on</strong>g>-<str<strong>on</strong>g>solvent</str<strong>on</strong>g>s had a<br />

large <str<strong>on</strong>g>effect</str<strong>on</strong>g> <strong>on</strong> the diameters <str<strong>on</strong>g>and</str<strong>on</strong>g> homogeneity <str<strong>on</strong>g>of</str<strong>on</strong>g> the fibers formed. Similar to our previous<br />

results with different PEG <str<strong>on</strong>g><str<strong>on</strong>g>co</str<strong>on</strong>g>ncent<str<strong>on</strong>g>ratio</str<strong>on</strong>g>n</str<strong>on</strong>g>s, fibrous structures were produced with two moreor-less<br />

uniform fiber diameters in the same morphology. Increasing the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> methanol<br />

in the <str<strong>on</strong>g>soluti<strong>on</strong></str<strong>on</strong>g> reduced the average fiber diameter for the larger fibers. Since increasing the<br />

fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> methanol in the <str<strong>on</strong>g>solvent</str<strong>on</strong>g> reduces the vis<str<strong>on</strong>g>co</str<strong>on</strong>g>sity (see Fig. 5a), such behavior is<br />

typical <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>electrospun</strong> nan<str<strong>on</strong>g>of</str<strong>on</strong>g>ibers <str<strong>on</strong>g>and</str<strong>on</strong>g> this behavior is in <str<strong>on</strong>g>co</str<strong>on</strong>g>ntrast to the behavior seen with<br />

change in <str<strong>on</strong>g><str<strong>on</strong>g>co</str<strong>on</strong>g>ncent<str<strong>on</strong>g>ratio</str<strong>on</strong>g>n</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> PEG (see Fig. 3c, d <str<strong>on</strong>g>and</str<strong>on</strong>g> e). However, the average fiber diameter<br />

for the smaller fibers reduced with reducing vis<str<strong>on</strong>g>co</str<strong>on</strong>g>sity <str<strong>on</strong>g>and</str<strong>on</strong>g> increasing <str<strong>on</strong>g>co</str<strong>on</strong>g>nductivity, which is<br />

5


H. Haroosh, D. Chaudhary , G. Ingram<br />

similar to our finding with <str<strong>on</strong>g><str<strong>on</strong>g>co</str<strong>on</strong>g>ncent<str<strong>on</strong>g>ratio</str<strong>on</strong>g>n</str<strong>on</strong>g> change. For example, in Fig. 4a, the chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm to<br />

methanol <str<strong>on</strong>g>ratio</str<strong>on</strong>g> was 1:0 (that is, pure chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm) <str<strong>on</strong>g>and</str<strong>on</strong>g> a uniform fiber structure with a large<br />

average diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> 870 nm was produced. By increasing the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> methanol to give a<br />

chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm:methanol <str<strong>on</strong>g>ratio</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 3:1, the average large fiber diameter decreased to 703 nm. As<br />

reported in the previous secti<strong>on</strong>, a 2:1 <str<strong>on</strong>g>solvent</str<strong>on</strong>g> <str<strong>on</strong>g>ratio</str<strong>on</strong>g> produced an average large fiber<br />

diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> 405 nm (Fig. 1e). Further increasing the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> methanol to a 1:1 <str<strong>on</strong>g>ratio</str<strong>on</strong>g><br />

resulted in broken fibers, <str<strong>on</strong>g>and</str<strong>on</strong>g> the average diameter also decreased to 395 nm. When the<br />

<str<strong>on</strong>g>ratio</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm to methanol was reduced even further to 1:2, fibers were produced that<br />

<str<strong>on</strong>g>co</str<strong>on</strong>g>ntained some beads, <str<strong>on</strong>g>and</str<strong>on</strong>g> the average diameter was reduced to 301 nm.<br />

Fig. 4: SEM micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>electrospun</strong> PEG fibers for 35% PEG <str<strong>on</strong>g><str<strong>on</strong>g>co</str<strong>on</strong>g>ncent<str<strong>on</strong>g>ratio</str<strong>on</strong>g>n</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

various <str<strong>on</strong>g>ratio</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm:methanol: (a) 1:0, (b) 3:1, (c) 1:1 <str<strong>on</strong>g>and</str<strong>on</strong>g> (d) 1:2. The scale in the<br />

micrographs is 10 µm. Results for a 2:1 <str<strong>on</strong>g>ratio</str<strong>on</strong>g> appear in Fig. 1e.<br />

The observed behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> fiber diameter with PEG <str<strong>on</strong>g><str<strong>on</strong>g>co</str<strong>on</strong>g>ncent<str<strong>on</strong>g>ratio</str<strong>on</strong>g>n</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>co</str<strong>on</strong>g>-<str<strong>on</strong>g>solvent</str<strong>on</strong>g><br />

<str<strong>on</strong>g>ratio</str<strong>on</strong>g> may be partly explained by two properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the spinning <str<strong>on</strong>g>soluti<strong>on</strong></str<strong>on</strong>g>, namely the<br />

vis<str<strong>on</strong>g>co</str<strong>on</strong>g>sity <str<strong>on</strong>g>and</str<strong>on</strong>g> the electrical <str<strong>on</strong>g>co</str<strong>on</strong>g>nductivity. Figure 5 shows that both vis<str<strong>on</strong>g>co</str<strong>on</strong>g>sity <str<strong>on</strong>g>and</str<strong>on</strong>g> electrical<br />

<str<strong>on</strong>g>co</str<strong>on</strong>g>nductivity were influenced by the chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm:methanol <str<strong>on</strong>g>ratio</str<strong>on</strong>g>, while there was <strong>on</strong>ly a<br />

significant change in vis<str<strong>on</strong>g>co</str<strong>on</strong>g>sity when the PEG <str<strong>on</strong>g><str<strong>on</strong>g>co</str<strong>on</strong>g>ncent<str<strong>on</strong>g>ratio</str<strong>on</strong>g>n</str<strong>on</strong>g> was changed at <str<strong>on</strong>g>co</str<strong>on</strong>g>nstant <str<strong>on</strong>g>co</str<strong>on</strong>g><str<strong>on</strong>g>solvent</str<strong>on</strong>g><br />

<str<strong>on</strong>g>ratio</str<strong>on</strong>g>, as shown in Fig 2. Furthermore, the volatilities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>solvent</str<strong>on</strong>g>s significantly affect<br />

the solidificati<strong>on</strong> process, <str<strong>on</strong>g>and</str<strong>on</strong>g> influence the morphologies <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>electrospun</strong> nan<str<strong>on</strong>g>of</str<strong>on</strong>g>ibres<br />

(Abdul Rahman et al., 2010; Qian et al., 2010). The volatility <str<strong>on</strong>g>of</str<strong>on</strong>g> chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm less than that<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> methanol <str<strong>on</strong>g>and</str<strong>on</strong>g> this is probably the cause <str<strong>on</strong>g>of</str<strong>on</strong>g> uniformity <str<strong>on</strong>g>of</str<strong>on</strong>g> structure formed when the<br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm is higher than methanol. It is thought that the decreasing the<br />

vis<str<strong>on</strong>g>co</str<strong>on</strong>g>sity <str<strong>on</strong>g>of</str<strong>on</strong>g> the spinning <str<strong>on</strong>g>soluti<strong>on</strong></str<strong>on</strong>g> results in a decrease in the diameters <str<strong>on</strong>g>of</str<strong>on</strong>g> the fibers <str<strong>on</strong>g>and</str<strong>on</strong>g> a<br />

higher vis<str<strong>on</strong>g>co</str<strong>on</strong>g>sity tends to fabricate fibers with larger diameter (Arayanarakul et al., 2006;<br />

Yao et al., 2007; Zamani et al., 2010). In terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> electrical <str<strong>on</strong>g>co</str<strong>on</strong>g>nductivity, as<br />

shown in Fig. 5b, an increase in the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> methanol led to increase in the <str<strong>on</strong>g>co</str<strong>on</strong>g>nductivity,<br />

because methanol has a higher dielectric <str<strong>on</strong>g>co</str<strong>on</strong>g>nstant than chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm: 33 for methanol<br />

6


H. Haroosh, D. Chaudhary , G. Ingram<br />

<str<strong>on</strong>g>co</str<strong>on</strong>g>mpared to 4.8 for chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm (Bhardwaj <str<strong>on</strong>g>and</str<strong>on</strong>g> Kundu, 2010). When the electrical<br />

<str<strong>on</strong>g>co</str<strong>on</strong>g>nductivity <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>soluti<strong>on</strong></str<strong>on</strong>g> increases, more electric charges are carried by the<br />

electrospinning jet. Thus, higher el<strong>on</strong>gati<strong>on</strong> forces are imposed to the jet under the<br />

electrical field (Zamani et al., 2010). On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, by increasing the <str<strong>on</strong>g>soluti<strong>on</strong></str<strong>on</strong>g><br />

<str<strong>on</strong>g>co</str<strong>on</strong>g>nductivity, bending instability can be increased during electrospinning. So, the jet path<br />

be<str<strong>on</strong>g>co</str<strong>on</strong>g>mes l<strong>on</strong>ger <str<strong>on</strong>g>and</str<strong>on</strong>g> more stretching <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>soluti<strong>on</strong></str<strong>on</strong>g> is induced. Both higher el<strong>on</strong>gati<strong>on</strong><br />

forces <str<strong>on</strong>g>and</str<strong>on</strong>g> greater bending instability resulted in fibers with lower diameter (Lee et al.,<br />

2010; Saraf et al., 2009).<br />

Fig. 5: Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm to methanol <str<strong>on</strong>g>solvent</str<strong>on</strong>g> <str<strong>on</strong>g>ratio</str<strong>on</strong>g> <strong>on</strong> (a) vis<str<strong>on</strong>g>co</str<strong>on</strong>g>sity <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) electrical<br />

<str<strong>on</strong>g>co</str<strong>on</strong>g>nductivity <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>soluti<strong>on</strong></str<strong>on</strong>g> for a 35% PEG <str<strong>on</strong>g><str<strong>on</strong>g>co</str<strong>on</strong>g>ncent<str<strong>on</strong>g>ratio</str<strong>on</strong>g>n</str<strong>on</strong>g>.<br />

Crystallinity <str<strong>on</strong>g>and</str<strong>on</strong>g> thermal properties<br />

XRD was carried out to investigate the <str<strong>on</strong>g>effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the PEG <str<strong>on</strong>g><str<strong>on</strong>g>co</str<strong>on</strong>g>ncent<str<strong>on</strong>g>ratio</str<strong>on</strong>g>n</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>co</str<strong>on</strong>g>-<str<strong>on</strong>g>solvent</str<strong>on</strong>g> <str<strong>on</strong>g>ratio</str<strong>on</strong>g><br />

<strong>on</strong> the structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>electrospun</strong> nan<str<strong>on</strong>g>of</str<strong>on</strong>g>ibers. Figure 6 shows the XRD patterns for the<br />

fibers produced from <str<strong>on</strong>g>soluti<strong>on</strong></str<strong>on</strong>g>s with PEG <str<strong>on</strong>g><str<strong>on</strong>g>co</str<strong>on</strong>g>ncent<str<strong>on</strong>g>ratio</str<strong>on</strong>g>n</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 25% <str<strong>on</strong>g>and</str<strong>on</strong>g> 35% dissolved with<br />

different <str<strong>on</strong>g>co</str<strong>on</strong>g>-<str<strong>on</strong>g>solvent</str<strong>on</strong>g> <str<strong>on</strong>g>ratio</str<strong>on</strong>g>s. There is no significant change in the XRD pattern for either<br />

formulati<strong>on</strong>s, but it can be seen that the diffracti<strong>on</strong> peaks <str<strong>on</strong>g>of</str<strong>on</strong>g> PEG, at angles <str<strong>on</strong>g>of</str<strong>on</strong>g> 2θ = 13.2°<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> 18.65°, there appeared small shoulders when the nan<str<strong>on</strong>g>of</str<strong>on</strong>g>ibers <str<strong>on</strong>g>co</str<strong>on</strong>g>ntained the higher<br />

<str<strong>on</strong>g>soluti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g><str<strong>on</strong>g>co</str<strong>on</strong>g>ncent<str<strong>on</strong>g>ratio</str<strong>on</strong>g>n</str<strong>on</strong>g>, while the shoulders disappeared at the low <str<strong>on</strong>g><str<strong>on</strong>g>co</str<strong>on</strong>g>ncent<str<strong>on</strong>g>ratio</str<strong>on</strong>g>n</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> PEG.<br />

Moreover, for 35% PEG <str<strong>on</strong>g>soluti<strong>on</strong></str<strong>on</strong>g>, two small peaks at 2θ = 13.6° <str<strong>on</strong>g>and</str<strong>on</strong>g> 2θ = 27.95° were not<br />

seen in samples with 25% PEG. We found that the crystallinity (%C) for a PEG<br />

<str<strong>on</strong>g><str<strong>on</strong>g>co</str<strong>on</strong>g>ncent<str<strong>on</strong>g>ratio</str<strong>on</strong>g>n</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 35% was higher than for 25% PEG, <str<strong>on</strong>g>and</str<strong>on</strong>g> there is no significant change in<br />

either the melting enthalpy (∆Hm) or the melting temperature (Tm) <str<strong>on</strong>g>of</str<strong>on</strong>g> the nan<str<strong>on</strong>g>of</str<strong>on</strong>g>ibers (Table<br />

1). This indicates that the changes in polymer <str<strong>on</strong>g><str<strong>on</strong>g>co</str<strong>on</strong>g>ncent<str<strong>on</strong>g>ratio</str<strong>on</strong>g>n</str<strong>on</strong>g> or the <str<strong>on</strong>g>co</str<strong>on</strong>g>-<str<strong>on</strong>g>solvent</str<strong>on</strong>g> <str<strong>on</strong>g>ratio</str<strong>on</strong>g> do not<br />

change the molecular behavior, but the primary change occurs in the bulk re-arrangements,<br />

as seen in the morphology <str<strong>on</strong>g>and</str<strong>on</strong>g> structural changes.<br />

7


H. Haroosh, D. Chaudhary , G. Ingram<br />

Tab.1: DSC results for nan<str<strong>on</strong>g>of</str<strong>on</strong>g>ibers with different PEG <str<strong>on</strong>g><str<strong>on</strong>g>co</str<strong>on</strong>g>ncent<str<strong>on</strong>g>ratio</str<strong>on</strong>g>n</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> different <str<strong>on</strong>g>co</str<strong>on</strong>g><str<strong>on</strong>g>solvent</str<strong>on</strong>g><br />

<str<strong>on</strong>g>ratio</str<strong>on</strong>g>s. Experiments were repeated for three sets <str<strong>on</strong>g>of</str<strong>on</strong>g> samples; st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard deviati<strong>on</strong> for<br />

Tg <str<strong>on</strong>g>and</str<strong>on</strong>g> Tm values are < 1%.<br />

Sample %C<br />

PEG 35%, chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm: methanol <str<strong>on</strong>g>ratio</str<strong>on</strong>g> 1:0 89.15 67.92 204.83<br />

PEG 25%, chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm: methanol <str<strong>on</strong>g>ratio</str<strong>on</strong>g> 2:1 81.05 65.02 214.76<br />

PEG 35%, chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm: methanol <str<strong>on</strong>g>ratio</str<strong>on</strong>g> 3:1 87.71 65.55 207.46<br />

PEG 35%, chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm: methanol <str<strong>on</strong>g>ratio</str<strong>on</strong>g> 2:1 88.24 65.50 210.85<br />

Fig. 6: X-ray diffracti<strong>on</strong> patterns for selected samples showing the relative positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

intercalati<strong>on</strong> peak due to different <str<strong>on</strong>g><str<strong>on</strong>g>co</str<strong>on</strong>g>ncent<str<strong>on</strong>g>ratio</str<strong>on</strong>g>n</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> PEG <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>co</str<strong>on</strong>g>-<str<strong>on</strong>g>solvent</str<strong>on</strong>g> <str<strong>on</strong>g>ratio</str<strong>on</strong>g>s.<br />

CONCLUSIONS<br />

Tm ( o C) ∆Hm (J/g)<br />

This investigati<strong>on</strong> focused <strong>on</strong> the morphological evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>electrospun</strong> nan<str<strong>on</strong>g>of</str<strong>on</strong>g>ibers<br />

produced at six different <str<strong>on</strong>g><str<strong>on</strong>g>co</str<strong>on</strong>g>ncent<str<strong>on</strong>g>ratio</str<strong>on</strong>g>n</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> PEG that were dissolved in a 2:1<br />

chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm:methanol <str<strong>on</strong>g>solvent</str<strong>on</strong>g>, <str<strong>on</strong>g>and</str<strong>on</strong>g> it also studied the <str<strong>on</strong>g>effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> five different <str<strong>on</strong>g>co</str<strong>on</strong>g>-<str<strong>on</strong>g>solvent</str<strong>on</strong>g><br />

<str<strong>on</strong>g>ratio</str<strong>on</strong>g>s <strong>on</strong> the fiber diameters <str<strong>on</strong>g>and</str<strong>on</strong>g> morphology at <str<strong>on</strong>g>co</str<strong>on</strong>g>nstant PEG <str<strong>on</strong>g><str<strong>on</strong>g>co</str<strong>on</strong>g>ncent<str<strong>on</strong>g>ratio</str<strong>on</strong>g>n</str<strong>on</strong>g>. Some<br />

interesting behavior for the fibrous structures was observed: a structure having a bimodal<br />

distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fiber diameters with the same morphology was produced for PEG<br />

<str<strong>on</strong>g><str<strong>on</strong>g>co</str<strong>on</strong>g>ncent<str<strong>on</strong>g>ratio</str<strong>on</strong>g>n</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 25, 30 <str<strong>on</strong>g>and</str<strong>on</strong>g> 35%. In terms <str<strong>on</strong>g>of</str<strong>on</strong>g> spinning <str<strong>on</strong>g>soluti<strong>on</strong></str<strong>on</strong>g> properties, there was no<br />

significant <str<strong>on</strong>g>effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> increasing the PEG <str<strong>on</strong>g><str<strong>on</strong>g>co</str<strong>on</strong>g>ncent<str<strong>on</strong>g>ratio</str<strong>on</strong>g>n</str<strong>on</strong>g> <strong>on</strong> the <str<strong>on</strong>g>soluti<strong>on</strong></str<strong>on</strong>g>’s electrical<br />

<str<strong>on</strong>g>co</str<strong>on</strong>g>nductivity, especially for PEG <str<strong>on</strong>g><str<strong>on</strong>g>co</str<strong>on</strong>g>ncent<str<strong>on</strong>g>ratio</str<strong>on</strong>g>n</str<strong>on</strong>g>s above 25%; however, the <str<strong>on</strong>g>soluti<strong>on</strong></str<strong>on</strong>g>’s<br />

vis<str<strong>on</strong>g>co</str<strong>on</strong>g>sity did change <str<strong>on</strong>g>co</str<strong>on</strong>g>nsiderably, <str<strong>on</strong>g>and</str<strong>on</strong>g> this was the main factor influencing the fibrous<br />

structure. When changing the <str<strong>on</strong>g>co</str<strong>on</strong>g>-<str<strong>on</strong>g>solvent</str<strong>on</strong>g> <str<strong>on</strong>g>ratio</str<strong>on</strong>g>, both vis<str<strong>on</strong>g>co</str<strong>on</strong>g>sity <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>co</str<strong>on</strong>g>nductivity varied<br />

<str<strong>on</strong>g>co</str<strong>on</strong>g>nsiderably, <str<strong>on</strong>g>and</str<strong>on</strong>g> both <str<strong>on</strong>g>co</str<strong>on</strong>g>uld have affected fiber diameter. Also, more uniform structures<br />

8


H. Haroosh, D. Chaudhary , G. Ingram<br />

formed when the <str<strong>on</strong>g>ratio</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm was higher than methanol. The crystallinity <str<strong>on</strong>g>of</str<strong>on</strong>g> fibers<br />

produced from a high <str<strong>on</strong>g><str<strong>on</strong>g>co</str<strong>on</strong>g>ncent<str<strong>on</strong>g>ratio</str<strong>on</strong>g>n</str<strong>on</strong>g> PEG <str<strong>on</strong>g>soluti<strong>on</strong></str<strong>on</strong>g> was greater than for low <str<strong>on</strong>g><str<strong>on</strong>g>co</str<strong>on</strong>g>ncent<str<strong>on</strong>g>ratio</str<strong>on</strong>g>n</str<strong>on</strong>g>.<br />

Using different <str<strong>on</strong>g>co</str<strong>on</strong>g>-<str<strong>on</strong>g>solvent</str<strong>on</strong>g> <str<strong>on</strong>g>ratio</str<strong>on</strong>g>s or different polymer <str<strong>on</strong>g><str<strong>on</strong>g>co</str<strong>on</strong>g>ncent<str<strong>on</strong>g>ratio</str<strong>on</strong>g>n</str<strong>on</strong>g>s did not significantly<br />

change either the melting enthalpy or the melting temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> the nan<str<strong>on</strong>g>of</str<strong>on</strong>g>ibers; the<br />

dominant change was visible in the bulk rearrangement, as seen in the fiber morphology.<br />

REFERENCES<br />

ABDUL RAHMAN, N., GIZDAVIC-NIKOLAIDIS, M., RAY, S., EASTEAL, A. & TRAVAS-<br />

SEJDIC, J. 2010. Functi<strong>on</strong>al <strong>electrospun</strong> nan<str<strong>on</strong>g>of</str<strong>on</strong>g>ibres <str<strong>on</strong>g>of</str<strong>on</strong>g> poly (lactic acid) blends with<br />

polyaniline or poly (aniline-<str<strong>on</strong>g>co</str<strong>on</strong>g>-benzoic acid). Synthetic Metals, 160, 2015-2022.<br />

AGARWAL, S., WENDORFF, J. & GREINER, A. 2008. Use <str<strong>on</strong>g>of</str<strong>on</strong>g> electrospinning technique for<br />

biomedical applicati<strong>on</strong>s. Polymer, 49, 5603-5621.<br />

ARAYANARAKUL, K., CHOKTAWEESAP, N., AHT ONG, D., MEECHAISUE, C. &<br />

SUPAPHOL, P. 2006. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> poly (ethylene gly<str<strong>on</strong>g>co</str<strong>on</strong>g>l), inorganic salt, sodium dodecyl<br />

sulfate, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>solvent</str<strong>on</strong>g> system <strong>on</strong> electrospinning <str<strong>on</strong>g>of</str<strong>on</strong>g> poly (ethylene oxide). Macromolecular<br />

Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> Engineering, 291, 581-591.<br />

BHARDWAJ, N. & KUNDU, S. 2010. Electrospinning: A fascinating fiber fabricati<strong>on</strong> technique.<br />

Biotechnology advances, 28, 325-347.<br />

CHEN, R., HUANG, C., KE, Q., HE, C., WANG, H. & MO, X. 2010. Prepa<str<strong>on</strong>g>ratio</str<strong>on</strong>g>n <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Coaxial Electrospun Thermoplastic Polyurethane/Collagen Compound<br />

Nan<str<strong>on</strong>g>of</str<strong>on</strong>g>ibers for Tissue Engineering Applicati<strong>on</strong>s. Colloids <str<strong>on</strong>g>and</str<strong>on</strong>g> Surfaces B: Biointerfaces,<br />

79, 315-325.<br />

CHEN, Z., WEI, B., MO, X. & CUI, F. 2009. Diameter <str<strong>on</strong>g>co</str<strong>on</strong>g>ntrol <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>electrospun</strong> chitosan <str<strong>on</strong>g>co</str<strong>on</strong>g>llagen<br />

fibers. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Polymer Science Part B: Polymer Physics, 47, 1949-1955.<br />

CHUANGCHOTE, S., SAGAWA, T. & YOSHIKAWA, S. 2009. Electrospinning <str<strong>on</strong>g>of</str<strong>on</strong>g> poly (vinyl<br />

pyrrolid<strong>on</strong>e): Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>solvent</str<strong>on</strong>g>s <strong>on</strong> electrospinnability for the fabricati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> poly (p<br />

phenylene vinylene) <str<strong>on</strong>g>and</str<strong>on</strong>g> TiO2 nan<str<strong>on</strong>g>of</str<strong>on</strong>g>ibers. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Polymer Science, 114, 2777-<br />

2791.<br />

CUI, W., ZHOU, Y. & CHANG, J. 2010. Electrospun nan<str<strong>on</strong>g>of</str<strong>on</strong>g>ibrous materials for tissue engineering<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> drug delivery. Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Technology <str<strong>on</strong>g>of</str<strong>on</strong>g> Advanced Materials, 11, 014108.<br />

FRENOT, A. & CHRONAKIS, I. 2003. Polymer nan<str<strong>on</strong>g>of</str<strong>on</strong>g>ibers assembled by electrospinning. Current<br />

Opini<strong>on</strong> in Colloid & Interface Science, 8, 64-75.<br />

HAN, J., BRANFORD-WHITE, C. & ZHU, L. 2010. Prepa<str<strong>on</strong>g>ratio</str<strong>on</strong>g>n <str<strong>on</strong>g>of</str<strong>on</strong>g> poly ([epsil<strong>on</strong>]caprolact<strong>on</strong>e)/poly<br />

(trimethylene carb<strong>on</strong>ate) blend nan<str<strong>on</strong>g>of</str<strong>on</strong>g>ibers by electrospinning.<br />

Carbohydrate Polymers, 79, 214-218.<br />

HSU, F., HUNG, Y., LIOU, H. & SHEN, C. 2010. Electrospun hyalur<strong>on</strong>ate-<str<strong>on</strong>g>co</str<strong>on</strong>g>llagen nan<str<strong>on</strong>g>of</str<strong>on</strong>g>ibrous<br />

matrix <str<strong>on</strong>g>and</str<strong>on</strong>g> the <str<strong>on</strong>g>effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> varying the <str<strong>on</strong>g><str<strong>on</strong>g>co</str<strong>on</strong>g>ncent<str<strong>on</strong>g>ratio</str<strong>on</strong>g>n</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> hyalur<strong>on</strong>ate <strong>on</strong> the characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

foreskin fibroblast cells. Acta biomaterialia, 6, 2140-2147.<br />

JIAN, F., HAITAO, N., TONG, L. & XUN-GAI, W. 2008. Applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>electrospun</strong> nan<str<strong>on</strong>g>of</str<strong>on</strong>g>ibers.<br />

Chin. Sci. Bull, 53, 2265-2286.<br />

JIANG, H., FANG, D., HSIAO, B., CHU, B. & CHEN, W. 2004. Optimizati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> characterizati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> dextran membranes prepared by electrospinning. Biomacromolecules, 5, 326-333.<br />

LEE, G., SONG, J. & YOON, K. 2010. C<strong>on</strong>trolled wall thickness <str<strong>on</strong>g>and</str<strong>on</strong>g> porosity <str<strong>on</strong>g>of</str<strong>on</strong>g> polymeric hollow<br />

nan<str<strong>on</strong>g>of</str<strong>on</strong>g>ibers by <str<strong>on</strong>g>co</str<strong>on</strong>g>axial electrospinning. Macromolecular Research, 18, 571-576.<br />

LI, J., HE, A., HAN, C., FANG, D., HSIAO, B. & CHU, B. 2006. Electrospinning <str<strong>on</strong>g>of</str<strong>on</strong>g> hyalur<strong>on</strong>ic<br />

acid (HA) <str<strong>on</strong>g>and</str<strong>on</strong>g> HA/gelatin blends. Macromolecular Rapid Communicati<strong>on</strong>s, 27, 114-120.<br />

LI, Y., JIANG, H. & ZHU, K. 2008. Encapsulati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>co</str<strong>on</strong>g>ntrolled release <str<strong>on</strong>g>of</str<strong>on</strong>g> lysozyme from<br />

<strong>electrospun</strong> poly ( -caprolact<strong>on</strong>e)/poly (ethylene gly<str<strong>on</strong>g>co</str<strong>on</strong>g>l) n<strong>on</strong>-woven membranes by<br />

9


H. Haroosh, D. Chaudhary , G. Ingram<br />

formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lysozyme–oleate <str<strong>on</strong>g>co</str<strong>on</strong>g>mplexes. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Materials Science: Materials in<br />

Medicine, 19, 827-832.<br />

LIAO, I., CHEW, S. & LEONG, K. 2006. Aligned <str<strong>on</strong>g>co</str<strong>on</strong>g>re-shell nan<str<strong>on</strong>g>of</str<strong>on</strong>g>ibers delivering bioactive<br />

proteins. Nanomedicine, 1, 465-471.<br />

QIAN, Y., SU, Y., LI, X., WANG, H. & HE, C. 2010. Electrospinning <str<strong>on</strong>g>of</str<strong>on</strong>g> polymethyl methacrylate<br />

nan<str<strong>on</strong>g>of</str<strong>on</strong>g>ibres in different <str<strong>on</strong>g>solvent</str<strong>on</strong>g>s. Iranian Polymer Journal, 19, 123-129.<br />

SARAF, A., LOZIER, G., HAESSLEIN, A., KASPER, F., RAPHAEL, R., BAGGETT, L. &<br />

MIKOS, A. 2009. Fabricati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> N<strong>on</strong>woven Coaxial Fiber Meshes by Electrospinning.<br />

Tissue Engineering Part C: Methods, 15, 333-344.<br />

SPASOVA, M., STOILOVA, O., MANOLOVA, N., RASHKOV, I. & ALTANKOV, G. 2007.<br />

Prepa<str<strong>on</strong>g>ratio</str<strong>on</strong>g>n <str<strong>on</strong>g>of</str<strong>on</strong>g> PLLA/PEG nan<str<strong>on</strong>g>of</str<strong>on</strong>g>ibers by electrospinning <str<strong>on</strong>g>and</str<strong>on</strong>g> potential applicati<strong>on</strong>s. Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Bioactive <str<strong>on</strong>g>and</str<strong>on</strong>g> Compatible Polymers, 22, 62.<br />

UM, I., FANG, D., HSIAO, B., OKAMOTO, A. & CHU, B. 2004. Electro-spinning <str<strong>on</strong>g>and</str<strong>on</strong>g> electroblowing<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> hyalur<strong>on</strong>ic acid. Biomacromolecules, 5, 1428-1436.<br />

WANG, M., YU, J., KAPLAN, D. & RUTLEDGE, G. 2006. Producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> submicr<strong>on</strong> diameter silk<br />

fibers under benign processing <str<strong>on</strong>g>co</str<strong>on</strong>g>nditi<strong>on</strong>s by two-fluid electrospinning. Macromolecules,<br />

39, 1102-1107.<br />

XIE, Z. & BUSCHLE DILLER, G. 2010. Electrospun poly (D, L lactide) fibers for drug delivery:<br />

The influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>co</str<strong>on</strong>g><str<strong>on</strong>g>solvent</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> the mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> drug release. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Polymer<br />

Science, 115, 1-8.<br />

YAO, C., LI, X. & SONG, T. 2007. Fabricati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> zein/hyalur<strong>on</strong>ic acid fibrous membranes by<br />

electrospinning. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Biomaterials Science, Polymer Editi<strong>on</strong>, 18, 731-742.<br />

ZAMANI, M., MORSHED, M., VARSHOSAZ, J. & JANNESARI, M. 2010. C<strong>on</strong>trolled release <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

metr<strong>on</strong>idazole benzoate from poly [epsil<strong>on</strong>]-caprolact<strong>on</strong>e <strong>electrospun</strong> nan<str<strong>on</strong>g>of</str<strong>on</strong>g>ibers for<br />

period<strong>on</strong>tal diseases. European Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Pharmaceutics <str<strong>on</strong>g>and</str<strong>on</strong>g> Biopharmaceutics, 75, 179-<br />

185.<br />

ZHANG, Y., SU, B., VENUGOPAL, J., RAMAKRISHNA, S. & LIM, C. 2007. Biomimetic <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

bioactive nan<str<strong>on</strong>g>of</str<strong>on</strong>g>ibrous scaffolds from <strong>electrospun</strong> <str<strong>on</strong>g>co</str<strong>on</strong>g>mposite nan<str<strong>on</strong>g>of</str<strong>on</strong>g>ibers. Internati<strong>on</strong>al<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Nanomedicine, 2, 623.<br />

BRIEF BIOGRAPHY OF PRESENTER<br />

Hazim Haroosh is currently a PhD student in the Chemical Engineering Department at<br />

Curtin University. He received his B.Sc. <str<strong>on</strong>g>and</str<strong>on</strong>g> M.Sc. degrees in Chemical Engineering from<br />

Tikrit University, Iraq. He worked in The State Company for Drug Industries <str<strong>on</strong>g>and</str<strong>on</strong>g> Medical<br />

Appliances, Samara (SDI), Iraq, as the Assistant Chief Engineer. He has h<str<strong>on</strong>g>and</str<strong>on</strong>g>s-<strong>on</strong><br />

experience in quality <str<strong>on</strong>g>co</str<strong>on</strong>g>ntrol <str<strong>on</strong>g>and</str<strong>on</strong>g> management, project planning <str<strong>on</strong>g>and</str<strong>on</strong>g> envir<strong>on</strong>mental impact<br />

assessment, <str<strong>on</strong>g>and</str<strong>on</strong>g> he was the director <str<strong>on</strong>g>of</str<strong>on</strong>g> the Wastewater Treatment Department. He is a<br />

member <str<strong>on</strong>g>of</str<strong>on</strong>g> the Iraqi Engineers Associati<strong>on</strong>.<br />

10

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!