06.12.2012 Views

Polar Effects in Radical Reactions - Department of Chemistry ...

Polar Effects in Radical Reactions - Department of Chemistry ...

Polar Effects in Radical Reactions - Department of Chemistry ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Polar</strong> <strong>Effects</strong> <strong>in</strong> <strong>Radical</strong> <strong>Reactions</strong><br />

Partha Nandi<br />

H<br />

H<br />

H<br />

<strong>Department</strong> <strong>of</strong> <strong>Chemistry</strong><br />

Michigan State University


Objectives and Motivations<br />

• Orig<strong>in</strong> <strong>of</strong> polar effects <strong>in</strong> organic radical reactions<br />

• Improve the ability to design experiments<br />

• F<strong>in</strong>d new ways to expand the scope <strong>of</strong> known reaction<br />

mechanisms to address reactivity-selectivity problems


Outl<strong>in</strong>e<br />

• The polar-effect <strong>in</strong> traditional organic reaction mechanisms.<br />

Is a polar-effect anticipated for radical reactions?<br />

• Factors responsible for polar-effect <strong>in</strong> radicals<br />

(1) Geometry and Orbital <strong>in</strong>teractions<br />

(2) Non-perfect synchronization <strong>of</strong> TS<br />

(3) Solvent polarity and viscosity (“cage effect”)<br />

• Specific examples and illustrations<br />

• Conclusions and remarks


Outl<strong>in</strong>e<br />

• <strong>Polar</strong>-effects <strong>in</strong> traditional organic reaction mechanisms<br />

Is a polar-effect anticipated for radical reactions?<br />

• Factors responsible for polar-effects <strong>in</strong> radicals<br />

(1) Geometry and Orbital <strong>in</strong>teraction effects<br />

(2) Non-perfect synchronization <strong>of</strong> TS<br />

(3) Solvent polarity and viscosity (“cage effect”)<br />

• Specific examples and illustrations<br />

• Conclusions and remarks


<strong>Polar</strong> <strong>Effects</strong> <strong>in</strong> Stereo-type Organic<br />

Reaction Mechanisms?<br />

R-X + Y(s) n<br />

TS1<br />

I. S N 1 Case II. S N 2 case<br />

R<br />

R (s) n<br />

TS2<br />

Less polar solvent<br />

More polar solvent<br />

R-Y + X(s) n<br />

R-X + Y(s) n<br />

X RY<br />

X<br />

Y<br />

More polar solvent<br />

Less polar solvent<br />

R-Y + X(s) n<br />

Same notion works for E1 and E2 mechanism<br />

“Theoretical and Physical Pr<strong>in</strong>ciples <strong>of</strong> Organic Reactivity”, Pross, A. John Wiley & Sons, Inc. 1996.


Summary <strong>of</strong> the Solvent <strong>Polar</strong>ity Effect<br />

Reaction Type<br />

R–X-->R +δ …X –δ<br />

Y+ R–X-->Y + δ …R…X –δ<br />

R–X +δ −−> R +δ …X –δ<br />

Y – + R–X--> Y – δ …R…X –δ<br />

Y – + R–X--> Y – δ …R…X +δ<br />

Nature <strong>of</strong><br />

Charge Type<br />

Separation<br />

Separation<br />

Dispersion<br />

Dispersion<br />

Annihilation<br />

Effect <strong>of</strong> polarity<br />

<strong>in</strong>crease on<br />

reaction rate<br />

Large Increase<br />

Large Increase<br />

Small Decrease<br />

Small Decrease<br />

Large Decrease<br />

“Theoretical and Physical Pr<strong>in</strong>ciples <strong>of</strong> Organic Reactivity”, Pross, A. John Wiley & Sons, Inc. 1996.


Outl<strong>in</strong>e<br />

• <strong>Polar</strong>-effects <strong>in</strong> traditional organic reaction mechanisms a<br />

brief overview. Is polar-effect anticipated for radical reactions<br />

• Factors responsible for polar-effects <strong>in</strong> radicals<br />

(1) Geometry and Orbital <strong>in</strong>teraction effects<br />

(2) Non-perfect synchronization <strong>of</strong> TS<br />

(3) Solvent polarity and viscosity (“cage effect”)<br />

• Specific examples and illustrations<br />

• Conclusions and remarks


Geometry and Orbital <strong>Polar</strong>ization:<br />

E<br />

H 3 M.O<br />

(Not to scale)<br />

Methyl <strong>Radical</strong><br />

π<br />

π∗ π∗<br />

σ*<br />

π<br />

nb<br />

σ<br />

MOs for Me<br />

2p z 2px 2p y<br />

C A.Os<br />

“Theoretical and Physical Pr<strong>in</strong>ciples <strong>of</strong> Organic Reactivity”, Pross, A. John Wiley & Sons, Inc. 1996.


Energy Changes on Pyramidalizations<br />

E<br />

CHF 2<br />

CH 3<br />

CF 3<br />

CH 2F<br />

0 4 8 12<br />

ω, degrees<br />

C<br />

α<br />

ω=α−90<br />

• ESR coupl<strong>in</strong>g<br />

• Computations<br />

• MO picture<br />

Zheng, X.; Phillips, D. L. J. Phys. Chem. A. 2000, 104, 1030.<br />

Cramer, C. J. J. Org. Chem., 1991, 56, 5229.<br />

Rozum, I.; Tennyson, J. J. Phys. B. 2004, 37, 957.<br />

• <strong>Polar</strong>ization proportional<br />

to dipole moment


MO for Pyramidalization<br />

C X<br />

X X<br />

SOMO - filled lone pairs repulsion<br />

pyramidalization helps to stabilize the SOMO<br />

by the <strong>in</strong>teraction <strong>of</strong> p-σ∗


Vibrational <strong>Polar</strong>ization & Pyramidalization<br />

• Geometrical flexibility <strong>of</strong> radicals can be rationalized<br />

from MO.<br />

• Vibrational polarizability<br />

E<br />

Vibrational polarization turn<strong>in</strong>g on<br />

Pyramidal <strong>in</strong>version<br />

“Solvation <strong>of</strong> the Methyl radical and Its implication” Stratt, R. M.; Desjard<strong>in</strong>s, S. G. J. Am. Chem.<br />

Soc. 1984, 106, 256.


E<br />

Role <strong>of</strong> Substituents on SOMO<br />

"C" centered<br />

SOMO<br />

n or filled<br />

σ orbital<br />

X type<br />

NR 2 , OR<br />

Cl, Me, I<br />

Z type<br />

COR, CN,<br />

SOR,<br />

NO, NO 2<br />

C type<br />

C=CH2<br />

Ph, etc<br />

“Orbital Interaction Theory <strong>in</strong> Organic <strong>Chemistry</strong>’” 2001, 2nd Ed, Rauk, A. Wiley & sons. Inc.,<br />

π∗<br />

π∗<br />

π


Outl<strong>in</strong>e<br />

•<strong>Polar</strong>-effects <strong>in</strong> traditional organic reaction mechanisms a<br />

brief overview. Is polar-effect anticipated for radical reactions?<br />

• Factors responsible for polar-effects <strong>in</strong> radicals<br />

(1) Geometry and Orbital <strong>in</strong>teraction effects<br />

(2) Non-perfect synchronization <strong>of</strong> TS<br />

(3) Solvent polarity and viscosity (“cage effect”)<br />

•Specific examples and illustrations<br />

•Conclusions and remarks


Hammond’s Postulate and Limitations<br />

E<br />

• Hammond’s postulate - what does it tell us?<br />

R<br />

RC<br />

P<br />

R'<br />

P'<br />

• Instant idea on nature <strong>of</strong> TS<br />

• Fails to give an accurate location <strong>of</strong> TS<br />

• Does not consider multiple degrees <strong>of</strong> freedoms<br />

along the reaction coord<strong>in</strong>ate<br />

• Modern version and extension <strong>of</strong> Hammond’s postulate - “The<br />

Pr<strong>in</strong>ciple <strong>of</strong> Nonperfect Synchronization”<br />

Bernasconi, C. F. Acc. Chem. Res. 1992, 25, 9.


Nonperfect Synchronization<br />

• ------- hypothetical resonance<br />

developments synchronous with<br />

charge transfer<br />

• ____ actual situation where<br />

resonance development lags beh<strong>in</strong>d<br />

charge transfer<br />

• Smaller degree <strong>of</strong> resonance<br />

stabilization <strong>of</strong> TS leads to a higher<br />

barrier<br />

“The Pr<strong>in</strong>ciple <strong>of</strong> Nonperfect Synchronization: More than a qualitative concept?”<br />

Bernasconi, C. F. Acc. Chem. Res. 1992, 25, 9.


“Nonperfect Synchronization” &<br />

“Imperfect TS”<br />

• Reaction potential energy surface is multi-dimensional<br />

• Bond break<strong>in</strong>g and formation<br />

• Solvation and desolvation<br />

• Delocalization and localization <strong>of</strong> charge<br />

• Unequal progress at the TS, termed as “Imperfect TS”<br />

“The Pr<strong>in</strong>ciple <strong>of</strong> Nonperfect Synchronization: More than a qualitative concept ?” Bernasconi, C. F.<br />

Acc. Chem. Res. 1992, 25, 9.


Outl<strong>in</strong>e<br />

• <strong>Polar</strong>-effects <strong>in</strong> traditional organic reaction mechanisms a<br />

brief overview. Is polar-effect anticipated for radical reactions?<br />

• Factors responsible for polar-effects <strong>in</strong> radicals<br />

(1) Geometry and Orbital <strong>in</strong>teraction effects<br />

(2) Non-perfect Synchronization <strong>of</strong> TS<br />

(3) Viscosity (“cage effect”) and solvent polarity<br />

• Specific examples and illustrations<br />

• Conclusions and remarks


6.5<br />

k disp/ kdim<br />

5.5<br />

5<br />

0<br />

R + R<br />

Viscosity <strong>Effects</strong><br />

Fate <strong>of</strong> diffusive cage pair<br />

k diff<br />

k -diff<br />

for t- Bu<br />

radical<br />

for 2-Propyl radical<br />

1 η (cP)<br />

2 3<br />

k dim<br />

( R/R ) cage<br />

k disp<br />

R-R<br />

R -H + R-H<br />

•Variation <strong>of</strong> k disp/k dim with viscosity<br />

•Shape matters: t- Bu radical an ellipsoid,<br />

isopropyl “V” shaped<br />

•Similar trend observed for polar radical<br />

reactions<br />

Shuch, H. H.; Fischer, H. Helv. Chim. Acta 1978, 61, 2463.<br />

M<strong>in</strong>isci, F.; Vismara, E.; Fontana, F.; Mor<strong>in</strong>i, G.; Serravalle, M.; Giordano, C. J. Org. Chem. 1987, 52, 730.


<strong>Polar</strong> Solvent Decelerat<strong>in</strong>g the Rate<br />

N<br />

O<br />

TEMPO<br />

Entry<br />

1.<br />

2.<br />

3.<br />

4.<br />

5.<br />

6.<br />

+<br />

CH 2<br />

Solvent<br />

Solvent<br />

n-pentane<br />

Cyclohexane<br />

Benzene<br />

Chlorobenzene<br />

Tetrahydr<strong>of</strong>uran<br />

Acetonitrile<br />

N<br />

O<br />

k T X 10 -7 , M -1 s -1<br />

50 + 1.5<br />

41 ± 2<br />

18 + 1<br />

17 + 2<br />

23 + 3<br />

9.5 + 0.7<br />

Beckwith, A. L. J.; Bowry, V. W.; Ingold, K. U J. Am. Chem. Soc. 1992, 114, 4983.


Outl<strong>in</strong>e<br />

• <strong>Polar</strong>-effects <strong>in</strong> traditional organic reaction mechanisms a<br />

brief overview. How do we th<strong>in</strong>k about radicals?<br />

• Factors responsible for polar-effects <strong>in</strong> radicals<br />

(1) Solvent polarity effects<br />

(2) Internal pressure and viscosity (“cage effect”)<br />

(3) Non-perfect synchronization <strong>of</strong> TS<br />

(4) Geometry and Orbital polarization<br />

• Specific examples and illustrations<br />

• Conclusions and remarks


Early Examples <strong>of</strong> <strong>Polar</strong> <strong>Radical</strong> <strong>Reactions</strong><br />

+ Br 2<br />

hv<br />

CH2 H Br<br />

δ− δ+<br />

Kim, S. S.; Choi, S. Y.; Kang, C. H. J. Am. Chem. Soc. 1985, 107, 4234.<br />

O<br />

R C<br />

heat<br />

O<br />

O O R C O<br />

OC(Me) 3<br />

R + CO2 + tBuO<br />

Barlett, P. D.; Hiatt, R. R. J. Am. Chem. Soc. 1958, 80, 1398.<br />

Br


Specific Examples and Illustrations<br />

(1) NO catalyzed oxidations<br />

(2) MGM, ICM and MCM catalyzed isomerizations<br />

(3) Silyl enol ether mediated 5-exo and 6-endo cyclizations,<br />

and general approach to 4-allyl oxyl radical cyclizations


Aerobic Oxidation <strong>of</strong> Benzyl Alcohols<br />

O<br />

N<br />

O<br />

PhCHOH<br />

O 2<br />

by NHPI or PINO<br />

O + H-CHOHPh<br />

N<br />

PhCH(OOH)OH<br />

PhCHO<br />

O<br />

O<br />

– δ + δ<br />

O H CHOHPh<br />

– OH<br />

PhCH(O)OH<br />

H atom abstraction<br />

-H 2O<br />

PhCH(OH) 2<br />

-PhCHOH<br />

M<strong>in</strong>isci, F.; Punta, C.; Recupero, F.; Fontana, F.; Pedulli, G. F. J. Org. Chem. 2002, 67, 2671.<br />

Annunziat<strong>in</strong>i, C.; Ger<strong>in</strong>i, M. F.; Lanzalunga, O.; Lucar<strong>in</strong>i, M. J. Org. Chem. 2004, 69, 3431.<br />

O<br />

N<br />

O<br />

O H


R 2<br />

Structural Modifications <strong>in</strong> PINO<br />

R 1<br />

R 3<br />

PINO<br />

O<br />

O<br />

N<br />

O<br />

Entry<br />

1<br />

2<br />

3<br />

4<br />

5<br />

HO<br />

+<br />

R 1<br />

H<br />

F<br />

H<br />

MeO<br />

MeO<br />

R 2<br />

MeO<br />

R 2<br />

MeOCO<br />

H<br />

H<br />

H<br />

R 1<br />

R 3<br />

NHPI<br />

R 3<br />

H<br />

H<br />

H<br />

H<br />

H<br />

O<br />

O<br />

N<br />

OH<br />

ρ<br />

+<br />

-0.70<br />

-0.69<br />

-0.68<br />

-0.60<br />

-0.54<br />

Annunziat<strong>in</strong>i, C.; Ger<strong>in</strong>i, M. F.; Lanzalunga, O.; Lucar<strong>in</strong>i, M. J. Org. Chem. 2004, 69, 3431.<br />

HO


Electronic Perturbation & Implications<br />

log(k x/k H)<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

-0.2<br />

p-OMe<br />

p-Me<br />

m-Me<br />

p-Cl<br />

m-OMe<br />

m-CN<br />

m-Cl<br />

p-CN<br />

p-NO 2<br />

m-NO 2<br />

-0.4<br />

-0.9 -0.5<br />

σ<br />

-0.1 0.3 0.7<br />

+<br />

X<br />

OH<br />

PINO<br />

O<br />

Hammet plot where<br />

ρ= – 0.69<br />

M<strong>in</strong>isci, F.; Recupero, F.; Cecchetto, A.; Gambarotti, C.; Punta, C.; Faletti, R.; Paganelli, R.;<br />

Padulli, G. Eur. J. Org. Chem. 2004, 109.<br />

X<br />

H


Barrier Height for H Atom Abstraction<br />

O<br />

N<br />

O<br />

O + H-CHOHPh<br />

N<br />

>NO radical<br />

H 2 NO<br />

(O=CH)NHO<br />

(O=CH)N(CH 3 ) O<br />

(O=CH) 2 NO<br />

O<br />

O<br />

B3LYP/<br />

6-31G (kJ mol -1 )<br />

103<br />

78<br />

83<br />

49<br />

– δ + δ<br />

O H CHOHPh<br />

B3LYP/<br />

6-311++G<br />

109<br />

79<br />

86<br />

49<br />

-PhCHOH<br />

115<br />

92<br />

92<br />

66<br />

O<br />

N<br />

O<br />

CCSD (T)ccpVDZ/B3LY<br />

P/6-311++G<br />

Hermans, I.; Vereecken, P. A.; Jacobs, A.; Peters, J. Chem. Commun., 2004, 1140.<br />

O H


Potential Energy Surface Topology<br />

E<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

-40<br />

ZPE corrected Energy<br />

( kJmol -1 )<br />

>NOH + CH 3OO<br />

Pre-reaction complex<br />

TS/Saddle po<strong>in</strong>t<br />

Reaction Co-ord<strong>in</strong>ate<br />

Post reaction complex<br />

(O=CH) 2 NO<br />

>NO + CH 3OOH<br />

Hermans, I.; Vereecken, P. A.; Jacobs, A.; Peters, J. Chem. Commun., 2004, 1140.


MO Picture for H Atom Abstraction<br />

B B H-A<br />

Energy (Not to scale)<br />

H-A<br />

B H A<br />

B-H<br />

B-H A<br />

“The stability <strong>of</strong> alkyl radicals”, Tsang, W. J. Am. Chem. Soc., 1985, 107, 2872.<br />

“K<strong>in</strong>etics and Thermochemistry <strong>of</strong> CH 3 , C 2 H 5 , i- C 3 H 7 , Study <strong>of</strong> equilibrium <strong>of</strong> R + HBr”<br />

Russel, J. J.; Seetula, J. A.; Gutman, D. J. Am. Chem. Soc., 1990, 112, 1347.<br />

A


N<br />

OH<br />

69.6<br />

Enthalpy Effect<br />

N<br />

OH<br />

O<br />

79.2 88.1<br />

O-H Bond Dissociation<br />

Energy (kcal/mol)<br />

M<strong>in</strong>isci, F.; Recupero, F.; Cecchetto, A.; Gambarotti, C.; Punta, C.; Faletti, R.;<br />

Paganelli, R.; Padulli, G. Eur. J. Org. Chem. 2004, 109-119.<br />

O<br />

N<br />

O<br />

OH


Fundamental Steps <strong>of</strong> TEMPO Catalyzed<br />

2<br />

R<br />

R<br />

N<br />

O<br />

R H + O X R + HOX<br />

N<br />

OH<br />

N<br />

O<br />

N<br />

O<br />

O 2<br />

R<br />

R<br />

N<br />

Mn(II), Co(II)<br />

H<br />

Oxidations<br />

OH<br />

O R O O R O O<br />

N<br />

O<br />

N<br />

O<br />

N<br />

O<br />

+<br />

O + H +<br />

M<strong>in</strong>isci, F.; Recupero, F.; Cecchetto, A.; Gambarotti, C.; Punta, C.; Faletti, R.; Paganelli, R.; Padulli, G.<br />

Eur. J. Org. Chem. 2004, 109-119.<br />

R<br />

N<br />

OH<br />

N<br />

OH<br />

N<br />

OR


<strong>Polar</strong> Non-radical Mechanism?<br />

N<br />

O<br />

N<br />

O<br />

+ H<br />

OH<br />

+ H<br />

OH<br />

B<br />

-H<br />

N<br />

HO O<br />

N<br />

O O<br />

H<br />

-BH<br />

H B<br />

N<br />

OH<br />

N<br />

OH<br />

+ O<br />

+ O<br />

M<strong>in</strong>isci, F.; Recupero, F.; Cecchetto, A.; Gambarotti, C.; Punta, C.; Faletti, R.; Paganelli, R.; Padulli, G.<br />

Eur. J. Org. Chem. 2004, 109-119.


Specific Examples and Illustrations<br />

(1) NO catalyzed oxidations<br />

(2) MGM, MCM and ICM catalyzed isomerization<br />

(3) Silyl enol ether mediated 5-exo and 6-endo cyclizations,<br />

and general approach to 4-allyl-oxyl radical cyclizations.


<strong>Polar</strong> <strong>Radical</strong> Pathway <strong>of</strong> MGM<br />

HOOC<br />

COOH<br />

2-methyleneglutaric acid<br />

XOOC<br />

COOX<br />

X = H / R /<br />

MGM or<br />

Methyleneglutarate-mutase<br />

XO 2C<br />

CO 2X<br />

HOOC<br />

COOH<br />

3-methylitaconic acid<br />

XOOC<br />

Newcomb, M; Miranda, N. J. Am. Chem. Soc. 2003, 125, 4080.<br />

COOX


Potential Energy Pr<strong>of</strong>ile Analysis<br />

Energy (kcal/mol)<br />

HOOC<br />

Reactant<br />

12.1<br />

COOH<br />

HO 2C<br />

12.1<br />

CO 2H<br />

Reaction Co-ord<strong>in</strong>ate<br />

Tri-radical <strong>in</strong>termediate<br />

8.6<br />

12.1<br />

Newcomb, M; Miranda, N. J. Am. Chem. Soc. 2003, 125, 4080.<br />

HOOC<br />

COOH


Apparent Paradox <strong>in</strong> MGM Catalyzed<br />

Isomerization<br />

• Rate Constant for cyclization estimated to be 2000 s -1<br />

• Estimation is coupled with partion<strong>in</strong>g <strong>of</strong> <strong>in</strong>termediate cyclopropyl<br />

carb<strong>in</strong>yl radical, overall rate constant is estimated to be 10E-3 s -1 ,<br />

• Unusual mechanism is possibly <strong>in</strong>volved with polar effects operative<br />

HO 2C<br />

O 2C<br />

Scheme A:<br />

Scheme B:<br />

CO 2H<br />

CO 2<br />

HO 2C<br />

O 2C<br />

CO 2H<br />

CO 2<br />

HO 2C<br />

O 2C<br />

CO 2H<br />

CO 2<br />

Newcomb, M; Miranda, N. J. Am. Chem. Soc. 2003, 125, 4080.


Catalytic Mechanism Devoid <strong>of</strong> 3-exo<br />

O 2C<br />

O 2C<br />

H<br />

H<br />

CO 2<br />

H<br />

CO 2<br />

Cyclization<br />

Methylene-glutarate-Mutase<br />

O 2C<br />

H<br />

CO 2<br />

H<br />

H<br />

O 2C<br />

O 2C<br />

H<br />

H<br />

H<br />

• Fragmentation results formation <strong>of</strong> a radical that is stabilized by a<br />

through space polar-captodative orbital <strong>in</strong>teractions.<br />

H<br />

H<br />

CO 2<br />

CO 2


Solvent <strong>Polar</strong>ity Effect and Limited<br />

G<br />

Ph<br />

Ph<br />

Ph<br />

O<br />

S<br />

Acid Catalysis<br />

CoA G O<br />

S CoA G S CoA<br />

G= CO 2H (MCM catalyzed rearrangement)<br />

G=CH 3 (Isobutyryl CoA Mutase catalyzed rearrangement)<br />

PhSe<br />

Ph<br />

O<br />

X=H/Me/SEt<br />

X<br />

X<br />

hv<br />

O<br />

Bu 3SnH<br />

Ph<br />

Ph<br />

O<br />

Ph X<br />

Ph<br />

Daubla<strong>in</strong>, P.; Horner, J. H.; Kuznetsov, A.; Newcomb, M. J. Am. Chem. Soc. 2004, 126, 5368.<br />

X<br />

O<br />

Ph<br />

Ph<br />

Ph<br />

Ph<br />

O<br />

O<br />

X<br />

X<br />

O


Solvent <strong>Polar</strong>ity and Acid Catalysis<br />

logk<br />

11<br />

9<br />

7<br />

5<br />

CF 3CH 2OH<br />

MeCN<br />

CH 2Cl 2<br />

THF<br />

Cyclohexane<br />

Gasphase<br />

E T (30)<br />

AcOH<br />

30 40 50 60 70 80<br />

k obs X 10 -6<br />

TFA(M)<br />

CH 2Cl 2<br />

Hexane<br />

A: Observed rate constant for reaction <strong>of</strong> 1st <strong>in</strong>termediate<br />

B: Rate constant <strong>of</strong> reactions <strong>of</strong> 1st <strong>in</strong>termediate <strong>in</strong> presence <strong>of</strong><br />

TFA <strong>in</strong> CH 2 Cl 2 and <strong>in</strong> hexane<br />

Daubla<strong>in</strong>, P.; Horner, J. H.; Kuznetsov, A.; Newcomb, M. J. Am. Chem. Soc. 2004, 126, 5368.


“Partial Protonated” radical<br />

Ph<br />

Ph<br />

O<br />

H O<br />

X<br />

O<br />

CF 3<br />

H 2N CH C<br />

N<br />

CH 2<br />

NH<br />

O<br />

Histid<strong>in</strong>e<br />

• Catalytic role <strong>of</strong> His244 <strong>in</strong> the catalytic site <strong>of</strong> MCM catalyzed reaction<br />

• Mechanistic reconsiderations - Role <strong>of</strong> surround<strong>in</strong>g water <strong>in</strong> nucleophilic<br />

assistance<br />

G<br />

Nu OX<br />

S<br />

X= or H<br />

CoA<br />

G Nu<br />

+<br />

OX<br />

CoA<br />

S<br />

Nu OX<br />

OH<br />

G SCoA<br />

Daubla<strong>in</strong>, P.; Horner, J. H.; Kuznetsov, A.; Newcomb, M. J. Am. Chem. Soc. 2004, 126, 5368.


Specific Examples and Illustrations<br />

(1) NO catalyzed oxidations<br />

(2) MGM catalyzed isomerization<br />

(3) Silyl enol ether mediated 5-exo and 6-endo cyclizations,<br />

and general approach to 4-allyl-oxyl radical cyclizations


Cyclization <strong>of</strong> Silyl-enol Ether <strong>Radical</strong><br />

Cations<br />

OTBDMS OTBDMS<br />

O<br />

O<br />

I<br />

hv<br />

hv, AIBN<br />

6-endo<br />

O O<br />

6-endo<br />

Bunte, J. O.; Heilmann, E. K.; He<strong>in</strong>, B.; Mattay, J.; Eur. J. Org. Chem. 2004, 3535.<br />

Curran, D. P.; Chang, C. T.; J. Org. Chem. 1989, 54, 3140.<br />

+<br />

O<br />

5-exo


Selectivity <strong>in</strong> 5-exo or 6-endo <strong>Radical</strong><br />

Cyclization<br />

Process<br />

Rate Constant<br />

5-exo<br />

2.0E-6<br />

+<br />

6-endo<br />

2.6E-6<br />

• No apparent preference <strong>in</strong> the formation <strong>of</strong> a tertiary vs a<br />

primary radical<br />

• Can be expla<strong>in</strong>ed <strong>in</strong> terms <strong>of</strong> assum<strong>in</strong>g 5-exo process<br />

reversible, besides suitable thermodynamics<br />

Bunte, J. O.; Heilmann, E. K.; He<strong>in</strong>, B.; Mattay, J.; Eur. J. Org. Chem. 2004, 3535.


Steps Involved <strong>in</strong> photo-cylization <strong>of</strong><br />

silyl-enol ether<br />

SiR3 SiR<br />

O O 3 Nu<br />

hv<br />

-e<br />

O<br />

Mesolytic<br />

Si–O cleavage<br />

H atom abstraction<br />

O<br />

O<br />

6-endo<br />

cyclization<br />

Bunte, J. O.; Heilmann, E. K.; He<strong>in</strong>, B.; Mattay, J.; Eur. J. Org. Chem. 2004, 3535.


Geometrical Changes Induced by One<br />

Electron Oxidation<br />

O Si<br />

-e<br />

d(C-C):1.42(+0.08) A<br />

O Si<br />

a(O-Si-C):100.8(-8.2)<br />

d(C-O):1.28(-0.08) A<br />

d(Si-O):1.80(+0.11) A<br />

o<br />

o<br />

o<br />

a(C-O-Si):136.1(+8.4)<br />

• Weakened Si-O bond leads to a facile S N2- like substitution<br />

<strong>in</strong>duced by solvent or other nucleophile<br />

Bunte, J. O.; Heilmann, E. K.; He<strong>in</strong>, B.; Mattay, J.; Eur. J. Org. Chem. 2004, 3535.


Selectivities <strong>in</strong> Five vs Six-membered<br />

Photo-cyclizations <strong>of</strong> Silyl-enol Ethers<br />

Case I<br />

Case II<br />

H<br />

+<br />

H + H<br />

OTMS H<br />

O O<br />

H<br />

H H<br />

H O<br />

OTMS<br />

31%<br />

41% 28%<br />

H + H<br />

H<br />

H<br />

H<br />

O H O<br />

90% 10%<br />

Bunte, J. O.; Heilmann, E. K.; He<strong>in</strong>, B.; Mattay, J.; Eur. J. Org. Chem. 2004, 3535.


Calculated Energy Pr<strong>of</strong>ile for Case I<br />

Energy<br />

kcal/mol<br />

H<br />

+<br />

H + H<br />

OTMS H<br />

O O<br />

H<br />

H H<br />

H O<br />

H O<br />

NOT TO SCALE<br />

-1.15<br />

+21-25<br />

+19.72<br />

H O<br />

-2.49<br />

0.0<br />

O<br />

0.0<br />

+21-25<br />

+17.9<br />

H H O<br />

-8.39<br />

-9.40<br />

Bunte, J. O.; Heilmann, E. K.; He<strong>in</strong>, B.; Mattay, J.; Eur. J. Org. Chem. 2004, 3535.<br />

H<br />

H<br />

O


Potential Energy Pr<strong>of</strong>ile for Case II<br />

Energy<br />

H<br />

O<br />

OTMS<br />

25<br />

2.79 2.79<br />

H<br />

O<br />

Numbers <strong>in</strong> kcal/mol<br />

H + H<br />

22<br />

H<br />

H<br />

H<br />

O H O<br />

O<br />

-7.46<br />

19<br />

0.0<br />

23.5<br />

-6.16<br />

H<br />

H O<br />

O<br />

H<br />

H<br />

Bunte, J. O.; Heilmann, E. K.; He<strong>in</strong>, B.; Mattay, J.; Eur. J. Org. Chem. 2004, 3535.


How General Are These 5-exo vs<br />

R 1 ,<br />

H H<br />

H Me<br />

H C(Me) 3<br />

H<br />

Ph<br />

Me H<br />

R 2<br />

Me Me<br />

R1<br />

Me C(Me) 3<br />

6-endo Selectivities?<br />

O Me<br />

R 2<br />

5-exo<br />

5-exo/6-endo<br />

98/2<br />

69/31<br />

46/54<br />

7/93<br />

98/2<br />

82/18<br />

37/63<br />

R 1<br />

O<br />

R 2<br />

H-Y<br />

Y H-Y Y<br />

R 1<br />

• Substituents that <strong>in</strong>crease <strong>in</strong> HOMO<br />

coefficient along C-5 lead to more 6endo<br />

product<br />

• Substituents that can not cause the<br />

<strong>in</strong>crease <strong>in</strong> C-5 HOMO coefficient lead to<br />

more 5-exo product<br />

O<br />

H<br />

6-endo<br />

Hartung, J.; Kneuer, R.; Rummey, C.; Br<strong>in</strong>gmann, G. J. Am. Chem. Soc. 2004, 126, 12121.<br />

R 2


O<br />

Reaction Model for Analysis<br />

R 2<br />

alkoxy radical<br />

R<br />

O<br />

2 O<br />

R2 5-exo-chair<br />

R 2<br />

R<br />

O<br />

2<br />

R 2<br />

5-exo-boat<br />

O<br />

6-endo-chair<br />

O<br />

6-endo-boat<br />

R 2<br />

R 2<br />

R 2<br />

O<br />

O<br />

O<br />

O R 2<br />

Start<strong>in</strong>g geometry TS cyclized radical<br />

Hartung, J.; Kneuer, R.; Rummey, C.; Br<strong>in</strong>gmann, G. J. Am. Chem. Soc. 2004, 126, 12121.<br />

O<br />

R 2


Ph<br />

Cl<br />

Ph<br />

Cl<br />

Ph<br />

Cl<br />

A True Ion or A <strong>Polar</strong> <strong>Radical</strong> ?<br />

δ+ δ−<br />

Cl CCl3 Cl CCl 3<br />

CCl 4<br />

Ph<br />

Cl<br />

Cl<br />

Cl<br />

Ph<br />

Ph<br />

+<br />

Cl<br />

Cl<br />

hv Cl<br />

N<br />

N Ph<br />

Dimerizations<br />

Ph<br />

Ph<br />

Cl<br />

Ph<br />

Cl CCl 3<br />

Cl Cl<br />

Ph<br />

CCl 4<br />

Ph<br />

Cl Cl<br />

Ph<br />

+ CCl3 Cl Cl<br />

Cl Cl<br />

+<br />

Ph<br />

Cl<br />

Cl Cl<br />

Ph<br />

Cl Cl<br />

Cl<br />

+<br />

Cl<br />

Cl<br />

Cl<br />

Cl Cl<br />

- <strong>Polar</strong> atom transfer<br />

-Ylide<br />

- Dissociative electron<br />

transfer<br />

Jones, M. B.; Jackson, J. E.; Soundararajan, N.; Platz, M. S. J. Am. Chem. Soc. 1988, 110, 5597.


Ph<br />

Cl Cl CCl3 Ph<br />

Cl Cl CCl3 Ph<br />

Cl<br />

δ+ δ-<br />

CCl 4<br />

Ph<br />

Cl Cl CCl 3<br />

Substitut<strong>in</strong>g Cl by CN:<br />

1<br />

3<br />

2<br />

Answer<br />

Ph<br />

Cl Cl<br />

carbene<br />

PhCCl<br />

PhCCl<br />

PhCCl<br />

PhCCl<br />

(pOMe)-<br />

PhCCl<br />

Cl donor<br />

CCl 4<br />

CCl 3 CN<br />

CCl 2 (CN) 2<br />

CCl 3 CN<br />

CCl 3 CN<br />

• Expected to retard the rate for ylide mechanism (2)<br />

• Accelerate the rate for polar atom transfer (1 & 3)<br />

solvent<br />

MeCN<br />

PhMe<br />

PhMe<br />

MeCN<br />

PhMe<br />

k (M -1 s -1 )<br />

3.8E4<br />

1.4E7<br />

8.4E8<br />

4.0E8<br />

1.1E8<br />

Jones, M. B.; Jackson, J. E.; Soundararajan, N.; Platz, M. S. J. Am. Chem. Soc. 1988, 110, 5597.<br />

Jones, M. B.; Maloney, V. M.; Platz, M. S. J. Am. Chem. Soc. 1992, 114, 2163.


Conclusions & Remarks<br />

1. <strong>Polar</strong> effect <strong>in</strong> radical reactions orig<strong>in</strong>ates from a polar TS that is <strong>of</strong>ten<br />

achieved through, electronic perturbation (from Orbital <strong>in</strong>teractions,<br />

medium polarity etc) Geometrical changes and Nonperfect<br />

synchronization (NPS)<br />

2. NO catalyzed oxidations, MGM, MCM and ICM catalyzed isomerizations,<br />

and radical cyclizations were shown as representative examples where<br />

polar effects were found to be operative<br />

3. Dist<strong>in</strong>guish<strong>in</strong>g a polar radical TS and completely ionic TS can <strong>of</strong>ten be<br />

challeng<strong>in</strong>g<br />

4. Higher level computations can help <strong>in</strong> understand<strong>in</strong>g polar effects <strong>in</strong><br />

radical reactions


Diels-Alder Reaction <strong>in</strong> Water<br />

• Enhanced hydrophobic <strong>in</strong>teraction <strong>in</strong> the TS<br />

• Internal Pressure<br />

• Higher polarizability <strong>of</strong> TS<br />

• Increased Endo selectivity<br />

• Problems <strong>of</strong> solubility & possible remedy by try<strong>in</strong>g<br />

cosolvents, constra<strong>in</strong>ed medium (zeolite, micellar<br />

medium etc).<br />

EDG<br />

EWG<br />

Bresslow, R.; Rideout, D. J. Am. Chem. Soc. 1980, 102, 7816.<br />

Otto, S.; Engberts, J. B. Pure Appl. Chem., 2000, 7, 1365.<br />

+<br />

EDG<br />

EWG


Acknowledgement<br />

1. Parents - Asim K Nandi & Parbati Nandi<br />

2. Dr. Jackson, Dr. Dye, Dr. Wagner, Dr. Wulff<br />

3. Michael (SiGNa)<br />

4. Labmates - Simona, Misha, Andrea, Jennifer,<br />

Tulika, Karrie, and Kaushik<br />

5. Friends - Sampa, Supriyo, Sanjukta, Aparajita,<br />

Sam, Parul, Bani, Brad<br />

6. Roommate - Neil


Typical Dipole-Moments <strong>of</strong> <strong>Radical</strong>s<br />

Species<br />

CH 3<br />

CF 3<br />

CH 3CH 2<br />

CH2CHCH2 CH2CHCHOH ClCH 2CHCH 3<br />

ClCHCHCH 2<br />

HCC<br />

N 3<br />

HOO<br />

http://www.colby.edu/chemistry/webmo/mo<strong>in</strong>tro.html<br />

Dipole Moments <strong>in</strong> Debye<br />

0.00141<br />

0.00615<br />

0.43937<br />

0.07868<br />

2.38577<br />

2.87736<br />

1.25684<br />

0.80287<br />

0.00103<br />

2.52010


Pyramidalization <strong>Effects</strong> on Energy<br />

and Dipole Moment<br />

QuickTime and a<br />

TIFF (LZW) decompressor<br />

are needed to see this picture.


Measure <strong>of</strong> Solvent <strong>Polar</strong>ity<br />

• Energy <strong>of</strong> charge transfer as a <strong>in</strong>tramolecular (E T ) or<br />

<strong>in</strong>termolecular (Z) process<br />

Ph<br />

Ph<br />

E T Scale<br />

Ph<br />

N<br />

O<br />

Ph<br />

Ph<br />

I<br />

COOCH 3<br />

N<br />

CH 2CH 3<br />

Z Scale<br />

hv<br />

Reichardt, C. Chem. Rev. 1994, 94, 2319.<br />

COOCH 3<br />

N<br />

CH 2CH 3<br />

I


Catalytic Mechanism <strong>of</strong> MCM Catalyzed<br />

Isomerization<br />

CoAS<br />

CoAS<br />

O<br />

O<br />

H H<br />

CO 2<br />

H<br />

CO 2<br />

CoAS<br />

CoAS<br />

H<br />

CO 2<br />

O<br />

CO 2<br />

H<br />

O<br />

CoAS<br />

H<br />

CoAS<br />

H<br />

H<br />

H<br />

H<br />

O<br />

O<br />

CO 2<br />

H<br />

CO 2<br />

H


MO <strong>of</strong> NO<br />

π∗ 2p<br />

π 2p<br />

E σ∗ 2s<br />

NO<br />

σ∗ 2p<br />

σ 2p<br />

σ 2s<br />

σ∗1s<br />

σ 1s<br />

π∗ 2p<br />

π 2p


NC<br />

Captodative <strong>Effects</strong><br />

OMe<br />

6<br />

CN<br />

12<br />

OMe<br />

16<br />

Barrier <strong>of</strong> C-C rotation <strong>in</strong> kcal/mol


Factors Responsible For the Selectivities<br />

• Rate constants for cyclizations<br />

• Life-time <strong>of</strong> the radical <strong>in</strong>termediates<br />

• Length <strong>of</strong> the new bond formed (Beckwith-Houk model)<br />

• Endothermicity or exothermicity<br />

• Steric or geometrical optimization<br />

Bunte, J. O.; Heilmann, E. K.; He<strong>in</strong>, B.; Mattay, J.; Eur. J. Org. Chem. 2004, 3535.


Calculated Charge and Sp<strong>in</strong> Distribution<br />

+0.29<br />

-0.05<br />

+0.18<br />

+0.17<br />

-0.04<br />

O Si<br />

TMS:+0.17<br />

0.03<br />

0.52<br />

0.03<br />

0.18<br />

0.03<br />

0.69<br />

0.03<br />

O Si O<br />

0.15 0.01<br />

0.20<br />

charge sp<strong>in</strong> sp<strong>in</strong><br />

Bunte, J. O.; Heilmann, E. K.; He<strong>in</strong>, B.; Mattay, J.; Eur. J. Org. Chem. 2004, 3535.<br />

0.05

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!