28.09.2015 Views

Modeling of cell signaling pathways in macrophages by semantic networks

Modeling of cell signaling pathways in macrophages by semantic ...

Modeling of cell signaling pathways in macrophages by semantic ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Model<strong>in</strong>g</strong> <strong>of</strong> <strong>cell</strong> <strong>signal<strong>in</strong>g</strong> <strong>pathways</strong> <strong>in</strong> <strong>macrophages</strong> <strong>by</strong><br />

<strong>semantic</strong> <strong>networks</strong><br />

<strong>by</strong><br />

Michael Hs<strong>in</strong>g<br />

B.Sc., Department <strong>of</strong> Molecule Biology and Biochemistry<br />

Simon Fraser University, 2002<br />

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF<br />

THE REQUIREMENTS FOR THE DEGREE OF<br />

MASTER OF SCIENCE<br />

<strong>in</strong><br />

THE FACULTY OF GRADUATE STUDIES<br />

(CIHR/MSFHR Strategic Tra<strong>in</strong><strong>in</strong>g Program <strong>in</strong> Bio<strong>in</strong>formatics<br />

And<br />

UBC Genetics Graduate Program)<br />

THE UNIVERSITY OF BRITISH COLUMBIA<br />

February 2005<br />

© Michael Hs<strong>in</strong>g 2005


ABSTRACT<br />

Macrophages are essential components <strong>of</strong> human immune system that engulf and digest<br />

pathogens us<strong>in</strong>g the molecular mechanisms <strong>of</strong> phagocytosis and phagosome maturation. These<br />

processes are regulated <strong>by</strong> an essential enzyme – phospho<strong>in</strong>ositide-3-k<strong>in</strong>ase (PI3K), a key<br />

<strong>in</strong>itiator <strong>of</strong> signall<strong>in</strong>g cascades <strong>in</strong> many <strong>cell</strong>ular processes. Importantly, experimental studies<br />

demonstrate that some pathogenic bacteria, such as Mycobacterium tuberculosis (MTB), can<br />

<strong>in</strong>terfere with PI3K <strong>pathways</strong> <strong>in</strong> order to survive with<strong>in</strong> host <strong>macrophages</strong>. Based on the<br />

diverse roles <strong>of</strong> PI3Ks, it is reasonable to hypothesize that MTB effects upon PI3K <strong>signal<strong>in</strong>g</strong><br />

could impact <strong>macrophages</strong> <strong>in</strong> numerous ways, more than what are currently studied. It is<br />

anticipated that greater understand<strong>in</strong>g <strong>of</strong> PI3K <strong>signal<strong>in</strong>g</strong> mechanisms <strong>in</strong> <strong>macrophages</strong> and<br />

bacterial <strong>in</strong>terference could provide <strong>in</strong>sights for develop<strong>in</strong>g effective strategies aga<strong>in</strong>st MTB.<br />

The complexity <strong>of</strong> PI3K <strong>pathways</strong> makes the analysis <strong>of</strong> MTB-macrophage <strong>in</strong>teractions<br />

a challeng<strong>in</strong>g task. Although a vast amount <strong>of</strong> knowledge on the <strong>pathways</strong> has been<br />

accumulated <strong>in</strong> literature and databases, the <strong>in</strong>formation is encoded <strong>in</strong> static diagrams that are<br />

difficult to study. While it is necessary to analyze complex systems computationally, the tools<br />

for model<strong>in</strong>g <strong>pathways</strong> are <strong>in</strong>adequate. To address current limitation on pathway manipulation,<br />

we applied an artificial <strong>in</strong>telligence method called Semantic Networks (SN) to model MTB<br />

<strong>in</strong>terference with PI3K signall<strong>in</strong>g <strong>pathways</strong> <strong>in</strong> <strong>macrophages</strong>.<br />

The advantage <strong>of</strong> SN is <strong>in</strong> its capacity to represent abstract concepts <strong>in</strong> mach<strong>in</strong>e friendly<br />

formats termed “<strong>semantic</strong> agents” and “relationships”. In SN, the behaviour <strong>of</strong> agents is not<br />

fixed, but <strong>in</strong>stead emerges from their relationships. This characteristic makes SN well suited for<br />

model<strong>in</strong>g biological systems. Us<strong>in</strong>g the SN methods, a model has been created to describe<br />

ii


PI3K participation <strong>in</strong> macrophage <strong>signal<strong>in</strong>g</strong>. The model encompassed a large amount <strong>of</strong><br />

<strong>in</strong>formation extracted from scientific literature and perta<strong>in</strong>ed such complex micro-events as<br />

formation <strong>of</strong> prote<strong>in</strong> complexes, chemical modifications <strong>of</strong> prote<strong>in</strong>s, allosteric regulation, and<br />

changes <strong>in</strong> <strong>in</strong>tra<strong>cell</strong>ular localization <strong>by</strong> the agents. The data <strong>in</strong>tegration <strong>in</strong> the SN-environment<br />

allowed us to reconstruct the molecular mechanisms <strong>of</strong> macrophage pathogenic <strong>in</strong>vasion, and<br />

the model predicted previously unobserved macrophage responses. The results will be used to<br />

guide and <strong>in</strong>terpret upcom<strong>in</strong>g gene and prote<strong>in</strong> expression studies.<br />

iii


TABLE OF CONTENTS<br />

Abstract ii<br />

Table <strong>of</strong> Contents..............................................................................................................iv<br />

List <strong>of</strong> Tables.....................................................................................................................vi<br />

List <strong>of</strong> Figures .................................................................................................................vii<br />

Acknowledgements ........................................................................................................ viii<br />

Chapter 1 INTRODUCTION ...........................................................................................1<br />

1.1 The current state <strong>of</strong> pathway representation and model<strong>in</strong>g.............................3<br />

1.2 Bacterial <strong>in</strong>fections <strong>in</strong> <strong>macrophages</strong> through PI3K and related pathway<br />

<strong>in</strong>terference......................................................................................................7<br />

Chapter 2 METHODS.....................................................................................................13<br />

2.1 Theory <strong>of</strong> <strong>semantic</strong> <strong>networks</strong> ........................................................................13<br />

2.2 Implementation <strong>of</strong> <strong>semantic</strong> <strong>networks</strong> <strong>by</strong> Visual Knowledge and BioCAD<br />

s<strong>of</strong>tware .........................................................................................................16<br />

Chapter 3 RESULTS .......................................................................................................20<br />

3.1 A <strong>semantic</strong> model development for <strong>cell</strong> signall<strong>in</strong>g <strong>pathways</strong>.......................20<br />

3.1.1 Biological structures as <strong>semantic</strong> agents ...................................................21<br />

3.1.2 Localizations and translocations as <strong>semantic</strong> agents.................................24<br />

3.1.3 Non-covalent <strong>in</strong>teractions as <strong>semantic</strong> agents...........................................26<br />

3.1.4 Covalent <strong>in</strong>teractions as <strong>semantic</strong> agents ..................................................29<br />

3.1.5 Allosteric regulations as <strong>semantic</strong> agents..................................................31<br />

3.1.6 Cellular responses as <strong>semantic</strong> agents.......................................................36<br />

3.2 Reconstruction <strong>of</strong> macrophage <strong>pathways</strong> <strong>by</strong> <strong>semantic</strong> model<strong>in</strong>g .................37<br />

3.2.1 Data sources and pathway reconstruction .................................................37<br />

3.2.2 SN model<strong>in</strong>g <strong>of</strong> known MTB <strong>in</strong>terference mechanisms ...........................39<br />

3.2.2.1 MTB promotes act<strong>in</strong> polymerization and rearrangement <strong>in</strong><br />

macrophage............................................................................................................44<br />

3.2.2.2 MTB promotes membrane delivery to plasma membrane <strong>in</strong><br />

macrophage............................................................................................................46<br />

3.2.2.3 MTB <strong>in</strong>hibits phagosome-lysosome fusion <strong>in</strong> macrophage ..................46<br />

3.2.2.4 MTB <strong>in</strong>hibits recruitment <strong>of</strong> oxidase complex to phagosome <strong>in</strong><br />

macrophage............................................................................................................47<br />

3.3 Cause-effect SN simulation <strong>of</strong> macrophage <strong>pathways</strong> dur<strong>in</strong>g <strong>in</strong>fection .......48<br />

Chapter 4 DISCUSSION.................................................................................................59<br />

4.1 Use <strong>of</strong> SN model<strong>in</strong>g for predict<strong>in</strong>g unknown macrophage responses to<br />

<strong>in</strong>fection.........................................................................................................59<br />

4.1.1.1 MTB <strong>in</strong>creases <strong>in</strong>tra<strong>cell</strong>ular glucose uptake <strong>in</strong> macrophage .................60<br />

4.1.1.2 MTB <strong>in</strong>creases the rate <strong>of</strong> prote<strong>in</strong> synthesis <strong>in</strong> macrophage .................60<br />

4.1.1.3 MTB promotes <strong>cell</strong> division <strong>in</strong> macrophage .........................................61<br />

iv


4.1.1.4 MTB promotes survival <strong>of</strong> macrophage................................................61<br />

4.2 Advantages <strong>of</strong> us<strong>in</strong>g <strong>semantic</strong> <strong>networks</strong> for pathway model<strong>in</strong>g...................63<br />

4.2.1 Specify the spatial organization <strong>of</strong> molecules...........................................64<br />

4.2.2 Model prote<strong>in</strong>s as logical, <strong>in</strong>tegrat<strong>in</strong>g and adaptive devices.....................64<br />

4.2.3 Reduce the need for labels and descriptions..............................................64<br />

4.2.4 Provide a direct communication from models to simulations...................65<br />

4.3 Future directions............................................................................................66<br />

4.3.1 A collaborative pathway model<strong>in</strong>g environment ......................................68<br />

4.3.2 A potential tool for <strong>in</strong> silico drug discovery..............................................70<br />

Chapter 5 CONCLUSION ..............................................................................................72<br />

References.........................................................................................................................74<br />

Appendices........................................................................................................................82<br />

Appendix A - Def<strong>in</strong>itions <strong>of</strong> the icons. ..........................................................................82<br />

Appendix B - Semantic Network Environment for Cell-model<strong>in</strong>g (SNEC)..................84<br />

Utilize current <strong>in</strong>formation to customize biological structures..................................84<br />

Def<strong>in</strong>e the behavior <strong>of</strong> molecules <strong>by</strong> creat<strong>in</strong>g different types <strong>of</strong> events....................85<br />

Analyze and traverse <strong>in</strong>teractions upstream and downstream ...................................85<br />

SNEC - screenshots....................................................................................................87<br />

B1 - Prote<strong>in</strong> search page.............................................................................................92<br />

B2 - Prote<strong>in</strong>'s detail page............................................................................................93<br />

B3 - Prote<strong>in</strong>'s localization page..................................................................................94<br />

B4 - Prote<strong>in</strong>'s doma<strong>in</strong>/site page..................................................................................95<br />

B5 - Allosteric regulation summary page ..................................................................96<br />

B6 - Allosteric regulation's detail - page ...............................................97<br />

B7 - Allosteric regulation's detail - page ................................................98<br />

B8 - Interaction summary page ..................................................................................99<br />

B9 - Non-covalent <strong>in</strong>teraction's detail page .............................................................100<br />

B10 - Covalent <strong>in</strong>teraction's detail page...................................................................101<br />

B11 - Cellular response detail page..........................................................................102<br />

Appendix C - List <strong>of</strong> molecules and events <strong>in</strong> the macrophage pathway model .........103<br />

C1 - Molecules <strong>in</strong> the macrophage model................................................................103<br />

C2 - Non-covalent <strong>in</strong>teractions <strong>in</strong> the macrophage model.......................................107<br />

C3 - Covalent <strong>in</strong>teractions <strong>in</strong> the macrophage model ..............................................111<br />

C4 - Allosteric regulations <strong>in</strong> the macrophage model..............................................113<br />

C5 - Cellular responses and their conditions <strong>in</strong> the macrophage model ..................115<br />

v


LIST OF TABLES<br />

Table 1. Resources <strong>in</strong>corporated <strong>in</strong> the BioCAD environment. .....................................18<br />

Table 2. Classification <strong>of</strong> biological structures <strong>in</strong> six prototypes <strong>in</strong> the <strong>semantic</strong> model.22<br />

Table 3. Classification <strong>of</strong> biological events <strong>in</strong> six prototypes <strong>in</strong> the <strong>semantic</strong> model. ...24<br />

Table 4. Two types <strong>of</strong> states <strong>in</strong> the <strong>semantic</strong> model. ......................................................28<br />

Table 5. Data sources used <strong>in</strong> macrophage pathway reconstruction...............................37<br />

Table 6. Biological structure and event prototypes modeled <strong>in</strong> the macrophage<br />

<strong>pathways</strong>. ..........................................................................................................39<br />

Table 7. Macrophage responses known to be affected <strong>by</strong> MTB <strong>in</strong>terference.................44<br />

Table 8. Non-covalent <strong>in</strong>teraction events <strong>in</strong> the simulation............................................56<br />

Table 9. Covalent <strong>in</strong>teraction events <strong>in</strong> the simulation...................................................56<br />

Table 10. Allosteric regulation events <strong>in</strong> the simulation. .................................................57<br />

Table 11. Translocation events <strong>in</strong> the simulation. ............................................................57<br />

Table 12. Unknown macrophage responses affected <strong>by</strong> MTB <strong>in</strong>terference.....................59<br />

vi


LIST OF FIGURES<br />

Figure 1. A typical pathway representation........................................................................2<br />

Figure 2. Phagocytosis <strong>of</strong> bacteria <strong>in</strong> <strong>macrophages</strong>. ..........................................................7<br />

Figure 3. General mechanisms for PI3K activation through <strong>cell</strong> receptors. ....................10<br />

Figure 4. An example <strong>of</strong> a <strong>semantic</strong> network...................................................................14<br />

Figure 5. The basic classes <strong>of</strong> <strong>semantic</strong> agents <strong>in</strong> VK. ....................................................17<br />

Figure 6. Information flow between experimental sources and biological databases<br />

implemented through <strong>semantic</strong> models. ...........................................................21<br />

Figure 7. Spatial organization <strong>of</strong> <strong>in</strong>tra<strong>cell</strong>ular structures <strong>in</strong> the <strong>semantic</strong> model.............23<br />

Figure 8. Localization event <strong>of</strong> the <strong>semantic</strong> model. .......................................................25<br />

Figure 9. Translocation event <strong>of</strong> the <strong>semantic</strong> model. .....................................................26<br />

Figure 10. Non-covalent <strong>in</strong>teraction event <strong>of</strong> the <strong>semantic</strong> model.....................................27<br />

Figure 11. Covalent <strong>in</strong>teraction event <strong>of</strong> the <strong>semantic</strong> model............................................31<br />

Figure 12. A visualization <strong>of</strong> allosteric regulations and <strong>in</strong>teractions between Ras and<br />

PI3K-p110.........................................................................................................33<br />

Figure 13. Allosteric regulation event <strong>of</strong> the <strong>semantic</strong> model. ..........................................35<br />

Figure 14. Cellular response <strong>of</strong> the <strong>semantic</strong> model. .........................................................36<br />

Figure 15. PI3K <strong>in</strong>teraction map part one. .........................................................................41<br />

Figure 16. PI3K <strong>in</strong>teraction map part two..........................................................................42<br />

Figure 17. PI3K <strong>in</strong>teraction map part three........................................................................43<br />

Figure 18. Interactions between Fc-gamma receptor and Lyn k<strong>in</strong>ase................................49<br />

Figure 19. A SN-based simulator, before a simulation run (time =0)................................50<br />

Figure 20. A SN-based simulator, at the end <strong>of</strong> a simulation run (time=6). ......................51<br />

Figure 21. The sequence <strong>of</strong> simulation steps. ....................................................................52<br />

vii


ACKNOWLEDGEMENTS<br />

I would like to acknowledge my scientific supervisor, Artem Cherkasov and my thesis<br />

committee: Wyeth Wasserman and Leah Keshet for their advice and support. I thank Artem<br />

Cherkasov, Joel Bellenson, Conor Shankey, Kyle Recsky and Shawn Anderson for their help<br />

with the model development and implementation. I also thank Upstream Biosciences, Inc. and<br />

Visual Knowledge, Inc. for provid<strong>in</strong>g the <strong>semantic</strong> s<strong>of</strong>tware environment and database support.<br />

I acknowledge Zakaria Hmama, Neil E. Re<strong>in</strong>er and Jimmy Lee for their advice on the bacterial<br />

<strong>in</strong>vasion process <strong>in</strong> <strong>macrophages</strong>. I thank Fiona Br<strong>in</strong>kman, David Baillie, Francis Ouellette and<br />

Steven Jones for their advice and encouragement dur<strong>in</strong>g my tra<strong>in</strong><strong>in</strong>g <strong>in</strong> the CIHR/MSFHR<br />

Strategic Tra<strong>in</strong><strong>in</strong>g Program <strong>in</strong> Bio<strong>in</strong>formatics.<br />

I would like to acknowledge the tra<strong>in</strong><strong>in</strong>g program for provid<strong>in</strong>g the tra<strong>in</strong><strong>in</strong>g and fund<strong>in</strong>g.<br />

I thank Michael Smith Foundation for Health Research and NSERC for additional f<strong>in</strong>ancial<br />

support.<br />

viii


CHAPTER 1<br />

INTRODUCTION<br />

Physical <strong>in</strong>teractions among genes, prote<strong>in</strong>s and ligands regulate all <strong>cell</strong>ular processes<br />

that are typically studied <strong>in</strong> <strong>networks</strong>, where molecules are visualized as nodes and <strong>in</strong>teractions<br />

are represented <strong>by</strong> edges. The <strong>in</strong>tra<strong>cell</strong>ular <strong>networks</strong> are commonly <strong>in</strong>vestigated <strong>in</strong> the context<br />

<strong>of</strong> signall<strong>in</strong>g, metabolic and gene regulatory <strong>pathways</strong> (Ideker and Lauffenburger 2003).<br />

Although it is conventional to study molecular <strong>in</strong>teractions <strong>in</strong> each <strong>of</strong> these three contexts<br />

separately, most <strong>cell</strong>ular processes <strong>in</strong>volve components from all pathway types. Therefore, it is<br />

important to <strong>in</strong>tegrate all known <strong>in</strong>tra<strong>cell</strong>ular <strong>in</strong>teractions <strong>in</strong>to a unified model. Moreover, an<br />

adequate <strong>in</strong>sight <strong>in</strong>to molecular <strong>networks</strong> should <strong>in</strong>clude the dynamic behaviors <strong>of</strong> participat<strong>in</strong>g<br />

entities. Unfortunately, most <strong>of</strong> the exist<strong>in</strong>g network representation and manipulation methods<br />

do not capture the important features <strong>of</strong> <strong>in</strong>teraction <strong>networks</strong>, such as prote<strong>in</strong> allosteric<br />

regulation, doma<strong>in</strong> organization with<strong>in</strong> prote<strong>in</strong>s and change <strong>of</strong> their <strong>in</strong>tra<strong>cell</strong>ular localization.<br />

A pathway representation custom for the current databases such as Signal Transduction<br />

Knowledge Environment - STKE (Gough 2002) and the Kyoto Encyclopaedia <strong>of</strong> Genes and<br />

Genomes - KEGG (Kanehisa and Goto 2000), is illustrated <strong>in</strong> Figure 1, where an arrow with a<br />

plus sign <strong>in</strong>dicates an activat<strong>in</strong>g or promot<strong>in</strong>g relationship, and a l<strong>in</strong>e with a m<strong>in</strong>us sign and a<br />

short bar at the end <strong>in</strong>dicates a deactivat<strong>in</strong>g or <strong>in</strong>hibitory relationship.<br />

1


Figure 1. A typical pathway representation.<br />

Figure 1. A typical pathway representation. This pathway draw<strong>in</strong>g represents the<br />

relationships among 5 prote<strong>in</strong>s A, B, C, D, E, and a <strong>cell</strong>ular response, <strong>cell</strong> survival. An arrow<br />

with a plus sign <strong>in</strong>dicates an activat<strong>in</strong>g or promot<strong>in</strong>g relationship. For example, prote<strong>in</strong> A<br />

activates prote<strong>in</strong> C, and prote<strong>in</strong> E promotes <strong>cell</strong> survival. A l<strong>in</strong>e with a m<strong>in</strong>us sign and a short<br />

bar at the end <strong>in</strong>dicates a deactivat<strong>in</strong>g or <strong>in</strong>hibitory relationship. For <strong>in</strong>stance, prote<strong>in</strong> B<br />

<strong>in</strong>hibits prote<strong>in</strong> C.<br />

The l<strong>in</strong>es on such diagrams designate physical <strong>in</strong>teractions between molecules such as<br />

prote<strong>in</strong>s, or they represent associations between molecules and <strong>cell</strong>ular processes. The<br />

<strong>in</strong>formation represented <strong>in</strong> this way is ambiguous because a non-covalent b<strong>in</strong>d<strong>in</strong>g and a<br />

chemical reaction are not clearly dist<strong>in</strong>guished. In addition, it is difficult to determ<strong>in</strong>e the true<br />

cause-effect relationships from prote<strong>in</strong> A and B to prote<strong>in</strong> D and E through prote<strong>in</strong> C. For<br />

<strong>in</strong>stance, the diagram doest not reflect on whether the activation <strong>of</strong> prote<strong>in</strong> C <strong>by</strong> A promotes the<br />

activation <strong>of</strong> D or promotes the deactivation <strong>of</strong> E, or whether the both processes take place.<br />

Even though the limitations and drawbacks <strong>of</strong> such simplified graphic representation are<br />

obvious, the majority <strong>of</strong> the current pathway and <strong>in</strong>teraction databases have been developed<br />

with similar representations.<br />

2


1.1 The current state <strong>of</strong> pathway representation and model<strong>in</strong>g<br />

The current tools for pathway representation and model<strong>in</strong>g can be classified <strong>in</strong>to two<br />

broad groups: databases that store <strong>in</strong>formation on molecular <strong>in</strong>teractions, and programs that<br />

utilize the <strong>in</strong>formation for simulation.<br />

Pathway databases such as KEGG (Kanehisa and Goto 2000), MetaCyc (Krieger et al.<br />

2004) and MPW (Selkov et al. 1998) conta<strong>in</strong> <strong>in</strong>formation on metabolic <strong>pathways</strong> for a great<br />

number <strong>of</strong> studied species. STKE (Gough 2002), BioCarta (BioCarta 2004) and TRANSPATH<br />

databases (Krull et al. 2003) focus on <strong>pathways</strong> related to <strong>cell</strong> <strong>signal<strong>in</strong>g</strong> and gene regulation.<br />

For <strong>in</strong>stance, the Connection Maps database <strong>in</strong> STKE conta<strong>in</strong>s about 60 pathway diagrams that<br />

were created <strong>by</strong> pathway authorities and cover major <strong>signal<strong>in</strong>g</strong> processes such as MAPK, G-<br />

prote<strong>in</strong>, <strong>in</strong>sul<strong>in</strong> and PI3K <strong>pathways</strong> (Gough 2002). In addition, the aMAZE project <strong>of</strong>fers an<br />

object- oriented environment that <strong>in</strong>tegrates biological entities and <strong>in</strong>teractions from metabolic,<br />

<strong>cell</strong>-<strong>signal<strong>in</strong>g</strong> and gene regulatory <strong>pathways</strong> (Lemer et al. 2004). Although theses databases<br />

conta<strong>in</strong> valuable knowledge on biological <strong>pathways</strong>, the <strong>in</strong>formation is represented <strong>in</strong> static,<br />

non-l<strong>in</strong>ked diagrams that are difficult to analyze computationally.<br />

Prote<strong>in</strong> <strong>in</strong>teraction databases such as BIND (Bader, Betel, and Hogue 2003), IntAct<br />

(Hermjakob et al. 2004b), DIP (Xenarios et al. 2002), HPRD (Peri et al. 2003), GRID<br />

(Breitkreutz, Stark, and Tyers 2003a) and MINT (Zanzoni et al. 2002) put more emphasis on<br />

storage and retrieval <strong>of</strong> <strong>in</strong>dividual prote<strong>in</strong>-prote<strong>in</strong> <strong>in</strong>teractions that are experimentally verified.<br />

In particular, BIND is a valuable source <strong>of</strong> data that currently conta<strong>in</strong>s about 140,000<br />

<strong>in</strong>teractions from 1,050 organisms such as human, mouse, drosophila and yeast (Bader, Betel,<br />

and Hogue 2003). Interactions <strong>in</strong> BIND are carefully curated with experimental evidence<br />

<strong>in</strong>clud<strong>in</strong>g co-immunoprecipitation, aff<strong>in</strong>ity chromatography, and yeast two-hybrid test. The<br />

data model <strong>of</strong> BIND <strong>in</strong>cludes three ma<strong>in</strong> types <strong>of</strong> objects: <strong>in</strong>teractions, molecular complexes<br />

3


and <strong>pathways</strong> (Bader and Hogue 2000). An <strong>in</strong>teraction object describes an <strong>in</strong>teraction between<br />

prote<strong>in</strong>s, DNA or RNA, encompass<strong>in</strong>g <strong>in</strong>formation on b<strong>in</strong>d<strong>in</strong>g sites, chemical actions, k<strong>in</strong>etics,<br />

and chemical states. A molecular-complex or pathway object def<strong>in</strong>es a collection <strong>of</strong> <strong>in</strong>teraction<br />

objects that form a complex or pathway, respectively.<br />

In addition, there are several computational approaches that predict prote<strong>in</strong>-prote<strong>in</strong><br />

<strong>in</strong>teractions and complement the limited experimental data. For example, STRING predicts<br />

prote<strong>in</strong>-prote<strong>in</strong> <strong>in</strong>teractions, which <strong>in</strong>clude physical and functional associations, from genomic<br />

context, co-mention<strong>in</strong>g <strong>of</strong> gene names <strong>in</strong> PubMED abstracts and co-regulation <strong>of</strong> genes <strong>in</strong><br />

microarrays (von Mer<strong>in</strong>g et al. 2005). STRING developed a scor<strong>in</strong>g system that comb<strong>in</strong>es<br />

different types <strong>of</strong> evidence (<strong>in</strong>clud<strong>in</strong>g both predictions and high-throughput experimental data)<br />

and assigns each prote<strong>in</strong>-prote<strong>in</strong> <strong>in</strong>teraction a confidence score. Other methods predict prote<strong>in</strong>prote<strong>in</strong><br />

<strong>in</strong>teractions based on <strong>in</strong>teract<strong>in</strong>g prote<strong>in</strong> doma<strong>in</strong>s. InterDom utilized a collection <strong>of</strong><br />

annotated prote<strong>in</strong> doma<strong>in</strong>s from Pfam (Bateman et al. 2004) and derived doma<strong>in</strong>-doma<strong>in</strong><br />

<strong>in</strong>teractions from sources <strong>in</strong>clud<strong>in</strong>g prote<strong>in</strong> complexes at PDB (Bhat et al. 2001),<br />

experimentally verified prote<strong>in</strong> <strong>in</strong>teractions <strong>in</strong> BIND and DIP, and gene fusion (Ng, Zhang, and<br />

Tan 2003). Scansite conta<strong>in</strong>s a collection <strong>of</strong> <strong>in</strong>teraction rules between short sequence motifs<br />

and doma<strong>in</strong>s (Obenauer, Cantley, and Yaffe 2003).<br />

These <strong>in</strong>teraction databases provide a good collection <strong>of</strong> experimentally determ<strong>in</strong>ed or<br />

predicted prote<strong>in</strong> <strong>in</strong>teractions. However, unlike the pathway databases, most <strong>of</strong> the <strong>in</strong>teractions<br />

are not associated with each other <strong>in</strong> the context <strong>of</strong> <strong>cell</strong>ular processes. In addition, the current<br />

representation for <strong>in</strong>teractions cannot capture the conformational and functional changes <strong>of</strong><br />

their participat<strong>in</strong>g prote<strong>in</strong>s.<br />

S<strong>in</strong>ce these databases do not provide a dynamic <strong>in</strong>sight <strong>in</strong>to the <strong>in</strong>teractions, there exist<br />

a number <strong>of</strong> computational approaches that simulate <strong>cell</strong> processes dynamically us<strong>in</strong>g the static<br />

4


data collections described above. Programs such as E-<strong>cell</strong> (Tomita et al. 1999), Gepasi 3<br />

(Mendes 1997), Virtual Cell (Loew and Schaff 2001) and BioSPICE (Garvey et al. 2003), use<br />

differential equations to represent molecular <strong>in</strong>teractions quantitatively (Neves and Iyengar<br />

2002). In particular, E-<strong>cell</strong> developed a whole-<strong>cell</strong> simulation <strong>in</strong> Mycoplasma genitalium, based<br />

on a m<strong>in</strong>imal set <strong>of</strong> 127 genes (Tomita et al. 1999) and has attempted to simulate metabolic<br />

<strong>pathways</strong> <strong>in</strong> human erythrocyte (Tomita 2001).<br />

However, many <strong>cell</strong>ular processes are sensitive to the stochastic behavior <strong>of</strong> a small<br />

number <strong>of</strong> <strong>cell</strong> components, which compromise the suitability <strong>of</strong> differential-equation methods<br />

(Le Novere and Shimizu 2001). Because differential equations treat each molecular species as a<br />

s<strong>in</strong>gle variable, a molecular event cannot be tracked <strong>in</strong>dividually <strong>in</strong> a simulation.<br />

Several studies have attempted to address the stochastic character <strong>of</strong> <strong>cell</strong>ular processes.<br />

Vasudeva and Bhalla proposed a hybrid simulation method that comb<strong>in</strong>ed both determ<strong>in</strong>istic<br />

and stochastic calculations (Vasudeva and Bhalla 2004). A stochastic simulator, StochSim<br />

represented molecules as <strong>in</strong>dividual s<strong>of</strong>tware objects that <strong>in</strong>teract accord<strong>in</strong>g to probabilities (Le<br />

Novere and Shimizu 2001). Although these two approaches demonstrated the utility <strong>of</strong><br />

stochastic simulation on <strong>in</strong>dividual molecules, the programs are limited <strong>in</strong> model<strong>in</strong>g<br />

<strong>in</strong>tra<strong>cell</strong>ular translocations and functional roles <strong>of</strong> prote<strong>in</strong> doma<strong>in</strong>s.<br />

In addition to the pathway/<strong>in</strong>teraction databases and the simulation programs, there<br />

exist several languages that facilitate the exchange <strong>of</strong> <strong>in</strong>teraction data and pathway models. An<br />

XML-based format, called PSI-MI, has been developed for exchang<strong>in</strong>g and retriev<strong>in</strong>g prote<strong>in</strong>prote<strong>in</strong><br />

<strong>in</strong>teraction data from databases such as BIND, DIP and IntAct (Hermjakob et al. 2004a).<br />

The BioPAX project develops a common format for shar<strong>in</strong>g and exchange <strong>of</strong> biological<br />

pathway data (BioPAX 2005). The System Biology Markup Language (SBML) has been<br />

5


developed for represent<strong>in</strong>g biochemical reaction <strong>networks</strong> and for communicat<strong>in</strong>g models used<br />

for various simulation programs (Hucka et al. 2003).<br />

Tools such as Cytoscape (Shannon et al. 2003) and Osprey (Breitkreutz, Stark, Tyers<br />

2003b) visualize molecular <strong>in</strong>teraction data <strong>in</strong> various graph layouts, composed <strong>of</strong> nodes<br />

(molecules) and edges (<strong>in</strong>teractions). In particular, Cytoscape can assign different attributes to<br />

nodes and edges, and can overlay data such as gene expression on top <strong>of</strong> prote<strong>in</strong>-prote<strong>in</strong><br />

<strong>in</strong>teraction <strong>networks</strong>. Cytoscape has several "plug-<strong>in</strong>" modules that support network analysis<br />

and data import <strong>in</strong> PSI-ML or SBML format (Shannon et al. 2003). In addition, there are<br />

several pathway environments such as PATIKA (Demir et al. 2002) and the Pathway Tools<br />

s<strong>of</strong>tware (Karp, Paley, and Romero 2002) that enable automatic pathway creation from<br />

annotated genomes and manual pathway reconstruction <strong>by</strong> experts. They provide tools for<br />

manipulat<strong>in</strong>g and analyz<strong>in</strong>g <strong>pathways</strong>, but they currently lack simulation capability.<br />

In our research, we attempt to address the shortcom<strong>in</strong>gs <strong>in</strong> pathway manipulation<br />

through <strong>semantic</strong> model<strong>in</strong>g <strong>of</strong> biological <strong>pathways</strong>. In collaboration with a biotechnology<br />

company, Upstream Biosciences, Inc., we have utilized an artificial <strong>in</strong>telligence method,<br />

Semantic Networks (SN), to develop and implement a model, which represents and <strong>in</strong>tegrates<br />

complicated <strong>in</strong>formation on prote<strong>in</strong> complex formations, chemical modifications, allosteric<br />

regulations, <strong>in</strong>tra<strong>cell</strong>ular localizations and cause-effect relationships <strong>in</strong> <strong>pathways</strong>. We have<br />

considered the <strong>cell</strong> signall<strong>in</strong>g events <strong>in</strong>volv<strong>in</strong>g the phospho<strong>in</strong>ositide-3-k<strong>in</strong>ases (PI3K) -related<br />

<strong>pathways</strong> that are affected <strong>by</strong> Mycobacterium tuberculosis (MTB) dur<strong>in</strong>g the macrophage<br />

<strong>in</strong>ternalization. By do<strong>in</strong>g so, we did not only br<strong>in</strong>g a well-developed SN platform to the field <strong>of</strong><br />

biological data <strong>in</strong>tegration, but also used the advantage <strong>of</strong> <strong>semantic</strong> <strong>networks</strong> for identification<br />

<strong>of</strong> previously unappreciated <strong>cell</strong>ular responses occurr<strong>in</strong>g dur<strong>in</strong>g and upon <strong>in</strong>fection.<br />

6


1.2 Bacterial <strong>in</strong>fections <strong>in</strong> <strong>macrophages</strong> through PI3K and related pathway<br />

<strong>in</strong>terference<br />

Macrophages express a variety <strong>of</strong> <strong>cell</strong>-surface receptors that can b<strong>in</strong>d to bacterial<br />

surface molecules such as lipopolysaccharide and peptidoglycan, or to the Fc portion <strong>of</strong><br />

antibodies and the C3b complements associated with pathogenesis (Ernst 1998). Upon ligand<br />

b<strong>in</strong>d<strong>in</strong>g, the macrophage <strong>cell</strong>-surface receptors become activated and trigger the phagocytosis<br />

<strong>of</strong> bacteria (Tjelle, Lovdal, and Berg 2000). Figure 2 shows the phagocytosis process <strong>in</strong><br />

macrophage, which <strong>in</strong>volves act<strong>in</strong> polymerization and rearrangement at the site <strong>of</strong> bacterial<br />

contact. As new membrane is delivered <strong>by</strong> <strong>in</strong>tra<strong>cell</strong>ular vesicles, the macrophage plasma<br />

membrane is extended to surround a bacterium, form<strong>in</strong>g a cup structure called a pseudopod.<br />

The pseudopod is further extended until the whole pathogen is engulfed <strong>in</strong>side a newly formed<br />

organelle called a phagosome.<br />

Figure 2. Phagocytosis <strong>of</strong> bacteria <strong>in</strong> <strong>macrophages</strong>.<br />

Figure 2. Phagocytosis <strong>of</strong> bacteria <strong>in</strong> <strong>macrophages</strong>. The picture shows <strong>macrophages</strong> <strong>in</strong>gest<strong>in</strong>g<br />

green fluorescent mycobacteria (<strong>in</strong>dicated <strong>by</strong> arrows). The host <strong>cell</strong> membrane was sta<strong>in</strong>ed <strong>by</strong><br />

red fluorochorme PKH to def<strong>in</strong>e the limit <strong>of</strong> the <strong>cell</strong>. (The picture was provided <strong>by</strong> Zakaria<br />

Hmama, Division <strong>of</strong> Infectious Diseases, Dept. <strong>of</strong> Medic<strong>in</strong>e, University <strong>of</strong> British Columbia)<br />

The phagosome goes through a maturation process, fus<strong>in</strong>g with lysosomes to form<br />

phagolysosome, which conta<strong>in</strong>s lysozymes and acid hydrolases that can degrade bacterial <strong>cell</strong><br />

walls and prote<strong>in</strong>s (Tjelle, Lovdal, and Berg 2000). In addition, the NADPH oxidase complex<br />

7


is assembled on the phagosomal membrane to catalyze the production <strong>of</strong> toxic oxygen-derived<br />

compounds such as hydrogen peroxide, superoxide, hypochlrorite, nitric oxide and hydroxyl<br />

radicals (Stephens, Ellson, and Hawk<strong>in</strong>s 2002). The pathogen is normally killed dur<strong>in</strong>g<br />

phagosome maturation.<br />

However, it has been observed that some pathogens susta<strong>in</strong> their <strong>in</strong>fections through<br />

surviv<strong>in</strong>g with<strong>in</strong> host <strong>macrophages</strong> (Meresse et al. 1999; Tjelle, Lovdal, and Berg 2000). The<br />

eukaryotic parasite Trypanosoma cruzi and bacteria <strong>in</strong>clud<strong>in</strong>g Shigella flexneri and Listeria<br />

monocytogenes can lyse phagosomal membrane and escape <strong>in</strong>to host cytosol. The eukaryotic<br />

pathogen Leishmania mexicana and the bacterium Coxiella burnetii have also developed<br />

mechanisms to survive <strong>in</strong> the harsh environment <strong>in</strong>side the phagolysosome. Moreover, some<br />

bacteria such as Salmonella trphimurium and Mycobacterium tuberculosis manage to <strong>in</strong>hibit<br />

the phagosome maturation and reside <strong>in</strong>side the immature phagosomes (F<strong>in</strong>lay and Falkow<br />

1997; Russell 2001).<br />

A remarkable example <strong>of</strong> major pathogens capable <strong>of</strong> surviv<strong>in</strong>g <strong>in</strong>side <strong>macrophages</strong> is<br />

Mycobacterium tuberculosis (MTB) that causes serious lung <strong>in</strong>fection. It is estimated that 1.7<br />

to 2.0 billion people world-wide are currently <strong>in</strong>fected <strong>by</strong> MTB, and 3 million deaths a year are<br />

attributable to tuberculosis (Health & Development Initiative 2004). In healthy <strong>in</strong>dividuals,<br />

<strong>in</strong>fected <strong>macrophages</strong> are conf<strong>in</strong>ed <strong>in</strong> a lesion called tubercle. When the immune system <strong>of</strong> the<br />

<strong>in</strong>fected <strong>in</strong>dividual is weakened <strong>by</strong> drugs or other diseases, the MTB <strong>in</strong>fection can be<br />

reactivated and spread <strong>in</strong> the lungs and to other organs.<br />

Both phagocytosis and phagosome maturation are regulated <strong>by</strong> complicated<br />

<strong>in</strong>tra<strong>cell</strong>ular <strong>pathways</strong> (Stephens, Ellson, and Hawk<strong>in</strong>s 2002). It has been hypothesized that<br />

MTB target and modify components <strong>in</strong> these <strong>pathways</strong> to ensure its <strong>in</strong>tra<strong>cell</strong>ular survival (Fratti<br />

et al. 2001). Many studies have been done to identify the <strong>in</strong>dividual molecular <strong>in</strong>teraction<br />

8


<strong>in</strong>volved <strong>in</strong> the <strong>pathways</strong> (Stephens, Ellson, and Hawk<strong>in</strong>s 2002; Gu et al. 2003). Thus, it has<br />

been previously shown that there is a family <strong>of</strong> enzymes, phospho<strong>in</strong>ositide 3-k<strong>in</strong>ases (PI3Ks),<br />

that plays critical roles <strong>in</strong> regulat<strong>in</strong>g both phagocytosis and phagosome maturation (Vieira et al.<br />

2001).<br />

The class I PI3K is required for phagocytosis, while the class III PI3K is responsible for<br />

phagosome maturation (Vieira et al. 2001). The class I PI3Ks are composed <strong>of</strong> a p85 regulatory<br />

subunit and a catalytic subunit p110 (Vanhaesebroeck and Waterfield 1999). The p110 is an<br />

allosteric enzyme that is activated when it b<strong>in</strong>ds small G-prote<strong>in</strong> Ras-GTP or when the p85<br />

subunit is bound to phosphotyros<strong>in</strong>e site <strong>by</strong> a SH2 doma<strong>in</strong>. Activation <strong>of</strong> class I PI3K <strong>in</strong>duces<br />

macrophage phagocytosis, and it has been established that some pathogens, <strong>in</strong>clud<strong>in</strong>g the MTB<br />

<strong>in</strong>itiate this process via <strong>in</strong>teractions with <strong>cell</strong> receptors (such as Fc-gamma receptor) l<strong>in</strong>ked to<br />

class I PI3K. Such <strong>in</strong>teraction leads to auto-phosphorylation <strong>of</strong> receptor’s phosphotyros<strong>in</strong>e site,<br />

if the receptor conta<strong>in</strong>s tyros<strong>in</strong>e k<strong>in</strong>ase doma<strong>in</strong> as illustrated <strong>in</strong> Figure 3 (Wymann, Zvelebil,<br />

and Laffargue 2003). In other cases a receptor can b<strong>in</strong>d and activate additional tyros<strong>in</strong>e k<strong>in</strong>ases<br />

that phosphorylate the phosphotyros<strong>in</strong>e sites on adaptor prote<strong>in</strong>s. Over 50 different receptors<br />

are known to activate the class I PI3K <strong>by</strong> either <strong>of</strong> these two mechanisms (Wymann, Zvelebil,<br />

and Laffargue 2003).<br />

9


Figure 3. General mechanisms for PI3K activation through <strong>cell</strong> receptors.<br />

Figure 3. General mechanisms for PI3K activation through <strong>cell</strong> receptors. The class I PI3K<br />

enzymes are activated through two types <strong>of</strong> <strong>pathways</strong>. (1) Upon ligand b<strong>in</strong>d<strong>in</strong>g, receptors that<br />

conta<strong>in</strong> k<strong>in</strong>ase doma<strong>in</strong>s dimerize and auto-phosphorylate each other at phosphotyros<strong>in</strong>e sites.<br />

Phosphorylated tyros<strong>in</strong>e b<strong>in</strong>ds to the SH2 doma<strong>in</strong> on p85 and activates p110. (2) Receptors<br />

that lack k<strong>in</strong>ase doma<strong>in</strong>s activate additional k<strong>in</strong>ase prote<strong>in</strong>s. Those k<strong>in</strong>ases phosphorylate<br />

phosphotyros<strong>in</strong>e residues on adaptors prote<strong>in</strong>s, which <strong>in</strong> turn activate PI3K. Activated PI3K<br />

phosphorylates PIP2 <strong>in</strong>to PIP3, which <strong>in</strong>duce the activation <strong>of</strong> downstream k<strong>in</strong>ases and<br />

<strong>cell</strong>ular responses. Blue circles represent prote<strong>in</strong>s, and yellow circles are doma<strong>in</strong> and sites.<br />

Black arrows <strong>in</strong>dicate direct <strong>in</strong>teractions <strong>in</strong>clud<strong>in</strong>g b<strong>in</strong>d<strong>in</strong>gs and chemical reactions, while red<br />

arrows <strong>in</strong>dicate the <strong>in</strong>direct relationships to <strong>cell</strong>ular responses. Abbreviations: R = receptor,<br />

K=k<strong>in</strong>ase doma<strong>in</strong>, pY = phosphotyros<strong>in</strong>e. This figure is adapted from Figure 1 <strong>of</strong> Cantley's<br />

paper (Cantley 2002) on PI3K <strong>pathways</strong>.<br />

Once the PI3K-p110 is activated <strong>by</strong> either receptors or adaptor prote<strong>in</strong>s, PI3K-p110<br />

phosphorylates membrane-bound lipid phosphatidyl<strong>in</strong>ositol-4,5-bisphosphate (PIP2) <strong>in</strong>to<br />

phosphatidyl<strong>in</strong>ositol-3,4,5-bisphosphate (PIP3). PIP3 b<strong>in</strong>ds to pleckstr<strong>in</strong> homology (PH)<br />

doma<strong>in</strong>s <strong>of</strong> prote<strong>in</strong>s such as PDK1 and AKT1, and the <strong>in</strong>teractions localize those prote<strong>in</strong>s to the<br />

<strong>cell</strong> membrane (Vanhaesebroeck et al. 2001). To the date, about 97 human prote<strong>in</strong>s have been<br />

associated with the PH doma<strong>in</strong>, accord<strong>in</strong>g to the prediction from Pfam (Bateman et al. 2004),<br />

and these prote<strong>in</strong>s can potentially <strong>in</strong>teract with PIP3. Through PIP3, the class I PI3K can<br />

10


egulate a variety <strong>of</strong> <strong>cell</strong>ular signall<strong>in</strong>g events <strong>in</strong>clud<strong>in</strong>g <strong>cell</strong> survival, <strong>cell</strong> growth, replication,<br />

transcription, and translation (Cantley 2002; Wymann, Zvelebil, and Laffargue 2003). These<br />

studies imply that the activation <strong>of</strong> the class I PI3K <strong>in</strong> macrophage <strong>by</strong> <strong>in</strong>tra<strong>cell</strong>ular pathogens<br />

not only lead to the known phagocytosis response, but also cause multiple changes <strong>in</strong> the <strong>cell</strong><br />

that are important to recognize.<br />

Another pathogenic mechanism employed <strong>by</strong> the MTB for macrophage manipulation<br />

through the PI3K <strong>pathways</strong> <strong>in</strong>volves deactivation <strong>of</strong> the class III <strong>of</strong> the enzyme. The class III<br />

PI3K also consists <strong>of</strong> two subunits. These are a p150 subunit, which is a Ser/Thr prote<strong>in</strong> k<strong>in</strong>ase,<br />

and an active PIK3C3 (homolog <strong>of</strong> Vps34p <strong>in</strong> yeast) unit that phosphorylates<br />

phosphatidyl<strong>in</strong>ositol (PI) lipid to phosphatidyl<strong>in</strong>ositol-3-phosphate (PI3P) (Vanhaesebroeck<br />

1999). The p150 subunit serves as an anchor l<strong>in</strong>k<strong>in</strong>g PIK3C3 to phagosomal or lysosomal<br />

membrane (Murray et al. 2002; Stephens, Ellson, and Hawk<strong>in</strong>s 2002).<br />

It has been suggested that the MTB has developed a mechanism <strong>of</strong> competitive b<strong>in</strong>d<strong>in</strong>g<br />

to PIK3C3 subunit <strong>of</strong> class III PI3K <strong>by</strong> produc<strong>in</strong>g a pathogenic analogue <strong>of</strong> PI3P lipid,<br />

ManLAM (Mannose-capped lipoarab<strong>in</strong>omannan) (Fratti et al. 2001). By establish<strong>in</strong>g such<br />

PI3K b<strong>in</strong>d<strong>in</strong>g competition, the MTB prevents the further production <strong>of</strong> PI3P substrates that lead<br />

to a suppression <strong>of</strong> the superoxide generat<strong>in</strong>g complex and EEA1 (early endosome antigen 1)<br />

recruitments which are essential for normal phagosome maturation. The exact mechanism <strong>of</strong><br />

this pathogenic <strong>in</strong>terference is not well studied, and its implications are not fully understood.<br />

Nonetheless, it is clear that the PI3K enzymes have significant implications <strong>in</strong> bacterial<br />

<strong>in</strong>vasions.<br />

We anticipate that the detailed reconstruction <strong>of</strong> PI3K <strong>pathways</strong> <strong>by</strong> the <strong>semantic</strong><br />

<strong>networks</strong> would allow us to answer the follow<strong>in</strong>g questions. Firstly, which and how<br />

11


macrophage <strong>pathways</strong> are affected <strong>by</strong> MTB? Secondly, what molecules are <strong>in</strong>volved <strong>in</strong> those<br />

<strong>pathways</strong>? Thirdly, what <strong>cell</strong>ular responses can be <strong>in</strong>duced <strong>by</strong> MTB?<br />

These questions are addressed <strong>by</strong> two bio<strong>in</strong>formatics objectives. The first objective is to<br />

develop a biological SN-language" or a <strong>semantic</strong> model for represent<strong>in</strong>g and model<strong>in</strong>g <strong>cell</strong><br />

<strong>signal<strong>in</strong>g</strong> <strong>pathways</strong>. The second one is to apply the result<strong>in</strong>g model for reconstruct<strong>in</strong>g<br />

macrophage <strong>pathways</strong> from the literature and for predict<strong>in</strong>g MTB <strong>in</strong>terference.<br />

12


CHAPTER 2<br />

METHODS<br />

2.1 Theory <strong>of</strong> <strong>semantic</strong> <strong>networks</strong><br />

Semantic <strong>networks</strong> were first <strong>in</strong>troduced and formalized <strong>by</strong> Griffith, R.L. <strong>in</strong> 1982, as a<br />

general method to represent complex <strong>in</strong>formation <strong>by</strong> nodes and edges <strong>in</strong> a graphic form. Nodes<br />

(<strong>semantic</strong> agents) represent abstract concepts, and the identity and behaviors <strong>of</strong> each agent is<br />

def<strong>in</strong>ed <strong>by</strong> its edges (relationships) with other agents <strong>in</strong> a <strong>semantic</strong> network (Griffith 1982;<br />

Visual Knowledge 2004).<br />

An example <strong>of</strong> a <strong>semantic</strong> network is illustrated on Figure 4, and it conta<strong>in</strong>s five agents<br />

and eight relationships. Semantic agents are connected <strong>by</strong> reciprocal relationships, and agents<br />

that share common properties are classified <strong>in</strong>to the same category. For <strong>in</strong>stance, the agent<br />

[Prote<strong>in</strong> A] has a relationship {<strong>in</strong>stance <strong>of</strong>} with the agent [Prote<strong>in</strong>] (a prototype), which has<br />

the opposite relationship {prototype <strong>of</strong>} with [Prote<strong>in</strong> A]. Similarly, [Prote<strong>in</strong> B] has a<br />

relationship {<strong>in</strong>stance <strong>of</strong>} with [Prote<strong>in</strong>]. Hence, [Prote<strong>in</strong> B] is <strong>in</strong> the same category as [Prote<strong>in</strong><br />

A] because they share the same prototype. In addition, the composition relationships allow<br />

agents to be related to their components. For example, [Prote<strong>in</strong> A] and [Prote<strong>in</strong> B] have<br />

relationships {composed <strong>of</strong>} with [Doma<strong>in</strong> A] and [Doma<strong>in</strong> B] respectively. The opposite<br />

relationship <strong>of</strong> {composed <strong>of</strong>} is {component <strong>of</strong>}.<br />

13


Figure 4. An example <strong>of</strong> a <strong>semantic</strong> network.<br />

Figure 4. An example <strong>of</strong> a <strong>semantic</strong> network. Characteristics and behaviors <strong>of</strong> a <strong>semantic</strong><br />

agent are def<strong>in</strong>ed <strong>by</strong> its relationships with other agents. Semantic agents are represented as<br />

nodes, and relationships are depicted as edges. This <strong>semantic</strong> network conveys the <strong>in</strong>formation<br />

that Prote<strong>in</strong> A and Prote<strong>in</strong> B are <strong>in</strong>stances <strong>of</strong> a Prote<strong>in</strong> (a prototype), and they are composed <strong>of</strong><br />

Doma<strong>in</strong> A and Doma<strong>in</strong> B respectively.<br />

When a <strong>semantic</strong> network is implemented with<strong>in</strong> a comput<strong>in</strong>g environment, it can<br />

efficiently model complex systems and solve multi-component problems (Griffith 1982). The<br />

underly<strong>in</strong>g design pr<strong>in</strong>ciple <strong>of</strong> a <strong>semantic</strong> network is important as it affects its capability to<br />

represent the complexity <strong>of</strong> the system. For <strong>in</strong>stance, it has been suggested that while some<br />

simple concepts or ideas can be sufficiently represented <strong>by</strong> a s<strong>in</strong>gle agent, a more complicated<br />

concept should be modeled <strong>by</strong> a set <strong>of</strong> <strong>in</strong>terconnected agents (Griffith 1982). A representation<br />

<strong>of</strong> concepts <strong>by</strong> over-complicated agents or relationships can make the <strong>semantic</strong> network too<br />

14


descriptive, and hence impair its ability to <strong>in</strong>tegrate and consolidate similar concepts and to<br />

identify emerg<strong>in</strong>g properties. Therefore it is beneficial to represent a complicated concept (such<br />

as a prote<strong>in</strong> or a chemical reaction) with a set <strong>of</strong> simple, reusable and well-classified agents<br />

<strong>in</strong>terconnected <strong>by</strong> fundamental relationships such as the prototype and composition<br />

relationships as described.<br />

S<strong>in</strong>ce the <strong>in</strong>troduction <strong>of</strong> <strong>semantic</strong> <strong>networks</strong> <strong>in</strong> the 1980's, this methodology <strong>of</strong><br />

knowledge representation has <strong>in</strong>fluenced artificial <strong>in</strong>telligence, relational database technology<br />

and object-oriented programm<strong>in</strong>g (Griffith 1982; Visual Knowledge 2004). Recently <strong>semantic</strong><br />

<strong>networks</strong> have ga<strong>in</strong>ed significant attention <strong>of</strong> biological community as a powerful tool for<br />

organiz<strong>in</strong>g and <strong>in</strong>tegrat<strong>in</strong>g large amounts <strong>of</strong> biological <strong>in</strong>formation (McCray and Nelson 1995).<br />

For <strong>in</strong>stance, the <strong>semantic</strong> network <strong>in</strong> the Unified Medical Language System (UMLS) was<br />

designed to retrieve and <strong>in</strong>tegrate biomedical <strong>in</strong>formation from various resources (L<strong>in</strong>dberg,<br />

Humphreys, and McCray 1993). The UMLS <strong>semantic</strong> network has also been applied and<br />

expanded to <strong>in</strong>clude <strong>in</strong>formation and knowledge from other doma<strong>in</strong>s such as genomics (Yu et<br />

al. 1999). The BioMOBY project has applied the "<strong>semantic</strong> web" concept for the <strong>in</strong>tegration<br />

and communication between bio<strong>in</strong>formatic tools and databases that use different data types<br />

(Wilk<strong>in</strong>son and L<strong>in</strong>ks 2002). Other studies have suggested a <strong>semantic</strong> approach where prote<strong>in</strong>s<br />

are viewed as "adaptive and logical agents", whose properties and behaviors are affected <strong>by</strong><br />

other agents <strong>in</strong> their spatial organization <strong>in</strong>clud<strong>in</strong>g <strong>in</strong>tra<strong>cell</strong>ular compartments and prote<strong>in</strong><br />

complexes (Fisher, Paton, and Matsuno 1999; Fisher, Malcolm, and Paton 2000). Def<strong>in</strong><strong>in</strong>g the<br />

<strong>semantic</strong>s among agents could characterize both local and global behaviors <strong>of</strong> a system, and<br />

therefore, it is potentially useful to apply such approach to study <strong>cell</strong> signall<strong>in</strong>g <strong>in</strong> biological<br />

systems (Fisher, Malcolm, and Paton 2000).<br />

15


Recently, an SN-based application development environment known as Visual<br />

Knowledge (VK) has been developed <strong>by</strong> a Vancouver-based s<strong>of</strong>tware development company,<br />

Visual Knowledge, Inc. The VK environment has been shown capable <strong>of</strong> different<br />

formalizations and implementations <strong>of</strong> <strong>semantic</strong> <strong>networks</strong>, and it allows <strong>in</strong>formation from<br />

various doma<strong>in</strong>s to be properly <strong>in</strong>tegrated (Visual Knowledge 2004).<br />

2.2 Implementation <strong>of</strong> <strong>semantic</strong> <strong>networks</strong> <strong>by</strong> Visual Knowledge and<br />

BioCAD s<strong>of</strong>tware<br />

Visual Knowledge is an application development environment that implements the<br />

theory <strong>of</strong> <strong>semantic</strong> <strong>networks</strong> and other contemporary computational methods <strong>in</strong>clud<strong>in</strong>g set<br />

theory, frame system, object-oriented model<strong>in</strong>g theory and systems based on <strong>networks</strong> <strong>of</strong> active<br />

s<strong>of</strong>tware agents (Visual Knowledge 2004). VK is dist<strong>in</strong>guished from other passive knowledge<br />

representation technologies <strong>by</strong> its dynamics, scalability, and capability <strong>of</strong> active representation<br />

and <strong>in</strong>tegration <strong>of</strong> different doma<strong>in</strong> knowledge.<br />

To model real-world systems, VK has implemented several fundamental classes <strong>of</strong><br />

agents <strong>in</strong> <strong>semantic</strong> <strong>networks</strong>, some <strong>of</strong> which are presented <strong>in</strong> Figure 5. VK allows creation <strong>of</strong><br />

prototypes with<strong>in</strong> each basic class and enables further classification <strong>of</strong> agents based on their<br />

common properties. Therefore any form <strong>of</strong> "<strong>semantic</strong> models" can be developed <strong>by</strong> mean<strong>in</strong>gful<br />

connections <strong>of</strong> agents through specific relationships. The models then act as the medium that<br />

translates and <strong>in</strong>tegrates <strong>in</strong>formation from different doma<strong>in</strong>s <strong>in</strong>to <strong>semantic</strong> <strong>networks</strong>.<br />

For <strong>in</strong>stance, a <strong>semantic</strong> agent <strong>of</strong> the class "physical th<strong>in</strong>g" models a physical object that<br />

has a shape and occupies space (Visual Knowledge 2004). An agent <strong>of</strong> the class "event"<br />

represents a phenomenon or a change that occurs on a physical object over a period <strong>of</strong> time. To<br />

enable application development such as a website, the VK conta<strong>in</strong>s application-specific agents<br />

such as triggers, operations, and reports. A trigger is an agent that spawns other agents and<br />

16


changes their relationships. An operation agent searches and collects other agents with certa<strong>in</strong><br />

properties, and a report agent displays the results <strong>in</strong> an application.<br />

Figure 5. The basic classes <strong>of</strong> <strong>semantic</strong> agents <strong>in</strong> VK.<br />

Figure 5. The basic classes <strong>of</strong> <strong>semantic</strong> agents <strong>in</strong> VK. Semantic agents <strong>in</strong> the Visual<br />

Knowledge environment are classified accord<strong>in</strong>g to their common properties and functions.<br />

Each class conta<strong>in</strong>s its own computer-codes and a unique set <strong>of</strong> relationships that<br />

def<strong>in</strong>es the <strong>in</strong>tr<strong>in</strong>sic behaviors <strong>of</strong> all its <strong>in</strong>stances. Each agent is reusable and conta<strong>in</strong>s<br />

<strong>in</strong>structions to act automatically when it is connected to the proper agents. The correspond<strong>in</strong>g<br />

graphic user-<strong>in</strong>terface <strong>in</strong> VK allows users to conveniently implement SN models and<br />

applications without any computer-code writ<strong>in</strong>g, but rather <strong>by</strong> simple dragg<strong>in</strong>g and dropp<strong>in</strong>g <strong>of</strong><br />

SN agents <strong>in</strong>-and-out their relationships.<br />

Previously, Visual Knowledge has been successfully used to model and manipulate<br />

various complex systems <strong>in</strong>clud<strong>in</strong>g corporate enterprise environment, flight schedul<strong>in</strong>g,<br />

hardware ma<strong>in</strong>tenance simulators, and <strong>in</strong>tegrated currency exchange boards (Visual Knowledge<br />

2004). It has been anticipated that the Visual Knowledge platform can address current<br />

limitations <strong>in</strong> the model<strong>in</strong>g <strong>of</strong> <strong>cell</strong> <strong>signal<strong>in</strong>g</strong> <strong>pathways</strong>. The specialized, biology-oriented VK<br />

17


application package called BioCAD has been developed and delegated to the Vancouver-based<br />

bio<strong>in</strong>formatics company Upstream Biosciences, Inc. (BioCAD 2004).<br />

BioCAD s<strong>of</strong>tware provides standard bio<strong>in</strong>formatics tools for manag<strong>in</strong>g large-scale<br />

biological data, and for visualiz<strong>in</strong>g and edit<strong>in</strong>g biological <strong>pathways</strong>. BioCAD currently<br />

conta<strong>in</strong>s millions <strong>of</strong> biological concepts that were extracted from publicly available<br />

bio<strong>in</strong>formatics resources. For <strong>in</strong>stance, BioCAD conta<strong>in</strong>s 40,512 prote<strong>in</strong>s from Homo sapiens<br />

as other organisms <strong>in</strong>clud<strong>in</strong>g Saccharomyces cerevisiae, Drosophila, Mus musculus and Rattus.<br />

With<strong>in</strong> the BioCAD environment each prototypical prote<strong>in</strong> is connected to various annotations<br />

derived from RefSeq (Pruitt, Tatusova, and Maglott 2005), GenBank (Benson et al. 2005), and<br />

Gene Ontology (Harris et al. 2004). Table 1 shows some <strong>of</strong> the resources that have been<br />

<strong>in</strong>corporated <strong>in</strong>to the BioCAD environment and their database version numbers. Information on<br />

prote<strong>in</strong> doma<strong>in</strong>s and sites have also been imported and <strong>in</strong>tegrated <strong>in</strong>to BioCAD. For example,<br />

the database currently conta<strong>in</strong>s 7,316 doma<strong>in</strong>s from Pfam (Bateman et al. 2004), 1,331 sites<br />

from Prosite (Sigrist 2002), and doma<strong>in</strong>s and sites from eight other doma<strong>in</strong> databases. Each<br />

prote<strong>in</strong> has been connected to its proper prote<strong>in</strong> doma<strong>in</strong>s accord<strong>in</strong>g to the annotation from<br />

InterPro (Mulder 2005). To facilitate prediction <strong>of</strong> prote<strong>in</strong>-prote<strong>in</strong> <strong>in</strong>teractions, 30,037 doma<strong>in</strong>doma<strong>in</strong><br />

<strong>in</strong>teractions have been <strong>in</strong>corporated from sources such as InterDom (Ng et al. 2003).<br />

Table 1. Resources <strong>in</strong>corporated <strong>in</strong> the BioCAD environment.<br />

Database Database version Date <strong>of</strong> import<br />

RefSeq 3 Feburary, 2004<br />

Unigene May, 2004 (release date) May, 2004<br />

Gene Ontology April, 2003 (release date) April, 2003<br />

InterPro 7.2 May, 2004<br />

Pfam 12.0 May, 2004<br />

PROSITE 18.10 May, 2004<br />

18


PRINTS 37.0 May, 2004<br />

ProDom 2002.1 May, 2004<br />

Smart 4.0 May, 2004<br />

TIGRFAMs 3.0 May, 2004<br />

PIR SuperFamily 2.41 May, 2004<br />

SUPERFAMILY 1.63 May, 2004<br />

InterDom 1.2 August, 2004<br />

The exist<strong>in</strong>g biological concepts and resources <strong>in</strong> BioCAD provide an ex<strong>cell</strong>ent<br />

environment for study<strong>in</strong>g macrophage <strong>pathways</strong> <strong>in</strong> humans. A locally <strong>in</strong>stalled client program<br />

allows additional <strong>semantic</strong> agents to be easily created, stored and queried from a remote central<br />

server located at Upstream Biosciences, Inc. Us<strong>in</strong>g the BioCAD environment, we have<br />

developed and implemented a SN-based language or a <strong>semantic</strong> model that is capable <strong>of</strong><br />

represent<strong>in</strong>g the complex molecular mechanisms such as the PI3K-controlled regulation <strong>of</strong> <strong>cell</strong><br />

signall<strong>in</strong>g <strong>in</strong> human macrophage.<br />

To facilitate the reconstruction and analysis <strong>of</strong> the macrophage <strong>pathways</strong> and MTB<br />

<strong>in</strong>terference, we have built a web-based application called Semantic Network Environment for<br />

Cell-model<strong>in</strong>g (SNEC). SNEC utilizes the developed <strong>semantic</strong> model and the exist<strong>in</strong>g<br />

biological entities <strong>in</strong> BioCAD's database for collaborative pathway reconstruction. The unique<br />

features <strong>of</strong> SNEC are discussed <strong>in</strong> Appendix B.<br />

19


CHAPTER 3<br />

RESULTS<br />

3.1 A <strong>semantic</strong> model development for <strong>cell</strong> signall<strong>in</strong>g <strong>pathways</strong><br />

One <strong>of</strong> the basic concepts <strong>of</strong> the SN methodology is ‘a model’ that may refer set <strong>of</strong><br />

rules <strong>in</strong> two <strong>in</strong>dependent contexts. A "<strong>semantic</strong> model" designates specific rules for translat<strong>in</strong>g<br />

biological concepts <strong>in</strong>to <strong>semantic</strong> agents and relationships. A "pathway model" encompasses<br />

rules specify<strong>in</strong>g what, how, when and where molecules can <strong>in</strong>teract. The basic SN methodology<br />

for construct<strong>in</strong>g a pathway model is represented <strong>in</strong> Figure 6, which illustrates how <strong>in</strong>formation<br />

from experimental observations is translated and <strong>in</strong>tegrated <strong>in</strong>to pathway models. The <strong>semantic</strong><br />

models communicate with the Visual Knowledge environment, stor<strong>in</strong>g <strong>in</strong>formation <strong>in</strong> the forms<br />

<strong>of</strong> <strong>semantic</strong> agents and relationships. Such organization <strong>of</strong> biological <strong>in</strong>formation <strong>by</strong> the SN<br />

environment allows effective query<strong>in</strong>g, analysis and <strong>in</strong>ference <strong>of</strong> the pathway models that can<br />

significantly facilitate test<strong>in</strong>g <strong>of</strong> biological hypothesis and guide experimental efforts.<br />

“A version <strong>of</strong> this chapter has been published. Hs<strong>in</strong>g, M., J. L. Bellenson, C. Shankey, and A.<br />

Cherkasov. 2004. <strong>Model<strong>in</strong>g</strong> <strong>of</strong> <strong>cell</strong> <strong>signal<strong>in</strong>g</strong> <strong>pathways</strong> <strong>in</strong> <strong>macrophages</strong> <strong>by</strong> <strong>semantic</strong> <strong>networks</strong>.<br />

BMC Bio<strong>in</strong>formatics 5 (1):156.”<br />

20


Figure 6. Information flow between experimental sources and biological databases<br />

implemented through <strong>semantic</strong> models.<br />

Figure 6. Information flow between experimental sources and biological databases<br />

implemented through <strong>semantic</strong> models. Biological data and <strong>in</strong>formation are generated from<br />

experimental observations and <strong>in</strong>tegrated <strong>in</strong>to pathway models. Semantic models translate the<br />

pathway <strong>in</strong>formation <strong>in</strong>to <strong>semantic</strong> agents and relationships <strong>in</strong> the Visual Knowledge<br />

environment, which store the <strong>in</strong>formation <strong>in</strong> a database.<br />

3.1.1 Biological structures as <strong>semantic</strong> agents<br />

All biological structures can be considered as physical objects. With<strong>in</strong> a <strong>semantic</strong><br />

network, specifically, they can be represented as <strong>semantic</strong> agents <strong>of</strong> the "physical th<strong>in</strong>g" class.<br />

Six prototypes are <strong>in</strong>troduced to address dist<strong>in</strong>ctive subgroups (Table 2).<br />

21


Table 2. Classification <strong>of</strong> biological structures <strong>in</strong> six prototypes <strong>in</strong> the <strong>semantic</strong> model.<br />

Semantic Agent – Physical th<strong>in</strong>g<br />

Cell<br />

Intra<strong>cell</strong>ular Compartment<br />

Macromolecule<br />

Doma<strong>in</strong> and Site<br />

Small Molecule and Molecular<br />

Fragment<br />

Atom<br />

Biological Example<br />

Human macrophage, Mycobacterium tuberculosis<br />

Plasma membrane, cytosol, phagosome, nucleus<br />

Prote<strong>in</strong>, nucleic acid, polysaccharide, fat/lipid<br />

Catalytic doma<strong>in</strong>, SH2 doma<strong>in</strong>, PH doma<strong>in</strong>, b<strong>in</strong>d<strong>in</strong>g<br />

site, phosphorylation site, promoter, gene regulatory<br />

site.<br />

Am<strong>in</strong>o acid, nucleotide, sugar, fatty acid<br />

Hydrogen, carbon, oxygen, nitrogen, phosphorus,<br />

sulphur<br />

Table 2. Classification <strong>of</strong> biological structures <strong>in</strong> six prototypes <strong>in</strong> the <strong>semantic</strong> model. Six<br />

major prototypes classify biological structures that are relevant <strong>in</strong> the study <strong>of</strong> <strong>cell</strong> <strong>signal<strong>in</strong>g</strong><br />

<strong>pathways</strong> <strong>in</strong> <strong>macrophages</strong>. The second column lists biological examples <strong>of</strong> each.<br />

From the highest to the lowest level, they are positioned as the follow<strong>in</strong>g [Cell],<br />

[Intra<strong>cell</strong>ular Compartment], [Macromolecule], [Doma<strong>in</strong>/Site], [Small Molecule/Molecular<br />

Fragment], and [Atom]. The [Macromolecule] prototype is further classified <strong>in</strong>to four subprototypes:<br />

[Prote<strong>in</strong>], [Nucleic acid], [Polysaccharide], and [Fat and Lipid]. The [Doma<strong>in</strong>/Site]<br />

objects represent doma<strong>in</strong>s, which are common structural folds <strong>in</strong> macromolecules, and sites,<br />

which are short-sequence motifs or post-translational modification sites. The [Small<br />

Molecule/Molecular Fragment] has been further divided <strong>in</strong>to four subgroups: [Am<strong>in</strong>o acid],<br />

[Nucleotide], [Sugar], and [Fatty acid]. The f<strong>in</strong>al prototype is [Atom] that models <strong>in</strong>dividual<br />

chemical elements. Because <strong>cell</strong> <strong>signal<strong>in</strong>g</strong> <strong>pathways</strong> are composed <strong>of</strong> molecules and their<br />

<strong>in</strong>teractions, atoms are not considered further <strong>in</strong> the model<strong>in</strong>g.<br />

Composition relationships relate each biological structure to its components. Figure 7<br />

illustrates the <strong>semantic</strong> representation <strong>of</strong> a macrophage <strong>cell</strong>. The <strong>semantic</strong> agents are<br />

represented as <strong>in</strong>dividual icons (Appendix A conta<strong>in</strong>s the def<strong>in</strong>itions <strong>of</strong> the icons), and the<br />

22


<strong>semantic</strong> relationships are depicted as solid arrows. Although all agents are related <strong>by</strong> pairs <strong>of</strong><br />

reciprocal relationships <strong>in</strong> SN, we depict only one direction for simplicity. A solid arrow<br />

represents the {composed <strong>of</strong>} relationship. A dotted arrow <strong>in</strong>dicates that there are additional<br />

agents and relationships between the icons. For <strong>in</strong>stance, [Cytosol] and [PDK1] are l<strong>in</strong>ked<br />

through a [localization event] agent.<br />

Figure 7. Spatial organization <strong>of</strong> <strong>in</strong>tra<strong>cell</strong>ular structures <strong>in</strong> the <strong>semantic</strong> model.<br />

Figure 7. Spatial organization <strong>of</strong> <strong>in</strong>tra<strong>cell</strong>ular structures <strong>in</strong> the <strong>semantic</strong> model. Biological<br />

structures are modeled <strong>by</strong> <strong>semantic</strong> agents, which are related to their components <strong>by</strong> the<br />

composition relationships. A human macrophage has been modeled as a <strong>semantic</strong> agent <strong>of</strong> the<br />

[Cell] prototype, and it is composed <strong>of</strong> various [Intra<strong>cell</strong>ular Compartment] agents, <strong>in</strong>clud<strong>in</strong>g<br />

plasma membrane, cytosol, nucleus and others. Each compartment such as cytosol has l<strong>in</strong>ked<br />

to [Macromolecule] and [Small Molecule//Molecular Fragment] agents <strong>in</strong>clud<strong>in</strong>g prote<strong>in</strong>s,<br />

ATP and GTP. A macromolecule such as a prote<strong>in</strong> is further composed <strong>of</strong> [Doma<strong>in</strong>/Site]<br />

agents.<br />

23


3.1.2 Localizations and translocations as <strong>semantic</strong> agents<br />

Six <strong>in</strong>teraction types have been <strong>in</strong>corporated <strong>in</strong>to the <strong>semantic</strong> model, each represented<br />

<strong>by</strong> a <strong>semantic</strong> agent <strong>of</strong> the [Event] class (Table 3).<br />

Table 3. Classification <strong>of</strong> biological events <strong>in</strong> six prototypes <strong>in</strong> the <strong>semantic</strong> model.<br />

Semantic Agent - Event<br />

Localization<br />

Translocation<br />

Non-covalent Interaction<br />

Covalent Interaction<br />

Allosteric Regulation<br />

Cellular Response<br />

Biological Examples<br />

A prote<strong>in</strong> is located <strong>in</strong> the cytosol<br />

A prote<strong>in</strong> moves from cytosol to plasma<br />

membrane.<br />

A ligand b<strong>in</strong>ds to a receptor.<br />

An enzyme catalyzes a chemical reaction<br />

where substrates are converted to<br />

products.<br />

A ligand b<strong>in</strong>d<strong>in</strong>g on site A <strong>of</strong> a prote<strong>in</strong><br />

causes a conformational change on site B<br />

<strong>of</strong> the prote<strong>in</strong>.<br />

A qualitative <strong>cell</strong>ular behavior such as <strong>cell</strong><br />

survival, <strong>cell</strong> death, phagosome formation,<br />

and an <strong>in</strong>crease <strong>of</strong> <strong>in</strong>tra<strong>cell</strong>ular glucose<br />

level.<br />

Table 3. Classification <strong>of</strong> biological events <strong>in</strong> 6 prototypes <strong>in</strong> the <strong>semantic</strong> model. Six major<br />

event prototypes represent <strong>in</strong>teractions among biological structures. The first column conta<strong>in</strong>s<br />

the six prototypes, and the second column conta<strong>in</strong>s biological examples <strong>of</strong> the correspond<br />

prototypes.<br />

Here it is important to dist<strong>in</strong>guish between two k<strong>in</strong>ds <strong>of</strong> agents <strong>in</strong> <strong>semantic</strong> <strong>networks</strong>:<br />

the prototypical agent and the <strong>in</strong>stance agent. A prototypical prote<strong>in</strong> such as PI3K-p110 can<br />

have many <strong>in</strong>stances that <strong>in</strong>herit the same properties from the prototype. Similarly, a<br />

prototypical event can have event <strong>in</strong>stances, each <strong>of</strong> which considers a particular occurrence <strong>of</strong><br />

an event on molecular <strong>in</strong>stances. The prototypical agents represent the pathway <strong>in</strong>formation<br />

and def<strong>in</strong>e how their <strong>in</strong>stances should behave <strong>in</strong> a simulation program.<br />

24


To capture the complete <strong>in</strong>formation associated with an <strong>in</strong>teraction, a correspond<strong>in</strong>g<br />

event considers biological structures at different organizational levels. For <strong>in</strong>stance, a<br />

[localization event], which represents sub<strong>cell</strong>ular localization <strong>of</strong> a molecule, connects not only<br />

a [molecule] agent, but also an [<strong>in</strong>tra<strong>cell</strong>ular compartment] agent. A prototypical molecule<br />

agent can associate with multiple <strong>cell</strong>ular compartments through different localization events.<br />

An example <strong>of</strong> localization events has been illustrated <strong>in</strong> Figure 8, <strong>in</strong> which PI3K-p110 can be<br />

located <strong>in</strong> the cytosol, plasma membrane or phagosome. Although a prototypical molecule has<br />

been l<strong>in</strong>ked to multiple locations, we have specified that a given <strong>in</strong>stance can only be present at<br />

one place at any given time <strong>in</strong> a simulation.<br />

Figure 8. Localization event <strong>of</strong> the <strong>semantic</strong> model.<br />

Figure 8. Localization event <strong>of</strong> the <strong>semantic</strong> model. Localization events <strong>in</strong> the model def<strong>in</strong>e<br />

the possible locations <strong>of</strong> a molecule <strong>in</strong> a <strong>cell</strong>. In this example, a PI3K-p110 prote<strong>in</strong> agent is<br />

connected to three different <strong>in</strong>tra<strong>cell</strong>ular compartments through three localization events.<br />

In addition to the localization event, a [translocation event] def<strong>in</strong>es the movement <strong>of</strong> a<br />

molecule from one location to another. Figure 9 features an example where a PI3K-p110<br />

25


molecule moves from the cytosol to plasma membrane. The translocation event connects<br />

[PI3K-p110] to [Cytosol] with a {Orig<strong>in</strong>} relationship, while [Plasma membrane] is l<strong>in</strong>ked <strong>by</strong> a<br />

{Dest<strong>in</strong>ation} relationship. Taken together, the [localization event] def<strong>in</strong>es all possible<br />

locations <strong>of</strong> a molecule <strong>in</strong> a <strong>cell</strong>, while the [translocation event] allows an <strong>in</strong>stance <strong>of</strong> the<br />

molecule to change its location dur<strong>in</strong>g a simulation.<br />

Figure 9. Translocation event <strong>of</strong> the <strong>semantic</strong> model.<br />

Figure 9. Translocation event <strong>of</strong> the <strong>semantic</strong> model. A translocation event agent connects to<br />

a molecule, an orig<strong>in</strong>al location and a dest<strong>in</strong>ation. The translocation event allows prote<strong>in</strong>s<br />

such as PI3K-p110 to move <strong>in</strong> between locations <strong>in</strong> a simulation.<br />

3.1.3 Non-covalent <strong>in</strong>teractions as <strong>semantic</strong> agents<br />

Physical <strong>in</strong>teractions occurr<strong>in</strong>g between two molecules via non-covalent forces<br />

(electrostatic <strong>in</strong>teractions, van der Waals <strong>in</strong>teractions, hydrogen bond<strong>in</strong>g) have been<br />

represented <strong>by</strong> [Non-covalent <strong>in</strong>teraction] event agents <strong>in</strong> the <strong>semantic</strong> model. A non-covalent<br />

event has been composed <strong>of</strong> two sub-events: [b<strong>in</strong>d<strong>in</strong>g event A] and [b<strong>in</strong>d<strong>in</strong>g event B], and each<br />

b<strong>in</strong>d<strong>in</strong>g event considers only one molecule. Figure 10 illustrates a non-covalent event that<br />

models b<strong>in</strong>d<strong>in</strong>g between PI3K-p110 and Ras.<br />

26


Figure 10.<br />

Non-covalent <strong>in</strong>teraction event <strong>of</strong> the <strong>semantic</strong> model.<br />

Figure 10. Non-covalent <strong>in</strong>teraction event <strong>of</strong> the <strong>semantic</strong> model. A non-covalent <strong>in</strong>teraction<br />

event models the b<strong>in</strong>d<strong>in</strong>g <strong>of</strong> two molecules. This example features the <strong>in</strong>teraction between Ras<br />

and PI3K prote<strong>in</strong>s. The event l<strong>in</strong>ks the b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong>s and their correspond<strong>in</strong>g states.<br />

Each sub-event has been l<strong>in</strong>ked to not only a molecule and its b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> but also<br />

two types <strong>of</strong> states. We have assigned two dist<strong>in</strong>ct states to <strong>in</strong>dicate the condition and<br />

consequence <strong>of</strong> each <strong>in</strong>teraction event. Table 4 shows the two types <strong>of</strong> states: "states required<br />

for <strong>in</strong>teractions" and "states caused <strong>by</strong> <strong>in</strong>teractions". Each type further conta<strong>in</strong>s 2 subgroups to<br />

differentiate between non-covalent and covalent <strong>in</strong>teractions.<br />

27


Table 4. Two types <strong>of</strong> states <strong>in</strong> the <strong>semantic</strong> model.<br />

1. States required for<br />

<strong>in</strong>teractions<br />

(conformational states)<br />

Non-covalent <strong>in</strong>teraction<br />

[Functional for noncovalent]<br />

[Non-functional for noncovalent]<br />

Covalent <strong>in</strong>teraction<br />

[Functional for covalent]<br />

[Non-functional for<br />

covalent]<br />

2. States caused <strong>by</strong><br />

<strong>in</strong>teractions<br />

(b<strong>in</strong>d<strong>in</strong>g states or<br />

phosphorylation states)<br />

[Bound]<br />

[Not-bound]<br />

[Phosphorylated]<br />

[Not-phosphorylated]<br />

Table 4. Two types <strong>of</strong> states <strong>in</strong> the <strong>semantic</strong> model. Two major types <strong>of</strong> states are associated<br />

with <strong>in</strong>teractions, and they represent conformational and functional changes dur<strong>in</strong>g physical<br />

<strong>in</strong>teractions. The first type is conformational states that are required for either a non<strong>in</strong>teraction<br />

or a covalent <strong>in</strong>teraction. Each sub-type also conta<strong>in</strong>s a positive (Functional) and a<br />

negative (Non-functional) state. The second type is states that are changed as the result or<br />

consequence <strong>of</strong> either a non-covalent or a covalent <strong>in</strong>teraction. Each sub-type conta<strong>in</strong>s two<br />

opposite states; positive (e.g. Bound) and negative (e.g. Not-bound).<br />

Each <strong>of</strong> eight possible states is represented <strong>by</strong> an <strong>in</strong>dividual <strong>semantic</strong> agent. The first<br />

type <strong>of</strong> states, "states required for <strong>in</strong>teractions", have been <strong>in</strong>troduced to <strong>in</strong>dicate the<br />

conformation that is required for an <strong>in</strong>teraction to occur. The [Functional for non-covalent<br />

<strong>in</strong>teraction] state or the [Functional for covalent <strong>in</strong>teraction] state denotes that a doma<strong>in</strong> or site<br />

is <strong>in</strong> a correct conformation that enables the occurrence <strong>of</strong> a non-covalent <strong>in</strong>teraction or<br />

covalent <strong>in</strong>teraction respectively. On the other hand, the [Non-functional for non-covalent<br />

<strong>in</strong>teraction] or the [Non-functional for covalent <strong>in</strong>teraction] states imply that a doma<strong>in</strong> or site is<br />

present <strong>in</strong> such a conformation that prevents its <strong>in</strong>teractions with other <strong>cell</strong> components.<br />

The second state type "states caused <strong>by</strong> <strong>in</strong>teractions" designates b<strong>in</strong>d<strong>in</strong>g states or<br />

phosphorylation states. For example, a doma<strong>in</strong> with the [Bound] state implies that such a<br />

doma<strong>in</strong> is currently bound to a doma<strong>in</strong> on another molecule, while the [Not-bound] state<br />

<strong>in</strong>dicates the doma<strong>in</strong> is not engaged <strong>in</strong> a non-covalent <strong>in</strong>teraction. The [Phosphorylated] state<br />

28


<strong>in</strong>dicates a modification residue has been phosphorylated, while the [not-phosphorylated] state<br />

means the residue is not phosphorylated.<br />

In the example <strong>of</strong> Ras and PI3K-p110 b<strong>in</strong>d<strong>in</strong>g, the [B<strong>in</strong>d<strong>in</strong>g event A] is connected to a<br />

Ras prote<strong>in</strong> and its correspond<strong>in</strong>g PI3K-p110 b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> as well as two different states.<br />

The [Functional for non-covalent <strong>in</strong>teraction] state <strong>in</strong>dicates that the [PI3K-p110 b<strong>in</strong>d<strong>in</strong>g<br />

doma<strong>in</strong>] on Ras needs to acquire this conformational state before the <strong>in</strong>teraction can occur. On<br />

the other hand, the [Bound] state <strong>in</strong>dicates that this b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> will acquire the [Bound]<br />

state as the result <strong>of</strong> the <strong>in</strong>teraction. Thus, the construction <strong>of</strong> the non-covalent <strong>in</strong>teraction event<br />

allows us to <strong>in</strong>fer the existence <strong>of</strong> molecular complexes from the connections <strong>of</strong> the<br />

correspond<strong>in</strong>g b<strong>in</strong>d<strong>in</strong>g molecules. No additional agents are required to represent prote<strong>in</strong><br />

complexes.<br />

An "allosteric regulation event" describes the situation <strong>in</strong> which <strong>in</strong>teraction at one site<br />

<strong>of</strong> a prote<strong>in</strong> causes conformational changes on another part <strong>of</strong> the molecule that have functional<br />

implications. The SN representation <strong>of</strong> the allosteric regulation is illustrated <strong>in</strong> Figure 10<br />

through the example <strong>of</strong> non-covalent <strong>in</strong>teraction occurr<strong>in</strong>g between Ras and P110, lead<strong>in</strong>g to<br />

the change <strong>of</strong> the state <strong>of</strong> the PI3_k<strong>in</strong>ase doma<strong>in</strong>. The use <strong>of</strong> allosteric regulation events <strong>in</strong> SN<br />

model<strong>in</strong>g allows us to represent cause-effect relationships between prote<strong>in</strong>s doma<strong>in</strong>s. The<br />

model for allosteric regulation events is presented <strong>in</strong> detail <strong>in</strong> Section 3.15.<br />

3.1.4 Covalent <strong>in</strong>teractions as <strong>semantic</strong> agents<br />

In contrast to non-covalent <strong>in</strong>teractions, covalent <strong>in</strong>teraction events model chemical<br />

reactions (<strong>of</strong>ten catalyzed <strong>by</strong> enzymes) that transform substrates to products <strong>by</strong> break<strong>in</strong>g or<br />

creat<strong>in</strong>g covalent chemical bonds. A covalent <strong>in</strong>teraction event has been represented with the<br />

SN environment <strong>by</strong> three types <strong>of</strong> sub-events: an [enzyme event] that models the <strong>in</strong>volvement<br />

<strong>of</strong> an enzyme and its active site; a [substrate event] that represents ligands and their<br />

29


modification sites; and a [product event] that l<strong>in</strong>ks the correspond<strong>in</strong>g products. As an example,<br />

Figure 11 illustrates a chemical reaction catalyzed <strong>by</strong> PDK1 k<strong>in</strong>ase which phosphorylates<br />

prote<strong>in</strong> AKT1. The enzyme event has been l<strong>in</strong>ked to a prototypical PDK1 enzyme and its<br />

k<strong>in</strong>ase doma<strong>in</strong> as well as the [Functional for covalent <strong>in</strong>teraction] state. Such connections imply<br />

the k<strong>in</strong>ase doma<strong>in</strong> has to be "functional" for this reaction to occur. It is possible that an<br />

[allosteric event] regulates the states <strong>of</strong> the k<strong>in</strong>ase doma<strong>in</strong> through another ligand b<strong>in</strong>d<strong>in</strong>g or a<br />

chemical modification on the enzyme. The first substrate event has l<strong>in</strong>ked to a prototypical<br />

AKT1 prote<strong>in</strong> and its phosphorylation site on threon<strong>in</strong>e 308 (T308). The connection with the<br />

[Not-phosphorylated] state <strong>in</strong>dicates that the site is not phosphorylated prior to the covalent<br />

<strong>in</strong>teraction event. The first product event connects the same prototypical AKT1, the same<br />

prototypical [T308] site, and the [phosphorylated] state.<br />

Although the same AKT prototype participates <strong>in</strong> both the substrate and product events,<br />

a new <strong>in</strong>stance <strong>of</strong> AKT1 and a new <strong>in</strong>stance <strong>of</strong> the site T308 are created <strong>in</strong> the simulation.<br />

Similarly, a new <strong>in</strong>stance <strong>of</strong> a small molecule ADP is created to represent the second product<br />

from the reaction.<br />

30


Figure 11.<br />

Covalent <strong>in</strong>teraction event <strong>of</strong> the <strong>semantic</strong> model.<br />

Figure 11. Covalent <strong>in</strong>teraction event <strong>of</strong> the <strong>semantic</strong> model. This covalent <strong>in</strong>teraction<br />

represents the phosphorylation <strong>of</strong> AKT1 <strong>by</strong> the enzyme PDK1. The event has been connected to<br />

the substrates (AKT1 and ATP), products (AKT1 and ADP) and the phosphorylation site on<br />

threon<strong>in</strong>e 308 (T308).<br />

3.1.5 Allosteric regulations as <strong>semantic</strong> agents<br />

A prote<strong>in</strong> can adopt multiple conformations <strong>in</strong> response to non-covalent ligand b<strong>in</strong>d<strong>in</strong>g<br />

or chemical modifications <strong>of</strong> particular residues. Thus the term "allosteric regulation" refers to<br />

the phenomena <strong>of</strong> <strong>in</strong>teractions at one site <strong>of</strong> a molecule caus<strong>in</strong>g conformational changes at<br />

another (Alberts et al. 2002). We expanded this def<strong>in</strong>ition to <strong>in</strong>clude conformational changes<br />

caused <strong>by</strong> either a ligand b<strong>in</strong>d<strong>in</strong>g or a chemical modification on any other subunit <strong>in</strong> the same<br />

31


prote<strong>in</strong> complex. One example <strong>of</strong> such complicated allosteric regulation is the conformational<br />

change occurred at the k<strong>in</strong>ase doma<strong>in</strong> on PI3K-p110, when its PI3K-p85 subunit b<strong>in</strong>ds to the<br />

<strong>cell</strong> receptors (Vanhaesebroeck and Waterfield 1999).<br />

The conformational states as <strong>in</strong>troduced <strong>in</strong> Section 3.1.3 are affected directly <strong>by</strong> the<br />

b<strong>in</strong>d<strong>in</strong>g states and/or the phosphorylation sates through allosteric regulation events. Figure 12<br />

features three different allosteric regulations on the Ras prote<strong>in</strong> (Macaluso et al. 2002): the<br />

b<strong>in</strong>d<strong>in</strong>g <strong>of</strong> GDP <strong>in</strong>hibits the GTP b<strong>in</strong>d<strong>in</strong>g on Ras; the b<strong>in</strong>d<strong>in</strong>g <strong>of</strong> SOS causes Ras to switch to a<br />

GTP-b<strong>in</strong>d<strong>in</strong>g conformation; the b<strong>in</strong>d<strong>in</strong>g <strong>of</strong> GTP causes the conformational change on the PI3Kp110<br />

b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> <strong>of</strong> Ras. Such change enables Ras molecule to b<strong>in</strong>d to PI3K-p110 prote<strong>in</strong><br />

and activates the PI3_k<strong>in</strong>ase doma<strong>in</strong> on PI3K-110.<br />

32


Figure 12.<br />

PI3K-p110.<br />

A visualization <strong>of</strong> allosteric regulations and <strong>in</strong>teractions between Ras and<br />

Figure 12. A visualization <strong>of</strong> allosteric regulations and <strong>in</strong>teractions between Ras and PI3Kp110.<br />

This figure illustrates allosteric regulation <strong>of</strong> Ras occurr<strong>in</strong>g dur<strong>in</strong>g its <strong>in</strong>teraction with<br />

PI3K-p110. The blue circles designate molecules and the yellow ones are doma<strong>in</strong>s or sites. The<br />

double-headed black arrows denote non-covalent <strong>in</strong>teractions, while the s<strong>in</strong>gle-headed black<br />

arrows are covalent <strong>in</strong>teractions. The red arrows with either a "plus" sign or a "m<strong>in</strong>us" sign<br />

are used to represent the allosteric regulations. This figure is created to facilitate the<br />

visualization <strong>of</strong> the underly<strong>in</strong>g biological <strong>in</strong>formation, and does not reflect all the connections<br />

among the <strong>semantic</strong> agents and relationships as implemented <strong>in</strong> the model. (Abbreviation: RBD<br />

= Ras B<strong>in</strong>d<strong>in</strong>g Doma<strong>in</strong>).<br />

The Ras-PI3K example demonstrates that prote<strong>in</strong>s can act as a logic and adaptive<br />

device, that is affected <strong>by</strong> the "upstream" <strong>in</strong>teractions (ie. the <strong>in</strong>puts) and affects the<br />

"downstream" <strong>in</strong>teractions (ie. the outputs). In the developed <strong>semantic</strong> model, we captured such<br />

prote<strong>in</strong>-logics through the creation <strong>of</strong> "allosteric regulation events". An allosteric regulation<br />

33


event is composed <strong>of</strong> [condition] events that conta<strong>in</strong> specific <strong>in</strong>formation about the <strong>in</strong>put<br />

signals, and [response] events that consider the outputs. Figure 13 illustrates an example <strong>of</strong><br />

such an allosteric regulation model, which represents the cause-effect relationship from the<br />

[GEF] doma<strong>in</strong> to [GDP] and [GTP] b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong>s on Ras. A condition event has been<br />

connected to the GEF doma<strong>in</strong> on Ras as well as the [Bound] state, and it implies that the<br />

condition is met only when the GEF doma<strong>in</strong> on Ras has been bound. Consequently, the<br />

allosteric regulation conta<strong>in</strong>s two response events. If the condition is satisfied, the first response<br />

causes the GDP b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> on Ras to become [Non-functional for non-covalent<br />

<strong>in</strong>teraction], and <strong>in</strong>hibits GDP-b<strong>in</strong>d<strong>in</strong>g. The second response switches the GTP b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong><br />

to [Functional for non-covalent <strong>in</strong>teraction] and promotes GTP-b<strong>in</strong>d<strong>in</strong>g.<br />

As stated earlier, the b<strong>in</strong>d<strong>in</strong>g and phosphorylation states are caused <strong>by</strong> upstream<br />

<strong>in</strong>teractions (non-covalent and covalent respectively), and the conformational states are<br />

required for the downstream processes. Therefore, <strong>by</strong> l<strong>in</strong>k<strong>in</strong>g the b<strong>in</strong>d<strong>in</strong>g/phosphorylation<br />

states to conformational states through allosteric regulation events, upstream <strong>in</strong>teractions are<br />

connected to downstream events. Such connections among <strong>in</strong>teractions have enabled us to<br />

traverse with<strong>in</strong> <strong>cell</strong>-<strong>signal<strong>in</strong>g</strong> <strong>pathways</strong> <strong>in</strong> both up and down directions.<br />

34


Figure 13.<br />

Allosteric regulation event <strong>of</strong> the <strong>semantic</strong> model.<br />

Figure 13. Allosteric regulation event <strong>of</strong> the <strong>semantic</strong> model. An allosteric regulation event<br />

agent is composed <strong>of</strong> condition and response events. Each condition event considers a doma<strong>in</strong><br />

and its conditional state (b<strong>in</strong>d<strong>in</strong>g or phosphorylation state). After the conditions are met, one<br />

or more response events would change the conformational states on other doma<strong>in</strong>s.<br />

35


3.1.6 Cellular responses as <strong>semantic</strong> agents<br />

The f<strong>in</strong>al type <strong>of</strong> <strong>in</strong>teractions we have implemented with<strong>in</strong> the BioCAD environment is<br />

[<strong>cell</strong>ular response]. A [<strong>cell</strong>ular response] has been represented as an event agent that<br />

corresponds to qualitative <strong>cell</strong>ular behaviors such as <strong>cell</strong> survival, <strong>cell</strong> growth and phagosome<br />

formation. Activation or deactivation <strong>of</strong> certa<strong>in</strong> molecules promotes the occurrence <strong>of</strong> these<br />

<strong>cell</strong>ular response events.<br />

Figure 14 illustrates how a [prote<strong>in</strong> synthesis] response can be <strong>in</strong>duced if a condition is<br />

satisfied. The condition specifies that a p70 S6-k<strong>in</strong>ase (RPS6KB1) is phosphorylated at the<br />

threon<strong>in</strong>e 389 site (T389). It is possible to <strong>in</strong>clude additional conditions <strong>in</strong>to the model, such<br />

that the occurrence <strong>of</strong> a <strong>cell</strong>ular response is dependent on states <strong>of</strong> multiple molecules.<br />

Figure 14.<br />

Cellular response <strong>of</strong> the <strong>semantic</strong> model.<br />

Figure 14. Cellular response <strong>of</strong> the <strong>semantic</strong> model. A <strong>cell</strong>ular response (e.g. prote<strong>in</strong><br />

synthesis) conta<strong>in</strong>s one or more condition events. A condition event connects to a molecule, its<br />

doma<strong>in</strong> <strong>in</strong>volved and a conditional state (b<strong>in</strong>d<strong>in</strong>g state or phosphorylation state).<br />

36


In <strong>semantic</strong> <strong>networks</strong>, the behavior <strong>of</strong> any <strong>semantic</strong> agent can be clearly def<strong>in</strong>ed <strong>by</strong> its<br />

relationships or connections to other agents. Therefore, the construction <strong>of</strong> the six types <strong>of</strong><br />

events (localization, translocation, non-covalent <strong>in</strong>teraction, covalent <strong>in</strong>teraction, allosteric<br />

regulation, and <strong>cell</strong>ular response) enables model<strong>in</strong>g <strong>of</strong> the behaviors <strong>of</strong> molecules <strong>in</strong> <strong>pathways</strong>.<br />

We have utilized the <strong>semantic</strong> model to reconstruct MTB <strong>in</strong>terference <strong>in</strong> macrophage <strong>pathways</strong><br />

and the cause-effect relationships between the <strong>in</strong>tra<strong>cell</strong>ular events.<br />

3.2 Reconstruction <strong>of</strong> macrophage <strong>pathways</strong> <strong>by</strong> <strong>semantic</strong> model<strong>in</strong>g<br />

3.2.1 Data sources and pathway reconstruction<br />

The majority <strong>of</strong> the currently available public resources such as pathway and <strong>in</strong>teraction<br />

databases conta<strong>in</strong> un-<strong>in</strong>tegrated data on <strong>cell</strong>-<strong>signal<strong>in</strong>g</strong> <strong>pathways</strong> that lack <strong>in</strong>formation on<br />

allosteric regulation <strong>in</strong> participat<strong>in</strong>g prote<strong>in</strong>s. Therefore, we have focused our efforts on<br />

extract<strong>in</strong>g pathway <strong>in</strong>formation from primary research and review articles and from the STKE<br />

PI3K pathway map (Table 5). The correspond<strong>in</strong>g data has been collected from the literature<br />

manually and <strong>in</strong>corporated <strong>in</strong>to the macrophage model through the use <strong>of</strong> SNEC (Semantic<br />

Network Environment for Cell-model<strong>in</strong>g).<br />

Table 5. Data sources used <strong>in</strong> macrophage pathway reconstruction.<br />

Primsry research<br />

articles<br />

Review articles<br />

References<br />

Arbibe et al. 2002; Datta et al. 1997; Fratti et al. 2001; Gu et al. 2003;<br />

Hmama et al. 1999; Kane et al. 2002; Kumagai and Dunphy 1991;<br />

Lanzetti et al. 2004; L<strong>in</strong> et al. 1999; Murray et al. 2002; Muta and<br />

Takeshige 2001; Shapiro and Harper 1999; Tall et al. 2001; Vieira et<br />

al. 2003<br />

Cantley 2002; Downward 2004; Hayden and Ghosh 2004; Macaluso<br />

et al. 2002; Pavletich 1999; Stenmark and Aasland 1999; Stephens,<br />

Ellson, and Hawk<strong>in</strong>s 2002; Vanhaesebroeck and Waterfield 1999;<br />

Vanhaesebroeck et al. 2001; Velasco-Velazquez et al. 2003; Wurmser,<br />

Gary, and Emr 1999; Wymann, Zvelebil, and Laffargue 2003<br />

37


Pathway<br />

database<br />

STKE (Gough 2002), Connections Map - PI3K pathway (last updated,<br />

July, 2003)<br />

It should be noted, that a pathway diagram presented <strong>in</strong> literature or public database,<br />

does <strong>in</strong> pr<strong>in</strong>ciple, represent what may happen if every depicted molecule is expressed <strong>in</strong> the<br />

correct location, at the correct time and with the correct conformations <strong>in</strong> a <strong>cell</strong>. Hence, the<br />

aggregation <strong>of</strong> multiple pathway diagrams describes some, if not all, possible molecular events<br />

that can potentially occur under a given condition. To utilize such <strong>in</strong>formation <strong>in</strong> <strong>semantic</strong><br />

model<strong>in</strong>g, we decomposed pathway diagrams <strong>in</strong>volv<strong>in</strong>g PI3K enzyme families <strong>in</strong>to discrete<br />

pieces <strong>of</strong> <strong>in</strong>formation. We then utilized the def<strong>in</strong>ed sets <strong>of</strong> biological structures and events to<br />

<strong>in</strong>tegrate the <strong>in</strong>formation <strong>in</strong>to a unified macrophage pathway model. We reconstructed the<br />

pathway model <strong>by</strong> <strong>in</strong>corporat<strong>in</strong>g the essential components regulat<strong>in</strong>g phagocytosis and<br />

phagosome maturation processes <strong>in</strong> human <strong>macrophages</strong>. In addition, the model encompasses<br />

many PI3K-related <strong>in</strong>teractions that have implications <strong>in</strong> other <strong>cell</strong>ular processes <strong>in</strong>clud<strong>in</strong>g <strong>cell</strong><br />

survival, <strong>cell</strong> growth and <strong>cell</strong> division.<br />

Thus, Table 6 summarizes the overall SN reconstruction <strong>of</strong> the macrophage model that<br />

<strong>in</strong>volves 59 prototypical prote<strong>in</strong>s, localized <strong>in</strong> different <strong>in</strong>tra<strong>cell</strong>ular compartments. Appendix<br />

C1 conta<strong>in</strong>s a complete prote<strong>in</strong> list. The 59 prote<strong>in</strong>s conta<strong>in</strong> 201 doma<strong>in</strong>s and sites. Among<br />

them are annotated Pfam doma<strong>in</strong>s that <strong>in</strong>clude SH2, SH3, PH and PX, as well as<br />

phosphorylation sites (phosphoser<strong>in</strong>e, phosphothreon<strong>in</strong>e, phosphotyros<strong>in</strong>e). Lipids such as<br />

PIP3 (ma<strong>in</strong> product <strong>of</strong> PI3K-p110), PI3P (product <strong>of</strong> Vps34p) and ManLAM (MTB's a<br />

phosphatidyl<strong>in</strong>ositol analog) and small molecules, GDP and GTP, also play important roles.<br />

38


Table 6. Biological structure and event prototypes modeled <strong>in</strong> the macrophage <strong>pathways</strong>.<br />

Biological structure Sum<br />

Cell 1<br />

Intra<strong>cell</strong>ular Compartment 4<br />

Prote<strong>in</strong> 59<br />

Doma<strong>in</strong> and site 201<br />

Lipid 5<br />

Polysaccharide 1<br />

small molecule 2<br />

Biological event Sum<br />

Localization 107<br />

Non-covalent <strong>in</strong>teraction 46<br />

Covalent <strong>in</strong>teraction 17<br />

Allosteric regulation 27<br />

Cellular response 8<br />

Table 6. Biological structure and event prototypes modeled <strong>in</strong> the macrophage <strong>pathways</strong>.<br />

This table shows the number <strong>of</strong> prototypical structures and events modeled <strong>in</strong> the macrophage<br />

analysis.<br />

In addition to the biological entities, various PI3K- associated signall<strong>in</strong>g events have<br />

been extracted from the literature. Currently the macrophage model reflects 107 localization<br />

events, 46 non-covalent <strong>in</strong>teraction events, 17 covalent <strong>in</strong>teraction events, 27 allosteric<br />

regulation events and 8 <strong>cell</strong>ular responses. Each event has been supported <strong>by</strong> at least one<br />

literature reference (detailed <strong>in</strong> Appendices C2-C5).<br />

3.2.2 SN model<strong>in</strong>g <strong>of</strong> known MTB <strong>in</strong>terference mechanisms<br />

The <strong>in</strong>tegration <strong>of</strong> <strong>in</strong>formation on macrophage signall<strong>in</strong>g <strong>in</strong>volv<strong>in</strong>g PI3K provides a<br />

detailed picture <strong>of</strong> <strong>cell</strong>ular processes. Such <strong>in</strong>tegration also allows us to visualize the <strong>in</strong>teraction<br />

<strong>networks</strong> and to reconstruct scenarios <strong>of</strong> pathogenic MTB <strong>in</strong>terference with the normal<br />

39


macrophage <strong>pathways</strong>. The <strong>semantic</strong> network methodology (as implemented <strong>in</strong> SNEC) allowed<br />

us to traverse among the various prototypical events or to perform "pathway walk", start<strong>in</strong>g<br />

from the MTB surface molecules, propagat<strong>in</strong>g through the activated <strong>macrophages</strong> <strong>cell</strong> receptors<br />

to the <strong>in</strong>termediate <strong>in</strong>tra<strong>cell</strong>ular prote<strong>in</strong>s such as PI3Ks, and lead<strong>in</strong>g to term<strong>in</strong>al <strong>cell</strong>ular<br />

responses. Three <strong>in</strong>teraction maps have been generated to represent the pathogenesis <strong>pathways</strong><br />

<strong>in</strong> the model (Figure 15, 16, 17).<br />

The SN macrophage model predicts eight <strong>cell</strong>ular <strong>pathways</strong> that can be affected <strong>by</strong><br />

MTB. Table 7 shows that among the eight <strong>cell</strong>ular responses, four have been previously<br />

reported <strong>in</strong> experimental studies. The <strong>in</strong>teractions lead<strong>in</strong>g to those four previously identified<br />

responses are described <strong>in</strong> detail <strong>in</strong> the follow<strong>in</strong>g sections.<br />

40


Figure 15.<br />

PI3K <strong>in</strong>teraction map part one.<br />

41<br />

Figure 15. PI3K <strong>in</strong>teraction map part one. The <strong>in</strong>teraction map was generated manually <strong>by</strong> travers<strong>in</strong>g among the different molecules <strong>in</strong> the<br />

macrophage pathway model through SNEC. The start<strong>in</strong>g po<strong>in</strong>ts <strong>of</strong> this graph are the three MTB surface molecules IGHG3, C3 and LPS.<br />

The icons represent <strong>semantic</strong> agents and are def<strong>in</strong>ed <strong>in</strong> Appendix A. All the arrows represent "derived relationships". The black doubleheaded<br />

arrows are used to connect b<strong>in</strong>d<strong>in</strong>g molecules to their non-covalent <strong>in</strong>teraction (double-headed <strong>in</strong>dicates the dual directionality <strong>in</strong><br />

the <strong>in</strong>teraction). The black s<strong>in</strong>gle-headed arrows represent the connections among enzymes, substrates, and products. The blue arrows<br />

connect allosteric regulations to the molecular <strong>in</strong>teractions. The map shows the connections from the three start<strong>in</strong>g molecules on MTB to<br />

the production <strong>of</strong> PIP3 <strong>in</strong> <strong>macrophages</strong>.


Figure 16.<br />

PI3K <strong>in</strong>teraction map part two.<br />

42<br />

Figure 16. PI3K <strong>in</strong>teraction map part two. The map shows the connections from PIP3 to various <strong>cell</strong>ular responses. The red arrow with a<br />

"check" sign represents "promot<strong>in</strong>g" relationship (also a derived relationship). The red arrow with a "cross" sign represents "<strong>in</strong>hibitory"<br />

relationship.


Figure 17.<br />

PI3K <strong>in</strong>teraction map part three.<br />

43<br />

Figure 17. PI3K <strong>in</strong>teraction map part three. The map shows another parallel pathway from PIP3, and the connections to two additional<br />

<strong>cell</strong>ular responses.


Table 7. Macrophage responses known to be affected <strong>by</strong> MTB <strong>in</strong>terference.<br />

Cellular responses promoted <strong>by</strong> MTB<br />

Support<strong>in</strong>g reference<br />

Act<strong>in</strong> polymerization and rearrangement Schles<strong>in</strong>ger et al. 1990<br />

Membrane delivery to plasma membrane Schles<strong>in</strong>ger et al. 1990<br />

Cellular responses <strong>in</strong>hibited <strong>by</strong> MTB<br />

Recruitment <strong>of</strong> oxidase complex to phagosome<br />

Support<strong>in</strong>g reference<br />

Phagosome-lysosome fusion Xu et al. 1994<br />

Moura, Modolell, and Mariano1997<br />

Table 7. Known macrophage responses affected <strong>by</strong> MTB <strong>in</strong>terference. The table shows the<br />

<strong>cell</strong>ular responses that can be promoted or <strong>in</strong>hibited <strong>by</strong> MTB <strong>in</strong>fection <strong>in</strong> <strong>macrophages</strong>, as<br />

predicted <strong>by</strong> the pathway model. The second column shows literature that supports the<br />

prediction. The support<strong>in</strong>g reference has been excluded from model reconstruction.<br />

3.2.2.1 MTB promotes act<strong>in</strong> polymerization and rearrangement <strong>in</strong> macrophage<br />

It is known that phagocytosis <strong>of</strong> bacteria <strong>in</strong>volves two major macrophage responses:<br />

[act<strong>in</strong> polymerization and rearrangement] and [membrane delivery to plasma membrane]<br />

(Tjelle, Lovdal, and Berg 2000). The pathway model has reconstructed a series <strong>of</strong> events that<br />

l<strong>in</strong>k <strong>in</strong>teractions <strong>of</strong> MTB surface molecules to activation <strong>of</strong> [act<strong>in</strong> polymerization and<br />

rearrangement] pathway. The pathway model (Figure 15) shows how each <strong>of</strong> three MTB<br />

surface molecules (IGHG3, C3, LPS) can activate a different set <strong>of</strong> macrophage <strong>cell</strong>-receptors<br />

(<strong>in</strong>clud<strong>in</strong>g FCGR1A, [ITGAM + ITGB2], [CD14 + TLR2]). Subsequently, those receptors and<br />

the correspond<strong>in</strong>g adaptor prote<strong>in</strong> (GAB2) can b<strong>in</strong>d to PIK3R1 (PI3K-p85) with their<br />

phosphotyros<strong>in</strong>e residues to activate PIK3CA enzyme (PI3K-p110). On these <strong>in</strong>teraction maps<br />

different types <strong>of</strong> <strong>semantic</strong> agents are depicted as <strong>in</strong>dividual icons connected <strong>by</strong> arrows <strong>of</strong><br />

"derived relationships". The "derived relationships" have been <strong>in</strong>ferred from the underly<strong>in</strong>g<br />

<strong>semantic</strong> relationships that connect the agents as described <strong>in</strong> the <strong>semantic</strong> model (Section 3.1).<br />

For simplification, we have condensed several <strong>semantic</strong> agents and relationships <strong>in</strong>to a s<strong>in</strong>gle<br />

44


arrow. For <strong>in</strong>stance, the double-headed arrows on Figure 15, which connects IGHG3 and<br />

FCGR1A to a non-covalent <strong>in</strong>teraction, have <strong>in</strong>corporated their <strong>in</strong>dividual b<strong>in</strong>d<strong>in</strong>g event agents<br />

as well as doma<strong>in</strong>/site agents.<br />

The <strong>semantic</strong> model <strong>in</strong>corporates PIK3CA activation lead<strong>in</strong>g to conversion <strong>of</strong> PIP2 <strong>in</strong>to<br />

PIP3 (Figure 15). A s<strong>in</strong>gle-headed arrow was used to represent the directionality <strong>of</strong> a covalent<br />

<strong>in</strong>teraction. For <strong>in</strong>stance, the enzyme PIK3CA is l<strong>in</strong>ked <strong>by</strong> an arrow that goes "<strong>in</strong>to" a covalent<br />

<strong>in</strong>teraction icon, while the substrate PIP2 is connected <strong>by</strong> an arrow that comes out <strong>of</strong> the<br />

covalent <strong>in</strong>teraction. The substrate has been associated with its product <strong>in</strong> the reaction <strong>by</strong><br />

another s<strong>in</strong>gle-headed arrow from PIP2 to PIP3. The pathway model <strong>in</strong>corporates allosteric<br />

regulation events such as the one <strong>in</strong>volv<strong>in</strong>g FCGR1A. The b<strong>in</strong>d<strong>in</strong>g <strong>of</strong> IGHG3 can change<br />

FCGR1A's conformation, enabl<strong>in</strong>g its b<strong>in</strong>d<strong>in</strong>g with LYN. To visualize such <strong>in</strong>formation, the<br />

regulation event is represented <strong>by</strong> a "positive" allosteric regulation icon, which connects to the<br />

two correspond<strong>in</strong>g non-covalent <strong>in</strong>teractions <strong>by</strong> two s<strong>in</strong>gle-headed blue arrows.<br />

The constructed SN model illustrated <strong>by</strong> Figure 15 <strong>in</strong>corporates cause-effect<br />

relationships between the <strong>in</strong>teractions <strong>of</strong> MTB surface molecules and the production <strong>of</strong> PIP3,<br />

which is an essential molecule <strong>in</strong>teract<strong>in</strong>g with downstream prote<strong>in</strong>s. PSCD3 (a guan<strong>in</strong>enucleotide<br />

exchange prote<strong>in</strong> for ARF6) is one <strong>of</strong> many prote<strong>in</strong>s that b<strong>in</strong>ds to PIP3 (shown on<br />

Figure 16). The subsequent b<strong>in</strong>d<strong>in</strong>g <strong>of</strong> PSCD3 with ARF6 can change ARF6 <strong>in</strong>to a<br />

conformation that is favourable for GTP b<strong>in</strong>d<strong>in</strong>g (Cantley 2002). We have created a "positive"<br />

allosteric regulation event that l<strong>in</strong>ks the upstream non-covalent <strong>in</strong>teraction (PSCD3 ARF6)<br />

to the downstream one (ARF6 GTP). It has been reported that the b<strong>in</strong>d<strong>in</strong>g <strong>of</strong> GTP on<br />

ARF6 can <strong>in</strong>duce act<strong>in</strong> polymerization and rearrangement (Cantley 2002). Therefore, we<br />

<strong>in</strong>tegrated such <strong>in</strong>formation <strong>by</strong> connect<strong>in</strong>g the response to the previous non-covalent event with<br />

a "promot<strong>in</strong>g relationship", depicted as a red arrow with a check sign <strong>in</strong> Figure 16.<br />

45


The result<strong>in</strong>g pathway model simulates the details <strong>of</strong> MTB b<strong>in</strong>d<strong>in</strong>g to <strong>cell</strong> receptors that<br />

can promote [act<strong>in</strong> polymerization and rearrangement] responses <strong>in</strong> <strong>macrophages</strong>.<br />

3.2.2.2 MTB promotes membrane delivery to plasma membrane <strong>in</strong> macrophage<br />

The ARF6-GTP complex activates the [membrane delivery to the plasma membrane]<br />

process (Stephens, Ellson and Hawk<strong>in</strong>s 2002). We have <strong>in</strong>corporated the [membrane delivery<br />

to the plasma membrane] response <strong>in</strong>to the previously described PI3K-ARF6 pathway (Figure<br />

16). The cause-effect scenarios are <strong>in</strong>corporated <strong>in</strong>to the SN model. It predicts that MTB<br />

promotes [act<strong>in</strong> polymerization and rearrangement] and [membrane delivery to the <strong>cell</strong><br />

membrane] responses and, therefore, <strong>in</strong>duces phagocytosis <strong>in</strong> <strong>macrophages</strong>. The prediction is<br />

supported <strong>by</strong> Schles<strong>in</strong>ger's study (Schles<strong>in</strong>ger et al. 1990), which has shown that<br />

Mycobacterium tuberculosis triggered the phagocytosis process <strong>by</strong> b<strong>in</strong>d<strong>in</strong>g with CR3 (ITGAM<br />

and ITGB2 receptors) on <strong>macrophages</strong>.<br />

3.2.2.3 MTB <strong>in</strong>hibits phagosome-lysosome fusion <strong>in</strong> macrophage<br />

The <strong>in</strong>teraction map on Figure 17 shows another example <strong>of</strong> MTB <strong>in</strong>terference to the<br />

PI3K <strong>pathways</strong>. The <strong>pathways</strong> start from the PIP3 molecule, and cont<strong>in</strong>ue with the activation <strong>of</strong><br />

RAB5A <strong>by</strong> the GTP b<strong>in</strong>d<strong>in</strong>g and with its <strong>in</strong>teraction to PIK3R4. Subsequently, PIK3R4 can<br />

b<strong>in</strong>d with PIK3C3, the class III PI3K enzyme enabl<strong>in</strong>g phosphorylation <strong>of</strong> PI <strong>in</strong>to PI3P.<br />

Previous studies have shown that PI3P <strong>in</strong>teracts with EEA1 (early endosomes antigen 1), which<br />

is an essential anchor<strong>in</strong>g prote<strong>in</strong> that <strong>in</strong>duces fusion between <strong>in</strong>tra<strong>cell</strong>ular compartments<br />

<strong>in</strong>clud<strong>in</strong>g phagosomes and lysosomes (Stenmark and Aasland 1999; Wurmser, Gary, Emr<br />

1999). Therefore, the pathway model has been reconstructed <strong>in</strong> a way that the b<strong>in</strong>d<strong>in</strong>g <strong>of</strong> EEA1<br />

to PI3P can <strong>in</strong>duce the [phagosome-lysosome fusion] response.<br />

46


As it has been discussed earlier, ManLAM (a phosphatidyl<strong>in</strong>ositol analog produced <strong>by</strong><br />

MTB) can b<strong>in</strong>d to the active site <strong>of</strong> PIK3C3 and <strong>in</strong>hibit the catalytic activity <strong>of</strong> the enzyme<br />

(Fratti et al. 2001). Figure 17 shows that the <strong>in</strong>terference <strong>by</strong> MTB has been <strong>in</strong>corporated <strong>in</strong>to<br />

the model <strong>by</strong> a non-covalent <strong>in</strong>teraction that l<strong>in</strong>ks ManLAM to PIK3C3 enzyme. A "negative"<br />

allosteric regulation event connects to the downstream covalent <strong>in</strong>teraction, and it signifies the<br />

production <strong>of</strong> PI3P is <strong>in</strong>hibited <strong>by</strong> the ManLAM b<strong>in</strong>d<strong>in</strong>g. Because <strong>of</strong> the <strong>in</strong>hibitory effect <strong>of</strong> the<br />

allosteric regulation, the event has been visualized with an icon that has a "cross" sign. The<br />

model suggested that MTB can stop the [phagosome-lysosome fusion] response that is<br />

normally <strong>in</strong>duced <strong>by</strong> the PIK3C3 enzyme. This prediction has been supported <strong>by</strong> Xu's study<br />

(Xu et al. 1994), which documented that MTB restricted the fusion capability <strong>of</strong> <strong>in</strong>tra<strong>cell</strong>ular<br />

compartments <strong>in</strong> <strong>macrophages</strong>.<br />

3.2.2.4 MTB <strong>in</strong>hibits recruitment <strong>of</strong> oxidase complex to phagosome <strong>in</strong> macrophage<br />

The study <strong>by</strong> the Stephens' group (Stephens, Ellson, and Hawk<strong>in</strong>s 2002) has <strong>in</strong>dicated<br />

that PI3P can <strong>in</strong>teract not only with EEA1, but also with NCF4 (p40-phox), which plays an<br />

important role <strong>in</strong> the formation <strong>of</strong> the oxidase complex on phagosomes. We have <strong>in</strong>corporated<br />

a non-covalent <strong>in</strong>teraction between PI3P and NCF4 <strong>in</strong>to the SN model (Figure 17), show<strong>in</strong>g<br />

that the <strong>in</strong>teraction can activate the [recruitment <strong>of</strong> oxidase complex to phagosome] response <strong>in</strong><br />

<strong>macrophages</strong>. However, the ManLAM competitive b<strong>in</strong>d<strong>in</strong>g on PIK3C3 enzyme can reduce the<br />

PI3P production and <strong>in</strong>hibit the response.<br />

It is known that the [recruitment <strong>of</strong> oxidase complex to phagosome] is required for the<br />

production <strong>of</strong> toxic oxygen-derived compounds <strong>in</strong> the organelle, and this event is accompanied<br />

<strong>by</strong> <strong>in</strong>creased consumption <strong>of</strong> oxygen <strong>in</strong> macrophage <strong>cell</strong>s (Moura, Modolell, and Mariano<br />

1997). Moura's study (Moura, Modolell, and Mariano 1997) has <strong>in</strong>dicated a <strong>cell</strong> wall lipid from<br />

a MTB-related species, Mycobacterium leprae, down-regulated the oxygen consumption <strong>in</strong><br />

47


<strong>macrophages</strong>, support<strong>in</strong>g the model prediction <strong>of</strong> [recruitment <strong>of</strong> oxidase complex to<br />

phagosome] response.<br />

The four cases <strong>of</strong> the MTB <strong>in</strong>terference that have been discussed above <strong>in</strong> greater detail<br />

demonstrated that the SN-based pathway model could successfully reconstruct the molecular<br />

events that lead to known macrophage responses. The model shows that MTB can promote<br />

[act<strong>in</strong> polymerization and rearrangement] and [membrane delivery to plasma membrane]<br />

responses, but <strong>in</strong>hibits [phagosome-lysosome fusion] and [recruitment <strong>of</strong> oxidase complex to<br />

phagosome] <strong>in</strong> <strong>macrophages</strong>.<br />

3.3 Cause-effect SN simulation <strong>of</strong> macrophage <strong>pathways</strong> dur<strong>in</strong>g <strong>in</strong>fection<br />

The above macrophage pathway model represents the qualitative scenarios <strong>of</strong> MTB<br />

<strong>in</strong>terference <strong>in</strong> the host <strong>pathways</strong>. We have implemented an SN-simulation program to further<br />

<strong>in</strong>vestigate the dynamic behavior <strong>of</strong> molecules <strong>in</strong> the <strong>pathways</strong>. We allow each <strong>in</strong>dividual<br />

molecular "<strong>in</strong>stance" to <strong>in</strong>teract with other molecules, change its conformation, and move<br />

between different locations <strong>in</strong> a macrophage <strong>cell</strong>. In the correspond<strong>in</strong>g simulation, every<br />

molecule has been represented <strong>by</strong> an <strong>in</strong>dividual agent, while every <strong>in</strong>stance <strong>of</strong> a molecular<br />

<strong>in</strong>teraction is represented as an <strong>in</strong>dividual event agent. An event agent has been connected to all<br />

the participat<strong>in</strong>g entities to record "what", "how" and "when" an <strong>in</strong>teraction occurred <strong>in</strong> a<br />

simulation. The simulator provides a traceable "trajectory" <strong>of</strong> all the events that happen to<br />

every molecule. Such an event history allows a detailed analysis <strong>of</strong> simulated molecular<br />

<strong>in</strong>teractions.<br />

The <strong>in</strong>teractions among IGHG3, FCGR1A, Lyn and Gab2 have been studied <strong>in</strong> detail<br />

<strong>by</strong> Gu et al. (2003), provid<strong>in</strong>g a simple and well-characterized test for the simulation (Figure<br />

18). The Fc-gamma receptor (FCGR1A) has a b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> for immunoglobul<strong>in</strong> gamma 3<br />

48


(IGHG3). When FCGR1A b<strong>in</strong>ds to IGHG3, the Lyn b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> is activated and thus<br />

enables its b<strong>in</strong>d<strong>in</strong>g to Lyn k<strong>in</strong>ase. The subsequent b<strong>in</strong>d<strong>in</strong>g between FCGR1A and Lyn activates<br />

the k<strong>in</strong>ase active site, [Prote<strong>in</strong>_k<strong>in</strong>ase_Tyr], on Lyn, and allows the enzyme to phosphorylate<br />

Gab2 on a phosphotyros<strong>in</strong>e site (pYxxM).<br />

Figure 18.<br />

Interactions between Fc-gamma receptor and Lyn k<strong>in</strong>ase.<br />

Figure 18. Interactions between Fc-gamma receptor and Lyn k<strong>in</strong>ase. This figure illustrates<br />

the possible <strong>in</strong>teractions and allosteric regulations among the 4 different molecules <strong>in</strong> the<br />

simulation (IGHG3, FCGR1A, Lyn, Gab2). The figure uses the same visualization schema as <strong>in</strong><br />

Figure 12 for Ras and PI3K <strong>in</strong>teractions.<br />

To simulate the above <strong>in</strong>teractions, we created an <strong>in</strong>stance <strong>of</strong> the macrophage <strong>cell</strong>,<br />

composed <strong>of</strong> four compartments: extra<strong>cell</strong>ular space, plasma membrane, cytosol, and nucleus.<br />

Different <strong>in</strong>stances <strong>of</strong> molecules were produced and localized with<strong>in</strong> dist<strong>in</strong>ct <strong>cell</strong>ular<br />

compartments at the start (time=0). Two <strong>in</strong>stances <strong>of</strong> IgG molecules (IGHG3) were present <strong>in</strong><br />

the extra<strong>cell</strong>ular space, and two <strong>in</strong>stances <strong>of</strong> Fcγ receptors were located <strong>in</strong> the plasma<br />

49


membrane (Figure 19). The cytosol conta<strong>in</strong>ed two copies <strong>of</strong> Lyn and Gab2. There were no<br />

events occurred at the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> the simulation.<br />

Figure 19. A SN-based simulator, before a simulation run (time =0).<br />

Figure 19. A SN-based simulator, before a simulation run (time =0). An <strong>in</strong>stance <strong>of</strong> a<br />

macrophage <strong>cell</strong> (human) is composed <strong>of</strong> four compartments; extra<strong>cell</strong>ular space, plasma<br />

membrane, cytosol and nucleus. There are three operations for each compartment, and they<br />

are activated <strong>by</strong> the three action buttons respectively: "Non-covalent <strong>in</strong>t.", "Covalent <strong>in</strong>t." and<br />

"Translocation." Operations are performed accord<strong>in</strong>g to the simulation steps as described <strong>in</strong><br />

Figure 21. The combo boxes located at the top is used to <strong>in</strong>crement the time. Before the<br />

simulation run, there was no event occurred as shown <strong>in</strong> the reports at the bottom <strong>of</strong> the<br />

screen.<br />

50


Figure 20.<br />

A SN-based simulator, at the end <strong>of</strong> a simulation run (time=6).<br />

Figure 20. A SN-based simulator, at the end <strong>of</strong> a simulation run (time=6). The figure shows<br />

the simulation outcomes at time 6. The molecules have changed their orig<strong>in</strong>al locations, and<br />

many events have accumulated. There were 11 translocation events, 4 allosteric regulation<br />

events, 4 non-covalent <strong>in</strong>teractions events, and 1 covalent <strong>in</strong>teraction events.<br />

The SN-simulation was executed <strong>by</strong> runn<strong>in</strong>g a simulation cycle for each unit <strong>of</strong> time.<br />

Figure 21 illustrates that one simulation cycle consists <strong>of</strong> three operation steps.<br />

51


Figure 21.<br />

The sequence <strong>of</strong> simulation steps.<br />

Figure 21. The sequence <strong>of</strong> simulation steps. This figure illustrates the simulation cycles<br />

<strong>in</strong>volve three operation steps: "non-covalent <strong>in</strong>teraction", "covalent <strong>in</strong>teraction" and<br />

"translocation". Each operation is executed for an <strong>in</strong>dividual location <strong>in</strong> the specified order.<br />

After the completion <strong>of</strong> the f<strong>in</strong>al step, the time (or step) is <strong>in</strong>cremented <strong>by</strong> one, and the same<br />

cycle repeats.<br />

In the first step, an operation searches for one pair <strong>of</strong> molecules that has the potential to<br />

<strong>in</strong>teract non-covalently <strong>in</strong> one location (<strong>by</strong> check<strong>in</strong>g the non-covalent <strong>in</strong>teractions previously<br />

52


specified <strong>in</strong> the pathway model). If there are multiple pairs <strong>of</strong> <strong>in</strong>teract<strong>in</strong>g molecules, the<br />

operation chooses the first molecule randomly and selects its partner from all the <strong>in</strong>teract<strong>in</strong>g<br />

molecules that are present <strong>in</strong> same location. After a pair has been determ<strong>in</strong>ed, an event agent<br />

l<strong>in</strong>ks both <strong>of</strong> the molecule <strong>in</strong>stances. We record the time when the <strong>in</strong>teraction occurs <strong>by</strong> l<strong>in</strong>k<strong>in</strong>g<br />

the event agent with a "time stamp" agent. Table 8 shows that four non-covalent <strong>in</strong>teractions<br />

have occurred <strong>in</strong> the simulation at time 2, 3, 4 and 5 respectively.<br />

After the "non-covalent <strong>in</strong>teraction" operation has been executed <strong>in</strong> the plasma<br />

membrane, cytosol, and nucleus, the simulation program searches for a "covalent <strong>in</strong>teraction".<br />

The operation randomly picks an enzyme whose substrates are present <strong>in</strong> the same location.<br />

After an enzyme has been determ<strong>in</strong>ed, a substrate is randomly chosen (if there was more than<br />

one substrate) and the correspond<strong>in</strong>g product is created. The covalent <strong>in</strong>teraction operation is<br />

repeated <strong>in</strong> plasma membrane, cytosol, and nucleus. Table 9 shows that one covalent<br />

<strong>in</strong>teraction between Lyn and Gab2 occurred at plasma membrane at time 6 <strong>in</strong> the simulation.<br />

The occurrence for both non-covalent <strong>in</strong>teractions and covalent <strong>in</strong>teractions require not<br />

only the presence <strong>of</strong> molecules, but also the correct conformational states <strong>of</strong> those molecules,<br />

as specified <strong>by</strong> the pathway model. Therefore, a non-covalent <strong>in</strong>teraction requires both<br />

molecules to have "functional" b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong>s, while a covalent <strong>in</strong>teraction requires an<br />

enzyme with a "functional" active site. The occurrence <strong>of</strong> either <strong>in</strong>teraction can trigger<br />

allosteric regulations and changes the conformational states <strong>of</strong> the participat<strong>in</strong>g molecules.<br />

Such state changes allow molecules to adopt new functions and participate <strong>in</strong> different<br />

<strong>in</strong>teractions. For <strong>in</strong>stance, the non-covalent <strong>in</strong>teraction between IGHG3 and FCGR1A occurred<br />

at time 2 has caused an allosteric regulation, which switched the conformational state <strong>of</strong> the<br />

Lyn b<strong>in</strong>d<strong>in</strong>g site on FCGR1A from the "non-functional" to "functional" state. After the Lyn<br />

molecule has been translocated from cytosol to plasma membrane at time 3, the activated Lyn<br />

53


<strong>in</strong>d<strong>in</strong>g site on FCGR1A enabled the receptor to b<strong>in</strong>d with Lyn at Time 4. Table 10 shows that<br />

there were a total <strong>of</strong> 4 allosteric regulation events <strong>in</strong> the simulation.<br />

As the f<strong>in</strong>al step <strong>in</strong> the simulation cycle, molecules change their locations through<br />

translocation events. One translocation can occur and move one molecule from each location.<br />

The operation randomly picks a molecule that has the ability to move <strong>by</strong> check<strong>in</strong>g its<br />

localization events on the prototypical molecule. Once a molecule has been determ<strong>in</strong>ed, a<br />

dest<strong>in</strong>ation is randomly chosen if there is more than one location where the molecule can move<br />

to. For example, Table 11 shows that a Gab2 molecule has been translocated from cytosol to<br />

plasma membrane at Time 1. However, the FCGR1A molecule has never moved dur<strong>in</strong>g the<br />

simulation because it can only be localized at plasma membrane as restricted <strong>by</strong> its localization<br />

event. The operation for translocations is executed for each location <strong>in</strong> the order <strong>of</strong> extra<strong>cell</strong>ular<br />

space, plasma membrane, cytosol, and nucleus. After the translocation events, the time<br />

(represent<strong>in</strong>g the step) is <strong>in</strong>cremented <strong>by</strong> one unit, and the simulation cycle is repeated.<br />

At the end <strong>of</strong> the simulation (time = 6), most molecules have changed their locations<br />

and many events have accumulated (4 non-covalent <strong>in</strong>teractions, 1 covalent <strong>in</strong>teraction, 4<br />

allosteric regulation, and 11 translocations as shown <strong>in</strong> Figure 20). Those events have<br />

demonstrated how the <strong>in</strong>itial translocation <strong>of</strong> IGHG3 molecules from extra<strong>cell</strong>ular space to<br />

plasma membrane "<strong>in</strong>duced" the subsequent series <strong>of</strong> events that eventually led to the<br />

phosphorylation <strong>of</strong> Gab2 molecule to Gab2-p.<br />

It is possible to simulate different biological scenarios <strong>by</strong> modify<strong>in</strong>g the <strong>in</strong>itial<br />

populations and distribution <strong>of</strong> molecules <strong>in</strong> each location. At the current stage, the simulator<br />

enables us to “play” different macrophage <strong>pathways</strong> and observes the actions <strong>of</strong> the molecules.<br />

It captures the stochastic behaviors <strong>of</strong> <strong>in</strong>teractions to through the use <strong>of</strong> random operations. We<br />

54


anticipate future improvement <strong>of</strong> the SN-simulator will enhance our ability to predict and<br />

validate MTB <strong>in</strong>terference <strong>in</strong> <strong>macrophages</strong>.<br />

55


Table 8. Non-covalent <strong>in</strong>teraction events <strong>in</strong> the simulation.<br />

Time Molecule A Doma<strong>in</strong> A Molecule B Doma<strong>in</strong> B Location<br />

Time 2 FCGR1A IG IGHG3 Fc-gamma receptor b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> Plasma Membrane<br />

Time 3 FCGR1A IG IGHG3 Fc-gamma receptor b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> Plasma Membrane<br />

Time 4 FCGR1A Lyn b<strong>in</strong>d<strong>in</strong>g LYN FcgR b<strong>in</strong>d<strong>in</strong>g Plasma Membrane<br />

Time 5 LYN FcgR b<strong>in</strong>d<strong>in</strong>g FCGR1A Lyn b<strong>in</strong>d<strong>in</strong>g Plasma Membrane<br />

Table 8. Non-covalent <strong>in</strong>teraction events <strong>in</strong> the simulation. This table shows the non-covalent <strong>in</strong>teraction events that occurred <strong>in</strong> the<br />

simulation, sorted <strong>by</strong> the time when the event occurred. Each event has been l<strong>in</strong>ked to other relevant agents <strong>in</strong>clud<strong>in</strong>g molecules, doma<strong>in</strong>s<br />

and states as well the location where the event happened. Column 1: time when the <strong>in</strong>teraction occurred <strong>in</strong> the simulation. Column 2: name<br />

<strong>of</strong> the b<strong>in</strong>d<strong>in</strong>g molecule A. Column 3: doma<strong>in</strong> <strong>of</strong> molecule A <strong>in</strong>volved <strong>in</strong> the <strong>in</strong>teraction. Column 4: name <strong>of</strong> the b<strong>in</strong>d<strong>in</strong>g molecule B. Column<br />

5: doma<strong>in</strong> <strong>of</strong> molecule B <strong>in</strong>volved <strong>in</strong> the <strong>in</strong>teraction. Column 6: location where the <strong>in</strong>teraction occurred.<br />

56<br />

Table 9. Covalent <strong>in</strong>teraction events <strong>in</strong> the simulation.<br />

Time Enzyme Enzyme's doma<strong>in</strong> Substrate Site State Product Site State Location<br />

Time 6 LYN PROTEIN_KINASE_TYR GAB2 pYxxM Not-phosphorylated GAB2-p pYxxM Phosphorylated Plasma Membrane<br />

Table 9. Covalent <strong>in</strong>teraction events <strong>in</strong> the simulation. The table shows the covalent <strong>in</strong>teraction events that occurred <strong>in</strong> the simulation.<br />

Column 1: time when the <strong>in</strong>teraction occurred. Column 2: name <strong>of</strong> the enzyme. Column 3: the active site or catalytic doma<strong>in</strong> <strong>of</strong> the enzyme<br />

<strong>in</strong>volved. Column 4: name <strong>of</strong> the substrate. Column 5: modification site <strong>of</strong> the substrate. Column 6: phosphorylation state before the<br />

covalent <strong>in</strong>teraction event. Column 7: name <strong>of</strong> the product. Column 8: modification site <strong>of</strong> the product. Column 9: phosphorylation state<br />

after the covalent <strong>in</strong>teraction. Column 10: location where the <strong>in</strong>teraction occurred.


Table 10. Allosteric regulation events <strong>in</strong> the simulation.<br />

Time Molecule affected Doma<strong>in</strong> <strong>in</strong>volved as the condition State satisfied Doma<strong>in</strong> affected as the response State changed to Location<br />

Time 2 FCGR1A IG Bound Lyn b<strong>in</strong>d<strong>in</strong>g Func. for non-cov. Plasma Membrane<br />

Time 3 FCGR1A IG Bound Lyn b<strong>in</strong>d<strong>in</strong>g Func. for non-cov. Plasma Membrane<br />

Time 4 LYN FcgR b<strong>in</strong>d<strong>in</strong>g Bound PROTEIN_KINASE_TYR Func. for cov. Plasma Membrane<br />

Time 5 LYN FcgR b<strong>in</strong>d<strong>in</strong>g Bound PROTEIN_KINASE_TYR Func. for cov. Plasma Membrane<br />

Table 10. Allosteric regulation events <strong>in</strong> the simulation. The table shows the allosteric regulation events that occurred <strong>in</strong> the simulation.<br />

Column 1: time when the event occurred. Column 2: molecule affected <strong>by</strong> the allosteric regulation responses. Column 3: doma<strong>in</strong> <strong>in</strong>volved <strong>in</strong><br />

the allosteric condition. Column 4: b<strong>in</strong>d<strong>in</strong>g state that was satisfied for the condition. Column 5: doma<strong>in</strong> affected <strong>by</strong> the allosteric response.<br />

Column 6: conformational state changed <strong>by</strong> the response. Column 7: location where the allosteric regulation occurred.<br />

57<br />

Table 11. Translocation events <strong>in</strong> the simulation.<br />

Time Molecule moved From To<br />

Time 1 IGHG3 Extra<strong>cell</strong>ular space Plasma Membrane<br />

Time 1 GAB2 Cytosol Plasma Membrane<br />

Time 2 IGHG3 Extra<strong>cell</strong>ular space Plasma Membrane<br />

Time 2 GAB2 Plasma Membrane Cytosol<br />

Time 2 GAB2 Cytosol Plasma Membrane<br />

Time 3 GAB2 Plasma Membrane Cytosol<br />

Time 3 LYN Cytosol Plasma Membrane<br />

Time 4 LYN Cytosol Plasma Membrane<br />

Time 5 GAB2 Cytosol Plasma Membrane


Time 6 GAB2-p Plasma Membrane Cytosol<br />

Time 6 GAB2 Cytosol Plasma Membrane<br />

Table 11. Translocation events <strong>in</strong> the simulation. The table shows the translocation events occurred <strong>in</strong> the simulation. Column 1: time<br />

when the translocation occurred. Column 2: molecule that was translocated. Column 3: the orig<strong>in</strong>al location <strong>of</strong> the molecule. Column 4: the<br />

dest<strong>in</strong>ation <strong>of</strong> the molecule.<br />

58


CHAPTER 4<br />

DISCUSSION<br />

4.1 Use <strong>of</strong> SN model<strong>in</strong>g for predict<strong>in</strong>g unknown macrophage responses to<br />

<strong>in</strong>fection<br />

The <strong>semantic</strong> model<strong>in</strong>g studies did not only allow us detailed cause-affect<br />

reconstruction <strong>of</strong> several known processes <strong>by</strong> which Mycobacterium tuberculosis <strong>in</strong>terferes<br />

with human <strong>macrophages</strong>, but also predicted several <strong>cell</strong>ular responses that have not been<br />

previously recognized (Table 12). Namely, as it has been discussed <strong>in</strong> Section 3.2.2,<br />

<strong>in</strong>teractions between MTB surface molecules and macrophage receptors can activate the class I<br />

PI3K enzyme and <strong>in</strong>duce the production <strong>of</strong> PIP3. Studies have shown that PIP3 regulates many<br />

other <strong>cell</strong>ular processes <strong>in</strong> addition to phagocytosis and phagosome maturation (Cantley 2002;<br />

Wymann, Zvelebil, and Laffargue 2003). We have <strong>in</strong>corporated additional PIP3-related<br />

<strong>in</strong>teractions <strong>in</strong>to the model, which identified four other macrophage responses that can be<br />

affected <strong>by</strong> MTB. The details <strong>of</strong> the SN-reconstructions <strong>of</strong> MTB <strong>in</strong>terference scenarios are<br />

discussed <strong>in</strong> the follow<strong>in</strong>g sections.<br />

Table 12. Unknown macrophage responses affected <strong>by</strong> MTB <strong>in</strong>terference.<br />

Cellular responses promoted <strong>by</strong> MTB<br />

Cell survival<br />

Cell cycle entry - S phase<br />

Prote<strong>in</strong> synthesis<br />

Intra<strong>cell</strong>ular glucose uptake<br />

Table 12. Unknown macrophage responses affected <strong>by</strong> MTB <strong>in</strong>terference. The table shows<br />

the <strong>cell</strong>ular responses that can be promoted <strong>by</strong> MTB <strong>in</strong>fection <strong>in</strong> <strong>macrophages</strong>, as predicted <strong>by</strong><br />

the pathway model.<br />

59


4.1.1.1 MTB <strong>in</strong>creases <strong>in</strong>tra<strong>cell</strong>ular glucose uptake <strong>in</strong> macrophage<br />

The developed SN-based pathway model illustrated <strong>by</strong> Figure 16 <strong>in</strong>cludes a noncovalent<br />

<strong>in</strong>teraction between PIP3 and SLC2A4 (glucose transporter type 4). This <strong>in</strong>teraction<br />

recruits SLC2A4 to the plasma membrane and allows the prote<strong>in</strong> to transport extra<strong>cell</strong>ular<br />

glucose <strong>in</strong>to the cytosol (Wymann, Zvelebil, and Laffargue 2003). The model encompasses<br />

such <strong>in</strong>formation <strong>by</strong> implement<strong>in</strong>g a <strong>cell</strong>ular response event, [<strong>in</strong>tra<strong>cell</strong>ular glucose uptake],<br />

which activation depends on the above non-covalent <strong>in</strong>teraction. When we <strong>in</strong>corporated these<br />

events <strong>in</strong>to the <strong>semantic</strong> network, we are able to reconstruct the cause-effect relationships from<br />

PI3K activation <strong>by</strong> the MTB factors, production <strong>of</strong> PIP3, and to the <strong>in</strong>crease <strong>of</strong> [<strong>in</strong>tra<strong>cell</strong>ular<br />

glucose uptake] <strong>in</strong> <strong>macrophages</strong> (Figure 15 and 16).<br />

4.1.1.2 MTB <strong>in</strong>creases the rate <strong>of</strong> prote<strong>in</strong> synthesis <strong>in</strong> macrophage<br />

An essential PIP3-<strong>in</strong>teract<strong>in</strong>g prote<strong>in</strong> is PDPK1, a k<strong>in</strong>ase that phosphorylates many<br />

substrates <strong>in</strong>clud<strong>in</strong>g RPS6KB1 (ribosomal prote<strong>in</strong> S6 k<strong>in</strong>ase) (Cantley 2002; Wymann,<br />

Zvelebil, and Laffargue 2003). The model <strong>in</strong>corporates a non-covalent <strong>in</strong>teraction that l<strong>in</strong>ks<br />

PIP3 to PDPK1 (Figure 16), and also <strong>in</strong>cludes a downstream covalent <strong>in</strong>teraction -<br />

phosphorylation <strong>of</strong> RPS6KB1 <strong>by</strong> PDPK1. RPS6KB1 k<strong>in</strong>ase becomes active when<br />

phosphorylated <strong>by</strong> PDPK1, and the activated RPS6KB1 phosphorylates the S6 ribosomal<br />

prote<strong>in</strong>s and <strong>in</strong>creases the rate <strong>of</strong> prote<strong>in</strong> synthesis (Cantley 2002). Such <strong>in</strong>formation has been<br />

<strong>in</strong>tegrated <strong>in</strong>to the macrophage model <strong>by</strong> a [prote<strong>in</strong> synthesis] response, which l<strong>in</strong>ks to the<br />

previous covalent <strong>in</strong>teraction event with a "promot<strong>in</strong>g relationship". The SN environment<br />

allows us to analyze the outcomes <strong>of</strong> MTB <strong>in</strong>terference on the PI3K <strong>pathways</strong>, and predicts that<br />

the rate <strong>of</strong> prote<strong>in</strong> synthesis <strong>in</strong> <strong>macrophages</strong> is <strong>in</strong>creased <strong>in</strong> response to RPS6KB1 activation.<br />

60


4.1.1.3 MTB promotes <strong>cell</strong> division <strong>in</strong> macrophage<br />

The previous experimental studies demonstrated that PDPK1 prote<strong>in</strong> can phosphorylate<br />

AKT1, a k<strong>in</strong>ase which regulates <strong>cell</strong> division (Cantley 2002). After activation, AKT1 <strong>in</strong> turn<br />

phosphorylates downstream prote<strong>in</strong>s such as GSK3B (Wymann, Zvelebil, and Laffargue 2003).<br />

GSK3B can phosphorylate CCND1 (Cycl<strong>in</strong> D1), but only when GSK3B is un-phosphorylated<br />

(Cantley 2002). After CCND1 is phosphorylated, it is targeted to the proteasome for<br />

degradation and <strong>cell</strong> cycle entry is <strong>in</strong>hibited. Therefore, the phosphorylation <strong>of</strong> GSK3B <strong>by</strong><br />

AKT1 deactivates the catalytic activity <strong>of</strong> GSK3B, stops the degradation <strong>of</strong> CCND1 and<br />

promotes <strong>cell</strong> cycle entry.<br />

The above <strong>in</strong>formation demonstrates an example <strong>of</strong> double-<strong>in</strong>hibition, which has been<br />

modeled <strong>by</strong> two covalent <strong>in</strong>teractions <strong>in</strong> the SN. The first is phosphorylation <strong>of</strong> GSK3B <strong>by</strong><br />

AKT1 (designated as"AKT1-p" on Figure 16). The second is phosphorylation <strong>of</strong> CCND1 <strong>by</strong><br />

GSK3B. To <strong>in</strong>dicate that the first <strong>in</strong>teraction <strong>in</strong>hibits the second one, we created a "negative"<br />

allosteric regulation event that l<strong>in</strong>ks the two chemical reactions. Subsequently, the second<br />

covalent <strong>in</strong>teraction <strong>in</strong>hibits the [Cell cycle entry - S phase] response. The "<strong>in</strong>hibitory"<br />

relationship is represented <strong>by</strong> a red arrow with a cross sign <strong>in</strong> Figure 16. When such complex<br />

series <strong>of</strong> events have been represented <strong>by</strong> the <strong>semantic</strong> agents and relationships <strong>in</strong> the SN, we<br />

observe that MTB can <strong>in</strong>duce the phosphorylation <strong>of</strong> GSK3B <strong>by</strong> AKT1 and promote <strong>cell</strong> cycle<br />

entry response <strong>in</strong> <strong>macrophages</strong>.<br />

4.1.1.4 MTB promotes survival <strong>of</strong> macrophage<br />

The pathway model accounts for double-<strong>in</strong>hibition <strong>in</strong>volv<strong>in</strong>g BAD and BCL2 (Figure<br />

16). BCL2 promotes <strong>cell</strong> survival, but the action is prevented <strong>by</strong> b<strong>in</strong>d<strong>in</strong>g with BAD (Cantley<br />

2002; Wymann, Zvelebil, Laffargue 2003). The BAD-BCL2 b<strong>in</strong>d<strong>in</strong>g is <strong>in</strong>hibited <strong>by</strong><br />

phosphorylation <strong>of</strong> BAD <strong>by</strong> AKT1 (Datta et al. 1997). The model has <strong>in</strong>corporated the double-<br />

61


<strong>in</strong>hibition relationships <strong>by</strong> a "negative" allosteric regulation event, which l<strong>in</strong>ks the upstream<br />

covalent <strong>in</strong>teraction (phosphorylation <strong>of</strong> BAD <strong>by</strong> AKT1-p) to the downstream non-covalent<br />

<strong>in</strong>teraction between BAD and BCL2 (Figure 16). The above non-covalent event has been<br />

connected to the [<strong>cell</strong> survival] response <strong>by</strong> an "<strong>in</strong>hibitory" relationship <strong>in</strong> the SN. The model<br />

reconstructed another MTB <strong>in</strong>terference scenario, account<strong>in</strong>g for the activation <strong>of</strong> AKT1 <strong>by</strong><br />

PDPK1, the subsequent phosphorylation <strong>of</strong> BAD <strong>by</strong> AKT1, and the occurrence <strong>of</strong> the [<strong>cell</strong><br />

survival] response <strong>in</strong> <strong>macrophages</strong> (Figure 16).<br />

The <strong>semantic</strong> <strong>networks</strong> enable us to <strong>in</strong>tegrate <strong>in</strong>dividual molecular <strong>in</strong>teractions and to<br />

reconstruct MTB-<strong>in</strong>terference on the macrophage PI3K-<strong>pathways</strong>, lead<strong>in</strong>g to the activation <strong>of</strong><br />

[<strong>in</strong>tra<strong>cell</strong>ular glucose uptake], [prote<strong>in</strong> synthesis], [<strong>cell</strong> cycle entry - S phase] and [<strong>cell</strong> survival]<br />

responses, none <strong>of</strong> which are described <strong>in</strong> the current literature on MTB <strong>in</strong>fection <strong>in</strong><br />

<strong>macrophages</strong>. Because a successful parasite ensures the growth and survival <strong>of</strong> the host to<br />

susta<strong>in</strong> its nutrients, these responses <strong>in</strong> <strong>macrophages</strong> should be beneficial for the survival <strong>of</strong><br />

Mycobacterium tuberculosis. Activat<strong>in</strong>g <strong>cell</strong> division signals <strong>in</strong> macrophage may also help the<br />

migration and spread <strong>of</strong> the bacteria to progenies <strong>of</strong> the host <strong>cell</strong>. These four <strong>cell</strong>ular responses<br />

will be validated <strong>by</strong> biological experiments <strong>in</strong> MTB-<strong>in</strong>fected <strong>macrophages</strong>.<br />

The pathway model predicts several connections between prote<strong>in</strong>s. For example, Gu et<br />

al. (2003) has observed the phosphorylation <strong>of</strong> the GAB2 prote<strong>in</strong> <strong>by</strong> the LYN k<strong>in</strong>ase, and the<br />

subsequent downstream-activation <strong>of</strong> the class I PI3K <strong>by</strong> phosphorylated GAB2. In Gu's study,<br />

the k<strong>in</strong>ase activity <strong>of</strong> LYN was activated <strong>by</strong> Fcγ-receptor (FCGR1A) through non-covalent<br />

b<strong>in</strong>d<strong>in</strong>g. An <strong>in</strong>dependent observation from Velasco-Velazquez (2003) suggested that the LYN<br />

can be activated <strong>by</strong> the CR3 receptor beta subunit, CD18 (ITGB2). Figure 15 illustrates that the<br />

model has <strong>in</strong>tegrated the two pieces <strong>of</strong> <strong>in</strong>formation on LYN regulations. As the result, the<br />

62


model suggested the possibility that both Fcγ-receptor and CR3 receptor can activate LYN,<br />

which phosphorylates GAB2 and activates class I PI3K.<br />

CD14 and the class I PI3K (PIK3CA) are predicted to <strong>in</strong>teract via TLR2. Hmama et al.<br />

(1999) suggested a model <strong>in</strong> which PI3K is activated <strong>in</strong>directly <strong>by</strong> the CD14 receptor. However,<br />

the components that l<strong>in</strong>k the two prote<strong>in</strong>s were not known. A more recent study <strong>by</strong> Muta and<br />

Takeshige (2001) has observed a direct <strong>in</strong>teraction between CD14 and TLR2. Aribe et al. (2000)<br />

demonstrated that a phosphotyros<strong>in</strong>e site on TLR2 can b<strong>in</strong>d to the p85 subunit <strong>of</strong> PI3K,<br />

activat<strong>in</strong>g PI3K catalytic activity. By comb<strong>in</strong><strong>in</strong>g these two pieces <strong>of</strong> evidence, the pathway<br />

model reconstructs the scenario that CD14 receptor can b<strong>in</strong>d to TLR2 that activates PI3K<br />

(Figure 15).<br />

The two examples demonstrate that the pathway model not only <strong>in</strong>tegrate and <strong>in</strong>terpret<br />

current biological observations but can also formalize new hypotheses. Several assumptions<br />

were made when the model connected the <strong>in</strong>dividual prote<strong>in</strong>-prote<strong>in</strong> <strong>in</strong>teractions <strong>in</strong>to <strong>pathways</strong>.<br />

For <strong>in</strong>stance, the model assumed the co-expression <strong>of</strong> the molecules and their correspond<strong>in</strong>g<br />

activation states <strong>in</strong> the macrophage <strong>cell</strong> dur<strong>in</strong>g MTB <strong>in</strong>fection. Those assumptions will be<br />

validated <strong>by</strong> simulations and experiments such as gene arrays, prote<strong>in</strong> expression and<br />

phosphorylation pr<strong>of</strong>iles. The pathway model can guide those experiments, and the<br />

experimental results will assist <strong>in</strong> model validation.<br />

4.2 Advantages <strong>of</strong> us<strong>in</strong>g <strong>semantic</strong> <strong>networks</strong> for pathway model<strong>in</strong>g<br />

The results presented above illustrate that SN-based reconstruction <strong>of</strong> molecular<br />

<strong>pathways</strong> can predict previously unrecognized scenarios, l<strong>in</strong>k<strong>in</strong>g the molecular events to the<br />

<strong>cell</strong>ular responses. The developed <strong>semantic</strong> model for <strong>cell</strong> signall<strong>in</strong>g has addressed several<br />

limitations <strong>of</strong> the conventional diagram-based pathway representation.<br />

63


4.2.1 Specify the spatial organization <strong>of</strong> molecules<br />

The <strong>semantic</strong> model has specified the hierarchical relationships among the different<br />

biological structures; from <strong>cell</strong>s to compartments, from compartment to molecules and from<br />

molecules to doma<strong>in</strong>s/sites. The hierarchy between <strong>in</strong>tra<strong>cell</strong>ular compartments and molecules<br />

allowed us to def<strong>in</strong>e the spatial organization <strong>of</strong> molecules <strong>in</strong> a <strong>cell</strong> through the localization<br />

events and the translocation events. Therefore, the model represents "where" <strong>in</strong>teractions occur.<br />

4.2.2 Model prote<strong>in</strong>s as logical, <strong>in</strong>tegrat<strong>in</strong>g and adaptive devices<br />

The organization <strong>of</strong> doma<strong>in</strong>s and sites and the use <strong>of</strong> allosteric regulation events have<br />

enabled us to model the cause-effect relationships between structures and functions <strong>in</strong><br />

macromolecules. With<strong>in</strong> SN, prote<strong>in</strong>s have been implemented as <strong>in</strong>tegrat<strong>in</strong>g and logical<br />

devices, and their conformational states can be switched <strong>by</strong> the occurrence <strong>of</strong> non-covalent<br />

and/or covalent <strong>in</strong>teraction events. Therefore, the model allowed us to represent the conditions<br />

and consequences <strong>of</strong> upstream <strong>in</strong>teractions and downstream <strong>in</strong>teractions <strong>in</strong> <strong>pathways</strong>, and the<br />

<strong>in</strong>formation <strong>of</strong> "what", "how" and "when" <strong>in</strong>teractions occur has been specified.<br />

4.2.3 Reduce the need for labels and descriptions<br />

In the developed <strong>semantic</strong> model, conventional descriptions <strong>of</strong> prote<strong>in</strong>s such as<br />

"enzyme", "activator" or "<strong>in</strong>hibitor" have been represented <strong>by</strong> events. For example, <strong>in</strong> the<br />

model a prote<strong>in</strong> has an "enzyme" role when 1) the prote<strong>in</strong> is participated <strong>in</strong> a "covalent<br />

<strong>in</strong>teraction event", 2) the presence <strong>of</strong> a "functional" catalytic doma<strong>in</strong> on the prote<strong>in</strong> is required<br />

for the occurrence <strong>of</strong> the event, and 3) the prote<strong>in</strong> itself is not modified after the event.<br />

Similarly, a prote<strong>in</strong> A "activates" a prote<strong>in</strong> B, when a non-covalent <strong>in</strong>teraction event from<br />

prote<strong>in</strong> A can turn on the "functional" state <strong>of</strong> a doma<strong>in</strong>/site on prote<strong>in</strong> B. Thus, the "role" or<br />

"function" <strong>of</strong> a prote<strong>in</strong> has been effectively represented <strong>by</strong> the events it participated <strong>in</strong>.<br />

64


Therefore, the model reduces the need for descriptive labels that are <strong>of</strong>ten ambiguous <strong>in</strong><br />

conventional pathway representation.<br />

4.2.4 Provide a direct communication from models to simulations<br />

In the developed model, the possible behaviors <strong>of</strong> molecules have been def<strong>in</strong>ed <strong>by</strong> the<br />

various <strong>in</strong>teraction events they <strong>in</strong>volved. Add<strong>in</strong>g or modify<strong>in</strong>g <strong>in</strong>teractions <strong>in</strong> the pathway<br />

model changes the behaviors <strong>of</strong> molecular <strong>in</strong>stances <strong>in</strong> the simulation. The <strong>semantic</strong> network<br />

environment has established a connection from the model to the simulation program where the<br />

actions <strong>of</strong> <strong>in</strong>dividual molecules can be observed and tested under different scenarios.<br />

The <strong>semantic</strong> <strong>networks</strong> have several other technical advantages over static pathway<br />

representation. Those advantages <strong>in</strong>clude faster query<strong>in</strong>g capabilities, convenient data addition<br />

and more effective <strong>in</strong>tegration <strong>of</strong> <strong>in</strong>formation. With <strong>in</strong> the SN framework, a given concept<br />

(such as [prote<strong>in</strong>]) is represented <strong>by</strong> one prototypical agent. Any additional <strong>in</strong>formation about<br />

that concept can be represented <strong>by</strong> other agents and relationships connected to the same<br />

prototype. This construct differs from a relational database where <strong>in</strong>formation is stored <strong>in</strong> tables.<br />

To l<strong>in</strong>k tables to one and another, unique identifiers or primary keys are required. The<br />

duplication <strong>of</strong> primary keys <strong>in</strong> tables creates data redundancy, <strong>in</strong>troduc<strong>in</strong>g issues on data<br />

ma<strong>in</strong>tenance and consistency. Semantic <strong>networks</strong> m<strong>in</strong>imize such issues <strong>by</strong> reus<strong>in</strong>g exist<strong>in</strong>g<br />

agents, and therefore, the databases have smaller size and more functional organization<br />

compared to the relational databases.<br />

The connectivity <strong>of</strong> <strong>semantic</strong> agents <strong>in</strong> the SN also allows very rapid execution <strong>of</strong> even<br />

very complicated queries as they are not compromised <strong>by</strong> a large number <strong>of</strong> tables that are<br />

<strong>of</strong>ten present <strong>in</strong> relational databases. In contrast, with<strong>in</strong> the SN environment a query is<br />

composed <strong>by</strong> operations which are <strong>semantic</strong> agents themselves and can be manipulated <strong>in</strong> the<br />

same way as other agents. Represent<strong>in</strong>g queries as <strong>semantic</strong> agents allows the <strong>in</strong>formation to be<br />

65


stored and <strong>in</strong>tegrated, and even re-used <strong>in</strong> a different context. On the other hand a query such as<br />

a SQL query is written <strong>in</strong> the form <strong>of</strong> static computer scripts, and the <strong>in</strong>formation on the data<br />

<strong>in</strong>terpretation is difficult to be utilized <strong>in</strong> a relational database.<br />

Semantic databases further dist<strong>in</strong>guish themselves <strong>by</strong> their capability to <strong>in</strong>corporate new<br />

data types through flexible creation <strong>of</strong> prototypes. Add<strong>in</strong>g new prototypes does not affect the<br />

exist<strong>in</strong>g data models. Therefore, a s<strong>in</strong>gle <strong>semantic</strong> database can support multiple <strong>semantic</strong><br />

models that represent <strong>in</strong>formation <strong>in</strong> different knowledge doma<strong>in</strong>s.<br />

4.3 Future directions<br />

The developed <strong>semantic</strong> model <strong>of</strong> human macrophage will be expanded to <strong>in</strong>clude more<br />

metabolic <strong>pathways</strong>, <strong>by</strong> <strong>in</strong>corporat<strong>in</strong>g other types <strong>of</strong> metabolic events <strong>in</strong>clud<strong>in</strong>g methylation,<br />

acetylation and glycosylation, <strong>in</strong> addition to the current phosphorylation and dephosphorylation<br />

processes. To model gene regulation, the non-covalent <strong>in</strong>teraction events will<br />

be expanded for the b<strong>in</strong>d<strong>in</strong>g between <strong>in</strong>dividual transcription factors and their correspond<strong>in</strong>g<br />

gene regulatory sites. The covalent <strong>in</strong>teraction event can represent transcription processes that<br />

lead to the production <strong>of</strong> mRNAs as well as translations that produce prote<strong>in</strong>s. The use <strong>of</strong> noncovalent<br />

<strong>in</strong>teractions will also help us to effectively represent large transcription complex that<br />

may <strong>in</strong>volve more than one hundred prote<strong>in</strong>s, assembled <strong>in</strong> various orders.<br />

The gene regulation logic will be modeled <strong>by</strong> leverag<strong>in</strong>g the current allosteric<br />

regulation events. We anticipate represent<strong>in</strong>g a gene locus <strong>by</strong> a macromolecular agent that is<br />

composed <strong>of</strong> transcription factor b<strong>in</strong>d<strong>in</strong>g sites, promoter sites, exons and <strong>in</strong>trons. An event that<br />

is analogous to the allosteric regulation will l<strong>in</strong>k the specific transcription factor b<strong>in</strong>d<strong>in</strong>g events<br />

to the activation/deactivation <strong>of</strong> promoter sites, which will then direct the production <strong>of</strong> specific<br />

transcripts.<br />

66


Dur<strong>in</strong>g the pathway reconstruction, we have extracted data ma<strong>in</strong>ly from the literature.<br />

Because the underly<strong>in</strong>g <strong>semantic</strong> model is compatible with most public available pathway and<br />

<strong>in</strong>teraction databases, the number <strong>of</strong> biological entities and <strong>in</strong>teractions <strong>in</strong> the <strong>pathways</strong> can be<br />

<strong>in</strong>creased through automatic data <strong>in</strong>tegration from those sources. However, <strong>in</strong>formation on<br />

allosteric regulations is still presented primarily <strong>in</strong> the literature, and therefore, extraction <strong>of</strong><br />

such <strong>in</strong>formation will rely on both text-m<strong>in</strong><strong>in</strong>g techniques and expert curation.<br />

It is also possible to predict prote<strong>in</strong> <strong>in</strong>teractions <strong>in</strong> the macrophage <strong>pathways</strong> based on<br />

doma<strong>in</strong>-doma<strong>in</strong> <strong>in</strong>teractions, which has been considered <strong>in</strong> the model. It has been shown that<br />

putative prote<strong>in</strong>-prote<strong>in</strong> <strong>in</strong>teractions can be <strong>in</strong>ferred from doma<strong>in</strong>-doma<strong>in</strong> or doma<strong>in</strong>-motif<br />

rules (Ng, Zhang, Tan 2003; Obenauer and Yaffe 2004). Such prediction can complement<br />

experimental determ<strong>in</strong>ed but limited prote<strong>in</strong> <strong>in</strong>teraction data. Thus, database <strong>in</strong>clud<strong>in</strong>g<br />

InterDom (Ng et al. 2003), iPfam (2004) and Scansite (Obenauer, Cantley, and Yaffe 2003)<br />

have compiled a list <strong>of</strong> experimental or computational derived doma<strong>in</strong>-doma<strong>in</strong> and doma<strong>in</strong>motif<br />

<strong>in</strong>teractions. Those resources will soon be utilized to predict prote<strong>in</strong> <strong>in</strong>teractions not only<br />

<strong>in</strong> a s<strong>in</strong>gle organism but also between organism such as MTB and <strong>macrophages</strong> (based on<br />

prote<strong>in</strong>s with common <strong>in</strong>teract<strong>in</strong>g doma<strong>in</strong>s.)<br />

The available gene and prote<strong>in</strong> expression data on <strong>macrophages</strong> will also be<br />

<strong>in</strong>corporated <strong>in</strong>to the model to determ<strong>in</strong>e "active" or "shortest" paths <strong>in</strong> the <strong>in</strong>teraction network.<br />

Previous study has shown that active sub-<strong>networks</strong> can be identified <strong>by</strong> overlay<strong>in</strong>g gene<br />

expression pr<strong>of</strong>iles with prote<strong>in</strong>-prote<strong>in</strong> <strong>in</strong>teraction data (Ideker et al. 2002). With<strong>in</strong> a <strong>cell</strong>, there<br />

are many paths that can activate a downstream prote<strong>in</strong>. The "length" <strong>of</strong> each path varies as it<br />

consists <strong>of</strong> different number <strong>of</strong> nodes. Therefore, we anticipate that the shortest path (the one<br />

with the least number <strong>of</strong> nodes that require activation), is more likely to be "utilized" than a<br />

longer route when the <strong>cell</strong> receives a stimulus. The <strong>in</strong>tegration <strong>of</strong> gene/prote<strong>in</strong> expression data<br />

67


with the pathway model will allow us to estimate the prote<strong>in</strong> activation states for "pathway<br />

filter<strong>in</strong>g".<br />

4.3.1 A collaborative pathway model<strong>in</strong>g environment<br />

The developed SNEC website will soon be available for the research community, when<br />

the underly<strong>in</strong>g biological model is improved and the necessary computer resources are<br />

allocated. SNEC provides a collaborative environment where different researchers can share<br />

and exchange their knowledge on <strong>in</strong>tra<strong>cell</strong>ular <strong>pathways</strong> <strong>in</strong> different organisms. The current<br />

web implementation has already allowed different users to customize biological entities and<br />

<strong>in</strong>teractions, and user-specific changes have been represented effectively <strong>by</strong> creat<strong>in</strong>g <strong>semantic</strong><br />

agents <strong>in</strong> the database.<br />

It is essential to reuse and exchange pathway <strong>in</strong>formation between researchers. The<br />

developed macrophage model represents a particular <strong>in</strong>terpretation <strong>of</strong> the entire <strong>pathways</strong> <strong>in</strong> the<br />

<strong>cell</strong>s. Users will be able to reuse the <strong>in</strong>teractions as parts <strong>of</strong> their own pathway models, or they<br />

can copy and modify each component to reflect their own <strong>in</strong>terpretation. Each <strong>in</strong>teraction can<br />

then be analyzed for its "trust" or "support" <strong>by</strong> other researchers. The analysis will help us to<br />

determ<strong>in</strong>e the canonical part <strong>of</strong> the <strong>pathways</strong> as well as parts that are still under debates and<br />

contradiction. The research community can focus on <strong>in</strong>complete <strong>pathways</strong>, form<strong>in</strong>g new<br />

hypotheses and design<strong>in</strong>g new experiments.<br />

The exchange and translation <strong>of</strong> complicated pathway <strong>in</strong>formation rely on a good<br />

visualization method. The PI3K-<strong>in</strong>teraction maps on Figure 15-17 have attempted to visualize<br />

different types <strong>of</strong> <strong>in</strong>teractions <strong>in</strong> <strong>pathways</strong>. Cook, Farley, and Tapscott (2001) and Kitano (2002)<br />

discussed several advanced visualization techniques, and some <strong>of</strong> them have been adopted <strong>by</strong><br />

Figure 12 and Figure 18. Those visualization techniques will be utilized to implement<br />

68


automatic graph<strong>in</strong>g tools for both 2-D maps <strong>of</strong> the <strong>pathways</strong> and 3-D animations <strong>of</strong> events <strong>in</strong><br />

simulation.<br />

We anticipate that the pathway model<strong>in</strong>g environment will provide not only advanced<br />

visualization tools <strong>by</strong> also a simulation program for pathway test<strong>in</strong>g. The current SN-simulator<br />

will be improved <strong>in</strong> four aspects. Firstly, various quantitative factors will be considered <strong>in</strong> the<br />

simulation. For <strong>in</strong>stance, b<strong>in</strong>d<strong>in</strong>g aff<strong>in</strong>ity that is associated with non-covalent events will affect<br />

the probability and the duration on the b<strong>in</strong>d<strong>in</strong>g <strong>of</strong> molecules. Reaction k<strong>in</strong>etics, associated with<br />

covalent events, will determ<strong>in</strong>e the rate <strong>of</strong> production. Both <strong>in</strong>teraction rates will determ<strong>in</strong>e the<br />

time each <strong>in</strong>teraction takes and how many events can accumulate dur<strong>in</strong>g each time unit.<br />

Secondly, the population and distribution <strong>of</strong> molecules <strong>in</strong> each <strong>in</strong>tra<strong>cell</strong>ular compartment will<br />

be supported <strong>by</strong> experimental data. For <strong>in</strong>stance, gene expression data from microarrays<br />

supports the relative abundance <strong>of</strong> transcripts, and prote<strong>in</strong> expression data provide the relative<br />

abundance <strong>of</strong> prote<strong>in</strong>s. Computer algorithms such as PSORT (Nakai and Horton 1999) can also<br />

assist <strong>in</strong> predict<strong>in</strong>g the localization <strong>of</strong> prote<strong>in</strong>s. Thirdly, the proximity <strong>of</strong> molecules will be<br />

enhanced. Current, proximity has been represented <strong>by</strong> creat<strong>in</strong>g <strong>in</strong>tra<strong>cell</strong>ular compartments,<br />

which can be further divided <strong>in</strong>to smaller sub-locations. Increas<strong>in</strong>g the number <strong>of</strong> locations and<br />

reduc<strong>in</strong>g the size <strong>of</strong> each location will improve the approximation on localization <strong>of</strong> molecules.<br />

The proximity can also be estimated through molecular complexes. We anticipate that a<br />

molecule will have a higher probability to <strong>in</strong>teract with its subunits <strong>in</strong> the same complex, than<br />

other molecules outside the complex.<br />

F<strong>in</strong>ally, the <strong>cell</strong>ular response events will be implemented <strong>in</strong>to the SN simulator, <strong>in</strong> a<br />

way that the events are triggered <strong>by</strong> the accumulation <strong>of</strong> different molecular <strong>in</strong>teractions. Such<br />

construct allows us to represent the transition from quantitative to qualitative behaviors <strong>in</strong> a <strong>cell</strong>.<br />

69


Cellular responses will serve as the f<strong>in</strong>al simulation outcomes for measur<strong>in</strong>g the effects <strong>of</strong><br />

extra<strong>cell</strong>ular stimuli <strong>in</strong>clud<strong>in</strong>g drugs.<br />

4.3.2 A potential tool for <strong>in</strong> silico drug discovery<br />

The drug discovery process <strong>in</strong>volves many stages <strong>of</strong> development, <strong>in</strong>clud<strong>in</strong>g drug target<br />

identification, drug target validation, drug design, drug identification, and drug test<strong>in</strong>g. A good<br />

drug target validation process should identify the functional roles <strong>of</strong> a target <strong>in</strong> a <strong>cell</strong> or an<br />

organism and establish its cause-effect relationships to a disease (Smith 2003). Currently, such<br />

<strong>in</strong>formation is obta<strong>in</strong>ed experimentally <strong>in</strong> vitro and <strong>in</strong> vivo through gene knockouts, antisense<br />

technology, RNA <strong>in</strong>terference (RNAi), and antibodies that target and <strong>in</strong>hibit the prote<strong>in</strong>.<br />

However, experimental methods are both time and resource consum<strong>in</strong>g. Analogous to "<strong>in</strong><br />

silico" drug design approach that has assisted and reduced the cost <strong>in</strong> conventional drug<br />

screen<strong>in</strong>g, we anticipate that <strong>in</strong> silico drug target validation can help and fasten the drug<br />

discovery process.<br />

Semantic <strong>networks</strong> provide a suitable environment for drug target validation because<br />

they can determ<strong>in</strong>e the function <strong>of</strong> prote<strong>in</strong>s <strong>in</strong> the context <strong>of</strong> <strong>in</strong>teraction <strong>networks</strong>. Prote<strong>in</strong>prote<strong>in</strong><br />

<strong>in</strong>teraction network has scale-free property that there are a few but essential prote<strong>in</strong>s<br />

with many connections, while most <strong>of</strong> the other prote<strong>in</strong>s only have a few l<strong>in</strong>kages (Barabasi<br />

and Oltvai 2004). Thus, target<strong>in</strong>g a highly-connected prote<strong>in</strong> should be disruptive to the<br />

pathogen, and such target can be identified from the prote<strong>in</strong>-<strong>in</strong>teraction <strong>networks</strong> already<br />

established <strong>in</strong> SN.<br />

In addition, <strong>semantic</strong> <strong>networks</strong> can determ<strong>in</strong>e spliced variants and prote<strong>in</strong>s that are able<br />

to compensate the disruption <strong>of</strong> the pathogenic target. In SN, spliced variants are characterized<br />

<strong>by</strong> their connections to the common gene agents. Prote<strong>in</strong>s with similar functions can be<br />

identified from their common doma<strong>in</strong>s and functional sites. If the prote<strong>in</strong> is too robust to attack,<br />

70


another strategy is to target pathogenic prote<strong>in</strong>s that directly <strong>in</strong>teract with host prote<strong>in</strong>s.<br />

Comb<strong>in</strong><strong>in</strong>g the prote<strong>in</strong> <strong>in</strong>teraction <strong>networks</strong> between the pathogen and the host will provide a<br />

list <strong>of</strong> such cross-<strong>in</strong>teract<strong>in</strong>g prote<strong>in</strong>s.<br />

In addition to drug target validation, the SN-simulator can be used for <strong>in</strong> silico drug<br />

test<strong>in</strong>g. Most drugs <strong>in</strong>teract with the active sites or b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> <strong>of</strong> host prote<strong>in</strong>s. Thus crossreactions<br />

can occur on prote<strong>in</strong>s that share the same drug-b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong>s. Such drug-specific<br />

<strong>in</strong>teractions can be <strong>in</strong>corporated <strong>in</strong>to the pathway model and the effect <strong>of</strong> drugs can be<br />

simulated. The simulation will provide a list <strong>of</strong> molecular events and <strong>cell</strong>ular responses that<br />

occur as the result <strong>of</strong> such drug <strong>in</strong>terference.<br />

71


CHAPTER 5<br />

CONCLUSION<br />

The application <strong>of</strong> <strong>semantic</strong> <strong>networks</strong> has enabled us to develop a new biological<br />

language (<strong>semantic</strong> model) for reconstruct<strong>in</strong>g Mycobacterium tuberculosis <strong>in</strong>terference<br />

strategies <strong>in</strong> macrophage <strong>pathways</strong>. The <strong>semantic</strong> model has several advantages <strong>in</strong><br />

characteriz<strong>in</strong>g complex <strong>in</strong>teractions between macromolecules <strong>in</strong> <strong>cell</strong> signall<strong>in</strong>g <strong>pathways</strong>, and it<br />

addressed the limitations <strong>of</strong> the conventional diagram-based pathway representation. These<br />

advantages <strong>in</strong>clude specify<strong>in</strong>g the spatial organization <strong>of</strong> molecules; model<strong>in</strong>g prote<strong>in</strong>s as<br />

logical, <strong>in</strong>tegrat<strong>in</strong>g and adaptive devices; reduc<strong>in</strong>g the need for labels and descriptions;<br />

provid<strong>in</strong>g a direct communication from models to simulations.<br />

The unique features <strong>of</strong> the <strong>semantic</strong> model allowed us to effectively reconstruct the<br />

cause-effect relationships <strong>of</strong> MTB <strong>in</strong>terference <strong>in</strong> human macrophage <strong>pathways</strong>. The current<br />

knowledge on PI3K <strong>in</strong>teractions and their correspond<strong>in</strong>g <strong>cell</strong>ular responses have been extracted<br />

from the literate and <strong>in</strong>tegrated <strong>in</strong>to the macrophage pathway model. The SN representation<br />

enabled the traverse with<strong>in</strong> the <strong>pathways</strong>, start<strong>in</strong>g from the MTB surface molecules, to<br />

activated receptors, downstream prote<strong>in</strong>s and occurr<strong>in</strong>g <strong>cell</strong>ular responses <strong>in</strong> <strong>macrophages</strong>.<br />

The pathway model has predicted that MTB factors can promote [act<strong>in</strong> polymerization<br />

and rearrangement], [membrane delivery to plasma membrane], [<strong>cell</strong> survival], [<strong>cell</strong> cycle entry<br />

- S phase], [prote<strong>in</strong> synthesis] and [<strong>in</strong>tra<strong>cell</strong>ular glucose uptake] responses <strong>in</strong> <strong>macrophages</strong>. On<br />

the other hand, [recruitment <strong>of</strong> oxidase complex to phagosome] and [phagosome-lysosome<br />

fusion] are <strong>in</strong>hibited <strong>by</strong> MTB. Some <strong>of</strong> the predicted responses have been supported <strong>by</strong><br />

previous studies, while the others have not yet been appreciated <strong>in</strong> current literature on MTB<br />

72


<strong>in</strong>fection <strong>in</strong> <strong>macrophages</strong>. New experiments will be formalized based on the pathway models to<br />

validate the responses further.<br />

The web-based application, Semantic Network Environment for Cell-model<strong>in</strong>g (SNEC),<br />

has implemented the <strong>semantic</strong> model for effective pathway build<strong>in</strong>g and customization. SNEC<br />

facilitates collaborative pathway studies <strong>in</strong> <strong>macrophages</strong> as well as other <strong>cell</strong>ular systems. To<br />

explore the dynamics <strong>of</strong> <strong>semantic</strong> <strong>networks</strong>, we have developed a SN-based <strong>cell</strong> simulator,<br />

which captures the stochastic behaviors <strong>in</strong> a <strong>cell</strong> and produce a detailed history <strong>of</strong> events that<br />

can be traced and analyzed afterward.<br />

In the future, we anticipate enhanc<strong>in</strong>g the pathway model and simulation, utiliz<strong>in</strong>g the<br />

SN environment for <strong>in</strong> silico drug discovery, and assist<strong>in</strong>g the development <strong>of</strong> new therapeutic<br />

strategies aga<strong>in</strong>st MTB <strong>in</strong>fections <strong>in</strong> <strong>macrophages</strong>.<br />

73


REFERENCES<br />

Alberts, B., A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. 2002. Molecular Biology<br />

<strong>of</strong> the Cell. 4th edition ed. New York: Garland Science.<br />

Arbibe, L., J. P. Mira, N. Teusch, L. Kl<strong>in</strong>e, M. Guha, N. Mackman, P. J. Godowski, R. J.<br />

Ulevitch, and U. G. Knaus. 2000. Toll-like receptor 2-mediated NF-kappa B activation<br />

requires a Rac1-dependent pathway. Nat Immunol 1 (6):533-40.<br />

Bader, G. D., D. Betel, and C. W. Hogue. 2003. BIND: the Biomolecular Interaction Network<br />

Database. Nucleic Acids Res 31 (1):248-50.<br />

Bader, G. D., and C. W. Hogue. 2000. BIND--a data specification for stor<strong>in</strong>g and describ<strong>in</strong>g<br />

biomolecular <strong>in</strong>teractions, molecular complexes and <strong>pathways</strong>. Bio<strong>in</strong>formatics 16 (5):465-<br />

77.<br />

Barabasi, A. L., and Z. N. Oltvai. 2004. Network biology: understand<strong>in</strong>g the <strong>cell</strong>'s functional<br />

organization. Nat Rev Genet 5 (2):101-13.<br />

Bateman, A., L. Co<strong>in</strong>, R. Durb<strong>in</strong>, R. D. F<strong>in</strong>n, V. Hollich, S. Griffiths-Jones, A. Khanna, M.<br />

Marshall, S. Moxon, E. L. Sonnhammer, D. J. Studholme, C. Yeats, and S. R. Eddy. 2004.<br />

The Pfam prote<strong>in</strong> families database. Nucleic Acids Res 32 (Database issue):D138-41.<br />

Benson, D. A., I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, and D. L. Wheeler. 2005. GenBank.<br />

Nucleic Acids Res 33 Database Issue:D34-8.<br />

Bhat, T. N., P. Bourne, Z. Feng, G. Gilliland, S. Ja<strong>in</strong>, V. Ravichandran, B. Schneider, K.<br />

Schneider, N. Thanki, H. Weissig, J. Westbrook, and H. M. Berman. 2001. The PDB data<br />

uniformity project. Nucleic Acids Res 29 (1):214-8.<br />

BioCAD. 2004 [cited. Available from http://www.biocad.com.<br />

BioCarta. 2004 [cited. Available from http://www.biocarta.com/.<br />

BioPAX. 2005 [cited. Available from http://www.biopax.org/.<br />

Breitkreutz, B. J., C. Stark, and M. Tyers. 2003. The GRID: the General Repository for<br />

Interaction Datasets. Genome Biol 4 (3):R23.<br />

Breitkreutz, B. J., C. Stark, and M. Tyers. 2003. Osprey: a network visualization system.<br />

Genome Biol 4 (3):R22.<br />

Cantley, L. C. 2002. The phospho<strong>in</strong>ositide 3-k<strong>in</strong>ase pathway. Science 296 (5573):1655-7.<br />

74


Cook, D. L., J. F. Farley, and S. J. Tapscott. 2001. A basis for a visual language for describ<strong>in</strong>g,<br />

archiv<strong>in</strong>g and analyz<strong>in</strong>g functional models <strong>of</strong> complex biological systems. Genome Biol 2<br />

(4):RESEARCH0012.<br />

Datta, S. R., H. Dudek, X. Tao, S. Masters, H. Fu, Y. Gotoh, and M. E. Greenberg. 1997. Akt<br />

phosphorylation <strong>of</strong> BAD couples survival signals to the <strong>cell</strong>-<strong>in</strong>tr<strong>in</strong>sic death mach<strong>in</strong>ery.<br />

Cell 91 (2):231-41.<br />

Demir, E., O. Babur, U. Dogrusoz, A. Gursoy, G. Nisanci, R. Cet<strong>in</strong>-Atalay, and M. Ozturk.<br />

2002. PATIKA: an <strong>in</strong>tegrated visual environment for collaborative construction and<br />

analysis <strong>of</strong> <strong>cell</strong>ular <strong>pathways</strong>. Bio<strong>in</strong>formatics 18 (7):996-1003.<br />

Downward, J. 2004. PI 3-k<strong>in</strong>ase, Akt and <strong>cell</strong> survival. Sem<strong>in</strong> Cell Dev Biol 15 (2):177-82.<br />

Ernst, J. D. 1998. Macrophage receptors for Mycobacterium tuberculosis. Infect Immun 66<br />

(4):1277-81.<br />

F<strong>in</strong>lay, B. B., and S. Falkow. 1997. Common themes <strong>in</strong> microbial pathogenicity revisited.<br />

Microbiol Mol Biol Rev 61 (2):136-69.<br />

Fisher, M. J., G. Malcolm, and R. C. Paton. 2000. Spatio-logical processes <strong>in</strong> <strong>in</strong>tra<strong>cell</strong>ular<br />

signall<strong>in</strong>g. Biosystems 55 (1-3):83-92.<br />

Fisher, M. J., R. C. Paton, and K. Matsuno. 1999. Intra<strong>cell</strong>ular signall<strong>in</strong>g prote<strong>in</strong>s as smart'<br />

agents <strong>in</strong> parallel distributed processes. Biosystems 50 (3):159-71.<br />

Fratti, R. A., J. M. Backer, J. Gruenberg, S. Corvera, and V. Deretic. 2001. Role <strong>of</strong><br />

phosphatidyl<strong>in</strong>ositol 3-k<strong>in</strong>ase and Rab5 effectors <strong>in</strong> phagosomal biogenesis and<br />

mycobacterial phagosome maturation arrest. J Cell Biol 154 (3):631-44.<br />

Garvey, T. D., P. L<strong>in</strong>coln, C. J. Pedersen, D. Mart<strong>in</strong>, and M. Johnson. 2003. BioSPICE: access<br />

to the most current computational tools for biologists. Omics 7 (4):411-20.<br />

Gough, N. R. 2002. Science's signal transduction knowledge environment: the connections<br />

maps database. Ann N Y Acad Sci 971:585-7.<br />

Griffith, R. L. 1982. Three Pr<strong>in</strong>ciples <strong>of</strong> Representation for Semantic Networks. ACM Trans.<br />

Database Syst. 7 (3):417-442.<br />

Gu, H., R. J. Botelho, M. Yu, S. Gr<strong>in</strong>ste<strong>in</strong>, and B. G. Neel. 2003. Critical role for scaffold<strong>in</strong>g<br />

adapter Gab2 <strong>in</strong> Fc gamma R-mediated phagocytosis. J Cell Biol 161 (6):1151-61.<br />

Harris, M. A., J. Clark, A. Ireland, J. Lomax, M. Ashburner, R. Foulger, K. Eilbeck, S. Lewis,<br />

B. Marshall, C. Mungall, J. Richter, G. M. Rub<strong>in</strong>, J. A. Blake, C. Bult, M. Dolan, H.<br />

Drabk<strong>in</strong>, J. T. Eppig, D. P. Hill, L. Ni, M. R<strong>in</strong>gwald, R. Balakrishnan, J. M. Cherry, K. R.<br />

Christie, M. C. Costanzo, S. S. Dwight, S. Engel, D. G. Fisk, J. E. Hirschman, E. L. Hong,<br />

75


R. S. Nash, A. Sethuraman, C. L. Theesfeld, D. Botste<strong>in</strong>, K. Dol<strong>in</strong>ski, B. Feierbach, T.<br />

Berard<strong>in</strong>i, S. Mundodi, S. Y. Rhee, R. Apweiler, D. Barrell, E. Camon, E. Dimmer, V. Lee,<br />

R. Chisholm, P. Gaudet, W. Kibbe, R. Kishore, E. M. Schwarz, P. Sternberg, M. Gw<strong>in</strong>n, L.<br />

Hannick, J. Wortman, M. Berriman, V. Wood, N. de la Cruz, P. Tonellato, P. Jaiswal, T.<br />

Seigfried, and R. White. 2004. The Gene Ontology (GO) database and <strong>in</strong>formatics<br />

resource. Nucleic Acids Res 32 (Database issue):D258-61.<br />

Hayden, M. S., and S. Ghosh. 2004. Signal<strong>in</strong>g to NF-kappaB. Genes Dev 18 (18):2195-224.<br />

Health, & Development Initiative. 2004 [cited. Available from http://www.health<strong>in</strong>itiative.org/.<br />

Hermjakob, H., L. Montecchi-Palazzi, G. Bader, J. Wojcik, L. Salw<strong>in</strong>ski, A. Ceol, S. Moore, S.<br />

Orchard, U. Sarkans, C. von Mer<strong>in</strong>g, B. Roechert, S. Poux, E. Jung, H. Mersch, P. Kersey,<br />

M. Lappe, Y. Li, R. Zeng, D. Rana, M. Nikolski, H. Husi, C. Brun, K. Shanker, S. G.<br />

Grant, C. Sander, P. Bork, W. Zhu, A. Pandey, A. Brazma, B. Jacq, M. Vidal, D. Sherman,<br />

P. Legra<strong>in</strong>, G. Cesareni, I. Xenarios, D. Eisenberg, B. Steipe, C. Hogue, and R. Apweiler.<br />

2004. The HUPO PSI's molecular <strong>in</strong>teraction format--a community standard for the<br />

representation <strong>of</strong> prote<strong>in</strong> <strong>in</strong>teraction data. Nat Biotechnol 22 (2):177-83.<br />

Hermjakob, H., L. Montecchi-Palazzi, C. Lew<strong>in</strong>gton, S. Mudali, S. Kerrien, S. Orchard, M.<br />

V<strong>in</strong>gron, B. Roechert, P. Roepstorff, A. Valencia, H. Margalit, J. Armstrong, A. Bairoch,<br />

G. Cesareni, D. Sherman, and R. Apweiler. 2004. IntAct: an open source molecular<br />

<strong>in</strong>teraction database. Nucleic Acids Res 32 Database issue:D452-5.<br />

Hmama, Z., K. L. Knutson, P. Herrera-Velit, D. Nandan, and N. E. Re<strong>in</strong>er. 1999. Monocyte<br />

adherence <strong>in</strong>duced <strong>by</strong> lipopolysaccharide <strong>in</strong>volves CD14, LFA-1, and cytohes<strong>in</strong>-1.<br />

Regulation <strong>by</strong> Rho and phosphatidyl<strong>in</strong>ositol 3-k<strong>in</strong>ase. J Biol Chem 274 (2):1050-7.<br />

Hs<strong>in</strong>g, M., J. L. Bellenson, C. Shankey, and A. Cherkasov. 2004. <strong>Model<strong>in</strong>g</strong> <strong>of</strong> <strong>cell</strong> <strong>signal<strong>in</strong>g</strong><br />

<strong>pathways</strong> <strong>in</strong> <strong>macrophages</strong> <strong>by</strong> <strong>semantic</strong> <strong>networks</strong>. BMC Bio<strong>in</strong>formatics 5 (1):156.<br />

Hucka, M., A. F<strong>in</strong>ney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Kitano, A. P. Ark<strong>in</strong>, B. J.<br />

Bornste<strong>in</strong>, D. Bray, A. Cornish-Bowden, A. A. Cuellar, S. Dronov, E. D. Gilles, M.<br />

G<strong>in</strong>kel, V. Gor, Goryan<strong>in</strong>, II, W. J. Hedley, T. C. Hodgman, J. H. H<strong>of</strong>meyr, P. J. Hunter,<br />

N. S. Juty, J. L. Kasberger, A. Kreml<strong>in</strong>g, U. Kummer, N. Le Novere, L. M. Loew, D.<br />

Lucio, P. Mendes, E. M<strong>in</strong>ch, E. D. Mjolsness, Y. Nakayama, M. R. Nelson, P. F. Nielsen,<br />

T. Sakurada, J. C. Schaff, B. E. Shapiro, T. S. Shimizu, H. D. Spence, J. Stell<strong>in</strong>g, K.<br />

Takahashi, M. Tomita, J. Wagner, and J. Wang. 2003. The systems biology markup<br />

language (SBML): a medium for representation and exchange <strong>of</strong> biochemical network<br />

models. Bio<strong>in</strong>formatics 19 (4):524-31.<br />

76


Ideker, T., and D. Lauffenburger. 2003. Build<strong>in</strong>g with a scaffold: emerg<strong>in</strong>g strategies for highto<br />

low-level <strong>cell</strong>ular model<strong>in</strong>g. Trends Biotechnol 21 (6):255-62.<br />

Ideker, T., O. Ozier, B. Schwikowski, and A. F. Siegel. 2002. Discover<strong>in</strong>g regulatory and<br />

signall<strong>in</strong>g circuits <strong>in</strong> molecular <strong>in</strong>teraction <strong>networks</strong>. Bio<strong>in</strong>formatics 18 Suppl 1:S233-40.<br />

iPfam. 2004 [cited. Available from http://www.sanger.ac.uk/S<strong>of</strong>tware/Pfam/iPfam/.<br />

Kane, L. P., M. N. Mollenauer, Z. Xu, C. W. Turck, and A. Weiss. 2002. Akt-dependent<br />

phosphorylation specifically regulates Cot <strong>in</strong>duction <strong>of</strong> NF-kappa B-dependent<br />

transcription. Mol Cell Biol 22 (16):5962-74.<br />

Kanehisa, M., and S. Goto. 2000. KEGG: kyoto encyclopedia <strong>of</strong> genes and genomes. Nucleic<br />

Acids Res 28 (1):27-30.<br />

Karp, P. D., S. Paley, and P. Romero. 2002. The Pathway Tools s<strong>of</strong>tware. Bio<strong>in</strong>formatics 18<br />

Suppl 1:S225-32.<br />

Kitano, H. 2002. The standard graphical notation for biochemical <strong>networks</strong>. ICSB-2002<br />

workshop on SBML/SBW (Stockholm).<br />

Krieger, C. J., P. Zhang, L. A. Mueller, A. Wang, S. Paley, M. Arnaud, J. Pick, S. Y. Rhee, and<br />

P. D. Karp. 2004. MetaCyc: a multiorganism database <strong>of</strong> metabolic <strong>pathways</strong> and<br />

enzymes. Nucleic Acids Res 32 Database issue:D438-42.<br />

Krull, M., N. Voss, C. Choi, S. Pistor, A. Potapov, and E. W<strong>in</strong>gender. 2003. TRANSPATH: an<br />

<strong>in</strong>tegrated database on signal transduction and a tool for array analysis. Nucleic Acids Res<br />

31 (1):97-100.<br />

Kumagai, A., and W. G. Dunphy. 1991. The cdc25 prote<strong>in</strong> controls tyros<strong>in</strong>e dephosphorylation<br />

<strong>of</strong> the cdc2 prote<strong>in</strong> <strong>in</strong> a <strong>cell</strong>-free system. Cell 64 (5):903-14.<br />

Lanzetti, L., A. Palamidessi, L. Areces, G. Scita, and P. P. Di Fiore. 2004. Rab5 is a signall<strong>in</strong>g<br />

GTPase <strong>in</strong>volved <strong>in</strong> act<strong>in</strong> remodell<strong>in</strong>g <strong>by</strong> receptor tyros<strong>in</strong>e k<strong>in</strong>ases. Nature 429<br />

(6989):309-14.<br />

Le Novere, N., and T. S. Shimizu. 2001. STOCHSIM: modell<strong>in</strong>g <strong>of</strong> stochastic biomolecular<br />

processes. Bio<strong>in</strong>formatics 17 (6):575-6.<br />

Lemer, C., E. Antezana, F. Couche, F. Fays, X. Santolaria, R. Janky, Y. Deville, J. Richelle,<br />

and S. J. Wodak. 2004. The aMAZE LightBench: a web <strong>in</strong>terface to a relational database<br />

<strong>of</strong> <strong>cell</strong>ular processes. Nucleic Acids Res 32 Database issue:D443-8.<br />

L<strong>in</strong>, X., E. T. Cunn<strong>in</strong>gham, Jr., Y. Mu, R. Geleziunas, and W. C. Greene. 1999. The protooncogene<br />

Cot k<strong>in</strong>ase participates <strong>in</strong> CD3/CD28 <strong>in</strong>duction <strong>of</strong> NF-kappaB act<strong>in</strong>g through<br />

the NF-kappaB-<strong>in</strong>duc<strong>in</strong>g k<strong>in</strong>ase and IkappaB k<strong>in</strong>ases. Immunity 10 (2):271-80.<br />

77


L<strong>in</strong>dberg, D. A., B. L. Humphreys, and A. T. McCray. 1993. The Unified Medical Language<br />

System. Methods Inf Med 32 (4):281-91.<br />

Loew, L. M., and J. C. Schaff. 2001. The Virtual Cell: a s<strong>of</strong>tware environment for<br />

computational <strong>cell</strong> biology. Trends Biotechnol 19 (10):401-6.<br />

Macaluso, M., G. Russo, C. C<strong>in</strong>ti, V. Bazan, N. Gebbia, and A. Russo. 2002. Ras family genes:<br />

an <strong>in</strong>terest<strong>in</strong>g l<strong>in</strong>k between <strong>cell</strong> cycle and cancer. J Cell Physiol 192 (2):125-30.<br />

McCray, A. T., and S. J. Nelson. 1995. The representation <strong>of</strong> mean<strong>in</strong>g <strong>in</strong> the UMLS. Methods<br />

Inf Med 34 (1-2):193-201.<br />

Mendes, P. 1997. Biochemistry <strong>by</strong> numbers: simulation <strong>of</strong> biochemical <strong>pathways</strong> with Gepasi 3.<br />

Trends Biochem Sci 22 (9):361-3.<br />

Meresse, S., O. Steele-Mortimer, E. Moreno, M. Desjard<strong>in</strong>s, B. F<strong>in</strong>lay, and J. P. Gorvel. 1999.<br />

Controll<strong>in</strong>g the maturation <strong>of</strong> pathogen-conta<strong>in</strong><strong>in</strong>g vacuoles: a matter <strong>of</strong> life and death.<br />

Nat Cell Biol 1 (7):E183-8.<br />

Moura, A. C., M. Modolell, and M. Mariano. 1997. Down-regulatory effect <strong>of</strong> Mycobacterium<br />

leprae <strong>cell</strong> wall lipids on phagocytosis, oxidative respiratory burst and tumour <strong>cell</strong> kill<strong>in</strong>g<br />

<strong>by</strong> mouse bone marrow derived <strong>macrophages</strong>. Scand J Immunol 46 (5):500-5.<br />

Mulder, N. J., R. Apweiler, T. K. Attwood, A. Bairoch, A. Bateman, D. B<strong>in</strong>ns, P. Bradley, P.<br />

Bork, P. Bucher, L. Cerutti, R. Copley, E. Cour<strong>cell</strong>e, U. Das, R. Durb<strong>in</strong>, W. Fleischmann,<br />

J. Gough, D. Haft, N. Harte, N. Hulo, D. Kahn, A. Kanap<strong>in</strong>, M. Krestyan<strong>in</strong>ova, D.<br />

Lonsdale, R. Lopez, I. Letunic, M. Madera, J. Maslen, J. McDowall, A. Mitchell, A. N.<br />

Nikolskaya, S. Orchard, M. Pagni, C. P. Pont<strong>in</strong>g, E. Quevillon, J. Selengut, C. J. Sigrist, V.<br />

Silvento<strong>in</strong>en, D. J. Studholme, R. Vaughan, and C. H. Wu. 2005. InterPro, progress and<br />

status <strong>in</strong> 2005. Nucleic Acids Res 33 Database Issue:D201-5.<br />

Murray, J. T., C. Panaretou, H. Stenmark, M. Miaczynska, and J. M. Backer. 2002. Role <strong>of</strong><br />

Rab5 <strong>in</strong> the recruitment <strong>of</strong> hVps34/p150 to the early endosome. Traffic 3 (6):416-27.<br />

Muta, T., and K. Takeshige. 2001. Essential roles <strong>of</strong> CD14 and lipopolysaccharide-b<strong>in</strong>d<strong>in</strong>g<br />

prote<strong>in</strong> for activation <strong>of</strong> toll-like receptor (TLR)2 as well as TLR4 Reconstitution <strong>of</strong><br />

TLR2- and TLR4-activation <strong>by</strong> dist<strong>in</strong>guishable ligands <strong>in</strong> LPS preparations. Eur J<br />

Biochem 268 (16):4580-9.<br />

Nakai, K., and P. Horton. 1999. PSORT: a program for detect<strong>in</strong>g sort<strong>in</strong>g signals <strong>in</strong> prote<strong>in</strong>s and<br />

predict<strong>in</strong>g their sub<strong>cell</strong>ular localization. Trends Biochem Sci 24 (1):34-6.<br />

Neves, S. R., and R. Iyengar. 2002. <strong>Model<strong>in</strong>g</strong> <strong>of</strong> <strong>signal<strong>in</strong>g</strong> <strong>networks</strong>. Bioessays 24 (12):1110-7.<br />

Ng, S. K., Z. Zhang, and S. H. Tan. 2003. Integrative approach for computationally <strong>in</strong>ferr<strong>in</strong>g<br />

78


prote<strong>in</strong> doma<strong>in</strong> <strong>in</strong>teractions. Bio<strong>in</strong>formatics 19 (8):923-9.<br />

Ng, S. K., Z. Zhang, S. H. Tan, and K. L<strong>in</strong>. 2003. InterDom: a database <strong>of</strong> putative <strong>in</strong>teract<strong>in</strong>g<br />

prote<strong>in</strong> doma<strong>in</strong>s for validat<strong>in</strong>g predicted prote<strong>in</strong> <strong>in</strong>teractions and complexes. Nucleic Acids<br />

Res 31 (1):251-4.<br />

Obenauer, J. C., L. C. Cantley, and M. B. Yaffe. 2003. Scansite 2.0: Proteome-wide prediction<br />

<strong>of</strong> <strong>cell</strong> <strong>signal<strong>in</strong>g</strong> <strong>in</strong>teractions us<strong>in</strong>g short sequence motifs. Nucleic Acids Res 31 (13):3635-<br />

41.<br />

Obenauer, J. C., and M. B. Yaffe. 2004. Computational prediction <strong>of</strong> prote<strong>in</strong>-prote<strong>in</strong><br />

<strong>in</strong>teractions. Methods Mol Biol 261:445-68.<br />

Pavletich, N. P. 1999. Mechanisms <strong>of</strong> cycl<strong>in</strong>-dependent k<strong>in</strong>ase regulation: structures <strong>of</strong> Cdks,<br />

their cycl<strong>in</strong> activators, and Cip and INK4 <strong>in</strong>hibitors. J Mol Biol 287 (5):821-8.<br />

Peri, S., J. D. Navarro, R. Amanchy, T. Z. Kristiansen, C. K. Jonnalagadda, V. Surendranath, V.<br />

Niranjan, B. Muthusamy, T. K. Gandhi, M. Gronborg, N. Ibarrola, N. Deshpande, K.<br />

Shanker, H. N. Shivashankar, B. P. Rashmi, M. A. Ramya, Z. Zhao, K. N. Chandrika, N.<br />

Padma, H. C. Harsha, A. J. Yatish, M. P. Kavitha, M. Menezes, D. R. Choudhury, S.<br />

Suresh, N. Ghosh, R. Saravana, S. Chandran, S. Krishna, M. Joy, S. K. Anand, V.<br />

Madavan, A. Joseph, G. W. Wong, W. P. Schiemann, S. N. Constant<strong>in</strong>escu, L. Huang, R.<br />

Khosravi-Far, H. Steen, M. Tewari, S. Ghaffari, G. C. Blobe, C. V. Dang, J. G. Garcia, J.<br />

Pevsner, O. N. Jensen, P. Roepstorff, K. S. Deshpande, A. M. Ch<strong>in</strong>naiyan, A. Hamosh, A.<br />

Chakravarti, and A. Pandey. 2003. Development <strong>of</strong> human prote<strong>in</strong> reference database as<br />

an <strong>in</strong>itial platform for approach<strong>in</strong>g systems biology <strong>in</strong> humans. Genome Res 13 (10):2363-<br />

71.<br />

Pruitt, K. D., T. Tatusova, and D. R. Maglott. 2005. NCBI Reference Sequence (RefSeq): a<br />

curated non-redundant sequence database <strong>of</strong> genomes, transcripts and prote<strong>in</strong>s. Nucleic<br />

Acids Res 33 Database Issue:D501-4.<br />

Russell, D. G. 2001. Mycobacterium tuberculosis: here today, and here tomorrow. Nat Rev Mol<br />

Cell Biol 2 (8):569-77.<br />

Schles<strong>in</strong>ger, L. S., C. G. Bell<strong>in</strong>ger-Kawahara, N. R. Payne, and M. A. Horwitz. 1990.<br />

Phagocytosis <strong>of</strong> Mycobacterium tuberculosis is mediated <strong>by</strong> human monocyte<br />

complement receptors and complement component C3. J Immunol 144 (7):2771-80.<br />

Selkov, E., Jr., Y. Grechk<strong>in</strong>, N. Mikhailova, and E. Selkov. 1998. MPW: the Metabolic<br />

Pathways Database. Nucleic Acids Res 26 (1):43-5.<br />

Shannon, P., A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, N. Am<strong>in</strong>, B.<br />

79


Schwikowski, and T. Ideker. 2003. Cytoscape: a s<strong>of</strong>tware environment for <strong>in</strong>tegrated<br />

models <strong>of</strong> biomolecular <strong>in</strong>teraction <strong>networks</strong>. Genome Res 13 (11):2498-504.<br />

Shapiro, G. I., and J. W. Harper. 1999. Anticancer drug targets: <strong>cell</strong> cycle and checkpo<strong>in</strong>t<br />

control. J Cl<strong>in</strong> Invest 104 (12):1645-53.<br />

Sigrist, C. J., L. Cerutti, N. Hulo, A. Gattiker, L. Falquet, M. Pagni, A. Bairoch, and P. Bucher.<br />

2002. PROSITE: a documented database us<strong>in</strong>g patterns and pr<strong>of</strong>iles as motif descriptors.<br />

Brief Bio<strong>in</strong>form 3 (3):265-74.<br />

Smith, C. 2003. Drug target validation: Hitt<strong>in</strong>g the target. Nature 422 (6929):341, 343, 345<br />

passim.<br />

Stenmark, H., and R. Aasland. 1999. FYVE-f<strong>in</strong>ger prote<strong>in</strong>s--effectors <strong>of</strong> an <strong>in</strong>ositol lipid. J Cell<br />

Sci 112 ( Pt 23):4175-83.<br />

Stephens, L., C. Ellson, and P. Hawk<strong>in</strong>s. 2002. Roles <strong>of</strong> PI3Ks <strong>in</strong> leukocyte chemotaxis and<br />

phagocytosis. Curr Op<strong>in</strong> Cell Biol 14 (2):203-13.<br />

Tall, G. G., M. A. Barbieri, P. D. Stahl, and B. F. Horazdovsky. 2001. Ras-activated<br />

endocytosis is mediated <strong>by</strong> the Rab5 guan<strong>in</strong>e nucleotide exchange activity <strong>of</strong> RIN1. Dev<br />

Cell 1 (1):73-82.<br />

Tjelle, T. E., T. Lovdal, and T. Berg. 2000. Phagosome dynamics and function. Bioessays 22<br />

(3):255-63.<br />

Tomita, M. 2001. Whole-<strong>cell</strong> simulation: a grand challenge <strong>of</strong> the 21st century. Trends<br />

Biotechnol 19 (6):205-10.<br />

Tomita, M., K. Hashimoto, K. Takahashi, T. S. Shimizu, Y. Matsuzaki, F. Miyoshi, K. Saito, S.<br />

Tanida, K. Yugi, J. C. Venter, and C. A. Hutchison, 3rd. 1999. E-CELL: s<strong>of</strong>tware<br />

environment for whole-<strong>cell</strong> simulation. Bio<strong>in</strong>formatics 15 (1):72-84.<br />

Vanhaesebroeck, B., S. J. Leevers, K. Ahmadi, J. Timms, R. Katso, P. C. Driscoll, R.<br />

Woscholski, P. J. Parker, and M. D. Waterfield. 2001. Synthesis and function <strong>of</strong> 3-<br />

phosphorylated <strong>in</strong>ositol lipids. Annu Rev Biochem 70:535-602.<br />

Vanhaesebroeck, B., and M. D. Waterfield. 1999. Signal<strong>in</strong>g <strong>by</strong> dist<strong>in</strong>ct classes <strong>of</strong><br />

phospho<strong>in</strong>ositide 3-k<strong>in</strong>ases. Exp Cell Res 253 (1):239-54.<br />

Vasudeva, K., and U. S. Bhalla. 2004. Adaptive stochastic-determ<strong>in</strong>istic chemical k<strong>in</strong>etic<br />

simulations. Bio<strong>in</strong>formatics 20 (1):78-84.<br />

Velasco-Velazquez, M. A., D. Barrera, A. Gonzalez-Arenas, C. Rosales, and J. Agramonte-<br />

Hevia. 2003. Macrophage--Mycobacterium tuberculosis <strong>in</strong>teractions: role <strong>of</strong> complement<br />

receptor 3. Microb Pathog 35 (3):125-31.<br />

80


Vieira, O. V., R. J. Botelho, L. Rameh, S. M. Brachmann, T. Matsuo, H. W. Davidson, A.<br />

Schreiber, J. M. Backer, L. C. Cantley, and S. Gr<strong>in</strong>ste<strong>in</strong>. 2001. Dist<strong>in</strong>ct roles <strong>of</strong> class I and<br />

class III phosphatidyl<strong>in</strong>ositol 3-k<strong>in</strong>ases <strong>in</strong> phagosome formation and maturation. J Cell<br />

Biol 155 (1):19-25.<br />

Vieira, O. V., C. Bucci, R. E. Harrison, W. S. Trimble, L. Lanzetti, J. Gruenberg, A. D.<br />

Schreiber, P. D. Stahl, and S. Gr<strong>in</strong>ste<strong>in</strong>. 2003. Modulation <strong>of</strong> Rab5 and Rab7 recruitment<br />

to phagosomes <strong>by</strong> phosphatidyl<strong>in</strong>ositol 3-k<strong>in</strong>ase. Mol Cell Biol 23 (7):2501-14.<br />

Visual, Knowledge. 2004 [cited. Available from http://www.visualknowledge.com.<br />

von Mer<strong>in</strong>g, C., L. J. Jensen, B. Snel, S. D. Hooper, M. Krupp, M. Foglier<strong>in</strong>i, N. Jouffre, M. A.<br />

Huynen, and P. Bork. 2005. STRING: known and predicted prote<strong>in</strong>-prote<strong>in</strong> associations,<br />

<strong>in</strong>tegrated and transferred across organisms. Nucleic Acids Res 33 Database Issue:D433-7.<br />

Wilk<strong>in</strong>son, M. D., and M. L<strong>in</strong>ks. 2002. BioMOBY: an open source biological web services<br />

proposal. Brief Bio<strong>in</strong>form 3 (4):331-41.<br />

Wurmser, A. E., J. D. Gary, and S. D. Emr. 1999. Phospho<strong>in</strong>ositide 3-k<strong>in</strong>ases and their FYVE<br />

doma<strong>in</strong>-conta<strong>in</strong><strong>in</strong>g effectors as regulators <strong>of</strong> vacuolar/lysosomal membrane traffick<strong>in</strong>g<br />

<strong>pathways</strong>. J Biol Chem 274 (14):9129-32.<br />

Wymann, M. P., M. Zvelebil, and M. Laffargue. 2003. Phospho<strong>in</strong>ositide 3-k<strong>in</strong>ase signall<strong>in</strong>g--<br />

which way to target? Trends Pharmacol Sci 24 (7):366-76.<br />

Xenarios, I., L. Salw<strong>in</strong>ski, X. J. Duan, P. Higney, S. M. Kim, and D. Eisenberg. 2002. DIP, the<br />

Database <strong>of</strong> Interact<strong>in</strong>g Prote<strong>in</strong>s: a research tool for study<strong>in</strong>g <strong>cell</strong>ular <strong>networks</strong> <strong>of</strong> prote<strong>in</strong><br />

<strong>in</strong>teractions. Nucleic Acids Res 30 (1):303-5.<br />

Xu, S., A. Cooper, S. Sturgill-Koszycki, T. van Heyn<strong>in</strong>gen, D. Chatterjee, I. Orme, P. Allen,<br />

and D. G. Russell. 1994. Intra<strong>cell</strong>ular traffick<strong>in</strong>g <strong>in</strong> Mycobacterium tuberculosis and<br />

Mycobacterium avium-<strong>in</strong>fected <strong>macrophages</strong>. J Immunol 153 (6):2568-78.<br />

Yu, H., C. Friedman, A. Rhzetsky, and P. Kra. 1999. Represent<strong>in</strong>g genomic knowledge <strong>in</strong> the<br />

UMLS <strong>semantic</strong> network. Proc AMIA Symp:181-5.<br />

Zanzoni, A., L. Montecchi-Palazzi, M. Quondam, G. Ausiello, M. Helmer-Citterich, and G.<br />

Cesareni. 2002. MINT: a Molecular INTeraction database. FEBS Lett 513 (1):135-40.<br />

81


Appendix A - Def<strong>in</strong>itions <strong>of</strong> the icons.<br />

APPENDICES<br />

82


83


Appendix B - Semantic Network Environment for Cell-model<strong>in</strong>g (SNEC)<br />

We have implemented a website, Semantic Network Environment for Cell-model<strong>in</strong>g<br />

(SNEC), us<strong>in</strong>g the VK application development environment. Through this <strong>in</strong>teractive website,<br />

users can unitize the developed <strong>semantic</strong> model and resources <strong>in</strong> the BioCAD database to build<br />

<strong>in</strong>tra<strong>cell</strong>ular <strong>pathways</strong> collaboratively. SNEC allows data from external sources such as<br />

literature to be <strong>in</strong>corporated <strong>in</strong>to the pathway models (<strong>in</strong>clud<strong>in</strong>g data on localization <strong>of</strong> prote<strong>in</strong>s,<br />

organization <strong>of</strong> doma<strong>in</strong>s and sites <strong>in</strong> macromolecules, allosteric regulations, conditions and<br />

effects <strong>of</strong> <strong>in</strong>teractions, and promotion and <strong>in</strong>hibition <strong>of</strong> <strong>cell</strong>ular response). The unique features<br />

<strong>of</strong> SENC are described <strong>in</strong> follow<strong>in</strong>g sections.<br />

Utilize current <strong>in</strong>formation to customize biological structures<br />

SNEC allows users to create different biological structures <strong>in</strong>clud<strong>in</strong>g <strong>cell</strong>, <strong>in</strong>tra<strong>cell</strong>ular<br />

compartments, prote<strong>in</strong>s, doma<strong>in</strong>s and small molecules, based on the annotated biological<br />

concepts <strong>in</strong> the database. For example, as a first step to create a user-specific pathway model, a<br />

user searches for exist<strong>in</strong>g <strong>cell</strong> prototypes such as human <strong>macrophages</strong> <strong>in</strong> the BioCAD database,<br />

and a user-specific <strong>in</strong>stance <strong>of</strong> the prototypical <strong>cell</strong> is created. SNEC also creates three<br />

<strong>in</strong>tra<strong>cell</strong>ular compartments, which are plasma membrane, cytosol and nucleus for the user-<strong>cell</strong><br />

<strong>by</strong> default, and additional compartments can be added <strong>by</strong> the user later.<br />

The user can search the prote<strong>in</strong> database <strong>in</strong> BioCAD <strong>by</strong> prote<strong>in</strong> synonym or accession<br />

number, and an example <strong>of</strong> PIK3CA is shown on Appendix B1. When the user f<strong>in</strong>ds and adds a<br />

prote<strong>in</strong>, a user-specific <strong>in</strong>stance <strong>of</strong> the prototypical prote<strong>in</strong> is created <strong>in</strong> the database. The<br />

hyperl<strong>in</strong>k on the user-prote<strong>in</strong> directs the user to a prote<strong>in</strong> detail page (Appendix B2), which<br />

conta<strong>in</strong>s annotations that have been previously <strong>in</strong>corporated <strong>in</strong>to BioCAD. Those annotations<br />

<strong>in</strong>clude gene locus name, prote<strong>in</strong> synonyms, accession number (RefSeq ID, GenBank ID),<br />

descriptions on prote<strong>in</strong> functions and Gene Ontology classifications.<br />

84


When the user-prote<strong>in</strong> is created, <strong>in</strong>stances <strong>of</strong> any Pfam doma<strong>in</strong>s, which are<br />

components <strong>of</strong> the prototypical prote<strong>in</strong>, are also created and connected to the prote<strong>in</strong> <strong>in</strong>stance.<br />

Appendix B4 shows that the user can add additional doma<strong>in</strong>s and sites from sources such as<br />

Prosite, Prefile, Pr<strong>in</strong>ts, Prodom, Pr<strong>of</strong>ile, Prosite, Smart, SSF and TigrFams. The user also has<br />

the option to create a user-def<strong>in</strong>ed doma<strong>in</strong> or a phosphorylation site.<br />

Def<strong>in</strong>e the behavior <strong>of</strong> molecules <strong>by</strong> creat<strong>in</strong>g different types <strong>of</strong> events<br />

After the user has added the <strong>cell</strong>s, prote<strong>in</strong>s or any other biological components, different<br />

types <strong>of</strong> events can be created. The navigation buttons on the left panel <strong>of</strong> the website allows<br />

users to move to detailed web pages for events such as localizations. Appendix 3 shows that<br />

localization events are def<strong>in</strong>ed <strong>by</strong> select<strong>in</strong>g an <strong>in</strong>tra<strong>cell</strong>ular compartment <strong>in</strong> a user-specific <strong>cell</strong>.<br />

The user can also create allosteric regulations on prote<strong>in</strong>s <strong>by</strong> add<strong>in</strong>g an allosteric<br />

regulation event and its correspond<strong>in</strong>g condition and responses events (Appendix B5, B6 and<br />

B7). Non-covalent and covalent <strong>in</strong>teractions are def<strong>in</strong>ed <strong>by</strong> specify<strong>in</strong>g the participat<strong>in</strong>g<br />

molecules, doma<strong>in</strong>s and sites and their states <strong>in</strong>volved (Appendix B8, B9 and B10). In addition,<br />

the user can create or re-use a <strong>cell</strong>ular response event <strong>in</strong> the database, and def<strong>in</strong>e the occurrence<br />

<strong>of</strong> a <strong>cell</strong>ular response <strong>by</strong> add<strong>in</strong>g a condition, which considers a particular molecule and its<br />

required states (Appendix B11).<br />

Analyze and traverse <strong>in</strong>teractions upstream and downstream<br />

One <strong>of</strong> the most dist<strong>in</strong>guishable features <strong>in</strong> SNEC is the connection between molecular<br />

<strong>in</strong>teractions (non-covalent and covalent <strong>in</strong>teractions) and the conformational and functional<br />

changes (allosteric regulations) on the participat<strong>in</strong>g molecules caused <strong>by</strong> those <strong>in</strong>teractions. For<br />

every allosteric regulation, SNEC identifies the "upstream" <strong>in</strong>teractions that can satisfy the<br />

allosteric conditions, and "downstream" <strong>in</strong>teractions that are effected <strong>by</strong> the allosteric responses.<br />

85


For <strong>in</strong>stance, Appendix B5 shows that one <strong>of</strong> the many allosteric regulations on PIK3CA<br />

(PI3K-p110) is the activation <strong>of</strong> "PI3_PI4_k<strong>in</strong>ase" doma<strong>in</strong> when the "PI3K_RBD" is bound.<br />

The hyperl<strong>in</strong>k <strong>of</strong> the condition event directs the user to a detail page (Appendix B6), which<br />

identifies upstream <strong>in</strong>teractions that can satisfy this condition. In this example, the condition is<br />

satisfied <strong>by</strong> the non-covalent <strong>in</strong>teraction between HRAS and PIK3CA. It should be noted that<br />

the molecular <strong>in</strong>teractions and the allosteric regulations are connected <strong>in</strong>directly through their<br />

common doma<strong>in</strong>s and states. Such an <strong>in</strong>direct connection allows the <strong>in</strong>formation on the<br />

<strong>in</strong>teraction and the <strong>in</strong>formation on the allosteric regulation to be specified <strong>in</strong>dependently. It<br />

facilitates the reduction and storage <strong>of</strong> complex knowledge <strong>in</strong>to several <strong>in</strong>dividual but<br />

<strong>in</strong>terconnected pieces <strong>of</strong> <strong>in</strong>formation. Dynamic operations were implemented to search and<br />

report back for any molecular <strong>in</strong>teraction that can satisfy or be affected <strong>by</strong> the allosteric<br />

regulations, and thus allow the <strong>in</strong>formation to be <strong>in</strong>tegrated.<br />

The allosteric response detail page (Appendix B7) shows the molecular <strong>in</strong>teractions that<br />

are affected (enabled or disabled) <strong>by</strong> the response. In this example, the switch <strong>of</strong> the<br />

conformation state to "functional for covalent <strong>in</strong>teraction" on "PI3_PI4_k<strong>in</strong>ase" doma<strong>in</strong> enables<br />

the covalent <strong>in</strong>teraction between PIK3CA and PIP2 molecule. The hyperl<strong>in</strong>k on the covalent<br />

<strong>in</strong>teraction br<strong>in</strong>gs up a detail page for the covalent <strong>in</strong>teraction (Appendix B10).<br />

On both the non-covalent <strong>in</strong>teraction and the covalent <strong>in</strong>teraction pages (Appendix 9<br />

and 10), the dynamic reports show the allosteric conditions that either activate or deactivate the<br />

molecular <strong>in</strong>teraction, and the allosteric responses that are caused <strong>by</strong> the <strong>in</strong>teraction. For<br />

example, the occurrence <strong>of</strong> the non-covalent <strong>in</strong>teraction between Hras and PIK3CA (Appendix<br />

B9) requires the "SMALL_GTP" b<strong>in</strong>d<strong>in</strong>g site on HRAS to be bound. After the non-covalent<br />

<strong>in</strong>teraction between Hras and PIK3CA has occurred, the allosteric response <strong>in</strong>dicates that<br />

"PI3_PI4_k<strong>in</strong>ase" doma<strong>in</strong> on PIK3CA will become "functional".<br />

86


The context <strong>of</strong> a molecular <strong>in</strong>teraction page (Appendix B9 or B10) is an <strong>in</strong>teraction<br />

event, and the <strong>in</strong>teraction web page conta<strong>in</strong>s hyperl<strong>in</strong>ks to allosteric regulation pages. The<br />

context <strong>of</strong> an allosteric regulation page is either the allosteric condition (Appendix B6) or the<br />

response (Appendix B7) event, and the allosteric regulation page conta<strong>in</strong>s hyperl<strong>in</strong>ks to the<br />

molecular <strong>in</strong>teractions. This design allows users to traverse between the upstream <strong>in</strong>teractions<br />

and the downstream <strong>in</strong>teractions <strong>in</strong> either direction, through allosteric regulations as the<br />

<strong>in</strong>termediate and <strong>in</strong>tegrat<strong>in</strong>g po<strong>in</strong>ts.<br />

On the molecular <strong>in</strong>teraction page, participat<strong>in</strong>g molecules <strong>in</strong>clud<strong>in</strong>g b<strong>in</strong>d<strong>in</strong>g molecules,<br />

enzymes, substrates and products also have hyperl<strong>in</strong>ks to their own <strong>in</strong>teraction-summary pages<br />

such as the one shown on Appendix B8. It allows users to change the current context to another<br />

molecule and explore parallel <strong>in</strong>teractions or <strong>cell</strong>ular response that <strong>in</strong>volve the other molecule.<br />

SNEC enabled us to build and traverse the macrophage <strong>pathways</strong> and to identify<br />

<strong>cell</strong>ular responses that can be affected <strong>by</strong> MTB. The <strong>pathways</strong> and their participat<strong>in</strong>g<br />

components are described <strong>in</strong> Section 3.2 <strong>of</strong> the ma<strong>in</strong> text.<br />

SNEC - screenshots<br />

B1 - Prote<strong>in</strong> search page<br />

A prote<strong>in</strong> can be searched <strong>by</strong> its synonym or accession number. The search can be<br />

filtered based on organisms. The top report shows prote<strong>in</strong>s <strong>in</strong> the BioCAD database, and the<br />

second report shows prote<strong>in</strong>s <strong>in</strong> the user's pathway models. The navigation buttons on the left<br />

side are used to navigate between different biological concepts such as <strong>cell</strong>s and <strong>in</strong>teractions.<br />

The hyperl<strong>in</strong>k on a prote<strong>in</strong> l<strong>in</strong>ks to a prote<strong>in</strong>'s detail page.<br />

B2 - Prote<strong>in</strong>'s detail page<br />

The context <strong>of</strong> this page is a user-created prote<strong>in</strong>. The reports show the annotations that<br />

are derived from various sources. They <strong>in</strong>clude synonyms, database accession numbers, general<br />

87


descriptions <strong>of</strong> the prote<strong>in</strong>, and GO classifications. The navigation tree on the left has been<br />

expanded to show the additional pages regard<strong>in</strong>g the prote<strong>in</strong>. Each navigation button directs the<br />

user to a specific web page for "Localization", "Doma<strong>in</strong> & Sites", "Allosteric regulation" or<br />

"Interactions".<br />

B3 - Prote<strong>in</strong>'s localization page<br />

The context <strong>of</strong> this page is a user-created prote<strong>in</strong>. The search on the top <strong>of</strong> the page<br />

allows user to search for <strong>cell</strong>s that he has created. After a <strong>cell</strong> has been selected, a user adds a<br />

compartment as a possible location for the prote<strong>in</strong>. The bottom report shows the localizations<br />

that have been previously specified for the prote<strong>in</strong>.<br />

B4 - Prote<strong>in</strong>'s doma<strong>in</strong>/site page<br />

The context <strong>of</strong> this page is a user-created prote<strong>in</strong>. The first report shows all annotated<br />

doma<strong>in</strong>s and sites on this prote<strong>in</strong> (e.g. Pfam doma<strong>in</strong>s). The second report shows any userdef<strong>in</strong>ed<br />

doma<strong>in</strong> or site. The three action buttons create a doma<strong>in</strong>, a site or a PTM respectively.<br />

A user can also add additional doma<strong>in</strong> and sites as annotated <strong>by</strong> other sources.<br />

B5 - Allosteric regulation summary page<br />

The context <strong>of</strong> this page is a user-created prote<strong>in</strong>. The first report shows all the<br />

allosteric regulations that <strong>in</strong>volve this prote<strong>in</strong>. A new allosteric regulation can be added <strong>by</strong> an<br />

action button. The hyperl<strong>in</strong>ks <strong>in</strong> this report br<strong>in</strong>g up the detail <strong>in</strong>formation <strong>of</strong> an allosteric<br />

regulation, and display the condition and response reports located at the bottom <strong>of</strong> the page. A<br />

new condition or response can be added via the correspond<strong>in</strong>g action buttons. The reference<br />

button br<strong>in</strong>gs up a reference page where a research article can be added to support the allosteric<br />

88


egulation. The hyperl<strong>in</strong>k <strong>in</strong> the condition report l<strong>in</strong>ks to a condition detail page, and the<br />

hyperl<strong>in</strong>k <strong>in</strong> the response report l<strong>in</strong>ks to a response detail page.<br />

B6 - Allosteric regulation's detail - page<br />

The context <strong>of</strong> this page is a condition event <strong>of</strong> an allosteric regulation. The first report<br />

shows the <strong>in</strong>formation that is currently associated with a condition event. The <strong>in</strong>formation can<br />

be modified <strong>by</strong> select<strong>in</strong>g any prote<strong>in</strong> that can <strong>in</strong>teract with the orig<strong>in</strong>al prote<strong>in</strong>. This allows an<br />

allosteric regulation to be def<strong>in</strong>ed across prote<strong>in</strong>s <strong>in</strong> the same complex. The combo boxes are<br />

used to specify the doma<strong>in</strong>, b<strong>in</strong>d<strong>in</strong>g state and phosphorylation state that are required for the<br />

condition. After the <strong>in</strong>formation has been specified, the two dynamic reports at the bottom will<br />

be updated and show any non-covalent or covalent <strong>in</strong>teraction that can "satisfy" the condition.<br />

In this example, a non-covalent <strong>in</strong>teraction between HRAS and PI3K3A can satisfy the<br />

condition. The hyperl<strong>in</strong>ks <strong>in</strong> the reports l<strong>in</strong>k to <strong>in</strong>teraction detail pages.<br />

B7 - Allosteric regulation's detail - page<br />

The context <strong>of</strong> this page is a response event <strong>of</strong> an allosteric regulation. The first report<br />

shows the <strong>in</strong>formation that is currently associated with this response event. The <strong>in</strong>formation can<br />

be modified <strong>by</strong> select<strong>in</strong>g any prote<strong>in</strong> that can <strong>in</strong>teract with the orig<strong>in</strong>al prote<strong>in</strong>. This allows an<br />

allosteric regulation to be def<strong>in</strong>ed across prote<strong>in</strong>s <strong>in</strong> the same complex. The combo boxes are<br />

used to specify the doma<strong>in</strong>, and conformational states that are changed to as the result <strong>of</strong> the<br />

response. After the <strong>in</strong>formation has been specified, the dynamic reports are updated and show<br />

any non-covalent or covalent <strong>in</strong>teraction that is "enabled or disabled" <strong>by</strong> the response. In this<br />

example, a covalent <strong>in</strong>teraction catalyzed <strong>by</strong> the enzyme PIK3CA is enabled <strong>by</strong> the response<br />

(due to the k<strong>in</strong>ase doma<strong>in</strong> and the functional state associated with the response). The hyperl<strong>in</strong>ks<br />

<strong>in</strong> the reports l<strong>in</strong>k to <strong>in</strong>teraction detail pages.<br />

89


B8 - Interaction summary page<br />

The context <strong>of</strong> this page is a user-created prote<strong>in</strong>. This page shows non-covalent<br />

<strong>in</strong>teractions, covalent <strong>in</strong>teractions and <strong>cell</strong>ular responses that <strong>in</strong>volve this prote<strong>in</strong>. Each report<br />

shows the detail <strong>of</strong> the <strong>in</strong>teractions, and new <strong>in</strong>teractions can be added <strong>by</strong> the different action<br />

buttons. The hyperl<strong>in</strong>ks <strong>in</strong> the report l<strong>in</strong>k to the detail pages for <strong>in</strong>teractions or <strong>cell</strong>ular<br />

responses.<br />

B9 - Non-covalent <strong>in</strong>teraction's detail page<br />

The context <strong>of</strong> this page is a non-covalent <strong>in</strong>teraction event. To specify the <strong>in</strong>teraction, a<br />

user first searches for a molecule <strong>in</strong> his models. The molecule is then added as one <strong>of</strong> the<br />

b<strong>in</strong>d<strong>in</strong>g molecules (A or B). The two reports <strong>in</strong> the middle show the current b<strong>in</strong>d<strong>in</strong>g molecules<br />

associated with this event. The b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong>s and additional phosphorylation states (optional)<br />

are specified <strong>by</strong> combo boxes. The dynamic reports at the bottom show any activat<strong>in</strong>g<br />

condition that is required for this <strong>in</strong>teraction to occur as well as any deactivat<strong>in</strong>g condition that<br />

prevents this <strong>in</strong>teraction. For example, the occurrence <strong>of</strong> this non-covalent <strong>in</strong>teraction depends<br />

on the "SMALL_GTP" b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> on HRAS to be <strong>in</strong> "bound' state. The bottom report also<br />

shows the effects or consequences <strong>of</strong> the <strong>in</strong>teraction if it occurs. For <strong>in</strong>stance, the occurrence <strong>of</strong><br />

this <strong>in</strong>teraction can cause the k<strong>in</strong>ase doma<strong>in</strong> on PIK3CA to become "functional for covalent<br />

<strong>in</strong>teraction". The hyperl<strong>in</strong>ks <strong>in</strong> the condition report l<strong>in</strong>k to condition events <strong>of</strong> allosteric<br />

regulations, and the hyperl<strong>in</strong>ks <strong>in</strong> the effect report l<strong>in</strong>k to response events <strong>of</strong> allosteric<br />

regulations.<br />

B10 - Covalent <strong>in</strong>teraction's detail page<br />

90


The context <strong>of</strong> this page is a covalent <strong>in</strong>teraction event. To specify the <strong>in</strong>teraction, a<br />

user first searches for a molecule <strong>in</strong> his models. The molecule is then added as an enzyme, a<br />

substrate or a product. The three reports <strong>in</strong> the middle show the current molecules associated<br />

with this event. An active site or a catalytic doma<strong>in</strong> can be specified for the enzyme. In addition,<br />

a modification site and its correspond<strong>in</strong>g phosphorylation state can be specified if the substrate<br />

is a prote<strong>in</strong>. The dynamic reports at the bottom show any activat<strong>in</strong>g condition that is required<br />

for this <strong>in</strong>teraction to occur as well as any deactivat<strong>in</strong>g condition that prevents this <strong>in</strong>teraction.<br />

For example, the occurrence <strong>of</strong> this covalent <strong>in</strong>teraction depends on the "PI3K_RBD" (the Ras<br />

b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong>) on PIK3CA to be at "bound' state. On the other hand, this <strong>in</strong>teraction is<br />

<strong>in</strong>hibited if the "PI3K_P85B" (the p85 b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong>) on PIK3CA is bound. The bottom<br />

report also shows the effects or consequences <strong>of</strong> the <strong>in</strong>teraction. The hyperl<strong>in</strong>ks <strong>in</strong> the condition<br />

report l<strong>in</strong>k to condition events <strong>of</strong> allosteric regulations, and the hyperl<strong>in</strong>ks <strong>in</strong> the effect report<br />

l<strong>in</strong>k to response events <strong>of</strong> allosteric regulations.<br />

B11 - Cellular response detail page<br />

The context <strong>of</strong> this page is a <strong>cell</strong>ular response event. The report shows all conditions<br />

that are required for the occurrence <strong>of</strong> this <strong>cell</strong>ular response. For example, the response "act<strong>in</strong><br />

polymerization and rearrangement" occurs when the "GTP b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong>" is bound on ARF6.<br />

91


92<br />

B1 - Prote<strong>in</strong> search page


93<br />

B2 - Prote<strong>in</strong>'s detail page


94<br />

B3 - Prote<strong>in</strong>'s localization page


95<br />

B4 - Prote<strong>in</strong>'s doma<strong>in</strong>/site page


96<br />

B5 - Allosteric regulation summary page


97<br />

B6 - Allosteric regulation's detail - page


98<br />

B7 - Allosteric regulation's detail - page


99<br />

B8 - Interaction summary page


100<br />

B9 - Non-covalent <strong>in</strong>teraction's detail page


101<br />

B10 - Covalent <strong>in</strong>teraction's detail page


102<br />

B11 - Cellular response detail page


Appendix C - List <strong>of</strong> molecules and events <strong>in</strong> the macrophage pathway model<br />

C1 - Molecules <strong>in</strong> the macrophage model<br />

Name Synonym Type Refseq<br />

ACTN1<br />

AKT1<br />

AKT2<br />

AKT3<br />

AKT3<br />

ALPHA-ACTININ CYTOSKELETAL ISOFORM, F-ACTIN<br />

CROSS LINKING PROTEIN, ALPHA-ACTININ 1, NON-<br />

MUSCLE ALPHA-ACTININ 1<br />

EC 2.7.1.-, PROTEIN KINASE B, PKB, RAC-ALPHA<br />

SERINE/THREONINE KINASE, C-AKT, RAC-PK-ALPHA<br />

RAC-PK-BETA, EC 2.7.1.-, PKB BETA, RAC-BETA<br />

SERINE/THREONINE PROTEIN KINASE, PROTEIN<br />

KINASE AKT-2, PROTEIN KINASE B, BETA<br />

RAC-PK-GAMMA, PKB GAMMA, RAC-GAMMA<br />

SERINE/THREONINE PROTEIN KINASE, EC 2.7.1.-,<br />

PROTEIN KINASE AKT-3, PROTEIN KINASE B, GAMMA,<br />

STK-2<br />

RAC-PK-GAMMA, PKB GAMMA, RAC-GAMMA<br />

SERINE/THREONINE PROTEIN KINASE, EC 2.7.1.-,<br />

PROTEIN KINASE AKT-3, PROTEIN KINASE B, GAMMA,<br />

STK-2<br />

Prote<strong>in</strong><br />

Prote<strong>in</strong><br />

Prote<strong>in</strong><br />

Prote<strong>in</strong><br />

Prote<strong>in</strong><br />

NP_001093.1<br />

NP_005154.1<br />

NP_001617.1<br />

NP_859029.1<br />

NP_005456.1<br />

ARF6 ADP-ribosylation factor 6 Prote<strong>in</strong> NP_001654.1<br />

BAD<br />

BAD, BCL-2-LIKE 8 PROTEIN, BCL-XL/BCL-2<br />

ASSOCIATED DEATH PROMOTER, BCL-2 BINDING<br />

COMPONENT 6, BCL2-ANTAGONIST OF CELL DEATH<br />

Prote<strong>in</strong><br />

NP_004313.1<br />

BCL2 APOPTOSIS REGULATOR BCL-2 Prote<strong>in</strong> NP_000624.1<br />

C3 COMPLEMENT C3 PRECURSOR Prote<strong>in</strong> NP_000055.1<br />

CCNB1 G2/MITOTIC-SPECIFIC CYCLIN B1 Prote<strong>in</strong> NP_114172.1<br />

CCND1<br />

CD14<br />

CDC2<br />

CDC25A<br />

CDC27<br />

BCL-1 ONCOGENE, PRAD1 ONCOGENE, G1/S-SPECIFIC<br />

CYCLIN D1<br />

MYELOID CELL-SPECIFIC LEUCINE-RICH<br />

GLYCOPROTEIN, MONOCYTE DIFFERENTIATION<br />

ANTIGEN CD14 PRECURSOR<br />

EC 2.7.1.-, CDK1, CYCLIN-DEPENDENT KINASE 1, CELL<br />

DIVISION CONTROL PROTEIN 2 HOMOLOG, P34<br />

PROTEIN KINASE<br />

EC 3.1.3.48, M-PHASE INDUCER PHOSPHATASE 1, DUAL<br />

SPECIFICITY PHOSPHATASE CDC25A<br />

CELL DIVISION CYCLE PROTEIN 27 HOMOLOG, H-NUC,<br />

CDC27HS<br />

CDK10 EC 2.7.1.-, CELL DIVISION PROTEIN KINASE 10,<br />

SERINE/THREONINE-PROTEIN KINASE PISSLRE<br />

CDK2<br />

EC 2.7.1.-, P33 PROTEIN KINASE, CELL DIVISION<br />

PROTEIN KINASE 2<br />

Prote<strong>in</strong><br />

Prote<strong>in</strong><br />

Prote<strong>in</strong><br />

Prote<strong>in</strong><br />

Prote<strong>in</strong><br />

Prote<strong>in</strong><br />

Prote<strong>in</strong><br />

NP_444284.1<br />

NP_000582.1<br />

NP_001777.1<br />

NP_001780.1<br />

NP_001247.2<br />

NP_003665.2<br />

NP_001789.2<br />

103


CDK7 CDK-ACTIVATING KINASE, EC 2.7.1.-, CAK, STK1, 39<br />

KDA PROTEIN KINASE, TFIIH BASAL TRANSCRIPTION<br />

FACTOR COMPLEX KINASE SUBUNIT, P39 MO15, CAK1,<br />

CELL DIVISION PROTEIN KINASE 7<br />

CHUK<br />

CKS2<br />

EC 2.7.1.-, INHIBITOR OF NUCLEAR FACTOR KAPPA-B<br />

KINASE ALPHA SUBUNIT, NUCLEAR FACTOR<br />

NFKAPPAB INHIBITOR KINASE ALPHA, I-KAPPA-B<br />

KINASE 1, IKK1, IKK-ALPHA, CONSERVED HELIX-<br />

LOOP-HELIX UBIQUITOUS KINASE, IKK-A, IKAPPAB<br />

KINASE, I KAPPA-B KINASE ALPHA, NFKBIKA, IKBKA<br />

CKS-2, CYCLIN-DEPENDENT KINASES REGULATORY<br />

SUBUNIT 2<br />

Prote<strong>in</strong><br />

Prote<strong>in</strong><br />

Prote<strong>in</strong><br />

NP_001790.1<br />

NP_001269.2<br />

NP_001818.1<br />

EEA1 early endosome antigen 1 Prote<strong>in</strong> NP_003557.1<br />

FCGR1A<br />

FGR<br />

CD64 ANTIGEN, FCRI, HIGH AFFINITY<br />

IMMUNOGLOBULIN GAMMA FC RECEPTOR I<br />

PRECURSOR, FC-GAMMA RI, IGG FC RECEPTOR I<br />

EC 2.7.1.112, P55-FGR, PROTO-ONCOGENE TYROSINE-<br />

PROTEIN KINASE FGR, C-FGR<br />

Prote<strong>in</strong><br />

Prote<strong>in</strong><br />

NP_000557.1<br />

NP_005239.1<br />

GAB2 GRB2-associated b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> 2 Prote<strong>in</strong> NP_536739.1<br />

GDP guanos<strong>in</strong>e diphosphate Nucleotide<br />

GRB2 growth factor receptor-bound prote<strong>in</strong> 2 Prote<strong>in</strong> NP_002077.1<br />

GSK3B<br />

EC 2.7.1.37, GSK-3 BETA, GLYCOGEN SYNTHASE<br />

KINASE-3 BETA<br />

Prote<strong>in</strong><br />

GTP guanos<strong>in</strong>e triphosphate Nucleotide<br />

HCK<br />

HEMOPOIETIC CELL KINASE, EC 2.7.1.112, TYROSINE-<br />

PROTEIN KINASE HCK, P59-HCK/P60-HCK<br />

Prote<strong>in</strong><br />

NP_002084.2<br />

NP_002101.2<br />

HRAS TRANSFORMING PROTEIN P21/H-RAS-1, C-H-RAS Prote<strong>in</strong> NP_789765.1<br />

IGHG3<br />

ITGAM<br />

ITGB2<br />

HDC, IG GAMMA-3 CHAIN C REGION, HEAVY CHAIN<br />

DISEASE PROTEIN<br />

NEUTROPHIL ADHERENCE RECEPTOR, CR-3 ALPHA<br />

CHAIN, CELL SURFACE GLYCOPROTEIN MAC-1 ALPHA<br />

SUBUNIT, INTEGRIN ALPHA-M PRECURSOR, CD11B,<br />

LEUKOCYTE ADHESION RECEPTOR MO1<br />

CD18, COMPLEMENT RECEPTOR C3 BETA-SUBUNIT,<br />

CELL SURFACE ADHESION GLYCOPROTEINS LFA-<br />

1/CR3/P150,95 BETA-SUBUNIT, INTEGRIN BETA-2<br />

PRECURSOR<br />

Prote<strong>in</strong><br />

Prote<strong>in</strong><br />

Prote<strong>in</strong><br />

LPS lipopolysaccharide Phospholipid<br />

NG_001019<br />

NP_000623.1<br />

NP_000202.1<br />

LYN EC 2.7.1.112, TYROSINE-PROTEIN KINASE LYN Prote<strong>in</strong> NP_002341.1<br />

ManLAM Mannose-capped lipoarab<strong>in</strong>omannan Phospholipid<br />

MAP3K14<br />

EC 2.7.1.37, NF-KAPPA BETA-INDUCING KINASE,<br />

HSNIK, SERINE/THREONINE PROTEIN KINASE NIK,<br />

MITOGEN-ACTIVATED PROTEIN KINASE KINASE<br />

KINASE 14<br />

Prote<strong>in</strong><br />

NP_003945.1<br />

104


MAP3K8<br />

NCF4<br />

NFKB1<br />

NFKB2<br />

NFKBIA<br />

PDK1<br />

PDK2<br />

PDPK1<br />

EC 2.7.1.-, C-COT, MITOGEN-ACTIVATED PROTEIN<br />

KINASE KINASE KINASE 8, COT PROTO-ONCOGENE<br />

SERINE/THREONINE-PROTEIN KINASE, CANCER<br />

OSAKA THYROID ONCOGENE<br />

NCF-4, P40PHOX, P40-PHOX, NEUTROPHIL CYTOSOL<br />

FACTOR 4, NEUTROPHIL NADPH OXIDASE FACTOR 4<br />

EBP-1, DNA-BINDING FACTOR KBF1, NUCLEAR<br />

FACTOR NF-KAPPA-B P105 SUBUNIT<br />

ONCOGENE LYT-10, LYT10, NUCLEAR FACTOR NF-<br />

KAPPA-B P100/P49 SUBUNITS, H2TF1<br />

MAJOR HISTOCOMPATIBILITY COMPLEX ENHANCER-<br />

BINDING PROTEIN MAD3, IKB-ALPHA, I-KAPPA-B-<br />

ALPHA, IKAPPABALPHA, NF-KAPPAB INHIBITOR<br />

ALPHA<br />

EC 2.7.1.99, PYRUVATE DEHYDROGENASE KINASE<br />

ISOFORM 1, [PYRUVATE DEHYDROGENASE<br />

[LIPOAMIDE]] KINASE ISOZYME 1, MITOCHONDRIAL<br />

PRECURSOR<br />

EC 2.7.1.99, PYRUVATE DEHYDROGENASE KINASE<br />

ISOFORM 2, [PYRUVATE DEHYDROGENASE<br />

[LIPOAMIDE]] KINASE ISOZYME 2, MITOCHONDRIAL<br />

PRECURSOR<br />

EC 2.7.1.37, PROTEIN PRO0461, 3-PHOSPHOINOSITIDE<br />

DEPENDENT PROTEIN KINASE-1, HPDK1<br />

Prote<strong>in</strong><br />

Prote<strong>in</strong><br />

Prote<strong>in</strong><br />

Prote<strong>in</strong><br />

Prote<strong>in</strong><br />

Prote<strong>in</strong><br />

Prote<strong>in</strong><br />

Prote<strong>in</strong><br />

PI phosphorylates phosphatidyl<strong>in</strong>ositol Phospholipid<br />

PI3P phosphatidyl<strong>in</strong>ositol-3-phosphate Phospholipid<br />

NP_005195.2<br />

NP_000622.1<br />

NP_003989.1<br />

NP_002493.2<br />

NP_065390.1<br />

NP_002601.1<br />

NP_002602.2<br />

NP_002604.1<br />

PIK3C3 phospho<strong>in</strong>ositide-3-k<strong>in</strong>ase class 3, Vps34 Prote<strong>in</strong> NP_002638.1<br />

PIK3CA<br />

PIK3R1<br />

PIK3R1<br />

PTDINS-3-KINASE P110, PI3-KINASE P110 SUBUNIT<br />

ALPHA, PHOSPHATIDYLINOSITOL-4,5-BISPHOSPHATE<br />

3-KINASE CATALYTIC SUBUNIT, ALPHA ISOFORM, EC<br />

2.7.1.153, PI3K<br />

PTDINS-3-KINASE P85-ALPHA, PI3K,<br />

PHOSPHATIDYLINOSITOL 3-KINASE REGULATORY<br />

ALPHA SUBUNIT, PI3-KINASE P85-ALPHA SUBUNIT<br />

PTDINS-3-KINASE P85-ALPHA, PI3K,<br />

PHOSPHATIDYLINOSITOL 3-KINASE REGULATORY<br />

ALPHA SUBUNIT, PI3-KINASE P85-ALPHA SUBUNIT<br />

Prote<strong>in</strong><br />

Prote<strong>in</strong><br />

Prote<strong>in</strong><br />

NP_006209.1<br />

NP_852664.1<br />

NP_852665.1<br />

PIK3R4 phospho<strong>in</strong>ositide-3-k<strong>in</strong>ase, regulatory subunit 4, p150 Prote<strong>in</strong> NP_055417.1<br />

PIP2 phosphatidyl<strong>in</strong>ositol-4,5-bisphosphate Phospholipid<br />

PIP3 phosphatidyl<strong>in</strong>ositol-3,4,5-bisphosphate Phospholipid<br />

PSCD3 GENERAL RECEPTOR OF PHOSPHOINOSITIDES 1,<br />

CYTOHESIN 3, GRP1, ARNO3 PROTEIN, ARF<br />

NUCLEOTIDE-BINDING SITE OPENER 3<br />

Prote<strong>in</strong><br />

NP_004218.1<br />

PXN PAXILLIN Prote<strong>in</strong> NP_002850.1<br />

RAB5A RAS-RELATED PROTEIN RAB-5A Prote<strong>in</strong> NP_004153.2<br />

105


RB1<br />

RELA<br />

PP110, RETINOBLASTOMA-ASSOCIATED PROTEIN, RB,<br />

P105-RB<br />

NUCLEAR FACTOR NF-KAPPA-B P65 SUBUNIT,<br />

TRANSCRIPTION FACTOR P65<br />

Prote<strong>in</strong><br />

Prote<strong>in</strong><br />

NP_000312.1<br />

NP_068810.1<br />

RELB TRANSCRIPTION FACTOR RELB, I-REL Prote<strong>in</strong> NP_006500.1<br />

RIN1<br />

RPS6KB1<br />

SLC2A4<br />

RAS INHIBITOR JC99, RAS<br />

INTERACTION/INTERFERENCE PROTEIN 1, RAS AND<br />

RAB INTERACTOR 1<br />

EC 2.7.1.-, P70-S6K, RIBOSOMAL PROTEIN S6 KINASE,<br />

S6K<br />

SOLUTE CARRIER FAMILY 2, FACILITATED GLUCOSE<br />

TRANSPORTER, MEMBER 4, GLUCOSE TRANSPORTER<br />

TYPE 4, INSULIN-RESPONSIVE<br />

Prote<strong>in</strong><br />

Prote<strong>in</strong><br />

Prote<strong>in</strong><br />

NP_004283.1<br />

NP_003152.1<br />

NP_001033.1<br />

SOS1 SOS-1, SON OF SEVENLESS PROTEIN HOMOLOG 1 Prote<strong>in</strong> NP_005624.2<br />

TLN1 TALIN 1 Prote<strong>in</strong> NP_006280.2<br />

TLR2<br />

TOLL-LIKE RECEPTOR 2 PRECURSOR,<br />

TOLL/INTERLEUKIN 1 RECEPTOR-LIKE PROTEIN 4<br />

YWHAB PROTEIN KINASE C INHIBITOR PROTEIN-1, KCIP-1, 14-<br />

3-3 PROTEIN BETA/ALPHA, PROTEIN 1054<br />

Prote<strong>in</strong><br />

Prote<strong>in</strong><br />

NP_003255.2<br />

NP_647539.1<br />

Appendix C1. Molecules <strong>in</strong> the macrophage model. The table shows the list <strong>of</strong> prototypical<br />

molecules that have been <strong>in</strong>cluded <strong>in</strong> the pathway model. Those prote<strong>in</strong>s <strong>in</strong>clude <strong>cell</strong> receptors<br />

such as FCGR1A (Fcγ), ITGAM (CD11b), ITGB2 (CD18), CD14, TLR2 that are relevant to the<br />

process <strong>of</strong> bacterial <strong>in</strong>ternalization <strong>of</strong> <strong>macrophages</strong>. Two dist<strong>in</strong>ct classes <strong>of</strong> PI3Ks have been<br />

modeled: the class I PI3K composed <strong>of</strong> p85 regulatory (PIK3R1) and p110 catalytic subunits<br />

(PIK3CA), and the class III PI3K composed <strong>of</strong> p150 (PIK3R4) and PIK3C3 subunits. The<br />

pathway model conta<strong>in</strong>ed various k<strong>in</strong>ases such as Lyn, PDK1 (PDPK1) and AKT1, and small<br />

GTP prote<strong>in</strong>s <strong>in</strong>clud<strong>in</strong>g Ras (HRAS), ARF6 and Rab5a. Adaptor prote<strong>in</strong>s, Gab2 and Grb2, and<br />

transcription factors, NF-kB, have also been <strong>in</strong>corporated <strong>in</strong>to the model. Column 1: the<br />

molecule name (gene locus names for prote<strong>in</strong>s). Column 2: the synonyms or EC number if the<br />

molecule is an enzyme. Column 3: the type <strong>of</strong> the molecule. Column 4: the accession number<br />

from RefSeq.<br />

106


C2 - Non-covalent <strong>in</strong>teractions <strong>in</strong> the macrophage model<br />

107<br />

Molecule A Doma<strong>in</strong> A Doma<strong>in</strong> A -<br />

accession<br />

number<br />

Molecule B Doma<strong>in</strong> B Doma<strong>in</strong> B -<br />

accession<br />

number<br />

ACTN1 <strong>in</strong>tegr<strong>in</strong>-b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> ITGB2 Cytoskeleton prote<strong>in</strong><br />

b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong><br />

AKT1 PH PF00169 PIP3 b<strong>in</strong>d<strong>in</strong>g site for PH<br />

doma<strong>in</strong><br />

Reference<br />

Velasco-Velazquez<br />

et al. 2003<br />

Cantley 2002;<br />

Wymann, Zvelebil,<br />

and Laffargue 2003<br />

AKT2 PH PF00169 PIP3 Downward 2004<br />

AKT3 PH PIP3 Downward 2004<br />

ARF6 GTP b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> GTP Cantley 2002;<br />

Stephens, Ellson,<br />

and Hawk<strong>in</strong>s 2002<br />

ARF6 Grp1 b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> PSCD3 SEC7 PF01369 Cantley 2002<br />

ARF6 GDP b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> GDP Cantley 2002;<br />

Stephens, Ellson,<br />

and Hawk<strong>in</strong>s 2002<br />

BCL2 BH3 PS01259 BAD BH3 Cantley 2002<br />

CCNB1 Cdc2 b<strong>in</strong>d<strong>in</strong>g CDC2 Cycl<strong>in</strong> b<strong>in</strong>d<strong>in</strong>g Pavletich 1999<br />

CD14 LPS bidn<strong>in</strong>g doma<strong>in</strong> LPS Hmama et al. 1999<br />

EEA1 Rab5 b<strong>in</strong>d<strong>in</strong>g RAB5A EEA1 b<strong>in</strong>d<strong>in</strong>g Vieira et al. 2003<br />

EEA1 FYVE PI3P Stenmark and<br />

Aasland 1999;<br />

Wurmser, Gary, and<br />

Emr 1999<br />

FGR CD18 b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> ITGB2 Src-family tyros<strong>in</strong>e<br />

k<strong>in</strong>ase b<strong>in</strong>d<strong>in</strong>g<br />

doma<strong>in</strong><br />

Velasco-Velazquez<br />

et al. 2003


108<br />

GAB2 PH PIP3 b<strong>in</strong>d<strong>in</strong>g site for PH<br />

doma<strong>in</strong><br />

Gu et al. 2003<br />

GAB2 pYxxM PIK3R1 SH2 PF00017 Cantley 2002<br />

HCK CD18 b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> ITGB2 Src-family tyros<strong>in</strong>e<br />

k<strong>in</strong>ase b<strong>in</strong>d<strong>in</strong>g<br />

doma<strong>in</strong><br />

Velasco-Velazquez<br />

et al. 2003<br />

HRAS GDP b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> GDP Macaluso et al. 2002<br />

HRAS SMALL_GTP TIGR00231 GTP Macaluso et al. 2002<br />

HRAS<br />

IGHG3<br />

PI3K-p110 b<strong>in</strong>d<strong>in</strong>g<br />

doma<strong>in</strong><br />

Fc-gamma receptor<br />

b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong><br />

PIK3CA PI3K_RBD PF00794 Vanhaesebroeck and<br />

Waterfield 1999;<br />

Cantley 2002<br />

FCGR1A IG PF00047 Gu et al. 2003<br />

ITGAM VWA PF00092 C3 Velasco-Velazquez<br />

et al. 2003<br />

ITGB2 CD11b b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> ITGAM CD18 b<strong>in</strong>d<strong>in</strong>g<br />

doma<strong>in</strong><br />

ITGB2<br />

Src-family tyros<strong>in</strong>e k<strong>in</strong>ase<br />

bidn<strong>in</strong>g doma<strong>in</strong><br />

LYN<br />

CD18 b<strong>in</strong>d<strong>in</strong>g<br />

doma<strong>in</strong><br />

Velasco-Velazquez<br />

et al. 2003<br />

Velasco-Velazquez<br />

et al. 2003<br />

LYN FcgR b<strong>in</strong>d<strong>in</strong>g FCGR1A Lyn b<strong>in</strong>d<strong>in</strong>g Gu et al. 2003<br />

NCF4 PX PF00787 PI3P Stephens, Ellson,<br />

and Hawk<strong>in</strong>s 2002<br />

NFKB1 RHD RELA RHD PF00554 Hayden and Ghosh<br />

2004<br />

NFKB2 RHD PF00554 RELB RHD PF00554 Hayden and Ghosh<br />

2004<br />

NFKBIA NF-kB b<strong>in</strong>d<strong>in</strong>g RELA RHD for IkB<br />

b<strong>in</strong>d<strong>in</strong>g<br />

PDPK1 PH_RELATED SSF50729 PIP3 b<strong>in</strong>d<strong>in</strong>g site for PH<br />

doma<strong>in</strong><br />

Hayden and Ghosh<br />

2004<br />

Cantley 2002


109<br />

PIK3C3 PI k<strong>in</strong>ase ManLAM Fratti et al. 2001<br />

PIK3CA PI3K_P85B PF02192 PIK3R1 p110-b<strong>in</strong>d<strong>in</strong>g<br />

doma<strong>in</strong><br />

Wymann, Zvelebil,<br />

and Laffargue 2003<br />

PIK3R4 Vps34p-b<strong>in</strong>d<strong>in</strong>g PIK3C3 p150-b<strong>in</strong>d<strong>in</strong>g Vanhaesebroeck and<br />

Waterfield 1999<br />

PIK3R4 WD40 RAB5A p150 b<strong>in</strong>d<strong>in</strong>g Murray et al. 2002<br />

PSCD3 PH PF00169 PIP3 b<strong>in</strong>d<strong>in</strong>g site for PH<br />

doma<strong>in</strong><br />

PXN <strong>in</strong>tegr<strong>in</strong>-b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> ITGB2 Cytoskeleton prote<strong>in</strong><br />

b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong><br />

Cantley et al. 2002<br />

Velasco-Velazquez<br />

et al. 2003<br />

RAB5A PIP3 b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> PIP3 Stephens, Ellson,<br />

and Hawk<strong>in</strong>s 2002<br />

RAB5A GDP-b<strong>in</strong>d<strong>in</strong>g GDP Murray, 2002,<br />

Lanzetti, 2004, Tall,<br />

2001<br />

RAB5A SMALL_GTP TIGR00231 GTP Murray et al. 2002;<br />

Lanzetti et al. 2004;<br />

Tall et al. 2001<br />

RIN1 Rab5 GEF RAB5A GEF b<strong>in</strong>d<strong>in</strong>g Tall et al. 2001<br />

SLC2A4 PIP3 b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> PIP3 Wymann, Zvelebil,<br />

and Laffargue 2003<br />

SOS1 RASGEF PF00617 HRAS GEF b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> Wymann, Zvelebil,<br />

and Laffargue 2003<br />

SOS1 Prol<strong>in</strong>e-rich GRB2 SH3 PF00018 Wymann, Zvelebil,<br />

and Laffargue 2003<br />

TLN1 <strong>in</strong>tegr<strong>in</strong>-b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> ITGB2 Cytoskeleton prote<strong>in</strong><br />

b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong><br />

Velasco-Velazquez<br />

et al. 2003<br />

TLR2 pYxxM PIK3R1 SH2 PF00017 Arbibe et al. 2000<br />

TLR2 CD14 b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> CD14 TLR2 b<strong>in</strong>d<strong>in</strong>g<br />

doma<strong>in</strong><br />

Muta and Takeshige<br />

2001


YWHAB<br />

phosphoser<strong>in</strong>e b<strong>in</strong>d<strong>in</strong>g<br />

doma<strong>in</strong><br />

BAD S99 Cantley 2002<br />

Appendix C2. Non-covalent <strong>in</strong>teractions <strong>in</strong> the macrophage model. The table shows the list <strong>of</strong> non-covalent event prototypes that were<br />

<strong>in</strong>corporated <strong>in</strong> the pathway model. Column 1: name <strong>of</strong> the b<strong>in</strong>d<strong>in</strong>g molecule A (gene locus names for prote<strong>in</strong>s). Column 2: doma<strong>in</strong> <strong>of</strong><br />

molecule A that participates <strong>in</strong> the <strong>in</strong>teraction. Column 3: accession number for annotated doma<strong>in</strong>s (A) (abbreviation: PF, Pfam; PS,<br />

PROSITE; TIGR, TIGRFAMs; SSF, SUPERFAMILY). Column 4: name <strong>of</strong> the b<strong>in</strong>d<strong>in</strong>g molecule B (gene locus names for prote<strong>in</strong>s). Column<br />

5: doma<strong>in</strong> <strong>of</strong> molecule B that participates <strong>in</strong> the <strong>in</strong>teraction. Column 6: accession number for annotated doma<strong>in</strong>s (B) Column 7: literature<br />

that supports the <strong>in</strong>teraction.<br />

110


C3 - Covalent <strong>in</strong>teractions <strong>in</strong> the macrophage model<br />

111<br />

Enzyme Enzyme's doma<strong>in</strong> Enzyme's<br />

doma<strong>in</strong> -<br />

accession<br />

number<br />

Substrate<br />

Substrate's<br />

site<br />

Substrate's site<br />

state - before<br />

Product<br />

Product's<br />

site<br />

Product's site<br />

state - after<br />

Reference<br />

AKT1 PROTEIN_KINASE_ST PS00108 MAP3K8 S400 Not-phosphorylated MAP3K8 S400 Phosphorylated Kane et al.<br />

2002<br />

AKT1 PROTEIN_KINASE_ST PS00108 BAD S118 Not-phosphorylated BAD S118 Phosphorylated Datta et al.<br />

1997<br />

AKT1 PROTEIN_KINASE_ST PS00108 GSK3B S9 Not-phosphorylated GSK3B S9 Phosphorylated Wymann,<br />

Zvelebil, and<br />

Laffargue<br />

2003<br />

AKT1 PROTEIN_KINASE_ST PS00108 BAD S99 Not-phosphorylated BAD S99 Phosphorylated Datta et al.<br />

1997<br />

CDC2 PROTEIN_KINASE_ST PS00108 RB1 S807 Not-phosphorylated RB1 S807 Phosphorylated Shapiro and<br />

Harper 1999<br />

CDC25A RHODANESE PF00581 CDC2 Y15 Phosphorylated CDC2 Y15 Notphosphorylated<br />

Kumagai and<br />

Dunphy 1991<br />

CDK7 PROTEIN_KINASE_ST PS00108 CDC2 T161 Not-phosphorylated CDC2 T161 Phosphorylated Pavletich 1999<br />

CHUK PROTEIN_KINASE_ST PS00108 NFKB2 S Not-phosphorylated NFKB2 S Phosphorylated Hayden and<br />

Ghosh 2004<br />

GSK3B PROTEIN_KINASE_ST PS00108 CCND1 S Not-phosphorylated CCND1 S Phosphorylated Cantley 2002<br />

LYN PROTEIN_KINASE_TYR PS00109 GAB2 Y Not-phosphorylated GAB2 Y Phosphorylated Gu et al. 2003<br />

MAP3K14 PROTEIN_KINASE_ST PS00108 CHUK S180 Not-phosphorylated CHUK S180 Phosphorylated Hayden and<br />

Ghosh 2004<br />

MAP3K8 PROTEIN_KINASE_ST PS00108 MAP3K14 S Not-phosphorylated MAP3K14 S Phosphorylated L<strong>in</strong> et al. 1999<br />

PDPK1 PKINASE PF00069 AKT2 T Not-phosphorylated AKT2 T Phosphorylated Downward<br />

2004


PDPK1 PKINASE PF00069 RPS6KB1 T389 Not-phosphorylated RPS6KB1 T389 Phosphorylated Cantley 2002<br />

PDPK1 PKINASE PF00069 AKT1 T308 Not-phosphorylated AKT1 T308 Phosphorylated Cantley 2002<br />

PIK3C3 PI k<strong>in</strong>ase PI PI3P Vanhaesebroec<br />

k et al. 2001<br />

PIK3CA PI3_PI4_KINASE PF00454 PIP2 PIP3 Vanhaesebroec<br />

k and<br />

Waterfield<br />

1999<br />

Appendix C3. Covalent <strong>in</strong>teractions <strong>in</strong> the macrophage model. The table shows the list <strong>of</strong> covalent event prototypes that were <strong>in</strong>corporated<br />

<strong>in</strong> the pathway model. Column 1: name <strong>of</strong> the enzyme. Column 2: active site or catalytic doma<strong>in</strong> <strong>of</strong> the enzyme. Column 3: accession<br />

number for annotated doma<strong>in</strong>s (for the Enzyme; abbreviation: PF, Pfam; PS, PROSITE). Column 4: name <strong>of</strong> the substrate. Column 5:<br />

modification site <strong>of</strong> the substrate. Column 6: phosphorylation state before the covalent <strong>in</strong>teraction. Column 7: name <strong>of</strong> the product. Column<br />

8: modification site <strong>of</strong> the product. Column 9: phosphorylation state after the covalent <strong>in</strong>teraction. Column 10: literature that supports the<br />

<strong>in</strong>teraction.<br />

112


C4 - Allosteric regulations <strong>in</strong> the macrophage model<br />

113<br />

Prote<strong>in</strong> <strong>in</strong><br />

condition<br />

Doma<strong>in</strong>s required States required Prote<strong>in</strong> <strong>in</strong><br />

response<br />

Doma<strong>in</strong>s affected State changed to Reference<br />

AKT1 T308 Phosphorylated AKT1 PROTEIN_KINASE_ST Func. for cov. Downward 2004<br />

ARF6 GDP b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> Bound ARF6 GTP b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> Non-func. for non-cov. Cantley 2002;<br />

Stephens, Ellson, and<br />

Hawk<strong>in</strong>s 2002<br />

ARF6 Grp1 b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> Bound ARF6 GDP b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> Non-func. for non-cov. Cantley 2002<br />

BAD S118 Phosphorylated BAD BH3 Non-func. for non-cov. Cantley 2002; Datta et<br />

al. 1997<br />

BAD S99 Bound,<br />

Phosphorylated<br />

CDC2 Cycl<strong>in</strong> b<strong>in</strong>d<strong>in</strong>g, Y15,<br />

T161<br />

Bound, Notphosphorylated,<br />

Phosphorylated<br />

BAD S118 Func. for cov. Datta et al. 1997<br />

CDC2 PROTEIN_KINASE_ST Func. for cov. Pavletich 1999;<br />

Kumagai and Dunphy<br />

1991<br />

CHUK S180 Phosphorylated CHUK PROTEIN_KINASE_ST Func. for cov. Hayden and Ghosh<br />

2004<br />

FCGR1A IG Bound FCGR1A Lyn b<strong>in</strong>d<strong>in</strong>g Func. for non-cov. Gu et al. 2003<br />

FGR CD18 b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> Bound FGR PROTEIN_KINASE_TYR Func. for cov. Velasco-Velazquez et<br />

al. 2003<br />

GAB2 Y Phosphorylated GAB2 Y Func. for non-cov. Wymann, Zvelebil, and<br />

Laffargue 2003; Gu et<br />

al. 2003<br />

GSK3B S9 Phosphorylated GSK3B PROTEIN_KINASE_ST Non-func. for cov. Wymann, Zvelebil, and<br />

Laffargue 2003<br />

HRAS GDP b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> Bound HRAS SMALL_GTP Non-func. for non-cov. Macaluso et al. 2002<br />

HRAS SMALL_GTP Bound HRAS PI3K-p110 b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> Func. for non-cov. Wymann, Zvelebil, and<br />

Laffargue 2003


114<br />

HRAS GEF b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> Bound HRAS GDP b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong>,<br />

SMALL_GTP<br />

ITGAM VWA Bound ITGB2 Src-family tyros<strong>in</strong>e k<strong>in</strong>ase<br />

b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong><br />

Non-func. for non-cov.,<br />

Func. for non-cov.,<br />

Func. for non-cov.<br />

Cantley 2002,<br />

Wymann, Zvelebil, and<br />

Laffargue 2003<br />

Velasco-Velazquez et<br />

al. 2003<br />

LYN CD18 b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> Bound LYN PROTEIN_KINASE_TYR Func. for cov. Velasco-Velazquez et<br />

al. 2003<br />

LYN FcgR b<strong>in</strong>d<strong>in</strong>g Bound LYN PROTEIN_KINASE_TYR Func. for cov. Gu et al. 2003<br />

MAP3K14 S Phosphorylated MAP3K14 PROTEIN_KINASE_ST Func. for cov. L<strong>in</strong> et al. 1999<br />

MAP3K8 S400 Phosphorylated MAP3K8 PROTEIN_KINASE_ST Func. for cov. Kane et al. 2002<br />

PIK3C3 PI k<strong>in</strong>ase Bound PIK3C3 PI k<strong>in</strong>ase Non-func. for cov. Fratti et al. 2001<br />

PIK3CA PI3K_P85B Bound PIK3CA PI3_PI4_KINASE Non-func. for cov. Vanhaesebroeck and<br />

Waterfield 1999<br />

PIK3CA PI3K_RBD Bound PIK3CA PI3_PI4_KINASE Func. for cov. Vanhaesebroeck and<br />

Waterfield 1999;<br />

Cantley 2002<br />

PIK3R1 SH2 Bound PIK3CA PI3_PI4_KINASE Func. for cov. Vanhaesebroeck and<br />

Waterfield 1999<br />

RAB5A SMALL_GTP Bound RAB5A p150 b<strong>in</strong>d<strong>in</strong>g Func. for non-cov. Murray et al. 2002<br />

RAB5A GDP-b<strong>in</strong>d<strong>in</strong>g Bound RAB5A SMALL_GTP Non-func. for non-cov. Murray et al. 2002<br />

RAB5A GEF b<strong>in</strong>d<strong>in</strong>g Bound RAB5A GDP-b<strong>in</strong>d<strong>in</strong>g Non-func. for non-cov. Tall et al. 2001<br />

RELA RHD for IkB b<strong>in</strong>d<strong>in</strong>g Bound RELA Nuclear localization<br />

sequence (NLS)<br />

Non-func. for non-cov.<br />

Hayden and Ghosh<br />

2004<br />

Appendix C4. Allosteric regulations <strong>in</strong> the macrophage model. The table shows the list <strong>of</strong> allosteric regulation prototypes that were<br />

<strong>in</strong>corporated <strong>in</strong> the pathway model. Column 1: name <strong>of</strong> the prote<strong>in</strong> <strong>in</strong>volved <strong>in</strong> the condition events. Column 2: doma<strong>in</strong> and sites <strong>of</strong> the<br />

prote<strong>in</strong>, required for the conditions. Column 3: states (b<strong>in</strong>d<strong>in</strong>g or phosphorylation states) required for the conditions. Column 4: name <strong>of</strong><br />

the prote<strong>in</strong> affected <strong>by</strong> the response events. Column 5: doma<strong>in</strong>s and sites <strong>of</strong> the prote<strong>in</strong>, affected <strong>by</strong> the response. Column 6: states<br />

(conformational states) affected <strong>by</strong> the responses. Column 7: literature that supports the allosteric regulation.


C5 - Cellular responses and their conditions <strong>in</strong> the macrophage model<br />

115<br />

Cellular Response<br />

Molecule <strong>in</strong><br />

condition<br />

Doma<strong>in</strong>/Site <strong>in</strong>volved B<strong>in</strong>d<strong>in</strong>g state Phosphorylation<br />

state<br />

Reference<br />

Act<strong>in</strong> polymerization and rearrangement ARF6 GTP b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> Bound Cantley 2002<br />

Cell cycle entry - S phase CCND1 phospho-S or T Not-phosphorylated Cantley 2002;<br />

Wymann, Zvelebil,<br />

and Laffargue 2003<br />

Cell survival BCL2 BH3 Not Bound Cantley 2002;<br />

Wymann, Zvelebil,<br />

and Laffargue 2003<br />

Intra<strong>cell</strong>ular glucose uptake SLC2A4 PIP3 b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> Bound Wymann, Zvelebil,<br />

and Laffargue 2003<br />

Membrane delivery to plasma membrane ARF6 GTP b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> Bound Stephens, Ellson,<br />

and Hawk<strong>in</strong>s 2002<br />

Phagosome and lysosome fusion EEA1 FYVE Bound Fratti et al. 2001<br />

Prote<strong>in</strong> synthesis RPS6KB1 Threon<strong>in</strong>e phosphorylation site Phosphorylated Cantley 2002;<br />

Wymann, Zvelebil,<br />

and Laffargue 2003<br />

Recruitment <strong>of</strong> oxidase complex to phagosome NCF4 PX Bound Stephens, Ellson,<br />

and Hawk<strong>in</strong>s 2002<br />

Appendix C5. Cellular responses and their conditions <strong>in</strong> the macrophage model. The table shows <strong>cell</strong>ular response prototypes that were<br />

<strong>in</strong>corporated <strong>in</strong> the pathway model. Column 1: name <strong>of</strong> the <strong>cell</strong>ular response. Column 2: molecule that is required as the condition to<br />

<strong>in</strong>duce the <strong>cell</strong>ular response. Column 3: doma<strong>in</strong> or site <strong>of</strong> that molecule, <strong>in</strong>volved <strong>in</strong> the condition. Column 4: B<strong>in</strong>d<strong>in</strong>g state required for the<br />

condition. Column 5: phosphorylation state required for the condition. Column 6: literature that supports the <strong>cell</strong>ular response and its<br />

condition.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!