01.10.2015 Views

Dr Helen Jane Fraser

Fraser, H.J.: "Interstellar Ices and the Gas-dust Interaction." (Tutorial)

Fraser, H.J.: "Interstellar Ices and the Gas-dust Interaction." (Tutorial)

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Dr</strong>. <strong>Helen</strong> <strong>Jane</strong> <strong>Fraser</strong><br />

(h.fraser@phys.strath.ac.uk)<br />

Department of Physics<br />

University of Strathclyde<br />

(HF ubiquitous)…


Not exhaustive<br />

1. Ice + Interstellar = > 600 hits (2005 – 2011)<br />

3. + Ion* = > 157 hits (2005 – 2011)<br />

• Yet not much of this yet filtering through to gas-grain models<br />

(they have a hard enough time already!!)<br />

• Lots of good work – not always angled to make it accessible to<br />

multidisciplinary audience<br />

• Experiments with ions and radicals per see not easy!! (Nor is<br />

theory)<br />

Recent nice (review) papers (with loads of refs in them):<br />

- Ice in space: surface science investigations of the thermal desorption of model interstellar ices<br />

on dust grain analogue surfaces<br />

Burke & Brown, PCCP, 12, issue 23, 5947 – 5969 (2010)<br />

- Ice surface reactions: A key to chemical evolution in space<br />

Watanabe & Kouchi PROGRESS IN SURFACE SCIENCE, 83, issue 10-12, 439 – 489 (2008)<br />

- Reaction Networks for Interstellar Chemical Modelling: Improvements and Challenges<br />

Wakelam, et al. SPACE SCIENCE REVIEWS, 156, Issue: 1-4, 13-72 (2010)<br />

-The Spitzer Ice Legacy<br />

Oberg et al ApJ (2011) 2011arXiv1107.5825O


Role of Ice<br />

in “Star<br />

and Planet<br />

Formation”


Icy Grains in Protostellar Envelopes<br />

Credit: NASA/JPL-Caltech/R. Hurt (SSC)


Figure 1; This image from NASA's Spitzer Space Telescope shows the<br />

"mountains" of gas and dust in a dense molecular cloud where stars are born.<br />

Dubbed "Mountains of Creation" by Spitzer scientists, these towering “peaks”<br />

are illuminated at their tips with light from warm, embryonic stars, and packed<br />

full of molecules, atoms and ions. Credit; Image courtesy of NASA/JPL-Caltech/L. Allen<br />

(Harvard-Smithsonian CfA)<br />

Temperature = 10 K (-263 deg)<br />

Pressure = 10 -18 Bar cf. Earth = 1 Bar


<strong>Fraser</strong> et al, A&G, 2003


• THERMODYNAMICS<br />

we need enough energy for the<br />

reactants to form products<br />

• KINETICS<br />

We have many millions of years in space<br />

but we need the reactions to occur within<br />

the lifetime of the astronomical object<br />

(and when reagents are available)


• T too low to overcome activation energy barrier<br />

Energy<br />

E a<br />

reactants<br />

T = 10 - 200 K<br />

‘No barrier chemistry’<br />

products<br />

• Molecular density so low that 3 body collisions are rare<br />

(10 6 (max) vs. 10 21 molecules cm -3 )<br />

– ‘all’ collisions should be effective collisions!!<br />

+<br />

+<br />

<br />

+


H 2<br />

CO 2<br />

CH 3 OH<br />

H 2 O<br />

List of Detected Cosmic Molecules in<br />

Interstellar and Circumstellar Environments.<br />

CO<br />

http://www.astro.uni-koeln.de/cdms/molecules


Image courtesy of K Pontoppidan


adapted from an original idea in HJ <strong>Fraser</strong>, MP Collings and MRS McCoustra,<br />

Review of Scientific Instruments, 2002, 73, 2161


Key to<br />

‘large’ molecule<br />

formation<br />

=<br />

WATER ICE & DUST


Complex molecules - do they form in / on ices then<br />

desorb or do we desorb ions / radicals or reactive<br />

molecules and have a post desorption chemistry?<br />

Credit: Y,-J. Kuan, S.B. Charnley, H.-C. Huang,<br />

W.-L. Tseng, Z. Kisiel, Astrophys J. 593, 848 (2003)<br />

glycine<br />

in Orion!<br />

Credit: C.R. O'Dell/Rice University, NASA.<br />

Radio = large molecules<br />

Permanent dipoles


Remote<br />

Observations<br />

Laboratory Experiments<br />

Theoretical<br />

Chemistry<br />

Modelling of<br />

Environment


Observing<br />

Interstellar<br />

Ices


Background star<br />

Proto-star<br />

AKARI / Spitzer / Hershel


Figure courtesy of E van Dishoeck


Realistically – can ONLY claim H 2 O / CO 2 / CO with any confidence<br />

Back out HCOOH / H2CO / CH 3 OH / NH 3 / CH 4 with some confidence<br />

Perhaps get 13 CO 13 CO 2 OCN if present (low s)<br />

ANYTHING ESO-VLT else is ISSAC speculative - and always will be….<br />

Only lab detections or gas phase links (via KNOWN chemical pathways<br />

will tell us for sure) AKARI AOT04<br />

Spitzer - IRS<br />

ISO<br />

ISO<br />

van Dishoeck et al., Pacific-Chem Proceedings (2006)


Ice Structure in Space<br />

• Band profile indicates ice amorphous<br />

• Majority of ice FORMS by<br />

chemical vapour deposition<br />

i.e. H + OH, O 2 + H, H 2 +<br />

O ???<br />

• Only in disks / behind<br />

shocks does it vapour deposit<br />

from gas phase<br />

H 2 O (g) → H 2 O (s)<br />

Watanabe & Kouchi (2008) PSS<br />

• WE DON’T KNOW ANYTHING ELSE<br />

ABOUT water ICE STRUCTURE FROM<br />

OBSERVATIONS OF ICES ALONE


Water Ice<br />

Structure<br />

(synergy with theory)


H 2 O = most abundant<br />

condensed solid in ISM<br />

Al Halabi et. al.<br />

JCP 120, 3358<br />

(2004)<br />

> 180 K<br />

Al Halabi, <strong>Fraser</strong><br />

et. al. A&A, 422,<br />

777 (2004)<br />

< 150 –180 K<br />

< 130 K<br />

< 70 K<br />

Ehrenfreund, <strong>Fraser</strong>, et. al. P&SS, 51, 473 (2003)<br />

McCann Sweatmann & <strong>Fraser</strong>, JCP (2011) in prep<br />

<strong>Fraser</strong> & Miller JCP (2011) in prep


Wang et al ApJ ( 2005)


Ice in Space<br />

• catalytic structure for chemistry<br />

• on the ice surface<br />

• & in grain bulk<br />

governed by its structure & hydrogen bonding<br />

…depends on intrinsic properties of ‘local’ environment as ice formed / deposited<br />

Ice has potential e.g. temperature, to be density, a (the) ‘impurities’ KEY tracer<br />

depends on evolution of environment as ISM evolves<br />

of prevailing physical and chemical conditions<br />

(a) as clouds form, evolve & form stars & planets<br />

• ‘glue-like’ properties from bulk porosity<br />

(b) biological haven<br />

• changes electrostatics<br />

(c) chemical nano-factory<br />

• leads to grain sticking and aggregation in planet building<br />

Ice is the controlling reservoir of molecules in SFR<br />

governed by its structure & hydrogen bonding<br />

to/from the gas phase, thereby intrinsically<br />

linked to our OTHER tracers / probes of SF<br />

…depends on intrinsic properties of ‘local’ environment as ice formed / deposited<br />

e.g. temperature, density, ‘impurities’<br />

depends on evolution of environment as ISM evolves


Synergy with<br />

the Laboratory


Solid-State Astrochemistry<br />

10 7 pre-stellar<br />

10 7 star formation<br />

10 6 – 10 7 planet formation<br />

…then we have a solar system<br />

1 expt = 12 –48 hr<br />

Image Credit: A. Caulet(ST-ECF, ESA) and NASA<br />

Astronomy<br />

small grains<br />

P < 10 -10 – 10 -15 mbar<br />

(dominated by H 2 then CO)<br />

T grain = 10 – 300 K<br />

T gas = 10 – 1000 K<br />

1 Lyman α / Lyman-Werner band UV photon<br />

per 10 6 years per grain<br />

1 atom / molecule – grain collision per 10 4 years<br />

1 X-Ray / CR ‘direct hit’ per 10 5 years<br />

Surface Science<br />

To date = defined surfaces<br />

P < 10 -10 mbar<br />

(also dominated by H 2 then CO)<br />

T grain = 10 – 450 K<br />

T gas = 100 - 300 K<br />

1 Lyman α / Lyman-Werner band UV photon<br />

per molecule per second!! (≈ 5 sec ≅ ISM)<br />

@ 1 L (Langmuir) dose = 10 15 molec cm -2 s -1<br />

1 X-Ray / CR ….


Why is there such a large degree<br />

Establish the reaction kinetics & reaction mechanism<br />

Analyse competing reaction pathways & product yields<br />

of chemical<br />

Predict how similar<br />

complexity?<br />

reactions proceed<br />

What effects do solid state chemical<br />

Measure sticking probabilities / binding energies<br />

reactions Understand have how on the the physical evolution properties of star<br />

of the grain/ ice affect the chemistry<br />

Identify dominant processes in different physical environments<br />

forming environments?<br />

How can chemistry help us to<br />

Solid-state probe and tracer species<br />

understand Historical the map physical of physcial environments<br />

conditions<br />

we are observing?


• What does astronomy need?<br />

Solid-State Astrochemistry<br />

• data<br />

i.e.<br />

sticking probability S(θ)<br />

Astronomy<br />

control initial state…<br />

binding energy E des<br />

observe final state<br />

(assuming E ads = E des = BE)<br />

• understanding “how to apply data”<br />

i.e. all the above may be f (T grain , θ….)<br />

(NOT ALWAYS A SIMPLE NUMBER)<br />

• understanding importance of KINETICS<br />

as well as THERMODYNAMICS<br />

Surface<br />

Science<br />

Determine values empirically &<br />

accurately<br />

• Numbers<br />

[x product , x reagent ] = ƒ (t, P, T, θ…)<br />

OH<br />

Cosmic<br />

Rays<br />

CO 2 carbon<br />

CO or silicate<br />

based<br />

H 2 CO<br />

CH 3 OH<br />

H 2 O<br />

NH 3<br />

N<br />

H<br />

H 2<br />

O<br />

hν<br />

QMS<br />

probe gas ϕ<br />

IR-RAIRS<br />

H 2 CO<br />

CH 3 OH<br />

hν<br />

CO<br />

substrate<br />

OH<br />

H N<br />

O<br />

H 2 O<br />

probe<br />

surface<br />

species<br />

10 nm – 10 µm<br />

1 - 3 cm<br />

<strong>Fraser</strong>, Collings & McCoustra, Rev. Sci. Inst. 73, no.5, 2161 (2002); <strong>Fraser</strong> & Van Dishoeck, ASR, 33, 14 (2004)


Solid-State Astrochemistry Labs<br />

Spectroscopy<br />

Mid- NIR<br />

HV (10 -6 )<br />

Trans-FTIR<br />

Spectra (cf. directly to obs)<br />

A-values (∫I(ν)→no. of molecules)<br />

Leiden (van Dishoeck, Linnartz)<br />

Birmingham, AL (Gerrakines)<br />

NASA Ames (Allamandola, Sandford)<br />

Cataina (Palumbo)<br />

Desorption / Scattering<br />

Thermal / UV<br />

Electron / collision<br />

UHV (10 -10 )<br />

TPD / RAIRS<br />

Reactivity<br />

HV + UHV<br />

TPD/RAIRS/STM<br />

hν / electron / atom<br />

trans-FTIR + HPLC<br />

Kinetic & thermodynamic data<br />

Quantum yield<br />

(direct to models & interpretation of obs)<br />

<strong>Fraser</strong> (Strathclyde), Brown (UCL), McCoustra (HW), Leiden (van Dishoeck),<br />

Kaiser (Hawaii), Sitz (Austin), Martin (Marseille), Kay, Kimmel (PNWL)<br />

THEORY [<strong>Fraser</strong> (Strathclyde), Leiden (van Dishoeck, Kroes),<br />

Darling (Liverpool)]<br />

Energy Partition<br />

Reaction rates & branching ratios<br />

Quantum yield, isotopic effects<br />

(direct to models & interpretation of obs)<br />

UHV: Leiden (van Dishoeck, Linnartz), McCoustra (HW), <strong>Fraser</strong> (Strathclyde), Lemaire<br />

(Cergy), Hiraoka (Japan), Watanabe (Japan), Barrigola (Virginia), Mason (OU)<br />

H2 – Pirronello (Cataina), Vidali (Syracuse), Lemaire (Cergy), Hornekaer (Aarhus), Price<br />

(UCL) HV: - more historic – Gerrakines, Ehrenfreund, Allamandola, Sandford, Schutte<br />

- recent – Bernstein, Dartois, Munoz-Caro, Palumbo (Cataina)


Overview<br />

1. Physical Processes<br />

Desorption, trapping, ice structure, H-bonding<br />

2. Chemical Processes<br />

Surface chemical reactions, hν vs. electron vs. atom-molecule,<br />

3. Complex Chemistry<br />

Deuteration, ‘bio-molecules’, ions & radicals, where next?


Desorption<br />

+ Trapping<br />

e.g. H 2 O + CO


a) COporous<br />

ASW<br />

CO in multilayer CO on internal / external H 2 O surfaces<br />

2139 cm -1<br />

CO at H 2 O-CO<br />

interface<br />

2152 cm -1 & 2139 cm -1<br />

b) COcompact<br />

ASW<br />

2152 cm -1 & 2139 cm -1 CO inside ice<br />

(trapped in collapsed pores)<br />

2136 cm -1<br />

CO in multilayer<br />

CO at external H 2 O surface<br />

2139 cm -1<br />

2152 cm -1 & 2139 cm -1 No CO<br />

CO at H 2 O-CO<br />

interface<br />

2152 cm -1 & 2139 cm -1<br />

c) CO-<br />

I c<br />

CO in multilayer<br />

2139 cm -1 No CO No CO<br />

CO at H 2 O-CO<br />

interface<br />

2152 cm -1 & 2139 cm -1<br />

d) mixed<br />

CO-H 2 O Ice<br />

CO on internal / external H 2 O surfaces CO on internal / external H 2 O surfaces<br />

2152 cm -1 & 2139 cm -1 2152 cm -1 & 2139 cm -1<br />

CO inside ice<br />

(trapped in collapsed pores)<br />

2136 cm -1<br />

Substrate<br />

Temperature (K)<br />

8 30<br />

80<br />

<strong>Fraser</strong> et al. MNRAS, 353, 59 (2004)


Implementing the Kinetic Model in Astrochemistry<br />

+<br />

1 K / 10 3 yr<br />

1 K / 10 2 yr<br />

1 K / 10 yr<br />

1 K / yr<br />

no desorption<br />

from<br />

ice surface<br />

from<br />

‘in’ ice<br />

desorption<br />

single step<br />

no discrimination<br />

between<br />

ASW & Ic<br />

desorption<br />

from CO<br />

overlayer<br />

1 K / 10 3 yr<br />

1 K / 10 2 yr<br />

1 K / 10 yr<br />

1 K / yr


Chemical Reactivity


e.g. H 2 O formation<br />

Hiraoka (1998) [O in N 2 O]<br />

‘Holy Grail’<br />

How astrophysically<br />

relevant are the<br />

conditions?


Miyauchi et al CPL (2008), Ioppolo et al ApJ (2008, 2010), Dulieu et al JCP (2008, 2010, 2011)…..<br />

Japanese + Ledien group – RAIRS<br />

French Group TPD + RAIRS


Miyauchi et al CPL (2008), Ioppolo et al ApJ (2008, 2010), Dulieu et al JCP (2008, 2010, 2011)…..<br />

• all produce H 2 O (D 2 O / HDO)<br />

• all O 2 + H (D) [ 18 -O]<br />

• all produce significant H 2 O 2 , O 3<br />

Is O 2 dominant in<br />

cloud edges?<br />

Is it frozen out?<br />

Hard to make GROUND STATE OH radicals<br />

neither detected<br />

in ISM ices<br />

HARD to do experiments on ice + ions or radicals


Deuteration<br />

The HDO/H 2 O abundance ratio =<br />

key diagnostic of the evolution of water<br />

during the star- and planet-formation process<br />

& its origin on Earth.<br />

Link to OH / OD [H/D ratio] during H 2 O formation


Deuterium fractionation on dust<br />

D<br />

H<br />

O<br />

Surface reactions produce<br />

the following molecules:<br />

H 2 CO, HDCO, D 2 CO??<br />

DUST<br />

NH 3 , NH 2 D, ND 2 H, ND 3<br />

CH 3 OH, CH 3 OD<br />

CH 2 DOH, CHD 2 OH<br />

CH 2 DOD, CHD 2 OD<br />

CD 3 OH, CD 3 OD<br />

CO<br />

H 2 O, HDO, D 2 O,<br />

H 2 , HD, D 2<br />

Tielens 1983; Charnley et al. 1997; Caselli et al. 2002, P&SS


CO freezes out in<br />

v. dense ISM<br />

regions<br />

(where H 2 and HD<br />

dominate – not H/<br />

D)<br />

H 2 CO –<br />

underproduced cf.<br />

ISM gas phase<br />

abundances<br />

CH 3 OH formation<br />

Route from HCO /<br />

DCO to HCOOH<br />

still unclear<br />

though HCOOH<br />

detected in ices<br />

D into CH groups – can occur gas / surface<br />

D into OH groups??? D into NH groups??<br />

CH 3 OH – can be<br />

made @ rate<br />

comensurate<br />

with reproducing<br />

ISM gas phase<br />

abundances<br />

Also detect OH (NEVER OD – why?)<br />

H 3 0 + but NOT D 3 O + why?<br />

Watanabe et al. (2005) IAU Proc.


Interesting Papers<br />

on Solids & Ions..<br />

• Title: Formation of H(2)(+) by Ultra-Low-Energy Collisions of Protons with Water Ice<br />

Surfaces<br />

Author(s): Bag Soumabha; McCoustra Martin R. S.; Pradeep T.<br />

Source: JOURNAL OF PHYSICAL CHEMISTRY C Volume: 115 Issue: 28 Pages:<br />

13813-13819 DOI: 10.1021/jp203310k Published: JUL 21 2011<br />

• CO(2) FORMATION IN QUIESCENT CLOUDS: AN EXPERIMENTAL STUDY OF THE<br />

CO plus OH PATHWAY<br />

Author(s): Noble J. A.; Dulieu F.; Congiu E.; et al.<br />

Source: ASTROPHYSICAL JOURNAL Volume: 735 Issue: 2 Article Number: 121<br />

DOI: 10.1088/0004-637X/735/2/121 Published: JUL 10 2011<br />

• Title: Kinetics of the OCN(-) and HOCN formation from the HNCO + H(2)O thermal<br />

reaction in interstellar ice analogs<br />

Author(s): Theule P.; Duvernay F.; Ilmane A.; et al.<br />

Source: ASTRONOMY & ASTROPHYSICS Volume: 530 Article Number: A96 DOI:<br />

10.1051/0004-6361/201016051 Published: JUN 2011<br />

• Title: Photochemistry of polycyclic aromatic hydrocarbons in cosmic water ice II. Near<br />

UV/VIS spectroscopy and ionization rates<br />

Author(s): Bouwman J.; Cuppen H. M.; Steglich M.; et al.<br />

Source: ASTRONOMY & ASTROPHYSICS Volume: 529 Article Number: A46 DOI:<br />

10.1051/0004-6361/201015762 Published: MAY 2011


Key ?<br />

1. From an astronomy perspective<br />

3. From a chemistry perspective<br />

5. Recombining Both


Observational Prospects<br />

Now:<br />

AKARI / SPITZER<br />

IR absorption features of ices / gas phase data<br />

Very Now:<br />

Hershel / ALMA<br />

Gas phase observations, high resolution, high spatial definition<br />

but INFERS GAS PHASE by working backwards<br />

Wished for now:<br />

JWST (MIRI) / SPICA (SAFARI)<br />

Gas and ices co-observed high resolution & high spatial<br />

definition


The Spitzer Ice Legacy…<br />

Oberg et al ApJ in press (2011)


The Hershel Legacy…<br />

Goldsmith et al ApJ (in press)<br />

O 2 ….. H 2 O… H 2 O +<br />

Johnstone et al ApJ (in press)<br />

Kristensen et al A&A (2011)<br />

Neufield et al ApJ (2010)


Future Ice Observations<br />

Large scale = ice mapping cf. solid state material<br />

distribution with other astronomical observables<br />

e.g. Noble et al (2011) Sonnentrucker et al ApJ(2009), Pontoppidan et al A&A (2006)<br />

(images courtesy K. Pontoppidan)<br />

small scale =<br />

resolving snow lines<br />

in disks / seeing ice<br />

in disks<br />

e.g. Pontoppidan et al A&A (2004), Oberg et al ApJ in press (2011)


known unknowns and unknown unknowns …<br />

Can we back out surface chemistry from gas phase observations?<br />

Model should reproduce lab (show controlled process)<br />

then use same model on astro timescales<br />

Disentangle what lab shows and theory can tell us<br />

from what astrochemistry needs (what is good enough)<br />

What are concrete observational tests of ice chemistry /<br />

ice desorption/ gas-ice coupling?<br />

What is the test molecule x that is ‘complex’ and ONLY made in solid phase?<br />

What are the key set of surface reactions?<br />

What data is needed in a database?<br />

Thermal desorption of single / bi components understood<br />

but what about multilple components? larger molecules?<br />

What about ions radicals sputtering?<br />

How to model ice / monolayer //do the underlying surfaces matter?<br />

Bulk vs small grain effects on surfaces + morphology


Blatant Self-Advertising<br />

http://www.hindawi.com<br />

/journals/aa/si/solid/<br />

Submissions by Oct 15 th

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!