07.12.2012 Views

ABAQUS user subroutines for the simulation of viscoplastic - loicz

ABAQUS user subroutines for the simulation of viscoplastic - loicz

ABAQUS user subroutines for the simulation of viscoplastic - loicz

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Technical Note GKSS/WMS/01/5<br />

internal report<br />

<strong>ABAQUS</strong> <strong>user</strong> <strong>subroutines</strong> <strong>for</strong> <strong>the</strong> <strong>simulation</strong> <strong>of</strong><br />

<strong>viscoplastic</strong> behaviour including anisotropic damage<br />

<strong>for</strong> isotropic materials and <strong>for</strong> single crystals<br />

Weidong Qi, Wolfgang Brocks<br />

June 2001


2<br />

Institut für Werkst<strong>of</strong><strong>for</strong>schung<br />

GKSS-Forschungszentrum Geesthacht


0. Nomenclature 3<br />

1. Introduction 7<br />

2. The CDM-based anisotropic damage model 7<br />

3. Unified models <strong>of</strong> BODNER-PARTOM and <strong>of</strong> CHABOCHE coupled with damage 10<br />

4. Anisotropic creep model <strong>for</strong> cubic single crystals coupled with damage 11<br />

5. User material routines and <strong>the</strong>ir applications 13<br />

5.1 Circumferentially notched bar - CHABOCHE model coupled with damage 13<br />

5.2 Plate containing a hole - BODNER-PARTOM model coupled with damage 19<br />

5.3 Single crystal plate containing a hole - <strong>the</strong> anisotropic creep and damage model <strong>of</strong> BERTRAM,<br />

OLSCHEWSKI & QI 21<br />

5.4 TiAl turbine blade - CHABOCHE model coupled with damage 22<br />

6. References 24<br />

7. Appendices: <strong>ABAQUS</strong>-Inputfiles 26<br />

7.1 Appendix 1: Circumferentially notched bar - CHABOCHE model coupled with damage 26<br />

7.2 Appendix 2: Plate containing a hole - BODNER-PARTOM model coupled with damage 28<br />

7.3 Appendix 3: Single crystal plate containing a hole - <strong>the</strong> anisotropic creep and damage model <strong>of</strong><br />

BERTRAM, OLSCHEWSKI & QI 31<br />

7.4 Appendix 4: TiAl turbine blade - CHABOCHE model coupled with damage 33<br />

4


0. Nomenclature<br />

scalars<br />

a, c, d material parameters <strong>for</strong> kinematic hardening in CHABOCHE's model<br />

b material parameter <strong>for</strong> isotropic hardening in CHABOCHE's model<br />

h(x) HEAVISIDE function<br />

m material parameter <strong>for</strong> damage evolution, eq. (3b)<br />

m1, m1 material parameters in <strong>the</strong> BODNER-PARTOM model<br />

n material parameter in orientation function, eq. (6)<br />

n creep exponent in CHABOCHE's model<br />

p material parameter in eq. (6)<br />

p accumulated effective plastic strain, internal variable in CHABOCHE's model<br />

q material parameter in <strong>the</strong> definition <strong>of</strong> <strong>the</strong> damage-active stress, eq. (2)<br />

r material parameter in CHABOCHE's model<br />

r1, r2<br />

material parameters in <strong>the</strong> BODNER-PARTOM model<br />

A1, A2 material parameters in <strong>the</strong> BODNER-PARTOM model<br />

B0<br />

Ci<br />

Di<br />

D0<br />

DI<br />

DR<br />

Ji<br />

material parameter <strong>for</strong> damage evolution, eqs. (3b) and (4)<br />

temperature-dependent material parameters (i = 1, 2, 3), eqs. (21a-e)<br />

viscosities, temperature-dependent material parameters (i = 1, 2, 3), eqs. (21a-e)<br />

material parameter in <strong>the</strong> BODNER-PARTOM model<br />

maximum principal damage<br />

critical value <strong>of</strong> maximum principal damage<br />

scalar invariants (i = 1, 2, 3, 4)<br />

K viscosity, material parameter in CHABOCHE's model<br />

Ki<br />

Ki<br />

Li<br />

material parameter (i = 1, 2, 3) in <strong>the</strong> BODNER-PARTOM model<br />

temperature-dependent material parameters (i = 1, 2, 3), eqs. (21a-e)<br />

viscosities, temperature-dependent material parameters (i = 1, 2, 3), eqs. (21a-e)<br />

R(p) actual yield stress <strong>for</strong> isotropic hardening in CHABOCHE's model<br />

R 0<br />

initial yield stress in CHABOCHE's model<br />

5


R ∞<br />

Wi<br />

Z I , Z D<br />

Zij<br />

6<br />

saturated yield stress <strong>for</strong> isotropic hardening in CHABOCHE's model<br />

specific work <strong>of</strong> inelastic strain in <strong>the</strong> BODNER-PARTOM model<br />

internal variables <strong>for</strong> isotropic and kinematic hardening in <strong>the</strong> BODNER-PARTOM model<br />

material parameters (i = 1, 2, 3; j = 1, 2, 3, 4), eqs. (22a,b)<br />

β, βi material parameters <strong>for</strong> damage evolution, eqs. (3b, 4)<br />

ε i<br />

e<br />

εi η i<br />

eigen-values (i = 1, 2, 3) <strong>of</strong> total strain tensor E<br />

eigen-values (i = 1, 2, 3) <strong>of</strong> elastic strain tensor E e<br />

orientation function<br />

φ(p) material function <strong>for</strong> kinematic hardening in CHABOCHE's model<br />

φ ∞<br />

ˆ<br />

σ i<br />

vectors<br />

e i<br />

c<br />

ei saturated value <strong>of</strong> φ(p) , material parameter <strong>for</strong> kinematic hardening in CHABOCHE's model<br />

eigen-values (i = 1, 2, 3) <strong>of</strong> damage-active stress tensor ˆ<br />

S<br />

orthogonal unit vectors (i = 1, 2, 3), reference base, e i ⋅ e j = δ ij<br />

lattice vectors (i = 1, 2, 3)<br />

e εe e<br />

n , ni eigen-vectors (i = 1, 2, 3) <strong>of</strong> total and elastic strain tensors, E and E , respectively<br />

i<br />

s<br />

n ˆ i<br />

eigen-vectors (i = 1, 2, 3) <strong>of</strong> damage-active stress tensor ˆ<br />

S<br />

second order tensors<br />

B internal variable <strong>for</strong> kinematic hardening in <strong>the</strong> BODNER-PARTOM model<br />

D damage tensor<br />

Da<br />

E, E e<br />

active damage tensor<br />

total and elastic strain tensor<br />

E + , E e+ positive projections <strong>of</strong> total and elastic strain tensors, E and E e , eqs. (11a,b)<br />

E Ý i<br />

inelastic strain rate tensor in unified models<br />

H ε , H εe spectral tensors, eqs. (8a,b)<br />

I second order identity tensor


S CAUCHY stress tensor<br />

˜<br />

S effective stress tensor<br />

ˆ<br />

S damage-active stress tensor<br />

˜ ′<br />

S deviator <strong>of</strong> <strong>the</strong> damage-active stress<br />

Y D<br />

<strong>the</strong>rmodynamic <strong>for</strong>ce conjugate to damage tensor D<br />

X backstress tensor<br />

7


W internal variable, eq. (20b)<br />

fourth order tensors<br />

< 4><br />

Ai < 4><br />

I<br />

< 4> <br />

P , ε Pεe < 4><br />

R<br />

< 4><br />

S<br />

< 4><br />

T<br />

operations<br />

ab = a i b j e i e j<br />

a ⋅ b = a ib i<br />

8<br />

material tensors (i = 1, 2, 3, 4, 5), eqs. (21a-e)<br />

identity tensor<br />

positive spectral projection operator <strong>for</strong> total and elastic strain tensor, eqs. (10a,b)<br />

lattice tensor, eq. (5)<br />

damage characteristic tensor, eq. (3a)<br />

positive projection operator, eq. (12)<br />

AB = A ij B kl e ie ke je l<br />

A ⋅ B= A ijB jk e ie k<br />

A : B= A ij B ji<br />

tensor product <strong>of</strong> two vectors<br />

scalar product <strong>of</strong> two vectors<br />

tensor product <strong>of</strong> two (second order) tensors<br />

scalar product <strong>of</strong> two (second order) tensors<br />

double scalar product <strong>of</strong> two (second order) tensors<br />

A = A 2 = A ij A ji EUKLIDean norm <strong>of</strong> second order tensor<br />

< 4><br />

C : A = C A e e ijkl kl i j<br />

double scalar product <strong>of</strong> a fourth and a second order tensor


1. Introduction<br />

A CDM (continuum damage mechanics) based anisotropic damage model has been established<br />

by QI and BERTRAM to describe <strong>the</strong> anisotropic development <strong>of</strong> material damage in single crystals [QI<br />

& BERTRAM, 1997; QI, 1998; QI & BERTRAM, 1999; QI, BROCKS & BERTRAM, 2000] and in<br />

isotropic material [QI & BROCKS, 2000a, b, c]. Using <strong>the</strong> effective stress concept <strong>of</strong> CDM, this model<br />

can be coupled with any continuum mechanics model by introducing an adequately defined "effective<br />

stress tensor". The resulting model is <strong>the</strong>n able to describe <strong>the</strong> de<strong>for</strong>mation behaviour with respect to<br />

anisotropic material damage including lifetime predictions. The unified <strong>viscoplastic</strong> model proposed by<br />

BODNER & PARTOM [1975] and by CHABOCHE [CHABOCHE & ROUSSELIER, 1983] <strong>for</strong> polycrystal<br />

alloys and <strong>the</strong> creep model suggested by BERTRAM & OLSCHEWSKI [1996] <strong>for</strong> single crystal alloys,<br />

respectively, are chosen <strong>for</strong> coupling with <strong>the</strong> damage model. The resulting models have been<br />

implemented into <strong>subroutines</strong> <strong>of</strong> <strong>the</strong> FE-code <strong>ABAQUS</strong> as "<strong>user</strong>-defined material models" (UMAT) and<br />

can be used to per<strong>for</strong>m FE computations on structural components <strong>of</strong> poly and single crystals.<br />

This report gives a brief description <strong>of</strong> <strong>the</strong> models and presents some results <strong>of</strong> FE-analyses<br />

using <strong>the</strong> respective UMATs. Materials used <strong>for</strong> <strong>the</strong> analyses are <strong>the</strong> Ni-based superalloy IN738 LC,<br />

<strong>the</strong> Ni-based single crystal SRR99 and a TiAl intermetallic alloy.<br />

2. The CDM-based anisotropic damage model<br />

Damage <strong>of</strong> materials is a progressive process ending in final fracture. A natural characteristic <strong>of</strong><br />

material damage is that <strong>the</strong> damage generally develops anisotropically. A second-order symmetric tensor<br />

D is chosen in <strong>the</strong> present models as damage variable <strong>for</strong> <strong>the</strong> description <strong>of</strong> <strong>the</strong> anisotropic damage.<br />

According to <strong>the</strong> effective stress concept <strong>of</strong> CDM, <strong>the</strong> effect <strong>of</strong> stresses and damage on <strong>the</strong> de<strong>for</strong>mation<br />

behaviour can be represented by an adequately defined effective stress. This effective stress tensor is<br />

defined as<br />

˜<br />

S = (I − D) −1 2 ⋅S⋅ (I − D) −12 , (1)<br />

9


where S is <strong>the</strong> CAUCHY stress tensor and I denotes <strong>the</strong> second-order identity tensor. Similarly, it is<br />

supposed that <strong>the</strong> contribution <strong>of</strong> <strong>the</strong> stress and damage on <strong>the</strong> damage development can be represented<br />

by a newly introduced damage-active stress defined analogously to eq. (1) as<br />

10<br />

ˆ<br />

S = (I − D) −q ⋅S ⋅(I − D) −q =<br />

3<br />

σ σ<br />

∑ σ ˆ ˆ<br />

i n ˆ<br />

i n i , (2)<br />

i=1<br />

σ<br />

where q is a material parameter, σ ˆ and n ˆ<br />

i i (i = 1, 2, 3) are <strong>the</strong> eigen-values and <strong>the</strong> corresponding<br />

eigen-vectors <strong>of</strong> ˆ<br />

S . From <strong>the</strong> point <strong>of</strong> view <strong>of</strong> linear irreversible <strong>the</strong>rmodynamics <strong>the</strong> evolution law <strong>for</strong> a<br />

second order symmetric damage tensor can be generally expressed as:<br />

D Ý = S<br />

<br />

: YD , (3a)<br />

< 4><br />

where YD is <strong>the</strong> <strong>the</strong>rmodynamic <strong>for</strong>ce conjugate to <strong>the</strong> damage tensor, and S<br />

< 4><br />

characteristic tensor <strong>of</strong> rank four, respectively. If <strong>the</strong> fourth-order tensor S<br />

is <strong>the</strong> damage<br />

is symmetric and positive-<br />

definite, <strong>the</strong> <strong>the</strong>rmodynamic restrictions will be automatically satisfied [KRAJCINOVIC, 1983; GERMAIN,<br />

NGUYEN & SUQUET, 1983; YANG, ZHOU & SWOBODA, 1999].<br />

Motivated by <strong>the</strong> results <strong>of</strong> experimental investigations, it is assumed that only <strong>the</strong> tensile principal<br />

damage-active stresses are responsible <strong>for</strong> <strong>the</strong> damage evolution and that damage grows perpendicularly<br />

to <strong>the</strong> direction <strong>of</strong> <strong>the</strong> principal damage-active stresses. Thus, consider that damage may also develop<br />

partly isotropically, <strong>the</strong> damage evolution law is assumed taking <strong>the</strong> following particular <strong>for</strong>m:<br />

< 4><br />

D Ý =<br />

⎛<br />

⎝<br />

βII + (1 − β) I ⎞<br />

⎠ :<br />

ˆ<br />

S<br />

< 4><br />

where β, B0, m are material parameters. I<br />

B 0<br />

m<br />

< 4><br />

=<br />

⎛<br />

⎝<br />

βII + (1 − β) I ⎞<br />

⎠ :<br />

3 σ ˆ i σ σ<br />

∑ n ˆ ˆ i n i , (3b)<br />

i=1<br />

B 0<br />

m<br />

denotes <strong>the</strong> fourth-order identity tensor, and 〈.〉 is <strong>the</strong><br />

MCCAULEY bracket, which equals one <strong>for</strong> positive arguments and zero else. Creep rupture is assumed<br />

to take place when <strong>the</strong> maximum principal damage DI reaches a critical value DR.<br />

For single crystal superalloys, <strong>the</strong> initial anisotropy must be considered. The following particular<br />

<strong>for</strong>m <strong>of</strong> damage law is taken <strong>for</strong> single crystals with cubic symmetry (F.C.C. and B.C.C. single crystals):


4><br />

with R<br />

D Ý = β II + β I<br />

1 2 <br />

+ β R 3 <br />

⎛<br />

⎞<br />

⎝<br />

⎠ :<br />

3 η ˆ iσ i<br />

n ˆ σ ˆ σ ∑ i n i<br />

(4)<br />

⎡<br />

ηi =<br />

⎣<br />

⎢<br />

3<br />

i=1<br />

B 0<br />

m<br />

c c c c<br />

= ∑ e ei ei ei , (5)<br />

i<br />

i=1<br />

3<br />

∑<br />

j=1<br />

σ c ( n ˆ i ⋅e j)<br />

2n⎤<br />

⎦<br />

⎥<br />

p<br />

, (6)<br />

c<br />

where β1, β2, β3=(1−β1−β2), B0, p, n and m are material parameters, e j (j=1,2,3) are <strong>the</strong> lattice<br />

vectors, and η i is an orientation function which satisfies <strong>the</strong> cubic symmetry.<br />

Damage can also be inactive. Let us consider a single micro-crack embedded in an elastic material<br />

with a tensile load perpendicular to <strong>the</strong> crack faces. If <strong>the</strong> load is reversed <strong>the</strong> crack will close and in a<br />

one-dimensional case <strong>the</strong> material behaves as uncracked. This phenomenon is called “damage<br />

deactivation” (not “healing”) in CDM. The damage still exists but <strong>the</strong> loading condition can render it<br />

inactive. For <strong>the</strong> representation <strong>of</strong> this mechanism <strong>the</strong> phenomenological algorithm proposed by HANSEN<br />

& SCHREYER [1995] can be used. In this method <strong>the</strong> microcrack opening/closing effect is introduced by<br />

considering <strong>the</strong> spectral decomposition <strong>of</strong> <strong>the</strong> elastic strain tensor E e and <strong>the</strong> total strain tensor E<br />

3<br />

E e e εe εe<br />

ε ε<br />

= ∑ εi ni ni , E = ∑ εi ni ni , (7a, b)<br />

i=1<br />

3<br />

i=1<br />

e εe e e<br />

where εi and εi are <strong>the</strong> eigenvalues, ni and ni are <strong>the</strong> corresponding eigenvectors <strong>of</strong> E and E,<br />

respectively. Let <strong>the</strong> positive (tensile) spectral tensor corresponding to <strong>the</strong> elastic and to <strong>the</strong> total strain<br />

be defined as<br />

3<br />

H εe e εe εe<br />

= ∑ h(εi )ni ni , H ε ε ε<br />

= ∑ h(εi )n ini<br />

(8a, b)<br />

i=1<br />

respectively, with <strong>the</strong> modified Heaviside function<br />

3<br />

i=1<br />

11


12<br />

0 <strong>for</strong> x ≤ xm 1<br />

h(x) =<br />

2 1− cos π(x − x ⎧<br />

⎫<br />

⎪ ⎛ ⎡<br />

m) ⎤ ⎞<br />

⎪<br />

⎨ ⎜<br />

⎝ ⎣<br />

⎢ xp − xm ⎦<br />

⎥<br />

⎟ <strong>for</strong> xm < x < xp ⎬<br />

⎪<br />

⎠<br />

⎪<br />

⎩ 1 <strong>for</strong> x ≥ xp ⎭<br />

where xm and xp are two material parameters. The positive spectral projection operators (fourth-order<br />

tensor) <strong>for</strong> <strong>the</strong> elastic and <strong>the</strong> total strains are defined as<br />

<br />

Pεe = H εe H εe <br />

, Pε = H ε H ε<br />

respectively. The positive projection <strong>of</strong> <strong>the</strong> elastic and <strong>the</strong> total strain tensors are <strong>the</strong>n given by<br />

E e + <br />

= Pee : E e , E + < 4><br />

= Pe (9)<br />

(10a, b)<br />

: E (11a, b)<br />

respectively. By introducing a strain-based positive projection operator<br />

< 4><br />

T<br />

<br />

= I<br />

< 4> < 4><br />

−<br />

⎛<br />

I − P ⎞<br />

⎝ εe⎠<br />

: I<br />

⎛<br />

− P ⎞<br />

⎝ ε ⎠<br />

a symmetric, so-called active damage tensor can be defined as<br />

D = a T<br />

<br />

: D (13)<br />

Thus, <strong>the</strong> effective stress tensor and <strong>the</strong> damage-active stress tensor accounting <strong>for</strong> damage deactivation<br />

are defined as<br />

˜<br />

S = (I − D a ) −1 2 ⋅ S ⋅(I − D a ) −1 2 , (14)<br />

S ˆ = (I − Da) −q T −q<br />

⋅S ⋅(I − Da ) , (15)<br />

respectively.<br />

If <strong>the</strong> effective stress tensor and <strong>the</strong> damage active stress tensor defined in (14) and (15),<br />

respectively, are used instead <strong>of</strong> those defined in (1) and (2), <strong>the</strong> damage deactivation can be described.<br />

(12)


3. Unified models <strong>of</strong> BODNER-PARTOM and <strong>of</strong> CHABOCHE coupled with<br />

damage<br />

For <strong>the</strong> description <strong>of</strong> <strong>viscoplastic</strong> behaviour a lot <strong>of</strong> unified models have recently been developed.<br />

The main advantage <strong>of</strong> unified models compared to classical plasticity and creep models is <strong>the</strong> treatment<br />

<strong>of</strong> all aspects <strong>of</strong> inelastic de<strong>for</strong>mation behaviour including plastic flow under monotonic and cyclic<br />

loading, creep and stress relaxation by a single inelastic strain quantity [OLSCHEWSKI et al., 1990]. The<br />

total strain rate is decomposed into an elastic and an inelastic part by<br />

E Ý = Ý E e + Ý E i<br />

As <strong>the</strong> model proposed by BODNER & PARTOM [1975] and by CHABOCHE [CHABOCHE &<br />

ROUSSELIER, 1983] are two popular models, <strong>the</strong>y are chosen to be combined with <strong>the</strong> above damage<br />

model.<br />

The effective stress concept <strong>of</strong> CDM says that any constitutive equation <strong>for</strong> <strong>the</strong> damaged material<br />

can be derived in <strong>the</strong> same way as <strong>for</strong> a virgin material if <strong>the</strong> stress tensor is replaced by an adequately<br />

defined effective stress tensor. Following this concept, <strong>the</strong> BODNER-PARTOM model and <strong>the</strong><br />

CHABOCHE model can simply be extended to include material damage by replacing <strong>the</strong> stress tensor in<br />

<strong>the</strong> respective constitutive equations by <strong>the</strong> effective stress tensor defined in <strong>the</strong> expressions (1) or (14).<br />

The resulting models are summarized as follows:<br />

(16)<br />

13


flow rule:<br />

E Ý i = p Ý<br />

˜ S ′ − X<br />

, p Ý =<br />

S ˜ ′ − X<br />

isotropic hardening rule:<br />

14<br />

CHABOCHE BODNER-PARTOM<br />

3<br />

2 ˜ S ′ − X − R(p)<br />

K<br />

Ý<br />

R = b(R ∞ − R) Ý<br />

p , R(p = 0) = R 0<br />

kinematic hardening rule:<br />

X Ý = c 3<br />

aE Ý<br />

2 i ⎡<br />

−φ( p)Xp Ý ⎤ ⎡<br />

− d<br />

⎣<br />

⎦ ⎣<br />

⎢<br />

3<br />

2 X<br />

a<br />

− ωp<br />

φ(p) = φ∞ − ( φ∞ − 1)e<br />

r<br />

⎤<br />

⎦<br />

⎥<br />

X<br />

3<br />

2 X<br />

where ˜ ′<br />

S is <strong>the</strong> deviator <strong>of</strong> <strong>the</strong> damage-active stress.<br />

n<br />

E Ý i = 2D0 exp − 1 Z<br />

2<br />

I + ZD 3<br />

2 ˜ ⎡ ⎛ ⎞<br />

⎢ ⎜<br />

⎝ S<br />

⎟<br />

′<br />

⎣<br />

⎢<br />

⎠<br />

Z D = B : ˜ S ′<br />

S ˜ ′<br />

Z Ý I = m1 K − 1 Z I ( ) Ý<br />

⎡<br />

B Ý = m2 ⎢ K3 ⎣<br />

2n<br />

⎤<br />

⎥<br />

⎦<br />

⎥<br />

S ˜ ′<br />

S ˜ ′<br />

Z<br />

W − i A 1<br />

I ⎡ − K ⎤ 2<br />

⎢<br />

⎣ K ⎥<br />

1 ⎦<br />

Z I (t = 0) = K 0<br />

˜<br />

S<br />

˜<br />

S<br />

⎤<br />

− B⎥<br />

⎦<br />

Ý<br />

⎡ B ⎤<br />

W i − A2 ⎣ ⎢ K1 ⎦ ⎥<br />

W i = ˜ S ′ : Ý E i dτ<br />

4. Anisotropic creep model <strong>for</strong> cubic single crystals coupled with damage<br />

Starting from a rheological four-parameter BURGERS-model which consists <strong>of</strong> two springs and two<br />

dampers, BERTRAM & OLSCHEWSKI [1993, 1996] used a projection method to construct an<br />

anisotropic 3D model <strong>for</strong> <strong>the</strong> description <strong>of</strong> <strong>the</strong> creep behaviour <strong>of</strong> cubic single crystals at high<br />

temperatures. Replacing <strong>the</strong> stress tensor by <strong>the</strong> effective-stress tensor (1) in <strong>the</strong> model, <strong>the</strong> constitutive<br />

equations coupled with <strong>the</strong> damage model can be written as:<br />

t<br />

∫<br />

0<br />

r 2<br />

r 1<br />

B<br />

B<br />

(17)<br />

(18)<br />

(19)


4><br />

E Ý = A1 <br />

W Ý = A4 < 4><br />

: ˜ Ý<br />

S + A2 < 4><br />

: ˜ Ý<br />

S + A5 : ˜<br />

< 4><br />

S + A3 :W , (20a)<br />

: ˜ ( S − W)<br />

, (20b)<br />

where W is an internal tensor variable <strong>of</strong> rank two, and A i<br />

tensors defined as:<br />

< 4><br />

A1 =<br />

<br />

A2 =<br />

<br />

A3 =<br />

<br />

A 4 =<br />

<br />

A5 < 4><br />

where R<br />

=<br />

3<br />

∑<br />

i=1<br />

3<br />

∑<br />

i=1<br />

3<br />

∑<br />

i=1<br />

3<br />

∑<br />

i=1<br />

3<br />

∑<br />

i=1<br />

1<br />

C i + K i<br />

< 4><br />

Pi 1 ⎛<br />

⎜<br />

Ci + Ki ⎝<br />

1<br />

C i + K i<br />

K i<br />

C i + K i<br />

K i<br />

C i + K i<br />

< 4><br />

P1 = 1 <br />

3 II, P2 ,<br />

Ci Di 1<br />

D i<br />

<br />

Pi C i<br />

D i<br />

<br />

Pi ,<br />

< 4><br />

Pi + C i<br />

L i<br />

,<br />

,<br />

+ Ki ⎞ < 4><br />

⎟ P , i<br />

Li ⎠<br />

< 4> < 4><br />

= R − P1 , P3 = I<br />

<br />

< 4><br />

< 4><br />

(i = 1, 2, 3, 4, 5) are fourth-order material<br />

(21a-e)<br />

− R , (21f-h)<br />

is defined in eq. (5), Ci , Ki , Di , Li (i = 1, 2, 3) are temperature dependent material<br />

parameters. Note that <strong>the</strong> viscosities Di and Li are also dependent on <strong>the</strong> applied stress. They are<br />

assumed to have <strong>the</strong> following <strong>for</strong>m:<br />

⎛ 4 ⎞<br />

⎛ 4 ⎞<br />

D = i D0i exp ⎜ −∑ Zij J ⎟<br />

j , L = i L0i exp⎜ −∑ ZijJ ⎟<br />

j<br />

(22a, b)<br />

⎝ ⎠<br />

⎝ ⎠<br />

j=1<br />

j=1<br />

with <strong>the</strong> material parameters Zij (i = 1, 2, 3; j = 1, 2, 3, 4) and <strong>the</strong> following scalar invariants with cubic<br />

symmetry<br />

J 1 = σ 11 σ 22 +σ 22 σ 33 + σ 33 σ 11 ,<br />

2 2 2 J = σ +σ23 + σ31 ,<br />

2 12<br />

J 3 = σ 11 σ 22 σ 33 ,<br />

J 4 = σ 11 σ 12<br />

2 2<br />

2 2<br />

( +σ13)+σ<br />

22 σ23 + σ21<br />

2 2<br />

( )+ σ33( σ31 + σ32).<br />

By <strong>the</strong> assumption that volume changes occur only elastically, it follows<br />

(23a-d)<br />

15


16<br />

−1 −1<br />

D1 = 0 , L1 = 0, Z i1 = 0 (i = 1, 2,3) . (24a-c)


5. User material routines and <strong>the</strong>ir applications<br />

The material models mentioned above are implemented into <strong>the</strong> commercial FE code <strong>ABAQUS</strong><br />

as <strong>user</strong>-defined material model by writing <strong>the</strong> corresponding <strong>user</strong> <strong>subroutines</strong>, UMAT, see Table 1.<br />

With help <strong>of</strong> <strong>the</strong>se UMATs one can apply <strong>the</strong> models in an FE analysis <strong>of</strong> <strong>viscoplastic</strong> damage<br />

behaviour <strong>of</strong> engineering components and structures. All <strong>the</strong> routines are written in <strong>the</strong> computer<br />

language FORTRAN using <strong>the</strong> <strong>for</strong>ward integration algorithm <strong>for</strong> numerical integration. Only iso<strong>the</strong>rmal<br />

loading conditions have been considered and <strong>the</strong> damage deactivation has not been included in any <strong>of</strong><br />

<strong>the</strong> routines. Viscoplastic FE calculations are very time consuming. In <strong>the</strong> routines however, no<br />

automatic time step control is used, so that <strong>the</strong>re is a necessity to improve <strong>the</strong> respective algorithms. All<br />

examples presented below are conducted using <strong>ABAQUS</strong>/Standard 5.8.<br />

model UMAT<br />

CHABOCHE model coupled with damage d-chaboche.f<br />

BODNER-PARTOM model coupled with damage d-bodner.f<br />

anisotropic creep and damage model <strong>of</strong> BERTRAM,<br />

OLSCHEWSKI & QI<br />

d-scsrr99.f<br />

Table 1: Constitutive models and names <strong>of</strong> <strong>the</strong> respecitve UMATs<br />

5.1 Circumferentially notched bar — CHABOCHE model coupled with damage<br />

The material parameters <strong>of</strong> <strong>the</strong> CHABOCHE model <strong>of</strong> IN 738 LC have been determined by<br />

OLSCHEWSKI et al. [1990] and <strong>the</strong>ir values at 850 °C are shown in Table 2. The material parameters <strong>of</strong><br />

<strong>the</strong> damage model were estimated by using numerical optimization methods to fit <strong>the</strong> creep data <strong>of</strong> <strong>the</strong><br />

three creep tests presented in <strong>the</strong> work <strong>of</strong> OLSCHEWSKI et al. [1990]. During this process <strong>the</strong> above<br />

values <strong>of</strong> <strong>the</strong> parameters <strong>of</strong> <strong>the</strong> CHABOCHE model were kept constant. Table 3 shows a set <strong>of</strong> damage<br />

parameters <strong>for</strong> IN 738 LC at 850 °C. Note that just three uniaxial tests are not sufficient <strong>for</strong> parameter<br />

identification, so that <strong>the</strong> values given in Table 3 are only first estimates. For lack <strong>of</strong> biaxial test data, <strong>the</strong><br />

anisotropy parameter β can not be determined. Comparison <strong>of</strong> <strong>the</strong> experiments and <strong>the</strong> predictions by<br />

<strong>the</strong> CHABOCHE model and by <strong>the</strong> coupled model with damage, respectively, using <strong>the</strong> material<br />

17


parameters <strong>of</strong> Tables 2 and 3, and <strong>the</strong> damage evolution during <strong>the</strong> creep processes are shown in Fig.<br />

1.<br />

18


ε i<br />

4<br />

[%]<br />

3<br />

2<br />

1<br />

E 149650 MPa ν 0.33 a 311 MPa<br />

K 397 MPa⋅h 1/n n 7.7 b 317<br />

R0 153 MPa φ∞ 1.1 c 201<br />

R∞ 0.0 MPa ω 0.04 r 3.8<br />

d 81.72 MPa/h<br />

Table 2: Material parameters <strong>of</strong> <strong>the</strong> CHABOCHE model <strong>for</strong> IN 738 LC at 850 °C.<br />

β q B0 m DI<br />

0.0 ∼ 1.0 0.4 613 MPa·h 1/m<br />

14 0.07<br />

Table 3: Material parameters <strong>of</strong> <strong>the</strong> damage model <strong>for</strong> IN 738 LC at 850 °C<br />

Uniaxial Creep (IN738 LC, 850°C)<br />

σ=335 MPa, Exp.<br />

σ=392 MPa, Exp.<br />

σ=410 MPa, Exp.<br />

Chaboche-model<br />

model with damage<br />

0<br />

0 20 40 time [h] 60<br />

0.2<br />

0.1<br />

σ=410 MPa<br />

σ=392 MPa<br />

σ=335 MPa<br />

0.0<br />

0 20 40<br />

time [h]<br />

60<br />

19


20<br />

Fig. 1. Experiments and model predictions <strong>for</strong> inelastic strain (upper) and damage evolution<br />

(lower diagramme)<br />

Circumferentially notched bars are <strong>of</strong>ten used to investigate <strong>the</strong> influence <strong>of</strong> triaxial stress state on<br />

<strong>the</strong> damage and fracture behaviour in creep processes. KOBAYASHI et al. [1998] reported <strong>the</strong> results <strong>of</strong><br />

<strong>the</strong>ir experimental studies on such bars. Several creep damage tests <strong>of</strong> pure aluminum were carried out.<br />

The nucleation and growth <strong>of</strong> voids during <strong>the</strong> creep process were observed by means <strong>of</strong> scanning<br />

electron microscopy and optical microscopy. They found out that only some portion <strong>of</strong> creep voids<br />

actually appeared on <strong>the</strong> surface <strong>of</strong> <strong>the</strong> notch root, and that <strong>the</strong> lengths <strong>of</strong> creep voids beneath <strong>the</strong> notch<br />

surface exceeded ten times <strong>the</strong> lengths <strong>of</strong> those appearing on <strong>the</strong> surface. They fur<strong>the</strong>r found out that<br />

under a relatively low load, many creep voids nucleated on a plane inclined at about 45° against <strong>the</strong><br />

tensile direction, and <strong>the</strong>ir coalescence <strong>for</strong>med a cone-type fracture surface. These results motivated <strong>the</strong><br />

<strong>simulation</strong> <strong>of</strong> <strong>the</strong> damage behaviour in such bars. As <strong>the</strong> test data <strong>of</strong> aluminium from which <strong>the</strong> material<br />

parameters could have been estimated were not available, <strong>the</strong> alloy IN738 LC at 850 °C is used, again.<br />

The stress concentration and <strong>the</strong> multiaxial stress distribution are dependent on <strong>the</strong> geometry <strong>of</strong><br />

<strong>the</strong> specimen. The same geometry as used in <strong>the</strong> work <strong>of</strong> KOBAYASHI et. al. [1998] is used. Fig. 2<br />

shows <strong>the</strong> specimen geometry and <strong>the</strong> FE-mesh, where R = 5.0 mm, r0 = 1.0 mm and L = 10.0 mm.<br />

Axisymmetric solid elements <strong>of</strong> type CGAX4 from <strong>the</strong> element library <strong>of</strong> <strong>ABAQUS</strong> are used <strong>for</strong> <strong>the</strong> FE<br />

calculations. Fig. 3 shows <strong>the</strong> distributions <strong>of</strong> <strong>the</strong> maximum principal damage in <strong>the</strong> notch area <strong>for</strong><br />

β = 0.1, 0.5 and 1.0, respectively. The applied load is σ2 = 150 MPa. It can be clearly seen that <strong>the</strong><br />

most damaged area occurs beneath <strong>the</strong> notch surface in all cases. At <strong>the</strong> beginning <strong>of</strong> <strong>the</strong> creep process,<br />

<strong>the</strong> maximum damage takes place on <strong>the</strong> notch root surface, where <strong>the</strong> maximum stress appears. During<br />

<strong>the</strong> process, however, <strong>the</strong> location <strong>of</strong> <strong>the</strong> maximum damage moves away from <strong>the</strong> surface. The<br />

<strong>ABAQUS</strong> input-file <strong>for</strong> β = 0.1 used <strong>for</strong> <strong>the</strong> present calculation is given in <strong>the</strong> Appendix 1.


)<br />

a)<br />

Fig. 2. a) Geometry <strong>of</strong> <strong>the</strong> specimen used by KOBAYASHI et al. [1998]<br />

b) FE-mesh. R = 5.0 mm, r0 = 1.0 mm, L = 10.0 mm<br />

Fig. 4. shows <strong>the</strong> contour plots <strong>of</strong> <strong>the</strong> second direction cosine <strong>of</strong> <strong>the</strong> principal directions<br />

D D<br />

corresponding to DI, n ⋅ e2 = cos∠ n I ( ,e2 I ), and <strong>of</strong> <strong>the</strong> maximum damage at t = 411 hours <strong>for</strong><br />

β = 0.1. The maximum local damage at this time reaches a value <strong>of</strong> 0.0643, immediately be<strong>for</strong>e <strong>the</strong> local<br />

fracture takes place and meso-cracks may have been initiated; note that <strong>the</strong> critical value <strong>of</strong> damage is<br />

Dc = 0.07. The values <strong>of</strong> <strong>the</strong> direction cosines at <strong>the</strong> location <strong>of</strong> maximum damage, DI, indicate that <strong>the</strong><br />

D<br />

direction n <strong>of</strong> maximum damage coincides with <strong>the</strong> e2-direction, which means that <strong>the</strong> surfaces <strong>of</strong><br />

I<br />

nucleated micro/meso-cracks will be perpendicular to <strong>the</strong> e2-direction, i.e. <strong>the</strong> loading axis.<br />

21


22<br />

Fig. 3. Contour plots <strong>of</strong> <strong>the</strong> maximum principal damage <strong>for</strong> β = 0.1, 0.5 and 1.0.<br />

O<strong>the</strong>r experimental investigations <strong>of</strong> KOBAYASHI et al. show that under relatively low loads, σ2, creep<br />

voids nucleated on a plane inclined by about 45° against <strong>the</strong> tensile direction. Though pure aluminium<br />

was used in <strong>the</strong>se tests <strong>for</strong> which no material data exist, <strong>the</strong> experiments motivated <strong>the</strong> <strong>simulation</strong> <strong>of</strong> <strong>the</strong><br />

damage behaviour at a lower creep load <strong>of</strong> σ2 = 100 MPa <strong>for</strong> <strong>the</strong> present Ni-based alloy and β = 0.1.<br />

The contour plots <strong>of</strong> <strong>the</strong> second direction cosine <strong>of</strong> <strong>the</strong> principal direction corresponding to DI,<br />

D<br />

cos∠( n ,e2 I ), at t = 11000 hours and <strong>the</strong> maximum damage distribution at t = 11000 and<br />

12000 hours, respectively, are shown in Fig. 5. The values <strong>of</strong> <strong>the</strong> direction cosine at <strong>the</strong> location <strong>of</strong><br />

maximum damage, i.e. where local fracture will occur, is −0.7÷−0.8. That means that maximum principal<br />

damage is inclined at about 45° against <strong>the</strong> tensile direction, which indicates that cracks may <strong>for</strong>m a<br />

cone-type fracture surface. Once <strong>the</strong> meso-crack has been <strong>for</strong>med or even local fracture has been taken<br />

place, <strong>the</strong> local behaviour <strong>of</strong> <strong>the</strong> material will strongly depend on <strong>the</strong> shape and size <strong>of</strong> <strong>the</strong> crack. Fur<strong>the</strong>r<br />

experimental investigations are needed.


Fig. 4. Contour plots <strong>of</strong> direction cosine and max. damage at t = 411 hours <strong>for</strong> β = 0.1.<br />

23


24<br />

Fig. 5. Contour plots <strong>of</strong> direction cosine and <strong>of</strong> <strong>the</strong> maximum principal damage <strong>for</strong> β = 0.1.


5.2 Plate containing a hole — BODNER-PARTOM model coupled with damage<br />

The material parameters <strong>of</strong> <strong>the</strong> BODNER-PARTOM model <strong>of</strong> IN 738 LC at 850 °C have also been<br />

determined by OLSCHEWSKI et al. [1990], and <strong>the</strong>ir values at 850 °C are shown in Table 4. The<br />

material parameters <strong>of</strong> <strong>the</strong> damage model are <strong>the</strong> same as listed in Table 3.<br />

E 149650 MPa ν 0.33 K0 4.18 10 5 MPa<br />

D0<br />

8.82 10 9 h -1<br />

n 0.289 K1 3.76 10 5 MPa<br />

A1=A2 1.65 10 -7 MPa/h m1 0.581 K2 3.07 10 5 MPa<br />

r1=r2 5.4 m2 0.344 K3 1.54 10 5 MPa<br />

Table 4: Material parameters <strong>of</strong> <strong>the</strong> BODNER-PARTOM model <strong>for</strong> IN 738 LC at 850 °C.<br />

In gas turbine blades with cooling channels, stress concentration occurs due at <strong>the</strong>se channels. A<br />

square plate with a central circular hole is <strong>the</strong>re<strong>for</strong>e chosen as a model representation <strong>of</strong> <strong>the</strong> area <strong>of</strong><br />

blades where <strong>the</strong> air cooling channels are located. The FE model used <strong>for</strong> <strong>the</strong> calculation is shown in<br />

Fig. 6. First, <strong>the</strong> plate is subjected to a creep load <strong>of</strong> σ3 = 180 MPa. After 40000 hours <strong>the</strong> maximum<br />

damage reaches a value <strong>of</strong> about 0.1. A second load <strong>of</strong> σ2 = 180 MPa is <strong>the</strong>n applied. There is only<br />

one element in <strong>the</strong> thickness direction so that any gradient over <strong>the</strong> thickness can not be captured. The<br />

three-dimensional 8-node linear brick continuum element with reduced integration, C3D8R, from <strong>the</strong><br />

element library <strong>of</strong> <strong>ABAQUS</strong> is used, and geometric non-linearity has been considered. Figs. 7 and 8<br />

show <strong>the</strong> contour plot <strong>of</strong> <strong>the</strong> maximum principal damage after 40000 h and 98000 h, respectively. β is<br />

assumed to be 0.5. Distribution <strong>of</strong> <strong>the</strong> maximum principal value <strong>of</strong> <strong>the</strong> strain and stress, after 40000 h<br />

and 98000 h, are shown in <strong>the</strong> Figs. 9-12, respectively. The <strong>ABAQUS</strong> input-file used <strong>for</strong> <strong>the</strong><br />

computation is given in <strong>the</strong> Appendix 2.<br />

25


26<br />

Fig. 6. FE-mesh and loading condition<br />

Fig. 7. Max. principal damage after 40000 h Fig. 8. Max. principal damage after 98000 h<br />

Fig. 9. Max. principal strain after 40000 h Fig. 10. Max. principal strain after 98000 h


Fig. 11. Max. principal stress after 40000 h Fig. 12. Max. principal stress after 98000 h<br />

5.3 Single crystal plate containing a hole — <strong>the</strong> anisotropic creep and damage model <strong>of</strong><br />

BERTRAM, OLSCHEWSKI & QI<br />

The material parameters <strong>of</strong> anisotropic creep model <strong>for</strong> <strong>the</strong> single crystal SRR99 at 760 °C have<br />

been estimated by BERTRAM and OLSCHEWSKI [1996]. The corresponding material parameters <strong>of</strong> <strong>the</strong><br />

damage model have been estimated by QI [1998]. Fig. 13 shows <strong>the</strong> applied FE model. The uniaxial<br />

tensile load, σ2, is applied in <strong>the</strong> crystal direction [001]. Because <strong>of</strong> <strong>the</strong> symmetry, only 1/2 <strong>of</strong> <strong>the</strong><br />

thickness <strong>of</strong> <strong>the</strong> specimen has to be modelled. Three elements are used over <strong>the</strong> half-thickness to<br />

capture <strong>the</strong> gradients in <strong>the</strong> thickness direction. The distribution <strong>of</strong> <strong>the</strong> maximum principal damage at<br />

t = 34000 hours is shown in Fig. 14. For comparison, Fig. 15 shows <strong>the</strong> initiation <strong>of</strong> cracks at a cavity<br />

in a prerafted single crystal CMSX-2 after 44 hours <strong>of</strong> creep at 850 °C and 520 MPa (creep life<br />

fraction = 95%) [AI et al., 1990], indicating at least a qualitative coincidence <strong>of</strong> <strong>the</strong> damage loci between<br />

numerical <strong>simulation</strong> and experiment. Contour plots <strong>of</strong> <strong>the</strong> strain ε22 and <strong>the</strong> stress σ22 at t = 34000<br />

hours are shown in Figs. 16 and 17, respectively. The <strong>ABAQUS</strong> input-file used <strong>for</strong> <strong>the</strong> computation is<br />

given in <strong>the</strong> Appendix 3.<br />

27


28<br />

Fig. 13. FE-mesh and loading condition


Fig. 14. Maximum. principal damage after 34000 h Fig. 15. Crack initiation at a cavity<br />

Fig. 16. Max. principal strain after 34000 h Fig. 17. Max. principal stress after 34000 h<br />

5.4 TiAl turbine blade — CHABOCHE model coupled with damage<br />

A model turbine blade made <strong>of</strong> a TiAl intermetallic alloy developed at <strong>the</strong> GKSS Research<br />

Centre is used as object <strong>of</strong> <strong>the</strong> FE-calculation. The blade has a length <strong>of</strong> 224 mm. The material<br />

parameters <strong>of</strong> <strong>the</strong> CHABOCHE model have been estimated by MOHR [1999], as listed in Table 5. Table<br />

6 gives <strong>the</strong> corresponding material parameters <strong>of</strong> <strong>the</strong> damage model used <strong>for</strong> <strong>the</strong> calculation. The<br />

continuum element C3D4 <strong>of</strong> <strong>the</strong> element library <strong>of</strong> <strong>ABAQUS</strong> is used. The number <strong>of</strong> nodes is 1476 and<br />

<strong>the</strong> number <strong>of</strong> elements is 4825. The blade is subject to centrifugal <strong>for</strong>ces, only, at a constant rotation<br />

speed <strong>of</strong> 40000 1/min; <strong>the</strong> density <strong>of</strong> TiAl is 3.8 g/cm 3 . Geometric non-linearity has been considered.<br />

The distribution <strong>of</strong> <strong>the</strong> maximum damage at t = 9060 hours is shown in Fig. 18. It obviously ocurs at <strong>the</strong><br />

root <strong>of</strong> <strong>the</strong> blade which after all has not been modelled realistically. The calculation is just supposed to<br />

29


proove that <strong>the</strong> model per<strong>for</strong>ms well also with large structures. The <strong>ABAQUS</strong> input-file used <strong>for</strong> <strong>the</strong><br />

computation is given in <strong>the</strong> Appendix 4.<br />

30


E 150000 MPa ν 0.24 a 335 MPa<br />

K 487 MPa⋅s 1/n n 15.3 b 207<br />

R0 126 MPa φ∞ 0.0 c 35.4<br />

R∞ 0.0 MPa ω 0.0 r 3.1<br />

d 0.023 MPa/s<br />

Table 5: Material parameters <strong>of</strong> CHABOCHE model <strong>for</strong> <strong>the</strong> TiAl at 700 °C.<br />

β q B0 m<br />

0.3 0.3 1500 MPa·h 1/m<br />

Table 6: Material parameters <strong>of</strong> <strong>the</strong> damage model <strong>for</strong> <strong>the</strong> TiAl at 700 °C<br />

14<br />

Fig. 18. Maximum principal damage after 9060 h<br />

31


6. References<br />

AI, S.H.; LUPINC, V. and MALDINI, M. (1990): "Creep fracture mechanics in single crystal superalloys".<br />

In: High Temperature materials <strong>for</strong> Power Engineering 1990, Proceedings <strong>of</strong> a Conference held in<br />

Liège, Belgium, 24-27 September 1990. Part II (Eds. E. BACHELET et al.)<br />

BERTRAM, A.; OLSCHEWSKI, J. (1993): "Zur Formulierung anisotroper linearer anelastischer<br />

St<strong>of</strong>fgleichungen mit Hilfe einer Projektionsmethode". ZAMM 73 (4-5), T401-403.<br />

BERTRAM, A.; OLSCHEWSKI, J. (1996): "Anisotropic creep modeling <strong>of</strong> <strong>the</strong> single crystal superalloy<br />

SRR99". J. Comp. Mat. Sci. 5, pp.12-16.<br />

BODNER, S.R.; PARTOM, Y. (1975): "Constitutive equations <strong>for</strong> elastic-<strong>viscoplastic</strong> strain hardening<br />

materials". J. Appl. Mech. 42, pp.385-389.<br />

CHABOCHE, J.L.; ROUSSELIER, G. (1983): "On <strong>the</strong> plastic and <strong>viscoplastic</strong> constitutive equations". J.<br />

Press. vess. technol. 105, pp.105-164.<br />

GERMAIN, P.; NGUYEN, Q. S.; SUQUET, P. (1983): "Continuum Thermodynamics". J. Appl. Mech. 50,<br />

pp.1010-1020.<br />

KOBAYASHI, K.I.; IMADA, H.; MAJIMA, T. (1998): "Nucleation and growth <strong>of</strong> creep voids in<br />

circumferentially notched specimens", JSME Int. J., Series A: Solid Mechanics and Material<br />

Engineering, 41, 218-224.<br />

KRAJCINOVIC, D. (1983): "Constitutive equations <strong>for</strong> damaging materials". J. Appl. Mech. 50, pp. 355-<br />

360.<br />

MOHR, R. (1999): "Modellierung des Hochtemperaturverhaltens metallischer Werkst<strong>of</strong>fe". Dissertation,<br />

Technische Universität Hamburg-Harburg, GKSS 99/E/66.<br />

OLSCHEWSKI, J.; SIEVERT, R.; MEERSMANN, J. and ZIEBS, J. (1990): "Selection, calibration and<br />

verification <strong>of</strong> <strong>viscoplastic</strong> constitutive models used <strong>for</strong> advanced blading methodology". In: High<br />

Temperature Materials <strong>for</strong> Power Engineering, Proceedings <strong>of</strong> a Conference held in Liège, Belgium,<br />

24-27 September 1990 (Eds. BACHELET et al.), Kluwer Academic Publishers, pp.1051-1060.<br />

QI, W.; BERTRAM, A. (1997): "Anisotropic creep damage modeling <strong>of</strong> single crystal superalloys".<br />

Technische Mechanik. 17(4), pp.313-322.<br />

QI, W. (1998): "Modellierung der Kriechschädigung einkristalliner Superlegierungen im<br />

Hochtemperaturbereich". Dissertation, Technische Universität Berlin, Fortschritts-Berichte VDI Verlag<br />

GmbH, Düsseldorf.<br />

QI, W.; BERTRAM, A. (1998): "Damage modeling <strong>of</strong> <strong>the</strong> single crystal superalloy SRR99 under<br />

monotonous creep". Computational Materials Science 13, pp.132-141.<br />

33


QI, W. ; BERTRAM, A. (1999): "Anisotropic continuum damage modeling <strong>for</strong> single crystals at high<br />

temperatures". Int. J. <strong>of</strong> Plasticity 15, pp.1197-1215.<br />

QI, W.; BROCKS, W. (2000a): "A CDM-based approach to creep damage and component lifetime".<br />

Proceedings <strong>of</strong> <strong>the</strong> Int. Conf. on Computational Engineering & Sciences, ”ICES‘2K” Ed. S. ATLURI),<br />

21-25 August 2000, Los Angeles.<br />

QI, W.; BROCKS, W. (2000b): "Simulation <strong>of</strong> anisotropic creep damage in engineering components".<br />

Proceedings <strong>of</strong> <strong>the</strong> European Congress on Computational Methods in Applied Sciences and Engineering<br />

”ECCOMAS 2000”, 11-14 September 2000, Barcelona.<br />

QI, W.; BROCKS, W.; BERTRAM, A. (2000): A FE-analysis <strong>of</strong> anisotropic creep damage and<br />

de<strong>for</strong>mation in <strong>the</strong> single crystal SRR99 under multiaxial loads. Computational Materials Science 19<br />

(2000), pp. 292-297.<br />

YANG, Q.; ZHOU, W.Y.; SWOBODA, G. (1999): Micromechanical identification <strong>of</strong> anisotropic damage<br />

evolution laws. Int. J. <strong>of</strong> Fracture 98, pp. 55-76.<br />

34


7. Appendices: <strong>ABAQUS</strong>-Inputfiles<br />

7.1 Appendix 1: Circumferentially notched bar — CHABOCHE model coupled with damage<br />

*HEADING<br />

circum. bar<br />

a= 5.0, r0= 1.00, N-alfa=20, N-r=40, K= 6<br />

*PREPRINT, ECHO=NO, MODEL=NO, HISTORY=NO<br />

**<br />

*RESTART, WRITE, FREQUENCY=2000<br />

**<br />

*NODE<br />

1, 5.00000, 1.00000<br />

101, 5.00000, 1.03927<br />

201, 5.00000, 1.07542<br />

...<br />

5181, 5.00000, -7.75000<br />

5281, 5.00000, -8.00000<br />

5381, 5.00000, -8.25000<br />

5481, 5.00000, -8.50000<br />

5581, 5.00000, -8.75000<br />

5681, 5.00000, -9.00000<br />

5781, 5.00000, -9.25000<br />

5881, 5.00000, -9.50000<br />

5981, 5.00000, -9.75000<br />

6081, 5.00000, -10.00000<br />

*ELEMENT, TYPE=CGAX4, ELSET=solid<br />

1, 2, 1, 101, 102<br />

2, 3, 2, 102, 103<br />

3, 4, 3, 103, 104<br />

4, 5, 4, 104, 105<br />

5, 6, 5, 105, 106<br />

6, 7, 6, 106, 107<br />

7, 8, 7, 107, 108<br />

...<br />

5978, 6078, 6079, 5979, 5978<br />

5979, 6079, 6080, 5980, 5979<br />

5980, 6080, 6081, 5981, 5980<br />

**<br />

** define node-set<br />

**<br />

*NSET, NSET=zplus, GENERATE<br />

6001, 6021, 1<br />

*NSET, NSET=zminus, GENERATE<br />

6061, 6081, 1<br />

**<br />

** define element-set<br />

**<br />

*ELSET, ELSET=zlast, GENERATE<br />

5901, 5920, 1<br />

**<br />

** define materials and UMA<br />

**<br />

*SOLID SECTION, ELSET=SOLID, MATERIAL=VISCOPLA<br />

1.,<br />

*MATERIAL, NAME=VISCOPLA<br />

*USER MATERIAL, CONSTANTS=19<br />

35


**<br />

** IN738LC, 850 deg C<br />

******** IN 738 LC, 850 C, ==== CH-model==== h, MPa<br />

** E, nu, Ro, Q, b, c, a, phiinf<br />

149650., .33, 153., -153., 317., 201., 311., 1.1<br />

*** omega, d, r, n, K; q, beta, Bo<br />

*** ( beta=1 -> isot. damage)<br />

0.04, 81.72, 4.8, 7.7, 397.0, .4, 0.1, 613.<br />

*** m, Dkey, Ckey Ckey ( Dkey < or = 0: do not consider damage)<br />

***( Ckey must be –1.0, only UMAT-developer may change it!)<br />

14., 1.0, -1.0<br />

*DEPVAR<br />

29<br />

**<br />

*USER SUBROUTINE, INPUT=/wms12/weiqi/umats/poly/d-chaboche.f<br />

**<br />

** loading !! <strong>the</strong> unit is hour !!<br />

**<br />

*STEP, INC=900000000, NLGEOM<br />

*VISCO, CETOL=1.0E-6<br />

0.0001, 0.001, , 0.0001<br />

**<br />

36


** auflagerung<br />

**<br />

*BOUNDARY, OP=NEW, TYPE=DISPLACEMENT<br />

6061, 1, 2, 0.0<br />

zminus, 2, 2, 0.0<br />

**** === define amplitude <strong>for</strong> loading process<br />

** 1s=0.00027778 h<br />

*AMPLITUDE, TIME=TOTAL TIME, NAME=creep<br />

0.0, 0.0, 0.001, 1.0, 9000000.0, 1.0<br />

**<br />

*DLOAD, OP=NEW, AMPLITUDE=creep<br />

zlast, P3, -150.<br />

**<br />

*NODE FILE, FREQUENCY=0<br />

*EL FILE, FREQUENCY=0<br />

*NODE PRINT, FREQUENCY=0<br />

*EL PRINT, FREQUENCY=0<br />

*PRINT, FREQUENCY=0<br />

*END STEP<br />

**<br />

** step 2<br />

**<br />

*STEP, INC=900000000, NLGEOM<br />

*VISCO, CETOL=1.0E-6<br />

0.0001, 0.001, , 0.0001<br />

**<br />

*NODE FILE, FREQUENCY=0<br />

*EL FILE, FREQUENCY=0<br />

*NODE PRINT, FREQUENCY=0<br />

*EL PRINT, FREQUENCY=0<br />

*PRINT, FREQUENCY=0<br />

*END STEP<br />

**<br />

** step 3<br />

**<br />

*STEP, INC=900000000, NLGEOM<br />

*VISCO, CETOL=1.0E-6<br />

0.001, 1., , 0.01<br />

**<br />

*NODE FILE, FREQUENCY=0<br />

*EL FILE, FREQUENCY=0<br />

*NODE PRINT, FREQUENCY=0<br />

*EL PRINT, FREQUENCY=0<br />

*PRINT, FREQUENCY=0<br />

*END STEP<br />

**<br />

** step 4<br />

**<br />

*STEP, INC=900000000, NLGEOM<br />

*VISCO, CETOL=1.0E-6<br />

0.1, 90000000.0, , 0.1<br />

**<br />

*RESTART, WRITE, FREQUENCY=100<br />

**<br />

*NODE FILE, FREQUENCY=0<br />

*EL FILE, FREQUENCY=0<br />

*NODE PRINT, FREQUENCY=0<br />

*EL PRINT, FREQUENCY=0<br />

*PRINT, FREQUENCY=0<br />

*END STEP<br />

37


7.2 Appendix 2: Plate containing a hole — BODNER-PARTOM model coupled with damage<br />

*HEADING<br />

plate containing a crack<br />

a= 5.0, r0= .50, N-alfa=10, N-r=15, K=12 D= .20<br />

*PREPRINT, ECHO=NO, MODEL=NO, HISTORY=NO<br />

*NODE<br />

1, .20, .49846, .03923<br />

5001, .00, .49846, .03923<br />

101, .20, .53761, .04231<br />

5101, .00, .53761, .04231<br />

...<br />

1380, .20, 3.47804, .00000<br />

6380, .00, 3.47804, .00000<br />

1480, .20, 4.16651, .00000<br />

6480, .00, 4.16651, .00000<br />

1580, .20, 5.00000, .00000<br />

6580, .00, 5.00000, .00000<br />

*ELEMENT, TYPE=C3D8I, ELSET=solid<br />

*** 0 - PI/4<br />

80, 5080, 80, 180, 5180, 5001, 1, 101, 5101<br />

180, 5180, 180, 280, 5280, 5101, 101, 201, 5201<br />

280, 5280, 280, 380, 5380, 5201, 201, 301, 5301<br />

380, 5380, 380, 480, 5480, 5301, 301, 401, 5401<br />

480, 5480, 480, 580, 5580, 5401, 401, 501, 5501<br />

580, 5580, 580, 680, 5680, 5501, 501, 601, 5601<br />

...<br />

1477, 6477, 1477, 1577, 6577, 6478, 1478, 1578, 6578<br />

1478, 6478, 1478, 1578, 6578, 6479, 1479, 1579, 6579<br />

1479, 6479, 1479, 1579, 6579, 6480, 1480, 1580, 6580<br />

**<br />

** define node-set<br />

**<br />

*NSET, NSET=zlager0, GENERATE<br />

6550, 6570, 1<br />

*NSET, NSET=zlager1, GENERATE<br />

1550, 1570, 1<br />

*NSET, NSET=ylager0, GENERATE<br />

6530, 6550, 1<br />

*NSET, NSET=ylager1, GENERATE<br />

1530, 1550, 1<br />

**<br />

** define element-set<br />

**<br />

*ELSET, ELSET=zlast, GENERATE<br />

1410, 1429, 1<br />

*ELSET, ELSET=ylast, GENERATE<br />

1401, 1409, 1<br />

1470, 1480, 1<br />

**<br />

** define materials and UMA<br />

**<br />

*SOLID SECTION, ELSET=SOLID, MATERIAL=VISCOPLA<br />

1.,<br />

*MATERIAL, NAME=VISCOPLA<br />

*USER MATERIAL, CONSTANTS=19<br />

**<br />

** IN738LC, 850 deg C<br />

******* BP-Model, units: h, MPa<br />

********========================================<br />

38


** E, nu, Do, n, K1, K2, K3, m1<br />

149650., .33, 8.82E+9, 0.289, 3.76E+5, 3.07E+5, 1.54E+5, 0.581<br />

*** m2, A, r, Unused, Ko; q, beta, Bo<br />

*** ( beta=1 -> isot. damage)<br />

0.344, 1.6524E+7, 5.4, 0.0, 4.18E+5, 0.4, 0.5, 613.<br />

*** m, Dkey, Ckey Ckey ( Dkey < or = 0: do not consider damage)<br />

***( Ckey must be –1.0, only UMAT-developer may change it!)<br />

14., 1.0, -1.0<br />

*DEPVAR<br />

26<br />

**<br />

*USER SUBROUTINE, INPUT=/wms12/weiqi/umats/poly/d-bodner.f<br />

**<br />

**<br />

*RESTART, WRITE, FREQUENCY=1000<br />

**<br />

*STEP, INC=90000000<br />

*VISCO, CETOL=1.0E-10<br />

0.0001, 0.001, , 0.0001<br />

**<br />

** auflagerung<br />

**<br />

39


*BOUNDARY, OP=NEW, TYPE=DISPLACEMENT<br />

** 6550, 1, 3, 0.0<br />

zLager0, 3, 3, 0.0<br />

zLager0, 1, 1, 0.0<br />

zLager1, 3, 3, 0.0<br />

yLager0, 2, 2, 0.0<br />

yLager1, 2, 2, 0.0<br />

**** === define amplitude <strong>for</strong> loading process<br />

*AMPLITUDE, TIME=TOTAL TIME, NAME=creep1<br />

0.0, 0.0, 0.001, 1.0, 90000000.0, 1.0<br />

**<br />

*DLOAD, OP=NEW, AMPLITUDE=creep1<br />

zlast, P2, -180.<br />

**<br />

*NODE FILE, FREQUENCY=0<br />

*EL FILE, FREQUENCY=0<br />

*NODE PRINT, FREQUENCY=0<br />

*EL PRINT, FREQUENCY=0<br />

*PRINT, FREQUENCY=0<br />

*END STEP<br />

**<br />

** Step 2<br />

**<br />

*STEP, INC=90000000<br />

*VISCO, CETOL=1.0E-10<br />

0.001, 0.5, , 0.01<br />

**<br />

*NODE FILE, FREQUENCY=0<br />

*EL FILE, FREQUENCY=0<br />

*NODE PRINT, FREQUENCY=0<br />

*EL PRINT, FREQUENCY=0<br />

*PRINT, FREQUENCY=0<br />

*END STEP<br />

**<br />

** Step 3<br />

**<br />

*STEP, INC=90000000<br />

*VISCO, CETOL=1.0E-10<br />

0.01, 49.5, , .5<br />

**<br />

*NODE FILE, FREQUENCY=0<br />

*EL FILE, FREQUENCY=0<br />

*NODE PRINT, FREQUENCY=0<br />

*EL PRINT, FREQUENCY=0<br />

*PRINT, FREQUENCY=0<br />

*END STEP<br />

**<br />

** Step 4<br />

**<br />

*STEP, INC=90000000<br />

*VISCO, CETOL=1.0E-10<br />

1., 39950.00, , 4.<br />

**<br />

*RESTART, WRITE, FREQUENCY=400000<br />

**<br />

*NODE FILE, FREQUENCY=0<br />

*EL FILE, FREQUENCY=0<br />

*NODE PRINT, FREQUENCY=0<br />

*EL PRINT, FREQUENCY=0<br />

*PRINT, FREQUENCY=0<br />

*END STEP<br />

**<br />

** Step 5<br />

40


** ====== 2. load ein<br />

**<br />

*STEP, INC=90000000<br />

*VISCO, CETOL=1.0E-10<br />

.0001, .001, , .0001<br />

**<br />

**** === define amplitude <strong>for</strong> loading process<br />

*AMPLITUDE, NAME=creep2<br />

0.0, 0.0, 0.001, 1.0, 90000000.0, 1.0<br />

**<br />

*DLOAD, OP=MOD, AMPLITUDE=creep2<br />

ylast, P5, -180.<br />

*RESTART, WRITE, FREQUENCY=1500<br />

**<br />

*NODE FILE, FREQUENCY=0<br />

*EL FILE, FREQUENCY=0<br />

*NODE PRINT, FREQUENCY=0<br />

*EL PRINT, FREQUENCY=0<br />

*PRINT, FREQUENCY=0<br />

*END STEP<br />

**<br />

** Step 6<br />

**<br />

*STEP, INC=90000000<br />

*VISCO, CETOL=1.0E-10<br />

.001, 0.1, , .01<br />

41


**<br />

*RESTART, WRITE, FREQUENCY=1000<br />

**<br />

*NODE FILE, FREQUENCY=0<br />

*EL FILE, FREQUENCY=0<br />

*NODE PRINT, FREQUENCY=0<br />

*EL PRINT, FREQUENCY=0<br />

*PRINT, FREQUENCY=0<br />

*END STEP<br />

**<br />

** Step 7<br />

**<br />

*STEP, INC=90000000<br />

*VISCO, CETOL=1.0E-10<br />

.01, 49.50, , 1.<br />

**<br />

*RESTART, WRITE, FREQUENCY=100<br />

**<br />

*NODE FILE, FREQUENCY=0<br />

*EL FILE, FREQUENCY=0<br />

*NODE PRINT, FREQUENCY=0<br />

*EL PRINT, FREQUENCY=0<br />

*PRINT, FREQUENCY=0<br />

*END STEP<br />

**<br />

** Step 8<br />

**<br />

*STEP, INC=90000000<br />

*VISCO, CETOL=1.0E-10<br />

1., 60000.00, , 5.<br />

**<br />

*RESTART, WRITE, FREQUENCY=20000<br />

**<br />

*NODE FILE, FREQUENCY=0<br />

*EL FILE, FREQUENCY=0<br />

*NODE PRINT, FREQUENCY=0<br />

*EL PRINT, FREQUENCY=0<br />

*PRINT, FREQUENCY=0<br />

*END STEP<br />

**<br />

** Step 9<br />

**<br />

*STEP, INC=90000000<br />

*VISCO, CETOL=1.0E-10<br />

5., 1000000.00, , 5.<br />

**<br />

*RESTART, WRITE, FREQUENCY=200<br />

**<br />

*NODE FILE, FREQUENCY=0<br />

*EL FILE, FREQUENCY=0<br />

*NODE PRINT, FREQUENCY=0<br />

*EL PRINT, FREQUENCY=0<br />

*PRINT, FREQUENCY=0<br />

*END STEP<br />

42


7.3 Appendix 3: Single crystal plate containing a hole — <strong>the</strong> anisotropic creep and damage<br />

model <strong>of</strong> BERTRAM, OLSCHEWSKI & QI<br />

*HEADING<br />

plate 10x10x0.5, hole radius 0.5, Non-symm<br />

C3D8I, r15-h10-b10-t3, bias: r10-h1-b1-t2, I-DEAS 06-Mar-01<br />

*NODE, SYSTEM=R<br />

1, 3.5355339E-01,-3.5355339E-01, 2.5000000E-01<br />

2, 4.2009962E-01,-4.2009962E-01, 2.5000000E-01<br />

3, 5.0002275E-01,-5.0002275E-01, 2.5000000E-01<br />

...<br />

5294,-4.5000000E+00,-5.0000000E+00, 1.9248187E-01<br />

5295,-4.5000000E+00,-5.0000000E+00, 1.1616359E-01<br />

5296,-4.5000000E+00,-5.0000000E+00, 0.0000000E+00<br />

*ELEMENT,TYPE=C3D8I ,ELSET=E0000001<br />

1, 1, 2, 18, 17, 65, 66, 82, 81<br />

2, 2, 3, 19, 18, 66, 67, 83, 82<br />

3, 3, 4, 20, 19, 67, 68, 84, 83<br />

4, 4, 5, 21, 20, 68, 69, 85, 84<br />

5, 5, 6, 22, 21, 69, 70, 86, 85<br />

...<br />

*SOLID SECTION,ELSET=E0000001,MATERIAL=M0000001<br />

*MATERIAL,NAME=M0000001<br />

*USER MATERIAL, CONSTANTS=14<br />

**<br />

** SRR99, 760 deg C<br />

**<br />

***alfa0 alfa1 alfa2 B[MPa*h] n p m n1<br />

1.0, 0.0, 0.5, 1442.0, 14.133, 0.45489, 51.852, -0.31326<br />

*** Dcr, phi1, phi2, phi3 Dkey, Ckey<br />

**** ( Dkey < or = 0: do not consider damage)<br />

**** ( Ckey must be –1.0, only UMAT-developer may change it!)<br />

0.9, 0.0, 0.0, 0.0, 1.0, -1.E8<br />

*DEPVAR<br />

36<br />

**<br />

*USER SUBROUTINE, INPUT=/wms12/weiqi/umats/single/d-scsrr99.f<br />

**<br />

** loading !! <strong>the</strong> unit is h !!<br />

**<br />

*RESTART, WRITE, FREQUENCY=1000<br />

**<br />

*STEP, INC=90000000, NLGEOM<br />

*VISCO, CETOL=1.0E-10<br />

0.0001, 0.001, , 0.0001<br />

** auflagerung<br />

*BOUNDARY,OP=NEW<br />

BS000001, 1,, .00000E+00<br />

BS000002, 2,, .00000E+00<br />

3344, 1, 2, .00000E+00<br />

3680, 1, 2, .00000E+00<br />

4016, 1, 2, .00000E+00<br />

BS000003, 3,, .00000E+00<br />

BS000004, 1,, .00000E+00<br />

BS000004, 3,, .00000E+00<br />

BS000005, 2, 3, .00000E+00<br />

3008, 1, 3, .00000E+00<br />

**<br />

** loading<br />

43


**** === define amplitude <strong>for</strong> loading process<br />

*AMPLITUDE, TIME=TOTAL TIME, NAME=creep1<br />

0.0, 0.0, 0.001, 1.0, 90000000.0, 1.0<br />

**<br />

*DLOAD,OP=NEW, AMPLITUDE=creep1<br />

** BS000006, P4, -100.<br />

BS000007, P6, -350.<br />

**<br />

*NODE FILE, FREQUENCY=0<br />

*EL FILE, FREQUENCY=0<br />

*NODE PRINT, FREQUENCY=0<br />

*EL PRINT, FREQUENCY=0<br />

*PRINT, FREQUENCY=0<br />

*END STEP<br />

**<br />

** Step 2<br />

**<br />

*STEP, INC=90000000<br />

*VISCO, CETOL=1.0E-10<br />

0.0001, 0.1, , 0.02<br />

**<br />

44


*NODE FILE, FREQUENCY=0<br />

*EL FILE, FREQUENCY=0<br />

*NODE PRINT, FREQUENCY=0<br />

*EL PRINT, FREQUENCY=0<br />

*PRINT, FREQUENCY=0<br />

*END STEP<br />

**<br />

** Step 3<br />

**<br />

*STEP, INC=90000000<br />

*VISCO, CETOL=1.0E-10<br />

0.02, 1.0, , 0.2<br />

**<br />

*NODE FILE, FREQUENCY=0<br />

*EL FILE, FREQUENCY=0<br />

*NODE PRINT, FREQUENCY=0<br />

*EL PRINT, FREQUENCY=0<br />

*PRINT, FREQUENCY=0<br />

*END STEP<br />

**<br />

** Step 4<br />

**<br />

*STEP, INC=90000000<br />

*VISCO, CETOL=1.0E-10<br />

0.2, 49.0, , .5<br />

**<br />

*NODE FILE, FREQUENCY=0<br />

*EL FILE, FREQUENCY=0<br />

*NODE PRINT, FREQUENCY=0<br />

*EL PRINT, FREQUENCY=0<br />

*PRINT, FREQUENCY=0<br />

*END STEP<br />

**<br />

** Step 5<br />

**<br />

*STEP, INC=90000000<br />

*VISCO, CETOL=1.0E-10<br />

1., 3950.00, , 1.<br />

**<br />

*RESTART, WRITE, FREQUENCY=1000<br />

**<br />

*NODE FILE, FREQUENCY=0<br />

*EL FILE, FREQUENCY=0<br />

*NODE PRINT, FREQUENCY=0<br />

*EL PRINT, FREQUENCY=0<br />

*PRINT, FREQUENCY=0<br />

*END STEP<br />

**<br />

** Step 6<br />

**<br />

*STEP, INC=90000000<br />

*VISCO, CETOL=1.0E-10<br />

1., 1000000.00, , 1.<br />

**<br />

*RESTART, WRITE, FREQUENCY=200<br />

**<br />

*NODE FILE, FREQUENCY=0<br />

*EL FILE, FREQUENCY=0<br />

*NODE PRINT, FREQUENCY=0<br />

*EL PRINT, FREQUENCY=0<br />

*PRINT, FREQUENCY=0<br />

*END STEPT, FREQUENCY=0<br />

*EL PRINT, FREQUENCY=0<br />

45


*PRINT, FREQUENCY=0<br />

*END STEP<br />

46


7.4 Appendix 4: TiAl turbine blade — CHABOCHE model coupled with damage<br />

*HEADING<br />

SDRC I-DEAS <strong>ABAQUS</strong> FILE TRANSLATOR 10-Apr-00 13:53:27<br />

units: mm, s, MPa isot. damage)<br />

0.0, 0.023, 3.1, 15.3, 487.0, 0.3, 0.3, 1500.<br />

*** m, Dkey, Ckey Ckey ( Dkey < or = 0: do not consider damage)<br />

***( Ckey must be –1.0, only UMAT-developer may change it!)<br />

47


14., 1.0, -1.0<br />

*DEPVAR<br />

29<br />

**<br />

*USER SUBROUTINE, INPUT=/wms12/weiqi/umats/poly/d-chaboche.f<br />

**<br />

** first loading, cycle 1<br />

**<br />

*STEP, INC=100000000, NLGEOM<br />

***STATIC<br />

*VISCO, CETOL=1.0E-10<br />

.01, 100., , 0.1<br />

**<br />

**<br />

*BOUNDARY,OP=NEW<br />

12, 1, 3, .00000E+00<br />

45, 1, 3, .00000E+00<br />

46, 1, 3, .00000E+00<br />

15, 1, 3, .00000E+00<br />

fuss, 1, 3, .00000E+00<br />

**<br />

** rotations<br />

**<br />

-48-


*AMPLITUDE, NAME=CYCLEONE, DEFINITION=TABULAR, TIME=STEP TIME<br />

0., 0., 10., .05415, 100., 1., 900000000., 1.<br />

**<br />

*DLOAD, OP=NEW, AMPLITUDE=CYCLEONE<br />

blade, CENTRIF, 444000., 35., 0., 0., 0., 0., 1.<br />

**entspricht Drehzahl von 40000/min oder 666/sec<br />

**<br />

*RESTART, WRITE, FREQUENCY=10000000<br />

**<br />

*NODE FILE, FREQ=0<br />

*EL FILE, POS=INTEG, FREQ=0<br />

S, E, SDV<br />

*EL PRINT,POS=INTEG, FREQ=0<br />

*NODE PRINT, FREQ=0<br />

*PRINT, FREQ=0<br />

*END STEP<br />

***<br />

***<br />

***<br />

*STEP, INC=100000000<br />

***STATIC<br />

*VISCO, CETOL=1.0E-10<br />

0.1, 3600., , 10.<br />

**<br />

*EL FILE, POS=INTEG, FREQ=0<br />

*NODE FILE, FREQ=0<br />

*PRINT, FREQ=0<br />

*END STEP<br />

***<br />

***<br />

***<br />

*STEP, INC=100000000<br />

*VISCO, CETOL=1.0E-10<br />

50., 720000., , 50.<br />

*RESTART, WRITE, FREQUENCY=1440<br />

**<br />

*EL FILE, POS=INTEG, FREQ=0<br />

*NODE FILE, FREQ=0<br />

*PRINT, FREQ=0<br />

*END STEP<br />

***<br />

***<br />

**<br />

*STEP, INC=100000000<br />

*VISCO, CETOL=1.0E-10<br />

200., 720000., , 200.<br />

**<br />

*RESTART, WRITE, FREQUENCY=360<br />

**<br />

*EL FILE, POS=INTEG, FREQ=0<br />

*NODE FILE, FREQ=0<br />

*PRINT, FREQ=0<br />

*END STEP<br />

***<br />

**<br />

*STEP, INC=100000000<br />

*VISCO, CETOL=1.0E-10<br />

400., 72000000., , 400.<br />

**<br />

*RESTART, WRITE, FREQUENCY=180<br />

**<br />

*EL FILE, POS=INTEG, FREQ=0<br />

*NODE FILE, FREQ=0<br />

-49-


*PRINT, FREQ=0<br />

*END STEP<br />

-50-

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!