07.12.2012 Views

ABAQUS user subroutines for the simulation of viscoplastic - loicz

ABAQUS user subroutines for the simulation of viscoplastic - loicz

ABAQUS user subroutines for the simulation of viscoplastic - loicz

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Technical Note GKSS/WMS/01/5<br />

internal report<br />

<strong>ABAQUS</strong> <strong>user</strong> <strong>subroutines</strong> <strong>for</strong> <strong>the</strong> <strong>simulation</strong> <strong>of</strong><br />

<strong>viscoplastic</strong> behaviour including anisotropic damage<br />

<strong>for</strong> isotropic materials and <strong>for</strong> single crystals<br />

Weidong Qi, Wolfgang Brocks<br />

June 2001


2<br />

Institut für Werkst<strong>of</strong><strong>for</strong>schung<br />

GKSS-Forschungszentrum Geesthacht


0. Nomenclature 3<br />

1. Introduction 7<br />

2. The CDM-based anisotropic damage model 7<br />

3. Unified models <strong>of</strong> BODNER-PARTOM and <strong>of</strong> CHABOCHE coupled with damage 10<br />

4. Anisotropic creep model <strong>for</strong> cubic single crystals coupled with damage 11<br />

5. User material routines and <strong>the</strong>ir applications 13<br />

5.1 Circumferentially notched bar - CHABOCHE model coupled with damage 13<br />

5.2 Plate containing a hole - BODNER-PARTOM model coupled with damage 19<br />

5.3 Single crystal plate containing a hole - <strong>the</strong> anisotropic creep and damage model <strong>of</strong> BERTRAM,<br />

OLSCHEWSKI & QI 21<br />

5.4 TiAl turbine blade - CHABOCHE model coupled with damage 22<br />

6. References 24<br />

7. Appendices: <strong>ABAQUS</strong>-Inputfiles 26<br />

7.1 Appendix 1: Circumferentially notched bar - CHABOCHE model coupled with damage 26<br />

7.2 Appendix 2: Plate containing a hole - BODNER-PARTOM model coupled with damage 28<br />

7.3 Appendix 3: Single crystal plate containing a hole - <strong>the</strong> anisotropic creep and damage model <strong>of</strong><br />

BERTRAM, OLSCHEWSKI & QI 31<br />

7.4 Appendix 4: TiAl turbine blade - CHABOCHE model coupled with damage 33<br />

4


0. Nomenclature<br />

scalars<br />

a, c, d material parameters <strong>for</strong> kinematic hardening in CHABOCHE's model<br />

b material parameter <strong>for</strong> isotropic hardening in CHABOCHE's model<br />

h(x) HEAVISIDE function<br />

m material parameter <strong>for</strong> damage evolution, eq. (3b)<br />

m1, m1 material parameters in <strong>the</strong> BODNER-PARTOM model<br />

n material parameter in orientation function, eq. (6)<br />

n creep exponent in CHABOCHE's model<br />

p material parameter in eq. (6)<br />

p accumulated effective plastic strain, internal variable in CHABOCHE's model<br />

q material parameter in <strong>the</strong> definition <strong>of</strong> <strong>the</strong> damage-active stress, eq. (2)<br />

r material parameter in CHABOCHE's model<br />

r1, r2<br />

material parameters in <strong>the</strong> BODNER-PARTOM model<br />

A1, A2 material parameters in <strong>the</strong> BODNER-PARTOM model<br />

B0<br />

Ci<br />

Di<br />

D0<br />

DI<br />

DR<br />

Ji<br />

material parameter <strong>for</strong> damage evolution, eqs. (3b) and (4)<br />

temperature-dependent material parameters (i = 1, 2, 3), eqs. (21a-e)<br />

viscosities, temperature-dependent material parameters (i = 1, 2, 3), eqs. (21a-e)<br />

material parameter in <strong>the</strong> BODNER-PARTOM model<br />

maximum principal damage<br />

critical value <strong>of</strong> maximum principal damage<br />

scalar invariants (i = 1, 2, 3, 4)<br />

K viscosity, material parameter in CHABOCHE's model<br />

Ki<br />

Ki<br />

Li<br />

material parameter (i = 1, 2, 3) in <strong>the</strong> BODNER-PARTOM model<br />

temperature-dependent material parameters (i = 1, 2, 3), eqs. (21a-e)<br />

viscosities, temperature-dependent material parameters (i = 1, 2, 3), eqs. (21a-e)<br />

R(p) actual yield stress <strong>for</strong> isotropic hardening in CHABOCHE's model<br />

R 0<br />

initial yield stress in CHABOCHE's model<br />

5


R ∞<br />

Wi<br />

Z I , Z D<br />

Zij<br />

6<br />

saturated yield stress <strong>for</strong> isotropic hardening in CHABOCHE's model<br />

specific work <strong>of</strong> inelastic strain in <strong>the</strong> BODNER-PARTOM model<br />

internal variables <strong>for</strong> isotropic and kinematic hardening in <strong>the</strong> BODNER-PARTOM model<br />

material parameters (i = 1, 2, 3; j = 1, 2, 3, 4), eqs. (22a,b)<br />

β, βi material parameters <strong>for</strong> damage evolution, eqs. (3b, 4)<br />

ε i<br />

e<br />

εi η i<br />

eigen-values (i = 1, 2, 3) <strong>of</strong> total strain tensor E<br />

eigen-values (i = 1, 2, 3) <strong>of</strong> elastic strain tensor E e<br />

orientation function<br />

φ(p) material function <strong>for</strong> kinematic hardening in CHABOCHE's model<br />

φ ∞<br />

ˆ<br />

σ i<br />

vectors<br />

e i<br />

c<br />

ei saturated value <strong>of</strong> φ(p) , material parameter <strong>for</strong> kinematic hardening in CHABOCHE's model<br />

eigen-values (i = 1, 2, 3) <strong>of</strong> damage-active stress tensor ˆ<br />

S<br />

orthogonal unit vectors (i = 1, 2, 3), reference base, e i ⋅ e j = δ ij<br />

lattice vectors (i = 1, 2, 3)<br />

e εe e<br />

n , ni eigen-vectors (i = 1, 2, 3) <strong>of</strong> total and elastic strain tensors, E and E , respectively<br />

i<br />

s<br />

n ˆ i<br />

eigen-vectors (i = 1, 2, 3) <strong>of</strong> damage-active stress tensor ˆ<br />

S<br />

second order tensors<br />

B internal variable <strong>for</strong> kinematic hardening in <strong>the</strong> BODNER-PARTOM model<br />

D damage tensor<br />

Da<br />

E, E e<br />

active damage tensor<br />

total and elastic strain tensor<br />

E + , E e+ positive projections <strong>of</strong> total and elastic strain tensors, E and E e , eqs. (11a,b)<br />

E Ý i<br />

inelastic strain rate tensor in unified models<br />

H ε , H εe spectral tensors, eqs. (8a,b)<br />

I second order identity tensor


S CAUCHY stress tensor<br />

˜<br />

S effective stress tensor<br />

ˆ<br />

S damage-active stress tensor<br />

˜ ′<br />

S deviator <strong>of</strong> <strong>the</strong> damage-active stress<br />

Y D<br />

<strong>the</strong>rmodynamic <strong>for</strong>ce conjugate to damage tensor D<br />

X backstress tensor<br />

7


W internal variable, eq. (20b)<br />

fourth order tensors<br />

< 4><br />

Ai < 4><br />

I<br />

< 4> <br />

P , ε Pεe < 4><br />

R<br />

< 4><br />

S<br />

< 4><br />

T<br />

operations<br />

ab = a i b j e i e j<br />

a ⋅ b = a ib i<br />

8<br />

material tensors (i = 1, 2, 3, 4, 5), eqs. (21a-e)<br />

identity tensor<br />

positive spectral projection operator <strong>for</strong> total and elastic strain tensor, eqs. (10a,b)<br />

lattice tensor, eq. (5)<br />

damage characteristic tensor, eq. (3a)<br />

positive projection operator, eq. (12)<br />

AB = A ij B kl e ie ke je l<br />

A ⋅ B= A ijB jk e ie k<br />

A : B= A ij B ji<br />

tensor product <strong>of</strong> two vectors<br />

scalar product <strong>of</strong> two vectors<br />

tensor product <strong>of</strong> two (second order) tensors<br />

scalar product <strong>of</strong> two (second order) tensors<br />

double scalar product <strong>of</strong> two (second order) tensors<br />

A = A 2 = A ij A ji EUKLIDean norm <strong>of</strong> second order tensor<br />

< 4><br />

C : A = C A e e ijkl kl i j<br />

double scalar product <strong>of</strong> a fourth and a second order tensor


1. Introduction<br />

A CDM (continuum damage mechanics) based anisotropic damage model has been established<br />

by QI and BERTRAM to describe <strong>the</strong> anisotropic development <strong>of</strong> material damage in single crystals [QI<br />

& BERTRAM, 1997; QI, 1998; QI & BERTRAM, 1999; QI, BROCKS & BERTRAM, 2000] and in<br />

isotropic material [QI & BROCKS, 2000a, b, c]. Using <strong>the</strong> effective stress concept <strong>of</strong> CDM, this model<br />

can be coupled with any continuum mechanics model by introducing an adequately defined "effective<br />

stress tensor". The resulting model is <strong>the</strong>n able to describe <strong>the</strong> de<strong>for</strong>mation behaviour with respect to<br />

anisotropic material damage including lifetime predictions. The unified <strong>viscoplastic</strong> model proposed by<br />

BODNER & PARTOM [1975] and by CHABOCHE [CHABOCHE & ROUSSELIER, 1983] <strong>for</strong> polycrystal<br />

alloys and <strong>the</strong> creep model suggested by BERTRAM & OLSCHEWSKI [1996] <strong>for</strong> single crystal alloys,<br />

respectively, are chosen <strong>for</strong> coupling with <strong>the</strong> damage model. The resulting models have been<br />

implemented into <strong>subroutines</strong> <strong>of</strong> <strong>the</strong> FE-code <strong>ABAQUS</strong> as "<strong>user</strong>-defined material models" (UMAT) and<br />

can be used to per<strong>for</strong>m FE computations on structural components <strong>of</strong> poly and single crystals.<br />

This report gives a brief description <strong>of</strong> <strong>the</strong> models and presents some results <strong>of</strong> FE-analyses<br />

using <strong>the</strong> respective UMATs. Materials used <strong>for</strong> <strong>the</strong> analyses are <strong>the</strong> Ni-based superalloy IN738 LC,<br />

<strong>the</strong> Ni-based single crystal SRR99 and a TiAl intermetallic alloy.<br />

2. The CDM-based anisotropic damage model<br />

Damage <strong>of</strong> materials is a progressive process ending in final fracture. A natural characteristic <strong>of</strong><br />

material damage is that <strong>the</strong> damage generally develops anisotropically. A second-order symmetric tensor<br />

D is chosen in <strong>the</strong> present models as damage variable <strong>for</strong> <strong>the</strong> description <strong>of</strong> <strong>the</strong> anisotropic damage.<br />

According to <strong>the</strong> effective stress concept <strong>of</strong> CDM, <strong>the</strong> effect <strong>of</strong> stresses and damage on <strong>the</strong> de<strong>for</strong>mation<br />

behaviour can be represented by an adequately defined effective stress. This effective stress tensor is<br />

defined as<br />

˜<br />

S = (I − D) −1 2 ⋅S⋅ (I − D) −12 , (1)<br />

9


where S is <strong>the</strong> CAUCHY stress tensor and I denotes <strong>the</strong> second-order identity tensor. Similarly, it is<br />

supposed that <strong>the</strong> contribution <strong>of</strong> <strong>the</strong> stress and damage on <strong>the</strong> damage development can be represented<br />

by a newly introduced damage-active stress defined analogously to eq. (1) as<br />

10<br />

ˆ<br />

S = (I − D) −q ⋅S ⋅(I − D) −q =<br />

3<br />

σ σ<br />

∑ σ ˆ ˆ<br />

i n ˆ<br />

i n i , (2)<br />

i=1<br />

σ<br />

where q is a material parameter, σ ˆ and n ˆ<br />

i i (i = 1, 2, 3) are <strong>the</strong> eigen-values and <strong>the</strong> corresponding<br />

eigen-vectors <strong>of</strong> ˆ<br />

S . From <strong>the</strong> point <strong>of</strong> view <strong>of</strong> linear irreversible <strong>the</strong>rmodynamics <strong>the</strong> evolution law <strong>for</strong> a<br />

second order symmetric damage tensor can be generally expressed as:<br />

D Ý = S<br />

<br />

: YD , (3a)<br />

< 4><br />

where YD is <strong>the</strong> <strong>the</strong>rmodynamic <strong>for</strong>ce conjugate to <strong>the</strong> damage tensor, and S<br />

< 4><br />

characteristic tensor <strong>of</strong> rank four, respectively. If <strong>the</strong> fourth-order tensor S<br />

is <strong>the</strong> damage<br />

is symmetric and positive-<br />

definite, <strong>the</strong> <strong>the</strong>rmodynamic restrictions will be automatically satisfied [KRAJCINOVIC, 1983; GERMAIN,<br />

NGUYEN & SUQUET, 1983; YANG, ZHOU & SWOBODA, 1999].<br />

Motivated by <strong>the</strong> results <strong>of</strong> experimental investigations, it is assumed that only <strong>the</strong> tensile principal<br />

damage-active stresses are responsible <strong>for</strong> <strong>the</strong> damage evolution and that damage grows perpendicularly<br />

to <strong>the</strong> direction <strong>of</strong> <strong>the</strong> principal damage-active stresses. Thus, consider that damage may also develop<br />

partly isotropically, <strong>the</strong> damage evolution law is assumed taking <strong>the</strong> following particular <strong>for</strong>m:<br />

< 4><br />

D Ý =<br />

⎛<br />

⎝<br />

βII + (1 − β) I ⎞<br />

⎠ :<br />

ˆ<br />

S<br />

< 4><br />

where β, B0, m are material parameters. I<br />

B 0<br />

m<br />

< 4><br />

=<br />

⎛<br />

⎝<br />

βII + (1 − β) I ⎞<br />

⎠ :<br />

3 σ ˆ i σ σ<br />

∑ n ˆ ˆ i n i , (3b)<br />

i=1<br />

B 0<br />

m<br />

denotes <strong>the</strong> fourth-order identity tensor, and 〈.〉 is <strong>the</strong><br />

MCCAULEY bracket, which equals one <strong>for</strong> positive arguments and zero else. Creep rupture is assumed<br />

to take place when <strong>the</strong> maximum principal damage DI reaches a critical value DR.<br />

For single crystal superalloys, <strong>the</strong> initial anisotropy must be considered. The following particular<br />

<strong>for</strong>m <strong>of</strong> damage law is taken <strong>for</strong> single crystals with cubic symmetry (F.C.C. and B.C.C. single crystals):


4><br />

with R<br />

D Ý = β II + β I<br />

1 2 <br />

+ β R 3 <br />

⎛<br />

⎞<br />

⎝<br />

⎠ :<br />

3 η ˆ iσ i<br />

n ˆ σ ˆ σ ∑ i n i<br />

(4)<br />

⎡<br />

ηi =<br />

⎣<br />

⎢<br />

3<br />

i=1<br />

B 0<br />

m<br />

c c c c<br />

= ∑ e ei ei ei , (5)<br />

i<br />

i=1<br />

3<br />

∑<br />

j=1<br />

σ c ( n ˆ i ⋅e j)<br />

2n⎤<br />

⎦<br />

⎥<br />

p<br />

, (6)<br />

c<br />

where β1, β2, β3=(1−β1−β2), B0, p, n and m are material parameters, e j (j=1,2,3) are <strong>the</strong> lattice<br />

vectors, and η i is an orientation function which satisfies <strong>the</strong> cubic symmetry.<br />

Damage can also be inactive. Let us consider a single micro-crack embedded in an elastic material<br />

with a tensile load perpendicular to <strong>the</strong> crack faces. If <strong>the</strong> load is reversed <strong>the</strong> crack will close and in a<br />

one-dimensional case <strong>the</strong> material behaves as uncracked. This phenomenon is called “damage<br />

deactivation” (not “healing”) in CDM. The damage still exists but <strong>the</strong> loading condition can render it<br />

inactive. For <strong>the</strong> representation <strong>of</strong> this mechanism <strong>the</strong> phenomenological algorithm proposed by HANSEN<br />

& SCHREYER [1995] can be used. In this method <strong>the</strong> microcrack opening/closing effect is introduced by<br />

considering <strong>the</strong> spectral decomposition <strong>of</strong> <strong>the</strong> elastic strain tensor E e and <strong>the</strong> total strain tensor E<br />

3<br />

E e e εe εe<br />

ε ε<br />

= ∑ εi ni ni , E = ∑ εi ni ni , (7a, b)<br />

i=1<br />

3<br />

i=1<br />

e εe e e<br />

where εi and εi are <strong>the</strong> eigenvalues, ni and ni are <strong>the</strong> corresponding eigenvectors <strong>of</strong> E and E,<br />

respectively. Let <strong>the</strong> positive (tensile) spectral tensor corresponding to <strong>the</strong> elastic and to <strong>the</strong> total strain<br />

be defined as<br />

3<br />

H εe e εe εe<br />

= ∑ h(εi )ni ni , H ε ε ε<br />

= ∑ h(εi )n ini<br />

(8a, b)<br />

i=1<br />

respectively, with <strong>the</strong> modified Heaviside function<br />

3<br />

i=1<br />

11


12<br />

0 <strong>for</strong> x ≤ xm 1<br />

h(x) =<br />

2 1− cos π(x − x ⎧<br />

⎫<br />

⎪ ⎛ ⎡<br />

m) ⎤ ⎞<br />

⎪<br />

⎨ ⎜<br />

⎝ ⎣<br />

⎢ xp − xm ⎦<br />

⎥<br />

⎟ <strong>for</strong> xm < x < xp ⎬<br />

⎪<br />

⎠<br />

⎪<br />

⎩ 1 <strong>for</strong> x ≥ xp ⎭<br />

where xm and xp are two material parameters. The positive spectral projection operators (fourth-order<br />

tensor) <strong>for</strong> <strong>the</strong> elastic and <strong>the</strong> total strains are defined as<br />

<br />

Pεe = H εe H εe <br />

, Pε = H ε H ε<br />

respectively. The positive projection <strong>of</strong> <strong>the</strong> elastic and <strong>the</strong> total strain tensors are <strong>the</strong>n given by<br />

E e + <br />

= Pee : E e , E + < 4><br />

= Pe (9)<br />

(10a, b)<br />

: E (11a, b)<br />

respectively. By introducing a strain-based positive projection operator<br />

< 4><br />

T<br />

<br />

= I<br />

< 4> < 4><br />

−<br />

⎛<br />

I − P ⎞<br />

⎝ εe⎠<br />

: I<br />

⎛<br />

− P ⎞<br />

⎝ ε ⎠<br />

a symmetric, so-called active damage tensor can be defined as<br />

D = a T<br />

<br />

: D (13)<br />

Thus, <strong>the</strong> effective stress tensor and <strong>the</strong> damage-active stress tensor accounting <strong>for</strong> damage deactivation<br />

are defined as<br />

˜<br />

S = (I − D a ) −1 2 ⋅ S ⋅(I − D a ) −1 2 , (14)<br />

S ˆ = (I − Da) −q T −q<br />

⋅S ⋅(I − Da ) , (15)<br />

respectively.<br />

If <strong>the</strong> effective stress tensor and <strong>the</strong> damage active stress tensor defined in (14) and (15),<br />

respectively, are used instead <strong>of</strong> those defined in (1) and (2), <strong>the</strong> damage deactivation can be described.<br />

(12)


3. Unified models <strong>of</strong> BODNER-PARTOM and <strong>of</strong> CHABOCHE coupled with<br />

damage<br />

For <strong>the</strong> description <strong>of</strong> <strong>viscoplastic</strong> behaviour a lot <strong>of</strong> unified models have recently been developed.<br />

The main advantage <strong>of</strong> unified models compared to classical plasticity and creep models is <strong>the</strong> treatment<br />

<strong>of</strong> all aspects <strong>of</strong> inelastic de<strong>for</strong>mation behaviour including plastic flow under monotonic and cyclic<br />

loading, creep and stress relaxation by a single inelastic strain quantity [OLSCHEWSKI et al., 1990]. The<br />

total strain rate is decomposed into an elastic and an inelastic part by<br />

E Ý = Ý E e + Ý E i<br />

As <strong>the</strong> model proposed by BODNER & PARTOM [1975] and by CHABOCHE [CHABOCHE &<br />

ROUSSELIER, 1983] are two popular models, <strong>the</strong>y are chosen to be combined with <strong>the</strong> above damage<br />

model.<br />

The effective stress concept <strong>of</strong> CDM says that any constitutive equation <strong>for</strong> <strong>the</strong> damaged material<br />

can be derived in <strong>the</strong> same way as <strong>for</strong> a virgin material if <strong>the</strong> stress tensor is replaced by an adequately<br />

defined effective stress tensor. Following this concept, <strong>the</strong> BODNER-PARTOM model and <strong>the</strong><br />

CHABOCHE model can simply be extended to include material damage by replacing <strong>the</strong> stress tensor in<br />

<strong>the</strong> respective constitutive equations by <strong>the</strong> effective stress tensor defined in <strong>the</strong> expressions (1) or (14).<br />

The resulting models are summarized as follows:<br />

(16)<br />

13


flow rule:<br />

E Ý i = p Ý<br />

˜ S ′ − X<br />

, p Ý =<br />

S ˜ ′ − X<br />

isotropic hardening rule:<br />

14<br />

CHABOCHE BODNER-PARTOM<br />

3<br />

2 ˜ S ′ − X − R(p)<br />

K<br />

Ý<br />

R = b(R ∞ − R) Ý<br />

p , R(p = 0) = R 0<br />

kinematic hardening rule:<br />

X Ý = c 3<br />

aE Ý<br />

2 i ⎡<br />

−φ( p)Xp Ý ⎤ ⎡<br />

− d<br />

⎣<br />

⎦ ⎣<br />

⎢<br />

3<br />

2 X<br />

a<br />

− ωp<br />

φ(p) = φ∞ − ( φ∞ − 1)e<br />

r<br />

⎤<br />

⎦<br />

⎥<br />

X<br />

3<br />

2 X<br />

where ˜ ′<br />

S is <strong>the</strong> deviator <strong>of</strong> <strong>the</strong> damage-active stress.<br />

n<br />

E Ý i = 2D0 exp − 1 Z<br />

2<br />

I + ZD 3<br />

2 ˜ ⎡ ⎛ ⎞<br />

⎢ ⎜<br />

⎝ S<br />

⎟<br />

′<br />

⎣<br />

⎢<br />

⎠<br />

Z D = B : ˜ S ′<br />

S ˜ ′<br />

Z Ý I = m1 K − 1 Z I ( ) Ý<br />

⎡<br />

B Ý = m2 ⎢ K3 ⎣<br />

2n<br />

⎤<br />

⎥<br />

⎦<br />

⎥<br />

S ˜ ′<br />

S ˜ ′<br />

Z<br />

W − i A 1<br />

I ⎡ − K ⎤ 2<br />

⎢<br />

⎣ K ⎥<br />

1 ⎦<br />

Z I (t = 0) = K 0<br />

˜<br />

S<br />

˜<br />

S<br />

⎤<br />

− B⎥<br />

⎦<br />

Ý<br />

⎡ B ⎤<br />

W i − A2 ⎣ ⎢ K1 ⎦ ⎥<br />

W i = ˜ S ′ : Ý E i dτ<br />

4. Anisotropic creep model <strong>for</strong> cubic single crystals coupled with damage<br />

Starting from a rheological four-parameter BURGERS-model which consists <strong>of</strong> two springs and two<br />

dampers, BERTRAM & OLSCHEWSKI [1993, 1996] used a projection method to construct an<br />

anisotropic 3D model <strong>for</strong> <strong>the</strong> description <strong>of</strong> <strong>the</strong> creep behaviour <strong>of</strong> cubic single crystals at high<br />

temperatures. Replacing <strong>the</strong> stress tensor by <strong>the</strong> effective-stress tensor (1) in <strong>the</strong> model, <strong>the</strong> constitutive<br />

equations coupled with <strong>the</strong> damage model can be written as:<br />

t<br />

∫<br />

0<br />

r 2<br />

r 1<br />

B<br />

B<br />

(17)<br />

(18)<br />

(19)


4><br />

E Ý = A1 <br />

W Ý = A4 < 4><br />

: ˜ Ý<br />

S + A2 < 4><br />

: ˜ Ý<br />

S + A5 : ˜<br />

< 4><br />

S + A3 :W , (20a)<br />

: ˜ ( S − W)<br />

, (20b)<br />

where W is an internal tensor variable <strong>of</strong> rank two, and A i<br />

tensors defined as:<br />

< 4><br />

A1 =<br />

<br />

A2 =<br />

<br />

A3 =<br />

<br />

A 4 =<br />

<br />

A5 < 4><br />

where R<br />

=<br />

3<br />

∑<br />

i=1<br />

3<br />

∑<br />

i=1<br />

3<br />

∑<br />

i=1<br />

3<br />

∑<br />

i=1<br />

3<br />

∑<br />

i=1<br />

1<br />

C i + K i<br />

< 4><br />

Pi 1 ⎛<br />

⎜<br />

Ci + Ki ⎝<br />

1<br />

C i + K i<br />

K i<br />

C i + K i<br />

K i<br />

C i + K i<br />

< 4><br />

P1 = 1 <br />

3 II, P2 ,<br />

Ci Di 1<br />

D i<br />

<br />

Pi C i<br />

D i<br />

<br />

Pi ,<br />

< 4><br />

Pi + C i<br />

L i<br />

,<br />

,<br />

+ Ki ⎞ < 4><br />

⎟ P , i<br />

Li ⎠<br />

< 4> < 4><br />

= R − P1 , P3 = I<br />

<br />

< 4><br />

< 4><br />

(i = 1, 2, 3, 4, 5) are fourth-order material<br />

(21a-e)<br />

− R , (21f-h)<br />

is defined in eq. (5), Ci , Ki , Di , Li (i = 1, 2, 3) are temperature dependent material<br />

parameters. Note that <strong>the</strong> viscosities Di and Li are also dependent on <strong>the</strong> applied stress. They are<br />

assumed to have <strong>the</strong> following <strong>for</strong>m:<br />

⎛ 4 ⎞<br />

⎛ 4 ⎞<br />

D = i D0i exp ⎜ −∑ Zij J ⎟<br />

j , L = i L0i exp⎜ −∑ ZijJ ⎟<br />

j<br />

(22a, b)<br />

⎝ ⎠<br />

⎝ ⎠<br />

j=1<br />

j=1<br />

with <strong>the</strong> material parameters Zij (i = 1, 2, 3; j = 1, 2, 3, 4) and <strong>the</strong> following scalar invariants with cubic<br />

symmetry<br />

J 1 = σ 11 σ 22 +σ 22 σ 33 + σ 33 σ 11 ,<br />

2 2 2 J = σ +σ23 + σ31 ,<br />

2 12<br />

J 3 = σ 11 σ 22 σ 33 ,<br />

J 4 = σ 11 σ 12<br />

2 2<br />

2 2<br />

( +σ13)+σ<br />

22 σ23 + σ21<br />

2 2<br />

( )+ σ33( σ31 + σ32).<br />

By <strong>the</strong> assumption that volume changes occur only elastically, it follows<br />

(23a-d)<br />

15


16<br />

−1 −1<br />

D1 = 0 , L1 = 0, Z i1 = 0 (i = 1, 2,3) . (24a-c)


5. User material routines and <strong>the</strong>ir applications<br />

The material models mentioned above are implemented into <strong>the</strong> commercial FE code <strong>ABAQUS</strong><br />

as <strong>user</strong>-defined material model by writing <strong>the</strong> corresponding <strong>user</strong> <strong>subroutines</strong>, UMAT, see Table 1.<br />

With help <strong>of</strong> <strong>the</strong>se UMATs one can apply <strong>the</strong> models in an FE analysis <strong>of</strong> <strong>viscoplastic</strong> damage<br />

behaviour <strong>of</strong> engineering components and structures. All <strong>the</strong> routines are written in <strong>the</strong> computer<br />

language FORTRAN using <strong>the</strong> <strong>for</strong>ward integration algorithm <strong>for</strong> numerical integration. Only iso<strong>the</strong>rmal<br />

loading conditions have been considered and <strong>the</strong> damage deactivation has not been included in any <strong>of</strong><br />

<strong>the</strong> routines. Viscoplastic FE calculations are very time consuming. In <strong>the</strong> routines however, no<br />

automatic time step control is used, so that <strong>the</strong>re is a necessity to improve <strong>the</strong> respective algorithms. All<br />

examples presented below are conducted using <strong>ABAQUS</strong>/Standard 5.8.<br />

model UMAT<br />

CHABOCHE model coupled with damage d-chaboche.f<br />

BODNER-PARTOM model coupled with damage d-bodner.f<br />

anisotropic creep and damage model <strong>of</strong> BERTRAM,<br />

OLSCHEWSKI & QI<br />

d-scsrr99.f<br />

Table 1: Constitutive models and names <strong>of</strong> <strong>the</strong> respecitve UMATs<br />

5.1 Circumferentially notched bar — CHABOCHE model coupled with damage<br />

The material parameters <strong>of</strong> <strong>the</strong> CHABOCHE model <strong>of</strong> IN 738 LC have been determined by<br />

OLSCHEWSKI et al. [1990] and <strong>the</strong>ir values at 850 °C are shown in Table 2. The material parameters <strong>of</strong><br />

<strong>the</strong> damage model were estimated by using numerical optimization methods to fit <strong>the</strong> creep data <strong>of</strong> <strong>the</strong><br />

three creep tests presented in <strong>the</strong> work <strong>of</strong> OLSCHEWSKI et al. [1990]. During this process <strong>the</strong> above<br />

values <strong>of</strong> <strong>the</strong> parameters <strong>of</strong> <strong>the</strong> CHABOCHE model were kept constant. Table 3 shows a set <strong>of</strong> damage<br />

parameters <strong>for</strong> IN 738 LC at 850 °C. Note that just three uniaxial tests are not sufficient <strong>for</strong> parameter<br />

identification, so that <strong>the</strong> values given in Table 3 are only first estimates. For lack <strong>of</strong> biaxial test data, <strong>the</strong><br />

anisotropy parameter β can not be determined. Comparison <strong>of</strong> <strong>the</strong> experiments and <strong>the</strong> predictions by<br />

<strong>the</strong> CHABOCHE model and by <strong>the</strong> coupled model with damage, respectively, using <strong>the</strong> material<br />

17


parameters <strong>of</strong> Tables 2 and 3, and <strong>the</strong> damage evolution during <strong>the</strong> creep processes are shown in Fig.<br />

1.<br />

18


ε i<br />

4<br />

[%]<br />

3<br />

2<br />

1<br />

E 149650 MPa ν 0.33 a 311 MPa<br />

K 397 MPa⋅h 1/n n 7.7 b 317<br />

R0 153 MPa φ∞ 1.1 c 201<br />

R∞ 0.0 MPa ω 0.04 r 3.8<br />

d 81.72 MPa/h<br />

Table 2: Material parameters <strong>of</strong> <strong>the</strong> CHABOCHE model <strong>for</strong> IN 738 LC at 850 °C.<br />

β q B0 m DI<br />

0.0 ∼ 1.0 0.4 613 MPa·h 1/m<br />

14 0.07<br />

Table 3: Material parameters <strong>of</strong> <strong>the</strong> damage model <strong>for</strong> IN 738 LC at 850 °C<br />

Uniaxial Creep (IN738 LC, 850°C)<br />

σ=335 MPa, Exp.<br />

σ=392 MPa, Exp.<br />

σ=410 MPa, Exp.<br />

Chaboche-model<br />

model with damage<br />

0<br />

0 20 40 time [h] 60<br />

0.2<br />

0.1<br />

σ=410 MPa<br />

σ=392 MPa<br />

σ=335 MPa<br />

0.0<br />

0 20 40<br />

time [h]<br />

60<br />

19


20<br />

Fig. 1. Experiments and model predictions <strong>for</strong> inelastic strain (upper) and damage evolution<br />

(lower diagramme)<br />

Circumferentially notched bars are <strong>of</strong>ten used to investigate <strong>the</strong> influence <strong>of</strong> triaxial stress state on<br />

<strong>the</strong> damage and fracture behaviour in creep processes. KOBAYASHI et al. [1998] reported <strong>the</strong> results <strong>of</strong><br />

<strong>the</strong>ir experimental studies on such bars. Several creep damage tests <strong>of</strong> pure aluminum were carried out.<br />

The nucleation and growth <strong>of</strong> voids during <strong>the</strong> creep process were observed by means <strong>of</strong> scanning<br />

electron microscopy and optical microscopy. They found out that only some portion <strong>of</strong> creep voids<br />

actually appeared on <strong>the</strong> surface <strong>of</strong> <strong>the</strong> notch root, and that <strong>the</strong> lengths <strong>of</strong> creep voids beneath <strong>the</strong> notch<br />

surface exceeded ten times <strong>the</strong> lengths <strong>of</strong> those appearing on <strong>the</strong> surface. They fur<strong>the</strong>r found out that<br />

under a relatively low load, many creep voids nucleated on a plane inclined at about 45° against <strong>the</strong><br />

tensile direction, and <strong>the</strong>ir coalescence <strong>for</strong>med a cone-type fracture surface. These results motivated <strong>the</strong><br />

<strong>simulation</strong> <strong>of</strong> <strong>the</strong> damage behaviour in such bars. As <strong>the</strong> test data <strong>of</strong> aluminium from which <strong>the</strong> material<br />

parameters could have been estimated were not available, <strong>the</strong> alloy IN738 LC at 850 °C is used, again.<br />

The stress concentration and <strong>the</strong> multiaxial stress distribution are dependent on <strong>the</strong> geometry <strong>of</strong><br />

<strong>the</strong> specimen. The same geometry as used in <strong>the</strong> work <strong>of</strong> KOBAYASHI et. al. [1998] is used. Fig. 2<br />

shows <strong>the</strong> specimen geometry and <strong>the</strong> FE-mesh, where R = 5.0 mm, r0 = 1.0 mm and L = 10.0 mm.<br />

Axisymmetric solid elements <strong>of</strong> type CGAX4 from <strong>the</strong> element library <strong>of</strong> <strong>ABAQUS</strong> are used <strong>for</strong> <strong>the</strong> FE<br />

calculations. Fig. 3 shows <strong>the</strong> distributions <strong>of</strong> <strong>the</strong> maximum principal damage in <strong>the</strong> notch area <strong>for</strong><br />

β = 0.1, 0.5 and 1.0, respectively. The applied load is σ2 = 150 MPa. It can be clearly seen that <strong>the</strong><br />

most damaged area occurs beneath <strong>the</strong> notch surface in all cases. At <strong>the</strong> beginning <strong>of</strong> <strong>the</strong> creep process,<br />

<strong>the</strong> maximum damage takes place on <strong>the</strong> notch root surface, where <strong>the</strong> maximum stress appears. During<br />

<strong>the</strong> process, however, <strong>the</strong> location <strong>of</strong> <strong>the</strong> maximum damage moves away from <strong>the</strong> surface. The<br />

<strong>ABAQUS</strong> input-file <strong>for</strong> β = 0.1 used <strong>for</strong> <strong>the</strong> present calculation is given in <strong>the</strong> Appendix 1.


)<br />

a)<br />

Fig. 2. a) Geometry <strong>of</strong> <strong>the</strong> specimen used by KOBAYASHI et al. [1998]<br />

b) FE-mesh. R = 5.0 mm, r0 = 1.0 mm, L = 10.0 mm<br />

Fig. 4. shows <strong>the</strong> contour plots <strong>of</strong> <strong>the</strong> second direction cosine <strong>of</strong> <strong>the</strong> principal directions<br />

D D<br />

corresponding to DI, n ⋅ e2 = cos∠ n I ( ,e2 I ), and <strong>of</strong> <strong>the</strong> maximum damage at t = 411 hours <strong>for</strong><br />

β = 0.1. The maximum local damage at this time reaches a value <strong>of</strong> 0.0643, immediately be<strong>for</strong>e <strong>the</strong> local<br />

fracture takes place and meso-cracks may have been initiated; note that <strong>the</strong> critical value <strong>of</strong> damage is<br />

Dc = 0.07. The values <strong>of</strong> <strong>the</strong> direction cosines at <strong>the</strong> location <strong>of</strong> maximum damage, DI, indicate that <strong>the</strong><br />

D<br />

direction n <strong>of</strong> maximum damage coincides with <strong>the</strong> e2-direction, which means that <strong>the</strong> surfaces <strong>of</strong><br />

I<br />

nucleated micro/meso-cracks will be perpendicular to <strong>the</strong> e2-direction, i.e. <strong>the</strong> loading axis.<br />

21


22<br />

Fig. 3. Contour plots <strong>of</strong> <strong>the</strong> maximum principal damage <strong>for</strong> β = 0.1, 0.5 and 1.0.<br />

O<strong>the</strong>r experimental investigations <strong>of</strong> KOBAYASHI et al. show that under relatively low loads, σ2, creep<br />

voids nucleated on a plane inclined by about 45° against <strong>the</strong> tensile direction. Though pure aluminium<br />

was used in <strong>the</strong>se tests <strong>for</strong> which no material data exist, <strong>the</strong> experiments motivated <strong>the</strong> <strong>simulation</strong> <strong>of</strong> <strong>the</strong><br />

damage behaviour at a lower creep load <strong>of</strong> σ2 = 100 MPa <strong>for</strong> <strong>the</strong> present Ni-based alloy and β = 0.1.<br />

The contour plots <strong>of</strong> <strong>the</strong> second direction cosine <strong>of</strong> <strong>the</strong> principal direction corresponding to DI,<br />

D<br />

cos∠( n ,e2 I ), at t = 11000 hours and <strong>the</strong> maximum damage distribution at t = 11000 and<br />

12000 hours, respectively, are shown in Fig. 5. The values <strong>of</strong> <strong>the</strong> direction cosine at <strong>the</strong> location <strong>of</strong><br />

maximum damage, i.e. where local fracture will occur, is −0.7÷−0.8. That means that maximum principal<br />

damage is inclined at about 45° against <strong>the</strong> tensile direction, which indicates that cracks may <strong>for</strong>m a<br />

cone-type fracture surface. Once <strong>the</strong> meso-crack has been <strong>for</strong>med or even local fracture has been taken<br />

place, <strong>the</strong> local behaviour <strong>of</strong> <strong>the</strong> material will strongly depend on <strong>the</strong> shape and size <strong>of</strong> <strong>the</strong> crack. Fur<strong>the</strong>r<br />

experimental investigations are needed.


Fig. 4. Contour plots <strong>of</strong> direction cosine and max. damage at t = 411 hours <strong>for</strong> β = 0.1.<br />

23


24<br />

Fig. 5. Contour plots <strong>of</strong> direction cosine and <strong>of</strong> <strong>the</strong> maximum principal damage <strong>for</strong> β = 0.1.


5.2 Plate containing a hole — BODNER-PARTOM model coupled with damage<br />

The material parameters <strong>of</strong> <strong>the</strong> BODNER-PARTOM model <strong>of</strong> IN 738 LC at 850 °C have also been<br />

determined by OLSCHEWSKI et al. [1990], and <strong>the</strong>ir values at 850 °C are shown in Table 4. The<br />

material parameters <strong>of</strong> <strong>the</strong> damage model are <strong>the</strong> same as listed in Table 3.<br />

E 149650 MPa ν 0.33 K0 4.18 10 5 MPa<br />

D0<br />

8.82 10 9 h -1<br />

n 0.289 K1 3.76 10 5 MPa<br />

A1=A2 1.65 10 -7 MPa/h m1 0.581 K2 3.07 10 5 MPa<br />

r1=r2 5.4 m2 0.344 K3 1.54 10 5 MPa<br />

Table 4: Material parameters <strong>of</strong> <strong>the</strong> BODNER-PARTOM model <strong>for</strong> IN 738 LC at 850 °C.<br />

In gas turbine blades with cooling channels, stress concentration occurs due at <strong>the</strong>se channels. A<br />

square plate with a central circular hole is <strong>the</strong>re<strong>for</strong>e chosen as a model representation <strong>of</strong> <strong>the</strong> area <strong>of</strong><br />

blades where <strong>the</strong> air cooling channels are located. The FE model used <strong>for</strong> <strong>the</strong> calculation is shown in<br />

Fig. 6. First, <strong>the</strong> plate is subjected to a creep load <strong>of</strong> σ3 = 180 MPa. After 40000 hours <strong>the</strong> maximum<br />

damage reaches a value <strong>of</strong> about 0.1. A second load <strong>of</strong> σ2 = 180 MPa is <strong>the</strong>n applied. There is only<br />

one element in <strong>the</strong> thickness direction so that any gradient over <strong>the</strong> thickness can not be captured. The<br />

three-dimensional 8-node linear brick continuum element with reduced integration, C3D8R, from <strong>the</strong><br />

element library <strong>of</strong> <strong>ABAQUS</strong> is used, and geometric non-linearity has been considered. Figs. 7 and 8<br />

show <strong>the</strong> contour plot <strong>of</strong> <strong>the</strong> maximum principal damage after 40000 h and 98000 h, respectively. β is<br />

assumed to be 0.5. Distribution <strong>of</strong> <strong>the</strong> maximum principal value <strong>of</strong> <strong>the</strong> strain and stress, after 40000 h<br />

and 98000 h, are shown in <strong>the</strong> Figs. 9-12, respectively. The <strong>ABAQUS</strong> input-file used <strong>for</strong> <strong>the</strong><br />

computation is given in <strong>the</strong> Appendix 2.<br />

25


26<br />

Fig. 6. FE-mesh and loading condition<br />

Fig. 7. Max. principal damage after 40000 h Fig. 8. Max. principal damage after 98000 h<br />

Fig. 9. Max. principal strain after 40000 h Fig. 10. Max. principal strain after 98000 h


Fig. 11. Max. principal stress after 40000 h Fig. 12. Max. principal stress after 98000 h<br />

5.3 Single crystal plate containing a hole — <strong>the</strong> anisotropic creep and damage model <strong>of</strong><br />

BERTRAM, OLSCHEWSKI & QI<br />

The material parameters <strong>of</strong> anisotropic creep model <strong>for</strong> <strong>the</strong> single crystal SRR99 at 760 °C have<br />

been estimated by BERTRAM and OLSCHEWSKI [1996]. The corresponding material parameters <strong>of</strong> <strong>the</strong><br />

damage model have been estimated by QI [1998]. Fig. 13 shows <strong>the</strong> applied FE model. The uniaxial<br />

tensile load, σ2, is applied in <strong>the</strong> crystal direction [001]. Because <strong>of</strong> <strong>the</strong> symmetry, only 1/2 <strong>of</strong> <strong>the</strong><br />

thickness <strong>of</strong> <strong>the</strong> specimen has to be modelled. Three elements are used over <strong>the</strong> half-thickness to<br />

capture <strong>the</strong> gradients in <strong>the</strong> thickness direction. The distribution <strong>of</strong> <strong>the</strong> maximum principal damage at<br />

t = 34000 hours is shown in Fig. 14. For comparison, Fig. 15 shows <strong>the</strong> initiation <strong>of</strong> cracks at a cavity<br />

in a prerafted single crystal CMSX-2 after 44 hours <strong>of</strong> creep at 850 °C and 520 MPa (creep life<br />

fraction = 95%) [AI et al., 1990], indicating at least a qualitative coincidence <strong>of</strong> <strong>the</strong> damage loci between<br />

numerical <strong>simulation</strong> and experiment. Contour plots <strong>of</strong> <strong>the</strong> strain ε22 and <strong>the</strong> stress σ22 at t = 34000<br />

hours are shown in Figs. 16 and 17, respectively. The <strong>ABAQUS</strong> input-file used <strong>for</strong> <strong>the</strong> computation is<br />

given in <strong>the</strong> Appendix 3.<br />

27


28<br />

Fig. 13. FE-mesh and loading condition


Fig. 14. Maximum. principal damage after 34000 h Fig. 15. Crack initiation at a cavity<br />

Fig. 16. Max. principal strain after 34000 h Fig. 17. Max. principal stress after 34000 h<br />

5.4 TiAl turbine blade — CHABOCHE model coupled with damage<br />

A model turbine blade made <strong>of</strong> a TiAl intermetallic alloy developed at <strong>the</strong> GKSS Research<br />

Centre is used as object <strong>of</strong> <strong>the</strong> FE-calculation. The blade has a length <strong>of</strong> 224 mm. The material<br />

parameters <strong>of</strong> <strong>the</strong> CHABOCHE model have been estimated by MOHR [1999], as listed in Table 5. Table<br />

6 gives <strong>the</strong> corresponding material parameters <strong>of</strong> <strong>the</strong> damage model used <strong>for</strong> <strong>the</strong> calculation. The<br />

continuum element C3D4 <strong>of</strong> <strong>the</strong> element library <strong>of</strong> <strong>ABAQUS</strong> is used. The number <strong>of</strong> nodes is 1476 and<br />

<strong>the</strong> number <strong>of</strong> elements is 4825. The blade is subject to centrifugal <strong>for</strong>ces, only, at a constant rotation<br />

speed <strong>of</strong> 40000 1/min; <strong>the</strong> density <strong>of</strong> TiAl is 3.8 g/cm 3 . Geometric non-linearity has been considered.<br />

The distribution <strong>of</strong> <strong>the</strong> maximum damage at t = 9060 hours is shown in Fig. 18. It obviously ocurs at <strong>the</strong><br />

root <strong>of</strong> <strong>the</strong> blade which after all has not been modelled realistically. The calculation is just supposed to<br />

29


proove that <strong>the</strong> model per<strong>for</strong>ms well also with large structures. The <strong>ABAQUS</strong> input-file used <strong>for</strong> <strong>the</strong><br />

computation is given in <strong>the</strong> Appendix 4.<br />

30


E 150000 MPa ν 0.24 a 335 MPa<br />

K 487 MPa⋅s 1/n n 15.3 b 207<br />

R0 126 MPa φ∞ 0.0 c 35.4<br />

R∞ 0.0 MPa ω 0.0 r 3.1<br />

d 0.023 MPa/s<br />

Table 5: Material parameters <strong>of</strong> CHABOCHE model <strong>for</strong> <strong>the</strong> TiAl at 700 °C.<br />

β q B0 m<br />

0.3 0.3 1500 MPa·h 1/m<br />

Table 6: Material parameters <strong>of</strong> <strong>the</strong> damage model <strong>for</strong> <strong>the</strong> TiAl at 700 °C<br />

14<br />

Fig. 18. Maximum principal damage after 9060 h<br />

31


6. References<br />

AI, S.H.; LUPINC, V. and MALDINI, M. (1990): "Creep fracture mechanics in single crystal superalloys".<br />

In: High Temperature materials <strong>for</strong> Power Engineering 1990, Proceedings <strong>of</strong> a Conference held in<br />

Liège, Belgium, 24-27 September 1990. Part II (Eds. E. BACHELET et al.)<br />

BERTRAM, A.; OLSCHEWSKI, J. (1993): "Zur Formulierung anisotroper linearer anelastischer<br />

St<strong>of</strong>fgleichungen mit Hilfe einer Projektionsmethode". ZAMM 73 (4-5), T401-403.<br />

BERTRAM, A.; OLSCHEWSKI, J. (1996): "Anisotropic creep modeling <strong>of</strong> <strong>the</strong> single crystal superalloy<br />

SRR99". J. Comp. Mat. Sci. 5, pp.12-16.<br />

BODNER, S.R.; PARTOM, Y. (1975): "Constitutive equations <strong>for</strong> elastic-<strong>viscoplastic</strong> strain hardening<br />

materials". J. Appl. Mech. 42, pp.385-389.<br />

CHABOCHE, J.L.; ROUSSELIER, G. (1983): "On <strong>the</strong> plastic and <strong>viscoplastic</strong> constitutive equations". J.<br />

Press. vess. technol. 105, pp.105-164.<br />

GERMAIN, P.; NGUYEN, Q. S.; SUQUET, P. (1983): "Continuum Thermodynamics". J. Appl. Mech. 50,<br />

pp.1010-1020.<br />

KOBAYASHI, K.I.; IMADA, H.; MAJIMA, T. (1998): "Nucleation and growth <strong>of</strong> creep voids in<br />

circumferentially notched specimens", JSME Int. J., Series A: Solid Mechanics and Material<br />

Engineering, 41, 218-224.<br />

KRAJCINOVIC, D. (1983): "Constitutive equations <strong>for</strong> damaging materials". J. Appl. Mech. 50, pp. 355-<br />

360.<br />

MOHR, R. (1999): "Modellierung des Hochtemperaturverhaltens metallischer Werkst<strong>of</strong>fe". Dissertation,<br />

Technische Universität Hamburg-Harburg, GKSS 99/E/66.<br />

OLSCHEWSKI, J.; SIEVERT, R.; MEERSMANN, J. and ZIEBS, J. (1990): "Selection, calibration and<br />

verification <strong>of</strong> <strong>viscoplastic</strong> constitutive models used <strong>for</strong> advanced blading methodology". In: High<br />

Temperature Materials <strong>for</strong> Power Engineering, Proceedings <strong>of</strong> a Conference held in Liège, Belgium,<br />

24-27 September 1990 (Eds. BACHELET et al.), Kluwer Academic Publishers, pp.1051-1060.<br />

QI, W.; BERTRAM, A. (1997): "Anisotropic creep damage modeling <strong>of</strong> single crystal superalloys".<br />

Technische Mechanik. 17(4), pp.313-322.<br />

QI, W. (1998): "Modellierung der Kriechschädigung einkristalliner Superlegierungen im<br />

Hochtemperaturbereich". Dissertation, Technische Universität Berlin, Fortschritts-Berichte VDI Verlag<br />

GmbH, Düsseldorf.<br />

QI, W.; BERTRAM, A. (1998): "Damage modeling <strong>of</strong> <strong>the</strong> single crystal superalloy SRR99 under<br />

monotonous creep". Computational Materials Science 13, pp.132-141.<br />

33


QI, W. ; BERTRAM, A. (1999): "Anisotropic continuum damage modeling <strong>for</strong> single crystals at high<br />

temperatures". Int. J. <strong>of</strong> Plasticity 15, pp.1197-1215.<br />

QI, W.; BROCKS, W. (2000a): "A CDM-based approach to creep damage and component lifetime".<br />

Proceedings <strong>of</strong> <strong>the</strong> Int. Conf. on Computational Engineering & Sciences, ”ICES‘2K” Ed. S. ATLURI),<br />

21-25 August 2000, Los Angeles.<br />

QI, W.; BROCKS, W. (2000b): "Simulation <strong>of</strong> anisotropic creep damage in engineering components".<br />

Proceedings <strong>of</strong> <strong>the</strong> European Congress on Computational Methods in Applied Sciences and Engineering<br />

”ECCOMAS 2000”, 11-14 September 2000, Barcelona.<br />

QI, W.; BROCKS, W.; BERTRAM, A. (2000): A FE-analysis <strong>of</strong> anisotropic creep damage and<br />

de<strong>for</strong>mation in <strong>the</strong> single crystal SRR99 under multiaxial loads. Computational Materials Science 19<br />

(2000), pp. 292-297.<br />

YANG, Q.; ZHOU, W.Y.; SWOBODA, G. (1999): Micromechanical identification <strong>of</strong> anisotropic damage<br />

evolution laws. Int. J. <strong>of</strong> Fracture 98, pp. 55-76.<br />

34


7. Appendices: <strong>ABAQUS</strong>-Inputfiles<br />

7.1 Appendix 1: Circumferentially notched bar — CHABOCHE model coupled with damage<br />

*HEADING<br />

circum. bar<br />

a= 5.0, r0= 1.00, N-alfa=20, N-r=40, K= 6<br />

*PREPRINT, ECHO=NO, MODEL=NO, HISTORY=NO<br />

**<br />

*RESTART, WRITE, FREQUENCY=2000<br />

**<br />

*NODE<br />

1, 5.00000, 1.00000<br />

101, 5.00000, 1.03927<br />

201, 5.00000, 1.07542<br />

...<br />

5181, 5.00000, -7.75000<br />

5281, 5.00000, -8.00000<br />

5381, 5.00000, -8.25000<br />

5481, 5.00000, -8.50000<br />

5581, 5.00000, -8.75000<br />

5681, 5.00000, -9.00000<br />

5781, 5.00000, -9.25000<br />

5881, 5.00000, -9.50000<br />

5981, 5.00000, -9.75000<br />

6081, 5.00000, -10.00000<br />

*ELEMENT, TYPE=CGAX4, ELSET=solid<br />

1, 2, 1, 101, 102<br />

2, 3, 2, 102, 103<br />

3, 4, 3, 103, 104<br />

4, 5, 4, 104, 105<br />

5, 6, 5, 105, 106<br />

6, 7, 6, 106, 107<br />

7, 8, 7, 107, 108<br />

...<br />

5978, 6078, 6079, 5979, 5978<br />

5979, 6079, 6080, 5980, 5979<br />

5980, 6080, 6081, 5981, 5980<br />

**<br />

** define node-set<br />

**<br />

*NSET, NSET=zplus, GENERATE<br />

6001, 6021, 1<br />

*NSET, NSET=zminus, GENERATE<br />

6061, 6081, 1<br />

**<br />

** define element-set<br />

**<br />

*ELSET, ELSET=zlast, GENERATE<br />

5901, 5920, 1<br />

**<br />

** define materials and UMA<br />

**<br />

*SOLID SECTION, ELSET=SOLID, MATERIAL=VISCOPLA<br />

1.,<br />

*MATERIAL, NAME=VISCOPLA<br />

*USER MATERIAL, CONSTANTS=19<br />

35


**<br />

** IN738LC, 850 deg C<br />

******** IN 738 LC, 850 C, ==== CH-model==== h, MPa<br />

** E, nu, Ro, Q, b, c, a, phiinf<br />

149650., .33, 153., -153., 317., 201., 311., 1.1<br />

*** omega, d, r, n, K; q, beta, Bo<br />

*** ( beta=1 -> isot. damage)<br />

0.04, 81.72, 4.8, 7.7, 397.0, .4, 0.1, 613.<br />

*** m, Dkey, Ckey Ckey ( Dkey < or = 0: do not consider damage)<br />

***( Ckey must be –1.0, only UMAT-developer may change it!)<br />

14., 1.0, -1.0<br />

*DEPVAR<br />

29<br />

**<br />

*USER SUBROUTINE, INPUT=/wms12/weiqi/umats/poly/d-chaboche.f<br />

**<br />

** loading !! <strong>the</strong> unit is hour !!<br />

**<br />

*STEP, INC=900000000, NLGEOM<br />

*VISCO, CETOL=1.0E-6<br />

0.0001, 0.001, , 0.0001<br />

**<br />

36


** auflagerung<br />

**<br />

*BOUNDARY, OP=NEW, TYPE=DISPLACEMENT<br />

6061, 1, 2, 0.0<br />

zminus, 2, 2, 0.0<br />

**** === define amplitude <strong>for</strong> loading process<br />

** 1s=0.00027778 h<br />

*AMPLITUDE, TIME=TOTAL TIME, NAME=creep<br />

0.0, 0.0, 0.001, 1.0, 9000000.0, 1.0<br />

**<br />

*DLOAD, OP=NEW, AMPLITUDE=creep<br />

zlast, P3, -150.<br />

**<br />

*NODE FILE, FREQUENCY=0<br />

*EL FILE, FREQUENCY=0<br />

*NODE PRINT, FREQUENCY=0<br />

*EL PRINT, FREQUENCY=0<br />

*PRINT, FREQUENCY=0<br />

*END STEP<br />

**<br />

** step 2<br />

**<br />

*STEP, INC=900000000, NLGEOM<br />

*VISCO, CETOL=1.0E-6<br />

0.0001, 0.001, , 0.0001<br />

**<br />

*NODE FILE, FREQUENCY=0<br />

*EL FILE, FREQUENCY=0<br />

*NODE PRINT, FREQUENCY=0<br />

*EL PRINT, FREQUENCY=0<br />

*PRINT, FREQUENCY=0<br />

*END STEP<br />

**<br />

** step 3<br />

**<br />

*STEP, INC=900000000, NLGEOM<br />

*VISCO, CETOL=1.0E-6<br />

0.001, 1., , 0.01<br />

**<br />

*NODE FILE, FREQUENCY=0<br />

*EL FILE, FREQUENCY=0<br />

*NODE PRINT, FREQUENCY=0<br />

*EL PRINT, FREQUENCY=0<br />

*PRINT, FREQUENCY=0<br />

*END STEP<br />

**<br />

** step 4<br />

**<br />

*STEP, INC=900000000, NLGEOM<br />

*VISCO, CETOL=1.0E-6<br />

0.1, 90000000.0, , 0.1<br />

**<br />

*RESTART, WRITE, FREQUENCY=100<br />

**<br />

*NODE FILE, FREQUENCY=0<br />

*EL FILE, FREQUENCY=0<br />

*NODE PRINT, FREQUENCY=0<br />

*EL PRINT, FREQUENCY=0<br />

*PRINT, FREQUENCY=0<br />

*END STEP<br />

37


7.2 Appendix 2: Plate containing a hole — BODNER-PARTOM model coupled with damage<br />

*HEADING<br />

plate containing a crack<br />

a= 5.0, r0= .50, N-alfa=10, N-r=15, K=12 D= .20<br />

*PREPRINT, ECHO=NO, MODEL=NO, HISTORY=NO<br />

*NODE<br />

1, .20, .49846, .03923<br />

5001, .00, .49846, .03923<br />

101, .20, .53761, .04231<br />

5101, .00, .53761, .04231<br />

...<br />

1380, .20, 3.47804, .00000<br />

6380, .00, 3.47804, .00000<br />

1480, .20, 4.16651, .00000<br />

6480, .00, 4.16651, .00000<br />

1580, .20, 5.00000, .00000<br />

6580, .00, 5.00000, .00000<br />

*ELEMENT, TYPE=C3D8I, ELSET=solid<br />

*** 0 - PI/4<br />

80, 5080, 80, 180, 5180, 5001, 1, 101, 5101<br />

180, 5180, 180, 280, 5280, 5101, 101, 201, 5201<br />

280, 5280, 280, 380, 5380, 5201, 201, 301, 5301<br />

380, 5380, 380, 480, 5480, 5301, 301, 401, 5401<br />

480, 5480, 480, 580, 5580, 5401, 401, 501, 5501<br />

580, 5580, 580, 680, 5680, 5501, 501, 601, 5601<br />

...<br />

1477, 6477, 1477, 1577, 6577, 6478, 1478, 1578, 6578<br />

1478, 6478, 1478, 1578, 6578, 6479, 1479, 1579, 6579<br />

1479, 6479, 1479, 1579, 6579, 6480, 1480, 1580, 6580<br />

**<br />

** define node-set<br />

**<br />

*NSET, NSET=zlager0, GENERATE<br />

6550, 6570, 1<br />

*NSET, NSET=zlager1, GENERATE<br />

1550, 1570, 1<br />

*NSET, NSET=ylager0, GENERATE<br />

6530, 6550, 1<br />

*NSET, NSET=ylager1, GENERATE<br />

1530, 1550, 1<br />

**<br />

** define element-set<br />

**<br />

*ELSET, ELSET=zlast, GENERATE<br />

1410, 1429, 1<br />

*ELSET, ELSET=ylast, GENERATE<br />

1401, 1409, 1<br />

1470, 1480, 1<br />

**<br />

** define materials and UMA<br />

**<br />

*SOLID SECTION, ELSET=SOLID, MATERIAL=VISCOPLA<br />

1.,<br />

*MATERIAL, NAME=VISCOPLA<br />

*USER MATERIAL, CONSTANTS=19<br />

**<br />

** IN738LC, 850 deg C<br />

******* BP-Model, units: h, MPa<br />

********========================================<br />

38


** E, nu, Do, n, K1, K2, K3, m1<br />

149650., .33, 8.82E+9, 0.289, 3.76E+5, 3.07E+5, 1.54E+5, 0.581<br />

*** m2, A, r, Unused, Ko; q, beta, Bo<br />

*** ( beta=1 -> isot. damage)<br />

0.344, 1.6524E+7, 5.4, 0.0, 4.18E+5, 0.4, 0.5, 613.<br />

*** m, Dkey, Ckey Ckey ( Dkey < or = 0: do not consider damage)<br />

***( Ckey must be –1.0, only UMAT-developer may change it!)<br />

14., 1.0, -1.0<br />

*DEPVAR<br />

26<br />

**<br />

*USER SUBROUTINE, INPUT=/wms12/weiqi/umats/poly/d-bodner.f<br />

**<br />

**<br />

*RESTART, WRITE, FREQUENCY=1000<br />

**<br />

*STEP, INC=90000000<br />

*VISCO, CETOL=1.0E-10<br />

0.0001, 0.001, , 0.0001<br />

**<br />

** auflagerung<br />

**<br />

39


*BOUNDARY, OP=NEW, TYPE=DISPLACEMENT<br />

** 6550, 1, 3, 0.0<br />

zLager0, 3, 3, 0.0<br />

zLager0, 1, 1, 0.0<br />

zLager1, 3, 3, 0.0<br />

yLager0, 2, 2, 0.0<br />

yLager1, 2, 2, 0.0<br />

**** === define amplitude <strong>for</strong> loading process<br />

*AMPLITUDE, TIME=TOTAL TIME, NAME=creep1<br />

0.0, 0.0, 0.001, 1.0, 90000000.0, 1.0<br />

**<br />

*DLOAD, OP=NEW, AMPLITUDE=creep1<br />

zlast, P2, -180.<br />

**<br />

*NODE FILE, FREQUENCY=0<br />

*EL FILE, FREQUENCY=0<br />

*NODE PRINT, FREQUENCY=0<br />

*EL PRINT, FREQUENCY=0<br />

*PRINT, FREQUENCY=0<br />

*END STEP<br />

**<br />

** Step 2<br />

**<br />

*STEP, INC=90000000<br />

*VISCO, CETOL=1.0E-10<br />

0.001, 0.5, , 0.01<br />

**<br />

*NODE FILE, FREQUENCY=0<br />

*EL FILE, FREQUENCY=0<br />

*NODE PRINT, FREQUENCY=0<br />

*EL PRINT, FREQUENCY=0<br />

*PRINT, FREQUENCY=0<br />

*END STEP<br />

**<br />

** Step 3<br />

**<br />

*STEP, INC=90000000<br />

*VISCO, CETOL=1.0E-10<br />

0.01, 49.5, , .5<br />

**<br />

*NODE FILE, FREQUENCY=0<br />

*EL FILE, FREQUENCY=0<br />

*NODE PRINT, FREQUENCY=0<br />

*EL PRINT, FREQUENCY=0<br />

*PRINT, FREQUENCY=0<br />

*END STEP<br />

**<br />

** Step 4<br />

**<br />

*STEP, INC=90000000<br />

*VISCO, CETOL=1.0E-10<br />

1., 39950.00, , 4.<br />

**<br />

*RESTART, WRITE, FREQUENCY=400000<br />

**<br />

*NODE FILE, FREQUENCY=0<br />

*EL FILE, FREQUENCY=0<br />

*NODE PRINT, FREQUENCY=0<br />

*EL PRINT, FREQUENCY=0<br />

*PRINT, FREQUENCY=0<br />

*END STEP<br />

**<br />

** Step 5<br />

40


** ====== 2. load ein<br />

**<br />

*STEP, INC=90000000<br />

*VISCO, CETOL=1.0E-10<br />

.0001, .001, , .0001<br />

**<br />

**** === define amplitude <strong>for</strong> loading process<br />

*AMPLITUDE, NAME=creep2<br />

0.0, 0.0, 0.001, 1.0, 90000000.0, 1.0<br />

**<br />

*DLOAD, OP=MOD, AMPLITUDE=creep2<br />

ylast, P5, -180.<br />

*RESTART, WRITE, FREQUENCY=1500<br />

**<br />

*NODE FILE, FREQUENCY=0<br />

*EL FILE, FREQUENCY=0<br />

*NODE PRINT, FREQUENCY=0<br />

*EL PRINT, FREQUENCY=0<br />

*PRINT, FREQUENCY=0<br />

*END STEP<br />

**<br />

** Step 6<br />

**<br />

*STEP, INC=90000000<br />

*VISCO, CETOL=1.0E-10<br />

.001, 0.1, , .01<br />

41


**<br />

*RESTART, WRITE, FREQUENCY=1000<br />

**<br />

*NODE FILE, FREQUENCY=0<br />

*EL FILE, FREQUENCY=0<br />

*NODE PRINT, FREQUENCY=0<br />

*EL PRINT, FREQUENCY=0<br />

*PRINT, FREQUENCY=0<br />

*END STEP<br />

**<br />

** Step 7<br />

**<br />

*STEP, INC=90000000<br />

*VISCO, CETOL=1.0E-10<br />

.01, 49.50, , 1.<br />

**<br />

*RESTART, WRITE, FREQUENCY=100<br />

**<br />

*NODE FILE, FREQUENCY=0<br />

*EL FILE, FREQUENCY=0<br />

*NODE PRINT, FREQUENCY=0<br />

*EL PRINT, FREQUENCY=0<br />

*PRINT, FREQUENCY=0<br />

*END STEP<br />

**<br />

** Step 8<br />

**<br />

*STEP, INC=90000000<br />

*VISCO, CETOL=1.0E-10<br />

1., 60000.00, , 5.<br />

**<br />

*RESTART, WRITE, FREQUENCY=20000<br />

**<br />

*NODE FILE, FREQUENCY=0<br />

*EL FILE, FREQUENCY=0<br />

*NODE PRINT, FREQUENCY=0<br />

*EL PRINT, FREQUENCY=0<br />

*PRINT, FREQUENCY=0<br />

*END STEP<br />

**<br />

** Step 9<br />

**<br />

*STEP, INC=90000000<br />

*VISCO, CETOL=1.0E-10<br />

5., 1000000.00, , 5.<br />

**<br />

*RESTART, WRITE, FREQUENCY=200<br />

**<br />

*NODE FILE, FREQUENCY=0<br />

*EL FILE, FREQUENCY=0<br />

*NODE PRINT, FREQUENCY=0<br />

*EL PRINT, FREQUENCY=0<br />

*PRINT, FREQUENCY=0<br />

*END STEP<br />

42


7.3 Appendix 3: Single crystal plate containing a hole — <strong>the</strong> anisotropic creep and damage<br />

model <strong>of</strong> BERTRAM, OLSCHEWSKI & QI<br />

*HEADING<br />

plate 10x10x0.5, hole radius 0.5, Non-symm<br />

C3D8I, r15-h10-b10-t3, bias: r10-h1-b1-t2, I-DEAS 06-Mar-01<br />

*NODE, SYSTEM=R<br />

1, 3.5355339E-01,-3.5355339E-01, 2.5000000E-01<br />

2, 4.2009962E-01,-4.2009962E-01, 2.5000000E-01<br />

3, 5.0002275E-01,-5.0002275E-01, 2.5000000E-01<br />

...<br />

5294,-4.5000000E+00,-5.0000000E+00, 1.9248187E-01<br />

5295,-4.5000000E+00,-5.0000000E+00, 1.1616359E-01<br />

5296,-4.5000000E+00,-5.0000000E+00, 0.0000000E+00<br />

*ELEMENT,TYPE=C3D8I ,ELSET=E0000001<br />

1, 1, 2, 18, 17, 65, 66, 82, 81<br />

2, 2, 3, 19, 18, 66, 67, 83, 82<br />

3, 3, 4, 20, 19, 67, 68, 84, 83<br />

4, 4, 5, 21, 20, 68, 69, 85, 84<br />

5, 5, 6, 22, 21, 69, 70, 86, 85<br />

...<br />

*SOLID SECTION,ELSET=E0000001,MATERIAL=M0000001<br />

*MATERIAL,NAME=M0000001<br />

*USER MATERIAL, CONSTANTS=14<br />

**<br />

** SRR99, 760 deg C<br />

**<br />

***alfa0 alfa1 alfa2 B[MPa*h] n p m n1<br />

1.0, 0.0, 0.5, 1442.0, 14.133, 0.45489, 51.852, -0.31326<br />

*** Dcr, phi1, phi2, phi3 Dkey, Ckey<br />

**** ( Dkey < or = 0: do not consider damage)<br />

**** ( Ckey must be –1.0, only UMAT-developer may change it!)<br />

0.9, 0.0, 0.0, 0.0, 1.0, -1.E8<br />

*DEPVAR<br />

36<br />

**<br />

*USER SUBROUTINE, INPUT=/wms12/weiqi/umats/single/d-scsrr99.f<br />

**<br />

** loading !! <strong>the</strong> unit is h !!<br />

**<br />

*RESTART, WRITE, FREQUENCY=1000<br />

**<br />

*STEP, INC=90000000, NLGEOM<br />

*VISCO, CETOL=1.0E-10<br />

0.0001, 0.001, , 0.0001<br />

** auflagerung<br />

*BOUNDARY,OP=NEW<br />

BS000001, 1,, .00000E+00<br />

BS000002, 2,, .00000E+00<br />

3344, 1, 2, .00000E+00<br />

3680, 1, 2, .00000E+00<br />

4016, 1, 2, .00000E+00<br />

BS000003, 3,, .00000E+00<br />

BS000004, 1,, .00000E+00<br />

BS000004, 3,, .00000E+00<br />

BS000005, 2, 3, .00000E+00<br />

3008, 1, 3, .00000E+00<br />

**<br />

** loading<br />

43


**** === define amplitude <strong>for</strong> loading process<br />

*AMPLITUDE, TIME=TOTAL TIME, NAME=creep1<br />

0.0, 0.0, 0.001, 1.0, 90000000.0, 1.0<br />

**<br />

*DLOAD,OP=NEW, AMPLITUDE=creep1<br />

** BS000006, P4, -100.<br />

BS000007, P6, -350.<br />

**<br />

*NODE FILE, FREQUENCY=0<br />

*EL FILE, FREQUENCY=0<br />

*NODE PRINT, FREQUENCY=0<br />

*EL PRINT, FREQUENCY=0<br />

*PRINT, FREQUENCY=0<br />

*END STEP<br />

**<br />

** Step 2<br />

**<br />

*STEP, INC=90000000<br />

*VISCO, CETOL=1.0E-10<br />

0.0001, 0.1, , 0.02<br />

**<br />

44


*NODE FILE, FREQUENCY=0<br />

*EL FILE, FREQUENCY=0<br />

*NODE PRINT, FREQUENCY=0<br />

*EL PRINT, FREQUENCY=0<br />

*PRINT, FREQUENCY=0<br />

*END STEP<br />

**<br />

** Step 3<br />

**<br />

*STEP, INC=90000000<br />

*VISCO, CETOL=1.0E-10<br />

0.02, 1.0, , 0.2<br />

**<br />

*NODE FILE, FREQUENCY=0<br />

*EL FILE, FREQUENCY=0<br />

*NODE PRINT, FREQUENCY=0<br />

*EL PRINT, FREQUENCY=0<br />

*PRINT, FREQUENCY=0<br />

*END STEP<br />

**<br />

** Step 4<br />

**<br />

*STEP, INC=90000000<br />

*VISCO, CETOL=1.0E-10<br />

0.2, 49.0, , .5<br />

**<br />

*NODE FILE, FREQUENCY=0<br />

*EL FILE, FREQUENCY=0<br />

*NODE PRINT, FREQUENCY=0<br />

*EL PRINT, FREQUENCY=0<br />

*PRINT, FREQUENCY=0<br />

*END STEP<br />

**<br />

** Step 5<br />

**<br />

*STEP, INC=90000000<br />

*VISCO, CETOL=1.0E-10<br />

1., 3950.00, , 1.<br />

**<br />

*RESTART, WRITE, FREQUENCY=1000<br />

**<br />

*NODE FILE, FREQUENCY=0<br />

*EL FILE, FREQUENCY=0<br />

*NODE PRINT, FREQUENCY=0<br />

*EL PRINT, FREQUENCY=0<br />

*PRINT, FREQUENCY=0<br />

*END STEP<br />

**<br />

** Step 6<br />

**<br />

*STEP, INC=90000000<br />

*VISCO, CETOL=1.0E-10<br />

1., 1000000.00, , 1.<br />

**<br />

*RESTART, WRITE, FREQUENCY=200<br />

**<br />

*NODE FILE, FREQUENCY=0<br />

*EL FILE, FREQUENCY=0<br />

*NODE PRINT, FREQUENCY=0<br />

*EL PRINT, FREQUENCY=0<br />

*PRINT, FREQUENCY=0<br />

*END STEPT, FREQUENCY=0<br />

*EL PRINT, FREQUENCY=0<br />

45


*PRINT, FREQUENCY=0<br />

*END STEP<br />

46


7.4 Appendix 4: TiAl turbine blade — CHABOCHE model coupled with damage<br />

*HEADING<br />

SDRC I-DEAS <strong>ABAQUS</strong> FILE TRANSLATOR 10-Apr-00 13:53:27<br />

units: mm, s, MPa isot. damage)<br />

0.0, 0.023, 3.1, 15.3, 487.0, 0.3, 0.3, 1500.<br />

*** m, Dkey, Ckey Ckey ( Dkey < or = 0: do not consider damage)<br />

***( Ckey must be –1.0, only UMAT-developer may change it!)<br />

47


14., 1.0, -1.0<br />

*DEPVAR<br />

29<br />

**<br />

*USER SUBROUTINE, INPUT=/wms12/weiqi/umats/poly/d-chaboche.f<br />

**<br />

** first loading, cycle 1<br />

**<br />

*STEP, INC=100000000, NLGEOM<br />

***STATIC<br />

*VISCO, CETOL=1.0E-10<br />

.01, 100., , 0.1<br />

**<br />

**<br />

*BOUNDARY,OP=NEW<br />

12, 1, 3, .00000E+00<br />

45, 1, 3, .00000E+00<br />

46, 1, 3, .00000E+00<br />

15, 1, 3, .00000E+00<br />

fuss, 1, 3, .00000E+00<br />

**<br />

** rotations<br />

**<br />

-48-


*AMPLITUDE, NAME=CYCLEONE, DEFINITION=TABULAR, TIME=STEP TIME<br />

0., 0., 10., .05415, 100., 1., 900000000., 1.<br />

**<br />

*DLOAD, OP=NEW, AMPLITUDE=CYCLEONE<br />

blade, CENTRIF, 444000., 35., 0., 0., 0., 0., 1.<br />

**entspricht Drehzahl von 40000/min oder 666/sec<br />

**<br />

*RESTART, WRITE, FREQUENCY=10000000<br />

**<br />

*NODE FILE, FREQ=0<br />

*EL FILE, POS=INTEG, FREQ=0<br />

S, E, SDV<br />

*EL PRINT,POS=INTEG, FREQ=0<br />

*NODE PRINT, FREQ=0<br />

*PRINT, FREQ=0<br />

*END STEP<br />

***<br />

***<br />

***<br />

*STEP, INC=100000000<br />

***STATIC<br />

*VISCO, CETOL=1.0E-10<br />

0.1, 3600., , 10.<br />

**<br />

*EL FILE, POS=INTEG, FREQ=0<br />

*NODE FILE, FREQ=0<br />

*PRINT, FREQ=0<br />

*END STEP<br />

***<br />

***<br />

***<br />

*STEP, INC=100000000<br />

*VISCO, CETOL=1.0E-10<br />

50., 720000., , 50.<br />

*RESTART, WRITE, FREQUENCY=1440<br />

**<br />

*EL FILE, POS=INTEG, FREQ=0<br />

*NODE FILE, FREQ=0<br />

*PRINT, FREQ=0<br />

*END STEP<br />

***<br />

***<br />

**<br />

*STEP, INC=100000000<br />

*VISCO, CETOL=1.0E-10<br />

200., 720000., , 200.<br />

**<br />

*RESTART, WRITE, FREQUENCY=360<br />

**<br />

*EL FILE, POS=INTEG, FREQ=0<br />

*NODE FILE, FREQ=0<br />

*PRINT, FREQ=0<br />

*END STEP<br />

***<br />

**<br />

*STEP, INC=100000000<br />

*VISCO, CETOL=1.0E-10<br />

400., 72000000., , 400.<br />

**<br />

*RESTART, WRITE, FREQUENCY=180<br />

**<br />

*EL FILE, POS=INTEG, FREQ=0<br />

*NODE FILE, FREQ=0<br />

-49-


*PRINT, FREQ=0<br />

*END STEP<br />

-50-

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!