07.12.2012 Views

koff - LEPA

koff - LEPA

koff - LEPA

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Diffusion layer thickness: Approximate solution<br />

To solve equation (1.99), we can consider the thickness of the diffusion layer δ (x) as illustrated<br />

above, and linearize the gradients and write<br />

y! !c<br />

!x<br />

!c dy<br />

= y!<br />

!y dx<br />

#c dy<br />

" y!<br />

#y dx<br />

#c d"<br />

= "!<br />

" dx<br />

with y = ! (x) and !c = c b " c( x = 0).<br />

Similarly, we have<br />

D !2 c<br />

!y 2<br />

" D ! #c<br />

!y #y<br />

= D #c<br />

! 2<br />

With these simplifications, eq.(1.99) reduces to<br />

! d"<br />

dx<br />

= D<br />

" 2<br />

that we can integrate to have<br />

= !#c d"<br />

dx<br />

A2.13<br />

A2.14<br />

A2.15<br />

! 3 = 3Dx<br />

" A2.16<br />

The limiting current on the band electrode is then for the case illustrated in figure 13<br />

I = nFDLc b l dx<br />

0 ! (x)<br />

! = nFDLc b l<br />

0<br />

dx<br />

3<br />

By substituting the value of β equal to 3/h.<br />

or<br />

3Dx<br />

"<br />

= 3 –1/3 nFc b LD 2/3 " 1/3 l 2/3<br />

! A2.17<br />

I = nFc b LD 2/3 l 2/3 < v > 1/3 h !1/3 A2.18<br />

I =<br />

! 2$<br />

"<br />

#<br />

3%<br />

&<br />

1/3<br />

nFc b L vmaxD 2 l 2 !<br />

#<br />

"<br />

h<br />

$<br />

&<br />

%<br />

1/3<br />

!<br />

#<br />

"<br />

= 0.8735nFc b L v maxD 2 l 2<br />

We can write this equation as a function of the volumetric flow rate FV given by<br />

h<br />

$<br />

&<br />

%<br />

1/3<br />

A2.19<br />

F V = 2 < v > hd A2.20<br />

and obtain an equation.<br />

"<br />

$<br />

#<br />

I = 2 !1/3 nFc b L D2 l 2 F V<br />

h 2 d<br />

%<br />

'<br />

&<br />

1/3<br />

"<br />

$<br />

#<br />

= 0.7937 nFc b L D2 l 2 F V<br />

Diffusion layer thickness: Exact solution<br />

We can solve analytically eq.(1.99), by using a similarity variable and write<br />

! y $<br />

c(x, y) = F<br />

"<br />

#<br />

! (x) %<br />

&<br />

The boundary conditions are<br />

h 2 d<br />

%<br />

'<br />

&<br />

1/3<br />

A2.21<br />

= F ( ! ) A2.22<br />

30

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!