09.12.2012 Views

Homework-1 (due date: 08.11.11) To hand in problems 1–5; other ...

Homework-1 (due date: 08.11.11) To hand in problems 1–5; other ...

Homework-1 (due date: 08.11.11) To hand in problems 1–5; other ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

M11 Stochastic Processes III/IV – MATH 3251/4091 HW1:sol s<br />

<strong>Homework</strong>-1 (<strong>due</strong> <strong>date</strong>: <strong>08.11.11</strong>)<br />

<strong>To</strong> <strong>hand</strong> <strong>in</strong> <strong>problems</strong> <strong>1–5</strong>; <strong>other</strong> <strong>problems</strong> are optional<br />

Problem 1 Let the r.v. Z1 have mean EZ1 = m, variance VarZ1 = σ2 , and<br />

generat<strong>in</strong>g function ϕ(s). Let Zn be the size of the nth generation of the related<br />

branch<strong>in</strong>g process; we write ϕn(s) for the correspond<strong>in</strong>g generat<strong>in</strong>g function.<br />

� �<br />

a) Us<strong>in</strong>g ϕn(s) ≡ ϕn−1 ϕ(s) or <strong>other</strong>wise, deduce that EZn = mn ;<br />

b) Us<strong>in</strong>g ϕn(s) ≡ ϕ � ϕn−1(s) � or <strong>other</strong>wise, deduce that<br />

�<br />

σ<br />

Var(Zn) =<br />

2mn−1 mn−1 m−1 , m �= 1 ,<br />

σ2n , m = 1 .<br />

Solution. Th<strong>in</strong>k<strong>in</strong>g of Zn as a random sum of random variables, we have Zn ∼ SN<br />

with N ∼ Z1 and X ∼ Zn−1; therefore EZn = EZ1 · EZn−1 = mEZn−1 and<br />

Var(Zn) = E(Z1)Var(Zn−1) + Var(Z1) ` ´ 2<br />

EZn−1 = mVar(Zn−1) + σ 2 m 2(n−1) ;<br />

a straightforward <strong>in</strong>duction now gives the result (do this carefully!).<br />

Alternatively, differentiate the equalities and use the fact that if X ∼ ϕX(s), then<br />

EX = ϕ ′ X(1) and Var(X) = ϕ ′′ X(1)+ϕ ′ X(1)− ` ϕ ′ X(1) ´ 2 ; next, carefully apply <strong>in</strong>duction.<br />

Problem 2 In a branch<strong>in</strong>g process with generat<strong>in</strong>g function<br />

ϕ(s) = as 2 + bs + c<br />

where a > 0, b > 0, c > 0, ϕ(1) = 1, compute the ext<strong>in</strong>ction probability ρ and give<br />

the condition for sure ext<strong>in</strong>ction. Can you <strong>in</strong>terpret your results?<br />

Solution. S<strong>in</strong>ce ϕ(1) = 1 implies a + b + c = 1, the fixed po<strong>in</strong>t equation becomes<br />

(as − c)(s − 1) = 0, giv<strong>in</strong>g the ext<strong>in</strong>ction probability ρ = m<strong>in</strong>(c/a, 1).<br />

Similarly, sure ext<strong>in</strong>ction happens when ϕ ′ (1) ≡ 2a + b ≤ 1, which is equivalent to<br />

a ≤ c. (Can you <strong>in</strong>terpret these results?)<br />

Problem 3 Let (Zn)n≥0 be a supercritical branch<strong>in</strong>g process 1 with offspr<strong>in</strong>g distribution<br />

Poi(λ), λ > 1. Let T0 = m<strong>in</strong>{n ≥ 0 : Zn = 0} be its ext<strong>in</strong>ction time,<br />

and let ρ = P(T0 < ∞) > 0 be its ext<strong>in</strong>ction probability. Def<strong>in</strong>e ( � Zn)≥0 as Zn<br />

conditioned on ext<strong>in</strong>ction, ie., � Zn = � Zn | T0 < ∞ � .<br />

a) Show that the transition probabilities ˆpxy of ( � Zn)n≥0 and the transition probabilities<br />

pxy of the orig<strong>in</strong>al process (Zn)n≥0 are related via ˆpxy = pxyρy−x , x, y ≥ 0;<br />

� b � � �<br />

Z1<br />

Z1<br />

b) Deduce that the generat<strong>in</strong>g functions �ϕ(s) ≡ E1 s and ϕ(s) ≡ E1 s satisfy<br />

the identity �ϕ(s) = 1ϕ(ρs),<br />

0 ≤ s ≤ 1;<br />

ρ<br />

c) Use the fixed po<strong>in</strong>t equation ρ = eλ(ρ−1) to show that �ϕ(s) = eλρ(s−1) , ie., that<br />

the offspr<strong>in</strong>g distribution for ( � Zn)n≥0 is just Poi(λρ).<br />

1 ie., with the expected offspr<strong>in</strong>g size m larger than one;<br />

O.H. http://maths.dur.ac.uk/stats/courses/StochProc34/ 1


M11 Stochastic Processes III/IV – MATH 3251/4091 HW1:sol s<br />

Solution. a) If we start with x <strong>in</strong>dividuals at time zero, Px(T0 < ∞) = ρ x . Then the<br />

Markov property for (Zn)n≥0 implies 2<br />

ˆpxy = Px(Z1 = y, T0 < ∞)<br />

Px(T0 < ∞)<br />

b) The result <strong>in</strong> a) implies<br />

ˆ Z1<br />

b<br />

bϕ(s) ≡ E1 s ˜ = X<br />

y≥0<br />

c) Us<strong>in</strong>g the fixed-po<strong>in</strong>t equation, we get<br />

bϕ(s) = ϕ(ρs)<br />

ρ<br />

= Px(Z1 = y)Py(T0 < ∞)<br />

Px(T0 < ∞)<br />

ˆp1ys y = 1<br />

ρ<br />

X<br />

y≥0<br />

= pxyρ y<br />

p1y(ρs) y ≡ 1<br />

ϕ(ρs) .<br />

ρ<br />

≡ exp{λ(ρs − 1)}<br />

exp{λ(ρ − 1)} = eλρ(s−1) ,<br />

ρ x .<br />

which is the generat<strong>in</strong>g function of Poi(λρ), as requested. Now use the uniqueness<br />

result (state it!).<br />

Problem 4 Let (Zn)n≥0 be a supercritical branch<strong>in</strong>g process 1 with offspr<strong>in</strong>g distribution<br />

{pk}k≥0, generat<strong>in</strong>g function ϕ(s) and ext<strong>in</strong>ction probability ρ ∈ [0, 1).<br />

a) If Z0 = 1, let ˜pk be the probability that conditioned on survival the first generation<br />

has exactly k <strong>in</strong>dividuals with an <strong>in</strong>f<strong>in</strong>ite l<strong>in</strong>e of descent. Show that<br />

˜pk = 1<br />

1 − ρ<br />

∞�<br />

n=k<br />

pn<br />

� �<br />

n<br />

(1 − ρ)<br />

k<br />

k ρ n−k .<br />

b) Let ( � Zn)n≥0 count only those <strong>in</strong>dividuals <strong>in</strong> (Zn)n≥0, who conditioned on survival<br />

have an <strong>in</strong>f<strong>in</strong>ite l<strong>in</strong>e of descent. Show that ( � Zn)n≥0 is a branch<strong>in</strong>g process with<br />

offspr<strong>in</strong>g generat<strong>in</strong>g function<br />

�ϕ(s) = 1<br />

�<br />

ϕ<br />

1 − ρ<br />

� (1 − ρ)s + ρ � �<br />

− ρ .<br />

Solution. a) Use the partition theorem for probabilities: for a s<strong>in</strong>gle <strong>in</strong>dividual<br />

(Z0 = 1), conditional on survival (prob. 1 − ρ) to produce exactly k <strong>in</strong>dividuals <strong>in</strong> the<br />

next generation with an <strong>in</strong>f<strong>in</strong>ite l<strong>in</strong>e of descent, one has to produce n ≥ k <strong>in</strong>dividuals<br />

of which exactly n −k die out (total prob. ρ n−k ) and the rema<strong>in</strong><strong>in</strong>g k <strong>in</strong>dividuals have<br />

an <strong>in</strong>f<strong>in</strong>ite l<strong>in</strong>e of descent (total prob. (1 − ρ) k ); hence the result.<br />

b) In view of the previous part, we just need to compute the generat<strong>in</strong>g function<br />

eϕ(s) = X<br />

s<br />

k≥1<br />

k ˜pk = 1<br />

!<br />

X X n<br />

pn (1 − ρ)<br />

1 − ρ k<br />

k≥1 n≥k<br />

k ρ n−k s k<br />

X nX<br />

!<br />

(1 − ρ) k ρ n−k s k .<br />

= 1<br />

1 − ρ<br />

n≥1<br />

pn<br />

k=1<br />

n<br />

k<br />

2 You might also wish to show that ( b Zn) ≥0 is a Markov cha<strong>in</strong>! In this case the follow<strong>in</strong>g<br />

observation might be useful: if events B, C and D are such that for every event A one<br />

has P ` A ∩ B | C ´ = P ` A ∩ B | D ´ , then P(A | B ∩ C) = P(A | B ∩ D); next apply it to<br />

A = {Zn=1 = zn+1}, B = {T0 < ∞}, C = {Zn = zn} and D = {Zn = zn, . . . , Z0 = z0}.<br />

O.H. http://maths.dur.ac.uk/stats/courses/StochProc34/ 2


M11 Stochastic Processes III/IV – MATH 3251/4091 HW1:sol s<br />

Notice that the <strong>in</strong>ternal sum is just ` (1 − ρ)s + ρ ´ n − ρ n (and that this expression<br />

vanishes for n = 0), so that<br />

eϕ(s) = 1<br />

1 − ρ<br />

as required.<br />

X<br />

n≥0<br />

pn<br />

“ `(1 − ρ)s + ρ ´ n − ρ n ”<br />

= 1<br />

“<br />

ϕ<br />

1 − ρ<br />

` (1 − ρ)s + ρ ´ ”<br />

− ϕ(ρ) ,<br />

Problem 5 For n ≥ 1 let X (n)<br />

k , k = 1, . . ., n, be <strong>in</strong>dependent Bernoulli random<br />

variables with<br />

P(X (n)<br />

k = 1) = 1 − P(X(n)<br />

k = 0) = p(n)<br />

k .<br />

Assume that as n → ∞<br />

and that<br />

n�<br />

k=1<br />

p (n)<br />

k<br />

δ (n) def<br />

= max<br />

1≤k≤n p(n)<br />

k → 0<br />

≡ E<br />

n�<br />

k=1<br />

X (n)<br />

k<br />

→ λ ∈ (0, ∞) .<br />

Us<strong>in</strong>g generat<strong>in</strong>g functions or <strong>other</strong>wise, show that the distribution of �n k=1 X(n)<br />

k<br />

converges to that of a Poisson(λ) random variable. This result is known as the law<br />

of rare events.<br />

Solution. By <strong>in</strong>depedence, the generat<strong>in</strong>g function of the sum is Q n<br />

k=1<br />

` (n) ´<br />

1+(s−1)p k ,<br />

so it is enough to show that its logarithm converges to λ(s−1) for every fixed s, |s| ≤ 1.<br />

By the elementary <strong>in</strong>equality 3 |y − log(1 + y)| ≤ y 2 , valid for all |y| ≤ 1/2, we get 4<br />

˛<br />

nX<br />

k=1<br />

log ` 1 + (s − 1)p (n) ´<br />

k − (s − 1)<br />

nX<br />

k=1<br />

p (n)<br />

k<br />

˛ ≤ (s − 1) 2<br />

nX ` (n) ´ 2<br />

p ,<br />

and it rema<strong>in</strong>s to observe that the last sum is bounded above by δ (n) · Pn k=1 p(n)<br />

k → 0<br />

as n → ∞. Similarly, the assumptions above imply (s − 1) Pn k=1 p(n)<br />

k → (s − 1)λ as<br />

n → ∞ for every fixed s, |s| ≤ 1. The result follows.<br />

optional<br />

Problem 6 In a sequence of <strong>in</strong>dependent Bernoulli experiments with success probability<br />

p ∈ (0, 1), let D be the first moment of two consecutive successful outcomes.<br />

Show that dn = P(D = n) satisfy d2 = p 2 , d3 = qp 2 , and, by condition<strong>in</strong>g on the<br />

value of the first outcome, that<br />

dn = q dn−1 + pq dn−2 , n > 3.<br />

Use these relations to derive the generat<strong>in</strong>g function GD(s). Compute E[D].<br />

R<br />

3 y`<br />

´ R 1 y<br />

Indeed, s<strong>in</strong>ce y − log(1 + y) = 0 1 − dx = 1+x 0<br />

k=1<br />

k<br />

x<br />

dx if only y > −1, tak<strong>in</strong>g the<br />

1+x<br />

absolute value on both sides with |y| ≤ 1/2 and <strong>in</strong>tegrat<strong>in</strong>g, we get |y − log(1 + y)| ≤ y 2 .<br />

4 as long as |1 − s|δ (n) ≤ 1/2;<br />

O.H. http://maths.dur.ac.uk/stats/courses/StochProc34/ 3


Z<br />

Z<br />

M11 Stochastic Processes III/IV – MATH 3251/4091 HW1:sol s<br />

Solution. The first failure (prob. q = 1 − p) is followed by a valid str<strong>in</strong>g of n − 1<br />

attemps (prob. dn−1); similarly, the first success if followed by a failure at the second<br />

attempt (prob. pq) and then by a valid str<strong>in</strong>g of n − 2 attempts (prob. dn−2). Hence<br />

the recursion. A standard computation thus gives<br />

GD(s) =<br />

p 2 s 2<br />

d<br />

, and E[D] =<br />

1 − qs − pqs2 ds<br />

˛<br />

˛ s=1<br />

GD(s) = 1<br />

p<br />

1<br />

+ .<br />

p2 Thus the average time <strong>in</strong> a die-toss<strong>in</strong>g experiment until a double-six appeares is 42.<br />

Problem 7 A biased co<strong>in</strong> show<strong>in</strong>g ‘heads’ with probability p ∈ (0, 1) is flipped<br />

repeatedly. Let Cw be the first moment when the word w appears <strong>in</strong> the observed<br />

sequence of results. F<strong>in</strong>d the generat<strong>in</strong>g function of Cw and the expectation E � �<br />

Cw<br />

for each of the follow<strong>in</strong>g words: HH, HT, TH and TT.<br />

Solution. A standard method gives 5<br />

GHH(s) =<br />

p 2 s 2<br />

1 − qs − pqs 2 = p2 s 2 (1 − ps)<br />

1 − s + p 2 qs 3 , GHT(s) =<br />

For the <strong>other</strong> two cases, <strong>in</strong>terchange H ↔ T and p ↔ q.<br />

pqs 2<br />

(1 − ps)(1 − qs) .<br />

5Notice that (1 − qs − pqs2 ) −1 is the generat<strong>in</strong>g function of all f<strong>in</strong>ite str<strong>in</strong>gs end<strong>in</strong>g with<br />

T, which never have two H <strong>in</strong> a row! One can use a similar observation to immediately write<br />

the result for HHH, HHHH etc. (can you?!)<br />

O.H. http://maths.dur.ac.uk/stats/courses/StochProc34/ 4

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!