04.02.2017 Views

Evaluation of the application of gibbrellic acid and titanium dioxide nanoparticles under drought stress on some traits of basil (Ocimum basilicum L.)

Abstract This study is carried out to study the effect of Gibberellic acid (GA3) and Titanium Dioxide Nanoparticles (Nano- TiO2) on some characteristics of medicinal plant of Ocimum basilicum Lamiaceae) under drought stress. The experiment was conducted as a factorial arrangement in randomized complete block design with four replications in which A, B, C are the three factors and factor A is related to the irrigation content as fc 100%, fc 70% and fc 40% and factor B in three levels with GA3 application with concentrations of 0 (control), 250 ppm, 500 ppm and factor C with three doses of titanium nanoparticles with concentrations of 0%, 0.01% and 0.03%. The results showed that the drought stress caused to decreasing of plant biomass and the foliar relative water content, and the increasing of catalase and the level of anthocyanin in the medicinal plant of basil, while, the application of gibberellin and titanium nanoparticles caused to improving of the negative effects of the stress.The results of the study indicated that the drought stress causes to decreasing of quantitative and qualitative characteristics of the plant. The best treatments were recognized as follows: in 100% irrigation regime, non-application of gibberellin and application of Nano-TiO2 with concentration of 0.01%; in 70% irrigation regime, the application of gibberellin with concentration of 250 ppm and Nano-TiO2 with concentration of 0.03%; and in 40% irrigation nregime, the application of gibberellin with concentration of 500 ppm and Nano-TiO2 with concentration of 0.03%.

Abstract
This study is carried out to study the effect of Gibberellic acid (GA3) and Titanium Dioxide Nanoparticles (Nano- TiO2) on some characteristics of medicinal plant of Ocimum basilicum Lamiaceae) under drought stress. The
experiment was conducted as a factorial arrangement in randomized complete block design with four replications in which A, B, C are the three factors and factor A is related to the irrigation content as fc 100%, fc 70% and fc 40% and factor B in three levels with GA3 application with concentrations of 0 (control), 250 ppm, 500 ppm and factor C with three doses of titanium nanoparticles with concentrations of 0%, 0.01% and 0.03%. The results
showed that the drought stress caused to decreasing of plant biomass and the foliar relative water content, and the increasing of catalase and the level of anthocyanin in the medicinal plant of basil, while, the application of
gibberellin and titanium nanoparticles caused to improving of the negative effects of the stress.The results of the study indicated that the drought stress causes to decreasing of quantitative and qualitative characteristics of the
plant. The best treatments were recognized as follows: in 100% irrigation regime, non-application of gibberellin and application of Nano-TiO2 with concentration of 0.01%; in 70% irrigation regime, the application of
gibberellin with concentration of 250 ppm and Nano-TiO2 with concentration of 0.03%; and in 40% irrigation nregime, the application of gibberellin with concentration of 500 ppm and Nano-TiO2 with concentration of 0.03%.

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Discussi<strong>on</strong><br />

As shown in <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> this study, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>drought</str<strong>on</strong>g><br />

<str<strong>on</strong>g>stress</str<strong>on</strong>g> caused to increasing <str<strong>on</strong>g>the</str<strong>on</strong>g> foliar relative water<br />

c<strong>on</strong>tent <str<strong>on</strong>g>and</str<strong>on</strong>g> catalase <str<strong>on</strong>g>and</str<strong>on</strong>g> biomass <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>basil</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> gibberellin <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>titanium</str<strong>on</strong>g> <str<strong>on</strong>g>nanoparticles</str<strong>on</strong>g><br />

improved <str<strong>on</strong>g>the</str<strong>on</strong>g> negative effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g>. Due to<br />

producing free radicals <str<strong>on</strong>g>and</str<strong>on</strong>g> decreasing inner cells<br />

carb<strong>on</strong> <str<strong>on</strong>g>dioxide</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>drought</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g><br />

c<strong>on</strong>diti<strong>on</strong> causes to increasing peroxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

membrane’s lipids <str<strong>on</strong>g>and</str<strong>on</strong>g> mal<strong>on</strong>dialdehydes in which<br />

enhances antioxidant enzymes such as catalase <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

n<strong>on</strong>-enzyme systems like anthocyanin to fight against<br />

free radicals (Sharma <str<strong>on</strong>g>and</str<strong>on</strong>g> Dubey, 2005).The external<br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> plant growth regulators are used to<br />

overcome disorders <str<strong>on</strong>g>under</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g>. Different types <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

phytohorm<strong>on</strong>es such as gibberellin, kinetin, oxine<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> etc. are used to decrease <str<strong>on</strong>g>the</str<strong>on</strong>g> negative effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

envir<strong>on</strong>mental <str<strong>on</strong>g>stress</str<strong>on</strong>g>es (Ashraf et al, 2002). Having<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> great role <str<strong>on</strong>g>of</str<strong>on</strong>g> increasing meiosis <str<strong>on</strong>g>and</str<strong>on</strong>g> cell<br />

el<strong>on</strong>gati<strong>on</strong>, gibberellin increases plant height, number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> knots, biomass, <str<strong>on</strong>g>the</str<strong>on</strong>g> performance <str<strong>on</strong>g>of</str<strong>on</strong>g> flowered<br />

branches, number <str<strong>on</strong>g>of</str<strong>on</strong>g> flowered branches, <str<strong>on</strong>g>the</str<strong>on</strong>g> dry <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

fresh weight <str<strong>on</strong>g>of</str<strong>on</strong>g> flowered branches, carotenoids, total<br />

chlorophyll, “a” <str<strong>on</strong>g>and</str<strong>on</strong>g> “b” chlorophyll, seeds weight,<br />

seed performance <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>basil</strong> essence especially <str<strong>on</strong>g>under</str<strong>on</strong>g><br />

<str<strong>on</strong>g>drought</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g>. In this experiment, catalase increased<br />

more with <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nanoparticles</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> that<br />

has made <str<strong>on</strong>g>the</str<strong>on</strong>g> plant str<strong>on</strong>ger. The reas<strong>on</strong> is that plants<br />

possess effective defense-mechanism composed <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

superoxide dismutase, catalase, <str<strong>on</strong>g>and</str<strong>on</strong>g> peroxidase<br />

ascorbate, <str<strong>on</strong>g>and</str<strong>on</strong>g> glutathi<strong>on</strong>e reductase (Blokhin et al,<br />

2003) against oxidative <str<strong>on</strong>g>stress</str<strong>on</strong>g>es that can eliminate or<br />

neutralize free radicals. The number <str<strong>on</strong>g>and</str<strong>on</strong>g> frequency <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

defense-mechanisms is because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> different types<br />

free radicals produced in <str<strong>on</strong>g>the</str<strong>on</strong>g> cells which show<br />

different reacti<strong>on</strong>s facing with different biologic<br />

molecules. The study indicated that <str<strong>on</strong>g>the</str<strong>on</strong>g> highest level<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> enzymes’ activities was at 0.03% c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

in 40% <str<strong>on</strong>g>and</str<strong>on</strong>g> 70% irrigati<strong>on</strong> regimes which shows <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.03% <str<strong>on</strong>g>titanium</str<strong>on</strong>g> <str<strong>on</strong>g>nanoparticles</str<strong>on</strong>g> in decreasing<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> oxidative damages. The peroxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

unsaturated fat <str<strong>on</strong>g>and</str<strong>on</strong>g> lipids increases when <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

oxidative <str<strong>on</strong>g>stress</str<strong>on</strong>g> occurs. Different aldehydes are<br />

created by <str<strong>on</strong>g>the</str<strong>on</strong>g> attack <str<strong>on</strong>g>of</str<strong>on</strong>g> free radicals to <str<strong>on</strong>g>the</str<strong>on</strong>g> lipids such<br />

as mal<strong>on</strong>dialdehyde. The free oxygen radicals attack<br />

proteins <str<strong>on</strong>g>and</str<strong>on</strong>g> create partial changes in special places<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> amino <str<strong>on</strong>g>acid</str<strong>on</strong>g>s by <str<strong>on</strong>g>the</str<strong>on</strong>g> catalysis <str<strong>on</strong>g>of</str<strong>on</strong>g> peptides chain. The<br />

sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> amino <str<strong>on</strong>g>acid</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a peptide is different to<br />

an oxidative attack <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>re are various forms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

activated oxygen in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> reactiveness potential. In<br />

this experiment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>titanium</str<strong>on</strong>g> <str<strong>on</strong>g>nanoparticles</str<strong>on</strong>g>, less<br />

mal<strong>on</strong>dialdehyde is created, thus <str<strong>on</strong>g>the</str<strong>on</strong>g> strength <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

membranes is enhanced, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> antioxidant defensemechanism<br />

is streng<str<strong>on</strong>g>the</str<strong>on</strong>g>ned by this nanoparticle <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

is less likely to be attacked <str<strong>on</strong>g>and</str<strong>on</strong>g> destroyed by free<br />

radicals. In line with Bu<strong>on</strong> et al (1992), due to a<br />

str<strong>on</strong>g defense-mechanism <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

smolites <str<strong>on</strong>g>under</str<strong>on</strong>g> <str<strong>on</strong>g>drought</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g>, <str<strong>on</strong>g>the</str<strong>on</strong>g> plant will have<br />

more relative foliar water c<strong>on</strong>tent <str<strong>on</strong>g>and</str<strong>on</strong>g> due to this<br />

performance, it produces more flower, seed, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

essence. Increasing photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis increases <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plant’s dry material <str<strong>on</strong>g>and</str<strong>on</strong>g> morphological<br />

characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> plant <str<strong>on</strong>g>and</str<strong>on</strong>g> ultimately it enhances<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> performance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> plant. Regarding biomass it<br />

should be noted that <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

nanoparticle causes to increasing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> accumulati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic in outer limbs due to increasing <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

solar radiances absorpti<strong>on</strong>, plant’s growth speed, leaf<br />

surface index, plant’s height, <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> knots, dry<br />

weight <str<strong>on</strong>g>of</str<strong>on</strong>g> leaf <str<strong>on</strong>g>and</str<strong>on</strong>g> stem which results in increasing<br />

biomass <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> performance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> plant.<br />

C<strong>on</strong>clusi<strong>on</strong><br />

In this study, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>drought</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g> caused to decreasing<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> qualitative <str<strong>on</strong>g>and</str<strong>on</strong>g> quantitative characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>basil</strong>. Regarding <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that <strong>basil</strong> is cultivated in<br />

seed <str<strong>on</strong>g>and</str<strong>on</strong>g> essence in order to reach <str<strong>on</strong>g>the</str<strong>on</strong>g> utmost<br />

biological performance, to reach <str<strong>on</strong>g>the</str<strong>on</strong>g>se objectives, in<br />

100% irrigati<strong>on</strong> regime, <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

gibberellin <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.01% <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Nano-TiO2 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

in 70% irrigati<strong>on</strong> regime, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 250 ppm<br />

gibberellin <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.03% Nano-TiO2 <str<strong>on</strong>g>and</str<strong>on</strong>g> in 40%<br />

irrigati<strong>on</strong> regime, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 500 ppm<br />

gibberellin <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.03% Nano-TiO2 were identified as<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> best possible treatments.<br />

References<br />

Akbari N, Barani M, Ahmadi H. 2008. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Gibberellic Acid (GA3) <strong>on</strong> Agr<strong>on</strong>omic Traits <str<strong>on</strong>g>of</str<strong>on</strong>g> Green<br />

Gram (VignaradiataL. Wilczek) Irrigated with<br />

Kiapour et al.<br />

Page 147

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!