04.02.2017 Views

Evaluation of the application of gibbrellic acid and titanium dioxide nanoparticles under drought stress on some traits of basil (Ocimum basilicum L.)

Abstract This study is carried out to study the effect of Gibberellic acid (GA3) and Titanium Dioxide Nanoparticles (Nano- TiO2) on some characteristics of medicinal plant of Ocimum basilicum Lamiaceae) under drought stress. The experiment was conducted as a factorial arrangement in randomized complete block design with four replications in which A, B, C are the three factors and factor A is related to the irrigation content as fc 100%, fc 70% and fc 40% and factor B in three levels with GA3 application with concentrations of 0 (control), 250 ppm, 500 ppm and factor C with three doses of titanium nanoparticles with concentrations of 0%, 0.01% and 0.03%. The results showed that the drought stress caused to decreasing of plant biomass and the foliar relative water content, and the increasing of catalase and the level of anthocyanin in the medicinal plant of basil, while, the application of gibberellin and titanium nanoparticles caused to improving of the negative effects of the stress.The results of the study indicated that the drought stress causes to decreasing of quantitative and qualitative characteristics of the plant. The best treatments were recognized as follows: in 100% irrigation regime, non-application of gibberellin and application of Nano-TiO2 with concentration of 0.01%; in 70% irrigation regime, the application of gibberellin with concentration of 250 ppm and Nano-TiO2 with concentration of 0.03%; and in 40% irrigation nregime, the application of gibberellin with concentration of 500 ppm and Nano-TiO2 with concentration of 0.03%.

Abstract
This study is carried out to study the effect of Gibberellic acid (GA3) and Titanium Dioxide Nanoparticles (Nano- TiO2) on some characteristics of medicinal plant of Ocimum basilicum Lamiaceae) under drought stress. The
experiment was conducted as a factorial arrangement in randomized complete block design with four replications in which A, B, C are the three factors and factor A is related to the irrigation content as fc 100%, fc 70% and fc 40% and factor B in three levels with GA3 application with concentrations of 0 (control), 250 ppm, 500 ppm and factor C with three doses of titanium nanoparticles with concentrations of 0%, 0.01% and 0.03%. The results
showed that the drought stress caused to decreasing of plant biomass and the foliar relative water content, and the increasing of catalase and the level of anthocyanin in the medicinal plant of basil, while, the application of
gibberellin and titanium nanoparticles caused to improving of the negative effects of the stress.The results of the study indicated that the drought stress causes to decreasing of quantitative and qualitative characteristics of the
plant. The best treatments were recognized as follows: in 100% irrigation regime, non-application of gibberellin and application of Nano-TiO2 with concentration of 0.01%; in 70% irrigation regime, the application of
gibberellin with concentration of 250 ppm and Nano-TiO2 with concentration of 0.03%; and in 40% irrigation nregime, the application of gibberellin with concentration of 500 ppm and Nano-TiO2 with concentration of 0.03%.

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

RESEARCH PAPER<br />

Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Agr<strong>on</strong>omy <str<strong>on</strong>g>and</str<strong>on</strong>g> Agricultural Research (IJAAR)<br />

OPEN ACCESS<br />

<str<strong>on</strong>g>Evaluati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>gibbrellic</str<strong>on</strong>g> <str<strong>on</strong>g>acid</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>titanium</str<strong>on</strong>g><br />

<str<strong>on</strong>g>dioxide</str<strong>on</strong>g> <str<strong>on</strong>g>nanoparticles</str<strong>on</strong>g> <str<strong>on</strong>g>under</str<strong>on</strong>g> <str<strong>on</strong>g>drought</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g> <strong>on</strong> <strong>some</strong> <strong>traits</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>basil</strong> (<strong>Ocimum</strong> <strong>basil</strong>icum L.)<br />

ISSN: 2223-7054 (Print) 2225-3610 (Online)<br />

http://www.innspub.net<br />

Vol. 6, No. 4, p. 138-150, 2015<br />

Hasti Kiapour * , Payam Moaveni, Davoud Habibi, Behzad Sani<br />

1<br />

Agriculture Department, Shahre Ghods University, Islamic Azad University, Tehran, Iran<br />

2<br />

Agriculture Department, Shahre Ghods University, Islamic Azad University, Tehran, Iran<br />

3<br />

Agriculture Department, Karaj University, Islamic Azad University, Tehran, Iran<br />

4<br />

Agriculture Department, Shahre Ghods University, Islamic Azad University, Tehran, Iran<br />

Article published <strong>on</strong> April 14, 2015<br />

Key words: Basil, Drought <str<strong>on</strong>g>stress</str<strong>on</strong>g>, Relative water c<strong>on</strong>tent Gibberellic <str<strong>on</strong>g>acid</str<strong>on</strong>g>, Nano-TiO2.<br />

Abstract<br />

This study is carried out to study <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Gibberellic <str<strong>on</strong>g>acid</str<strong>on</strong>g> (GA3) <str<strong>on</strong>g>and</str<strong>on</strong>g> Titanium Dioxide Nanoparticles (Nano-<br />

TiO2) <strong>on</strong> <strong>some</strong> characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> medicinal plant <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Ocimum</strong> <strong>basil</strong>icum Lamiaceae) <str<strong>on</strong>g>under</str<strong>on</strong>g> <str<strong>on</strong>g>drought</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g>. The<br />

experiment was c<strong>on</strong>ducted as a factorial arrangement in r<str<strong>on</strong>g>and</str<strong>on</strong>g>omized complete block design with four replicati<strong>on</strong>s<br />

in which A, B, C are <str<strong>on</strong>g>the</str<strong>on</strong>g> three factors <str<strong>on</strong>g>and</str<strong>on</strong>g> factor A is related to <str<strong>on</strong>g>the</str<strong>on</strong>g> irrigati<strong>on</strong> c<strong>on</strong>tent as fc 100%, fc 70% <str<strong>on</strong>g>and</str<strong>on</strong>g> fc<br />

40% <str<strong>on</strong>g>and</str<strong>on</strong>g> factor B in three levels with GA3 <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> with c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 0 (c<strong>on</strong>trol), 250 ppm, 500 ppm <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

factor C with three doses <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>titanium</str<strong>on</strong>g> <str<strong>on</strong>g>nanoparticles</str<strong>on</strong>g> with c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 0%, 0.01% <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.03%. The results<br />

showed that <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>drought</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g> caused to decreasing <str<strong>on</strong>g>of</str<strong>on</strong>g> plant biomass <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> foliar relative water c<strong>on</strong>tent, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> increasing <str<strong>on</strong>g>of</str<strong>on</strong>g> catalase <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> level <str<strong>on</strong>g>of</str<strong>on</strong>g> anthocyanin in <str<strong>on</strong>g>the</str<strong>on</strong>g> medicinal plant <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>basil</strong>, while, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

gibberellin <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>titanium</str<strong>on</strong>g> <str<strong>on</strong>g>nanoparticles</str<strong>on</strong>g> caused to improving <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> negative effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g>.The results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

study indicated that <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>drought</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g> causes to decreasing <str<strong>on</strong>g>of</str<strong>on</strong>g> quantitative <str<strong>on</strong>g>and</str<strong>on</strong>g> qualitative characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

plant. The best treatments were recognized as follows: in 100% irrigati<strong>on</strong> regime, n<strong>on</strong>-<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> gibberellin<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Nano-TiO2 with c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.01%; in 70% irrigati<strong>on</strong> regime, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

gibberellin with c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 250 ppm <str<strong>on</strong>g>and</str<strong>on</strong>g> Nano-TiO2 with c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.03%; <str<strong>on</strong>g>and</str<strong>on</strong>g> in 40% irrigati<strong>on</strong><br />

regime, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> gibberellin with c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 500 ppm <str<strong>on</strong>g>and</str<strong>on</strong>g> Nano-TiO2 with c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

0.03%.<br />

* Corresp<strong>on</strong>ding Author: Hasti Kiapour h.kiapour7@yahoo.com<br />

Kiapour et al.<br />

Page 138


Introducti<strong>on</strong><br />

Drought is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> comm<strong>on</strong>est envir<strong>on</strong>mental<br />

<str<strong>on</strong>g>stress</str<strong>on</strong>g>es which c<strong>on</strong>fines about 25% <str<strong>on</strong>g>of</str<strong>on</strong>g> cultivating<br />

plants. In terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> realm <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>drought</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g>, <str<strong>on</strong>g>the</str<strong>on</strong>g> priority is with dry <str<strong>on</strong>g>and</str<strong>on</strong>g> semi-dry<br />

areas. Drought <str<strong>on</strong>g>stress</str<strong>on</strong>g> bel<strong>on</strong>gs to <str<strong>on</strong>g>the</str<strong>on</strong>g> general <str<strong>on</strong>g>stress</str<strong>on</strong>g>es<br />

which hinders <str<strong>on</strong>g>the</str<strong>on</strong>g> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> plant <str<strong>on</strong>g>and</str<strong>on</strong>g> have<br />

undesirable effects <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> plant performance. Water<br />

is <str<strong>on</strong>g>the</str<strong>on</strong>g> main growth limiting factor in <str<strong>on</strong>g>the</str<strong>on</strong>g>se areas<br />

(Kaafi, 6002). Titanium <str<strong>on</strong>g>nanoparticles</str<strong>on</strong>g> increase <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

plant resistance against envir<strong>on</strong>mental <str<strong>on</strong>g>stress</str<strong>on</strong>g>es <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

decrease <str<strong>on</strong>g>the</str<strong>on</strong>g> free radicals. Doing this, in order to<br />

c<strong>on</strong>vert O2 free radicals to O2, it changes from Ti 4+ to<br />

Ti +3 <str<strong>on</strong>g>and</str<strong>on</strong>g> in order to retain its shape, it c<strong>on</strong>verts O2 to<br />

H2O2 <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>n changes to Ti 4+ (H<strong>on</strong>g et al,<br />

2007).Titanium <str<strong>on</strong>g>nanoparticles</str<strong>on</strong>g> increases <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

performance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> plant through increasing <str<strong>on</strong>g>the</str<strong>on</strong>g> first<br />

photosystem light energy that is absorbed by<br />

chloroplast membrane <str<strong>on</strong>g>and</str<strong>on</strong>g> is transferred to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sec<strong>on</strong>d photosystem <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>n by c<strong>on</strong>verting light<br />

energy to electr<strong>on</strong>s energy, electr<strong>on</strong>s transmissi<strong>on</strong>,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> also by reinforcement <str<strong>on</strong>g>and</str<strong>on</strong>g> development <str<strong>on</strong>g>of</str<strong>on</strong>g> water<br />

photolysis <str<strong>on</strong>g>and</str<strong>on</strong>g> releasing oxygen (Mingo et al, 2007).<br />

Due to its smaller size, Nano-TiO2 can easily catalyze<br />

oxidati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> regenerati<strong>on</strong> reacti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> accelerate<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> release <str<strong>on</strong>g>of</str<strong>on</strong>g> full energy electr<strong>on</strong>s (Young et al,<br />

6002). Since it causes to increasing <str<strong>on</strong>g>of</str<strong>on</strong>g> plants’ meiosis<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> size, TiO2 is recommended as a growth regulator<br />

which acts like Gibberellin <str<strong>on</strong>g>and</str<strong>on</strong>g> Cytokinin (Albrecht et<br />

al, 2006). Using <str<strong>on</strong>g>nanoparticles</str<strong>on</strong>g> in plants leads to less<br />

chemical composts c<strong>on</strong>sumpti<strong>on</strong> which is in line with<br />

our objective to make use <str<strong>on</strong>g>of</str<strong>on</strong>g> modern agricultural<br />

technologies to boost performance <str<strong>on</strong>g>and</str<strong>on</strong>g> specifically,<br />

increasing essence <str<strong>on</strong>g>and</str<strong>on</strong>g> active ingredients for<br />

medicinal purposes. The <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nanoparticles</str<strong>on</strong>g><br />

<strong>on</strong> agricultural <str<strong>on</strong>g>and</str<strong>on</strong>g> medicinal plants affects <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis system, hence increases <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis <str<strong>on</strong>g>and</str<strong>on</strong>g> biomass <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> plant. It is worth<br />

noting that in <str<strong>on</strong>g>the</str<strong>on</strong>g> present situati<strong>on</strong>, increasing<br />

agricultural producti<strong>on</strong> to meet <str<strong>on</strong>g>the</str<strong>on</strong>g> needs <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

growing populati<strong>on</strong> is very difficult. Also, having<br />

knowledge <str<strong>on</strong>g>and</str<strong>on</strong>g> research plans in physiologic <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

biologic grounds for <str<strong>on</strong>g>stress</str<strong>on</strong>g> resisting will help protect<br />

plants against <str<strong>on</strong>g>the</str<strong>on</strong>g> negative effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g>es a lot.<br />

Therefore, attempts should be d<strong>on</strong>e to solve this<br />

problem <str<strong>on</strong>g>and</str<strong>on</strong>g> provide better c<strong>on</strong>diti<strong>on</strong>s for <str<strong>on</strong>g>the</str<strong>on</strong>g> plant<br />

regarding <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> anti-<str<strong>on</strong>g>stress</str<strong>on</strong>g> materials in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>ment. It is possible to decrease <str<strong>on</strong>g>the</str<strong>on</strong>g> effects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>drought</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g> <strong>on</strong> <strong>basil</strong> by <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

horm<strong>on</strong>es <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>nanoparticles</str<strong>on</strong>g>.<br />

Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> methods<br />

Field c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> treatments<br />

This experiment was carried out in 2013 as factorial<br />

arrangement in r<str<strong>on</strong>g>and</str<strong>on</strong>g>omized complete block design<br />

with four replicati<strong>on</strong>s at <str<strong>on</strong>g>the</str<strong>on</strong>g> center for training <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

plant c<strong>on</strong>sultancy <str<strong>on</strong>g>of</str<strong>on</strong>g> Tehransar, regi<strong>on</strong> 21 st <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

municipality <str<strong>on</strong>g>of</str<strong>on</strong>g> Tehran (49" E 46 .51" 15 35 42 11 29<br />

" N). The alluvial s<str<strong>on</strong>g>and</str<strong>on</strong>g>y-loam type <str<strong>on</strong>g>of</str<strong>on</strong>g> soil was used in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> experiment. Factor A was related to <str<strong>on</strong>g>the</str<strong>on</strong>g> irrigati<strong>on</strong><br />

amount as fc 100%, fc 70% <str<strong>on</strong>g>and</str<strong>on</strong>g> fc 40% <str<strong>on</strong>g>and</str<strong>on</strong>g> factor B in<br />

three levels with GA3 <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> with c<strong>on</strong>centrati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 0 (c<strong>on</strong>trol), 250, 500 ppm <str<strong>on</strong>g>and</str<strong>on</strong>g> factor C with three<br />

doses <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>titanium</str<strong>on</strong>g> <str<strong>on</strong>g>nanoparticles</str<strong>on</strong>g> with c<strong>on</strong>centrati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 0%, 0.01% <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.03%. 108 black pots with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

height <str<strong>on</strong>g>of</str<strong>on</strong>g> 24 cm <str<strong>on</strong>g>and</str<strong>on</strong>g> opening diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> 23 cm were<br />

filled with field soil up to 19 cm height. Pot drainages<br />

were built in order to prevent water logging. The first<br />

irrigati<strong>on</strong> was d<strong>on</strong>e two days after cultivati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

after that <str<strong>on</strong>g>the</str<strong>on</strong>g> irrigati<strong>on</strong> was d<strong>on</strong>e every 2 to 4 days<br />

until <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> plant’s growth depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

growth stages <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> existing water in <str<strong>on</strong>g>the</str<strong>on</strong>g> pot. It is<br />

worth noting that a heavy irrigati<strong>on</strong> to soil saturati<strong>on</strong><br />

level was d<strong>on</strong>e 48 hours before cultivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>basil</strong><br />

seeds. After two days, <str<strong>on</strong>g>the</str<strong>on</strong>g> pot soil was prepared for<br />

cultivati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> soil humidity was appropriate for<br />

blossoming, <str<strong>on</strong>g>the</str<strong>on</strong>g> cultivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> seeds was d<strong>on</strong>e <strong>on</strong> 7 th<br />

May 2013. The soil was disinfected by Benomyl (2 to<br />

1000) to avoid fungal <str<strong>on</strong>g>and</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r pathogenic<br />

c<strong>on</strong>taminati<strong>on</strong>s. 40 seeds were cultivated in each pot<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> were irrigated two days later. Basils blos<strong>some</strong>d 4<br />

to 8 days after cultivati<strong>on</strong>. After plants’ growth <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

having <str<strong>on</strong>g>the</str<strong>on</strong>g>m thinned, 20 plants remained in each pot.<br />

The low-irrigati<strong>on</strong> <str<strong>on</strong>g>stress</str<strong>on</strong>g> was applied observing <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

appropriate time intervals after passage <str<strong>on</strong>g>of</str<strong>on</strong>g> different<br />

growth stages. The total <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>titanium</str<strong>on</strong>g><br />

<str<strong>on</strong>g>nanoparticles</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> gibberellin <str<strong>on</strong>g>acid</str<strong>on</strong>g> observing <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

st<str<strong>on</strong>g>and</str<strong>on</strong>g>ards menti<strong>on</strong>ed earlier was d<strong>on</strong>e before sunrise<br />

or at <str<strong>on</strong>g>the</str<strong>on</strong>g> sunset. These treatments were applied<br />

during two ph<strong>on</strong>ological stages <str<strong>on</strong>g>of</str<strong>on</strong>g> growth with 50%<br />

Kiapour et al.<br />

Page 139


stem el<strong>on</strong>gati<strong>on</strong> (vegetative stage) <str<strong>on</strong>g>and</str<strong>on</strong>g> 50% flowering<br />

(natal stage) in 13 th June, 2013 <str<strong>on</strong>g>and</str<strong>on</strong>g> 14 th august, 2013,<br />

respectively in a way that <str<strong>on</strong>g>the</str<strong>on</strong>g> whole stems al<strong>on</strong>g with<br />

upper <str<strong>on</strong>g>and</str<strong>on</strong>g> lower leaves <str<strong>on</strong>g>of</str<strong>on</strong>g> all bushes except for c<strong>on</strong>trol<br />

treatment bushes (0% c<strong>on</strong>centrati<strong>on</strong>) were<br />

impregnated with this soluti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> required notes<br />

were taken. The sampling was d<strong>on</strong>e after <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> required spraying observing <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

appropriate time interval. The sec<strong>on</strong>d phase <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

spraying was d<strong>on</strong>e in which to prepare gibberellin<br />

c<strong>on</strong>centrati<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> required amount <str<strong>on</strong>g>of</str<strong>on</strong>g> horm<strong>on</strong>e<br />

powder was weighed in <str<strong>on</strong>g>and</str<strong>on</strong>g> bulked with distilled<br />

water <str<strong>on</strong>g>and</str<strong>on</strong>g> dissolved completely with electric mixer.<br />

After <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong> was made in <str<strong>on</strong>g>the</str<strong>on</strong>g> laboratory, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

spraying was d<strong>on</strong>e <strong>on</strong> all <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sidered bushes at <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sunset as menti<strong>on</strong>ed before <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sampling was<br />

d<strong>on</strong>e <strong>on</strong>e m<strong>on</strong>th later to study <str<strong>on</strong>g>the</str<strong>on</strong>g> biochemical<br />

characteristics such as carotenoids, anthocyanin, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

catalase.<br />

Catalase Calculati<strong>on</strong><br />

The Dhinsa <str<strong>on</strong>g>and</str<strong>on</strong>g> Motowe method (1981) was used to<br />

calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> catalase. The reactive<br />

compound which comprised 50 mM potassium<br />

phosphate (PH=7), 15 mM hydrogen peroxide, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

100 microliter enzyme distillate was used to evaluate<br />

this enzyme. The catalysis <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrogen peroxide was<br />

followed by absorpti<strong>on</strong> decrease in 240 nanometer<br />

wavelength using spectrophotometer <str<strong>on</strong>g>and</str<strong>on</strong>g> expressed<br />

as per <strong>on</strong>e mg protein in enzyme distillate.<br />

Anthocyanin Calculati<strong>on</strong><br />

The amount <str<strong>on</strong>g>of</str<strong>on</strong>g> anthocyanin was calculated by<br />

Wanger method (1979). For this purpose, 0.1 gr <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

leaf tissue was mixed by 10 mL <str<strong>on</strong>g>acid</str<strong>on</strong>g>ic methanol (pure<br />

methanol <str<strong>on</strong>g>and</str<strong>on</strong>g> pure cholodridric <str<strong>on</strong>g>acid</str<strong>on</strong>g> with volume<br />

factor to be at 1:99). The distillate <str<strong>on</strong>g>of</str<strong>on</strong>g> each treatment<br />

was put at 25°C for 24 hours <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>n was<br />

centrifuged at 4000 rpm for 10 minutes. The soluti<strong>on</strong><br />

was poured in cell to be evaluated by<br />

spectrophotometer in 550 nanometer wavelength.<br />

The following formula has been used to calculate <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> anthocyanin: AAbs 550= ε bc, ε=33000<br />

where “A” st<str<strong>on</strong>g>and</str<strong>on</strong>g>s for <str<strong>on</strong>g>the</str<strong>on</strong>g> read absorpti<strong>on</strong> equivalence,<br />

“B”st<str<strong>on</strong>g>and</str<strong>on</strong>g>s for Cout width (1 cm), <str<strong>on</strong>g>and</str<strong>on</strong>g> “C” for<br />

Anthocyanin c<strong>on</strong>centrati<strong>on</strong> in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> mM/g fresh<br />

weight.<br />

Biomass Calculati<strong>on</strong><br />

In order to calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> biomass, before <str<strong>on</strong>g>the</str<strong>on</strong>g> shoot is<br />

dried, it is removed from <str<strong>on</strong>g>the</str<strong>on</strong>g> crown <str<strong>on</strong>g>and</str<strong>on</strong>g> it was dried<br />

in an oven at 75°C for 48 hours, <str<strong>on</strong>g>the</str<strong>on</strong>g>n it was weighed<br />

by a digital scale.<br />

Relative water c<strong>on</strong>tent<br />

The fresh weight <str<strong>on</strong>g>of</str<strong>on</strong>g> two leaves sliced from each<br />

treatment was measured, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g>y were put into<br />

distilled water for 4 hours in low-light intensity to<br />

determine <str<strong>on</strong>g>the</str<strong>on</strong>g> Turgescence weight. After that, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

slices were dried for 48 hours at 80°C <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> RWC<br />

was determined through <str<strong>on</strong>g>the</str<strong>on</strong>g> following equati<strong>on</strong>:<br />

RWC= (fresh weight-dry weight)/ (Turgescence<br />

weight-dry weight) × 100%.<br />

Statistical analysis<br />

In this experiment, <str<strong>on</strong>g>the</str<strong>on</strong>g> statistical analysis was carried<br />

out bySAS 9 s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware. It is worth noting that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

calculati<strong>on</strong>s were d<strong>on</strong>e after performing normal data<br />

test.<br />

Results<br />

Biomass<br />

The main effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>drought</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g>, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Nano-TiO2 <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reciprocated<br />

<str<strong>on</strong>g>drought</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Gibberellin <str<strong>on</strong>g>stress</str<strong>on</strong>g> <strong>on</strong> biomass trait <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

statistical level <str<strong>on</strong>g>of</str<strong>on</strong>g> 1% <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

gibberellin <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reciprocated effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>drought</str<strong>on</strong>g><br />

<str<strong>on</strong>g>stress</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Nano-TiO2 <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reciprocated effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

gibberellin <str<strong>on</strong>g>and</str<strong>on</strong>g> Nano-TiO2 <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> statistical level <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

5% was significant <strong>on</strong> this trait. However, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

reciprocated triple effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>drought</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g>,<br />

Gibberellin, <str<strong>on</strong>g>and</str<strong>on</strong>g> Nano-TiO2 <strong>on</strong> this trait were not<br />

statistically significant (Table 1).<br />

The <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 250 ppm <str<strong>on</strong>g>of</str<strong>on</strong>g> gibberellin <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

c<strong>on</strong>trol treatment had <str<strong>on</strong>g>the</str<strong>on</strong>g> highest amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>basil</strong><br />

biomass in <str<strong>on</strong>g>the</str<strong>on</strong>g> 100% irrigati<strong>on</strong> regime with 15.09 g,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> 16.24 g, respectively. However <str<strong>on</strong>g>and</str<strong>on</strong>g> regarding<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>se amounts, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol treatment obtained <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

lowest biomass with 10.98 g <str<strong>on</strong>g>and</str<strong>on</strong>g> 5.35 g in <str<strong>on</strong>g>drought</str<strong>on</strong>g><br />

Kiapour et al.<br />

Page 140


<str<strong>on</strong>g>stress</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 70% <str<strong>on</strong>g>and</str<strong>on</strong>g> 40%, respectively, Khazeh et al<br />

(2015). The spraying treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> 250 ppm <str<strong>on</strong>g>and</str<strong>on</strong>g> 500<br />

ppm <str<strong>on</strong>g>of</str<strong>on</strong>g> gibberellin in 70% <str<strong>on</strong>g>and</str<strong>on</strong>g> 40% <str<strong>on</strong>g>drought</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g><br />

obtained higher amount <str<strong>on</strong>g>of</str<strong>on</strong>g> biomass as compared to<br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>r treatments in <str<strong>on</strong>g>the</str<strong>on</strong>g> same irrigati<strong>on</strong> regime (Table<br />

1).<br />

Table 1. The variance results <str<strong>on</strong>g>of</str<strong>on</strong>g> Basil characteristics in evaluating <str<strong>on</strong>g>the</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>drought</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Gibberellin <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Titanium <str<strong>on</strong>g>nanoparticles</str<strong>on</strong>g>.<br />

Variables Degree <str<strong>on</strong>g>of</str<strong>on</strong>g> Freedom Biomass Foliar relative water c<strong>on</strong>tent Catalase Anthocyanin<br />

Replicati<strong>on</strong>s 3 74 / 1 ** 623 / 11<br />

7024 / 26 ns 77 / 24 ns<br />

Drought Stress (A) 6 33 / 140** ** 1264 / 76<br />

213142 / 01** ** 7173 / 63<br />

Gibberellin (B) 6 17 / 34* 126 / 71* 14441 / 34* 1033 / 61**<br />

Nano-TiO2 (C) 6 72 / 67** 137 / 12* 61071 / 77** 1032 / 14**<br />

× Ba 7 62 / 33** ** 112 / 13<br />

67634 / 76** 663 / 33**<br />

× Ca 7 33 / 11* ** 173 / 43<br />

7716 / 26 ns 616 / 37**<br />

× Cb 7 01 / 11* ns1 / 12<br />

67602 / 31** 107 / 62 ns<br />

B×Ca× 7 77 / 7 ns ns0 / 17<br />

13003 / 36** 677 / 14**<br />

Mistake 10 / 7 33 / 74<br />

74 / 74 74 / 74<br />

Changes Index 12 / 17 17 / 12<br />

13 / 70 13 / 33<br />

Table 2. The mean comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reciprocated effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>drought</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> different c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>traits</strong>.<br />

Biomass (gr) Foliar relative water Anthocyanin (mM/g fresh TiO2 (%) Drought <str<strong>on</strong>g>stress</str<strong>on</strong>g><br />

c<strong>on</strong>tent (%)<br />

weight)<br />

11/17A<br />

30/63AB<br />

60/12E<br />

) c<strong>on</strong>trol( 0 FC % 100<br />

12/30A<br />

33/31A<br />

63/32E<br />

0/<br />

00<br />

FC % 100<br />

17/24AB<br />

72/36B<br />

63/62E<br />

0/<br />

00 FC % 100<br />

10/67D<br />

41/01D<br />

30/10D<br />

) c<strong>on</strong>trol( 0 FC % 40<br />

16/72<br />

C<br />

46/26D<br />

70/22<br />

BC<br />

0/<br />

00<br />

FC % 40<br />

13/17BC<br />

47/23C<br />

77/46B<br />

0/<br />

00 FC % 40<br />

2/62 F<br />

21/13F<br />

32/27<br />

C<br />

) c<strong>on</strong>trol( 0 FC % 70<br />

4/77EF<br />

21/17EF<br />

33/74<br />

BC<br />

0/<br />

00<br />

FC % 70<br />

7/27<br />

E<br />

23/14<br />

ED<br />

16/06A<br />

0/<br />

00 FC % 70<br />

** significant in statistical level <str<strong>on</strong>g>of</str<strong>on</strong>g> 1%; * significant in statistical level <str<strong>on</strong>g>of</str<strong>on</strong>g> 5%; ns: not significant.<br />

The <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.01% nanoparticle in 100%<br />

irrigati<strong>on</strong> regime with c<strong>on</strong>trol <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.03% treatments<br />

showed no difference in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> biomass creati<strong>on</strong> as<br />

compared with o<str<strong>on</strong>g>the</str<strong>on</strong>g>r treatments in this irrigati<strong>on</strong><br />

regime. However, it had <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum amount <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

biomass with 16.30 g while <str<strong>on</strong>g>the</str<strong>on</strong>g> same c<strong>on</strong>trol<br />

treatment in <str<strong>on</strong>g>the</str<strong>on</strong>g> 40% irrigati<strong>on</strong> regime obtained <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

minimum amount <str<strong>on</strong>g>of</str<strong>on</strong>g> biomass with 6.26 g that showed<br />

no great statistical difference with 0.01% <str<strong>on</strong>g>titanium</str<strong>on</strong>g><br />

<str<strong>on</strong>g>nanoparticles</str<strong>on</strong>g> with 7.44 g <str<strong>on</strong>g>of</str<strong>on</strong>g> biomass in <str<strong>on</strong>g>the</str<strong>on</strong>g> same<br />

irrigati<strong>on</strong> regime. Having <strong>on</strong>ly 8.64 g <str<strong>on</strong>g>of</str<strong>on</strong>g> biomass, <str<strong>on</strong>g>the</str<strong>on</strong>g>y<br />

showed <str<strong>on</strong>g>the</str<strong>on</strong>g> minimum amount as compared with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.03% <str<strong>on</strong>g>titanium</str<strong>on</strong>g> <str<strong>on</strong>g>nanoparticles</str<strong>on</strong>g> (Table 2)<br />

(Figure 1).<br />

Navaro et al (2008) also showed that Nano-TiO2 can<br />

store nutrient elements <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir surface <str<strong>on</strong>g>and</str<strong>on</strong>g> act as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

nutriti<strong>on</strong> source for <str<strong>on</strong>g>the</str<strong>on</strong>g> plant. Table 3 shows that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

highest amount <str<strong>on</strong>g>of</str<strong>on</strong>g> biomass (13.73 g) is obtained by<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> compound treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> 500 ppm<br />

gibberellin <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.03% <str<strong>on</strong>g>titanium</str<strong>on</strong>g> nanoparticle <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

lowest amount (10.10 g) comes from <str<strong>on</strong>g>the</str<strong>on</strong>g> compound<br />

Kiapour et al.<br />

Page 141


treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> 500 ppm gibberellin <str<strong>on</strong>g>and</str<strong>on</strong>g> n<strong>on</strong><str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>titanium</str<strong>on</strong>g> <str<strong>on</strong>g>nanoparticles</str<strong>on</strong>g>. The latter<br />

showed no great statistical difference (10.10 g) with<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> gibberellin <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.03%<br />

<str<strong>on</strong>g>titanium</str<strong>on</strong>g> <str<strong>on</strong>g>nanoparticles</str<strong>on</strong>g>. Based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> studies <strong>on</strong><br />

Spearmint by Nadjafi (2006), decreasing irrigati<strong>on</strong><br />

cycle from 21 days to 7 days caused <str<strong>on</strong>g>the</str<strong>on</strong>g> increasing <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> biomass. Studies carried out by Ghaffari et al,<br />

(2012) indicated that <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>drought</str<strong>on</strong>g> tensi<strong>on</strong> led to<br />

decreasing <str<strong>on</strong>g>the</str<strong>on</strong>g> dry weight <str<strong>on</strong>g>of</str<strong>on</strong>g> Canola, but <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> gibberellin caused to increasing this<br />

trait <str<strong>on</strong>g>under</str<strong>on</strong>g> <str<strong>on</strong>g>drought</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g>. Akbari et al, (2008)<br />

reported that <str<strong>on</strong>g>under</str<strong>on</strong>g> gibberellin <str<strong>on</strong>g>stress</str<strong>on</strong>g>, <str<strong>on</strong>g>the</str<strong>on</strong>g> biomass <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Vetch increased. P<str<strong>on</strong>g>and</str<strong>on</strong>g>i et al (2010) showed that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Nano-ZnO through increasing in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

surface <str<strong>on</strong>g>of</str<strong>on</strong>g> Indole acetic <str<strong>on</strong>g>acid</str<strong>on</strong>g> in <str<strong>on</strong>g>the</str<strong>on</strong>g> root <str<strong>on</strong>g>of</str<strong>on</strong>g> pea caused<br />

to increase <str<strong>on</strong>g>the</str<strong>on</strong>g> plant growth. Ashkani et al, (2007),<br />

has also stated that <str<strong>on</strong>g>the</str<strong>on</strong>g> biomass trait was affected<br />

<str<strong>on</strong>g>under</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> water <str<strong>on</strong>g>stress</str<strong>on</strong>g> significantly, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>refore in<br />

this study, <str<strong>on</strong>g>the</str<strong>on</strong>g> highest biomass is observed when <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

water is supplied 100% for <str<strong>on</strong>g>the</str<strong>on</strong>g> plant. Mahajan et al.<br />

(6011) determined that <str<strong>on</strong>g>the</str<strong>on</strong>g> seedling’s root <str<strong>on</strong>g>and</str<strong>on</strong>g> stem <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

vetch <str<strong>on</strong>g>and</str<strong>on</strong>g> pea that were <str<strong>on</strong>g>under</str<strong>on</strong>g> Nano-ZnO treatment,<br />

had higher growth rate compared with c<strong>on</strong>trol plant.<br />

Table 3. The mean comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reciprocated effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>drought</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Gibberellin <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>traits</strong>.<br />

Biomass (gr)<br />

Foliar relative water Catalase<br />

c<strong>on</strong>tent (%)<br />

mg/mmol)<br />

(Protein Anthocyanin (mM/g Gibberellin (ppm)<br />

fresh weight)<br />

Drought <str<strong>on</strong>g>stress</str<strong>on</strong>g><br />

A12 / 67<br />

A36 / 30<br />

ED 613/<br />

67 D61 / 10<br />

0 100 %FC<br />

AB11 / 03<br />

A73 / 33<br />

EF630 / 00 D67 / 76<br />

610 100 %FC<br />

AB17 / 76<br />

A77 / 17<br />

F133 / 17<br />

D61 / 71<br />

100 100 %FC<br />

DC10 / 37<br />

C40 / 46<br />

D634 C31 / 43<br />

0 % 40FC<br />

B13 / 34<br />

B47 / 36<br />

D310 / 70 76/<br />

67B 610 % 40FC<br />

C11 / 13<br />

BC47 / 46<br />

C712 / 01<br />

B71 / 77<br />

100 % 40FC<br />

F1 / 31<br />

E21 / 60<br />

BC 721 / 34 C36 / 01<br />

0 % 70FC<br />

E4 / 37<br />

DE21 / 67<br />

AB101 / 62 A77 / 11<br />

610 % 70FC<br />

D3 / 22<br />

DC 23 / 70 A130 / 14<br />

A77 / 34<br />

100 % 70FC<br />

Table 4. The mean comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reciprocated effects <str<strong>on</strong>g>of</str<strong>on</strong>g> gibberellin <str<strong>on</strong>g>and</str<strong>on</strong>g> TiO2 <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> trait<br />

Gibberellin (ppm) TiO2 (%) Catalase (protein mg/mmol)<br />

0 0 (c<strong>on</strong>trol) 330/<br />

33dc<br />

0 0 / 01<br />

311 / 71 bc<br />

0 0 / 03<br />

337 / 76 dc<br />

610 0 (c<strong>on</strong>trol) 316/<br />

41bc<br />

610 0 / 01<br />

671/<br />

01d<br />

610 0 / 03<br />

703/<br />

77ab<br />

100 0 (c<strong>on</strong>trol) 364/<br />

11dc<br />

100 0 / 01<br />

334/<br />

47ab<br />

100 0 / 03<br />

760/<br />

32a<br />

(The similar alphabets in each column do not have statistically significant difference).<br />

Anthocyanin<br />

The main effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>drought</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g>, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Nano-TiO2 <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reciprocated<br />

<str<strong>on</strong>g>drought</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> gibberellin <str<strong>on</strong>g>stress</str<strong>on</strong>g> <strong>on</strong> biomass trait <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

statistical level <str<strong>on</strong>g>of</str<strong>on</strong>g> 1% <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

gibberellin <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reciprocated effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>drought</str<strong>on</strong>g><br />

<str<strong>on</strong>g>stress</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Nano-TiO2 <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reciprocated effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

gibberellin <str<strong>on</strong>g>and</str<strong>on</strong>g> Nano-TiO2 <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> statistical level <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

5% was significant <strong>on</strong> this trait. However, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

reciprocated triple effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>drought</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g>,<br />

gibberellin, <str<strong>on</strong>g>and</str<strong>on</strong>g> Nano-TiO2 <strong>on</strong> this trait were not<br />

statistically significant (Table 1).<br />

Kiapour et al.<br />

Page 142


Table 5. The mean comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reciprocated effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>drought</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g>, gibberellin, <str<strong>on</strong>g>and</str<strong>on</strong>g> TiO2 <strong>on</strong> <strong>traits</strong>.<br />

Catalase<br />

mg/mmol)<br />

ji632<br />

/ 71<br />

fghi 307 / 36<br />

ji636<br />

/ 03<br />

k113<br />

/ 43<br />

fghij301<br />

/ 31<br />

jhi627<br />

/ 33<br />

jki132<br />

/ 12<br />

jk131<br />

/ 61<br />

jki616<br />

/ 34<br />

eggh 320 / 72<br />

ji676<br />

/ 41<br />

ghij 674 / 77<br />

jhi647<br />

/ 41<br />

jhi673<br />

/ 03<br />

sdef704<br />

/ 73<br />

ghij673<br />

/ 47<br />

abdc732<br />

/ 17<br />

bcde726<br />

/ 60<br />

defg331<br />

/ 61<br />

abc111<br />

/ 30<br />

abcd777<br />

/ 37<br />

abcd771<br />

/ 13<br />

abcd772<br />

/ 37<br />

ab131<br />

/ 72<br />

abcd732<br />

/ 37<br />

abcd101<br />

/ 76<br />

a177<br />

/ 36<br />

(Protein Anthocyanin (mM/g fresh Nano-TiO2 (%)<br />

weight)<br />

i10<br />

/ 74<br />

0<br />

fgh67<br />

/ 23<br />

0 /01<br />

gh61<br />

/ 33<br />

0 /03<br />

fgh63<br />

/ 33<br />

0<br />

h66<br />

/ 17<br />

0 /01<br />

h61<br />

/ 40<br />

0 /03<br />

h60<br />

/ 26<br />

0<br />

h61<br />

/ 01<br />

0 /01<br />

h66<br />

/ 43<br />

0 /03<br />

efg37<br />

/ 17<br />

0<br />

h66<br />

/ 44<br />

0 /01<br />

def37<br />

/ 06<br />

0 /03<br />

fgh67<br />

/ 74<br />

0<br />

abcd73<br />

/ 11<br />

0 /01<br />

abcd73<br />

/ 13<br />

0 /03<br />

fgh64<br />

/ 67<br />

0<br />

abc10<br />

/ 03<br />

0 /01<br />

abcd72<br />

/ 33<br />

0 /03<br />

gh61<br />

/ 34<br />

0<br />

gh63<br />

/ 70<br />

0 /01<br />

abcd72<br />

/ 21<br />

0 /03<br />

cde71<br />

/ 67<br />

0<br />

abcd73<br />

/ 13<br />

0 /01<br />

ab17<br />

/ 07<br />

0 /03<br />

bcde76<br />

/ 46<br />

0<br />

abcd74<br />

/ 07<br />

0 /01<br />

a11<br />

/ 33<br />

0 /03<br />

Gibberellin (ppm)<br />

0<br />

0<br />

0<br />

610<br />

610<br />

610<br />

100<br />

100<br />

100<br />

0<br />

0<br />

0<br />

610<br />

610<br />

610<br />

100<br />

100<br />

100<br />

0<br />

0<br />

0<br />

610<br />

610<br />

610<br />

100<br />

100<br />

100<br />

Drought <str<strong>on</strong>g>stress</str<strong>on</strong>g><br />

100<br />

100<br />

100<br />

100<br />

100<br />

100<br />

100<br />

100<br />

100<br />

40<br />

40<br />

40<br />

40<br />

40<br />

40<br />

40<br />

40<br />

40<br />

70<br />

70<br />

70<br />

70<br />

70<br />

70<br />

70<br />

70<br />

70<br />

Fig. 1. The reciprocated effects <str<strong>on</strong>g>of</str<strong>on</strong>g> dryness <str<strong>on</strong>g>stress</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Titanum <str<strong>on</strong>g>dioxide</str<strong>on</strong>g> <strong>on</strong> Biomass.<br />

Fig. 2. The reciprocated effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Gibberellin <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Titanum <str<strong>on</strong>g>dioxide</str<strong>on</strong>g> <strong>on</strong><str<strong>on</strong>g>nanoparticles</str<strong>on</strong>g> <strong>on</strong> Biomass.<br />

The main effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>drought</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g>, gibberellin, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Nano-TiO2 <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reciprocated effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>drought</str<strong>on</strong>g><br />

<str<strong>on</strong>g>stress</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> gibberellin, <str<strong>on</strong>g>the</str<strong>on</strong>g> reciprocated effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>drought</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g>, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Nano-TiO2 <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

reciprocated triple effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>drought</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g>,<br />

gibberellin, <str<strong>on</strong>g>and</str<strong>on</strong>g> Nano-TiO2 <strong>on</strong> anthocyanin trait were<br />

significant in statistical level <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e percent (Table 1).<br />

Kiapour et al.<br />

As shown in table 2, <str<strong>on</strong>g>the</str<strong>on</strong>g> highest amount <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

anthocyanin is obtained by <str<strong>on</strong>g>the</str<strong>on</strong>g> irrigati<strong>on</strong> regimes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

40%, 70% <str<strong>on</strong>g>and</str<strong>on</strong>g> 100% <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> compound treatment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

500 <str<strong>on</strong>g>and</str<strong>on</strong>g> 250 ppm gibberellin (48.37 <str<strong>on</strong>g>and</str<strong>on</strong>g> 48.15 mM/g<br />

fresh weight, respectively) <str<strong>on</strong>g>and</str<strong>on</strong>g> lowest amount (21.45<br />

mM/g fresh weight) comes from <str<strong>on</strong>g>the</str<strong>on</strong>g> treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> 500<br />

ppm gibberellin in 100% irrigati<strong>on</strong> regime. The latter<br />

Page 143


showed no great statistical difference (21.50 mM/g<br />

fresh weight) with <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> gibberellin<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 250 ppm gibberellin (24.42<br />

mM/g fresh weight) in <str<strong>on</strong>g>the</str<strong>on</strong>g> same irrigati<strong>on</strong> regime.<br />

Likewise, in 40% <str<strong>on</strong>g>and</str<strong>on</strong>g> 70% irrigati<strong>on</strong> regimes, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 250 <str<strong>on</strong>g>and</str<strong>on</strong>g> 500 ppm gibberellin obtained<br />

high amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> anthocyanin <str<strong>on</strong>g>and</str<strong>on</strong>g> were categorized in<br />

<strong>on</strong>e group (Table 1).<br />

Fig. 3. The reciprocated effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>drought</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

gibberellin <strong>on</strong> The Biomass ( gr ).<br />

The study c<strong>on</strong>ducted by Jaafar et al, (2012) <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>drought</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g> (normal irrigati<strong>on</strong>; moderate,<br />

high, <str<strong>on</strong>g>and</str<strong>on</strong>g> intense <str<strong>on</strong>g>drought</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g>) <strong>on</strong> biological<br />

characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> Labisiapumila Benth showed that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> high <str<strong>on</strong>g>and</str<strong>on</strong>g> intense <str<strong>on</strong>g>drought</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g>, <str<strong>on</strong>g>the</str<strong>on</strong>g> highest<br />

c<strong>on</strong>tents <str<strong>on</strong>g>of</str<strong>on</strong>g> anthocyanin was obtained. In line with<br />

this study, Hassanpour Asil et al (2012) observed in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ir study that gibberellin causes to increasing <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

anthocyanin in Iris. The highest amount (52.02<br />

mM/g fresh weight) was achieved by <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 0.03% Nano-TiO2 <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lowest amount (20.16<br />

mM/g fresh weight) was attained by n<strong>on</strong>-<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Nano-TiO2 in 100% irrigati<strong>on</strong> regime which<br />

showed no significant statistical difference with<br />

0.01% <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.03% Nano-TiO2 (23.96 <str<strong>on</strong>g>and</str<strong>on</strong>g> 23.26 mM/g<br />

fresh weight, respectively). The <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.03%<br />

<str<strong>on</strong>g>titanium</str<strong>on</strong>g> <str<strong>on</strong>g>nanoparticles</str<strong>on</strong>g> in 70% irrigati<strong>on</strong> regime<br />

showed higher amount <str<strong>on</strong>g>of</str<strong>on</strong>g> anthocyanin as compared<br />

with c<strong>on</strong>trol treatment (n<strong>on</strong>-<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Nano-<br />

TiO2), while in 40% irrigati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

0.01% <str<strong>on</strong>g>titanium</str<strong>on</strong>g> <str<strong>on</strong>g>nanoparticles</str<strong>on</strong>g> did not have<br />

statistically significant difference with n<strong>on</strong><str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g><br />

approach but showed higher amount <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

anthocyanin compared with <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.03%<br />

treatment (Table 2).<br />

Fig. 4. The triple reciprocated effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>drought</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g>, Gibberellin <str<strong>on</strong>g>and</str<strong>on</strong>g> Titanium <strong>on</strong> Anthocyanin.<br />

Kiapour et al.<br />

The results taken from <str<strong>on</strong>g>the</str<strong>on</strong>g> triple effect mean<br />

comparis<strong>on</strong> table (Table 5) showed that <str<strong>on</strong>g>the</str<strong>on</strong>g> highest<br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> anthocyanin (55.33 mM/g fresh weight)<br />

was obtained by <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 40% 500 ppm<br />

gibberellin <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.03% <str<strong>on</strong>g>titanium</str<strong>on</strong>g> <str<strong>on</strong>g>nanoparticles</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

lowest amount (10.47 mM/g fresh weight) was<br />

achieved by <str<strong>on</strong>g>the</str<strong>on</strong>g> 100% irrigati<strong>on</strong> treatment <str<strong>on</strong>g>and</str<strong>on</strong>g> n<strong>on</strong><str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> gibberellin <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>nanoparticles</str<strong>on</strong>g>. The<br />

studies carried out by Ghorbani (2012) <strong>on</strong> <strong>basil</strong>;<br />

Gholampour (2011) <strong>on</strong> amaranth; <str<strong>on</strong>g>and</str<strong>on</strong>g> Rezaei Adl<br />

(2013) indicated that <str<strong>on</strong>g>the</str<strong>on</strong>g> anthocyanin level <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

plants was affected by <str<strong>on</strong>g>the</str<strong>on</strong>g> different c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>titanium</str<strong>on</strong>g> <str<strong>on</strong>g>nanoparticles</str<strong>on</strong>g>.<br />

Page 144


Fig. 5. The triple effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>drought</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g>, gibberellin, <str<strong>on</strong>g>and</str<strong>on</strong>g> Nano-TiO2 <strong>on</strong> Catalase<br />

Catalase<br />

The main effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>drought</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> TiO2<br />

nanoparticle, <str<strong>on</strong>g>the</str<strong>on</strong>g> reciprocal tw<str<strong>on</strong>g>of</str<strong>on</strong>g>old effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>drought</str<strong>on</strong>g><br />

<str<strong>on</strong>g>stress</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> gibberellin, <str<strong>on</strong>g>the</str<strong>on</strong>g> reciprocal tw<str<strong>on</strong>g>of</str<strong>on</strong>g>old effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

gibberellin <str<strong>on</strong>g>and</str<strong>on</strong>g> Nano-TiO2 <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> triple<br />

reciprocated effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>drought</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g>, gibberellin <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Nano-TiO2 were significant <strong>on</strong> 1% statistical level <strong>on</strong><br />

catalase characteristics, however <str<strong>on</strong>g>the</str<strong>on</strong>g> tw<str<strong>on</strong>g>of</str<strong>on</strong>g>old<br />

reciprocated effects <str<strong>on</strong>g>of</str<strong>on</strong>g> gibberellin <str<strong>on</strong>g>and</str<strong>on</strong>g> Nano-TiO2<br />

were not statistically significant (Table 1). Regarding<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> results taken from <str<strong>on</strong>g>the</str<strong>on</strong>g> mean comparis<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

highest amount <str<strong>on</strong>g>of</str<strong>on</strong>g> catalase (530.17 protein mg/mmol)<br />

was obtained from 40% irrigati<strong>on</strong> regime <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 500 ppm gibberellin <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lowest<br />

(199.58 protein mg/mmol) was achieved by <str<strong>on</strong>g>the</str<strong>on</strong>g> 100%<br />

irrigati<strong>on</strong> regime <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 500 ppm<br />

gibberellin. Increasing <str<strong>on</strong>g>drought</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g> will increase<br />

catalane amount. 100% irrigati<strong>on</strong> regime, n<strong>on</strong><str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> gibberellin, <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> gibberellin<br />

250 ppm <str<strong>on</strong>g>and</str<strong>on</strong>g> 500 ppm were categorized <str<strong>on</strong>g>the</str<strong>on</strong>g> same<br />

statistical level <str<strong>on</strong>g>and</str<strong>on</strong>g> were not statistically different <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

more amount <str<strong>on</strong>g>of</str<strong>on</strong>g> catalase was obtained compared with<br />

c<strong>on</strong>trol treatment. The highest <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lowest amount<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> catalase was achieved in c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 40%<br />

irrigati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 500 ppm <str<strong>on</strong>g>and</str<strong>on</strong>g> n<strong>on</strong><str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> gibberellin, respectively (Table 3). In<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> studies carried out by Ali et al (2012), it was<br />

indicated that <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> gibberellin <strong>on</strong> sour<br />

tea will increase <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> catalase <str<strong>on</strong>g>under</str<strong>on</strong>g><br />

<str<strong>on</strong>g>drought</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g>. Regarding <str<strong>on</strong>g>the</str<strong>on</strong>g> results taken from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

mean comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reciprocated effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Kiapour et al.<br />

gibberellin <str<strong>on</strong>g>and</str<strong>on</strong>g> nanoparticle (Table 4), <str<strong>on</strong>g>the</str<strong>on</strong>g> highest<br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> catalase (420.96 protein mg/mmol) was<br />

obtained by <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 500 ppm gibberellin<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> 0.03% <str<strong>on</strong>g>nanoparticles</str<strong>on</strong>g>, while <str<strong>on</strong>g>the</str<strong>on</strong>g> lowest amount<br />

(285.05) was achieved by <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 500 ppm<br />

gibberellin <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.01% <str<strong>on</strong>g>nanoparticles</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong><br />

which did not have significant difference with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

compound treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> gibberellin<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>nanoparticles</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> compound treatment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

500 ppm gibberellin <str<strong>on</strong>g>and</str<strong>on</strong>g> n<strong>on</strong>-<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>nanoparticles</str<strong>on</strong>g>. Based <strong>on</strong> results taken from tables <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

triple reciprocated treatments (Table 5), it is observed<br />

that in 40% irrigati<strong>on</strong> regime, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 500<br />

ppm gibberellin <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.03% <str<strong>on</strong>g>nanoparticles</str<strong>on</strong>g> (588.32<br />

protein mg/mmol), <str<strong>on</strong>g>the</str<strong>on</strong>g> highest catalase amount was<br />

obtained <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lowest amount (119.73 protein<br />

mg/mmol) was taken out <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 250<br />

ppm gibberellin <str<strong>on</strong>g>and</str<strong>on</strong>g> n<strong>on</strong>-<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nanoparticles</str<strong>on</strong>g><br />

in 100% irrigati<strong>on</strong> regime. Approving <str<strong>on</strong>g>the</str<strong>on</strong>g>se results, in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> study <str<strong>on</strong>g>of</str<strong>on</strong>g> Feizi et al (2012) <strong>on</strong> wheat it was shown<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> appropriate c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Nano-TiO2<br />

causes to increasing <str<strong>on</strong>g>of</str<strong>on</strong>g> catalase in wheat seedlings<br />

while <str<strong>on</strong>g>the</str<strong>on</strong>g> higher c<strong>on</strong>centrati<strong>on</strong>s showed less impacts.<br />

Moaveni et al (2011) reported that <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>titanium</str<strong>on</strong>g> <str<strong>on</strong>g>nanoparticles</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> trait <str<strong>on</strong>g>of</str<strong>on</strong>g> seed<br />

performance, biologic performance, <str<strong>on</strong>g>and</str<strong>on</strong>g> harvest<br />

index in wheat was significant in 5% statistical level in<br />

which <str<strong>on</strong>g>the</str<strong>on</strong>g> highest amounts reported to be obtained<br />

for <str<strong>on</strong>g>nanoparticles</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.01% <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.03%,<br />

respectively. Hruby <str<strong>on</strong>g>and</str<strong>on</strong>g> Kuzel (2012) also stated that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Nano-TiO2 had positive effects <strong>on</strong><br />

Page 145


<str<strong>on</strong>g>the</str<strong>on</strong>g> plant <strong>traits</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> green alga <str<strong>on</strong>g>and</str<strong>on</strong>g> pepper which<br />

showed increase in reductase nitrate, peroxidase <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

catalase. Moaveni <str<strong>on</strong>g>and</str<strong>on</strong>g> Kheiri (2011) in <str<strong>on</strong>g>the</str<strong>on</strong>g> study <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Nano-TiO2 <strong>on</strong> corn in <str<strong>on</strong>g>the</str<strong>on</strong>g> two<br />

stages <str<strong>on</strong>g>of</str<strong>on</strong>g> stem el<strong>on</strong>gati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> flowering c<strong>on</strong>cluded<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> foliar number <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dry weight <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

seed performance were significant in reacti<strong>on</strong> to<br />

<str<strong>on</strong>g>nanoparticles</str<strong>on</strong>g> treatment in 5% statistical level. It had<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> highest impact <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> seed characteristics, dry<br />

weight, <str<strong>on</strong>g>and</str<strong>on</strong>g> seed performance <str<strong>on</strong>g>of</str<strong>on</strong>g> corn <str<strong>on</strong>g>and</str<strong>on</strong>g> caused to<br />

increasing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se factors. Also, <str<strong>on</strong>g>the</str<strong>on</strong>g> findings <str<strong>on</strong>g>of</str<strong>on</strong>g> Lu et<br />

al (2002) indicated that <str<strong>on</strong>g>nanoparticles</str<strong>on</strong>g> treatment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

soya increases catalase in burge<strong>on</strong>ing seeds <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

increased water <str<strong>on</strong>g>and</str<strong>on</strong>g> compost c<strong>on</strong>sumpti<strong>on</strong> (Table 5).<br />

Fig. 6. The reciprocated effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>drought</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

gibberellin <strong>on</strong> The Foliar Relative Water c<strong>on</strong>tent.<br />

The Relative Water C<strong>on</strong>tent<br />

The main effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>drought</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g>, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

reciprocated <str<strong>on</strong>g>drought</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> gibberellin <str<strong>on</strong>g>stress</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

reciprocated <str<strong>on</strong>g>drought</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>nanoparticles</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g> was<br />

significant <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> foliar relative water c<strong>on</strong>tent <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

statistical level <str<strong>on</strong>g>of</str<strong>on</strong>g> 1%. The main effect <str<strong>on</strong>g>of</str<strong>on</strong>g> gibberellin<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>nanoparticles</str<strong>on</strong>g> <strong>on</strong> this trait was significant in 5%<br />

level. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> tw<str<strong>on</strong>g>of</str<strong>on</strong>g>old reciprocated effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

gibberellin <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>titanium</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> triple reciprocated<br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>drought</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g>, gibberellin <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>titanium</str<strong>on</strong>g> was<br />

not significant <strong>on</strong> this trait (Table 1). Increasing <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>drought</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g>, will decrease <str<strong>on</strong>g>the</str<strong>on</strong>g> foliar<br />

relative water c<strong>on</strong>tent <strong>on</strong> <strong>basil</strong>. The highest amount <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> foliar relative water c<strong>on</strong>tent (92.30%) was<br />

obtained in 100% irrigati<strong>on</strong> regime <str<strong>on</strong>g>and</str<strong>on</strong>g> n<strong>on</strong><str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> gibberellin in which no significant<br />

statistical difference was observed compared with 250<br />

ppm gibberellin (89.39%) <str<strong>on</strong>g>and</str<strong>on</strong>g> 500 ppm (88.18%).<br />

The lowest amount (61.20 %) was obtained from 40%<br />

irrigati<strong>on</strong> regime <str<strong>on</strong>g>and</str<strong>on</strong>g> n<strong>on</strong>-<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> gibberellin.<br />

In 70% irrigati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> highest relative foliar water<br />

c<strong>on</strong>tent was achieved by <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 250 ppm<br />

gibberellin <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> gibberellin<br />

gave <str<strong>on</strong>g>the</str<strong>on</strong>g> lowest mount. Also, in 40% irrigati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 500 ppm gibberellin achieved <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

highest relative foliar water c<strong>on</strong>tent <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 40%<br />

irrigati<strong>on</strong> treatment <str<strong>on</strong>g>and</str<strong>on</strong>g> n<strong>on</strong>-<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

gibberellin gave <str<strong>on</strong>g>the</str<strong>on</strong>g> lowest amount for <str<strong>on</strong>g>the</str<strong>on</strong>g> trait (Table<br />

3). This is in line with <str<strong>on</strong>g>the</str<strong>on</strong>g> results reported from<br />

Pazoki et al, (2012) in which <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>drought</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g> leads<br />

to less relative foliar water c<strong>on</strong>tent while <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> gibberellin increased that amount in<br />

c<strong>on</strong>trast with n<strong>on</strong>-<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> approach (Table 6).<br />

The highest amount <str<strong>on</strong>g>of</str<strong>on</strong>g> relative foliar water c<strong>on</strong>tent<br />

(93.39%) was achieved by <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.01%<br />

<str<strong>on</strong>g>titanium</str<strong>on</strong>g> <str<strong>on</strong>g>nanoparticles</str<strong>on</strong>g> in 100 irrigati<strong>on</strong> regime in<br />

which no significant statistical difference was<br />

observed compared with c<strong>on</strong>trol treatment (90.23%)<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> same irrigati<strong>on</strong> regime, while <str<strong>on</strong>g>the</str<strong>on</strong>g> lowest<br />

amount (61.535) was obtained by c<strong>on</strong>trol treatment in<br />

405 irrigati<strong>on</strong> regime in which no significant<br />

difference was observed compared with 0.01% n<strong>on</strong><str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> nanoparticle treatment (65.14%). In<br />

70% irrigati<strong>on</strong> regime, <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nanoparticle treatment <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.01% treatment had no<br />

significant differences <str<strong>on</strong>g>and</str<strong>on</strong>g> showed <str<strong>on</strong>g>the</str<strong>on</strong>g> lowest relative<br />

foliar water c<strong>on</strong>tent, while <str<strong>on</strong>g>the</str<strong>on</strong>g> highest record <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

trait was achieved by <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.03%<br />

<str<strong>on</strong>g>nanoparticles</str<strong>on</strong>g> in 70% irrigati<strong>on</strong> regime. In 40%<br />

irrigati<strong>on</strong> regime, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.03% <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.01%<br />

c<strong>on</strong>trol treatment showed <str<strong>on</strong>g>the</str<strong>on</strong>g> lowest relative foliar<br />

water c<strong>on</strong>tent, respectively (Table 2) (Figure 7).<br />

Fig.7 . The reciprocated effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>drought</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Nano-TiO2 <strong>on</strong> The Foliar Relative Water c<strong>on</strong>tent.<br />

Kiapour et al.<br />

Page 146


Discussi<strong>on</strong><br />

As shown in <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> this study, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>drought</str<strong>on</strong>g><br />

<str<strong>on</strong>g>stress</str<strong>on</strong>g> caused to increasing <str<strong>on</strong>g>the</str<strong>on</strong>g> foliar relative water<br />

c<strong>on</strong>tent <str<strong>on</strong>g>and</str<strong>on</strong>g> catalase <str<strong>on</strong>g>and</str<strong>on</strong>g> biomass <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>basil</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> gibberellin <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>titanium</str<strong>on</strong>g> <str<strong>on</strong>g>nanoparticles</str<strong>on</strong>g><br />

improved <str<strong>on</strong>g>the</str<strong>on</strong>g> negative effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g>. Due to<br />

producing free radicals <str<strong>on</strong>g>and</str<strong>on</strong>g> decreasing inner cells<br />

carb<strong>on</strong> <str<strong>on</strong>g>dioxide</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>drought</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g><br />

c<strong>on</strong>diti<strong>on</strong> causes to increasing peroxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

membrane’s lipids <str<strong>on</strong>g>and</str<strong>on</strong>g> mal<strong>on</strong>dialdehydes in which<br />

enhances antioxidant enzymes such as catalase <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

n<strong>on</strong>-enzyme systems like anthocyanin to fight against<br />

free radicals (Sharma <str<strong>on</strong>g>and</str<strong>on</strong>g> Dubey, 2005).The external<br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> plant growth regulators are used to<br />

overcome disorders <str<strong>on</strong>g>under</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g>. Different types <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

phytohorm<strong>on</strong>es such as gibberellin, kinetin, oxine<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> etc. are used to decrease <str<strong>on</strong>g>the</str<strong>on</strong>g> negative effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

envir<strong>on</strong>mental <str<strong>on</strong>g>stress</str<strong>on</strong>g>es (Ashraf et al, 2002). Having<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> great role <str<strong>on</strong>g>of</str<strong>on</strong>g> increasing meiosis <str<strong>on</strong>g>and</str<strong>on</strong>g> cell<br />

el<strong>on</strong>gati<strong>on</strong>, gibberellin increases plant height, number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> knots, biomass, <str<strong>on</strong>g>the</str<strong>on</strong>g> performance <str<strong>on</strong>g>of</str<strong>on</strong>g> flowered<br />

branches, number <str<strong>on</strong>g>of</str<strong>on</strong>g> flowered branches, <str<strong>on</strong>g>the</str<strong>on</strong>g> dry <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

fresh weight <str<strong>on</strong>g>of</str<strong>on</strong>g> flowered branches, carotenoids, total<br />

chlorophyll, “a” <str<strong>on</strong>g>and</str<strong>on</strong>g> “b” chlorophyll, seeds weight,<br />

seed performance <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>basil</strong> essence especially <str<strong>on</strong>g>under</str<strong>on</strong>g><br />

<str<strong>on</strong>g>drought</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g>. In this experiment, catalase increased<br />

more with <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nanoparticles</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> that<br />

has made <str<strong>on</strong>g>the</str<strong>on</strong>g> plant str<strong>on</strong>ger. The reas<strong>on</strong> is that plants<br />

possess effective defense-mechanism composed <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

superoxide dismutase, catalase, <str<strong>on</strong>g>and</str<strong>on</strong>g> peroxidase<br />

ascorbate, <str<strong>on</strong>g>and</str<strong>on</strong>g> glutathi<strong>on</strong>e reductase (Blokhin et al,<br />

2003) against oxidative <str<strong>on</strong>g>stress</str<strong>on</strong>g>es that can eliminate or<br />

neutralize free radicals. The number <str<strong>on</strong>g>and</str<strong>on</strong>g> frequency <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

defense-mechanisms is because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> different types<br />

free radicals produced in <str<strong>on</strong>g>the</str<strong>on</strong>g> cells which show<br />

different reacti<strong>on</strong>s facing with different biologic<br />

molecules. The study indicated that <str<strong>on</strong>g>the</str<strong>on</strong>g> highest level<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> enzymes’ activities was at 0.03% c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

in 40% <str<strong>on</strong>g>and</str<strong>on</strong>g> 70% irrigati<strong>on</strong> regimes which shows <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.03% <str<strong>on</strong>g>titanium</str<strong>on</strong>g> <str<strong>on</strong>g>nanoparticles</str<strong>on</strong>g> in decreasing<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> oxidative damages. The peroxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

unsaturated fat <str<strong>on</strong>g>and</str<strong>on</strong>g> lipids increases when <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

oxidative <str<strong>on</strong>g>stress</str<strong>on</strong>g> occurs. Different aldehydes are<br />

created by <str<strong>on</strong>g>the</str<strong>on</strong>g> attack <str<strong>on</strong>g>of</str<strong>on</strong>g> free radicals to <str<strong>on</strong>g>the</str<strong>on</strong>g> lipids such<br />

as mal<strong>on</strong>dialdehyde. The free oxygen radicals attack<br />

proteins <str<strong>on</strong>g>and</str<strong>on</strong>g> create partial changes in special places<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> amino <str<strong>on</strong>g>acid</str<strong>on</strong>g>s by <str<strong>on</strong>g>the</str<strong>on</strong>g> catalysis <str<strong>on</strong>g>of</str<strong>on</strong>g> peptides chain. The<br />

sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> amino <str<strong>on</strong>g>acid</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a peptide is different to<br />

an oxidative attack <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>re are various forms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

activated oxygen in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> reactiveness potential. In<br />

this experiment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>titanium</str<strong>on</strong>g> <str<strong>on</strong>g>nanoparticles</str<strong>on</strong>g>, less<br />

mal<strong>on</strong>dialdehyde is created, thus <str<strong>on</strong>g>the</str<strong>on</strong>g> strength <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

membranes is enhanced, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> antioxidant defensemechanism<br />

is streng<str<strong>on</strong>g>the</str<strong>on</strong>g>ned by this nanoparticle <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

is less likely to be attacked <str<strong>on</strong>g>and</str<strong>on</strong>g> destroyed by free<br />

radicals. In line with Bu<strong>on</strong> et al (1992), due to a<br />

str<strong>on</strong>g defense-mechanism <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

smolites <str<strong>on</strong>g>under</str<strong>on</strong>g> <str<strong>on</strong>g>drought</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g>, <str<strong>on</strong>g>the</str<strong>on</strong>g> plant will have<br />

more relative foliar water c<strong>on</strong>tent <str<strong>on</strong>g>and</str<strong>on</strong>g> due to this<br />

performance, it produces more flower, seed, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

essence. Increasing photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis increases <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plant’s dry material <str<strong>on</strong>g>and</str<strong>on</strong>g> morphological<br />

characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> plant <str<strong>on</strong>g>and</str<strong>on</strong>g> ultimately it enhances<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> performance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> plant. Regarding biomass it<br />

should be noted that <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

nanoparticle causes to increasing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> accumulati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic in outer limbs due to increasing <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

solar radiances absorpti<strong>on</strong>, plant’s growth speed, leaf<br />

surface index, plant’s height, <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> knots, dry<br />

weight <str<strong>on</strong>g>of</str<strong>on</strong>g> leaf <str<strong>on</strong>g>and</str<strong>on</strong>g> stem which results in increasing<br />

biomass <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> performance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> plant.<br />

C<strong>on</strong>clusi<strong>on</strong><br />

In this study, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>drought</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g> caused to decreasing<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> qualitative <str<strong>on</strong>g>and</str<strong>on</strong>g> quantitative characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>basil</strong>. Regarding <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that <strong>basil</strong> is cultivated in<br />

seed <str<strong>on</strong>g>and</str<strong>on</strong>g> essence in order to reach <str<strong>on</strong>g>the</str<strong>on</strong>g> utmost<br />

biological performance, to reach <str<strong>on</strong>g>the</str<strong>on</strong>g>se objectives, in<br />

100% irrigati<strong>on</strong> regime, <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

gibberellin <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.01% <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Nano-TiO2 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

in 70% irrigati<strong>on</strong> regime, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 250 ppm<br />

gibberellin <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.03% Nano-TiO2 <str<strong>on</strong>g>and</str<strong>on</strong>g> in 40%<br />

irrigati<strong>on</strong> regime, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 500 ppm<br />

gibberellin <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.03% Nano-TiO2 were identified as<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> best possible treatments.<br />

References<br />

Akbari N, Barani M, Ahmadi H. 2008. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Gibberellic Acid (GA3) <strong>on</strong> Agr<strong>on</strong>omic Traits <str<strong>on</strong>g>of</str<strong>on</strong>g> Green<br />

Gram (VignaradiataL. Wilczek) Irrigated with<br />

Kiapour et al.<br />

Page 147


Different Levels <str<strong>on</strong>g>of</str<strong>on</strong>g> Saline Water. World Applied<br />

Sciences Journal 5(2), 199-203.<br />

2008 ISSN 1818-4952 © IDOSI Publicati<strong>on</strong>s, 2008.<br />

Akbarinia A. 2006. <str<strong>on</strong>g>the</str<strong>on</strong>g> Floristic Analysis <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Biological Traits <str<strong>on</strong>g>of</str<strong>on</strong>g> Medicinal Plants <str<strong>on</strong>g>of</str<strong>on</strong>g> Qazvin<br />

Province; Research <str<strong>on</strong>g>and</str<strong>on</strong>g> C<strong>on</strong>structi<strong>on</strong>, no. 72.<br />

Albrecht MA, Evan CW, Rast<strong>on</strong> CL. 2006. Green<br />

chemistry <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> health implicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>nanoparticles</str<strong>on</strong>g> 8, 417– 432.<br />

http://dx.doi.org/10.1039/b517131h<br />

Ali HM, Siddiqui MH, Basalah Al-Whaibi M.<br />

O, Sakran AM, Al-Amri A. 2012. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

gibberellic <str<strong>on</strong>g>acid</str<strong>on</strong>g> <strong>on</strong> growth <str<strong>on</strong>g>and</str<strong>on</strong>g> photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic<br />

pigments <str<strong>on</strong>g>of</str<strong>on</strong>g> Hibiscus sabdariffaL. African Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Biotechnology 11, 800-804.<br />

Asada, Takahashi M. 1987. Producti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

scavenging <str<strong>on</strong>g>of</str<strong>on</strong>g> active oxygen in photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis in<br />

photoinhiti<strong>on</strong>n.elsevierpp 227-228<br />

Ashkani J, Pakniyat H, Emam Y, Assad MT,<br />

Bahrani MJ. 2007. The <str<strong>on</strong>g>Evaluati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Relati<strong>on</strong>ships <str<strong>on</strong>g>of</str<strong>on</strong>g> same Physiological Traits in Spring<br />

Safflower (Carthamustinctorius L.) <str<strong>on</strong>g>under</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

N<strong>on</strong>- <str<strong>on</strong>g>stress</str<strong>on</strong>g> water regimes. J. Agric. Sci. Technol 9,<br />

267-277.<br />

Ashraf M, Fakhra K, Rasoul E. 2002. Interactive<br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> gibberellic <str<strong>on</strong>g>acid</str<strong>on</strong>g> (GA3) <str<strong>on</strong>g>and</str<strong>on</strong>g> salt <str<strong>on</strong>g>stress</str<strong>on</strong>g> <strong>on</strong><br />

growth, i<strong>on</strong> accumulati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic<br />

capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> two spring wheat (TriticumaestivumL.)<br />

cultivars differing in salt.<br />

Feizi H, Rezvani Moghaddam P,<br />

Shahtahmassebi N, Fotovat A. 2012. Impact <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

bulk <str<strong>on</strong>g>and</str<strong>on</strong>g> nanosized TiO2 (TiO2) <strong>on</strong> wheat seed<br />

germinati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> seedling growth. 2012. Biol Trace<br />

Elem Res, 146,101–106.<br />

Ghaffari M, Akbari Gh A, Mohammadzadeh A,<br />

Azizkhani S. 2012. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Gibberellin <strong>on</strong><br />

Burge<strong>on</strong>ing <str<strong>on</strong>g>and</str<strong>on</strong>g> Seedling Growth <str<strong>on</strong>g>of</str<strong>on</strong>g> Soy <str<strong>on</strong>g>under</str<strong>on</strong>g><br />

Drought Stress. The Sec<strong>on</strong>d Nati<strong>on</strong>al C<strong>on</strong>ference <strong>on</strong><br />

Seed Sciences <str<strong>on</strong>g>and</str<strong>on</strong>g> Technologies.<br />

Gholampour Rasekh M. 2011. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Different<br />

Nano-TiO2 C<strong>on</strong>centrati<strong>on</strong> Levels in Growth Stages <strong>on</strong><br />

Quantitative <str<strong>on</strong>g>and</str<strong>on</strong>g> Qualitative Performance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Medicinal Plant <str<strong>on</strong>g>of</str<strong>on</strong>g> Amaranth. MA Thesis, Islamic<br />

Azad University <str<strong>on</strong>g>of</str<strong>on</strong>g> Karaj.<br />

Ghorbani A. 2012. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Different Nano-TiO2<br />

C<strong>on</strong>centrati<strong>on</strong> Levels in Growth Stages <strong>on</strong><br />

Quantitative <str<strong>on</strong>g>and</str<strong>on</strong>g> Qualitative Performance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Medicinal Plant <str<strong>on</strong>g>of</str<strong>on</strong>g> Basil (<strong>Ocimum</strong><strong>basil</strong>icumL.). MA<br />

Thesis, Islamic Azad University <str<strong>on</strong>g>of</str<strong>on</strong>g> Takestan.<br />

Hassanpur Asil M, Mortazavi S, Hatam Zadeh<br />

A, Ghasem Nezhad M. 2012. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Gibberellic<br />

Acid <str<strong>on</strong>g>and</str<strong>on</strong>g> Calcium <strong>on</strong> Reducing Growth Period <str<strong>on</strong>g>of</str<strong>on</strong>g> Iris<br />

(Iris Hol<str<strong>on</strong>g>and</str<strong>on</strong>g>ica Var. Blue Magic) in Greenhouse <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Its Cut Flower Life, Ejgcst. 2012; 3(9),<br />

63-70.<br />

H<strong>on</strong>g F, Zhou J, Liu C. 2005. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Nano –<br />

TiO2 <strong>on</strong> photochemical reacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chloroplasts <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

spinach. Biological Trace Element Research, Vol.<br />

105, 1 – 3, 269 – 279 p.<br />

Blokhin O, Virolainen E, Fagerstedt K. 2003.<br />

Antioxidant oxidative damage <str<strong>on</strong>g>and</str<strong>on</strong>g> oxygen deprivati<strong>on</strong><br />

<str<strong>on</strong>g>stress</str<strong>on</strong>g>. Ann. Rev. Bot. 91, 179-194.<br />

Bowen P, Menzies J, Ehret D, Samuel L, Glass<br />

ADM. 1992. Soluble silic<strong>on</strong> spraysinhibit powdery<br />

development in grape leaves. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> American<br />

Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Horticultural Science 117, 906-912.<br />

H<strong>on</strong>g F, Yang F, Gao Q, Wan Z, Gu F, Wu C,<br />

Ma Z, Zhou J, Yang P. 2005. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> nanoTiO2<br />

<strong>on</strong> spectral characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> photosystem II<br />

particles from spinach. Chem. Res. Chin. Univ 21(2),<br />

196-200.<br />

H<strong>on</strong>g S, Zheng L, FLu, Yang F. 2005. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nano-TiO2 <strong>on</strong> strength <str<strong>on</strong>g>of</str<strong>on</strong>g> naturally aged seeds <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

growth <str<strong>on</strong>g>of</str<strong>on</strong>g> spinach. Biological Trace Element Research<br />

Kiapour et al.<br />

Page 148


104, 83-91.<br />

Hruby M, Cigler P, Kuzel S. 2002. C<strong>on</strong>tributi<strong>on</strong><br />

to <str<strong>on</strong>g>under</str<strong>on</strong>g>st<str<strong>on</strong>g>and</str<strong>on</strong>g>ing <str<strong>on</strong>g>the</str<strong>on</strong>g>mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>titanium</str<strong>on</strong>g> acti<strong>on</strong> in<br />

plant. J Plant Nutr 25, 577–598.<br />

Jaafar HZE, Ibrahim MH, Fakri NFM. 2012.<br />

Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> soil field water capacity <strong>on</strong> sec<strong>on</strong>dary<br />

metabolites, phenylalanine amm<strong>on</strong>ia-lyase (PAL),<br />

mali<strong>on</strong>dialdehyde (MDA) <str<strong>on</strong>g>and</str<strong>on</strong>g> photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic<br />

resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> malaysiankacip Fatimah (Labisiapumila<br />

Benth). Molecules 17, 7305-7322.<br />

http://dx.doi.org/10.3390/molecules17067305.<br />

Kaafi M, Z<str<strong>on</strong>g>and</str<strong>on</strong>g> B, Kamkar HM, Sharifi M,<br />

Goldani M. 6002. Plant Physiology (Translati<strong>on</strong>).<br />

Mashhad Jahad Daneshgahi, 379 pages.<br />

Khazeh A, Khazeh Z, Jabari HT, Eymur M,<br />

Hashemybagha M. 2015. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> gibberllic <str<strong>on</strong>g>acid</str<strong>on</strong>g><br />

(GA3) foliar <strong>on</strong> <strong>some</strong> physiological<strong>traits</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> mount <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

pigments in brassica napus L. Internati<strong>on</strong>al Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Biosciences | IJB<br />

http://dx.doi.org/10.12692/ijb/6.3.54<br />

Kuzma J, Verhage P. 2006. Nanotechnology in<br />

agriculture <str<strong>on</strong>g>and</str<strong>on</strong>g> food producti<strong>on</strong>: anticipated<br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g>s. Project <strong>on</strong> emerging<br />

nanotechnologies.42 pp. Published by Woodrow<br />

Wils<strong>on</strong> internati<strong>on</strong>al center for scholars. One<br />

Woodrow Wils<strong>on</strong> Plaza, 1300 Pennsylvania Ave., N.<br />

W., Washingt<strong>on</strong>, DC 20004-3027, USA.<br />

Lu CM, Zhang CY, Wen JQ , We GR , Tao MX.<br />

2002. Research <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> nanometer materials<br />

<strong>on</strong> germinati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> enhancement <str<strong>on</strong>g>of</str<strong>on</strong>g> Glycine max <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

its mechanism. Soya Bean Science 21, 168 – 172.<br />

Mahajan P, Dleke SK, Khanna AS. 2011. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nano – zno particle suspensi<strong>on</strong> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> mung (<br />

Vigna radiate L.) <str<strong>on</strong>g>and</str<strong>on</strong>g> gram ( cicer arientinum L.)<br />

seedling using plant agar method journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Nanotechnology 10, 1155.<br />

http://dx.doi.org/10.1155/2011/696535<br />

Mastunaga T, Tomoda T, Nakajima T, Wake H.<br />

1985. FEMS Microbiol. Lett. 29, 211.<br />

Mingyu S, Fashui H, Chao L, Xiao W, Xiaoqing<br />

L, Liang C, Fengqing G, Fan Y, Zh<strong>on</strong>grui L.<br />

20011-2005. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Nano-anatase TiO2 <strong>on</strong><br />

Absorpti<strong>on</strong>, Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Light, <str<strong>on</strong>g>and</str<strong>on</strong>g> Photoreducti<strong>on</strong><br />

Activities <str<strong>on</strong>g>of</str<strong>on</strong>g> Chloroplast Membrane <str<strong>on</strong>g>of</str<strong>on</strong>g> Spinach. Biol<br />

Trace Elem Res. 118, 120–130.<br />

Moaveni P, Kheiri T. 2011. TiO2 <str<strong>on</strong>g>nanoparticles</str<strong>on</strong>g><br />

affected <strong>on</strong> maize (Zeal mays L.) 2 nd Internati<strong>on</strong>al<br />

C<strong>on</strong>ference <strong>on</strong> Agricultural <str<strong>on</strong>g>and</str<strong>on</strong>g> Animal Science<br />

IPCBEE 22, (2011) (2011) IACSIT Press, Singapore.<br />

Print 2013 Dec.<br />

http://dx.doi.org/10.1186/2193-1801-2-247.<br />

Moaveni P, Aliabadi Farahani H, Maroufi K,<br />

(2011 b). Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Tio2 Nanoparticles Spraying <strong>on</strong><br />

Wheat (Triticum Aestivum L.) Under Field C<strong>on</strong>diti<strong>on</strong>.<br />

Advances in Envir<strong>on</strong>mental Biology 5(8), 2208–<br />

2210.<br />

Moaveni P, Aliabadi Farahani H, Maroufi K.<br />

(2011 b). Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Nano-TiO2 Spraying <strong>on</strong> Wheat<br />

(Triticum Aestivum L.) Under Field C<strong>on</strong>diti<strong>on</strong>.<br />

Advances in Envir<strong>on</strong>mental Biology 5(8), 2208–<br />

2210.<br />

Moaveni P, Aliabadi Farahani H, Maroufi K.<br />

2011a. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Nano-TiO2 spraying <strong>on</strong> quality <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> wheat (TriticumAestivum L.). Advances in<br />

Envir<strong>on</strong>mental Biology 5(8), 2211-2213.<br />

Nadjafi F. 2006. <str<strong>on</strong>g>Evaluati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecological Traits <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Mint in Agricultural Systems with Low Inlet, PhD.<br />

Dissertati<strong>on</strong>, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Ferdowsi Mashhad, Iran,<br />

120 pages.<br />

Navarro E. 2008. Envir<strong>on</strong>mental behaviour <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

ecotoxicity <str<strong>on</strong>g>of</str<strong>on</strong>g> engineered <str<strong>on</strong>g>nanoparticles</str<strong>on</strong>g> to algae,<br />

plants <str<strong>on</strong>g>and</str<strong>on</strong>g> fungi , Ecotoxicology 17, 372 – 386.<br />

P<str<strong>on</strong>g>and</str<strong>on</strong>g>ey AC, Sanjay SS, Yadav RS. 2010.<br />

Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Zno <str<strong>on</strong>g>nanoparticles</str<strong>on</strong>g> in influencing,<br />

Kiapour et al.<br />

Page 149


growth rate <str<strong>on</strong>g>of</str<strong>on</strong>g> Cicer arietinum L. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Experimental Nanoscience, 488- 497.<br />

Pazoki A, Rezaei H, Habibi D, Paknejad F,<br />

2012. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Drought Stress, Asscorbate <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Gibberellin Foliar Applicati<strong>on</strong> <strong>on</strong> Some<br />

Morphological Traits, RWC <str<strong>on</strong>g>and</str<strong>on</strong>g> Cell Membrane<br />

Stability <str<strong>on</strong>g>of</str<strong>on</strong>g> Thyme (Thymus Vulgaris L.), Agr<strong>on</strong>omy<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Plant Breeding, vol. 8, 1-13 p.<br />

http://www.ijabbr.com<br />

Rezaei Adl F. 2013. <str<strong>on</strong>g>Evaluati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Nano-TiO2 <strong>on</strong> Quantitative <str<strong>on</strong>g>and</str<strong>on</strong>g> Qualitative<br />

Performance <str<strong>on</strong>g>of</str<strong>on</strong>g> (Glycine max L.), MA Thesis, Islamic<br />

Azad University <str<strong>on</strong>g>of</str<strong>on</strong>g> Karaj.<br />

Sharma P, Dubey RS. 2005. Drought induces<br />

oxidative <str<strong>on</strong>g>stress</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> enhances <str<strong>on</strong>g>the</str<strong>on</strong>g> activities <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

antioxidant enzymes in growing rice seedlings. Plant<br />

Growth Regulati<strong>on</strong>, 46, 209-221.<br />

http://dx.doi.org/10.100/s10725-005-0002-2<br />

Wanger GJ. 1979. C<strong>on</strong>tent <str<strong>on</strong>g>and</str<strong>on</strong>g> vacuole / extra<br />

vacuole distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> neutral sugars, free amino<br />

<str<strong>on</strong>g>acid</str<strong>on</strong>g>s, <str<strong>on</strong>g>and</str<strong>on</strong>g> Dutta, J .2002. Nanotechnology for<br />

agriculture <str<strong>on</strong>g>and</str<strong>on</strong>g> food system – A view 1 – 13. ISBN:<br />

978-3-642-18311-9 (Print) 978-3-642-18312-6<br />

(Online)<br />

Yang F, H<strong>on</strong>g F, You W, Liu C, Gao F, Wu C,<br />

Yang P. 2006. Influences <str<strong>on</strong>g>of</str<strong>on</strong>g> nano-anatase TiO2 <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> nitrogen metabolism <str<strong>on</strong>g>of</str<strong>on</strong>g> growing spinach.<br />

Biological Trace Elem Res. 110(2), 179-190.<br />

Kiapour et al.<br />

Page 150

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!