04.02.2017 Views

Evaluation of the application of gibbrellic acid and titanium dioxide nanoparticles under drought stress on some traits of basil (Ocimum basilicum L.)

Abstract This study is carried out to study the effect of Gibberellic acid (GA3) and Titanium Dioxide Nanoparticles (Nano- TiO2) on some characteristics of medicinal plant of Ocimum basilicum Lamiaceae) under drought stress. The experiment was conducted as a factorial arrangement in randomized complete block design with four replications in which A, B, C are the three factors and factor A is related to the irrigation content as fc 100%, fc 70% and fc 40% and factor B in three levels with GA3 application with concentrations of 0 (control), 250 ppm, 500 ppm and factor C with three doses of titanium nanoparticles with concentrations of 0%, 0.01% and 0.03%. The results showed that the drought stress caused to decreasing of plant biomass and the foliar relative water content, and the increasing of catalase and the level of anthocyanin in the medicinal plant of basil, while, the application of gibberellin and titanium nanoparticles caused to improving of the negative effects of the stress.The results of the study indicated that the drought stress causes to decreasing of quantitative and qualitative characteristics of the plant. The best treatments were recognized as follows: in 100% irrigation regime, non-application of gibberellin and application of Nano-TiO2 with concentration of 0.01%; in 70% irrigation regime, the application of gibberellin with concentration of 250 ppm and Nano-TiO2 with concentration of 0.03%; and in 40% irrigation nregime, the application of gibberellin with concentration of 500 ppm and Nano-TiO2 with concentration of 0.03%.

Abstract
This study is carried out to study the effect of Gibberellic acid (GA3) and Titanium Dioxide Nanoparticles (Nano- TiO2) on some characteristics of medicinal plant of Ocimum basilicum Lamiaceae) under drought stress. The
experiment was conducted as a factorial arrangement in randomized complete block design with four replications in which A, B, C are the three factors and factor A is related to the irrigation content as fc 100%, fc 70% and fc 40% and factor B in three levels with GA3 application with concentrations of 0 (control), 250 ppm, 500 ppm and factor C with three doses of titanium nanoparticles with concentrations of 0%, 0.01% and 0.03%. The results
showed that the drought stress caused to decreasing of plant biomass and the foliar relative water content, and the increasing of catalase and the level of anthocyanin in the medicinal plant of basil, while, the application of
gibberellin and titanium nanoparticles caused to improving of the negative effects of the stress.The results of the study indicated that the drought stress causes to decreasing of quantitative and qualitative characteristics of the
plant. The best treatments were recognized as follows: in 100% irrigation regime, non-application of gibberellin and application of Nano-TiO2 with concentration of 0.01%; in 70% irrigation regime, the application of
gibberellin with concentration of 250 ppm and Nano-TiO2 with concentration of 0.03%; and in 40% irrigation nregime, the application of gibberellin with concentration of 500 ppm and Nano-TiO2 with concentration of 0.03%.

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Table 5. The mean comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reciprocated effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>drought</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g>, gibberellin, <str<strong>on</strong>g>and</str<strong>on</strong>g> TiO2 <strong>on</strong> <strong>traits</strong>.<br />

Catalase<br />

mg/mmol)<br />

ji632<br />

/ 71<br />

fghi 307 / 36<br />

ji636<br />

/ 03<br />

k113<br />

/ 43<br />

fghij301<br />

/ 31<br />

jhi627<br />

/ 33<br />

jki132<br />

/ 12<br />

jk131<br />

/ 61<br />

jki616<br />

/ 34<br />

eggh 320 / 72<br />

ji676<br />

/ 41<br />

ghij 674 / 77<br />

jhi647<br />

/ 41<br />

jhi673<br />

/ 03<br />

sdef704<br />

/ 73<br />

ghij673<br />

/ 47<br />

abdc732<br />

/ 17<br />

bcde726<br />

/ 60<br />

defg331<br />

/ 61<br />

abc111<br />

/ 30<br />

abcd777<br />

/ 37<br />

abcd771<br />

/ 13<br />

abcd772<br />

/ 37<br />

ab131<br />

/ 72<br />

abcd732<br />

/ 37<br />

abcd101<br />

/ 76<br />

a177<br />

/ 36<br />

(Protein Anthocyanin (mM/g fresh Nano-TiO2 (%)<br />

weight)<br />

i10<br />

/ 74<br />

0<br />

fgh67<br />

/ 23<br />

0 /01<br />

gh61<br />

/ 33<br />

0 /03<br />

fgh63<br />

/ 33<br />

0<br />

h66<br />

/ 17<br />

0 /01<br />

h61<br />

/ 40<br />

0 /03<br />

h60<br />

/ 26<br />

0<br />

h61<br />

/ 01<br />

0 /01<br />

h66<br />

/ 43<br />

0 /03<br />

efg37<br />

/ 17<br />

0<br />

h66<br />

/ 44<br />

0 /01<br />

def37<br />

/ 06<br />

0 /03<br />

fgh67<br />

/ 74<br />

0<br />

abcd73<br />

/ 11<br />

0 /01<br />

abcd73<br />

/ 13<br />

0 /03<br />

fgh64<br />

/ 67<br />

0<br />

abc10<br />

/ 03<br />

0 /01<br />

abcd72<br />

/ 33<br />

0 /03<br />

gh61<br />

/ 34<br />

0<br />

gh63<br />

/ 70<br />

0 /01<br />

abcd72<br />

/ 21<br />

0 /03<br />

cde71<br />

/ 67<br />

0<br />

abcd73<br />

/ 13<br />

0 /01<br />

ab17<br />

/ 07<br />

0 /03<br />

bcde76<br />

/ 46<br />

0<br />

abcd74<br />

/ 07<br />

0 /01<br />

a11<br />

/ 33<br />

0 /03<br />

Gibberellin (ppm)<br />

0<br />

0<br />

0<br />

610<br />

610<br />

610<br />

100<br />

100<br />

100<br />

0<br />

0<br />

0<br />

610<br />

610<br />

610<br />

100<br />

100<br />

100<br />

0<br />

0<br />

0<br />

610<br />

610<br />

610<br />

100<br />

100<br />

100<br />

Drought <str<strong>on</strong>g>stress</str<strong>on</strong>g><br />

100<br />

100<br />

100<br />

100<br />

100<br />

100<br />

100<br />

100<br />

100<br />

40<br />

40<br />

40<br />

40<br />

40<br />

40<br />

40<br />

40<br />

40<br />

70<br />

70<br />

70<br />

70<br />

70<br />

70<br />

70<br />

70<br />

70<br />

Fig. 1. The reciprocated effects <str<strong>on</strong>g>of</str<strong>on</strong>g> dryness <str<strong>on</strong>g>stress</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Titanum <str<strong>on</strong>g>dioxide</str<strong>on</strong>g> <strong>on</strong> Biomass.<br />

Fig. 2. The reciprocated effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Gibberellin <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Titanum <str<strong>on</strong>g>dioxide</str<strong>on</strong>g> <strong>on</strong><str<strong>on</strong>g>nanoparticles</str<strong>on</strong>g> <strong>on</strong> Biomass.<br />

The main effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>drought</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g>, gibberellin, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Nano-TiO2 <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reciprocated effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>drought</str<strong>on</strong>g><br />

<str<strong>on</strong>g>stress</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> gibberellin, <str<strong>on</strong>g>the</str<strong>on</strong>g> reciprocated effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>drought</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g>, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Nano-TiO2 <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

reciprocated triple effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>drought</str<strong>on</strong>g> <str<strong>on</strong>g>stress</str<strong>on</strong>g>,<br />

gibberellin, <str<strong>on</strong>g>and</str<strong>on</strong>g> Nano-TiO2 <strong>on</strong> anthocyanin trait were<br />

significant in statistical level <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e percent (Table 1).<br />

Kiapour et al.<br />

As shown in table 2, <str<strong>on</strong>g>the</str<strong>on</strong>g> highest amount <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

anthocyanin is obtained by <str<strong>on</strong>g>the</str<strong>on</strong>g> irrigati<strong>on</strong> regimes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

40%, 70% <str<strong>on</strong>g>and</str<strong>on</strong>g> 100% <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> compound treatment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

500 <str<strong>on</strong>g>and</str<strong>on</strong>g> 250 ppm gibberellin (48.37 <str<strong>on</strong>g>and</str<strong>on</strong>g> 48.15 mM/g<br />

fresh weight, respectively) <str<strong>on</strong>g>and</str<strong>on</strong>g> lowest amount (21.45<br />

mM/g fresh weight) comes from <str<strong>on</strong>g>the</str<strong>on</strong>g> treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> 500<br />

ppm gibberellin in 100% irrigati<strong>on</strong> regime. The latter<br />

Page 143

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!