11.12.2012 Views

3.4.2. Diversity of common carp (Cyprinus carpio L.) genetic ... - IGB

3.4.2. Diversity of common carp (Cyprinus carpio L.) genetic ... - IGB

3.4.2. Diversity of common carp (Cyprinus carpio L.) genetic ... - IGB

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

KOHLMANN, K., GROSS, R. 1 , MURAKAEVA, A.<br />

<strong>3.4.2.</strong> <strong>Diversity</strong> <strong>of</strong> <strong>common</strong> <strong>carp</strong> (<strong>Cyprinus</strong> <strong>carp</strong>io L.)<br />

<strong>genetic</strong> resources<br />

Diversität genetischer Ressourcen des Karpfens (<strong>Cyprinus</strong> <strong>carp</strong>io L.)<br />

Key words: <strong>common</strong> <strong>carp</strong>, <strong>Cyprinus</strong> <strong>carp</strong>io, diversity, <strong>genetic</strong> resources<br />

Abstract<br />

The <strong>common</strong> <strong>carp</strong> is among the most important species in freshwater fish<br />

culture. It has a long history <strong>of</strong> domestication, and numerous strains and<br />

breeds have been developed from the wild ancestor. The most<br />

comprehensive study on the population structure and <strong>genetic</strong> relationships<br />

<strong>of</strong> these breeds, as well as between them and wild <strong>carp</strong>, has been performed<br />

by our research team. Our study comprises <strong>of</strong> 22 European, six Central<br />

Asian, and four East/South-East Asian, wild and domesticated populations<br />

which were analysed for three classes <strong>of</strong> <strong>genetic</strong> markers (allozymes,<br />

microsatellites, and PCR-RFLP <strong>of</strong> mitochondrial DNA). Results showed that<br />

allozyme variability was much lower than microsatellite variability. Wild<br />

caught populations differed from domesticated stocks by a higher variability,<br />

independent <strong>of</strong> their geographical origin. All three classes <strong>of</strong> <strong>genetic</strong> markers<br />

grouped the populations into two highly divergent clusters: Europe/Central<br />

Asia and East/South-East Asia. Thus, our <strong>genetic</strong> data support the two<br />

subspecies C. c. <strong>carp</strong>io (Europe) and C. c. haematopterus (East Asia) formerly<br />

distinguished on the basis <strong>of</strong> morphological and morphometric differences.<br />

The close relationship <strong>of</strong> European and Central Asian <strong>carp</strong> is also reflected<br />

in the fact that all but one <strong>of</strong> the European populations we examined were<br />

fixed for the same mtDNA composite haplotype that also dominated in<br />

Central Asian but was completely missing in East/South-East Asian<br />

populations. Moreover, this result also indicates a single origin <strong>of</strong> European<br />

<strong>carp</strong> in Central Asia. The exception among the European populations was<br />

the wild caught <strong>carp</strong> from river Danube near Straubing, Germany, for which<br />

mtDNA and allozyme data suggest not only mixture but also hybridisation<br />

with Asian <strong>carp</strong>. Our results emphasize the great importance <strong>of</strong> wild<br />

populations and their <strong>genetic</strong> purity for the conservation <strong>of</strong> <strong>common</strong> <strong>carp</strong><br />

<strong>genetic</strong> resources. Out <strong>of</strong> the two wild/feral populations known in Germany,<br />

the one from river Rhine near Riedstadt-Erfelden is more valuable than the<br />

one from river Danube since the former does not show any sign <strong>of</strong><br />

mixing/hybridisation with Asian <strong>carp</strong> so far.<br />

1 Department <strong>of</strong> Fish Farming, Institute <strong>of</strong> Animal Sciences, Estonian Agricultural University,<br />

Tartu<br />

© <strong>IGB</strong> 2005 143


144<br />

Zusammenfassung<br />

Der Karpfen gehört zu den weltweit bedeutendsten Arten der<br />

Süßwasserfischzucht. Er weist eine lange Geschichte der Domestikation auf,<br />

und zahlreiche Linien und Zuchtformen wurden von seiner Wildform<br />

abgeleitet. Die bisher umfassendste Studie zur Populationsstruktur und den<br />

verwandtschaftlichen Beziehungen zwischen diesen Zuchtformen, aber auch<br />

zwischen ihnen und Wildkarpfen, wurde in unserer Arbeitsgruppe erstellt: sie<br />

schließt zur Zeit 22 europäische, sechs mittelasiatische und vier ost-/südost-<br />

asiatische Wild- und Zuchtpopulationen ein, die mittels dreier genetischer<br />

Markersysteme (Allozyme, Mikrosatelliten, PCR-RFLP mitochondrialer<br />

DNA) charakterisiert wurden. Dabei zeigte sich, dass die Variabilität der<br />

Allozym-Loci wesentlich geringer war als die der Mikrosatelliten-Loci.<br />

Wildlebende Populationen unterschieden sich von den Zuchtbeständen –<br />

unabhängig von der geografischen Herkunft – durch eine höhere Variabilität.<br />

Alle drei Klassen genetischer Marker gruppierten die Populationen in zwei<br />

hochdivergente Cluster: Europa/Mittelasien und Ost-/Südostasien. Damit<br />

unterstützen unsere genetischen Daten die bereits anhand morphologischmorphometrischer<br />

Unterschiede beschriebenen beiden Unterarten C. c. <strong>carp</strong>io<br />

(Europa) bzw. C. c. haematopterus (Ostasien). Die enge Verwandtschaft<br />

europäischer und mittelasiatischer Karpfen äußert sich auch darin, dass mit<br />

einer Ausnahme alle untersuchten europäischen Populationen für den<br />

gleichen mtDNA-Komposithaplotyp fixiert waren, der auch in Mittelasien<br />

dominierte, in Ost- und Südostasien aber völlig fehlte. Dies deutet darüber<br />

hinaus auf einen singulären Ursprung der europäischen Karpfen in<br />

Mittelasien hin. Die Ausnahme unter den europäischen Populationen ist die<br />

wildlebende aus der Donau bei Straubing, bei der die mtDNA- und Allozym-<br />

Daten nicht nur auf eine Vermischung, sondern auch auf eine bereits<br />

erfolgte Hybridisierung mit asiatischen Karpfen hinweisen. Unsere<br />

Ergebnisse unterstreichen, dass für den Erhalt genetischer Ressourcen des<br />

Karpfens den Wildpopulationen und ihrer Reinerhaltung eine entscheidende<br />

Bedeutung zukommt. Von den beiden aus Deutschland bekannten<br />

wildlebenden Populationen besitzen dabei die Karpfen aus dem Rhein bei<br />

Riedstadt-Erfelden einen höheren Wert als die aus der Donau, da bei ihnen<br />

noch keine Anzeichen für eine Vermischung/Hybridisierung mit asiatischen<br />

Karpfen festgestellt werden konnten.<br />

<strong>3.4.2.</strong>1 Introduction<br />

The <strong>common</strong> <strong>carp</strong> is among the most important species in freshwater fish<br />

culture. Its annual production amounts to more than 3.2 million t worldwide<br />

(FAO Fishery Statistics 2002). It is one <strong>of</strong> the few fish species that can be<br />

considered as a domestic animal (Steffens 1980). European pond <strong>carp</strong><br />

originate from wild <strong>carp</strong> from the river Danube. Rearing <strong>of</strong> wild <strong>carp</strong> caught<br />

in rivers was already described by Aristoteles. Modern pond farming,<br />

however, started to develop only in medieval times since 16 th century. Asia<br />

(China) was a second center <strong>of</strong> domestication. There, <strong>carp</strong> rearing in ponds<br />

started earlier (2,500 to 3,000 years ago) but true domestication began later<br />

and proceeded slower. As a result Chinese pond <strong>carp</strong> remained more similar<br />

to their wild ancestors than European pond <strong>carp</strong> (Kirpitchnikov 1999).


The wild <strong>common</strong> <strong>carp</strong> is characterized by an elongated torpedo-shaped<br />

body completely covered by scales. In Europe as well as in Asia, numerous<br />

breeds, local races, and lines have been derived from it, mainly for human<br />

nutrition. An exception from utilization as food fish, is the Japanese Koi<br />

<strong>carp</strong> that is reared as an ornamental fish in garden ponds and tanks.<br />

Kirpitchnikov (1967) distinguished four subspecies <strong>of</strong> <strong>carp</strong> based on<br />

morphological and morphometric differences (Figure 1).<br />

Fig. 1: Distribution <strong>of</strong> <strong>common</strong> <strong>carp</strong> subspecies as proposed by Kirpitchnikov (1967):<br />

(a) European-Transcaucasian <strong>carp</strong>, C. <strong>carp</strong>io <strong>carp</strong>io; (b) Central Asian <strong>carp</strong>, C. c. aralensis;<br />

(c) East Asian <strong>carp</strong>, C. c. haematopterus; (d) South-East Asian <strong>carp</strong>, C. c. viridiviolaceus.<br />

Later he revised his view and recognized only two valid subspecies: C. c.<br />

<strong>carp</strong>io in Europe, Caucasus and Central Asia and C. c. haematopterus in East<br />

Asia (Kirpitchnikov 1999), similar to the opinion <strong>of</strong> Balon (1995). In<br />

contrast, Baruš et al. (2002) hypothesized that a third subspecies, C. c.<br />

viridiviolaceus, still might exist in South-East Asia.<br />

In order to clarify the intraspecific systematics <strong>of</strong> <strong>common</strong> <strong>carp</strong> molecular<br />

biological studies are needed. Biochemical-<strong>genetic</strong> markers (allozymes and<br />

proteins) have been examined since the end <strong>of</strong> the 1970s, followed by<br />

molecular-<strong>genetic</strong> markers (nuclear and mitochondrial DNA) since the end<br />

<strong>of</strong> 1990s. However, most <strong>of</strong> these studies were restricted to regional levels.<br />

The few studies comparing <strong>carp</strong> populations from different geographical<br />

regions could identify at least two highly divergent groups – Europe and<br />

East Asia (Brody et al. 1979; Paaver 1983; Kohlmann and Kersten 1999;<br />

Gross et al. 2002). Our present study is the first one worldwide to include<br />

wild and domesticated populations from the whole natural distribution range<br />

<strong>of</strong> <strong>common</strong> <strong>carp</strong> that were simultaneously analysed for three classes <strong>of</strong><br />

<strong>genetic</strong> markers (allozymes, microsatellites and mitochondrial DNA).<br />

<strong>3.4.2.</strong>2 Material and Methods<br />

A total <strong>of</strong> 32 <strong>carp</strong> populations <strong>of</strong> differing <strong>genetic</strong> status had been collected<br />

(Table 1). Domesticated pond <strong>carp</strong> dominated among the 22 European<br />

© <strong>IGB</strong> 2005 145


146<br />

populations. With only two exceptions (EU5d and EU19d) all <strong>of</strong> these pond<br />

<strong>carp</strong> were <strong>of</strong> the mirror <strong>carp</strong> type. Most European <strong>carp</strong> were collected in<br />

Germany. Some <strong>of</strong> these populations were designated as wild/feral (wf)<br />

since their exact <strong>genetic</strong> status is not known. Six true wild populations<br />

originated from Central Asia (Uzbekistan). East and South-East Asia were<br />

represented by two wild and two domesticated populations.<br />

Table 1: List <strong>of</strong> <strong>common</strong> <strong>carp</strong> populations and number <strong>of</strong> individuals analysed for each<br />

<strong>genetic</strong> marker. Genetic status: D = domesticated; W = wild; W/F = wild/feral. *captive stock.<br />

Population Geographic region/ Country <strong>of</strong> Genetic Number <strong>of</strong> individuals analysed for<br />

code Population name origin status Allozymes Microsatellites mtDNA<br />

Europe<br />

EU1wf r. Danube (Maier) Germany W/F* 50 30 8<br />

EU2wf r. Danube (Straubing) Germany W/F 30 28 27<br />

EU3wf r. Tisza Hungary W/F 9 9<br />

EU4wf r. Rhine Germany W/F 30 30 29<br />

EU5d Scaly <strong>carp</strong> Germany D 50 30 29<br />

EU6d Fiedler Germany D 50 30 23<br />

EU7d Kauppa Germany D 50 29<br />

EU8d Seckendorff Germany D 50<br />

EU9d Wiesinger Germany D 30<br />

EU10d Scheuermann Germany D 25<br />

EU11d Hertlein Germany D 50<br />

EU12d Glinzig Germany D 25 25<br />

EU13d Kreba Germany D 25<br />

EU14d Petkampsberg Germany D 50<br />

EU15d Petershain Germany D 28 30<br />

EU16d Dor-70 Israel D 20<br />

EU17d Ropscha Russia D 40<br />

EU18d Badajoz Spain D 20 18<br />

EU19d Tata Hungary D 18 19<br />

EU20d Pohorelice Czech Republic D 30 18<br />

EU21d Zator Poland D 30 17<br />

EU22wf Lake Velence Hungary W/F 11<br />

Central Asia<br />

CA1w Lake Tuzkan Uzbekistan W 50 30 29<br />

CA2w r. Syr-Darya Uzbekistan W 19 28 28<br />

CA3w Syr-Darya channels Uzbekistan W 25 28<br />

CA4w Lake Arnasaiskie Uzbekistan W 25 28 27<br />

CA5w Lake Aidar Uzbekistan W 50 29<br />

CA6w r. Kli Uzbekistan W 30 28<br />

East and South-East Asia<br />

EA1w r. Amur Russia W* 50 30 22<br />

EA2w r. Red Vietnam W 50 30 26<br />

EA3d Wuhan China D 20 20<br />

EA4d Koi Japan D 50 30 30<br />

The methods <strong>of</strong> allozyme (16 loci), microsatellite (four loci) and PCR-RFLP<br />

(mitochondrial ND-3/4 and ND-5/6 genes) analyses, including statistics,<br />

have been described in detail by Kohlmann and Kersten (1999), Gross et al.<br />

(2002), Murakaeva et al. (2003) and Kohlmann et al. (2003). Due to logistical<br />

reasons not all <strong>of</strong> the populations could be analysed by all three classes <strong>of</strong><br />

<strong>genetic</strong> markers. Nevertheless, for most individuals complete data sets were<br />

available.


<strong>3.4.2.</strong>3 Results<br />

Genetic variability within populations<br />

As could be expected, microsatellites displayed a much higher variability than<br />

allozymes for all parameters measured. The average number <strong>of</strong> alleles per<br />

locus was only 1.06 to 1.81 at allozymes compared to 2.50 to 14.25 at<br />

microsatellites. The percentage <strong>of</strong> polymorphic loci ranged from 6.2% to<br />

43.8% at allozymes whereas all <strong>of</strong> the four microsatellites analysed were<br />

found to be polymorphic. The observed heterozygosity was also much<br />

higher at microsatellite loci (0.492 to 0.909) than at allozyme loci (0.006 to<br />

0.181).<br />

The <strong>genetic</strong> variability <strong>of</strong> <strong>carp</strong> populations did not show a clear geographical<br />

pattern. At allozymes the East/South-East Asian populations displayed a<br />

higher variability than the European and Central Asian populations that<br />

showed a similar level <strong>of</strong> variability. In contrast, at microsatellites the Central<br />

Asian populations were the most variable ones, followed by the European<br />

and East/South-East Asian populations that showed a similar variability level<br />

for these <strong>genetic</strong> markers. However, these comparisons might be biased, due<br />

to unequal proportions <strong>of</strong> domesticated to wild populations in the three<br />

geographical regions. A clear variability pattern became evident if<br />

populations were grouped according to their <strong>genetic</strong> status independent <strong>of</strong><br />

geographical origin: domesticated stocks generally suffered from a reduced<br />

variability in comparison to wild caught populations. At allozyme loci, this<br />

difference was statistically significant in Europe but only tendentious in the<br />

other two regions. At microsatellites, the differences were more pronounced:<br />

the average number <strong>of</strong> alleles per locus was only approximately half as high<br />

in domesticated stocks (4.44) as in wild populations (8.22). However,<br />

observed heterozygosity was similar in both groups (0.734 in domesticated<br />

stocks vs. 0.799 in wild populations).<br />

The distribution <strong>of</strong> the 10 composite haplotypes resulting from the<br />

restriction digestion <strong>of</strong> the mitochondrial ND-3/4 and ND-5/6 genes with<br />

10 restriction enzymes each revealed an interesting pattern (Table 2). All but<br />

one <strong>of</strong> the European populations were fixed for the same composite<br />

haplotype H1 that also dominated in Central Asia, but was completely<br />

missing in East/South-East Asia. The only exceptions were two out <strong>of</strong> 27<br />

<strong>carp</strong> individuals caught in the river Danube near Straubing, Germany<br />

(EU2wf). These fish expressed a haplotype differing by only two nucleotide<br />

substitutions from haplotype H3 for which wild <strong>carp</strong> from the river Amur,<br />

Russia (EA1w) were fixed. Ornamental Koi <strong>carp</strong> was another population<br />

fixed for a specific haplotype (H7). The most variable populations were the<br />

Central Asian wild <strong>carp</strong> (CA1w to CA6w), followed by Chinese domesticated<br />

<strong>carp</strong> (EA3d) and Vietnamese wild <strong>carp</strong> (EA2w). The fixation <strong>of</strong> river Amur<br />

wild <strong>carp</strong> and their reduced variability at allozyme and microsatellite loci in<br />

comparison to other wild <strong>carp</strong> populations (Kohlmann et al. 2003) can be<br />

considered as an effect <strong>of</strong> captive breeding: a probably low number <strong>of</strong><br />

founder individuals (bottleneck effect) and/or low effective population sizes<br />

during culture in captivity. In contrast, the high variability <strong>of</strong> Chinese<br />

domesticated <strong>carp</strong>, also at microsatellite loci (Kohlmann et al. in press),<br />

© <strong>IGB</strong> 2005 147


148<br />

reflects the extensive management <strong>of</strong> this population: a high number <strong>of</strong><br />

spawners can reproduce naturally in large ponds; only fry for transfer into<br />

small intensively managed ponds or marketable <strong>carp</strong> are caught.<br />

Table 2: Distribution <strong>of</strong> mtDNA composite haplotypes derived after digestion <strong>of</strong> ND-3/4 and<br />

ND-5/6 coding regions by 10 restriction enzymes. *based on two nucleotide substitutions<br />

designated as H3a subsequently.<br />

Population<br />

Composite haplotype<br />

code H1 H1b H3 H5 H6 H7 H9 H11 H12 H13<br />

EU1wf 8<br />

EU2wf 25 2*<br />

EU3wf 9<br />

EU4wf 29<br />

EU5d 29<br />

EU6d 23<br />

EU15d 30<br />

EU18d 18<br />

EU19d 19<br />

EU20d 18<br />

EU21d 17<br />

CA1w 16 6 6 1<br />

CA2w 15 7 6<br />

CA3w 28<br />

CA4w 12 4 9 2<br />

CA5w 15 6 8<br />

CA6w 11 8 9<br />

EA1w 22<br />

EA2w 15 11<br />

EA3d 7 12 1<br />

EA4d 30<br />

Genetic diversity among populations<br />

In order to estimate <strong>genetic</strong> differentiation between populations and<br />

geographical regions, the fixation index FST has been used. Based on<br />

allozyme loci significant differences between populations were mainly found<br />

if they originated from different geographical regions. Non-significant<br />

differentiation was observed for several comparisons within regions, in<br />

particular between German pond <strong>carp</strong> or between Uzbek wild <strong>carp</strong><br />

(Kohlmann et al. 2003). Average population differentiation was highest in<br />

East/South-East Asia (FST = 0.29), followed by Europe (FST = 0.10) and<br />

Central Asia (FST = 0.008). Based on microsatellite loci the average<br />

population differentiation increased for East/South-East Asia (FST = 0.343)<br />

and Europe (FST = 0.138) whereas differentiation <strong>of</strong> Central Asian<br />

populations decreased (FST = 0.002) (Kohlmann et al. in press). However,<br />

the ranking <strong>of</strong> the three regions did not change.<br />

Allozyme as well as microsatellite polymorphisms clustered the <strong>carp</strong><br />

populations into two highly divergent groups (Figures 2 and 3):<br />

Europe/Central Asia and East/South-East Asia with the bootstrap value<br />

being higher for microsatellite data (91%) than for allozyme data (73%). The<br />

Central Asian wild <strong>carp</strong> formed a distinct subgroup within the<br />

European/Central Asian cluster in both cases.


Fig. 2: UPGMA clustering <strong>of</strong> <strong>common</strong> <strong>carp</strong> populations based on allozyme polymorphisms at<br />

16 loci and Nei´s (1972) standard <strong>genetic</strong> distances. Bootstrap values were calculated by<br />

PHYLIP version 3.573c s<strong>of</strong>tware (Felsenstein 1995).<br />

Fig. 3: UPGMA clustering <strong>of</strong> <strong>common</strong> <strong>carp</strong> populations based on microsatellite variability at<br />

four loci and DA distances (Nei et al. 1983) among pairs <strong>of</strong> populations. Bootstrap values<br />

were calculated by DISPAN s<strong>of</strong>tware (Ota 1993).<br />

The mtDNA polymorphisms revealed a similar pattern: the composite<br />

haplotypes (Figure 4) as well as the populations themselves (Figure 5)<br />

formed the same two major groups (Europe/Central Asia and East/South-<br />

East Asia). Again, a separate subgroup consisted <strong>of</strong> the Central Asian wild<br />

<strong>carp</strong>.<br />

© <strong>IGB</strong> 2005 149


150<br />

Fig. 4: Unrooted network <strong>of</strong> <strong>common</strong> <strong>carp</strong> mtDNA composite haplotypes at the ND-3/4 and<br />

ND-5/6 genes. Bootstrap values were obtained from the maximum likelihood tree.<br />

Fig. 5: UPGMA clustering <strong>of</strong> <strong>common</strong> <strong>carp</strong> populations based on the estimated number <strong>of</strong><br />

net nucleotide substitutions between all pairs <strong>of</strong> populations (dA) at the mitochondrial ND-3/4<br />

and ND-5/6 genes.<br />

<strong>3.4.2.</strong>4 Discussion<br />

A reduced <strong>genetic</strong> variability <strong>of</strong> captive stocks in comparison to wild caught<br />

populations as observed in the present study <strong>of</strong> <strong>common</strong> <strong>carp</strong> was also<br />

found in other fish species such as Atlantic salmon (Staahl 1983; Verspoor<br />

1988), masu salmon (Nakajima et al. 1986), rainbow trout (Paaver 1986), and


own trout (Vuorinen 1984). The loss <strong>of</strong> <strong>genetic</strong> variability can be explained<br />

by <strong>genetic</strong> drift due to small population sizes and/or by inbreeding due to<br />

high selection intensities (e.g. in ornamental Koi <strong>carp</strong>). Bottleneck effects at<br />

the beginning or during the culture <strong>of</strong> populations as well as <strong>genetic</strong><br />

adaptations to captive and local environmental conditions could be<br />

additional contributing factors.<br />

All three classes <strong>of</strong> <strong>genetic</strong> markers grouped populations into two highly<br />

divergent clusters: Europe/Central Asia and East/South-East Asia. Thus,<br />

our present <strong>genetic</strong> data support the two subspecies C. c. <strong>carp</strong>io (Europe) and<br />

C. c. haematopterus (East Asia) formerly distinguished on the basis <strong>of</strong><br />

morphological and morphometric differences. Preliminary results <strong>of</strong> mtDNA<br />

sequencing indicate a divergence time between both groups <strong>of</strong> approximately<br />

500,000 years. In contrast, the subspecies status <strong>of</strong> C. c. aralensis for Central<br />

Asian <strong>carp</strong> does not seem to be justified. However, the high degree <strong>of</strong><br />

<strong>genetic</strong> differentiation in East/South-East Asia suggests that further<br />

evolutionary significant units might exist in this region. In this respect, the<br />

morphological and colour varieties <strong>of</strong> <strong>common</strong> <strong>carp</strong> from Northern Vietnam<br />

described by Tran Dinh-Trong (1967) are <strong>of</strong> special interest. Detailed <strong>genetic</strong><br />

studies are needed in order to confirm or reject the existence <strong>of</strong> the<br />

supposed third subspecies C. c. viridiviolaceus.<br />

The close relationship <strong>of</strong> European and Central Asian <strong>carp</strong> is also reflected<br />

by the fact that all but one <strong>of</strong> the European populations examined were fixed<br />

for the same mtDNA composite haplotype that also dominated in Central<br />

Asia but was completely missing in East/South-East Asia. Moreover, this<br />

also indicates a single origin <strong>of</strong> European <strong>carp</strong> in Central Asia (postglacial<br />

immigration <strong>of</strong> wild <strong>carp</strong> from Central Asia to Europe into the Danube basin<br />

and further distribution and domestication by humans). The exception<br />

among the European populations was the wild/feral one from the river<br />

Danube near Straubing, where two out <strong>of</strong> 27 individuals possessed a<br />

composite haplotype very similar to river Amur wild <strong>carp</strong> from Asia.<br />

Moreover, allozyme data <strong>of</strong> this population suggest not only mixing but also<br />

hybridisation with Asian <strong>carp</strong> (Kohlmann et al. 2003).<br />

Our results emphasize that wild populations and the preservation <strong>of</strong> their<br />

<strong>genetic</strong> purity are <strong>of</strong> utmost importance for the conservation <strong>of</strong> <strong>common</strong><br />

<strong>carp</strong> <strong>genetic</strong> resources. However, wild <strong>carp</strong> are already extinct or endangered<br />

in many areas <strong>of</strong> their natural distribution range, partly due to losses <strong>of</strong><br />

habitats, but mainly because <strong>of</strong> displacement by domesticated pond <strong>carp</strong><br />

which are preferred for farming due to their faster growth. Out <strong>of</strong> the two<br />

wild/feral populations known in Germany, the one from the river Rhine<br />

near Riedstadt-Erfelden is more valuable than the one from the river<br />

Danube since the former does not so far show any sign <strong>of</strong><br />

mixing/hybridisation with Asian <strong>carp</strong>.<br />

Acknowledgement<br />

We thank P. Kersten for technical assistance in the field and laboratory. We<br />

are also grateful to numerous <strong>carp</strong> farmers from Germany and abroad who<br />

provided the tissue samples. Special thanks go to F. Geldhauser (Germany),<br />

M. Flajšhans and O. Linhart (Czech Republic), M. Luczynski (Poland) and L.<br />

© <strong>IGB</strong> 2005 151


152<br />

Varadi (Hungary). The study was partly financed by scholarships to R. Gross<br />

(Forschungsverbund Berlin e.V.) and A. Murakaeva (DAAD – German<br />

Academic Exchange Service) and by grants from Landesfischereiverband<br />

Bayern e.V. to K. Kohlmann and from the Estonian Science Foundation<br />

(no. 4826) to R. Gross.<br />

References<br />

BALON, E.K. (1995): Origin and domestication <strong>of</strong> the wild <strong>carp</strong>, <strong>Cyprinus</strong><br />

<strong>carp</strong>io: from Roman gourmets to the swimming flowers. Aquaculture 129,<br />

3-48.<br />

BARUŠ, V., PEŇÁZ, M., KOHLMANN, K. (2002): <strong>Cyprinus</strong> <strong>carp</strong>io (Linnaeus,<br />

1758). In: BĂNĂRESCU, P.M., PAEPKE, H.-J. (eds.): The Freshwater Fishes<br />

<strong>of</strong> Europe. Vol. 5/III, Cyprinidae 2, Part III: Carassius to <strong>Cyprinus</strong>,<br />

Gasterosteide. AULA-Verlag GmbH, Wiebelsheim, 85-179.<br />

BRODY, T., KIRSHT, D., PARAG, G., WOHLFARTH, G., HULATA, G., MOAV, R.<br />

(1979): Biochemical <strong>genetic</strong> comparison <strong>of</strong> the Chinese and European<br />

races <strong>of</strong> the <strong>common</strong> <strong>carp</strong>. Anim. Blood Grps. Biochem. Genet. 10, 141-<br />

149.<br />

FAO FISHERY STATISTICS (2002): available at www.fao.org/fi/statist/statist.asp<br />

FELSENSTEIN, J. (1995): PHYLIP (Phylogeny Inference Package), Version<br />

3.573c. department <strong>of</strong> Genetics, University <strong>of</strong> Washington, Seattle.<br />

GROSS, R., KOHLMANN, K., KERSTEN, P. (2002): PCR-RFLP analysis <strong>of</strong> the<br />

mitochondrial ND-3/4 and ND-5/6 gene polymorphisms in the<br />

European and East Asian subspecies <strong>of</strong> <strong>common</strong> <strong>carp</strong> (<strong>Cyprinus</strong> <strong>carp</strong>io<br />

L.). Aquaculture 204, 507-516.<br />

KIRPITCHNIKOV, V.S. (1967): Homologous hereditary variation and<br />

evolution <strong>of</strong> wild <strong>common</strong> <strong>carp</strong> <strong>Cyprinus</strong> <strong>carp</strong>io L. Genetika 8, 65-72 (in<br />

Russian).<br />

KIRPITCHNIKOV, V.S. (1999): Genetics and Breeding <strong>of</strong> Common Carp.<br />

INRA, Paris.<br />

KOHLMANN, K., KERSTEN, P. (1999): Genetic variability <strong>of</strong> German and<br />

foreign <strong>common</strong> <strong>carp</strong> (<strong>Cyprinus</strong> <strong>carp</strong>io L.) populations. Aquaculture 173,<br />

435-445.<br />

KOHLMANN, K., GROSS, R., MURAKAEVA, A., KERSTEN, P. (2003): Genetic<br />

variability and structure <strong>of</strong> <strong>common</strong> <strong>carp</strong> (<strong>Cyprinus</strong> <strong>carp</strong>io L.) populations<br />

throughout the distribution range inferred from allozyme, microsatellite<br />

and mitochondrial DNA markers. Aquatic Living Resources 16, 421-431.<br />

KOHLMANN, K., KERSTEN, P., FLAJŠHANS, M. (in press): Microsatellite-based<br />

<strong>genetic</strong> variability and differentiation <strong>of</strong> domesticated, wild and feral<br />

<strong>common</strong> <strong>carp</strong> (<strong>Cyprinus</strong> <strong>carp</strong>io L.) populations. Aquaculture.<br />

MURAKAEVA, A., KOHLMANN, K., KERSTEN, P., KAMILOV, B., KHABIBULLIN,<br />

D. (2003): Genetic characterization <strong>of</strong> wild and domesticated <strong>common</strong><br />

<strong>carp</strong> (<strong>Cyprinus</strong> <strong>carp</strong>io L.) populations from Uzbekistan. Aquaculture 218,<br />

153-166.<br />

NAKAJIMA, M., KITA, A., FUJIO, Y. (1986): Genetic features <strong>of</strong> natural and<br />

cultured populations in masu salmon. Tohoku J. Agric. Res. 37, 31-42.


NEI, M. (1972): Genetic distance between populations. Am. Nat. 106, 283-<br />

292.<br />

NEI, M., TAJIMA, F., TATENO, Y. (1983): Accuracy <strong>of</strong> estimated phylo<strong>genetic</strong><br />

trees from molecular data. J. Molecular Evolution 19, 153-170.<br />

OTA, T. (1993): DISPAN: Genetic Distance and Phylo<strong>genetic</strong> Analysis<br />

S<strong>of</strong>tware. Pennsylvania: Pennsylvania State University.<br />

PAAVER, T. (1983): Biochemical Genetics <strong>of</strong> the Common Carp, <strong>Cyprinus</strong><br />

<strong>carp</strong>io L. Valgus, Tallinn (in Russian).<br />

PAAVER, T. (1986): The low level <strong>of</strong> <strong>genetic</strong> variability <strong>of</strong> the Donaldson<br />

rainbow trout strain. Proc. Acad. Sci. Estonian SSR, Biol. 35 (3), 193-<br />

197.<br />

STAAHL, G. (1983): Differences in the amount and distribution <strong>of</strong> <strong>genetic</strong><br />

variation between natural populations and hatchery stocks <strong>of</strong> Atlantic<br />

salmon. Aquaculture 33, 23-32.<br />

STEFFENS, W. (1980): Der Karpfen, <strong>Cyprinus</strong> <strong>carp</strong>io. 5. Auflage. A. Ziemsen<br />

Verlag, Wittenberg Lutherstadt.<br />

TRAN DINH-TRONG (1967): Materials on intraspecific variation, biology, and<br />

distribution <strong>of</strong> the <strong>carp</strong> <strong>of</strong> North-Vietnam. Soviet Genetics (Genetika) 3,<br />

28-35.<br />

VERSPOOR, E. (1988): Reduced <strong>genetic</strong> variability in first-generation hatchery<br />

populations <strong>of</strong> Atlantic salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 45,<br />

1686-1690.<br />

VUORINEN, J. (1984): Reduction <strong>of</strong> <strong>genetic</strong> variability in a hatchery stock <strong>of</strong><br />

brown trout, Salmo trutta L. J. Fish Biol. 24, 339-348.<br />

© <strong>IGB</strong> 2005 153

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!