11.12.2012 Views

Function of the chemokine receptor CXCR4 in haematopoiesis and ...

Function of the chemokine receptor CXCR4 in haematopoiesis and ...

Function of the chemokine receptor CXCR4 in haematopoiesis and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

25. Connor, R. I., Sheridan, K. E., Cerad<strong>in</strong>i, D., Choe, S. & L<strong>and</strong>au, N. R. Change <strong>in</strong> co<strong>receptor</strong> use<br />

correlates with disease progression <strong>in</strong> HIV-1-<strong>in</strong>fected <strong>in</strong>dividuals. J. Exp. Med. 185, 621–628 (1997).<br />

26. Donzella, G. A. et al. AMD3100, a small molecule <strong>in</strong>hibitor <strong>of</strong> HIV-1 entry via <strong>the</strong> <strong>CXCR4</strong> co-<strong>receptor</strong>.<br />

Nature Med. 4, 72–77 (1998).<br />

27. Gu, H., Zou, Y.-R. & Rajewsky, K. Independent control <strong>of</strong> immunogobul<strong>in</strong> switch recomb<strong>in</strong>ation at<br />

<strong>in</strong>dividual switch regions evidenced through Cre-loxP-mediated gene target<strong>in</strong>g. Cell 73, 1155–1164 (1993).<br />

28. Schaeren-Wiemers, N. & Gerf<strong>in</strong>-Moser, A. A s<strong>in</strong>gle protocol to detect transcripts <strong>of</strong> various types <strong>and</strong><br />

expression levels <strong>in</strong> neural tissue <strong>and</strong> cultured cells: <strong>in</strong> situ hybridization us<strong>in</strong>g digoxigen<strong>in</strong>-labelled<br />

cRNA probes. Histochemistry 100, 431–440 (1993).<br />

29. L<strong>and</strong>reth, K. S. & Dorshk<strong>in</strong>d, K. Pre-B cell generation potentiated by soluble factors from a bone<br />

marrow stromal cell l<strong>in</strong>e. J. Immunol. 140, 845–852 (1988).<br />

Acknowledgements. We thank F. Hatan <strong>and</strong> M.-J. Sunsh<strong>in</strong>e for technical assistance; S. Vukmanovic for<br />

help with <strong>the</strong> thymic transplant experiments; J. Johnson <strong>and</strong> N. Heitz for anti-Math1 <strong>and</strong> anti-BLBP<br />

antibodies; K. Dorshk<strong>in</strong>d <strong>and</strong> R. R. Hardy for <strong>the</strong> S17 cell l<strong>in</strong>e; <strong>and</strong> G. Fishell, A. Joyner, M. Chao,<br />

C. Mason, S. Jung, V. KewalRamani <strong>and</strong> C. Davis for comments on <strong>the</strong> manuscript; Y.-R.Z. thanks H. Gu<br />

for his cont<strong>in</strong>uous support. This work was supported by an NIH grant (to D.R.L.). Y.-R.Z. is <strong>the</strong> recipient<br />

<strong>of</strong> a postdoctoral fellowship from <strong>the</strong> Irv<strong>in</strong>gton Institute, D.R.L. is an Investigator <strong>of</strong> <strong>the</strong> Howard Hughes<br />

Medical Institute.<br />

Correspondence <strong>and</strong> requests for materials should be addressed to Y.-R.Z. (e-mail: zou@saturn.med.nyu.edu).<br />

Histone macroH2A1<br />

is concentrated <strong>in</strong> <strong>the</strong><br />

<strong>in</strong>active X chromosome<br />

<strong>of</strong> female mammals<br />

Carl Costanzi & John R. Pehrson<br />

Department <strong>of</strong> Animal Biology, School <strong>of</strong> Veter<strong>in</strong>ary Medic<strong>in</strong>e, University <strong>of</strong><br />

Pennsylvania, Philadelphia, Pennsylvania 19104, USA<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

In female mammals one <strong>of</strong> <strong>the</strong> X chromosomes is rendered almost<br />

completely transcriptionally <strong>in</strong>active 1,2 to equalize expression <strong>of</strong><br />

X-l<strong>in</strong>ked genes <strong>in</strong> males <strong>and</strong> females. The <strong>in</strong>active X chromosome<br />

is dist<strong>in</strong>guished from its active counterpart by its condensed<br />

appearance <strong>in</strong> <strong>in</strong>terphase nuclei 3 , late replication 4 , altered DNA<br />

methylation 2 , hypoacetylation <strong>of</strong> histone H4 (ref. 5), <strong>and</strong> by<br />

transcription <strong>of</strong> a large cis-act<strong>in</strong>g nuclear RNA called Xist 6–10 .<br />

Although it is believed that <strong>the</strong> <strong>in</strong>activation process <strong>in</strong>volves <strong>the</strong><br />

association <strong>of</strong> specific prote<strong>in</strong>(s) with <strong>the</strong> chromat<strong>in</strong> <strong>of</strong> <strong>the</strong><br />

<strong>in</strong>active X, no such prote<strong>in</strong>s have been identified 11 . We discovered<br />

a new gene family encod<strong>in</strong>g a core histone which we called<br />

macroH2A (mH2A) 12,13 . The am<strong>in</strong>o-term<strong>in</strong>al third <strong>of</strong> mH2A<br />

prote<strong>in</strong>s is similar to a full-length histone H2A, but <strong>the</strong> rema<strong>in</strong><strong>in</strong>g<br />

two-thirds is unrelated to any known histones. Here we show that<br />

an mH2A1 subtype is preferentially concentrated <strong>in</strong> <strong>the</strong> <strong>in</strong>active X<br />

chromosome <strong>of</strong> female mammals. Our results l<strong>in</strong>k X <strong>in</strong>activation<br />

with a major alteration <strong>of</strong> <strong>the</strong> nucleosome, <strong>the</strong> primary structural<br />

unit <strong>of</strong> chromat<strong>in</strong>.<br />

We exam<strong>in</strong>ed <strong>the</strong> distribution <strong>of</strong> mH2A <strong>in</strong> mouse liver nuclei by<br />

immun<strong>of</strong>luorescence us<strong>in</strong>g antibodies aga<strong>in</strong>st <strong>the</strong> non-histone<br />

region <strong>of</strong> one <strong>of</strong> <strong>the</strong> mH2A1 subtypes, mH2A1.2 (Fig. 1a). Most<br />

hepatocyte nuclei were brightly sta<strong>in</strong>ed by <strong>the</strong>se antibodies (Fig. 2a),<br />

although <strong>the</strong> nuclei <strong>of</strong> bile duct cells, endo<strong>the</strong>lial cells <strong>and</strong> connective<br />

tissue showed less sta<strong>in</strong><strong>in</strong>g (data not shown). Speckled<br />

sta<strong>in</strong><strong>in</strong>g was present through most <strong>of</strong> <strong>the</strong> nuclei <strong>of</strong> both males<br />

<strong>and</strong> females. The nuclei <strong>of</strong> females, however, also had large, dist<strong>in</strong>ct<br />

mH2A-dense regions, which we name macrochromat<strong>in</strong> bodies<br />

(MCBs) (Fig. 2a, b). We found this sex difference <strong>in</strong> all mice we<br />

exam<strong>in</strong>ed, <strong>in</strong>clud<strong>in</strong>g several sets <strong>of</strong> sibl<strong>in</strong>gs, as well as <strong>in</strong> dog liver<br />

sections <strong>and</strong> human primary sk<strong>in</strong> fibroblasts (data not shown). We<br />

detected MCBs us<strong>in</strong>g several methods <strong>of</strong> tissue fixation <strong>and</strong> a variety<br />

<strong>of</strong> polyclonal antibodies, <strong>in</strong>clud<strong>in</strong>g ones raised <strong>in</strong> rabbits or<br />

chickens <strong>and</strong> aga<strong>in</strong>st <strong>the</strong> non-histone region <strong>of</strong> mH2A1.1 (data<br />

not shown). MCBs were usually per<strong>in</strong>ucleolar, but little or no<br />

mH2A1.2 sta<strong>in</strong><strong>in</strong>g was detected <strong>in</strong> nucleoli, as assessed by doublelabel<br />

immun<strong>of</strong>luorescence with a monoclonal antibody aga<strong>in</strong>st <strong>the</strong><br />

nucleolar prote<strong>in</strong> fibrillar<strong>in</strong> 14 (data not shown).<br />

To quantify <strong>the</strong> sex specificity <strong>of</strong> MCBs <strong>in</strong> liver parenchyma, we<br />

letters to nature<br />

identified complete nuclei <strong>in</strong> liver sections by confocal microscopy<br />

<strong>and</strong> assessed <strong>the</strong>ir MCB content (Fig. 2c). In mice, 85% <strong>of</strong> nuclei<br />

from females conta<strong>in</strong>ed MCBs, compared with less than 1% <strong>of</strong><br />

nuclei from males. A similar distribution was observed <strong>in</strong> dogs: 90%<br />

<strong>of</strong> female nuclei conta<strong>in</strong>ed MCBs compared with less than 1% <strong>of</strong><br />

male nuclei. The relative mH2A1 prote<strong>in</strong> content <strong>of</strong> female <strong>and</strong><br />

male mouse livers was similar (Fig. 1b), <strong>and</strong> previously estimated <strong>in</strong><br />

rat liver to be one mH2A per 30 nucleosomes 12 .<br />

The female specificity <strong>of</strong> MCBs suggested a relationship to Xchromosome<br />

<strong>in</strong>activation. We <strong>the</strong>refore localized MCBs relative to<br />

X chromosomes by sta<strong>in</strong><strong>in</strong>g MCBs <strong>in</strong> female mouse liver sections by<br />

immun<strong>of</strong>luorescence <strong>and</strong> <strong>the</strong>n localiz<strong>in</strong>g <strong>the</strong> X chromosomes <strong>in</strong><br />

<strong>the</strong>se sections by fluorescent <strong>in</strong> situ hybridization (FISH) with a<br />

DNA probe that ‘pa<strong>in</strong>ts’ mouse X chromosomes (X-pa<strong>in</strong>t) 15<br />

(Fig. 3a). Us<strong>in</strong>g confocal microscopy, we found that 99% <strong>of</strong><br />

MCBs colocalized to an X chromosome <strong>and</strong> 43% <strong>of</strong> X chromosomes<br />

colocalized to an MCB (Fig. 3b). In a control experiment, MCBs<br />

never colocalized with chromosome 4 (data not shown). The Xpa<strong>in</strong>t<br />

results also confirmed that hepatocyte nuclei with more than<br />

one MCB (Fig. 2a, c) were polyploid (Fig. 3a). The <strong>in</strong>cidence <strong>of</strong><br />

polyploid nuclei was higher <strong>in</strong> older mice (data not shown).<br />

These results <strong>in</strong>dicate that <strong>the</strong> female-specific MCBs <strong>in</strong>volve one<br />

<strong>of</strong> <strong>the</strong> two X chromosomes. To determ<strong>in</strong>e which X chromosome is<br />

<strong>in</strong>volved, we exam<strong>in</strong>ed <strong>the</strong> nuclear distribution <strong>of</strong> mH2A1 prote<strong>in</strong>s<br />

<strong>in</strong> female mice with one X-chromosome, male mice with two <strong>and</strong><br />

human Kl<strong>in</strong>efelter fibroblasts with four. X/0 mice are females with<br />

just one X chromosome (<strong>the</strong> active X), as is found <strong>in</strong> human<br />

Turner’s syndrome. The mH2A1.2 sta<strong>in</strong><strong>in</strong>g pattern <strong>of</strong> X/0 liver<br />

sections was identical to that <strong>of</strong> normal males (data not shown).<br />

Sex-reversed mice have one normal X <strong>and</strong> one (designated Xsxr) that<br />

carries a translocated piece <strong>of</strong> <strong>the</strong> Y chromosome <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> sexdeterm<strong>in</strong><strong>in</strong>g<br />

locus16 . XXsxr mice are phenotypically male but have<br />

one active <strong>and</strong> one <strong>in</strong>active X chromosome. The mH2A1.2 sta<strong>in</strong><strong>in</strong>g<br />

<strong>of</strong> liver sections <strong>of</strong> XXsxr mice was identical to that <strong>of</strong> normal female<br />

mice (data not shown). F<strong>in</strong>ally, we analysed a human sk<strong>in</strong> cell l<strong>in</strong>e<br />

derived from a boy with Kl<strong>in</strong>efelter’s syndrome17 . The sex chromosome<br />

complement <strong>of</strong> this cell l<strong>in</strong>e is XXXXY (one active <strong>and</strong> three<br />

<strong>in</strong>active X chromosomes). Of <strong>the</strong>se nuclei, 63% had three MCBs<br />

each (Fig. 4a, b). We also observed preferential mH2A1.2 sta<strong>in</strong><strong>in</strong>g <strong>of</strong><br />

three chromosomes <strong>in</strong> metaphase spreads prepared from <strong>the</strong>se cells<br />

8<br />

Figure 1 Specificity <strong>of</strong> mH2A antibodies. a, A diagram <strong>of</strong> mH2A1 subtypes.<br />

mH2A1.1 <strong>and</strong> 1.2 are identical apart from a segment generated by alternative<br />

splic<strong>in</strong>g (cross-hatched). The fragment used to generate <strong>the</strong> antibodies is<br />

<strong>in</strong>dicated by <strong>the</strong> solid bar. The H2A region is shaded; <strong>the</strong> segment rich <strong>in</strong> basic<br />

am<strong>in</strong>o acids is <strong>in</strong>dicated by plus signs. b, Western blot analysis <strong>of</strong> mouse liver<br />

nuclear extracts us<strong>in</strong>g antibodies raised aga<strong>in</strong>st mH2A1.1 (anti-1.1) <strong>and</strong> mH2A1.2<br />

(anti-1.2). The mH2A1.2 blot shows extracts from six littermates. Gel load<strong>in</strong>g was<br />

normalized aga<strong>in</strong>st core-histone content 12 .<br />

Nature © Macmillan Publishers Ltd 1998<br />

NATURE | VOL 393 | 11 JUNE 1998 599

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!