12.12.2012 Views

Introduction to QCD slides - P.Hoyer.pdf - High Energy Physics Group

Introduction to QCD slides - P.Hoyer.pdf - High Energy Physics Group

Introduction to QCD slides - P.Hoyer.pdf - High Energy Physics Group

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Paul <strong>Hoyer</strong> Mugla 2010<br />

<strong>Introduction</strong> <strong>to</strong> <strong>QCD</strong><br />

Paul <strong>Hoyer</strong><br />

University of Helsinki<br />

Akyaka - Mugla, Turkey<br />

27.8 - 4.9 2010<br />

1


As simple as 1-2-3?<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

The Standard Model<br />

SU(3) x SU(2)L x U(1)<br />

<strong>QCD</strong><br />

Electroweak<br />

Not exactly: The strong, electromagnetic and weak interactions<br />

manifest themselves very differently in Nature<br />

SU(2)L x U(1): Where does the lagrangian come from?<br />

SU(3): What does the lagrangian do?<br />

2


Paul <strong>Hoyer</strong> Mugla 2010<br />

The Discovery of the Strong Interaction<br />

Rutherford’s experiment 1911:<br />

The positive charges in matter are<br />

located in a tiny nucleus, whose radius<br />

is ~ 10 –5 of the a<strong>to</strong>mic size.<br />

⇒ There must be a strong, short-ranged<br />

force <strong>to</strong> counteract the Coulomb repulsion<br />

Thomson’s a<strong>to</strong>m: Rutherford’s a<strong>to</strong>m:<br />

F = α<br />

r 2<br />

Rnucleus<br />

Ra<strong>to</strong>m<br />

� 10 −5<br />

3


Molecules<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

Matter<br />

-<br />

e<br />

-<br />

e<br />

-<br />

e<br />

A<strong>to</strong>m<br />

The Standard Model A. Pich - CERN Summer Lectures 2008<br />

-<br />

e<br />

Electron<br />

Nucleus<br />

p<br />

n n<br />

n<br />

pp<br />

p<br />

n<br />

p<br />

n p n<br />

p<br />

n n<br />

n p<br />

p<br />

Pro<strong>to</strong>n Neutron<br />

Quarks<br />

4


Paul <strong>Hoyer</strong> Mugla 2010<br />

The Pion as a carrier of the strong force<br />

In 1935 Hideki Yukawa suggested the existence of a new, strongly interacting<br />

particle “U” (later named the pion). The strength and range of the strong<br />

interaction could be unders<strong>to</strong>od as arising from pion exchange.<br />

• • •<br />

π<br />

• • •<br />

π<br />

π<br />

N<br />

• • •<br />

R < ∼ 1/Mπ<br />

Postulating a new particle was considered very bold in those days, when<br />

only a handful of elementary particles were known: pho<strong>to</strong>n, pro<strong>to</strong>n, neutron,<br />

electron, (neutrino).<br />

It has been suggested that “social pressure” may have kept physicists in the<br />

West from a similar proposal.<br />

Even <strong>to</strong>day in <strong>QCD</strong>, the pion is special: It is a Golds<strong>to</strong>ne boson.<br />

5


Paul <strong>Hoyer</strong> Mugla 2010<br />

Birth of Yang-Mills Theory (1954)<br />

Quantum ElectroDynamics (QED) is invariant under local (space and time -<br />

dependent) gauge transformations:<br />

Electron field:<br />

Pho<strong>to</strong>n field:<br />

ψ(x) → e ieΛ(x) ψ(x)<br />

Aµ(x) → Aµ(x) − ∂µΛ(x)<br />

Λ(x) may be any<br />

regular function<br />

In 1954, Yang and Mills generalized this local U(1) gauge symmetry <strong>to</strong> the<br />

SU(2) group of isospin, with the pro<strong>to</strong>n and neutron forming an SU(2)<br />

� �<br />

p<br />

isospin doublet just as in Yukawa’s theory:<br />

n<br />

This established the structure of non-abelian gauge symmetry.<br />

Nature found, however, different uses of YM theories.<br />

⇐ As in classical ED!<br />

6


Matter field:<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

ψ(x) → U(x)ψ(x)<br />

Physical Review 96 (1954) 191<br />

For a local gauge transformation defined by an SU(2) matrix U(x), Yang and<br />

Mills found that the theory is symmetric provided the fields transform as:<br />

Gauge field: Aµ(x) → U(x)Aµ(x)U † (x) − i<br />

g U(x)∂µU † (x)<br />

The same rule holds for any group, such as SU(3). In QED,<br />

g is the same<br />

for all ψ!<br />

U(x) =e ieΛ(x) Then U1U2 = U2U1, i.e., all group elements commute,<br />

hence the U(1) gauge symmetry is said <strong>to</strong> be abelian.<br />

7


† †<br />

2 * 2 matrices: " " " " " " # ; det " " 1<br />

"<br />

" exp !<br />

a 1 a<br />

Fundamental Representation: ! F " !<br />

2 Pauli<br />

The Standard Model A. Pich - CERN Summer Lectures 2008<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

+ i - ,<br />

a a<br />

Commutation Relation:<br />

a a†<br />

a<br />

; ! " ! ; Tr ( ! ) " 0 ; a = 1 , ! , 3<br />

a b abc c<br />

/ , 0<br />

1<br />

! !<br />

2<br />

" i . !<br />

1 $ 0 1% 2 $ 0 # i % 3 $ 1 0 %<br />

! " & ' ; ! " & ' ; ! " & '<br />

( 1 0) ( i 0 ) ( 0 # 1)<br />

8


a a<br />

Fundamental Representation: ! F ! # Gell-Mann<br />

$ 0 1 0% $ 0 " i 0% $ 1 0 0% $ 0 0 1 %<br />

1 & ' 2 & ' 3 & ' 4 & '<br />

# !<br />

&<br />

1 0 0<br />

'<br />

; # !<br />

&<br />

i 0 0<br />

'<br />

; # !<br />

&<br />

0 " 1 0<br />

'<br />

; # !<br />

&<br />

0 0 0<br />

'<br />

& 0 0 0' & 0 0 0' & 0 0 0' & 1 0 0'<br />

( ) ( ) ( ) ( )<br />

$ 0 0 " i % $ 0 0 0% $ 0 0 0 % $ 1 0 0 %<br />

5 & ' 6 & ' 7 & ' 8 1 & '<br />

# !<br />

&<br />

0 0 0<br />

'<br />

; # !<br />

&<br />

0 0 1<br />

'<br />

; # !<br />

&<br />

0 0 " i<br />

'<br />

; # ! 0 1 0<br />

3<br />

& '<br />

& i 0 0 ' &0 1 0' &0 i 0 ' &0 0 " 2'<br />

( ) ( ) ( ) ( )<br />

1 123 147 156 246 257 345 367 1 458 1 678 1<br />

f ! f ! " f ! f ! f ! f ! " f ! f ! f !<br />

2 3 3 2<br />

The Standard Model A. Pich - CERN Summer Lectures 2008<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

a b abc c<br />

[ ! , ! ] ! if !<br />

1<br />

2<br />

9


Yang-Mills<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

Particles found in Experiments<br />

Pauli ν<br />

using particle accelera<strong>to</strong>rs<br />

Dirac e +<br />

Einstein γ<br />

Yukawa π ±<br />

using cosmic rays<br />

10<br />

http://fafnir.phyast.pitt.edu/particles/


Mesons<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

Quark Model classification of Hadrons<br />

q¯q<br />

Hadrons may be formed<br />

with any combination of<br />

q = u,d,s,c,b,t<br />

π +<br />

Free quarks have never been seen:<br />

p<br />

Baryons<br />

qqq<br />

Were quarks mere mathematical rules, or true particles? (Gell-Mann)<br />

12


Paul <strong>Hoyer</strong> Mugla 2010<br />

Quarks have Color<br />

Three quark colors were introduced by O.W. Greenberg in 1964, <strong>to</strong> make the<br />

quark model of the pro<strong>to</strong>n compatible with the Pauli exclusion principle:<br />

Baryon wave functions must be antisymmetric under the interchange of<br />

quarks. In the Quark Model, the space – spin wf is symmetric. The color wf is<br />

antisymmetric, rescuing the Pauli principle.<br />

The antisymmetric color wave function<br />

(A,B,C = red, blue, yellow) means that<br />

the pro<strong>to</strong>n is a color singlet (does not<br />

change under gauge transformations).<br />

Mesons are also color singlets:<br />

|π〉 = �<br />

A<br />

q A ¯q A<br />

|p〉 = �<br />

A,B,C<br />

U|p〉 = |p〉<br />

U|π〉 = |π〉<br />

εABCq A q B q C<br />

13


Quarks are for real: Pointlike scattering of electrons<br />

<strong>High</strong> energy electrons scatter from pointlike quarks inside the pro<strong>to</strong>n:<br />

e +q → e +q (in analogy <strong>to</strong> Rutherford’s experiment)<br />

The struck quark flies out of the pro<strong>to</strong>n and “hadronizes” in<strong>to</strong> a spray (jet) of<br />

hadrons (mostly pions).<br />

At relativistic energies quark-antiquark pairs are created <strong>to</strong> ensure that all<br />

quarks end up as constituents of mesons or baryons.<br />

Deep Inelastic Scattering (DIS):<br />

e + p → e + anything<br />

SLAC 1969: Ee = 20 GeV<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

14


Paul <strong>Hoyer</strong> Mugla 2010<br />

The search for asymp<strong>to</strong>tic freedom<br />

The SLAC data (1969) showed that the pro<strong>to</strong>n<br />

charge is located in apparently free, pointlike<br />

constituents, presumably the quarks proposed<br />

earlier based on the hadron spectrum.<br />

This raised the question:<br />

“How can the quarks be nearly free inside the pro<strong>to</strong>n,<br />

yet bind so strongly <strong>to</strong>gether that they do not exist as free particles?”<br />

It was known that the coupling<br />

strength of QED “runs”, ie.,<br />

α = α(Q 2 ) increases as the<br />

distance scale r = 1/Q decreases.<br />

If there were theories where α = α(Q 2 )<br />

decreases with r this might explain<br />

the SLAC data.<br />

α(r)<br />

e<br />

p<br />

QED<br />

γ *<br />

e<br />

q<br />

π<br />

...<br />

p<br />

15<br />

log(r)


Paul <strong>Hoyer</strong> Mugla 2010<br />

Quantum Chromodynamics (1972)<br />

The <strong>QCD</strong> Lagrangian defines the interactions of quarks and gluons:<br />

L<strong>QCD</strong> = �<br />

f<br />

Looks like QED! But the gauge symmetry is<br />

SU(3) of color (Greenberg, 1964)<br />

ψ → Uψ U ⊂ SU(3)<br />

All quarks u,d,s,c,b,t have<br />

the same strong coupling g<br />

¯ψf (i/∂ − g /A − mf )ψf − 1<br />

4 F µν Fµν<br />

αs = g2<br />

4π<br />

Note: In QED the abelian U(1) symmetry allows<br />

different electric charges e for different particles<br />

It remains a mystery why:<br />

ψ =<br />

⎛<br />

⎝ q<br />

q<br />

q<br />

⎞<br />

⎠<br />

eu = − 2<br />

3 ee<br />

|ep + ee|/e < 1.0 · 10 −21<br />

20


The Standard Model A. Pich - CERN Summer Lectures 2008<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

#<br />

!<br />

"<br />

S. Bethke<br />

2006<br />

! $% & ' ()**+, - ()((*(<br />

!<br />

"<br />

! $% & ' ()**+! - ()((!.<br />

#<br />

2004<br />

21


Paul <strong>Hoyer</strong> Mugla 2010<br />

Asymp<strong>to</strong>tic Freedom<br />

Asymp<strong>to</strong>tic Freedom<br />

“What this year's Laureates<br />

discovered was something that, at<br />

first sight, seemed completely<br />

contradic<strong>to</strong>ry. The interpretation of<br />

their mathematical result was that the<br />

closer the quarks are <strong>to</strong> each other,<br />

the weaker is the 'colour charge'.<br />

When the quarks are really close <strong>to</strong><br />

each other, the force is so weak that<br />

they behave almost as free particles.<br />

This phenomenon is called<br />

‘asymp<strong>to</strong>tic freedom’. The converse<br />

is true when the quarks move apart:<br />

the force becomes stronger when the<br />

distance increases.”<br />

! S(r)<br />

1/r<br />

22<br />

From P. Skands


Paul <strong>Hoyer</strong> Mugla 2010<br />

Data creates Theory<br />

Data<br />

Discriminating<br />

Observables<br />

Fits<br />

Phenomenolog<br />

ical Models<br />

Individual<br />

Essential<br />

Features<br />

Quark Model,<br />

Eightfold<br />

Way, …<br />

(Solvable)<br />

Theory<br />

Complete<br />

description<br />

Quantum<br />

Chromo-<br />

Dynamics<br />

23<br />

Peter Skands, ESHEP-10


Paul <strong>Hoyer</strong> Mugla 2010<br />

Puzzles of <strong>QCD</strong><br />

<strong>QCD</strong> must have Color Confinement: Only color singlet mesons and baryons<br />

can propagate over long distances.<br />

Color confinement is verified numerically in numerical lattice simulations<br />

and modelled phenomenologically, but the mechanism is still poorly unders<strong>to</strong>od.<br />

Baryons and mesons are bound states of quarks. What are the wave functions?<br />

The quarks and gluons bound in hadrons are highly relativistic.<br />

Data and models exist, but no calculations comparable <strong>to</strong> QED a<strong>to</strong>ms.<br />

How can we compare data on hadron final states with perturbative <strong>QCD</strong>?<br />

Fac<strong>to</strong>rization theorems allow <strong>to</strong> express physical measurements in terms of hard,<br />

perturbative subprocesses and universal, measurable quark and gluon distributions.<br />

24


Paul <strong>Hoyer</strong> Mugla 2010<br />

Perspective: The divisibility of matter<br />

Since ancient times we have wondered whether matter can be divided in<strong>to</strong><br />

smaller parts ad infinitum, or whether there is a smallest constituent.<br />

Democritus, ~ 400 BC<br />

Vaisheshika school<br />

Common sense suggest that these are the two possible alternatives.<br />

However, physics requires us <strong>to</strong> refine our intuition.<br />

Quantum mechanics shows that a<strong>to</strong>ms (or molecules) are the identical<br />

smallest constituents of a given substance<br />

– yet they can be taken apart in<strong>to</strong> electrons, pro<strong>to</strong>ns and neutrons.<br />

Hadron physics gives a new twist <strong>to</strong> this age-old puzzle: Quarks can be<br />

removed from the pro<strong>to</strong>n, but cannot be isolated. Relativity – the creation of<br />

matter from energy – is the new feature which makes this possible.<br />

We are fortunate <strong>to</strong> be here <strong>to</strong> address – and hopefully develop an<br />

understanding of – this essentially novel phenomenon!<br />

25


Instantaneous Coulomb interaction<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

Understanding charge screening in <strong>QCD</strong><br />

What went wrong with the nice physical argument of QED?<br />

= N _1<br />

* n 2_<br />

c *<br />

3 f 3<br />

Transverse gluons (and quarks)<br />

Instantaneous Coulomb interaction<br />

= +N 4<br />

*<br />

c<br />

Vacuum fluctuations of transverse fields<br />

Yu. L. Dokshitzer hep-ph/0306287<br />

26<br />

Physical, transverse<br />

gluons screen as QED<br />

Coulomb gluons give<br />

the opposite sign!


In <strong>QCD</strong>, mass terms can be directly introduced in the lagrangian.<br />

In the SM all masses result from “Yukawa interactions” involving the Higgs<br />

field, but they are unconstrained by the theory.<br />

The quark masses inferred<br />

from experiment are:<br />

mu = 1.5 ... 3.3 MeV<br />

md = 3.5 ... 6.0 MeV<br />

ms = 104 ± 30 MeV<br />

mc = 1.27 ± .10 GeV<br />

mb = 4.20 ± .15 GeV<br />

mt = 171.2 ± 2.1 GeV<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

Quark masses: Nature’s gift<br />

} m > Λ<strong>QCD</strong> , mass effects large<br />

Non-relativistic bound states<br />

Scale of strong<br />

interactions<br />

27


Binding energy<br />

[meV]<br />

0<br />

-1000<br />

-3000<br />

-5000<br />

-7000<br />

3 1 S 0<br />

2 1 S 0<br />

1 1 S 0<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

Charmonium – the Positronium of <strong>QCD</strong><br />

Since mc >> Λ<strong>QCD</strong>, the c¯c mesons are nearly non-relativistic<br />

3 3 S 1<br />

2 3 S 1<br />

1 3 S 1<br />

2 1 P 1<br />

8·10 -4 eV<br />

Ionisationsenergie<br />

2 3 P2<br />

2 3 P1<br />

2 3 P0<br />

3 1 D 2<br />

10 -4 eV<br />

e + e −<br />

3 3 D2<br />

3 3 D1<br />

3 3 D2<br />

~ 600 meV<br />

e + e- 0.1 nm<br />

Mass [MeV]<br />

4100<br />

3900<br />

3700<br />

3500<br />

3300<br />

3100<br />

2900<br />

c(3590)<br />

c(2980)<br />

(4040)<br />

(3770)<br />

(3686)<br />

(3097)<br />

3 D1<br />

hc(3525)<br />

3 P2 (~ 3940)<br />

3 P1 (~ 3880)<br />

3 P0 (~ 3800)<br />

2(3556)<br />

1(3510)<br />

0(3415)<br />

C<br />

1 D 2<br />

DD<br />

3 D 3<br />

(~ 3800)<br />

3 D2<br />

1 fm<br />

c¯c<br />

C<br />

28


e<br />

p<br />

γ *<br />

e<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

Quarks move relativistically inside the pro<strong>to</strong>n<br />

q<br />

DIS measures the<br />

fraction x of the<br />

pro<strong>to</strong>n energy<br />

which is carried<br />

by the quarks,<br />

anti-quarks and<br />

gluons.<br />

For non-relativistic<br />

internal motion the<br />

x-distribution would<br />

be sharply peaked<br />

Non-relativistic uud state<br />

29


Paul <strong>Hoyer</strong> Mugla 2010<br />

Origin of the pro<strong>to</strong>n mass<br />

The u, d quarks in the pro<strong>to</strong>n have small masses<br />

2mu + md<br />

mp<br />

�<br />

10 MeV<br />

938 MeV<br />

� 1%<br />

99% of the pro<strong>to</strong>n mass<br />

is due <strong>to</strong> interactions!<br />

1% is due <strong>to</strong> Higgs.<br />

⇒ Ultra-relativistic state<br />

Compare this with positronium (e + e – ), the lightest QED a<strong>to</strong>m:<br />

2me<br />

mpos<br />

� 100.00067%<br />

Binding energy is tiny wrt mc 2<br />

⇒ Nonrelativistic state<br />

The compatibility of the non-relativistic⎥p〉 = ⎥uud〉 quark model description<br />

of the pro<strong>to</strong>n with its ultra-relativistic par<strong>to</strong>n model picture remains a mystery<br />

– but a mystery that we can address within <strong>QCD</strong>.<br />

Both are supported by data: = ??<br />

⎥p〉<br />

uud<br />

30<br />

gluon<br />

q¯q


Unlike a<strong>to</strong>ms, hadrons have<br />

no ionization threshold,<br />

where the quark constituents<br />

would be liberated.<br />

Hadron masses are<br />

generated by the<br />

potential and kinetic<br />

energies of the<br />

constituents<br />

Not yet explained<br />

by <strong>QCD</strong><br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

Hadron mass spectrum is relativistic<br />

R e ! (m )<br />

2<br />

8.00<br />

7.00<br />

6.00<br />

5.00<br />

4.00<br />

3.00<br />

2.00<br />

1.00<br />

P.Desgrolard, M.Giffon, E.Martynov, E.Predazzi, hep-ph/0006244<br />

Spin<br />

" (770)<br />

# (782)<br />

Regge trajec<strong>to</strong>ry<br />

f 2(1270)<br />

a 2 (1318)<br />

" 3(1700)<br />

# (1670)<br />

3<br />

f 4 (2050)<br />

a (2020)<br />

4<br />

0.00<br />

0 .00 2.00 4.0 0 6.00 8.00 10.00<br />

m 2 (G eV )<br />

2<br />

(2350)<br />

" 5<br />

f (2510)<br />

6<br />

a (2 450)<br />

6<br />

For unknown<br />

reasons, hadron<br />

spins are<br />

proportional <strong>to</strong><br />

their mass 2<br />

31


√+%&'(<br />

!"#$$%$&'()#*%+,-.<br />

!" #<br />

!"<br />

!" $!<br />

π-<br />

π,<br />

!" $!<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

! "#$ %&'()*<br />

! !" !" #<br />

./0 0 1 2 3 4 5 6 7 .8 08 18 28<br />

⇓<br />

! !" !" #<br />

⇓<br />

elastic<br />

Total and Elastic Hadron Cross Sections<br />

0/0 1 2 3 4 5 6 7 .8 08 18 28 38 48<br />

π ∓ d <strong>to</strong>tal<br />

π − p elastic<br />

π − p <strong>to</strong>tal<br />

Not yet explained<br />

by <strong>QCD</strong><br />

! "#$ %&'()*<br />

Figure 40.13: Total and elastic cross sections for π ± p and π ± d (<strong>to</strong>tal only) collisions as a function of labora<strong>to</strong>ry beam momentum and <strong>to</strong>tal<br />

center-of-mass energy. Corresponding computer-readable data files may be found at http://pdg.lbl.gov/current/xsect/. (Courtesy of the<br />

COMPAS <strong>Group</strong>, IHEP, Protvino, August 2005)<br />

32


Paul <strong>Hoyer</strong> Mugla 2010<br />

Heavy Ion Collisions<br />

The quest for a new phase of matter at RHIC, LHC,...<br />

33


Paul <strong>Hoyer</strong> Mugla 2010<br />

34<br />

P. Skands


Paul <strong>Hoyer</strong> Mugla 2010<br />

Hadron masses from Lattice calculations<br />

35<br />

P. Skands


Paul <strong>Hoyer</strong> Mugla 2010<br />

The accuracy of QED perturbation theory<br />

Many of our most accurate predictions come from QED a<strong>to</strong>ms.<br />

For example, the 2S1/2 – 8S1/2 splitting in Hydrogen:<br />

Δ(2S1/2 – 8S1/2)H = 770 649 350 012.0(8.6) kHz EXP<br />

= 770 649 350 016.1(2.8) kHz QED<br />

The QED result is based on perturbation theory:<br />

– an expansion in α = e 2 /4π ≈ 1/137.035 999 11(46)<br />

U.D. Jentschura et al,<br />

PRL 95 (2005) 163003<br />

However, the series must diverge since for any α = e2/4π < 0 the electron<br />

charge e is imaginary: The Hamil<strong>to</strong>nian is not hermitian and probability not<br />

conserved. F. Dyson<br />

The perturbative expansion is believed <strong>to</strong> be divergent (asymp<strong>to</strong>tic).<br />

The good agreement of data with QED is fortuituous, from a<br />

theoretical point of view. For a discussion of the truncation effects in asymp<strong>to</strong>tic<br />

expansions see Y. Meurice, hep-th/0608097<br />

<strong>QCD</strong> perturbation theory has many features in common with that of QED.<br />

36


Paul <strong>Hoyer</strong> Mugla 2010<br />

Applications of perturbative <strong>QCD</strong> <strong>to</strong> data<br />

The <strong>QCD</strong> perturbative expansion successfully describes short distance<br />

processes, which involve high virtualities Q 2 and small αs(Q 2 ).<br />

Long distance dynamics is “universal”, i.e., independent of the hard process.<br />

Measuring the soft quark distribution and fragmentation functions in one<br />

process one can then predict measurable hadron cross sections.<br />

The applications of P<strong>QCD</strong> depends on Fac<strong>to</strong>rization Theorems, which hold <strong>to</strong><br />

all orders in αs at “Leading Twist”, for sufficiently inclusive processes.<br />

The “<strong>High</strong>er Twist” corrections are power-suppressed in the hard scale,<br />

∝ 1/Q 2 and can usually not be predicted.<br />

37


dσ<br />

dX<br />

Fac<strong>to</strong>rization Theorem<br />

Fac<strong>to</strong>rization: expresses the independence of long-wavelength (soft)<br />

Fac<strong>to</strong>rization emission on the nature of the hard (short-distance) process.<br />

� �<br />

�<br />

=<br />

a,b<br />

f<br />

ˆX f<br />

f!x,Q i "<br />

fa(xa, Q 2 i )fb(xb, Q 2 i ) dˆσab→f(xa, xb, f, Q 2 i , Q2 f )<br />

d ˆ Xf<br />

!<br />

ˆ<br />

"<br />

! sum over long!wavelength his<strong>to</strong>ries<br />

leading <strong>to</strong> a with xa at the scale Qi 2<br />

�<br />

�<br />

!<br />

Paul <strong>Hoyer</strong> Mugla 2010 + (At H.O. each of these defined in a specific scheme, usually MS) P. Skands<br />

ˆ<br />

X<br />

D<br />

!<br />

p = x j<br />

!<br />

!<br />

P pro<strong>to</strong>n<br />

Par<strong>to</strong>n distribution<br />

fa(xa, Q<br />

functions (PDF)<br />

2 i )fb(xb, Q 2 i ) dˆσab→f(xa, xb, f, Q2 i , Q2 f )<br />

b, Q 2 i ) dˆσab→f(xa, xb, f, Q2 i , Q2 f )<br />

rization<br />

a,b<br />

f<br />

ˆX f<br />

d ˆ Xf<br />

fa(xa, Q (ISR)<br />

2 i )fb(xb, Q 2 i ) dˆσab→f(xa, xb, f, Q2 i , Q2 f )<br />

d ˆ Xf<br />

d ˆ Xf<br />

D( ˆ Xf → X, Q 2 i , Q 2 f)<br />

Illustration by M. Mangano<br />

X<br />

D( ˆ Xf → X, Q 2 i , Q 2 f)<br />

38<br />

D( ˆ Fragmentation<br />

Xf → X<br />

Function (FF)<br />

! Sum over long!wavelength his<strong>to</strong>ries<br />

from at Qf 2 D( <strong>to</strong> X<br />

ˆ Xf → X, Q 2 i , Q 2 f) (FSR and Hadronization)


Paul <strong>Hoyer</strong> Mugla 2010<br />

e !<br />

# q<br />

e " q<br />

" #<br />

" #<br />

$ ( ee & hadrons) $ ( ee & qq)<br />

q<br />

R '<br />

! !<br />

NC<br />

Q<br />

" # " # " # " # -<br />

$ ( ee & % % ) $ ( e e & % % )<br />

,<br />

(<br />

)<br />

)<br />

*<br />

)<br />

)<br />

)<br />

+<br />

-<br />

, ( u, d, s)<br />

, ( u, d, s, c)<br />

, ( u, d, s, c,<br />

b)<br />

The Standard Model A. Pich - CERN Summer Lectures 2008<br />

2<br />

3<br />

10<br />

9<br />

11<br />

9<br />

N<br />

N<br />

N<br />

C<br />

C<br />

C<br />

q<br />

2<br />

q<br />

40


ξ =<br />

1 +<br />

= log E + p �<br />

� m 2 + p 2 ⊥<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

Q + M X<br />

2x<br />

�<br />

1 + 4m2 px2 /Q2 c¯c b¯b s¯s<br />

� − log tan(θ/2)<br />

R = σ(e+ e − → hadrons)<br />

σ(e + e − → µ + µ − )<br />

=3 �<br />

q<br />

e 2 q<br />

�<br />

1+ αs<br />

π<br />

�<br />

41


Paul <strong>Hoyer</strong> Mugla 2010<br />

LEP determination of neutrino number<br />

e + e − → hadrons<br />

at Z peak<br />

42


:02 PM<br />

e +<br />

e –<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

Traces of Quarks and Gluons in the final state?!<br />

e + e – → 2 jets e + e – → 3 jets<br />

Z<br />

q<br />

_<br />

q<br />

h’s<br />

h’s<br />

Q 2 = m 2 Z<br />

e +<br />

e –<br />

Z<br />

q<br />

_<br />

q<br />

g<br />

h’s<br />

h’s<br />

43<br />

h’s


No exclusive amplitudes for charged particles (I)<br />

The identification of the data on e + e – → 2 jets with the <strong>QCD</strong> process<br />

e + e − → q¯q<br />

Gauge invariance dictates that amplitudes<br />

with external charged particles vanish:<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

requires care, since the latter does not exist!<br />

This is a general feature of gauge theories, and as such is best illustrated by<br />

the QED process e + e − → µ + µ −<br />

A(e + e − → µ + µ − ) = 0<br />

This is because the amplitude must be invariant under local U(1) gauge<br />

transformations. Multiplying one of the external fermions by<br />

U = e iπ = – 1 we get A → – A.<br />

44


No exclusive amplitudes for charged particles (II)<br />

In the perturbation expansion the Born<br />

term is well-defined and ≠ 0:<br />

This problem shows up at order α 2 as an<br />

infrared singularity in the loop integral for k → 0:<br />

This may be seen without calculation:<br />

The two fermion propaga<strong>to</strong>rs ∝ k, e.g.:<br />

(p1 − k) 2 − m 2 µ = −2p1 · k + k 2 ∝ k<br />

The pho<strong>to</strong>n propaga<strong>to</strong>r ∝ k 2 , giving a log singularity at k = 0<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

e +<br />

e –<br />

e +<br />

e –<br />

γ*<br />

γ*<br />

q<br />

�<br />

0<br />

p1<br />

p2<br />

d 4 k<br />

k 4<br />

⇒ The exclusive process e + e – → µ + µ – is ill defined.<br />

µ +<br />

µ –<br />

µ +<br />

k<br />

µ –<br />

45


No exclusive amplitudes for charged particles (III)<br />

Two charged particles at different positions x, y must be connected by a<br />

pho<strong>to</strong>n string <strong>to</strong> be gauge invariant:<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

¯ψ(y)exp<br />

�<br />

ie<br />

� y<br />

x<br />

dzνA ν �<br />

(z) ψ(x)<br />

The pho<strong>to</strong>n (gauge) field serves as a connection, which “informs” about the<br />

choice of gauge at each point in space.<br />

In perturbation theory, the missing string causes an infrared singularity at the<br />

one pho<strong>to</strong>n correction level.<br />

But we previously saw that there is no problem with the <strong>to</strong>tal e + e – cross<br />

section, which includes the µ + µ – final state?!<br />

To see how the IR singularity cancels in the <strong>to</strong>tal cross section we may use<br />

the optical theorem.<br />

46


Unitarity (white):<br />

σ<strong>to</strong>t(s) = �<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

Some Theorems<br />

X<br />

�<br />

Before <strong>QCD</strong><br />

E.g., Lorentz inv., unitarity and the optical theorem<br />

SS † = 1<br />

“something will happen”<br />

note: includes “no” scattering<br />

The Lagrangian of <strong>QCD</strong><br />

Optical Theorem<br />

As a consequence of the unitarity of the scattering matrix:<br />

the <strong>to</strong>tal cross section may be expressed in terms of the<br />

Unitarity (white)<br />

imaginary part of the forward elastic amplitude:<br />

SS † =1<br />

dΦX |MX| 2 = 8π<br />

Optical Theorem (white) √ Im [Mel(θ = 0)]<br />

s<br />

σ<strong>to</strong>t(s) =<br />

µ<br />

)( D µ)ij ψ j q− mq ¯ ψ i qψqi− 1<br />

4 F a µνF aµν<br />

The Lagrangian of <strong>QCD</strong> in white<br />

µ<br />

)( D µ)ij ψ j q− mq ¯ ψ i qψqi− 1<br />

X ~ XX<br />

2<br />

X<br />

10<br />

4 F a µνF aµν<br />

SS † = 1<br />

Total = The Lagrangian that can of happen <strong>QCD</strong><br />

dΦX |M X | 2 = 8π<br />

√ Im [M<br />

s<br />

el(θ = 0) ]<br />

Sum over everything<br />

“Square Root” of<br />

nothing happening<br />

L = ¯ ψ i q(iγ µ )( D µ)ij ψ j q− mq ¯ ψ i qψqi− 1<br />

4 F a µνF aµν<br />

The Lagrangian of <strong>QCD</strong> in white<br />

L = ¯ ψ i q(iγ µ )( D µ)ij ψ j q− mq ¯ ψ i qψqi− 1<br />

4 F a µνF aµν<br />

The sum over all states X becomes a completeness sum on the rhs.<br />

QED satisfies unitarity at each order of α.<br />

=<br />

47<br />

P. Skands


µ +<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

µ +<br />

γ* γ*<br />

µ –<br />

Optical Theorem for σ<strong>to</strong>t(e in QED (I)<br />

+ e − )<br />

O (α) O � α 2�<br />

µ –<br />

γ ∗ → µ + µ −<br />

µ +<br />

µ –<br />

γ<br />

µ +<br />

µ –<br />

γ ∗ → µ + µ − γ<br />

µ +<br />

µ –<br />

µ +<br />

µ –<br />

γ ∗ → µ + µ −<br />

At O(α 2 ) there are two contributions <strong>to</strong> the imaginary part (dashed line).<br />

The IR singularity cancels between them, i.e., between different final states!<br />

Since the γ*→ γ* amplitude does not have external charges, it “has <strong>to</strong> be” regular.<br />

It means that even in QED we must define cross sections such that they include<br />

(arbitrarily soft) pho<strong>to</strong>ns. There are no free, “bare electrons”.<br />

48


Paul <strong>Hoyer</strong> Mugla 2010<br />

Optical Theorem for σ<strong>to</strong>t(e in QED (II)<br />

+ e − )<br />

γ* γ*<br />

k k<br />

Since the IR singularity is only at k = 0, it suffices <strong>to</strong> include only pho<strong>to</strong>ns with<br />

k < k0, for arbitrarily small k0.<br />

The criterion is <strong>to</strong> sum over all states that are degenerate in energy,<br />

since these have an asymp<strong>to</strong>tically long formation time Δt ∼ 1/ΔE<br />

In QED, collinear IR singularities are regulated by the electron mass:<br />

49<br />

Kinoshita-<br />

Lee-Nauenberg<br />

(KLN) theorem<br />

p<br />

Ee =<br />

xp<br />

(1–x)p<br />

+<br />

� p2 + m2 e Ee+γ = � (xp) 2 + m2 e + (1 − x)|p|<br />

For |p| >> me the<br />

collinear e + γ state has<br />

nearly the same energy<br />

as the single electron e.<br />

⇒ In QED, collinear bremsstrahlung is enhanced by a fac<strong>to</strong>r log(|p|/me).


Paul <strong>Hoyer</strong> Mugla 2010<br />

Removing IR sensitivity in <strong>QCD</strong><br />

In <strong>QCD</strong> even soft gluons can change the color of the quark<br />

⇒ we can never measure the color of a quark!<br />

Also: Want <strong>to</strong> sum over all soft and collinear divergences up <strong>to</strong> a<br />

“Fac<strong>to</strong>rization scale” µ, large enough <strong>to</strong> apply P<strong>QCD</strong> for Q > µ.<br />

Define IR safe cross sections, which can be calculated in P<strong>QCD</strong><br />

using the fac<strong>to</strong>rization theorem, and measured in experiments.<br />

50


e�nition<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

Infrared Safe observables<br />

An obser vable is infrared safe if it is insensitive <strong>to</strong><br />

SOFT radiation:<br />

Adding any number of infinitely soft particles should not<br />

change the value of the obser vable<br />

COLLINEAR radiation:<br />

Splitting an existing particle up in<strong>to</strong> two comoving particles<br />

each with half the original momentum should not change<br />

the value of the obser vable<br />

51<br />

P. Skands


LO:<br />

σ NLO<br />

�<br />

1 (R) =<br />

� LO, NLO, etc<br />

|M (0)<br />

2Re[M (1)<br />

52<br />

σ Z → 2 1-loop:<br />

qk<br />

LO<br />

(R) = |M X+1 (0)<br />

X+1 |2<br />

Cross sections<br />

�<br />

at NLO<br />

σBorn = |M<br />

Z → 3 jets:<br />

(0)<br />

X |2<br />

Z → 2 1-loop:<br />

qk<br />

g<br />

qi �<br />

ik<br />

σ<br />

qk<br />

qi<br />

a<br />

qk<br />

LO<br />

X+1 (R) = |M<br />

R<br />

(0)<br />

X+1 |2<br />

�<br />

X = σBorn + |M (0)<br />

X+1 |2 �<br />

+ 2Re[M (1) (0)∗<br />

X M X ]<br />

Z decay:<br />

q q<br />

q q<br />

�<br />

|M|<br />

colours<br />

2 Z → 3 jets:<br />

qk<br />

qi<br />

g<br />

qi<br />

=<br />

jk<br />

qk<br />

qi<br />

a g<br />

qi<br />

ik<br />

Z → 2 1-loop:<br />

qk<br />

a<br />

g<br />

qi �<br />

ik<br />

|M<br />

R<br />

qk<br />

qi<br />

a<br />

(0)<br />

X+1 |2<br />

Z → 3 jets:<br />

qk �<br />

qi<br />

g<br />

qi<br />

jk<br />

qk<br />

qi<br />

a g<br />

qi<br />

ik<br />

Removing IR sensitivity in <strong>QCD</strong> at NLO<br />

a<br />

g<br />

qi<br />

qk<br />

orem (Kinoshita-Lee-Nauenberg)<br />

ities cancel at complete order (only finite te<br />

ik<br />

�<br />

qk<br />

qi<br />

a<br />

σBorn + |M qk<br />

(note: Not the 1-loop diagram sq<br />

(0)<br />

X+1 |2 �<br />

+ 2Re[M (1) (0)∗<br />

M X X ]<br />

|M (0)<br />

X |2 �<br />

+ |M (0)<br />

X+1 |2 �<br />

+ 2Re[M (1) (0)∗<br />

M X X ]<br />

��<br />

rn+Finite |M (0)<br />

X+1 |2<br />

� ��<br />

+Finite 2Re[M<br />

σ NLO<br />

O, etc<br />

�<br />

σBorn = |M<br />

= X σBorn(1 + K)<br />

(0)<br />

X |2<br />

σ LO<br />

�<br />

(R) = |M X+1<br />

R<br />

(0)<br />

X+1 |2<br />

�<br />

σBorn + |M (0)<br />

X+1 |2 �<br />

+ 2Re[M (1) (0)∗<br />

M X X ]<br />

Z → 2 1-loop:<br />

LO:<br />

g<br />

NL Theorem (Kinoshita-Lee-Nauenberg)<br />

Singularities cancel at complete order (only finite terms left<br />

Lemma: only � after some hard �work<br />

ik<br />

σ<br />

(note: Not the 1-loop diagram squared)<br />

LO<br />

X+1 (R) = |M<br />

R<br />

(0)<br />

X+1 |2<br />

σ NLO<br />

�<br />

X = σBorn + |M (0)<br />

X+1 |2 �<br />

+ 2Re[M (1) (0)∗<br />

X M X ]<br />

σ NLO<br />

�<br />

X = |M (0)<br />

X |2 �<br />

+ |M (0)<br />

X+1 |2 �<br />

+ 2Re[M (1) (0)∗<br />

X M X ]<br />

��<br />

NLO<br />

X = σBorn+Finite |M (0)<br />

X+1 |2<br />

� ��<br />

+Finite 2Re[M (1) (0<br />

X M X<br />

σ NLO<br />

LO, NLO, etc<br />

�<br />

σBorn = |M<br />

X = σBorn(1 + K)<br />

� �<br />

� �<br />

(0)<br />

X |2<br />

σ LO<br />

�<br />

X+1 (R) = |M<br />

R<br />

(0)<br />

X+1 |2<br />

σ NLO<br />

�<br />

X = σBorn + |M (0)<br />

X+1 |2 �<br />

+ 2Re[M (1) (0)∗<br />

X M X ]<br />

σ NLO<br />

�<br />

X = |M (0)<br />

X |2 �<br />

+ |M (0)<br />

X+1 |2 �<br />

+ 2Re[M (1) (0)∗<br />

X M X ]<br />

σ<br />

(note: Not the 1-loop diagram squared)<br />

NL Theorem (Kinoshita-Lee-Nauenberg)<br />

Singularities cancel at complete order (only finite terms left over)<br />

Lemma: only after some hard work<br />

�� � ��<br />

NLO<br />

�<br />

X = |M (0)<br />

X |2 �<br />

+ |M (0)<br />

X+1 |2 �<br />

+ 2Re[M (1) (0)∗<br />

X M X ]<br />

��<br />

NLO<br />

X = σBorn+Finite |M (0)<br />

X+1 |2<br />

� ��<br />

+Finite 2Re[M (1) (0)∗<br />

X M X ]<br />

�<br />

σ NLO<br />

X = σBorn(1 + K)<br />

NNLO<br />

X = σ NLO<br />

X +<br />

� �<br />

|M (1)<br />

X |2 + 2Re[M (2) (0)∗<br />

X M X ]<br />

� �<br />

+ 2Re[M (1)<br />

σBorn = |M<br />

(0)<br />

X+1M X+<br />

(0)<br />

X |2<br />

σ LO<br />

�<br />

X+1 (R) = |M<br />

R<br />

(0)<br />

X+1 |2<br />

σ NLO<br />

�<br />

X = σBorn + |M (0)<br />

X+1 |2 �<br />

+ 2Re[M (1) (0)∗<br />

X M X ]<br />

σ NLO<br />

�<br />

X = |M (0)<br />

X |2 �<br />

+ |M (0)<br />

X+1 |2 �<br />

+ 2Re[M (1) (0)∗<br />

X M X ]<br />

σ NLO<br />

��<br />

X = σBorn+Finite |M (0)<br />

X+1 |2<br />

� ��<br />

+Finite 2Re[M (1) (0)∗<br />

X M X ]<br />

�<br />

σ NLO<br />

X = σBorn(1 + K)<br />

!1(e + e − → q ¯q(g)) = !0(e + e − �<br />

→ q ¯q) 1 + "s(ECM)<br />

+ O("<br />

#<br />

2 X<br />

�<br />

+ |M<br />

(note: Not the 1-loop diagram squared)<br />

(Kinoshita-Lee-Nauenberg)<br />

ncel at complete order (only finite terms left over)<br />

after some hard work<br />

�<br />

s)<br />

29<br />

(0)<br />

X+1 |2 �<br />

+ 2Re[M (1) (0)∗<br />

X M X ]<br />

��<br />

te |M (0)<br />

X+1 |2<br />

� ��<br />

+Finite 2Re[M (1) (0)∗<br />

X M X ]<br />

�<br />

LO<br />

= σBorn(1 + K)<br />

�<br />

|M (1)<br />

X |2 + 2Re[M (2) (0)∗<br />

X M X ]<br />

� �<br />

+ 2Re[M (1) (0)∗<br />

X+1M X+1 ]+<br />

�<br />

|M (0)<br />

X+2 |2<br />

σBorn = |M (0)<br />

X |2<br />

�<br />

LO<br />

X+1 (R) = |M<br />

R<br />

(0)<br />

X+1 |2<br />

�<br />

|M (0)<br />

X+1 |2 �<br />

+ 2Re[M (1) (0)∗<br />

X M X ]<br />

| 2 �<br />

+ |M (0)<br />

X+1 |2 �<br />

+ 2Re[M (1) (0)∗<br />

X M X ]<br />

��<br />

nite |M (0)<br />

X+1 |2<br />

� ��<br />

+Finite 2Re[M (1) (0)∗<br />

X M X ]<br />

�<br />

NLO<br />

X = σBorn(1 + K)<br />

)) = !0(e<br />

�<br />

� �<br />

�<br />

+ e − �<br />

→ q ¯q) 1 + "s(ECM)<br />

+ O("<br />

#<br />

2 ...<br />

�<br />

s)<br />

Z decay:<br />

q<br />

X+1 |2 +<br />

q q<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

q<br />

�<br />

|M| 2 =<br />

colours<br />

�<br />

∝ δijδ ∗ ji<br />

= Tr[δij]<br />

= NC<br />

Z decay:<br />

NNLO = σ NLO +<br />

8<br />

q<br />

∝ δijδ ∗ ji<br />

= Tr[δij]<br />

= NC<br />

q<br />

q q<br />

�<br />

|M| 2 =<br />

colours<br />

∝ δijδ ∗ ji<br />

= Tr[δij]<br />

= NC<br />

qi<br />

qi<br />

qk qk<br />

g jk<br />

a<br />

�<br />

(1) 2 (2) (0)∗<br />

M (0)∗<br />

R<br />

X qk<br />

qk<br />

]<br />

g ik<br />

Z → 3 jets: a<br />

qi<br />

qi<br />

qk<br />

g jk<br />

8<br />

a<br />

qi<br />

16<br />

8<br />

qi<br />

qk<br />

g ik<br />

a<br />

8<br />

qi<br />

qi<br />

� � � �<br />

|M (1) | 2 + 2Re[M (2) M (0)∗ (1) (0)∗ ]<br />

29<br />

qk<br />

qi<br />

qi<br />

qk<br />

qk<br />

a<br />

16<br />

+<br />

qk<br />

qk<br />

16<br />

2Re[M (1)<br />

P. Skands<br />

(0) 2


Cross<br />

σσ Sections at NNLO<br />

X+1 (R)<br />

Sections<br />

= |MX+1 |<br />

at NNLO<br />

X+1 (R) = |MX+1 |<br />

R<br />

NLO<br />

X = σBorn + |M<br />

NLO<br />

(0)<br />

X+1 |2 + 2Re[M (1) (0)∗<br />

X M X ]<br />

�<br />

O<br />

= |M (0)<br />

X |2 �<br />

+ |M (0)<br />

X+1 |2 �<br />

+ 2Re[M (1) (0)∗<br />

X M X ]<br />

��<br />

O<br />

= σBorn+Finite |M (0)<br />

X+1 |2<br />

� ��<br />

+Finite 2Re[M (1) (0)∗<br />

X M X ]<br />

σ<br />

Z → 2 1-loop 1-Loop squared: ! 1-Loop<br />

Z → 2 1-loop<br />

1-Loop<br />

squared:<br />

! Real (X+1)<br />

�<br />

qk qk<br />

qj qj<br />

NNLO<br />

qi<br />

qi<br />

qi<br />

qk<br />

NLO<br />

�<br />

X = σBorn + |M (0)<br />

X+1 |2 �<br />

+ 2Re[M (1) (0)∗<br />

X M X ]<br />

σ NLO<br />

�<br />

X = |M (0)<br />

X |2 �<br />

+ |M (0)<br />

X+1 |2 �<br />

+ 2Re[M (1) (0)∗<br />

X M X ]<br />

σ<br />

Z → 2 1-loop 1-Loop squared: ! 1-Loop<br />

Z → 2 1-loop<br />

1-Loop<br />

squared:<br />

! Real (X+1)<br />

NNLO �� � ��<br />

�<br />

qk qk<br />

qj qj<br />

LO<br />

X+1 (R) = X+1<br />

R<br />

|2<br />

σ NLO<br />

�<br />

X = σBorn + |M (0)<br />

X+1 |2 �<br />

+ 2Re[M (1) (0)∗<br />

X M X ]<br />

σ NLO<br />

�<br />

X = |M (0)<br />

X |2 �<br />

+ |M (0)<br />

X+1 |2 �<br />

+ 2Re[M (1) (0)∗<br />

X M X ]<br />

σ<br />

Z → 2 1-loop 1-Loop squared: ! 1-Loop<br />

Z → 2 1-loop<br />

1-Loop<br />

squared:<br />

! Real (X+1)<br />

NNLO �� � ��<br />

�<br />

qk qk<br />

qj qj<br />

NLO<br />

�<br />

X = σBorn + |M (0)<br />

X+1 |2 �<br />

+ 2Re[M (1) (0)∗<br />

X M X ]<br />

σ NLO<br />

�<br />

X = |M (0)<br />

X |2 �<br />

+ |M (0)<br />

X+1 |2 �<br />

+ 2Re[M (1) (0)∗<br />

X M X ]<br />

Removing IR sensitivity in <strong>QCD</strong> at NNLO<br />

Z → 2 1-loop 1-Loop squared: ! 1-Loop<br />

Z → 2 1-loop<br />

1-Loop<br />

squared:<br />

! Real (X+1)<br />

�� � ��<br />

�<br />

qk qk<br />

qj qj<br />

σ NLO<br />

σ = σBorn+Finite<br />

NLO σ = σBorn+Finite<br />

NLO<br />

= σBorn+Finite<br />

X X<br />

LO = σ NLO<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

g ik<br />

σ NLOg<br />

qi<br />

ik<br />

a<br />

σX NLO qi qi<br />

qi<br />

X<br />

qk qk qk<br />

X +<br />

� �<br />

X +<br />

� �<br />

X + X +<br />

σ NNLO<br />

= σ NLO<br />

σ NNLO<br />

= σ NLO<br />

σ NNLO<br />

= σ NLO<br />

X X<br />

Cross Sections at NNLO<br />

qi qi<br />

qi<br />

a<br />

gik a<br />

gik |M (0)<br />

X+1 |2 |M qi<br />

(0)<br />

X+1 |2 |M qi<br />

(0)<br />

X+1 |2 qi<br />

a<br />

g<br />

= σBorn(1 qi + K)<br />

ik<br />

ga ik g<br />

a<br />

ik<br />

a<br />

= σBorn(1 qi<br />

σ + K)<br />

NLO<br />

a<br />

σ = σBorn(1 qi + K)<br />

NLO<br />

= σBorn(1 qi + K)<br />

qk<br />

�� ��<br />

g ik<br />

qk qk qk<br />

qk<br />

|M (1)<br />

X |2 + 2Re[M (2) (0)∗<br />

|M<br />

X M (1)<br />

X |2 + 2Re[M (2) (0)∗<br />

X M X ]<br />

|M +<br />

(1)<br />

X |2 + 2Re[M (2) (0)∗<br />

X M X ]<br />

|M +<br />

(1)<br />

X |2 + 2Re[M (2) (0)∗<br />

X M X ] +<br />

Z → 2 2-loop:<br />

15<br />

15<br />

15<br />

Z → 2 2-loop:<br />

qk<br />

qk<br />

qj<br />

qj qk<br />

qi<br />

qi qj<br />

gij g jk gij a g jk<br />

g b<br />

ij<br />

a g jk<br />

+Finite<br />

g<br />

qi<br />

qj<br />

ij<br />

a g<br />

qk<br />

jk<br />

qi a b b<br />

qi<br />

qi<br />

qi<br />

qj<br />

qj<br />

qj<br />

qk<br />

qk<br />

qk<br />

b<br />

qk<br />

qk<br />

qk<br />

qk<br />

Two-Loop ! Born Interference<br />

Two-Loop<br />

Two-Loop<br />

!<br />

!<br />

Born<br />

Born<br />

Interference<br />

Interference<br />

18<br />

18<br />

18<br />

|M (0)<br />

gjk g ij<br />

gjk 2Re[M (1) (0)∗<br />

2Re[M M (1) (0)∗<br />

2Re[M M (1) (0)∗<br />

M<br />

qi g<br />

qk<br />

ik<br />

a<br />

b X<br />

c<br />

qi g<br />

qk<br />

ik<br />

qi<br />

g<br />

c<br />

jk<br />

g a ij<br />

qk<br />

b<br />

g<br />

qk<br />

jkX<br />

a<br />

qi g<br />

qk<br />

ik<br />

qi<br />

g<br />

c<br />

jk<br />

g a ij<br />

qk<br />

b<br />

g<br />

qk<br />

jk<br />

X<br />

a<br />

qi g<br />

qk<br />

ik<br />

qi<br />

g<br />

c<br />

jk<br />

g a ij<br />

qk<br />

b<br />

g<br />

qk<br />

jk<br />

a<br />

qk<br />

qk<br />

X ]<br />

��<br />

� ��<br />

��<br />

�<br />

+<br />

qk<br />

Two-Loop ! Born 30<br />

30<br />

30 Interference<br />

X ] X ]<br />

X a ]<br />

2Re[M (1)<br />

2Re[M (1)<br />

2Re[M (1)<br />

18<br />

18<br />

18<br />

and so on, at each fixed order in αs<br />

qk<br />

2Re[M (1) (0)∗<br />

(0)∗<br />

X+1 M M<br />

X+1<br />

18<br />

X+1 ]+<br />

�<br />

X+1 ]+<br />

�<br />

X+1 ]+<br />

�<br />

(0)∗<br />

X+1M Z Z Z→ → →4: 4:<br />

qi<br />

qi<br />

qi<br />

qi qi qi<br />

qj qj<br />

qj<br />

gik g ij<br />

b<br />

gik g<br />

a<br />

ij<br />

b<br />

gik g<br />

a<br />

ij<br />

b<br />

qk qk qk<br />

X+1 ]+<br />

�<br />

|M (0)<br />

X+2 |2 X+2 |2 |M (0)<br />

X+2 |2<br />

|M (0)<br />

a<br />

qj Z → 4:<br />

qi<br />

gik g<br />

a<br />

ij<br />

b<br />

gik g<br />

a<br />

ij<br />

b<br />

gik g<br />

a<br />

ij<br />

b<br />

qj<br />

qj<br />

qk qk<br />

qi<br />

qiqj<br />

qi<br />

Real Real ! ! Real Real (X+2) (X+2) qk<br />

Real ! Real (X+2)<br />

g ij<br />

qi qi<br />

b<br />

g ik<br />

a<br />

53<br />

|M (<br />

X<br />

Real ! Real<br />

P. Skands


Paul <strong>Hoyer</strong> Mugla 2010<br />

Event genera<strong>to</strong>rs<br />

At high energies many gluons are radiated. Then one needs <strong>to</strong> include<br />

high orders in αs for which complete, IR regulated matrix elements are not<br />

available.<br />

⇒ Shower Monte Carlo methods:<br />

Include only the log enhanced terms of tree digrams (no loops)<br />

Use phenomenological hadronization model for Q < µ.<br />

This gives approximate results for hadron<br />

distributions in the final state.<br />

The reliability is tested by including<br />

next-<strong>to</strong>-leading logarithms and comparing<br />

several hadronization models.<br />

Cluster Fragmentation<br />

55


Paul <strong>Hoyer</strong> Mugla 2010<br />

<strong>QCD</strong> is very successful in comparisons with data<br />

Rate of 3-jet events<br />

in e + e – annihilations<br />

e + e – → q q g<br />

→ 3 jets<br />

Ex: Estimate the CM<br />

energy in e+ e– annihilations<br />

at which 2-jet structure<br />

emerges. In quark<br />

fragmentation, pions get an<br />

average fraction ≈ 0.1<br />

of the quark energy, and<br />

≈ 350 MeV.<br />

S. Bethke, hep-ex/0606035<br />

56


Angular distribution<br />

of 4-jet events in<br />

e + e – annihilations<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

S. Bethke, hep-ex/0606035<br />

57


Measurement of quark<br />

and gluon color charges<br />

in e + e – annihilations<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

quark<br />

color<br />

charge<br />

e + e –<br />

S. Bethke, hep-ex/0606035<br />

gluon charge<br />

58


(Nonperturbative)<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

Jet production in hadron collisions<br />

(Inclusive sum)<br />

(log. scaling<br />

violations)<br />

(Perturbative)<br />

(Nonperturbative)<br />

(log. scaling<br />

violations)<br />

arXiv:1002.1708<br />

(or: h + X)<br />

(<strong>High</strong>er<br />

order in αs)<br />

59


Paul <strong>Hoyer</strong> Mugla 2010<br />

The CDF Detec<strong>to</strong>r<br />

60


Fermilab:<br />

〉 pp<br />

– �= → 0 jet and + X 〈0|F a µνF µν<br />

ECM = 1.96 TeV<br />

Quarks and gluons<br />

are pointlike down<br />

q<br />

<strong>to</strong> the best resolution<br />

that has been reached<br />

Ex: Estimate the maximum<br />

radius of quarks and gluons,<br />

given the agreement of<br />

<strong>QCD</strong> with the Fermilab jet<br />

2x<br />

data.<br />

ξ =<br />

Rapidity:<br />

F2(x) = �<br />

x =<br />

1 +<br />

y = log E + p �<br />

� m 2 + p 2 ⊥<br />

Paul <strong>Hoyer</strong> Mugla 2010<br />

e 2 q xfq(x)<br />

Q 2<br />

Q 2 + M 2 X<br />

�<br />

1 + 4m 2 px 2 /Q 2<br />

� − log tan(θ/2)<br />

ECM = 1960 GeV<br />

a |0〉 �= 0<br />

CDF Collab., hep-ex/0701051<br />

61


Paul <strong>Hoyer</strong> Mugla 2010<br />

pp<br />

–<br />

→ jet + X: Jet mass distribution<br />

62


Paul <strong>Hoyer</strong> Mugla 2010<br />

Concluding remarks<br />

Perturbative <strong>QCD</strong> has been successfully applied <strong>to</strong> hard collision data.<br />

!<br />

"<br />

! $% & ' ()**+, - ()((*(<br />

#<br />

<strong>QCD</strong> effects constitutes the major background in the search for new physics<br />

at the Tevatron and the LHC. Hence much effort is expended on making the<br />

calculations as accurate as possible.<br />

e Standard Model A. Pich - CER<br />

<strong>High</strong> intensity electron beams at Jefferson Lab, Mainz,... are mapping out<br />

hadron structure through Form fac<strong>to</strong>rs and Generalized Par<strong>to</strong>n Distributions.<br />

Lattice <strong>QCD</strong> methods allow fast progress in the calculation of nonperturbative<br />

quantities, such as the hadron spectrum.<br />

The simple Quark Model systematics of the hadron spectrum remains an<br />

encouraging mystery.<br />

63

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!