12.12.2012 Views

Work Package 2 - Universidade de Santiago de Compostela

Work Package 2 - Universidade de Santiago de Compostela

Work Package 2 - Universidade de Santiago de Compostela

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

CALL: FP7-KBBE-2011-4<br />

Proposal full title: Novel strategies for integrating land snail pests control of<br />

agricultural crops in Europe, with projection to Latin-<br />

America<br />

Proposal acronym:<br />

Short name:<br />

Type of funding scheme:<br />

<strong>Work</strong> programme topics addressed:<br />

LAND SNAIL PEST CONTROL<br />

Land snail’s life cycle as pest control core<br />

Collaborative Project. CALL: FP7-KBBE-2011-4<br />

Food, Agriculture and Fisheries, and Biotechnology<br />

Area: 2.1.2<br />

Topic number: KBBE.2011.12-05<br />

Name of the coordinating person: Dr. José Castillejo Murillo<br />

Departamento <strong>de</strong> Zoología y Antropología Física. Facultad <strong>de</strong> Biología.<br />

Universidad <strong>de</strong> <strong>Santiago</strong> <strong>de</strong> <strong>Compostela</strong>. E-15782 <strong>Santiago</strong> <strong>de</strong><br />

<strong>Compostela</strong>. La Coruña. Galicia. España.<br />

Mobile Phone: + 34 654 969 784<br />

Tel: + 34 981563100<br />

Fax: + 34 981 596904. E-mail: jose.castillejo@usc.es<br />

List of participants<br />

WORK PROGRAMME 2011<br />

COOPERATION<br />

THEME 2<br />

FOOD, AGRICULTURE AND FISHERIES, AND BIOTECHNOLOGY<br />

(European Commission C(2010)4900 of 19 July 2010)<br />

Participant number Participant organitation name Country<br />

1 (Coordinator) Universidad <strong>de</strong> <strong>Santiago</strong> <strong>de</strong> <strong>Compostela</strong> Spain<br />

2 Gordon Port School of Biology, Newcastle University, UK UK<br />

3 Georges Dussart Canterbury Christ Church University, Kent UK<br />

4 Marivonne Université <strong>de</strong> Rennes 1-UMR EcoBio 6553 France<br />

5 Rita Triebskorn Physiologische Ökologie <strong>de</strong>r Tiere Germany<br />

6 Solveig Bioforsk Norway<br />

7 Grita Faculty of Natural Sciences. Vilnius University Lithuania<br />

8 Eva Knop Institute of Ecology and Evolution Switzerland<br />

9 Albert Esther LEI Detachement Lelystad The Nedherland<br />

10 Letelier Museo Nacional <strong>de</strong> Historia Natural. <strong>Santiago</strong> <strong>de</strong> Chile Chile<br />

11 Salvio Faculty of Agricultural Sciences. University of Mar <strong>de</strong>l Plata Argentina<br />

12 Lenita Instituto Butantan Brazil<br />

13 Trujillo Universidad <strong>de</strong> Antioquia Colombia<br />

14<br />

15<br />

16<br />

2


Novel strategies for integrating land-snail pest control of agricultural crops in<br />

Europe, with projection to Latin-America<br />

TITLE: Novel strategies for integrating land-snail pests control of agricultural crops in Europe, with projection to<br />

Latin-America.<br />

1: Scientific and technical quality, relevant to the topics addressed by the call<br />

1.1 Concept and objectives<br />

To introduce in a series of traditional and ecological crops, new strategies for the integrated land snail pest<br />

control. These strategies are based in the <strong>de</strong>ep knowledge of the pest´s biology and ecology, so that the<br />

abundance and the activity periods can be predicted to elaborate an integrated pest control system and take<br />

<strong>de</strong>cisions that can be applied in every <strong>de</strong>velop phase (juvenile, adult, senile or eggs). Thanks to this the farmer will<br />

know when to apply the traditional molluscici<strong>de</strong>s (to <strong>de</strong>stroy the land snails), when to use ovicidal molluscici<strong>de</strong>s<br />

(to <strong>de</strong>stroy the egg lays), when to apply the biological control through parasite nemato<strong>de</strong>s or when to use the<br />

trap-plants; and all this strategy will be regulated by the statistical mo<strong>de</strong>l witch predict the activity. To <strong>de</strong>velop<br />

this integrated control methods it will be necessary:<br />

1. To know the biotic and a biotic factor that <strong>de</strong>scribe the land snails biological cycle in different areas of<br />

Europe and Latin-America, to elaborate the control method.<br />

2. To know the specific land snails´ diet with the objective of finding the most attractive plant species to use<br />

them as trap-plants.<br />

3. To un<strong>de</strong>rstand the activity in function of the environment biotic and a biotic variables, with the aiming of<br />

<strong>de</strong>veloping an effective abundance and activity statistical prediction method.<br />

4. To search plants with bio pestici<strong>de</strong> activity for be used as bio-molluscici<strong>de</strong>s and bio-ovici<strong>de</strong>s against land<br />

snail and its eggs.<br />

5. To know the ovicidal potential of the usual non residual agrochemicals to use them as molluscici<strong>de</strong>sovici<strong>de</strong>s<br />

in crops.<br />

6. To know the ovicidal potential of cattle’s and swine’s slurries as molluscici<strong>de</strong>s-ovici<strong>de</strong>s in ecological<br />

farming.<br />

7. To search in each study areas of Latin-America a parasite nemato<strong>de</strong> (Phasmarhabdities alike) to use it as a<br />

biological control method against land snails.<br />

8. To <strong>de</strong>liver to the horticultural industry an effective integrated crop management strategies, low chemical<br />

and biological protecting methods against land snails.<br />

9. To <strong>de</strong>liver to the ecological farming effective integrated packages methods based on cattle and swine<br />

manure and plant traps, to protect the crops against land snail pests.<br />

With these strategies we are settling the basis for an integrated control method, to achieve a more rentable<br />

crop due to; having less plant damages, less pestici<strong>de</strong>s use, and a more respectful farming with the environment<br />

and the wild fauna. The land snail pest problem in Europe and Latin-America is increasing every day due the<br />

commercial globalization. The most dangerous land snail species in Europe are: Arion lusitancicus, Deroceras<br />

retiuclatum, Lehamnnia marginata, Milax gagates, Criptophalus aspersus and Theba pisana among others. The<br />

90% of the land snail species that are pest in Latin-America are introduced species from Europe and other<br />

countries, this species proliferate indiscriminately because of the absence of natural predators, such as Acanthina<br />

fúlica, Deroceras reticulatum, Milax gagates, Lhemannia marginata, Arion intermedius, Criptophalus aspersus….<br />

In some Caribbean regions native land snail species cause important damages, such is the case of Veronicella<br />

genus in Mexico and Cuba.<br />

1


Scientific and technical objectives <strong>de</strong>tailed <strong>de</strong>scription<br />

This project requires the application of novel control strategies to control native or introduced land snail<br />

pests in crops that can be used in any agricultural pest. With the strategies proposed here we can anticipate to<br />

the damages caused by the land snail pests, due the application of a preventive method even before damages<br />

appear on the crops.<br />

Our strategies are based on:<br />

1. To un<strong>de</strong>rstand the land snails biological cycle in the crops study areas.<br />

2. To un<strong>de</strong>rstand the land snails activity in function of the climatic variables and the crop type.<br />

3. To <strong>de</strong>stroy the land snail´s egg-lays thanks to the plant extracts and non residual standard<br />

agrochemicals collateral effect.<br />

4. To rationalize standard molluscici<strong>de</strong>s consumption in standard farming.<br />

5. To introduce cattle and swine manure and trap-plants as control methods in organic farming.<br />

6. To un<strong>de</strong>rstand the collateral effects of the products used in this integrated pest control methods.<br />

The un<strong>de</strong>rstanding of the biological cycle is very important, because we attempt to use the molluscici<strong>de</strong>s<br />

before damages appear. With the knowledge of the biological cycle we will know which time of the year is<br />

juvenile, adult or senile, we will know when the egg-lays are done, and in other words, we will know the sizes,<br />

structure and dynamics of their populations. The information provi<strong>de</strong>d by the biological cycle is important to<br />

implement this new strategy, as these molluscici<strong>de</strong>s must be applied when the population <strong>de</strong>nsity is lower and<br />

when there are fewer egg-lays in the soil. With this we obtain an optimal effectiveness <strong>de</strong>stroying the egg-lays<br />

through ovicidal and also killing gastropods. By applying less molluscici<strong>de</strong>s we save money and minimize the si<strong>de</strong><br />

effects on the environment.<br />

Knowing the diet of land snails in the study areas will give us information on the possible use of trap-plants,<br />

to evaluate and estimate the damage that they actually produce on crops. By studying the stomach contents of a<br />

specified number of land snails we can know their preferences, in previous research we found that plants that<br />

had a low abundance in the environment, appeared with high frequency in the stomach of land snails, this means<br />

that they have positive selection for this type of plants. These plants can be used as trap-plants to protect<br />

vegetable crops <strong>de</strong>terring land snails to eat the trap-plants. It is a very useful strategy in organic farming.<br />

Knowing the activity of terrestrial gastropods in terms of climatic variables and crop phenology is required<br />

to <strong>de</strong>velop a statistical for activity prediction. With this mo<strong>de</strong>l we can predict with 24-48 beforehand the activity,<br />

and provi<strong>de</strong> the farmer information that land snails will be active, and thus may apply the traditional<br />

molluscici<strong>de</strong>s at the right time, getting a greater effectiveness using smaller amount of molluscici<strong>de</strong>s, leading to<br />

saving resources and reducing si<strong>de</strong> effects on plants, soil and wildlife.<br />

So far we have been talking about traditional molluscici<strong>de</strong>s. The tradiotional molluscici<strong>de</strong>s (metal<strong>de</strong>hy<strong>de</strong>,<br />

carbamate, iron sulphate, phasmarhadities...) are inten<strong>de</strong>d to kill the individuals, in other words, kill the<br />

terrestrial gastropods leaving intact the land snail´s egg-lays in the soil.<br />

There is a growing body of evi<strong>de</strong>nce to suggest that in the past 4-5 <strong>de</strong>ca<strong>de</strong>s there has been an excessive<br />

dumping of chemical toxins on the soil. As a result the soil has become barren and ground water toxic, in many<br />

places. Contrast this with organic inputs that are safe, non toxic, and cost much less. 'Biopestici<strong>de</strong>s' are certain<br />

types of pestici<strong>de</strong>s <strong>de</strong>rived from such natural materials as animals, plants, bacteria, and certain minerals. Benefits<br />

of biopestici<strong>de</strong>s inclu<strong>de</strong> effective control of insects, plant diseases and weeds, as well as human and<br />

environmental safety. Biopestici<strong>de</strong>s also play an important role in providing pest management tools in areas<br />

where pestici<strong>de</strong> resistance, niche markets and environmental concerns limit the use of chemical pestici<strong>de</strong><br />

products. To find plants extract with molluscicidal and ovicidal activity against land snails and their eggs are<br />

original and promising.<br />

In each country, agricultural authorities allow a number of non residual agrochemicals for different uses<br />

and for different purposes, can be fertilizers, herbici<strong>de</strong>s, acarici<strong>de</strong>s, fungici<strong>de</strong>s, etc... These products have gone<br />

through a series of tests to be authorized. In previous research we have tested non residual agrochemicals to see<br />

if they had the potential to <strong>de</strong>stroy the land snail´s egg-lays, and many of them had as si<strong>de</strong> effect the egg-lays<br />

killing. Basing on these assumptions each partner must make a test series with non residual agrochemicals<br />

approved in their country, to discover which one or ones have a higher ovicidal power at the lowest concentration<br />

2


in the shortest time. In organic farming the use of synthetic chemicals such as fertilizers, pestici<strong>de</strong>s, antibiotics,<br />

etc.., it´s forbid<strong>de</strong>n, with the objective of preserving the environment, maintaining or enhancing soil fertility and<br />

provi<strong>de</strong> food with all its natural properties. Fertilizers that can be used in these kinds of crops can be of two types,<br />

green fertilizers or livestock manure. In previous research we found that certain concentration of swine and cattle<br />

manure had ovicidal action on terrestrial gastropod egg-lays. Therefore each partner will have to do tests to<br />

discover the type and concentration of manure that has higher ovicidal power against the land snail´s egg-lays in<br />

their study areas.<br />

Finding a new parasite-nemato<strong>de</strong> with a biological cycle like Phasmorhadities hermaphrodita is crucial to<br />

have a new tool for biological land snail pests control in agriculture in Latin-America, as the European variety has<br />

problems at certain soil temperatures. The task to find European zoo parasitic nemato<strong>de</strong> was ma<strong>de</strong> in previous<br />

97- UE - Project.<br />

As a consequence the of traditional and organic farmers are going to get a series of useful tools for land<br />

snail pests and, first they are going to have a new control strategy based on the application of the ovicidalmolluscici<strong>de</strong>s<br />

at the correct time, <strong>de</strong>termined by the life cycle of the terrestrial gastropods, and not by the crop<br />

phenology. It will be explained which chemicals they need to <strong>de</strong>stroy land snail´s egg-lays. Through the predictive<br />

mo<strong>de</strong>l, the farmers will have the information necessary to know which day and a time terrestrial gastropods will<br />

be active, thus apply the traditional molluscici<strong>de</strong>s at the right, time, place and amount. This information must be<br />

transmitted through scientific meetings, counselling State Agricultural Agencies and through web pages of the<br />

State Servers.<br />

3


Compliance with the objectives of the work programme and its priorities<br />

This project can <strong>de</strong>finitely solve the problem of land snail pests in agriculture that has been globalized by the<br />

reform of the European Common Agricultural Policy and which it is forced to fulfil in the countries from which we<br />

import agricultural products.<br />

This project is related to THEME 2 (Food, Agriculture and Fisheries, and Biotechnology), Area 2.1.2<br />

KBBE.2010.1.2-05 "Integrated pest management in farming systems of major importance for Europe" out of the<br />

7th Framework Program of Cooperation (FP7 Cooperation <strong>Work</strong> Program), and our project fits in perfectly in the<br />

topics (issues) of integrated pest control (management) (In the context of Integrated Pest Management - IPM-) in<br />

particular (specifically) can be said that:<br />

1. It inclu<strong>de</strong>s preventive measures such as, molluscici<strong>de</strong>s application in the more labile phases of the life cycle<br />

of terrestrial gastropods and when there is less <strong>de</strong>nsity of population and eggs in the soil, which generally<br />

coinci<strong>de</strong>s with (periods in which) (times when) there is nothing planted on farms .<br />

2. The <strong>de</strong>sign of this strategy is based on the study of the biological cycle of pests and the study of their activity<br />

in terms of biotic and abiotic variables of the environment, representing perfect control and more accurate<br />

information to take preventive measures.<br />

3. With this strategy control measures are applied at the right time, anticipating the emergence of the pest,<br />

which implies less molluscici<strong>de</strong> applied to achieve a better effect, besi<strong>de</strong>s the molluscici<strong>de</strong> is never next to<br />

plants, if the measures control are applied prior to planting. Our strategy is aimed at controlling or<br />

eradicating the pest to protect the crop, in other words, we use a preventive strategy.<br />

4. It is an integrated control based on the <strong>de</strong>cision-making through the statistical mo<strong>de</strong>l prediction. We only<br />

use low toxicity chemicals, we use the biological control of nemato<strong>de</strong>s through zooparasites, not to mention<br />

the use of trap plants to <strong>de</strong>ter terrestrial gastropods that attack crops or the use of swine and cattle manure<br />

as ovicidal all this applied at the time we enter the life cycle of the pest snail and the predictive mo<strong>de</strong>l.<br />

5. Con este proyecto estamos sentando las bases para que los agricultores cumplan la Directive 2009/128/EC of<br />

The European Parliament and of the Council of 21 October 2009 establishing a framework for Community action to<br />

achieve the sustainable use of pestici<strong>de</strong>s, según la cual by 14 December 2018 will be necessary to minimise the<br />

hazards and risks to health and environment from the use of pestici<strong>de</strong>s. Al finalizar este proyecto dispondremos <strong>de</strong> biomolusquicidas<br />

with molluscicida and ovicidal action. Syngenta and Bayer Companies are intrested in this WP.<br />

6. This strategy helped to reduce pestici<strong>de</strong> use on crops applying the necessary quantity at the right time, not<br />

introducing new chemicals in agricultural crops, but taking advantage of the farmers’ standard used non<br />

residual agrochemicals just giving it a different use or using the favourable si<strong>de</strong>-effects. Thereby <strong>de</strong>creasing<br />

the amount of toxic agents that may be harmful to humans and to wildlife and soil.<br />

7. This project combines "combine mo<strong>de</strong>lling and experimentation" because the entire strategy is based on<br />

the study of biological and ecological cycle of the pest, its dynamics, in or<strong>de</strong>r to achieve the greatest success<br />

of control with the least effort and with the least means.<br />

8. The risks of not succeeding in this project are limited, first all the partners who are part of the research<br />

group have <strong>de</strong>monstrated ability to perform all the tasks outlined in the <strong>Work</strong> <strong>Package</strong>s, and also the USC<br />

team that coordinates this project has an extensive experience in <strong>de</strong>veloping predictive mo<strong>de</strong>ls of activity of<br />

the snails and slugs in agricultural crops of Galicia (Spain) and in controlling pests in vegetable crops and<br />

vineyards and many others European partners have similar experience in similar fields. Given the<br />

globalization of tra<strong>de</strong>, over 90% of land snail species pests in Latin-America are of European origin, in other<br />

words, they are introduced species that we have been working with over 20 years.<br />

9. The balance between costs and benefits will always be positive because we will control the final shape of<br />

land snail pests in agriculture, and we will bring to the traditional and organic farmers to have a number of<br />

tools to obtain a more profitable crop and seeding time management, very respectful with the environment.<br />

10. Finally, all information obtained from this project and the control strategies are available for the farmer,<br />

either through meetings, workshops taught by the competent authorities or available through “on line”<br />

services were the farmers will resolve questions and provi<strong>de</strong> information of the pest activity.<br />

4


1.2 Progress beyond the state-of-the-art<br />

A escala mundial, los perjuicios económicos causados por los gasterópodos terrestres se han<br />

incrementado gracias a la globalización <strong>de</strong>l comercio lo que conlleva que se hable <strong>de</strong> especies <strong>de</strong> caracoles y<br />

babosas introducidas <strong>de</strong> un continente a otro, especies que al no tener <strong>de</strong>predadores específicos presenta un<br />

crecimiento poblacional exponencial. Mientras que algunos caracoles terrestres pue<strong>de</strong>n alcanzar el estatus <strong>de</strong><br />

plaga incluso en regiones relativamente áridas, las babosas resultan especialmente problemáticas en climas<br />

templados y lluviosos, pero aún en este caso, la magnitud <strong>de</strong> los daños causados por las babosas a los cultivos<br />

varía mucho a escala regional y <strong>de</strong> un año a otro (Port y Port, 1986). Muchos especialistas coinci<strong>de</strong>n en señalar<br />

que los daños ocasionados por los gasterópodos se han incrementado <strong>de</strong> forma muy significativa en las últimas 2<br />

ó 3 décadas, <strong>de</strong>bido a la conjunción <strong>de</strong> una serie <strong>de</strong> factores como la simplificación <strong>de</strong> las técnicas <strong>de</strong> cultivo<br />

(reducción <strong>de</strong>l laboreo, siembra directa), la reducción <strong>de</strong> las poblaciones <strong>de</strong> insectos <strong>de</strong>predadores por el uso <strong>de</strong><br />

insecticidas, o la utilización <strong>de</strong> nuevas varieda<strong>de</strong>s <strong>de</strong> cultivo más susceptibles al ataque <strong>de</strong> los gasterópodos<br />

(Hommay, 1995, 2002; Godan, 1999; Speiser, 2002). Por otro lado, la elevación <strong>de</strong> los estándares <strong>de</strong> calidad<br />

exigidos por los consumidores hace que la tolerancia <strong>de</strong>l mercado a productos dañados sea cada vez menor, lo<br />

que se traduce en una intensificación <strong>de</strong> las medidas <strong>de</strong> control <strong>de</strong> plagas.<br />

In recent years, the problems caused by land snails, especially the grey field slug (Deroceras reirulatum),<br />

the Spanish slug (Arion lusitanicus), the brown gar<strong>de</strong>n snail, Cryptomphalus (Helix = Cantareus) asperses,the<br />

white gar<strong>de</strong>n snail, Theba pisana and the greenhouse slug (Milax gagates), have increased dramatically, as<br />

illustrated by the 70-fold increase of molluscici<strong>de</strong> usage over the last 30 years as observed in Europe. These<br />

species are a serious pest of global economic importance (South, 1992) as they have adapted well to the varied<br />

environments to which they have been introduced around the world. A. lusitanicus is polyphagous and feeds on a<br />

range of crop species as well as dumped plant material and carcasses (Wittenberg 2005). In winter wheat alone,<br />

molluscici<strong>de</strong> use, including its application, is calculated to cost some £ 20 millions annually, yet the damage to<br />

seeds and seedlings is not reliable controlled (GLEN, 1989)<br />

Land snails reduce the vigour of some crops by killing seeds or seedling, by <strong>de</strong>sroying stems or growing<br />

points, or by reducing the leaf area. This may slow down crop <strong>de</strong>velopment and /or reduce yield. In other crops,<br />

the harvest is <strong>de</strong>valuated by feeding damage, mucus trails, faeces or presence of land snails. Land snail feeding<br />

may also initiate mould growth or rotting. Damage by land snails in not always easily distinguished from insect<br />

feeding. Clear, silvery mucus trails indicate land snail activity.<br />

In Swe<strong>de</strong>n the species is reported from strawberry fields and grain storage facilities. No overall<br />

assessment of the economic consequences of A. lusitanicus has been ma<strong>de</strong>, but the species contributes to<br />

damage on several horticultural crops (Fischer and Reisschütz 1999, Speiser et al. 2001). Furthermore, there are<br />

great impediments to human use of gar<strong>de</strong>ns as judged by the number of times this species make headlines in<br />

media (often un<strong>de</strong>r the alias “killer slug”)(Valovirta 2000).<br />

Strawberry growers in Norway have reported more than 50% loss in yield due to A. lusitanicus, but proper<br />

economic assessments have not been conducted yet. An example of a societal effect is that home owners have<br />

been known to sell their property and move to slug free areas. House prices may also be affected by the presence<br />

of this.<br />

In Central Europe, Limax maximus and Arion lusitanicus are the major pest slug species and most sales of<br />

molluscici<strong>de</strong> pellets in the home and gar<strong>de</strong>n market can be attributed to this species – this gives an indirect<br />

estimate of the damage they cause. Many of the European slugs and snails have been introduced to America,<br />

Australia and NZ and cause tremendous problems in their agricultural crops.<br />

Arion lusitanicus is polyphagous and feeds on a range of crop species as well as dumped plant material<br />

and carcasses (Wittenberg 2005). In Swe<strong>de</strong>n the species is reported from strawberry fields and grain storage<br />

facilities. No overall assessment of the economic consequences of A. lusitanicus has been ma<strong>de</strong>, but the species<br />

contributes to damage on several horticultural crops (Fischer and Reisschütz 1999, Speiser et al. 2001).<br />

Furthermore, there are great impediments to human use of gar<strong>de</strong>ns as judged by the number of times this<br />

species make headlines in media (often un<strong>de</strong>r the alias “killer slug”)(Valovirta 2000).<br />

5


El control <strong>de</strong> plagas <strong>de</strong> gasterópodos terrestres se realiza, <strong>de</strong> forma casi exclusiva, por medio <strong>de</strong> la<br />

aplicación <strong>de</strong> cebos (“pellets”) que contienen entre un 2% y un 8% <strong>de</strong> metal<strong>de</strong>hído o <strong>de</strong> carbamatos (Godan,<br />

1983, 1999; South, 1992; Garthwaite y Thomas, 1996; Bailey, 2002; Speiser, 2002). El principal productor mundial<br />

<strong>de</strong> metal<strong>de</strong>hído es la empresa suiza Lonza. El carbamato más utilizado en el control <strong>de</strong> plagas <strong>de</strong> gasterópodos<br />

terrestres es el metiocarbamato, cuya licencia <strong>de</strong> fabricación es propiedad <strong>de</strong> la empresa alemana Bayer. Ambos<br />

compuestos muestran una eficacia similar en lo que se refiere a su capacidad para reducir los daños causados por<br />

los gasterópodos a las plantas (Bailey, 2002), y también ambos presentan efectos negativos sobre las poblaciones<br />

<strong>de</strong> otros grupos <strong>de</strong> animales (South, 1992; Bailey, 2002). Buchs, Heimbach y Czarnecki (1989) han señalado la<br />

existencia <strong>de</strong> efectos negativos <strong>de</strong> los cebos molusquicidas con metal<strong>de</strong>hído sobre las poblaciones <strong>de</strong> algunos<br />

carábidos, y Bieri, Schweizer, Christensen y Daniel (1989) han documentado una reducción <strong>de</strong> la abundancia <strong>de</strong><br />

carábidos y estafilínidos tras la aplicación <strong>de</strong> cebos molusquicidas con metiocarbamato en pra<strong>de</strong>ras. Aunque en la<br />

actualidad todos los cebos molusquicidas incorporan pigmentos (generalmente azules) y otras sustancias para<br />

reducir el riesgo <strong>de</strong> ingestión por parte <strong>de</strong> mamíferos y aves, son frecuentes los casos <strong>de</strong> envenenamiento <strong>de</strong><br />

animales domésticos <strong>de</strong>bido al consumo <strong>de</strong> cebos molusquicidas (Bailey, 2002). A finales <strong>de</strong> los años 80, los cebos<br />

molusquicidas con carbamatos fueron prohibidos en muchos estados <strong>de</strong> Norteamérica, <strong>de</strong>bido a la elevada<br />

frecuencia <strong>de</strong> casos <strong>de</strong> envenenamiento <strong>de</strong> aves que se registraron (Sakovich, 1996). Tarrant y Westlake (1988)<br />

señalan que la utilización <strong>de</strong> cebos molusquicidas con metiocarbamato supone una seria amenaza para las<br />

poblaciones <strong>de</strong>l ratón <strong>de</strong> campo, Apo<strong>de</strong>mus sylvaticus (Linnaeus, 1758). Keymer, Gibson y Reynolds (1991)<br />

registraron elevadas concentraciones <strong>de</strong> acetal<strong>de</strong>hído (resultante <strong>de</strong> la <strong>de</strong>spolimerización <strong>de</strong>l metal<strong>de</strong>hído en el<br />

tubo digestivo) en erizos (Erinaceus europaeus (Linnaeus, 1758)) encontrados muertos en el campo, y Gemmeke<br />

(1997) observó síntomas <strong>de</strong> envenenamiento y casos <strong>de</strong> fallecimiento, en erizos alimentados con babosas que<br />

habían ingerido cebos con metiocarbamato.<br />

Product in<strong>de</strong>x by Active Substance Metal<strong>de</strong>hy<strong>de</strong>: B&Q Slug Killer Blue Mini Pellets, Barclay Metal<strong>de</strong>hy<strong>de</strong><br />

Dry, Barclay Tracker, Bio Slug Mini Pellets, BRITS, Doff Slugoids Slug Killer Blue Mini-Pellets, Escar-Go 6, Gastrotox<br />

Mini Slug Pellets, Gastrotox Slug Pellets, Goulding Slug Pellets, Greenfingers Slug Pellets, Hygeia Slug Pellets, Hytox<br />

Slug Pellets, Luxan Metal<strong>de</strong>hy<strong>de</strong> 5, Luxan Red 5, Metarex Green, Metarex RG, Molotov, Optimol, Pathfin<strong>de</strong>r Excel,<br />

Slug Clear, Slug Killer Blue Mini-Pellets, Slug Out, Slug Pellets, Slugit Xtra, Slugtox, Stockmaster Slug & Snail Killer<br />

In winter wheat, Brussels sprouts and rape crops, molluscici<strong>de</strong> use, including its application, is calculated<br />

to cost some £ 50 million annually in the United Kingdom, yet the damage to seed and seedling is not reliable<br />

controlled.<br />

Pestici<strong>de</strong>s sales in Europe are increasing. Levels of usage vary between countries. These profiles are part of<br />

an on-going series in Pestici<strong>de</strong>s News that will cover all of Europe. Sources: Oppenheimer, Wolf & Donnelly,<br />

Belgium, 1997. Molluscici<strong>de</strong>s sales represents 10% of all pestici<strong>de</strong>s.<br />

6


Directive 2009/128/EC of The European Parliament and of the Council of 21 October 2009 establishing a<br />

framework for Community action to achieve the sustainable use of pestici<strong>de</strong>s.<br />

The specific objectives of the Thematic Strategy are:<br />

� to minimise the hazards and risks to health and environment from the use of pestici<strong>de</strong>s<br />

� to improve controls on the use and distribution of pestici<strong>de</strong>s<br />

� to reduce the levels of harmful active substances including through substituting the most<br />

dangerous with safer (including non-chemical) alternatives<br />

� to encourage the use of low-input or pestici<strong>de</strong>-free crop farming, in particular by raising users'<br />

awareness, by promoting co<strong>de</strong>s of good practices and consi<strong>de</strong>ration of the possible application of<br />

financial instruments<br />

� to establish a transparent system for reporting and monitoring the progress ma<strong>de</strong> towards the<br />

achievement of the objectives of the strategy, including the <strong>de</strong>velopment of suitable indicators.<br />

En los últimos años ha aparecido en el mercado un nuevo molusquicida químico, bajo el nombre comercial<br />

<strong>de</strong> Ferramol , fabricado por la empresa alemana Neudorff GMBH. Este producto se presenta también en forma<br />

<strong>de</strong> cebos y contiene fosfato <strong>de</strong> hierro como ingrediente activo. Los ensayos realizados hasta la actualidad para<br />

comprobar su eficacia (Iglesias y Speiser 2001; Speiser y Kistler, 2002) indican que ésta es equiparable a la <strong>de</strong> los<br />

molusquicidas químicos clásicos, metal<strong>de</strong>hído y metiocarbamato. Sin embargo, a diferencia <strong>de</strong> éstos, que son<br />

totalmente sintéticos, el fosfato <strong>de</strong> hierro aparece <strong>de</strong> forma natural formando parte <strong>de</strong> varios minerales,<br />

especialmente la strengita (Fe III PO4 2(H2O) ortorrómbico) y metastrengita (Fe III PO4 2(H2O) monocíclico) (Roberts,<br />

Campbell y Rapp, 1990; Clark, 1993), y es un compuesto con una toxicidad muy baja (EPA, 1998).<br />

La falta <strong>de</strong> medios <strong>de</strong> control <strong>de</strong> plagas <strong>de</strong> gasterópodos cuya utilización esté autorizada en la agricultura<br />

biológica hace que estos animales hayan sido consi<strong>de</strong>rados como los más dañinos para los cultivos biológicos por<br />

numerosas asociaciones profesionales <strong>de</strong> Gran Bretaña y Suiza (Peackock y Norton, 1990; Kesper y Imhof, 1998).<br />

El único agente <strong>de</strong> control biológico que se comercializa en la actualidad para el control <strong>de</strong> plagas <strong>de</strong> babosas es<br />

el nematodo Phasmarhabditis hermaphrodita (Schnei<strong>de</strong>r, 1859), lanzado al mercado por primera vez en Gran<br />

Bretaña en 1994. Numerosos ensayos <strong>de</strong> campo realizados en una amplia variedad <strong>de</strong> cultivos y <strong>de</strong> países<br />

europeos han puesto <strong>de</strong> manifiesto que P. hermaphrodita es capaz <strong>de</strong> reducir los daños ocasionados por las<br />

babosas a las plantas (Wilson, Glen y George, 1993; Wilson, Glen, George y Hughes, 1995; Wilson, Hughes y Glen,<br />

1995; Ester & Geelen, 1996; Iglesias, Castillejo & Castro, 2001ab). Su eficacia frente a la especie D. reticulatum<br />

está fuera <strong>de</strong> toda duda (Glen, Wilson, Brain y Stroud, 2000), pero existen indicios <strong>de</strong> que su eficacia contra otras<br />

especies podría ser menor (Wilson et al., 1995a; Coupland, 1995; Glen et al., 1996; Speiser y An<strong>de</strong>rmatt, 1996;<br />

Speiser, Zaller y Neu<strong>de</strong>cker, 2001; Iglesias y Speiser, 2001). La eficacia <strong>de</strong> los tratamientos con P. hermaphrodita<br />

está muy condicionada por la temperatura y la humedad <strong>de</strong>l suelo, que afectan en gran medida a su<br />

supervivencia, pero presenta la ventaja <strong>de</strong> que las condiciones <strong>de</strong> temperatura y <strong>de</strong> humedad que son favorables<br />

para la actividad <strong>de</strong> las babosas lo son también para la supervivencia <strong>de</strong>l nematodo, mientras que los<br />

molusquicidas químicos en forma <strong>de</strong> cebos ven muy mermada su eficacia en las condiciones <strong>de</strong> elevada humedad<br />

en las que los gasterópodos ocasionan la mayoría <strong>de</strong> los daños a las plantas (Glen et al., 1996). No obstante, el<br />

elevado coste económico que suponen en la actualidad los tratamientos <strong>de</strong> control <strong>de</strong> plagas con nematodos<br />

7<br />

The figure examines the<br />

<strong>de</strong>tailed trends within winter<br />

wheat, which accounts for a<br />

45% of the UK cropped area,<br />

and a significant amount of<br />

molluscici<strong>de</strong> use. 2006 report of<br />

indicators reflecting the impacts<br />

of pestici<strong>de</strong> use.


hace que su uso esté todavía muy restringido a cultivos <strong>de</strong> elevado valor como las plantas ornamentales y algunas<br />

hortalizas (Grun<strong>de</strong>r, 2000).<br />

La aplicación <strong>de</strong> molusquicidas representa sólo una medida <strong>de</strong> control a corto plazo, es <strong>de</strong>cir, con ellos se<br />

consigue proteger temporalmente a las plantas <strong>de</strong> los daños que podrían causarle los gasterópodos. Sin embargo,<br />

no tienen un efecto significativo y dura<strong>de</strong>ro sobre las poblaciones <strong>de</strong> gasterópodos resi<strong>de</strong>ntes en las zonas <strong>de</strong><br />

cultivo, por lo que el riesgo <strong>de</strong> que produzcan daños es permanente (Hommay, 2002; Port y Ester, 2002). Ello se<br />

<strong>de</strong>be a que los molusquicidas aplicados afectan sólo a una parte <strong>de</strong> la población, y a que los huevos <strong>de</strong> los<br />

gasterópodos, que se encuentran en el suelo, no se ven afectados por los tratamientos molusquicidas<br />

convencionales, dando lugar a una rápida recuperación <strong>de</strong> las poblaciones (Glen, Wiltshire y Milson, 1988). Se ha<br />

estimado que los tratamientos molusquicidas a base <strong>de</strong> cebos con metal<strong>de</strong>hído o carbamatos matan a menos <strong>de</strong>l<br />

50% <strong>de</strong> la población <strong>de</strong> gasterópodos existente en el momento <strong>de</strong> la aplicación (Glen y Wiltshire, 1986; Wiltshire y<br />

Glen, 1989; Glen, Wiltshire y Butler, 1991). Por otro lado, es frecuente que la cantidad <strong>de</strong> cebo molusquicida<br />

ingerido por los gasterópodos en el campo tenga sólo un efecto subletal transitorio (Kemp y Newell, 1985;<br />

Wedgwood y Bailey, 1986; Briggs y Hen<strong>de</strong>rson, 1987; Bourne, Jones y Bowen, 1988), y se ha comprobado que la<br />

fecundidad <strong>de</strong> los individuos que experimentan ese tipo <strong>de</strong> envenenamiento subletal no se ve afectada, por lo<br />

que continúan poniendo huevos una vez que se recuperan (Kemp y Newell, 1985).<br />

En los años 60 surge el concepto <strong>de</strong>l control integrado <strong>de</strong> plagas (CIP) (Stern, Smith, van <strong>de</strong>r Bosch y<br />

Hagen, 1959), que en la actualidad es parte integrante <strong>de</strong> otro concepto, más amplio, que es el <strong>de</strong>l <strong>de</strong>sarrollo<br />

sostenible. El control integrado <strong>de</strong> plagas implica la integración <strong>de</strong> los conocimientos provenientes <strong>de</strong> multitud <strong>de</strong><br />

campos (biología, química, agronomía, climatología, economía, etc.) con el fin <strong>de</strong> <strong>de</strong>sarrollar las estrategias <strong>de</strong><br />

control más a<strong>de</strong>cuadas <strong>de</strong>s<strong>de</strong> el punto <strong>de</strong> vista económico, ambiental y <strong>de</strong> salud pública (Dent, 1991). Si bien es<br />

un sistema basado en la combinación <strong>de</strong> diferentes métodos con el fin <strong>de</strong> minimizar el uso <strong>de</strong> pesticidas químicos,<br />

no se <strong>de</strong>scarta, a priori, la utilización <strong>de</strong> ningún tipo <strong>de</strong> agente <strong>de</strong> control (Coombs y Hall, 1998).<br />

Metodológicamente, el control integrado <strong>de</strong> plagas pue<strong>de</strong> <strong>de</strong>scribirse como un "proceso <strong>de</strong> toma <strong>de</strong><br />

<strong>de</strong>cisiones" es el que, sobre la base <strong>de</strong> toda la información relevante disponible, hay que <strong>de</strong>cidir qué medidas<br />

tomar y en qué momento aplicarlas, para que el control <strong>de</strong> la plaga resulte, a<strong>de</strong>más <strong>de</strong> eficaz, lo más rentable<br />

posible <strong>de</strong>s<strong>de</strong> el punto <strong>de</strong> vista económico y lo menos agresivo que sea posible <strong>de</strong>s<strong>de</strong> el punto <strong>de</strong> vista ambiental<br />

(Bechinski, Mahler y Homan, 2002).<br />

En la actualidad, los programas <strong>de</strong> control integrado <strong>de</strong> numerosas especies <strong>de</strong> artrópodos y <strong>de</strong> hongos<br />

causantes <strong>de</strong> plagas en una gran variedad <strong>de</strong> cultivos, se basan en la utilización <strong>de</strong> sistemas <strong>de</strong> predicción (Dent,<br />

1991; Frahm, Johnen y Volk, 1996). Prever en qué momento una plaga pue<strong>de</strong> producir daños significativos en un<br />

cultivo es fundamental para po<strong>de</strong>r tomar una <strong>de</strong>cisión con respecto a la necesidad <strong>de</strong> aplicar pesticidas para<br />

protegerlo (Buhler, 1996). Por otro lado, <strong>de</strong>pendiendo <strong>de</strong>l modo <strong>de</strong> acción <strong>de</strong>l pesticida, su eficacia pue<strong>de</strong> estar<br />

condicionada por la fase <strong>de</strong>l ciclo en la que se encuentren los organismos causante <strong>de</strong> la plaga o por su nivel <strong>de</strong><br />

actividad (Bailey, 2002). En <strong>de</strong>finitiva, se necesita disponer <strong>de</strong> criterios que permitan <strong>de</strong>terminar tanto la<br />

necesidad y como la conveniencia <strong>de</strong> la aplicación <strong>de</strong> pesticidas.<br />

World Bioci<strong>de</strong>s . Global bioci<strong>de</strong> <strong>de</strong>mand to grow 5.4% annually through 2009 World <strong>de</strong>mand for bioci<strong>de</strong>s<br />

is projected to increase 5.4 percent per year to $6.9 billion in 2009. North America and Western Europe will<br />

remain the largest regional markets, accounting for over two thirds of <strong>de</strong>mand.<br />

The Asia/ Pacific region, due mainly to continued rapid growth in China, is expected to register the fastest growth<br />

among the major regions through this <strong>de</strong>ca<strong>de</strong>. Eastern Europe is also expected to register above average growth,<br />

but will still account for less than five percent of global <strong>de</strong>mand. In more mature markets, such as Japan, the<br />

United States and Western Europe, advances will be mo<strong>de</strong>st, with gains spurred by the replacement of traditional<br />

products with higher value formulations offering a combination of broad-spectrum efficacy, low toxicity, minimal<br />

effect on finished product quality and reduced environmental impact. Much of this shift will be prompted by the<br />

sizable regulatory framework un<strong>de</strong>r which the bioci<strong>de</strong> industry operates. Many bioci<strong>de</strong>s are synthetic, but a class<br />

of natural bioci<strong>de</strong>s, <strong>de</strong>rived from e.g. bacteria and plants<br />

Biopestici<strong>de</strong>s : an Economic Approach for Pest Management. It is hearting to observe the growing awareness<br />

among the farmers and policy makers about ecologically sustainable methods of pest management. More and<br />

more farmers are coming to realize the short-term benefits and long-term positive effects of the use of bioagents<br />

and other ecologically safe methods to tackle pests. The present article 'Biopestici<strong>de</strong>s' is of much relevance in this<br />

context.<br />

8


'Biopestici<strong>de</strong>s' are certain types of pestici<strong>de</strong>s <strong>de</strong>rived from such natural materials as animals, plants, bacteria, and<br />

certain minerals. Benefits of biopestici<strong>de</strong>s inclu<strong>de</strong> effective control of insects, plant diseases and weeds, as well as<br />

human and environmental safety. Biopestici<strong>de</strong>s also play an important role in providing pest management tools in<br />

areas where pestici<strong>de</strong> resistance, niche markets and environmental concerns limit the use of chemical pestici<strong>de</strong><br />

products.<br />

Biopestici<strong>de</strong>s in general-<br />

(a) have a narrow target range and a very specific mo<strong>de</strong> of action.<br />

(b) are slow acting.<br />

(c) have relatively critical application times.<br />

(d) suppress, rather than eliminate, a pest population.<br />

(e) have limited field persistence and a short shelf life.<br />

(f) are safer to humans and the environment than conventional pestici<strong>de</strong>.<br />

(g) present no residue problems.<br />

Pestici<strong>de</strong> residues in agricultural commodities are being the issue of major concern besi<strong>de</strong>s their harmful effect<br />

upon human life, wild life and other flora and fauna.<br />

Equally worrying thing is about <strong>de</strong>velopment of resistance in pest to pestici<strong>de</strong>s. The only solution of all these is<br />

use of 'Biopestici<strong>de</strong>' that can reduce pestici<strong>de</strong> risks, as-<br />

(a) Biopestici<strong>de</strong>s are best alternatives to conventional pestici<strong>de</strong>s and usually inherently less toxic than<br />

conventional pestici<strong>de</strong>s<br />

(b) Biopestici<strong>de</strong>s generally affect only the target pest and closely related organisms, in contract to broad<br />

spectrum, conventional pestici<strong>de</strong>s that may affect organisms as rent as birds, insects, and mammals<br />

(c) Biopestici<strong>de</strong>s often are effective in very small quantities and often <strong>de</strong>compose quickly, thereby resulting in<br />

lower exposures and largely avoiding the pollution problems caused by conventional pestici<strong>de</strong>s<br />

(d) When used as a fundamental component of Integrated Pest Management (IPM) programs, biopestici<strong>de</strong>s can<br />

greatly <strong>de</strong>crease the use of conventional pestici<strong>de</strong>s, while crop yields remain high<br />

(e) Amenable to small-scale, local production in <strong>de</strong>veloping countries and products available in small, niche<br />

markets that are typically unaddressed by large agrochemical companies.<br />

The advances that the proposed project and patents will bring.<br />

To this day, non residual agrochemicals with ovicidal action had not been used to control land snail pests in<br />

agriculture. The strategy proposed in this project is innovative, original and this pest control methods are very<br />

efficient, and makes it very easy to eradicate pest. It is original because it attempts to control the causative agent<br />

pest in the phase of their life cycle [biological cycle] where they are most fragile, in the egg stage. It is an original<br />

method that will <strong>de</strong>velop statistical mo<strong>de</strong>ls to predict the abundance and activity of the land snail with which the<br />

farmer can act in a preventive manner so as not to damage because it will indicate the moment when which has<br />

to apply the ovicidal or the traditional molluscici<strong>de</strong>s. It is original because it doesn´t introduce new pestici<strong>de</strong>s in<br />

agriculture, it is based in non residual agrochemicals that the farmer habitually uses, it seeks the best profile to<br />

exploit its ovicidal activity. It is new because it puts into the hands of the organic farming a number of tools to<br />

control land snails pests using natural fertilizers or <strong>de</strong>terrent strategies implemented by trap plants <strong>de</strong>terring land<br />

snails from attacking crops.<br />

It is a project that uses current technologies to see how the pests live, which are their weaknesses, and attack<br />

them manipulating it that way to minimize si<strong>de</strong> effects on crops, and even on the man. With this project we are<br />

going to obtain results that will be patented. As a result we will be able to patent the pest control strategies,<br />

establish a patent for the active use of non residual agrochemicals with ovicidal action against the land snail´s<br />

egg-lays, and finally be able to patent the Statistical Prediction Activity Mo<strong>de</strong>l and abundance of land snail that<br />

are pests, and most likely be able to patent the use of a zooparasite nemato<strong>de</strong>s for the land snail pests biological<br />

control.<br />

9


1.3 S/T methodology and associated work plan<br />

1.3.1 Overall strategy of the work plan (1 page). Detailed <strong>de</strong>scription of the proposed work<br />

The whole strategy is <strong>de</strong>signed to perform integrated land snail pests control in conventional and organic<br />

farming, and it is here to introduce the use of new molluscici<strong>de</strong>s ovicidal action, capable of <strong>de</strong>stroying the egglays,<br />

the use of trap-plants as a <strong>de</strong>terrent, and the rational use of traditional molluscici<strong>de</strong>s.<br />

WP. 1 .-To un<strong>de</strong>rstand the biology of land snail that are pests in a range of vegetable crops, it is necessary to<br />

have information of the size, structure and dynamics of their populations.<br />

WP. 2 .-To study food and qualitative and quantitative composition of the diet of terrestrial gastropods that<br />

are pests in or<strong>de</strong>r to find plants that can be used as trap plants in organic farming and traditional.<br />

WP. 3 .-To <strong>de</strong>velop a statistical mo<strong>de</strong>l that could explain and predict the abundance and activity of the land<br />

snail as a function of environmental variables such biotic and abiotic.<br />

WP. 4 .-To investigate the feasibility of using plant extracts as biomolluscici<strong>de</strong>s and bio-ovici<strong>de</strong>s. To carry this<br />

out it will also be necessary:<br />

4.1. Laboratory tests on filter paper (direct contact) and artificial soil (standard soil) to select the plant<br />

extracts with molluscicidal and /or ovicidal activity.<br />

4.2. Mini plots experiments on horticultural soil to evaluate the efficacy of the selected plant stract<br />

against lands snails and its eggs.<br />

4.3. Mini plots analysis to know the collateral effect of plant extract selects on invertebrate soil.<br />

4.4. Chemical analysis to find the plant extracts active principle by analytic steps.<br />

WP. 5 .-To investigate the feasibility of using commercial agrochemical activity as ovicidals with control land<br />

snail egg-lays for key Conventionally grown horticultural crops. To carry this out it will also be necessary:<br />

5.1. Laboratory tests on filter paper (direct contact) and artificial soil (standard soil) to select the<br />

agrochemical which best suits the egg types of the pest species and soil type in the study area.<br />

5.2. Field experiments on horticultural crops to evaluate the efficacy of the selected agrochemical as<br />

Ovicidal-molluscici<strong>de</strong>s for the pest control of key conventional grown horticultural crops.<br />

5.3. Field analysis to know the collateral effect of agrochemical selects on invertebrate soil fauna and<br />

bor<strong>de</strong>r effect on wild land snails in conventional horticultural crops.<br />

WP. 6 .- To investigate the feasibility of using swine and cattle manure of killing land snail eggs and plant-tramp<br />

strategy of land snail pest control for key organic horticultural crops grown. To carry this out it will also be<br />

necessary:<br />

6.1. Laboratory testing to <strong>de</strong>termine concentrations of swine and cattle manure that are effective against<br />

the egg-lays of terrestrial gastropods pest. Discriminant trials will be ma<strong>de</strong> on filter paper (direct contact) and<br />

artificial soil.<br />

6.2. Field experiments to evaluate the efficacy of swine and cattle manure land snail egg-lays as control<br />

for key organic horticultural crops.<br />

6.3. Field analysis to investigate the collateral effect of swine and cattle manure on soil invertebrate fauna<br />

and bor<strong>de</strong>r effect on wild land snails in organic horticultural crops.<br />

6.4. Field experiments to use plants as tramp-<strong>de</strong>terrent method to protect organic horticultural crops<br />

WP. 7 .- Make field trials in traditional crops to compare the effectiveness of the control strategy of pest land<br />

snail proposed by us versus conventional approaches of applying chemical molluscici<strong>de</strong>s when observed damage<br />

to the crops. Field experiments in Conventional key horticultural crops to evaluate the efficacy of selected<br />

agrochemical ovicidal with activity against land snail egg-lays in relation to other standard commercial lowchemical<br />

methods of killing animals land snail. Final trial.<br />

WP. 8 .- Field experiments organics in key horticultural crops to evaluate the efficacy of organic Molluscici<strong>de</strong>sovici<strong>de</strong>s<br />

and the use of plant-traps as land snails method to control pests.<br />

WP. 9 .- To i<strong>de</strong>ntify improved strains of nemato<strong>de</strong>s Phasmarhabditis Which are more effective biocontrol<br />

agents of larger land snail species in Hispano-America.<br />

10


METHODOLOGY AND RESEARCH WORK PACKAGES<br />

<strong>Work</strong> <strong>Package</strong> 1<br />

Field research to investigate life cycle of land snail past in horticultural crops<br />

Partners 1 (……. Man-month)<br />

Partners 2 (……. Man-month)<br />

Partners 3 (……. Man-month)<br />

Partners 4 (……. Man-month)<br />

Partners 5 (……. Man-month)<br />

Partners 6 (……. Man-month)<br />

Partners 7 (……. Man-month)<br />

Partners 8 (……. Man-month)<br />

Partners 9 (……. Man-month)<br />

OBJETIVES<br />

To investigate size, structure and dynamic of land snail for a key horticultural crops<br />

Estudiar el tamaño, estructura y dinámica <strong>de</strong> sus poblaciones.<br />

BACKGROUND<br />

Methodological review. Many methods have been used to make quantitative studies of land snail populations.<br />

According to South (1992) these methods can be qualified in three categories:<br />

A. Absolute methods, expresses the number of individuals per unit area.<br />

B. Relative methods, expresses the number of individuals per unit effort or the relation to non-standardized traps.<br />

C. Indirect methods, expresses sizes of population in terms of traces left or the effects produced by land snails<br />

(for example, <strong>de</strong>pending on the damage extension done to the crop, or according to bait consumption).<br />

Relative methods are faster and much more comfortable but they have the disadvantage that the estimates are<br />

highly <strong>de</strong>pen<strong>de</strong>nt of the land snail activity levels, this can lead to incorrect population sizes because of weather<br />

conditions that have an important effect on the land snail activity (Getz, 1959; Hunter, 1968a; South, 1992).<br />

Absolute Methods involve the absolute quantification of individuals per surface area. This can be done on site by<br />

applying an irritant substance to a <strong>de</strong>termined area. For years formal<strong>de</strong>hy<strong>de</strong> was used for this purpose, but South<br />

(1964) rejected this method when he realized that most of the land snails died before they could reach the<br />

surface. Högger (1993) proposed a new method. First he <strong>de</strong>termines an area, limiting it with a metal ring of 15 cm<br />

of height; then he introduces it in to the ground to a <strong>de</strong>pth of 5 cm. Once done this, he applies mustard oil to the<br />

ground and captures the land snails that come out to the surface. Another method, proposed by Ferguson,<br />

Barratt & Jones (1989), it is based on the placement of shelter traps located insi<strong>de</strong> of the area <strong>de</strong>termined by the<br />

metal ring, which in this occasion is covered with a top that prevents the escape of land snails and helps to keep<br />

the humidity (moisture) insi<strong>de</strong>. The shelter traps and the area insi<strong>de</strong> the ring are inspected each day removing the<br />

land snails caught, until no new individuals appear.<br />

Another way of obtaining absolute estimates is to take soil samples of known surfaces and transfer them to the<br />

laboratory for further land snail extraction and quantification. The extraction can be done by; the progressive<br />

flooding of the soil samples to make land snails surface, or by washing the soil sample on sieves with water. South<br />

(1964) compared the last sieving method with absolute methods (flooding with cold or hot water, extraction with<br />

chemicals, dry sieving) and relative methods (trapping, Direct observation during night). South conclu<strong>de</strong>d that the<br />

water sieving is the most reliable method, since it allows the recovery of almost the 100% of the land snails<br />

contained in one soil samples. Hunter (1968a) proved the efficiency of this method when he recovered almost all<br />

individuals of a known population; South (1964) conclu<strong>de</strong>s that the water sieving is the most accurate method;<br />

It´s also is the only reliable method to obtain and quantify land snail lays.<br />

Almost all the authors agree that land snails and it´s lays are located in the uppermost stratum of the soil.<br />

According to South (1964), 100% of the lays and land snails of D. reticulatum species is located in the first 2 or<br />

11


3cm of soil in field areas. In crop areas, Hunter (1966) found out that 83% of individuals of D. reticulatum were<br />

located in the soil first 7´5cm, and a 6% were located above 15cm. Also in crop areas, Runham & Hunter (1970)<br />

observed that in the first 10cm of soil contained the 97% of D. reticulatum. Rollo & Ellis (1974) pointed out that<br />

the 90% of snail lays are also located in the same soil layers. According to Marquet (1985), in standard conditions<br />

any land snail appears above the first 5cm of soil, However in exceptionally severe winters up to a 15% of<br />

individuals may appear at <strong>de</strong>pths between 10 and 20cm. South (1992) suggests that sampling the soil´s first 10cm<br />

it´s enough to quantify land snail populations.<br />

Importancia: el WP. 1 es importante ya que nos va a proporcionar información sobre el tamaño,<br />

estructura y dinámica <strong>de</strong> la población <strong>de</strong> caracoles y babosas plaga, información que emplearemos en el<br />

<strong>de</strong>sarrollo <strong>de</strong>l mo<strong>de</strong>lo predictivo<br />

Assessment of progress and results. Por medio <strong>de</strong> los informes semestrales y anuales, y por medio <strong>de</strong> los<br />

controles personales que periódicamente el coordinador realiza a cada uno <strong>de</strong> los partner en el país<br />

correspondiente.<br />

--------------------------------------------------------------------------------------------------------<br />

Task 1.1<br />

Objetives<br />

Studying the land snail population size in crops where they will conduct the study.<br />

Participants: all partners<br />

Materials and Methods<br />

The methodology used is based on absolute estimation methods; land snails quantification of known surface soil<br />

samples.<br />

Soil sampling.<br />

The choice of the sampling location is randomly selected. To carry this out the plot is divi<strong>de</strong>d in a grid composed<br />

at least of 50 frames of 4 x 4 m; each one subdivi<strong>de</strong>d in four quadrants. The quadrants are <strong>de</strong>termined using the<br />

last two digits of the randomly generated value of the “random” (ran) calculator function. Once selected 20<br />

frames, we proceed to <strong>de</strong>termine which quadrant of each frame, by using again the calculator random number<br />

generator following the next co<strong>de</strong>: 0,000-0,249 for the upper left quadrant; 0,250-0,499 for the upper right<br />

quadrant; 0,500-0,749 for the lower left quadrant; 0,750-0,999 for the lower right quadrant.<br />

The sample extraction is performed with a rectangular spa<strong>de</strong> mark with the <strong>de</strong>pth to be achieved (10<br />

centimeters). First is selected the area to take the soil sample, then we place on the ground an aluminum frame<br />

of 25 x 25 cm, then the spa<strong>de</strong> is stuck in to the ground along its entire contour until the marked <strong>de</strong>pth and extract<br />

the sample. Each sample is introduced in a properly labeled opaque plastic bag; these bags are conserved in a<br />

cold storage at 4ºC in the dark, for its further laboratory analysis in the next 3 days.<br />

To <strong>de</strong>termine the number of soil samples nee<strong>de</strong>d its used an statistical software; The means and variances of the<br />

average land snails and eggs are calculated, to find out all the possible combinations of 2 samples, 3samples,<br />

4samples till the total of 20 samples. For each number of samples the <strong>de</strong>gree of error is calculated dividing the<br />

standard <strong>de</strong>viation by the arithmetic mean. In previous investigations we observed that to obtain a <strong>de</strong>gree of<br />

error less or equal to 10%, 18 samples are enough in the case of land snails and 16 in the case of eggs.<br />

The abundance of land snails and eggs is estimated by washing the soil samples prece<strong>de</strong>nt from the study plots.<br />

On a monthly basis 20 soil samples of 25x25 cm square and 10 cm <strong>de</strong>ep.<br />

Soil samples treatment. Each sample is placed individually on a white plastic tray; in the first place the sample is<br />

thoroughly inspected to capture any snail that might be in the soil surface, once done this the vegetal cover is<br />

removed, cutting it with scissors; then the soil sample is washed in sieves, with a <strong>de</strong>creasing mesh sizes from<br />

4mm to 1mm. The soil samples are crumbled to smaller pieces with the help of the water jet. The thicker roots<br />

are cut to smaller pieces. The sieves content is carefully inspected un<strong>de</strong>r a 10X magnifying glass and a powerful<br />

white light source.<br />

12


Larger land snails are retained in the upper sieve, and in the lower sieve the smaller land snails and the eggs. The<br />

collected land snails are kept in a tray and the eggs in a Petri dish, both with a humid filter paper. Once finished<br />

separating eggs and land snails from the soil samples we proceed to i<strong>de</strong>ntify them.<br />

---------------------------------------------------------------------------------------------------------------------<br />

Task 1.2<br />

Objetives<br />

Field experiments to investigate<br />

To know the land snails pests populations dynamic and structure.<br />

Participant: All partners<br />

Materials and Methods<br />

To study the population structures and variation over time it´s necessary to <strong>de</strong>termine the maturity state<br />

of the land snails constituting the population along time. Because of this, Bett (1960), Hunter (1968a), and Hunter<br />

& Symonds (1971), based their studies exclusively on sperms presence or absence along the genital tract. South<br />

(1989a) used the same methodology, but he also obtained the gonad and albumin gland mass, (Hermaphrodite<br />

Gland In<strong>de</strong>x, H.G.I. and Albumin Gland In<strong>de</strong>x A.G.I. respectively, of each individual. This in<strong>de</strong>x express the % of<br />

corporal mass represented by each gland, that have a characteristically variation along the maturation cycle of D.<br />

reticulatum.<br />

Duval & Banville (1989) and Barker (1991), in adition to calculating the H.G.I. and A.G.I., incorporated in<br />

their work the gonad cytological analysis of individuals, and <strong>de</strong>termined their maturity level using as reference the<br />

previous studies of Runham & Laryea (1968), based on the presence and relative abundance of each cellular type<br />

in gonad gametogenisis in D. reticulatum gonad. Haynes et al. (1996) classified the land snails in five categories<br />

based on the body mass in<strong>de</strong>x H.G.I. A.G.I. instead of using the cytological gonad analysis to <strong>de</strong>scribe the<br />

population structure. The population dynamic and structure study are only done on the species that really are a<br />

pest; in our previous studies (Barrada, 2003) we focused exclusively on Deroceras reticulatum that really<br />

constitute a pest in the European crops.<br />

Individual management. Individuals belonging to the pest species are weight on a laboratory balance to the<br />

hundredth of milligram, and then they are sacrificed by a brief immersion in water at 50ºC. This method is a<br />

modification from the Haynes, Rushton y Port (1996) method, which is to dip them in boiling water. The sacrificed<br />

individuals are introduced in properly labeled glass tubes, with preservation 70% alcohol. Then the individuals are<br />

dissected and they have their hermaphrodite gland and albumin gland removed, which is used to <strong>de</strong>termine the<br />

maturity state of individuals.<br />

Following Barker (1991) approach, individuals with BMI(body mass in<strong>de</strong>x) exceeding 20 mg are not dissected,<br />

assuming that they don´t have a differentiated gonad. The hermaphrodite and albumin gland, extracted from<br />

individuals with BMI greater or equal to 20 mg, the glands are weighed up to the hundredth of milligram<br />

immediately after its extraction. The hermaphrodite gland is fixed with Carnoy for 24 hours and preserved in<br />

alcohol 70%.<br />

Determining the maturity <strong>de</strong>gree. It will follow the methodology used by Duval & Banville (1989) and Barker<br />

(1991), the sexual maturity status of individuals at each monthly sampling is <strong>de</strong>termined by gonad cytological<br />

analysis, using as a reference the states <strong>de</strong>fined by Runham & Laryea (1968) . To this end, each individual gonad<br />

was <strong>de</strong>hydrated by a series of ethanol baths of progressively higher <strong>de</strong>gree (70%, 96% and 100%), ending with 2<br />

baths of toluene. Next the sample is inclu<strong>de</strong>d in a paraffin block; which is sectioned at 8 μ thick. Obtained sections<br />

are rehydrated by reversing the previous <strong>de</strong>hydration, replacing toluene by xylene and dipping them in distilled<br />

water. Then the sections are stained using hematoxylin-eosin staining, and finally <strong>de</strong>hydratated again.<br />

Each cellular type that appear in the selected land snails gonad and the maturity states are available in Pelluet &<br />

Watts (1951), Watts (1952), Bridgeford & Pelluet<br />

(1952), Hen<strong>de</strong>rson & Pelluet (1960), Smith (1966), Runham & Laryea, (1968), Bailey (1973), Hill & Bowen (1976),<br />

Parivar (1978, 1980, 1981), Nicholas (1984), South (1992), Fawcett (1987) and Lutchel et al. (1997) works.<br />

13


Each captured individual was i<strong>de</strong>ntified as belonging to one of the following sexual maturity stages: i)<br />

undifferenciated spermatogonia, ii) spermatocyte, iii) spermatid, iv) espermatozoa, v) oocyte and vi) senescent.<br />

The first three states correspond to immature land snails, with no reproduction ability; sexually mature land snails<br />

are those that are in spermatozoon and oocyte state (Runham y Laryea, 1968; South 1989a).<br />

In other words, each captured individual is characterized by their body mass (mg), by their maturity state<br />

and by the mass (mg) of the hermaphrodite and albumin gland. From these values it´s calculated for each<br />

individual, the hermaphrodite gland in<strong>de</strong>x (H.G.I.) and the albumin gland in<strong>de</strong>x (A.G.I.), as follows,<br />

H.G.I. = Hermaphrodite gland mass 100 / individual mass<br />

A.G.I. = Albumin gland mass 100 / individual mass<br />

For each sample occasion, individuals who have similar characteristics referring to its sexual maturity<br />

state and body mass in<strong>de</strong>x values, H.G.I. and A.G.I., are consi<strong>de</strong>red as belonging to the same land snail<br />

generation.<br />

In this research project we follow the methodology used by Duval & Banville (1989) and Barker (1991) for<br />

the population structure study. As these authors did, we assume that individuals with body mass exceeding 20mg<br />

are land snails with completely undifferentiated gonads (from the cytological viewpoint) are not analyzed. In this<br />

regard, it should be mentioned that South (1989a) indicates a value of 40 mg body mass as a limit from which, the<br />

maturity state of D. reticulatum can be <strong>de</strong>fined by studying the cytology of the testis. Previous obtained results<br />

agree with the values set by South (1989a).<br />

14


<strong>Work</strong> <strong>Package</strong> 2<br />

Field research to investigate the feeding habits and the qualitative and quantitative diet of land snails in<br />

horticultural crops.<br />

Objetives<br />

To Study land snail feeding and qualitative and quantitative composition of their diet in or<strong>de</strong>r to find plant<br />

species that can be used as trap plants in organic farming.<br />

Partners 1 (……. Man-month)<br />

Partners 2 (……. Man-month)<br />

Partners 3 (……. Man-month)<br />

Partners 4 (……. Man-month)<br />

Partners 5 (……. Man-month)<br />

Partners 6 (……. Man-month)<br />

Partners 7 (……. Man-month)<br />

Partners 8 (……. Man-month)<br />

Partners 9 (……. Man-month)<br />

Background<br />

El estudio <strong>de</strong>l material ya ingerido por los caracoles y babosas se realiza mediante el análisis microscópico<br />

<strong>de</strong> los pequeños fragmentos <strong>de</strong> plantas que se encuentran en las heces o en el interior <strong>de</strong>l tubo digestivo <strong>de</strong> los<br />

animales. Este método ha sido utilizada por Grime, Blythe y Thornton (1970), Mason (1970), Wolda et al. (1971),<br />

Chatfield (1975), Richardson (1975), Williamson y Cameron (1976), Szlavecz (1986), Speiser y Rowell-Rahier<br />

(1991), Hatziioannou et al. (1994), para estudiar la dieta <strong>de</strong> caracoles como Cepaea nemoralis, Oxychilus cellarius<br />

(Müller, 1774), Oxychilus alliarius (Miller, 1822), Discus rotundatus (Müller 1774), Arianta arbustorum (Linneo,<br />

1758), Mona<strong>de</strong>nia hillebrandi (Smith, 1957), Monacha cantiana (Montagu, 1803), Monacha cartusiana (Müller,<br />

1774), Braybaena fructicum (Müller, 1774), Helix lucorum (Linneo, 1758), Xeropicta arenosa (Ziegler, 1827) y<br />

Cepaea vindobonensis (Férussac, 1821). Hunter (1968b), Pallant (1969, 1972), y Jennings y Barkham (1975) la han<br />

utilizado para estudiar la dieta <strong>de</strong> babosas como Deroceras reticulatum, Tandonia budapestensis (Hazay, 1881),<br />

Arion hortensis Férussac, 1819, y Arion ater.<br />

El estudio <strong>de</strong> las heces es un método más rápido que el análisis <strong>de</strong>l contenido estomacal, ya que no<br />

requiere el sacrificio y disección <strong>de</strong> los animales. Sin embargo, los materiales presentes en las heces han<br />

atravesado todo el tubo digestivo <strong>de</strong>l animal y se encuentran más <strong>de</strong>gradados, por lo que resultan más difíciles <strong>de</strong><br />

i<strong>de</strong>ntificar que los extraídos <strong>de</strong>l estómago (Cook y Radford, 1988; Hatziioannou et al., 1994). El estudio <strong>de</strong> heces<br />

es un método a<strong>de</strong>cuado para <strong>de</strong>terminar la presencia o ausencia <strong>de</strong> <strong>de</strong>terminados elementos en la dieta <strong>de</strong> los<br />

animales, pero la proporción <strong>de</strong> materiales no i<strong>de</strong>ntificados en las heces suele ser tan elevada, que no resulta un<br />

método útil para realizar una caracterización cuantitativa <strong>de</strong> la alimentación (Williamson y Cameron, 1976;<br />

Szlavecz, 1986; Speiser y Rowell-Rahier 1991). Vadas (1977) indica que los materiales más abundantes y más<br />

fácilmente i<strong>de</strong>ntificables en las heces <strong>de</strong> los animales son los menos utilizados metabólicamente y que,<br />

posiblemente, son también los ingeridos en menor cantidad, por lo que el análisis <strong>de</strong> heces conduce a una<br />

sobrevaloración <strong>de</strong> los alimentos poco consumidos; por el contrario, los alimentos más consumidos son<br />

infravalorados <strong>de</strong>bido a que son digeridos en mayor medida y resultan más escasos y difíciles <strong>de</strong> i<strong>de</strong>ntificar en las<br />

heces.<br />

El análisis <strong>de</strong>l contenido <strong>de</strong>l tubo digestivo <strong>de</strong> los animales es un método más laborioso, pero proporciona<br />

una imagen más real <strong>de</strong> la dieta <strong>de</strong> los animales (Norbury y Sanson, 1992). Pallant (1969, 1972) estudió la<br />

alimentación <strong>de</strong> D. reticulatum en poblaciones naturales (bosques y pra<strong>de</strong>ras) mediante el análisis <strong>de</strong> contenidos<br />

estomacales. Para reducir al máximo la <strong>de</strong>gradación digestiva <strong>de</strong>l alimento ingerido por los caracoles y babosas<br />

capturadas y facilitar su i<strong>de</strong>ntificación, Pallant (1969, 1972) introdujo directamente a los animales capturados en<br />

alcohol al 70%, y realizó su disección para la extracción <strong>de</strong>l contenido <strong>de</strong>l tubo digestivo a lo largo <strong>de</strong> las 2 horas<br />

siguientes a la captura. Triebskorn y Florschutz (1993) realizaron un estudio sobre el tránsito <strong>de</strong>l alimento a través<br />

<strong>de</strong>l tubo digestivo <strong>de</strong> D. reticulatum, mediante la utilización <strong>de</strong> un preparado alimenticio (lechuga, maíz y leche en<br />

polvo) marcado radiactivamente y la toma <strong>de</strong> radiografías <strong>de</strong> los animales a intervalos regulares; según sus<br />

resultados, el alimento ingerido penetra inmediatamente en el buche, estómago y parte anterior <strong>de</strong>l intestino,<br />

lugares en los que permanece durante un período mínimo <strong>de</strong> dos horas y media antes <strong>de</strong> comenzar a avanzar por<br />

15


el intestino; el buche y el estómago se vacían completamente en el curso <strong>de</strong> las trece horas siguientes a la<br />

ingestión.<br />

Importancia: la información que se obtenga <strong>de</strong> este estudio nos servirá para diseñar las estrategia <strong>de</strong>l uso<br />

<strong>de</strong> plantas-trampas como agentes disuasorios y conocer y evaluar los daños reales sobre los cultivos.<br />

Assessment of progress and results. Por medio <strong>de</strong> los informes semestrales y anuales, y por medio <strong>de</strong> los<br />

controles personales que periódicamente el coordinador realiza a cada uno <strong>de</strong> los partner en el país<br />

correspondiente.<br />

<strong>Work</strong> and methodology Description<br />

Sampling. The diet study is done by the analysis of the digestive tract content of 20 land snails captured in<br />

monthly samplings. The captures of these animals are randomly done in the course of a run across the whole plot.<br />

Only the collection of small land snails is avoi<strong>de</strong>d, because their processing is very difficult. The capture of the<br />

land snails is done during the next 3 or 4 hours after sunset, which is when it takes place the main feeding activity<br />

of land snails and D. reticulatum in particular (Dobson & Bailey, 1982, Rollo, 1988ab; South, 1992; Hommay,<br />

Lorvelec & Jacky, 1998). Every plant species, where each land snail is captured, is recor<strong>de</strong>d. The land snails are<br />

individually introduced in plastic containers with a piece of damp cotton for its further transport and storage in<br />

the laboratory.<br />

The day after the capture of the land snails, the plot´s vegetation composition is <strong>de</strong>termined. The<br />

different plant species coverage percentage is estimated using a measuring tape exten<strong>de</strong>d along the plot´s<br />

principal axis, at intervals of 0.5 meters. The tape´s intersection points with the different plant species are noted,<br />

and with this data the coverage percentage for each species is calculated. Graminaceous are consi<strong>de</strong>red as a<br />

whole.<br />

Individual Processing. The land snails caught for the diet analysis are transported and processed within 2<br />

hours, in or<strong>de</strong>r to minimize digestive <strong>de</strong>gradation of their stomach contents (Pallant, 1969, 1972).<br />

Land snails are weighed on a scale up to the hundredth of milligram, before being sacrificed by immersion<br />

in hot water (50 º C). Then the individuals are dissected and have their maw removed, which is placed onto a<br />

sli<strong>de</strong>. Un<strong>de</strong>r a binocular microscope the maw is open along the longitudinal axis and all its contents are collected,<br />

using a fine brush. Each land snail´s stomach contents is weighed to the hundredth of milligram and immediately<br />

introduced into a small plastic tube, were 2 milliliters of 1N hydrochloric acid is ad<strong>de</strong>d to eliminate the mucus and<br />

epithelial <strong>de</strong>bris from the maw sample (Hatziioannou et al., 1994). Stomach contents are always analyzed in the<br />

following two days after its capture.<br />

Qualitative diet <strong>de</strong>termination. The qualitative diet study is based on the food fragments i<strong>de</strong>ntification,<br />

found in the snails´ digestive tract. The plant fragments i<strong>de</strong>ntification is possible through epithelial formations<br />

such as stomata and trachoma. The appearance and distribution of these formations are characteristic for each<br />

plant species.<br />

Before starting the samplings, land snails are captured around the study area, they are fed with a<br />

monospecifical plant diet, and their feces are used to make an image collection of the fragments found in the land<br />

snails´ stomachs. These land snails are kept insi<strong>de</strong> a climate chamber with a photoperiod of 12 hours, 18 º C and<br />

90% relative humidity. All land snails are housed insi<strong>de</strong> transparent plastic boxes 20 × 20 × 10 cm, with the<br />

bottom covered with a damp filter paper, and all the plastic boxes are perforated to allow the air renewal. In each<br />

case four individuals are kept. After a period of 72 hours without food all land snails will be fed with a diet<br />

consisting on a single plant species collected in the study plot. Then after six hours, the land snails are processed<br />

as <strong>de</strong>scribed in the previous section, and the fragments found in their stomachs are photographed un<strong>de</strong>r a<br />

microscope (Barrada, 2003).<br />

For each plant we have a large reference image collection of each one after being eaten by land snails.<br />

The captured land snail´s digestive tract is studied using the same microscope equipment. Fragments found in the<br />

land snails´ digestive tract are compared with the reference images collection for their further i<strong>de</strong>ntification.<br />

Quantitative diet <strong>de</strong>termination. To <strong>de</strong>termine the land snails´ quantitative diet composition, we follow<br />

the methodology used by Hatziioannou et al. (1994). A stomach sample content of each land snail is taken; the<br />

surface area of each fragment is measured with the help of a software image analysis (SPSS ® Sigma Scan Pro<br />

Image Analysis Version 5.0.0.). The surface areas of all the same type fragments are ad<strong>de</strong>d together and the<br />

percentage is calculated and represented in relation with the sum of all the fragments contained in the same<br />

sample surface areas. According to this, each plant contribution to the land snail diet is estimated.<br />

16


Using 0.24 ml sample taken from the stomach contents of each land snail, diluted with 2 ml of<br />

hydrochloric acid and then homogenized with the aid of an agitator pressure SBS ® AT-1 or similar. All fragments<br />

of food contained in the sample are photographed, i<strong>de</strong>ntified and measured.<br />

The sample volume used for each digestive tract is previously <strong>de</strong>termined from the land snails´ stomach<br />

contents study, whose diet is known. To this purpose four land snails are individually housed in each plastic box.<br />

After a fasting period of 72 hours, the land boxed land snails are provi<strong>de</strong> with a small piece of 3 different plant<br />

species, and 6 hours after they are sacrificed and their stomach contents are removed, as previously <strong>de</strong>scribed.<br />

Their stomach contents are diluted in 2 ml of HCl for their analysis in 6 successive 0.08 ml samples. In previous<br />

researches (Barrada, 2003), it was <strong>de</strong>termined that a 0.16 ml sample (8% of total volume) is an accurate<br />

representation of the land snails stomach contents composition, equivalent to a 0.48 ml sample (24% of the total<br />

volume). To minimize the error <strong>de</strong>gree it is always used a 0.24 ml sample (12% of total volume) for the digestive<br />

tract contents representation.<br />

Diversity and selection In<strong>de</strong>xes. The diversity land snails´ diet and the vegetation variety in the study<br />

plots, is calculated through the Shannon-Weaver in<strong>de</strong>x, H '= Σ (pi) (log2pi), where pi is the frequency for each<br />

component of the diet or vegetation (Margalef, 1982).<br />

The in<strong>de</strong>x C is used as a selection in<strong>de</strong>x, Pearre (1982), this in<strong>de</strong>x reflects the outcome of predator-prey<br />

interaction taking into account the abundance in the environment for each prey type. This in<strong>de</strong>x has a value<br />

ranging from +1 and -1, where C = 0 indicates no selection. It shows if a plant is consumed above (positive values)<br />

or below (negative values) it´s expected consumption according to their availability in the nature. This in<strong>de</strong>x is<br />

based on the χ 2 test that allows establishing the significance of the selection <strong>de</strong>gree for any sample size.<br />

17


<strong>Work</strong> <strong>Package</strong> 3<br />

Objetives<br />

To <strong>de</strong>velop a statistical method to explain and predict the land snails´ activity according to atmospheric<br />

conditions.<br />

Partners 1 (……. Man-month)<br />

Partners 2 (……. Man-month)<br />

Partners 3 (……. Man-month)<br />

Partners 4 (……. Man-month)<br />

Partners 5 (……. Man-month)<br />

Partners 6 (……. Man-month)<br />

Partners 7 (……. Man-month)<br />

Partners 8 (……. Man-month)<br />

Partners 9 (……. Man-month)<br />

Background<br />

La actividad <strong>de</strong> los gasterópodos terrestres está regulada por complejos mecanismos en los que<br />

intervienen tanto factores externos (ambientales) como internos (ritmos endógenos) (Bailey y Lazaridou-<br />

Dimitriadou, 1986; Aupinel, 1987; Young y Port, 1989; Cook, 2001).<br />

Como regla general, se admite que estos animales pasan el día inactivos en sus refugios, que su actividad<br />

es principalmente nocturna, y que las condiciones meteorológicas <strong>de</strong>terminan en gran medida el que se muestren<br />

más o menos activos (Hommay et al., 1998). No obstante, se reconoce la existencia <strong>de</strong> diferencias interespecíficas<br />

en lo que se refiere a sus patrones <strong>de</strong> actividad y a la influencia que ejercen distintos factores ambientales sobre<br />

los mismos (Cook, 2001). También se ha apuntado la existencia <strong>de</strong> diferencias intraespecíficas en la importancia<br />

relativa <strong>de</strong> los distintos factores ambientales que controlan la actividad, en función <strong>de</strong>l microclima o <strong>de</strong>l tipo <strong>de</strong><br />

ambiente en el que viva cada población (Lorvelec y Daguzan, 1990; Iglesias y Castillejo, 1996). La estrecha<br />

<strong>de</strong>pen<strong>de</strong>ncia que presentan los gasterópodos terrestres con respecto <strong>de</strong> las condiciones ambientales hace <strong>de</strong><br />

ellos unos mo<strong>de</strong>los i<strong>de</strong>ales para el estudio <strong>de</strong> la relación existente entre el comportamiento animal y el clima<br />

(Rollo, 1982). Su carácter <strong>de</strong> plagas agrícolas es otro aspecto que contribuye a explicar el interés <strong>de</strong>mostrado por<br />

numerosos investigadores en el estudio <strong>de</strong> su actividad en relación con las condiciones climáticas (Dainton,<br />

1954ab; Getz, 1963; Webley, 1964; Newell, 1968; Cook y Ford, 1989; Young y Port, 1991; Young, Port, Emmet y<br />

Green, 1991; Hommay, Lorvelec y Jacky, 1998; Grimm y Kaiser, 2000, Barrada, 2003).<br />

Una <strong>de</strong> las formas <strong>de</strong> abordar ese estudio, que está recibiendo una gran atención en los últimos años<br />

<strong>de</strong>bido a su aplicabilidad en el campo <strong>de</strong>l control <strong>de</strong> plagas, es la elaboración <strong>de</strong> mo<strong>de</strong>los <strong>de</strong> predicción o mo<strong>de</strong>los<br />

expertos (Bohan et al., 1997, Cook, 2001). Los mo<strong>de</strong>los <strong>de</strong> predicción <strong>de</strong> actividad <strong>de</strong> animales con carácter <strong>de</strong><br />

plaga representan una herramienta muy útil <strong>de</strong>s<strong>de</strong> el punto <strong>de</strong> vista aplicado, puesto que permiten pronosticar<br />

períodos en los que los cultivos pue<strong>de</strong>n sufrir un mayor daño y optimizar la utilización <strong>de</strong> los plaguicidas<br />

empleados para su control, reduciendo los costes económicos y ambientales que se <strong>de</strong>rivan <strong>de</strong> su aplicación en<br />

momentos en los que no existe riesgo <strong>de</strong> daño para los cultivos (Frahm, Johnen, y Volk, T. 1996; Hommay et al.,<br />

1998; Hommay, 2002; Port y Ester, 2002).<br />

Importancia: los datos obtenidos <strong>de</strong>spués <strong>de</strong> esta investigación nos servirán para <strong>de</strong>sarrollar un mo<strong>de</strong>lo<br />

estadístico <strong>de</strong> predicción abundancia y actividad.<br />

Assessment of progress and results. Por medio <strong>de</strong> los informes semestrales y anuales, y por medio <strong>de</strong> los<br />

controles personales que periódicamente el coordinador realiza a cada uno <strong>de</strong> los partner en el país<br />

correspondiente.<br />

Methodology<br />

The Barrada(2003)methodology is followed to <strong>de</strong>velop the activity mo<strong>de</strong>ls, this methodology is based on<br />

the ones <strong>de</strong>signed by Young & Port (1989) and Young et al. (1991). These authors i<strong>de</strong>ntified, for the diverse<br />

environmental conditions, the limits that <strong>de</strong>fine the high land snail activity nights, without attempting to<br />

mathematically <strong>de</strong>scribe the limits that <strong>de</strong>fine those lines, but only giving the extreme values to <strong>de</strong>fine the<br />

18


optimal range values for each variable. These mo<strong>de</strong>ls predict that high activity nights will be those with all the<br />

variables comprehend between their optimal ranges.<br />

Sampling. The land snail´s activity analysis is done in the same study area used to analyze its feeding<br />

habits. The samplings are done during three consecutive nights per month; this means a total of 72 nights during<br />

the sampling period. Every night two investigators examine during three hours the study area, searching for active<br />

land snails. The tours are done thoroughly, searching the soil and vegetation, but no effort is done to locate those<br />

out of the observer´s sight.<br />

At the beginning of each sampling and subsequently, at 1 hour intervals, the soil temperature and the<br />

relative humidity are registered at 5 cm above ground. The soil temperature can be registered with an electronic<br />

thermometer fixed in the ground at 10 cm <strong>de</strong>ep, and the temperature and the relative humidity are registered<br />

with an electronic thermo-higrometer or a similar instrument.<br />

Variables and Statistical analysis. In the mo<strong>de</strong>l, the activity is divi<strong>de</strong>d in three categories (low, average<br />

and high) according to the number of active land snails registered during 72 nights in each study area. This activity<br />

levels ma<strong>de</strong> up the <strong>de</strong>pen<strong>de</strong>nt mo<strong>de</strong>ls or response variables, in other words, (the variable whose value was<br />

expressed in terms of the values of the in<strong>de</strong>pen<strong>de</strong>nt or predicted variables). Within these environmental<br />

variables were consi<strong>de</strong>red measures on site during the samplings are consi<strong>de</strong>red as in<strong>de</strong>pen<strong>de</strong>nt variables<br />

measures on site during the samplings is consi<strong>de</strong>red as in<strong>de</strong>pen<strong>de</strong>nt variables: i) the atmospheric conditions<br />

registered on site during the samplings; ii) atmospheric conditions corresponding to the sampling day and the<br />

days before it, according to the data registered in a near thermo-pluviometric station; iii) time variables (month,<br />

season); and iv) related variables with the land snails population dynamics in the sample area. All consi<strong>de</strong>red<br />

variables are compiled in table 5.1.<br />

Because of the data nature, qualitative response variables with more than two categories (three<br />

categories: low, average and high) and a serial of qualitative (factors) and quantitative (co variables) variables as<br />

in<strong>de</strong>pen<strong>de</strong>nt variables, the statistical procedure to relate the land snails activity level with the in<strong>de</strong>pen<strong>de</strong>nt<br />

variables was the ordinal regression (McCullagh, 1980; McCullagh & Nel<strong>de</strong>r, 1989). To carry out the data analysis<br />

it can be used the SPSS, using the PLUM method for the ordinal regression (SPSS documents), or any related<br />

statistic programs (Barrada, 2003).<br />

19


<strong>Work</strong> <strong>Package</strong> 4<br />

Searching for a Biopestici<strong>de</strong> from plant extracts with molluscici<strong>de</strong> and ovici<strong>de</strong> activity.<br />

Partners 1 (……. Man-month)<br />

Partners 2 (……. Man-month)<br />

Partners 3 (……. Man-month)<br />

Partners 4 (……. Man-month)<br />

Partners 5 (……. Man-month)<br />

Partners 6 (……. Man-month)<br />

Partners 7 (……. Man-month)<br />

Partners 8 (……. Man-month)<br />

Partners 9 (……. Man-month)<br />

Objetives<br />

To investigate the feasibility of using plant extracts as biomolluscici<strong>de</strong>s and bio-ovici<strong>de</strong>s.<br />

Background<br />

Farmers in their traditional wisdom have i<strong>de</strong>ntified and used a variety of plant products and extracts for pest<br />

control, especially in storage. As many as 2121 plant species are reported to possess pest management<br />

properties, 1005 species of plants exhibiting insectici<strong>de</strong> properties, 384 with antifeedant properties, 297 with<br />

repellant properties, 27 with attractant properties and 31 with growth inhabiting properties have been i<strong>de</strong>ntified.<br />

The most commonly used plants are neem (Azadirachta indica), pongamia (Pongamia glabra) and mahua<br />

(madhuca indica). 2-5 % neem or mahua seed kernel extract has been found effective against rice cutworm,<br />

tobacco caterpillar, rice green leafhopper, and several species of aphids and mites. The efficacy of vegetable oils<br />

in preventing infestation of stored product pests such as bruchids, rice and maize weevils has been well<br />

documented. Root extracts of Tagetes or Asparagus as nematici<strong>de</strong> and Chenopodium and Bougainvillea as<br />

antivirus have also been reported 'Biopestici<strong>de</strong>' can reduce pestici<strong>de</strong> risks, as- (a) Biopestici<strong>de</strong>s are best<br />

alternatives to conventional pestici<strong>de</strong>s and usually inherently less toxic than conventional pestici<strong>de</strong>s. (b)<br />

Biopestici<strong>de</strong>s generally affect only the target pest and closely related organisms, in contract to broad spectrum,<br />

conventional pestici<strong>de</strong>s that may affect organisms as rent as birds, insects, and mammals. (c) Biopestici<strong>de</strong>s often<br />

are effective in very small quantities and often <strong>de</strong>compose quickly, thereby resulting in lower exposures and<br />

largely avoiding the pollution problems caused by conventional pestici<strong>de</strong>s. (d) When used as a fundamental<br />

component of Integrated Pest Management (IPM) programs, biopestici<strong>de</strong>s can greatly <strong>de</strong>crease the use of<br />

conventional pestici<strong>de</strong>s, while crop yields remain high. (e) Amenable to small-scale, local production in <strong>de</strong>veloping<br />

countries and products available in small, niche markets that are typically unaddressed by large agrochemical<br />

companies.<br />

The European Commission has published a proposed European Regulation concerning the placing on the market<br />

and use of biocidal products. The new European Regulation would replace the current regulatory regime for<br />

bioci<strong>de</strong>s, which is laid out in the Biocidal Products Directive 98/8/EC and transposed into UK law by the Biocidal<br />

Products Regulations 2001. Once in force (scheduled for January 2013), the European Regulation would be<br />

directly acting on all Member States, including the UK.<br />

Methodology<br />

1.-MATERIAL AND METHODS<br />

Preparation of the extracts for the tests:<br />

20


The selection of the plants will be ma<strong>de</strong> using two parameters: abundance and medicinal and therapeutic<br />

properties. Previously it is necessary to consult references on bibliography.The plants will be collected in the field<br />

and i<strong>de</strong>ntified.<br />

The extracts will be ma<strong>de</strong> with different parts of the plant, so much fresh as after drying, in an oven at 50ºC<br />

(Medina and Woodbury, 1979 & Makkar et al 1991) or at room temperature. The different parts of the plant<br />

(leaves, steams, fruits, flowers, roots and seeds) will be separated and crushed to pow<strong>de</strong>r. The pow<strong>de</strong>r of the<br />

plant will be put in glass flasks, where will be spilled the solvent, leaving it macerates during 24 hours at room<br />

temperature. Passed these 24 hours the samples with acetone/water will be extracted with the help of a Rotary<br />

Evaporator machine (Men<strong>de</strong>s et al, 1993).<br />

The concentrations used will be: 80,000 ppm, 40,000 ppm and 8,000 ppm to the water extracts; 100,000 ppm<br />

and 50,000 ppm to the extracts ma<strong>de</strong> with acetone/water; and: 100,000 ppm, 50,000 ppm, 10,000 ppm, 1,000<br />

ppm and 100 ppm for both extracts.<br />

Mollusciciding activity:<br />

The tests will be ma<strong>de</strong> using 10 cm diameter glass Petri dishes with a 9 cm diameter filter paper on the bottom<br />

(Albet 400, of 90g/m 2 of weight and a thickness of 0.21mm). 1 ml of extract will be put in each dish, using a<br />

pipette that had a milk filter (Alfa Laval Agri) in the tip with the purpose of avoiding that the pipette was plugged<br />

with the pow<strong>de</strong>r of the plant. The dish with the filter will be driest off at room temperature; once it was<br />

completely dry it will be moistened with 1 ml of distilled water, then the eggs will be <strong>de</strong>posited on the filter (5<br />

eggs in each dish, previously the eggs had been selected). They stayed in the incubation camera until the <strong>de</strong>ath or<br />

hatching. To check the effect of the extract on the embryo the eggs were observed, each 24 hours, with the<br />

binocular magnifying glass using a glass tube (oviscope).<br />

The controls of the water extract will be ma<strong>de</strong> with distilled water, while controls for the acetone/water<br />

extracts were ma<strong>de</strong> with an acetone/water mixture (in the proportion: 7:3), then the acetone will be removed<br />

with the Rotary Evaporator and the water was used to the controls.<br />

To test it 1 ml of the water will be put on the filter papers, when the paper dry off at room temperature<br />

another millilitre was put on it and then the eggs were placed on the moist paper. The Petri Dishes were closed<br />

and were put in the incubation camera.<br />

The same process will be ma<strong>de</strong> with the standard soil and with commercial substratum. At this time<br />

plastic Petri dishes of 9 cm of diameter were used to these purposes. 1 ml of extract was put on 25g of standard<br />

soil with a humidity of 35%, and the same process was ma<strong>de</strong> with the substratum.<br />

Task 4.1.<br />

To carry out laboratory experiments to find plant extracts to be used as biopesticida to control agricultural land<br />

snail’s pest.<br />

Objectives.<br />

Laboratory tests on filter paper (direct contact) and standard soil to select plant extracts with molluscicidal and<br />

/or ovicidal activity.<br />

Materials and Methods<br />

Egg-lays. The land snails are collected in the crops to obtain the egg-lays to make the experiments once in<br />

the laboratory. The individuals are kept in plastic boxes (25 x 25 x 15 cm) with perforated walls and lids and the<br />

floor covered with a moist filter paper. Black small polyethylene tube pieces are used as shelters for land snails,<br />

using as food, lettuce, carrots, cabbages, runner beans, potatoes, and mushrooms, supplemented with pow<strong>de</strong>red<br />

CO3Ca. The cages are placed in a climatic chamber at 17ºC day/15ºC night with a 12D:12L photoperiod and 85%<br />

21


elative humidity. Cleaning and food replacement will be done twice weekly. Since land snail breeding takes place<br />

whenever environmental conditions are suitable (Carrick, 1938; South, 1989), the cages are inspected looking for<br />

egg-lays every day. The land snails laid their eggs directly on the filter paper, mainly in those places covered by<br />

pieces of food. The eggs will be collected, cleaned with distilled water and incubated on wet filter paper insi<strong>de</strong><br />

Petri dishes in the darkness at 18ºC. The entire course of the <strong>de</strong>velopment of the embryo is observable when the<br />

egg is immersed in water and viewed un<strong>de</strong>r transmitted light (Carrick, 1938). About a week after collection, all the<br />

eggs will be inspected un<strong>de</strong>r a binocular microscope for the selection of those to be used in the experiments. Only<br />

eggs containing a single living embryo and without foreign inclusions will be selected for the tests, and they will<br />

be used when the embryo achieved the <strong>de</strong>velopmental stage IV according to Carrick (1938), which is recognisable<br />

by the differentiation of rudiments of the tentacles and posterior sac. The movement of the embryo in the form<br />

of a slow and continuous rotation, and the rhythmical contractions and expansions of the still-small posterior sac<br />

were the criteria used to <strong>de</strong>termine whether the embryo was alive. Non-motile embryos were consi<strong>de</strong>red to be<br />

<strong>de</strong>ad. Carrick (1938) <strong>de</strong>scribed the structure of the egg and the embryonic <strong>de</strong>velopment of Deroceras reticulatum,<br />

while the histochemistry of the egg was <strong>de</strong>scribed by Bayne (1966, 1968) and Barrada (2003).<br />

Contact toxicity tests on artificial soil. The tests will be ma<strong>de</strong> in glass Petri dishes 9 cm in diameter,<br />

containing 40 g of standard artificial soil. The standard soil (OECD, 1998) consisted of 10% peat, 20% kaolin and<br />

70% quartz sand. The pH will be adjusted to six with calcium carbonate and soil moisture was set to 35% (w/w).<br />

All tests consisted of a control and five doses of the compound, arranged in a two-fold geometric series, with five<br />

replicas each and five eggs per replica. For each compound, the appropriate quantity will be dissolved or<br />

suspen<strong>de</strong>d in 20 ml of distilled water. The appropriate quantity of compound will be calculated, according to its<br />

formulation, to ren<strong>de</strong>r the <strong>de</strong>sired maximum concentration of a.i. cm -2 when applying two ml of the solution or<br />

suspension to the soil surface of one dish. Thereafter, ten millilitres of that solution or suspension will be applied<br />

to the soil (2 ml per replica of the highest concentration) and the remain ten millilitres will be diluted to 50% to<br />

obtain the next lower concentration. Dilutions and application of the solutions or suspensions will be ma<strong>de</strong> un<strong>de</strong>r<br />

continuous shaking. The different treatments will be applied spraying 2 ml of the solution or suspension on each<br />

Petri dish. Two ml of distilled water will be applied to the control dishes. After treatment, the soil in the Petri<br />

dishes will be allowed to dry for 24 hours at room temperature. Immediately before the start of the test, the soil<br />

was moistened again with distilled water in an amount calculated from the weight loss of the controls. Then, five<br />

eggs will be placed on different points of the soil surface of each dish. After the start of the experiments, all the<br />

eggs will be inspected un<strong>de</strong>r a binocular microscope every 24 hours to assess whether the embryos were still<br />

alive. To avoid immersion of the eggs in water to view them un<strong>de</strong>r the microscope, which would produce an<br />

un<strong>de</strong>sirable wetting of the eggs, the test-eggs will be introduced into a glass tube, 3 mm inner diameter; in this<br />

way through the contact zone between the egg and the glass is possible to see the embryo insi<strong>de</strong> the egg<br />

producing the same effect as immersion in water. Median lethal doses (LD50), i.e. the calculated doses which<br />

produce 50% mortality of the eggs, and 95% confi<strong>de</strong>nce limits, will be calculated by probity analysis. For the<br />

different compounds, LD50s will be calculated for periods of exposure in which at least one of the doses tested<br />

resulted in no mortality and one in 100% mortality (OECD, 1998, Gui<strong>de</strong>line 313 <strong>de</strong> la OECD (OECD Gui<strong>de</strong>lines for<br />

the Testing of Chemicals. Contact toxicity tests on artificial soil/ wet filter paper). (Iglesias, J., Castillejo, J., Parana,<br />

R., Mascato, P. and Lombardía, M.J. 2000; Iglesias, J., Castillejo, J. y Ester, A., 2002; Iglesias, J., Castillejo, J., Ester,<br />

A. y Lombardia, M.J., 2002)<br />

Task 4.2<br />

Testing biomollusicice<strong>de</strong> activity of plant extracts on agricultural soil mini plots.<br />

Objetives.<br />

Mini plots experiments on horticultural soil to evaluate the efficacy of the selected plant extracts against lands<br />

snails and its eggs<br />

Materials and Methods<br />

TEST PLOTS<br />

In each study plot six areas are <strong>de</strong>fined in squares of 4 x 4 m= six Mini Plots of 16 m 2 . Plant extracts with a<br />

specific composition are tested in five mini plots and the sixth acts as the control plot. Between each mini plot<br />

there is a security area of 2 m wi<strong>de</strong>.<br />

22


In each mini plot are placed five Bayer trap-shelters specific for land snails and five PVC tubes specific for<br />

snails. These tubes are our invention; they are PVC tubes of 30cm long and 5 cm in diameter and closed at one<br />

end. They are placed on woo<strong>de</strong>n supports fastened and nailed around the crop plants, with its hole facing down<br />

so that the snails take shelter insi<strong>de</strong> (Córdoba, 2009).<br />

PLANT EXTRACTS CONCENTRATION AND APPLICATION METHODS<br />

From each plant extract with ovicidal action we know the LD50 in grams per square meter, we<br />

also know the surface that will be treated (4 x 4 m 2 ), and we know how much <strong>de</strong>pth we can find in the soil the<br />

eggs of land snail, so it will be easy to calculate the amount to apply in each mini-plot (to be applied in every mini<br />

plot.).<br />

Knowing when to apply the plant extract one with ovicidal action, that is to know the period of the year<br />

to be applied (in which it is necessary to apply that) is <strong>de</strong>termined by the life cycle of land snails, pests that have<br />

been studied in the first year of the project, that is to say it will be applied when the population <strong>de</strong>nsity of land<br />

snails, land snails and eggs in the soil is minimum. So many applications will be done of agrochemical as valleys or<br />

sinuses that have the life-cycle curve of the land snail in the study area.<br />

Shelter traps are placed after each one of the treatments and are removed during the application of<br />

agrichemicals (the agrochemical one.).<br />

SAMPLING<br />

The time length: 24 consecutive months (2 years). Sampling frequency: monthly. Before carrying out the<br />

first application of the agrochemical one the <strong>de</strong>nsity of the towns will be estimated of land gastropods in the<br />

pieces of land object of study will be estimated following the exposed methodology in <strong>Work</strong> <strong>Package</strong> 1, Task 1.1.<br />

After application of plant extracts with ovicidal action, with monthly regularity and for 2 consecutive<br />

years, it will be estimated in each area, the land snails population <strong>de</strong>nsity, land snails and eggs of these found<br />

un<strong>de</strong>r the shelter traps.<br />

Every month they will lift the shelter traps and i<strong>de</strong>ntify the land snails, all captured individuals will be<br />

measured and weighted. The eggs found un<strong>de</strong>r the traps will be i<strong>de</strong>ntified and counted (Cordoba, 2009).<br />

Every six months a statistical analysis will be done on data obtained with the population <strong>de</strong>nsity of land<br />

snails and egg-lays. After the first year of testing, and after the harvest collection, (once collected the harvest,) or<br />

once the crop, will make another estimate of population <strong>de</strong>nsities of land snails and egg-lays in the soil according<br />

to the methodology outlined in <strong>Work</strong> <strong>Package</strong> 1, Task 1.1.<br />

CROP DAMAGES EVALUATION<br />

After plant extracts treatment, land snail damages will be assessed after 3 days and thereafter at monthly<br />

intervals during crop life. Damage will be recor<strong>de</strong>d as the percentage of leaf area eaten (percentage leaf loss) to<br />

the nearest 5% and will be assessed separately for each plant. For statistical analyses the recordings of 20 plants<br />

growing in the same plot were averaged, because they reflect the activity of the same land snail population,<br />

resulting in six in<strong>de</strong>pen<strong>de</strong>nt assessments for every treatment. A random program will be used for 20-plants<br />

selection. Data for land snail damage (percentage leaf loss) will be transformed to angles prior to analysis of<br />

variance. Data for number of damaged plants and for number of land snails were compared non-parametrically by<br />

the Mann-Whitney U-test. (Iglesias, Castillejo and Castro, 2001, 2001b and 2003)<br />

Task 4.3 Mini plots analysis to know the collateral effect of plant extract selects on invertebrate soil.<br />

Materials and Methods<br />

In areas near the test plots, and following the methodology of sampling and analysis presented in the<br />

<strong>Work</strong> Packcage 1, Task 1.1, soil samples are taken to study si<strong>de</strong> effects. On a sieve of appropriate mesh size<br />

worms, mites and springtails are collected. To <strong>de</strong>termine the possible toxicity of the chemicals used in the study<br />

plots tests will be conducted recommen<strong>de</strong>d by the OECD GUIDELINES FOR TESTING CHEMICALS (1th draft,<br />

November, 2007 Proposal for a New Gui<strong>de</strong>line) on earthworms, mites and springtails.<br />

23


The assessment (valuation) of edge effects on terrestrial gastropods in wild areas near and without plant<br />

extracts treatment (untreated) it will be applied the same methodology of the Bayer type trap shelters and PVC<br />

pipes has now been exposed (WP. 4, Task 4.2.)<br />

Task 4.4 Chemical analysis to find the plant extracts active principle by analytic steps.<br />

These kinds of analytic analysis and posterior test on eggs, snails and slugs will be carried out by Syngenta<br />

Company at Switzerland laboratory in collaboration with Partner 1 (Coordinator) for effectiveness as molluscici<strong>de</strong><br />

and ovici<strong>de</strong> activity against slugs, snails and eggs and parallels studies on collateral effects on soil fauna. These<br />

analyses and the USC collaboration will be out of global work packages of this project<br />

24


<strong>Work</strong> <strong>Package</strong> 5<br />

Destroy land snail egg-lays with non residual agrochemical compounds.<br />

PARTICIPANTS<br />

Partners 1 (……. Man-month)<br />

Partners 2 (……. Man-month)<br />

Partners 3 (……. Man-month)<br />

Partners 4 (……. Man-month)<br />

Partners 5 (……. Man-month)<br />

Partners 6 (……. Man-month)<br />

Partners 7 (……. Man-month)<br />

Partners 8 (……. Man-month)<br />

Partners 9 (……. Man-month)<br />

OBJETIVES<br />

To investigate the feasibility of using commercial agrochemical with ovicidal activity to kill control land snail eggs<br />

for key conventionally grown horticultural crops<br />

BACKGROUND<br />

According to Mendis et al. (1996), among the many methods proposed for controlling gastropod pests in<br />

agriculture, the eggs of the animals have received very little attention. Particularly, there are very few data on the<br />

effect of pestici<strong>de</strong>s or other substances on the viability of terrestrial gastropods eggs (Stringer & Morgan, 1969,<br />

1970, 1972, cited by Godan, 1983; Ry<strong>de</strong>r & Bowen, 1977a). The high susceptibility of the eggs of D. reticulatum to<br />

contact with low doses of metal salts (Iglesias et al. 2000) and with some pestici<strong>de</strong>s (Iglesias, Castillejo & Ester,<br />

2002) has been <strong>de</strong>monstrated recently in paper contact-toxicity tests.<br />

Importancia: Los molusquicidas tradicionales solo matan algunos caracoles y babosas, pero con el uso <strong>de</strong><br />

ovicidas podremos <strong>de</strong>struir todos los huevos <strong>de</strong>l suelo, estos ovicidas son compuestos agroquímicos<br />

habitualmente usados por el agricultor.<br />

Assessment of progress and results. Por medio <strong>de</strong> los informes semestrales y anuales, y por medio <strong>de</strong> los<br />

controles personales que periódicamente el coordinador realiza a cada uno <strong>de</strong> los partner en el país<br />

correspondiente.<br />

WORK AND METHODOLOGY DESCRIPTION<br />

See tasks<br />

-----------------------------------------------------------------------------------------------------<br />

Task 5.1<br />

To carry out laboratory experiments for the selected commercial non residual agrochemicals with ovicidal action.<br />

Objectives<br />

To make laboratory tests on filter paper (direct contact) and on standard soil to select the non residual<br />

commercial agrochemicals that are more effective against land snails lays, for their posterior use as ovici<strong>de</strong>s in<br />

crops.<br />

Agrochemical selection. Searching for non residual agrochemicals compounds with ovicidal activity.<br />

Agrochemicals used in the tests are the ones approved by the local authorities.<br />

See <strong>Work</strong> <strong>Package</strong> 4, Task 4.1. Only it is necessary to change plant extracts for non residual agrochemicals.<br />

Task 5.2<br />

Field experiments to investigate the feasibility of using non residual agrochemicals compounds with ovicidal<br />

activity of killing land snail eggs.<br />

25


Objetives<br />

Field experiments on horticultural crops to evaluate the efficacy of selected agrochemical as molluscici<strong>de</strong>-ovicic<strong>de</strong><br />

of killing land snail eggs of control for key conventionally grown horticultural crops. Final trial.<br />

Materials and Methods<br />

See <strong>Work</strong> <strong>Package</strong> 4, Task 4.2. Only it is necessary to change plant extracts for non residual agrochemicals.<br />

Task 5.3<br />

To investigate the collateral effect of agrochemical compounds on soil fauna and wild land snails.<br />

Objetives<br />

Field analysis to know the collateral effect of agrochemical selects on invertebrate soil fauna and bor<strong>de</strong>r effect on<br />

wild land snails in conventionally horticultural crops.<br />

Materials and Methods<br />

See <strong>Work</strong> <strong>Package</strong> 4, Task 4.3. Only it is necessary to change plant extracts for non residual agrochemicals<br />

26


<strong>Work</strong> <strong>Package</strong> 6<br />

To carry out laboratory and field experiments to investigate the feasibility of using livestock manure and<br />

trap-plants as land snail pest control in non human consumption organic farming.<br />

PARTICIPANTS<br />

Partners 1 (……. Man-month)<br />

Partners 2 (……. Man-month)<br />

Partners 3 (……. Man-month)<br />

Partners 4 (……. Man-month)<br />

Partners 5 (……. Man-month)<br />

Partners 6 (……. Man-month)<br />

Partners 7 (……. Man-month)<br />

Partners 8 (……. Man-month)<br />

Partners 9 (……. Man-month)<br />

Objetives<br />

To investigate the cattle and swine manure feasibility as a land snail eggs-lays killer and the use of trapplants<br />

as a control strategy against land snail pests for key organic horticultural farms.<br />

Background<br />

El uso <strong>de</strong> purines animales como abonos orgánicos está muy extendido en la agricultura, el conocimiento<br />

<strong>de</strong> su toxicidad sobre la fauna edáfica está <strong>de</strong>mostrado. En ensayos previos el Partner 1 ha <strong>de</strong>mostrado que los<br />

purines <strong>de</strong> cerdo y vaca a una concentración baja tienen capacidad ovicida, concretamente hemos podido ver que<br />

para eliminar todos los huevos <strong>de</strong> caracoles y babosas <strong>de</strong> una hectárea <strong>de</strong> cultivo hay que esparcir 10000 kg <strong>de</strong><br />

cattle slurrry o 8000 <strong>de</strong> swine slarry, la <strong>de</strong>strucción <strong>de</strong> los huevos se realiza antes los 5 días <strong>de</strong> la aplicación.<br />

La utilización <strong>de</strong> cultivos-trampa es una <strong>de</strong> las alternativas que está recibiendo mayor atención por parte<br />

<strong>de</strong> los investigadores: esta estrategia se basa en la coexistencia, junto a las especies cultivadas, <strong>de</strong> otras con<br />

escaso o nulo valor económico que sirvan <strong>de</strong> alimento para los caracoles y babosas y que le resulten más<br />

atractivas que las especies cultivadas. La gran mayoría <strong>de</strong> las investigaciones realizadas en este sentido son<br />

experiencias <strong>de</strong> laboratorio en las que se buscan aquellas especies que resultan más atractivas para los caracoles<br />

y babosas que las especies cultivadas, pero los resultados obtenidos en las mismas difícilmente se pue<strong>de</strong>n<br />

extrapolar a situaciones reales <strong>de</strong> campo, en don<strong>de</strong> la dieta <strong>de</strong> los caracoles y babosas está condicionada <strong>de</strong><br />

forma muy fuerte por la disponibilidad <strong>de</strong> las diferentes especies. Las especies utilizadas como cultivos-trampa<br />

<strong>de</strong>ben <strong>de</strong> cumplir su función protectora siendo poco abundantes, ya que compiten por los nutrientes con las<br />

especies cultivadas. En el presente trabajo encontramos que D. reticulatum seleccionó la especie silvestre<br />

Sonchus oleraceus para alimentarse. Esta especie realizó una contribución significativa a la dieta <strong>de</strong> los caracoles y<br />

babosas pese a ser una planta poco abundante en la plota <strong>de</strong> estudio, lo que hace <strong>de</strong> ella una buena candidata<br />

para ser utilizada como cultivo-trampa. Su capacidad para reducir los daños ocasionados por los caracoles las<br />

babosas a las especies <strong>de</strong> cultivo <strong>de</strong>bería ser evaluada en experimentos <strong>de</strong> campo.<br />

Los purines <strong>de</strong> cerdo y vaca se usualmente son usados como abonos en prados y en cultivos extensivos, en<br />

nuestro caso para los ensayos consi<strong>de</strong>ramos los purines como un compuesto agroquímico más, y la metodología a<br />

emplear será la misma.<br />

Importancia: El empleo cattle and swine manure como ovicidas para matar los huevos <strong>de</strong> los caracoles y<br />

babosas es novedoso, y pone en mano <strong>de</strong> los agricultores ecológicos una herramienta muy útil.<br />

Assessment of progress and results. Por medio <strong>de</strong> los informes semestrales y anuales, y por medio <strong>de</strong> los<br />

controles personales que periódicamente el coordinador realiza a cada uno <strong>de</strong> los partner en el país<br />

correspondiente.<br />

WORK AND METHODOLOGY DESCRIPTION<br />

Plot selection. To carry out this study, an organic farming plot is selected, were no chemical pestici<strong>de</strong>s nor<br />

fertilizers are used.<br />

Cattle and Swine manure. The cattle and swine slurries are consi<strong>de</strong>red as animal origin agrochemicals suitable for<br />

ecological farming.<br />

----------------------------<br />

27


Task 6.1.<br />

To carry out laboratory tests with cattle and swine manure to <strong>de</strong>termine their ovicidal action against land<br />

snail egg-lays.<br />

Objetives<br />

To carry out laboratory tests to <strong>de</strong>termine the effective concentration of the cattle and swine slurries<br />

against land snails and egg-lays. The linear discriminant analysis done on filter paper (direct contact) and on<br />

standard soil, first and second screening.<br />

Material and Methods<br />

The methodology set out in <strong>Work</strong> <strong>Package</strong> 4, Task 4.1 for agrochemical compounds will be followed.<br />

-------------------------------<br />

Task 6.2.<br />

Objetives<br />

Field experiments to evaluate the cattle and swine manure efficiency as land snail eggs-lays control for key<br />

organic horticultural crops. Final trial.<br />

Material and Methods<br />

The methodology set out in <strong>Work</strong> <strong>Package</strong> 4, Task 4.2 will be followed.<br />

Plant’s crops damage evaluation<br />

See <strong>Work</strong> <strong>Package</strong> 4, Task 4.2.<br />

-------------------------------<br />

Task 6.3.<br />

Objetives<br />

To carry out field analysis to find out the cattle and swine manure collateral effects on invertebrate soil fauna and<br />

the bor<strong>de</strong>r effect on wild land snails in organic horticultural crops.<br />

Material and Methods<br />

The methodology set out in <strong>Work</strong> <strong>Package</strong> 4, Task 4.3 will be followed.<br />

-------------------------------<br />

Task 6.4.<br />

Objetives<br />

Carry out field experiments to use trap-plants as a <strong>de</strong>terrent method of protecting organic horticultural<br />

farms.<br />

Material and Methods<br />

Trap-plants. One of the consequences of the <strong>de</strong>velopment of WP.2 is to find out which plants that exist in the<br />

study area is more attractive for land snails. These plants have a high selection in<strong>de</strong>x and remain low in<br />

abundance. The trap-plants have little or no nutritional valor, these plants have to coexist with the crop plants<br />

and at the same time be an attractive alternative food source for pests, to reduce the damages done to the<br />

principal crop. This plants must also be in a low abundance, so that they don´t compete for the resources with the<br />

principal crop.<br />

Methodology. To <strong>de</strong>sign the mini plots tests the followed methodology is the same as the one explained in WP.5,<br />

Task 4.2. The trap-plants are set around the mini-plots, as a stocka<strong>de</strong> or in between the crop plants. The organic<br />

farming damages will be done by estimating the foliage loss or estimating the number of damaged leaves, caused<br />

by land snails, to evaluate the effectiveness of the trap-plants.<br />

28


<strong>Work</strong> <strong>Package</strong> 7<br />

Study the effectiveness of agrochemicals with ovicidal action on conventional horticultural crops.<br />

PARTICIPANTS<br />

Partners 1 (……. Man-month)<br />

Partners 2 (……. Man-month)<br />

Partners 3 (……. Man-month)<br />

Partners 4 (……. Man-month)<br />

Partners 5 (……. Man-month)<br />

Partners 6 (……. Man-month)<br />

Partners 7 (……. Man-month)<br />

Partners 8 (……. Man-month)<br />

Partners 9 (……. Man-month)<br />

OBJETIVES<br />

Field experiments in conventional key horticultural crops to evaluate the efficacy of selected agrochemical with<br />

ovicidal action against land snail egg-lays in relation to other commercial standard low-chemical methods of<br />

killing gastropods. Final trial.<br />

BACKGROUND<br />

Control integrado <strong>de</strong> plagas y mo<strong>de</strong>los <strong>de</strong> predicción. Tradicionalmente, el concepto <strong>de</strong>l control <strong>de</strong> plagas en<br />

la agricultura planteaba, como objetivo básico, la eliminación total <strong>de</strong>l agente causante <strong>de</strong> la plaga, mediante la<br />

aplicación <strong>de</strong> pesticidas, cuando ésta era <strong>de</strong>tectada en un cultivo. En los años 60, en Europa y Estados Unidos,<br />

surge el concepto <strong>de</strong>l control integrado <strong>de</strong> plagas (CIP) (Stern, Smith, van <strong>de</strong>r Bosch y Hagen, 1959), que en la<br />

actualidad es parte integrante <strong>de</strong> otro concepto, más amplio, que es el <strong>de</strong>l <strong>de</strong>sarrollo sostenible. El control<br />

integrado <strong>de</strong> plagas implica la integración <strong>de</strong> los conocimientos provenientes <strong>de</strong> multitud <strong>de</strong> campos (biología,<br />

química, agronomía, climatología, economía, etc.) con el fin <strong>de</strong> <strong>de</strong>sarrollar las estrategias <strong>de</strong> control más<br />

a<strong>de</strong>cuadas <strong>de</strong>s<strong>de</strong> el punto <strong>de</strong> vista económico, ambiental y <strong>de</strong> salud pública (Dent, 1991). Si bien es un sistema<br />

basado en la combinación <strong>de</strong> diferentes métodos con el fin <strong>de</strong> minimizar el uso <strong>de</strong> pesticidas químicos, no se<br />

<strong>de</strong>scarta, a priori, la utilización <strong>de</strong> ningún tipo <strong>de</strong> agente <strong>de</strong> control (Coombs y Hall, 1998).<br />

Metodológicamente, el control integrado <strong>de</strong> plagas pue<strong>de</strong> <strong>de</strong>scribirse como un "proceso <strong>de</strong> toma <strong>de</strong><br />

<strong>de</strong>cisiones" es el que, sobre la base <strong>de</strong> toda la información relevante disponible, hay que <strong>de</strong>cidir qué medidas<br />

tomar y en qué momento aplicarlas, para que el control <strong>de</strong> la plaga resulte, a<strong>de</strong>más <strong>de</strong> eficaz, lo más rentable<br />

posible <strong>de</strong>s<strong>de</strong> el punto <strong>de</strong> vista económico y lo menos agresivo que sea posible <strong>de</strong>s<strong>de</strong> el punto <strong>de</strong> vista ambiental<br />

(Bechinski, Mahler y Homan, 2002).<br />

Prever en qué momento una plaga pue<strong>de</strong> producir daños significativos en un cultivo es fundamental para<br />

po<strong>de</strong>r tomar una <strong>de</strong>cisión con respecto a la necesidad <strong>de</strong> aplicar pesticidas (Buhler, 1996). Sin un sistema <strong>de</strong><br />

predicción <strong>de</strong>l riesgo <strong>de</strong> daños, las opciones a las que se enfrenta un agricultor son, o bien no aplicar pesticidas, o<br />

bien aplicarlos <strong>de</strong> forma sistemática siguiendo un criterio preventivo. La primera opción pue<strong>de</strong> implicar una<br />

pérdida <strong>de</strong> la producción si se produce una plaga. La segunda opción implica costes económicos y ambientales<br />

que resultarán innecesarios si la plaga no se produce. Por tanto, para la utilización racional <strong>de</strong> los pesticidas se<br />

necesita disponer <strong>de</strong> criterios que permitan <strong>de</strong>terminar la necesidad <strong>de</strong> su aplicación. En la actualidad, los<br />

programas <strong>de</strong> control integrado <strong>de</strong> numerosas especies <strong>de</strong> artrópodos y <strong>de</strong> hongos causantes <strong>de</strong> plagas en una<br />

gran variedad <strong>de</strong> cultivos, se basan en la utilización <strong>de</strong> sistemas <strong>de</strong> predicción <strong>de</strong> riesgos (Dent, 1991; Frahm,<br />

Johnen y Volk, 1996).<br />

En el caso <strong>de</strong>l control <strong>de</strong> plagas <strong>de</strong> gasterópodos terrestres, en los últimos años se han realizado avances,<br />

como la comercialización <strong>de</strong>l agente <strong>de</strong> control biológico P. hermaphrodita, orientados a conseguir una reducción<br />

<strong>de</strong>l uso <strong>de</strong> los molusquicidas químicos, pero el punto débil <strong>de</strong>l control <strong>de</strong> plagas <strong>de</strong> caracoles y babosas continúa<br />

siendo la falta <strong>de</strong> criterios en los que basar la <strong>de</strong>cisión <strong>de</strong> aplicar los molusquicidas (Hommay, 2002; Port y Ester,<br />

2002). Ante esta situación, los agricultores optan, por lo general, por la aplicación sistemática <strong>de</strong> molusquicidas<br />

en sus cultivos (Bohan et al., 1997; Speiser y Kistler, 2002). Des<strong>de</strong> el punto <strong>de</strong> vista <strong>de</strong>l agricultor, dicha opción se<br />

justifica porque las babosas pue<strong>de</strong>n atacar y dañar gravemente a los cultivos en cualquier época <strong>de</strong>l año (Port y<br />

Port, 1986), porque muchos cultivos, en especial en la horticultura, son extremadamente sensibles al ataque <strong>de</strong><br />

29


las babosas <strong>de</strong>s<strong>de</strong> el momento <strong>de</strong> la plantación hasta el <strong>de</strong> la cosecha, y por el bajo coste económico <strong>de</strong> los<br />

molusquicidas químicos convencionales (Port y Ester, 2002).<br />

Importancia: gracias al mo<strong>de</strong>lo predictivo <strong>de</strong> actividad y al conocimiento <strong>de</strong>l ciclo biológico <strong>de</strong> los<br />

caracoles y babosas sabremos cuándo y cómo hay que aplicar los molusquicidas, consiguiendo con ello una gran<br />

eficacia, saliendo beneficiados agricultores, consumidores y medio ambiente.<br />

Progress and results assessment. Por medio <strong>de</strong> los informes semestrales y anuales, y por medio <strong>de</strong> los<br />

controles personales que periódicamente el coordinador realiza a cada uno <strong>de</strong> los partners en el país<br />

correspondiente.<br />

WORK AND METHODOLOGY DESCRIPTION<br />

It will follow the same methodology as outlined in <strong>Work</strong> <strong>Package</strong> 4, Task 4.2 for each of the tested molluscici<strong>de</strong>s,<br />

and there will be a control plot. The tested products are: non residual agrochemicals with ovicidal action and<br />

commercial molluscici<strong>de</strong>s (Methal<strong>de</strong>hu<strong>de</strong>, Carabamatos, Ferramol…)<br />

Plant’s crops damage evaluation<br />

See <strong>Work</strong> <strong>Package</strong> 4, Task 4.2.<br />

30


<strong>Work</strong> <strong>Package</strong> 8<br />

Field experiments organics in key horticultural crops to evaluate the efficacy of organic Molluscici<strong>de</strong>s-ovici<strong>de</strong>s<br />

and the use of plant-traps as land snails method to control pests.<br />

PARTICIPANTS<br />

Partners 1 (……. Man-month)<br />

Partners 2 (……. Man-month)<br />

Partners 3 (……. Man-month)<br />

Partners 4 (……. Man-month)<br />

Partners 5 (……. Man-month)<br />

Partners 6 (……. Man-month)<br />

Partners 7 (……. Man-month)<br />

Partners 8 (……. Man-month)<br />

Partners 9 (……. Man-month)<br />

OBJETIVES<br />

Field experiments in organic key horticultural crops to evaluate the efficacy of selected compounds with ovicidal<br />

activity against land snail and egg-lays.<br />

WORK AND METHODOLOGY DESCRIPTION<br />

See <strong>Work</strong> <strong>Package</strong> 7, only change the kind of compound tested and the crop type.<br />

31


<strong>Work</strong> <strong>Package</strong> 9<br />

PARTICIPANTS: only Americans partners<br />

Partners 1 (……. Man-month)<br />

Partners 2 (……. Man-month)<br />

Partners 3 (……. Man-month)<br />

Partners 4 (……. Man-month)<br />

Partners 5 (……. Man-month)<br />

Partners 6 (……. Man-month)<br />

Partners 7 (……. Man-month)<br />

Partners 8 (……. Man-month)<br />

Partners 9 (……. Man-month)<br />

OBJETIVES<br />

To i<strong>de</strong>ntify improved strains of Phasmarhabditis nemato<strong>de</strong>s which are more effective biocontrol agents of<br />

larger land snail species in Hispano-America.<br />

BACKGROUND<br />

The use of the rhabtitid nemato<strong>de</strong> Phasmarhabditis hermaphrodita (Schnei<strong>de</strong>r) as a biological control<br />

agent for land snails has been proposed (Wilson, Glen & George, 1993) and a commercial product based on P.<br />

hermaphrodita (Nemaslug , MicroBio Ltd, UK) was launched for sale in the UK in spring 1994, and later in other<br />

European countries. Phasmarhabditis hermaphrodita has been tested successfully for biocontrol of land snails in a<br />

number of field trials, including a range of arable and horticultural crops (Wilson et al., 1994a, 1996; Wilson, Glen,<br />

Wiltshire & George, 1994b; Wilson, Glen, George & Hughes 1995a; Wilson, Hughes & Glen, 1995b; Ester &<br />

Geelen, 1996; Glen et al., 1996; Iglesias, Castillejo & Castro, 2001). In some experiments, however, nemato<strong>de</strong><br />

application did not reduce land snail damage (Wilson et al., 1995a, 1996; Speiser & An<strong>de</strong>rmatt, 1996).<br />

The strain of the nemato<strong>de</strong> currently used as a biocontrol agent is well adapted to the relatively low<br />

temperatures at which land snails are troublesome as pests in north west Europe (Glen et al.,1994a).Thus, this<br />

strain is likely to be suitable for biocontrol of land snails in vegetable and fruit crops in northern Europe. However,<br />

this strain may not be suitable for use in warmer regions of Latino America because it is unable to survive for<br />

more than a few hours at temperatures greater than 25"C (Wilson et al., 1993c). It is likely that strains better<br />

adapted to warmer regions of Latin America can be found, because P. hermaphrodita and two closely related<br />

species from the same genus have been recor<strong>de</strong>d from southern Europe (Morand, 1988).<br />

No obstante, el elevado coste económico que suponen en la actualidad los tratamientos <strong>de</strong> control <strong>de</strong><br />

plagas con nematodos hace que su uso esté todavía muy restringido a cultivos <strong>de</strong> elevado valor como las plantas<br />

ornamentales y algunas hortalizas (Grun<strong>de</strong>r, 2000).<br />

Importancia: El disponer <strong>de</strong> un nematodo zooparásito para controlar las plagas <strong>de</strong> caracoles y babosas y<br />

que se efectivo en cultivos tropicales será muy beneficioso para la agricultura biológica.<br />

Assessment of progress and results. Por medio <strong>de</strong> los informes semestrales y anuales, y por medio <strong>de</strong> los<br />

controles personales que periódicamente el coordinador realiza a cada uno <strong>de</strong> los partner en el país<br />

correspondiente.<br />

WORK AND METHODOLOGY DESCRIPTION<br />

STANDARD OPERATING PROCEDURE FOR PROJECT PARTNERS ISOLATING POSSIBLE NEMATODE LAND SNAILS<br />

PARASITES<br />

1. All land snail and soil samples collected for the i<strong>de</strong>ntifying purpose of possible new nemato<strong>de</strong> parasites will be<br />

labeled with the following essential information, which it will be provi<strong>de</strong>d for every new strain of nemato<strong>de</strong>s<br />

found.<br />

* Nearest place name, nearest main town, and Country<br />

* Latitu<strong>de</strong> and longitu<strong>de</strong><br />

* Land snail species (if sample is from a land snail)<br />

32


* Number of each species (if sample is from more than one land snail)<br />

* Soil type<br />

* Crop or habitat<br />

* Recollection Date<br />

* Recollection method<br />

* Recent and current weather<br />

* Number of subcultures (if any) since nemato<strong>de</strong>s were isolated from infective land snails<br />

2. At all times, land snails suspected of being parasited with nemato<strong>de</strong>s (swollen mantle symptom) should be kept<br />

in individual Petri dishes lined with moist filter paper at below 20 ºC (recommen<strong>de</strong>d 15 ºC). Land snails should be<br />

kept like this until nemato<strong>de</strong>s have reproduced within/on the cadaver.<br />

3. Once nemato<strong>de</strong>s are seen crawling on the land snail cadaver (this is usually about 7 days after infection; at this<br />

point adult and some juvenile nemato<strong>de</strong> stages should be present), the land snail re++++++++mains should be<br />

transferred onto either an extraction tray or a modified White trap and kept at the same temperature as above<br />

for several days.<br />

Extraction tray method (also known as modified Baermann tray or Whitehead tray) (in EU first 6-month report,<br />

previously referred to as double tray/milk filter technique):<br />

This method is frequently used for extracting plant-parasitic nemato<strong>de</strong>s from root material Whitehead and<br />

Hemming, 1965; Southey, 1986). It consists of a coarse nylon sieve (1 mm gauze) which has supports fixed to the<br />

bottom lifting it about 1 cm up. It is lined with a single layer of tissue paper or milk filter to prevent waste material<br />

getting through. The sieve is then placed in a tray with water just reaching the bottom of the sieve. Infected land<br />

snails can be placed on the sieve. Nemato<strong>de</strong> stages will migrate out of the land snail cadaver into the Water, with<br />

the filter preventing unwanted land snail remains contaminating the water. Trays should be left for several days<br />

allowing all nemato<strong>de</strong>s to emerge from the land snail remains. Nemato<strong>de</strong>s collected in the water can be<br />

harvested every other day or so, with the tray being refilled with fresh water.<br />

White trap: The modified White trap it is a standard way of extracting and collecting entomopathogenic<br />

nemato<strong>de</strong>s from infected insect larvae (White, 1927; Woodring and Kaya, 1988). It is probably also a better<br />

method of collecting the infective juveniles of land snail-parasitic nemato<strong>de</strong>s than using extraction trays. It<br />

consists of a small container (9 cm diameter x 5 cm <strong>de</strong>ep) in which an inverted 5 cm diameter, 2 cm <strong>de</strong>ep Petri<br />

dish bottom is placed. A shallow layer of water (1 cm <strong>de</strong>ep) is ad<strong>de</strong>d to the container. A filter paper is then draped<br />

on the Petri dish platform so that it comes into contact with the water. Infected land snails are then placed onto<br />

the moist filter paper on the platform. Once the nemato<strong>de</strong> has completed its life cycle, infective juveniles will<br />

start to emerge from the land snail remains and migrate across the moist filter paper into the water after about<br />

14 days (or longer <strong>de</strong>pending on nemato<strong>de</strong> species, level of infection and temperature). Nemato<strong>de</strong>s can be<br />

harvested every other day or so, until nemato<strong>de</strong>s are no longer found in the water. The container should be<br />

refilled with fresh water after every harvest.<br />

I<strong>de</strong>ally, only one infected land snail should be placed in each extraction tray or White trap. If this is impossible<br />

(e.g. because large numbers of infected land snails have been collected at the same time), then each tray should<br />

contain land snails of one species, collected from the same site at the same time.<br />

4. Infective juveniles collected should be cleaned before storage. The nemato<strong>de</strong> suspension is poured in a small<br />

(100 ml) beaker and left undisturbed for about 30 min, allowing nemato<strong>de</strong>s to settle onto the bottom. The<br />

supernatant is then carefully <strong>de</strong>canted, leaving behind a concentrated nemato<strong>de</strong> suspension. The beaker should<br />

then be refilled with fresh well-oxygenated tap water (or preferably sterile distilled water) and the processes are<br />

repeated 3 to 4 times or until the suspension appears clear. Nemato<strong>de</strong>s can then be stored in shallow containers<br />

with breathing holes, the suspension being only approximately 0.5 cm in <strong>de</strong>pth. Storing nemato<strong>de</strong>s in a large<br />

surface-to-volume ratio ensures sufficient oxygen availability. The suspension should i<strong>de</strong>ally have a concentration<br />

of no more than approximately 5000/ml and be stored at 5 ºC. Nemato<strong>de</strong> viability should be checked regularly<br />

(after room temperature acclimatization). Nemato<strong>de</strong>s should be hatched again after several months or when a<br />

large proportion of nemato<strong>de</strong>s start to die.<br />

33


5. A live sample of each isolated nemato<strong>de</strong> will be sent by Courier, to Partner 1 for specific i<strong>de</strong>ntification.<br />

Nemato<strong>de</strong>s will be sent as infective juveniles in tap water in a part-filled container, with a large ratio of air to<br />

water (20 volumes of air to 1 volume of water) for culturing and confirmation of species i<strong>de</strong>ntity.<br />

34


CALL: FP7-KBBE-2010-4<br />

Proposal full title: Novel strategies for integrating land snail pests control of agricultural<br />

crops in Europe, with projection to Latin-America<br />

Proposal acronym:<br />

Short name?:<br />

Type of funding scheme:<br />

<strong>Work</strong> programme topics<br />

addressed:<br />

LAND SNAIL PEST CONTROL, LAND SNAIL CONTROL, CONTROLLING LAND<br />

SNAILS<br />

Land snail’s life cycle as pest control core<br />

Collaborative Project. CALL: FP7-KBBE-2010-4<br />

Food, Agriculture and Fisheries, and Biotechnology<br />

Area: 2.1.2<br />

Topic number: KBBE.2010.12-05<br />

Name of the coordinating person: Dr José Castillejo Murillo<br />

Departamento <strong>de</strong> Zoología y Antropología Física. Facultad <strong>de</strong> Biología.<br />

Universidad <strong>de</strong> <strong>Santiago</strong> <strong>de</strong> <strong>Compostela</strong>. E-15782 <strong>Santiago</strong> <strong>de</strong> <strong>Compostela</strong>.<br />

La Coruña. Galicia. España.<br />

List of participants<br />

Mobile Phone: + 34 654 969 784<br />

Tel: + 34 981563100<br />

Fax: + 34 981 596904<br />

E-mail: jose.castillejo@usc.es<br />

Participant number Participant organitation name Country<br />

1 (Coordinator) Universidad <strong>de</strong> <strong>Santiago</strong> <strong>de</strong> <strong>Compostela</strong> Spain<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15


Gantt Chart showing the timing of the different WPs and their components.<br />

<strong>Work</strong><br />

Packge<br />

Nº<br />

WP.1<br />

WP.2.<br />

WP.3.<br />

WP.4.<br />

WP.5.<br />

Task<br />

Nº<br />

Task 4.1.<br />

Task 4.2.<br />

Task 4.3.<br />

Task 4.4.<br />

Task 5.1.<br />

Task 5.2.<br />

Task 5.3.<br />

<strong>Work</strong> <strong>Package</strong>s Title<br />

Land Snail Biological Cycle. The size, structure and<br />

dynamics of their<br />

populations<br />

Participant No. Participant<br />

organism name<br />

All partners<br />

Land Snails diet composition. Trap plants All partners<br />

Statistical Mo<strong>de</strong>l to predict land snails activity All partners<br />

Bio pestici<strong>de</strong>s, Bio Molluscici<strong>de</strong>s, Bio Ovici<strong>de</strong>s<br />

Plants Extracts. Laboratory test on paper filter<br />

Standard soil<br />

All partners<br />

Mini plots tests on horticultural soil All partners<br />

Collateral effects on soil fauna All partners<br />

Chemicals analysis to search the active principle of<br />

plant extracts with mulliscici<strong>de</strong> and ovici<strong>de</strong> activity<br />

Laboratory test to find non residual agrochemicals<br />

with ovicidal activity<br />

Field experiments on conventionally horticultural<br />

crops to evaluate the efficacy of selected<br />

agrochemical as<br />

molluscici<strong>de</strong>-ovici<strong>de</strong><br />

Field trials to evaluate the collateral effects on soil<br />

Fauna and bor<strong>de</strong>r effect on wild land snails of<br />

ovici<strong>de</strong> agrochemicals.<br />

Sygenta<br />

Company and<br />

USC (Spain)<br />

All partners<br />

All partners<br />

All partners<br />

First Year Second Year Third Year<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2


WP.6.<br />

WP. 7<br />

WP. 8<br />

Task 6.1.<br />

Task 6.2.<br />

Task 6.3.<br />

Task 6.4<br />

Manure Laboratory test on land snail eggs for<br />

accurate<br />

Ovicidal concentration<br />

Field experiments to evaluate the efficacy of cow and<br />

pig manure as slug eggs control for key organic<br />

horticultural crops<br />

Field analysis to investigate the collateral effect<br />

on soil fauna and bor<strong>de</strong>r effect on wild land<br />

snails of cow and pig manure<br />

Field experiments to use tramp-plants as <strong>de</strong>terrent<br />

method to protect organic horticultural crops alone<br />

and in combination of cow and pig manure<br />

Field experiments in conventionally crops to evaluate<br />

the efficacy of ovici<strong>de</strong> agrochemicals alone and in<br />

combination with other commercial molluscici<strong>de</strong>s<br />

Field experiments in organics horticultural crops to<br />

evaluate the efficacy of organic molluscici<strong>de</strong>sovici<strong>de</strong>s<br />

and the use of plant-traps<br />

WP. 9 To i<strong>de</strong>ntify improved strains of Phasmarhabditis<br />

nemato<strong>de</strong>s which are more effective biocontrol<br />

agents of larger slug species in Hispano-America.<br />

All partners<br />

All partners<br />

All partners<br />

All partners<br />

All partners<br />

All partners<br />

Only Latino<br />

America<br />

Parteners<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1 2 3 4 5 6 7 8 9 1<br />

0<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2


Guidance for the time we should expect for each work package<br />

SIMULATION: Gantt Chart showing the timing of the different WPs . 1 person-month = 135 productive hours per month<br />

<strong>Work</strong><br />

Packge<br />

Nº<br />

WP.1<br />

WP.2.<br />

WP.3.<br />

WP.4.<br />

WP.5.<br />

Task<br />

Nº<br />

Task 4.1.<br />

Task 4.2.<br />

Task 4.3.<br />

Task 4.4.<br />

Task 5.1.<br />

Task 5.2.<br />

Task 5.3.<br />

<strong>Work</strong> <strong>Package</strong>s Title Hours per day<br />

Land Snail Biological Cycle.<br />

the size, structure and dynamics of their<br />

populations<br />

Land Snails diet composition. Trap plants<br />

Statistical Mo<strong>de</strong>l to predict land snails activity<br />

Bio pestici<strong>de</strong>s, Bio Molluscici<strong>de</strong>s, Bio Ovici<strong>de</strong>s<br />

Plants Extracts. Laboratory test on paper filter<br />

Standard soil<br />

Mini plots tests on horticultural soil<br />

Collateral effects on soil fauna<br />

Number of<br />

days per<br />

month<br />

Number of<br />

month<br />

Number of<br />

person<br />

participating<br />

Total Hours per<br />

WP or Task<br />

8 5 24 2 1920 14.2<br />

12 5 24 2 2880 21.3<br />

12 5 24 2 2880 21.3<br />

4 10 30 2 2400 17.7<br />

2 10 24 2 960 7.1<br />

2 10 18 2 720 5.3<br />

Chemicals analysis to search the active principle of<br />

plant extracts with mulliscici<strong>de</strong> and ovici<strong>de</strong> activity 2 10 18 2 720 5.3<br />

Laboratory test to find non residual agrochemicals<br />

with ovicidal activity 4 10 25 2 1920 14.2<br />

Field experiments on conventionally horticultural crops to<br />

evaluate the efficacy of selected agrochemical as<br />

molluscici<strong>de</strong>-ovici<strong>de</strong><br />

4 10 18 2 1440 10.6<br />

Field trials to evaluate the collateral effects on soil<br />

Fauna and bor<strong>de</strong>r effect on wild land snails of<br />

ovici<strong>de</strong> agrochemicals.<br />

1 10 18 2 360<br />

Person-month<br />

Hours/135<br />

2.6


WP.6.<br />

WP. 7<br />

WP. 8<br />

WP. 9<br />

Task 6.1.<br />

Task 6.2.<br />

Task 6.3.<br />

Task 6.4<br />

Manure Laboratory test on land snail eggs for accurate<br />

Ovicidal concentration<br />

Field experiments to evaluate the efficacy of cow and<br />

pig manure as slug eggs control for key organic<br />

horticultural crops<br />

Field analysis to investigate the collateral effect<br />

on soil fauna and bor<strong>de</strong>r effect on wild land<br />

snails of cow and pig manure<br />

Field experiments to use tramp-plants as <strong>de</strong>terrent<br />

method to protect organic horticultural crops alone<br />

and in combination of cow and pig manure<br />

Field experiments in conventionally crops to evaluate<br />

the efficacy of ovici<strong>de</strong> agrochemicals alone and in<br />

combination with other commercial molluscici<strong>de</strong>s<br />

Field experiments in organics horticultural crops to<br />

evaluate the efficacy of organic molluscici<strong>de</strong>sovici<strong>de</strong>s<br />

and the use of plant-traps<br />

To i<strong>de</strong>ntify improved strains of Phasmarhabditis<br />

nemato<strong>de</strong>s which are more effective biocontrol<br />

agents of larger slug species in Hispano-America.<br />

2 10 18 2 720 5.3<br />

2 10 24 2 960 7.1<br />

1 10 18 2 360 2.6<br />

1 5 24 2 240 1,7<br />

4<br />

10 24 2 1920 14.2<br />

4 10 24 2 1920 14.2<br />

1 10 36 2 720 5.3<br />

TOTAL person-months 209.7


Deliverables<br />

1. Contract <strong>de</strong>liverables<br />

At the end of each year a progress report will be produced by each of the individual participants in which research<br />

methods and results achieved will be inclu<strong>de</strong>d and related to the project milestones. After 18 months (half the duration<br />

of the project) a project mid-term review report will also be produced following a mid-term review meeting. This midterm<br />

report will inclu<strong>de</strong> input from all partners and will summarise overall progress and needs for the remain<strong>de</strong>r of the<br />

project duration. After three years (end of project) a final report will be produced.<br />

2. Technical <strong>de</strong>liverables<br />

(a) The introduction into vegetable and fruit crops of a novel strategy for land snails control, combined where<br />

appropriate with novel low-toxicity agrochemicals with bio-ovividal activity, as a replacement for current chemical<br />

which give ina<strong>de</strong>quate control, are hazardous to pets, wildlife and beneficial invertebrates and cause concerns because<br />

of residues in food crops.<br />

(b) Novel methods of bio-molluscici<strong>de</strong>s and bio-ovici<strong>de</strong>s control of slugs in vegetable crops.<br />

(c) Effective integrated packages of crop management, biopestices methods and, where appropriate, low-chemical<br />

methods of protecting vegetable crops from slug damage.<br />

Each year, technologies <strong>de</strong>veloped in this project will be transferred via extension services and consultants, to<br />

vegetable growers. Further <strong>de</strong>velopment of results will be un<strong>de</strong>rtaken by Partner 2 (a SME), so as to introduce the novel<br />

bio-mollusicici<strong>de</strong> agent into the vegetable growing sector of the European horticultural industry. For plan strects, official<br />

registration of the product will be required and appropriate industrial partners will be involved to do this. At the end of<br />

the project results will be further <strong>de</strong>veloped to provi<strong>de</strong> practical advice for vegetable growers.<br />

Table 1.3 b: Deliverables List<br />

Del.nº Deliverable name WP nº Nature<br />

1.1<br />

1.2<br />

1.3<br />

2.1<br />

2.2<br />

3.1<br />

3.2<br />

Conocer el ciclo biológico <strong>de</strong> las especies plaga en<br />

función <strong>de</strong> la fenología <strong>de</strong>l cultivo y su situación<br />

geográfica con el objeto <strong>de</strong> introducir medidas<br />

preventivas<br />

Conocer por medio <strong>de</strong>l estudio <strong>de</strong>l tamaño y estructura<br />

<strong>de</strong> la población la magnitud <strong>de</strong> los daños que las<br />

babosas y caracoles causan en los cultivos<br />

Saber por medio <strong>de</strong> la dinámica <strong>de</strong> las poblaciones <strong>de</strong><br />

caracoles y babosas en que fases <strong>de</strong> su <strong>de</strong>sarrollo son<br />

más dañinos para los cultivos<br />

Conocer las plantas más apetecidas por los caracoles y<br />

babosas por medio <strong>de</strong>l estudio <strong>de</strong> sus contenidos<br />

estomacales.<br />

Obtener la base científica para <strong>de</strong>sarrollar la estrategia<br />

<strong>de</strong>l uso <strong>de</strong> plantas-trampas para proteger los cultivos<br />

Conocer los periodos <strong>de</strong> actividad en cada una <strong>de</strong> las<br />

zonas <strong>de</strong> estudio en función <strong>de</strong> las condiciones medio<br />

ambientales y la fenológicas<br />

Desarrollar un Mo<strong>de</strong>lo Estadístico que nos prediga los<br />

periodos <strong>de</strong> actividad <strong>de</strong> las especies <strong>de</strong> gasterópodos<br />

terrestres plaga<br />

Dissemi<br />

nation<br />

level<br />

WP. 1 R PU<br />

WP.1 R PU<br />

WP.1 R PU<br />

WP.2 R PU<br />

Deliverable<br />

date.<br />

Months<br />

Partial: 12<br />

Final: 24<br />

Partial: 12<br />

Final: 24<br />

Partial: 12<br />

Final: 24<br />

Partial: 12<br />

Final: 24<br />

WP.2 R PU Final: 24<br />

WP.3 R PU<br />

WP.3 R PU<br />

Partial: 12<br />

Final: 24<br />

Partial: 24<br />

Final: 36


3.3<br />

3.4<br />

4.1<br />

4.2<br />

4.3<br />

5.1<br />

5.2<br />

5.3<br />

6.1<br />

6.2<br />

6.3<br />

Tener información <strong>de</strong> cuál es el momento más<br />

a<strong>de</strong>cuado para aplicar un tipo concreto <strong>de</strong> molusquicida<br />

o emplear una estrategia <strong>de</strong> control idónea<br />

Proporcionarle al agricultor información para que<br />

<strong>de</strong>sarrolle una estrategia preventiva con la que se<br />

a<strong>de</strong>lante al ataque <strong>de</strong> la plaga, use menos<br />

molusquicidas y consiga una mayor eficacia<br />

Conocer plantas <strong>de</strong> las que se puedan obtener<br />

biopesticidas con acción molusquicida y ovicida para<br />

que en futuro reemplacen a los molusquicidas<br />

tradicionales, o bien con ellas se puedan hacer abonos<br />

ver<strong>de</strong>s que puedan ser usados en cultivos ecológicos<br />

como controladores <strong>de</strong> las plagas <strong>de</strong> caracoles y<br />

babosas. (WP. 4)<br />

Poner en mano <strong>de</strong> la industria <strong>de</strong> agroquímicos nuevas<br />

vías <strong>de</strong> control <strong>de</strong> las plagas <strong>de</strong> caracoles y babosas por<br />

medio <strong>de</strong> Biomolusquicidas y Bio-ovicidas obtenidos a<br />

partir <strong>de</strong> extractos <strong>de</strong> plantas. The possibility to<br />

introduce into key horticultural crops of a novel plant<br />

extract as biocontrol agent for land snails control<br />

Saber que efectos colaterales pue<strong>de</strong> tener el uso <strong>de</strong><br />

biomolusquicidas y bio-ovicidas sobre la fauna edáfica<br />

y <strong>de</strong> zonas colindantes (WP.4)<br />

Development of novel techniques for low-toxicity<br />

chemical control of land snail eggs - the stage in the<br />

pest life cycle against which no current controls are<br />

available<br />

Proporcionarle al agricultor información <strong>de</strong> cómo usar<br />

los agroquímicos que habitualmente emplea en los<br />

cultivos tradicionales le puedan servir para controlar las<br />

plagas <strong>de</strong> los gasterópodos terrestres<br />

Proporcionarle información al agricultor <strong>de</strong> los efectos<br />

colaterales que sobre la fauna pue<strong>de</strong>n tener los<br />

molusquicidas-ovicidas que se proponen usar en<br />

cultivos tradicionales<br />

Proporcionarle al agricultor ecológico información <strong>de</strong><br />

cómo pue<strong>de</strong> usar los abonos naturales para controlar<br />

las plagas <strong>de</strong> gasterópodos terrestres<br />

Indicar al agricultor ecológico que tipos <strong>de</strong> plantas<br />

pue<strong>de</strong> usar para disuadir a los gasterópodos terrestres<br />

<strong>de</strong> que no ataquen a los cultivos<br />

Saber que efectos colaterales pue<strong>de</strong> tener el uso <strong>de</strong><br />

abonos orgánicos a concentración ovicida sobre la<br />

fauna edáfica y <strong>de</strong> zonas colindantes<br />

WP.3 R PU<br />

WP.3 R PU<br />

WP.4<br />

WP.4<br />

R PU<br />

R PU<br />

R PU<br />

WP.5 R PU<br />

WP.5 R PU<br />

WP.5 R PU<br />

WP.6 R PU<br />

WP.6 R PU<br />

WP.6 R PU<br />

Partial: 12<br />

Partial: 24<br />

Final: 36<br />

Partial: 24<br />

Final: 36<br />

Partial: 24<br />

Final: 36<br />

Partial: 24<br />

Final: 36<br />

Partial: 24<br />

Final: 36<br />

Partial: 24<br />

Final: 36<br />

Partial: 24<br />

Final: 36<br />

Partial: 24<br />

Final: 36<br />

Partial: 24<br />

Final: 36<br />

Partial: 24<br />

Final: 36<br />

Partial: 24<br />

Final: 36<br />

7.1 Proporcionarle al agricultor convencional información WP.7 R PU Partial: 24


8.1<br />

9.1<br />

9.2<br />

5&6.1<br />

5&6.2<br />

5&6.1<br />

4&5&6.<br />

1<br />

6&9.1<br />

7&8.1<br />

All.1<br />

sobre la forma <strong>de</strong> usar los distintos molusquicidas solos<br />

o en combinación, y sobre su eficacia <strong>de</strong> estos<br />

<strong>de</strong>pendiendo <strong>de</strong>l tipo <strong>de</strong> cultivo, <strong>de</strong>l tipo suelo y <strong>de</strong> las<br />

especie <strong>de</strong> gasterópodo terrestre que son plaga en una<br />

zona concreta<br />

Proporcionarle al agricultor ecológico información<br />

sobre la forma <strong>de</strong> usar los distintos biomolusquicidas<br />

solos o en combinación, y sobre su eficacia <strong>de</strong> estos<br />

<strong>de</strong>pendiendo <strong>de</strong>l tipo <strong>de</strong> cultivo, <strong>de</strong>l tipo suelo y <strong>de</strong> las<br />

especie <strong>de</strong> gasterópodo terrestre que son plaga en una<br />

zona concreta<br />

Conocer si existen posibles nematodos zooparásitos<br />

que se puedan ser usados en el control biológico <strong>de</strong> las<br />

plagas <strong>de</strong> caracoles y basas en cultivos agrícolas<br />

The possibility to introduct into key horticultural crops<br />

of a novel nemato<strong>de</strong> biocontrol agent for land snails<br />

Greater uptake of environmentally favourable<br />

integrated crop production systems, as a result of<br />

reduced risk of land snail damage<br />

Improved food safety, resulting from reduced levels of<br />

molluscici<strong>de</strong> residues in harvested produce<br />

Effective integrated packages of control measures for<br />

protecting conventionally grown horticultural crops<br />

from land snails damage<br />

Improved environmental safety, resulting from reduced<br />

reliance on chemical molluscici<strong>de</strong>s<br />

Effective integrated packages of control measures for<br />

protecting organically grown horticultural crops from<br />

land snail damage<br />

Technology transfer through meetings of growers,<br />

practical <strong>de</strong>monstrations, extension services, tra<strong>de</strong><br />

shows and articles in the horticultural press<br />

Brochure with two parts, or separate brochures<br />

<strong>de</strong>scribing integrated packages of control measures for<br />

conventional and organic horticultural producers and<br />

Web links for specific advices.<br />

WP.8 R PU<br />

WP.9 R PU<br />

Final: 36<br />

Partial: 24<br />

Final: 36<br />

Partial: 24<br />

Final: 36<br />

WP.9 R PU Final: 36<br />

WP.5&6 R PU Final: 36<br />

WP.5&6 R PU Final: 36<br />

WP.5&6 R PU Final: 36<br />

WP.<br />

4&5&6<br />

WP.<br />

6&9<br />

(WP.<br />

7&8<br />

R PU Final: 36<br />

R PU Final: 36<br />

R PU Final: 36<br />

(WP. all) R PU Final: 36


Milestones<br />

The project milestones for the nine individual work tasks are shown in Table 1.3 c<br />

Table 1.3 c: Annual milestones for the 9 <strong>Work</strong> <strong>Package</strong>s proposed.<br />

Milestone<br />

number<br />

Milestone name <strong>Work</strong><br />

<strong>Package</strong>(s)<br />

Dinámica, estructura y tamaño <strong>de</strong> la población of land<br />

snail pest. First year on field sampling<br />

Complete field study of land snails populations to<br />

establish its dynamic, structure and size.<br />

Establish best methods to find out the land snails fife<br />

cycle.<br />

involved<br />

Espected<br />

Data<br />

Means of<br />

verification<br />

WP. 1 12 Field survey<br />

complete and<br />

report<br />

WP.1 24 Field survey<br />

complete and<br />

report<br />

WP. 1 12 Field survey<br />

complete and<br />

Wp.1 24<br />

report<br />

Field survey<br />

Life cycle, complete field observation and sampling<br />

complete and<br />

report<br />

WP. 2 12 Field survey<br />

Establish best methods to find out the land snails diet.<br />

complete and<br />

report<br />

Complete field study of land snails diet. WP.2 24 Field survey<br />

complete and<br />

report<br />

First draft of the Statistical Mo<strong>de</strong>l to predict the land WP. 3 12 Complete<br />

snails activity<br />

laboratory<br />

processing and<br />

report<br />

Second draft of the Statistical Mo<strong>de</strong>l to predict the land WP. 3 24 Complete<br />

snails activity<br />

laboratory<br />

processing and<br />

report<br />

Definitive Statistical Mo<strong>de</strong>l to predict the land snails<br />

activity in every zone studied<br />

WP. 3 36 Report<br />

Select potential plants for extracting compound as bio- WP.4 12 Laboratory survey<br />

molluscici<strong>de</strong><br />

complete and<br />

report<br />

Select better compound for direct contact on filter WP.4 12 Laboratory survey<br />

paper. Results of laboratory tests<br />

complete and<br />

report<br />

Select better compound for mini plots testing and better WP.4 24 Field survey<br />

methods of application.<br />

complete and<br />

report<br />

Field test of best compounds for <strong>de</strong>terminate the effect WP.4 24 Field survey<br />

on non-target soil animals<br />

complete and<br />

report<br />

Select better agrochemical based on laboratory tests WP. 5 12 Laboratory survey<br />

complete and<br />

report<br />

Complete small-scale field trials on agrochemicals WP. 5 24 Field survey<br />

complete and<br />

report<br />

Select cow and pig manure concentration based on WP. 6 12 Laboratory survey<br />

laboratory tests<br />

complete and


eport<br />

Complete small-scale field trials on manure WP. 6 24 Field survey<br />

complete and<br />

Parcial estudio <strong>de</strong> la actividad <strong>de</strong> los gasterópodos<br />

terrestres plaga. Refine use of best methods.<br />

report<br />

WP. 3 12 Field survey<br />

complete and<br />

report<br />

Complete second year of activity WP. 3 24 Field survey<br />

complete and<br />

report<br />

Complete third year of activity, <strong>de</strong>finitive mo<strong>de</strong>l WP. 4 36 Field survey<br />

complete and<br />

Evaluar la eficacia <strong>de</strong> los ovicidas en conventionally crops<br />

Complete small-scale field trials<br />

Evaluar la eficacia <strong>de</strong> los purines como ovicidas en<br />

organic crops. Complete small-scale field trials<br />

Conocer los efectos colaterales <strong>de</strong> los molusquicidas<br />

ovicidas, partial trials.<br />

Partial and Complete field test on si<strong>de</strong> effects.<br />

Investigate effects on no-target soil fauna.<br />

Comprobar la capacidad <strong>de</strong> las plantas trampa para<br />

proteger los cultivos<br />

Comparar la eficacia en conventionally crops <strong>de</strong> los<br />

molusquicidas ovicidas frente a los molusquicidas<br />

tradionales. Determine best way to combine with others<br />

molluscici<strong>de</strong>s.<br />

Comparar la eficacia <strong>de</strong> los ovicidas orgánicos frente a<br />

controles biológicos. Determine best way to combine<br />

with others molluscici<strong>de</strong>s.<br />

Búsqueda <strong>de</strong> un nematodo Phasmarhadities autóctono<br />

para usarlo en el control biológico. Select the best<br />

methods based on laboratory tests.<br />

Devise integrated packages for further <strong>de</strong>velopment on<br />

conventional crops<br />

Devise integrated packages for further <strong>de</strong>velopment on<br />

organic crops<br />

report<br />

WP. 5 24 Field survey<br />

complete and<br />

report<br />

WP. 6 24 Field survey<br />

complete and<br />

report<br />

WP. 5 &6 24 Field survey<br />

complete and<br />

report<br />

WP. 5&6 24 and 36 Field survey<br />

complete and<br />

report<br />

WP. 7 24 Field survey<br />

complete and<br />

report<br />

WP. 7 24 Field survey<br />

complete and<br />

report<br />

WP. 8 24 Field survey<br />

complete and<br />

WP. 9 12, 24 and<br />

36<br />

WP. 1,2,3,<br />

4,5,6,7 y 8<br />

WP. 1,2,3,<br />

4,5,6,7 y 8<br />

report<br />

36 Report<br />

Field survey<br />

complete and<br />

report<br />

36 Report


RELATIONSHIP TASKS and ParticipantS<br />

WP 9<br />

NEMATODO ZOOPARASITIC<br />

Phasmarhadities<br />

Participant: Latino America<br />

WP 1<br />

LAND SNAIL’S BIOLOGICAL<br />

CYCLE<br />

Participant 1, 2 ,3, 4, 5, 6, 7,<br />

8<br />

WP 7 & 8<br />

FIED EXPERIMENTS<br />

CONVENTIONALLY,<br />

ORGANICS CROPS<br />

Participant 4, 5, 6, 7, 8<br />

WP 2<br />

DIET COMPOSITION<br />

TRAP PLANTS<br />

Participant 1, 2 ,3, 4, 5, 6, 7,<br />

8<br />

• Statistical mo<strong>de</strong>l to predic activity<br />

• Molluscici<strong>de</strong>s ovicici<strong>de</strong>s<br />

• Nemato<strong>de</strong> zooparasitic<br />

• Integrate package for organic crops<br />

• Integrate package for convencional crops<br />

WP 6<br />

PIG AND COW MANURE<br />

AS BIO OVICIDES TESTS<br />

Participant 1, 2 ,3, 4, 5, 6, 7,<br />

8<br />

WP 3<br />

STATISTICAL ACTIVITY<br />

MODEL<br />

Participant 1, 2 ,3, 4, 5, 6, 7,<br />

8<br />

WP 5<br />

BIO OVICIDAS<br />

AGROCHEMICALS TESTS<br />

WP 4<br />

BIOMOLLUSCICIDES TESTS<br />

COLLATERAL EFFECTS<br />

Participant 1, 2 ,3, 4, 5, 6, 7,<br />

8<br />

Participant 1, 2 ,3, 4, 5, 6, 7.<br />

8


RELATIONSHIP TASKS and Participants<br />

WP 9<br />

NEMATODO ZOOPARASITIC<br />

Phasmarhadities<br />

Participant: Latino America<br />

WP 1<br />

LAND SNAIL’S BIOLOGICAL<br />

CYCLE<br />

Participant 1, 2 ,3, 4, 5, 6, 7,<br />

8<br />

WP 7 & 8<br />

FIED EXPERIMENTS<br />

CONVENTIONALLY,<br />

ORGANICS CROPS<br />

Participant 4, 5, 6, 7, 8<br />

WP 2<br />

DIET COMPOSITION<br />

TRAP PLANTS<br />

Participant 1, 2 ,3, 4, 5, 6, 7,<br />

8<br />

intercommunication<br />

WP 6<br />

PIG AND COW MANURE<br />

AS BIO OVICIDES TESTS<br />

Participant 1, 2 ,3, 4, 5, 6, 7,<br />

8<br />

WP 3<br />

STATISTICAL ACTIVITY<br />

MODEL<br />

Participant 1, 2 ,3, 4, 5, 6, 7,<br />

8<br />

WP 5<br />

BIO OVICIDAS<br />

AGROCHEMICALS TESTS<br />

WP 4<br />

BIOMOLLUSCICIDES TESTS<br />

COLLATERAL EFFECTS<br />

Participant 1, 2 ,3, 4, 5, 6, 7,<br />

8<br />

Participant 1, 2 ,3, 4, 5, 6, 7.<br />

8


WP 1<br />

Manager: Participant 1<br />

Participants 1, 2 ,3, 4, 5, 6, 7,<br />

8<br />

OJO. Coordinador <strong>de</strong> cada WP<br />

WP ????<br />

Manager: Participant 1<br />

Participants 1, 2 ,3, 4, 5, 6, 7,<br />

8<br />

WP 7<br />

Manager: Participant 1<br />

Participants 1,2,3,4, 5, 6, 7, 8<br />

PROJECT MANAGEMENT STRUCTURE<br />

WP 2<br />

Manager: Participant 1<br />

Participants 1, 2 ,3, 4, 5, 6, 7,<br />

8<br />

COORDINATION<br />

Participant 1<br />

DELIVEREBLES<br />

•Statistical mo<strong>de</strong>l to predic activity<br />

• Molluscici<strong>de</strong>s ovicici<strong>de</strong>s<br />

• Nemato<strong>de</strong> zooparasitic<br />

• Integrate package for organic crops<br />

• Integrate package for convencional crops<br />

WP 6<br />

Manager: Participant 1<br />

Participants 1, 2 ,3, 4, 5, 6, 7,<br />

8<br />

WP 3<br />

Manager: Participant 1<br />

Participants 1, 2 ,3, 4, 5, 6, 7,<br />

8<br />

WP 4<br />

Manager: Participant 1<br />

Participants 1, 2 ,3, 4, 5, 6, 7,<br />

8<br />

WP 5<br />

Manager: Participant 1<br />

Participants 1, 2 ,3, 4, 5, 6, 7.<br />

8


Table 2 Schedule of meeting to be held and reports to be produced<br />

MEETING Due Date<br />

Initial planning meeting, <strong>Santiago</strong> <strong>de</strong> <strong>Compostela</strong>, Spain<br />

December 2010<br />

(at the beginning of Project)<br />

Progress review & planning meeting, Norwich<br />

December 2011<br />

Progress review & planning meeting, Lithuania<br />

Final review meeting, Argentina, Ireland<br />

MEANS OF COORDINATOR VERIFICATION<br />

First travel to verification, Europe/Hispano America<br />

Second travel to verification, Europe/Hispano America<br />

Third travel to verification, Europe/Hispano America<br />

SIX MONTH PROGRESS REPORT<br />

First Six-month Progress Report<br />

Second Six-month Progress Report<br />

Third Six-month Progress Report<br />

ANNUAL PROGRESS REPORT<br />

First Annual Progress Report<br />

Second Annual Progress Report<br />

Third Annual Progress Report<br />

December 2012<br />

December 2013<br />

May 2011<br />

October 2011<br />

June 2012<br />

June 2011<br />

June 2012<br />

June 2013<br />

December 2012<br />

December 2013<br />

December 2014<br />

FINAL REPORT March 2014<br />

Brochure(s) and Web page for extension services, consultants and/or growers March 2014


SUMMARY OF STAFF EFFORT<br />

Participant<br />

no./short name<br />

No. 1 USC-ES<br />

No. 2<br />

No. 3<br />

No. 4<br />

No. 5<br />

No. 6<br />

No. 7<br />

No. 8<br />

No. 9<br />

No. 10<br />

No. 11<br />

No. 12<br />

WP 1 WP 2 WP 3 WP 4 WP 5 WP 6 WP 7 WP 8 WP 9<br />

Total person<br />

month


Project: Partner 1 – Universidad <strong>de</strong> <strong>Santiago</strong> <strong>de</strong> <strong>Compostela</strong>, Spain<br />

Table – Estimated Breakdown of the Total Allowable Cost<br />

ALLOWABLE COST AMOUNT IN EUROS<br />

LABOUR 237600 €<br />

TRAVEL, SUSBSISTENCES AND MEETINGS 118200 €<br />

DURABLE EQUIPMENT 116000 €<br />

CONSUMABLES 40000 €<br />

EXTERNAL ASISTANCE<br />

COMPUTING & OTHER COST 40000 €<br />

OVERHEADS 20% 110360 €<br />

TOTAL Requested from EU<br />

Roun<strong>de</strong>d to<br />

a) A <strong>de</strong>tailed list of personnel to the execution of the research (man/month)<br />

Postdoctoral Research Scientist (Group 1) ………………. 36 man/month<br />

Graduate Research Scientist (Group 2) ……………………. 36 man/month<br />

Official Salary Scales (See attached documents)<br />

Group 1, Postdoctoral Research Scientist: 144000 Euros/36 months before tax<br />

108000 Euros/36 months after tax<br />

Group 2, Graduate Research Scientist: 93600 Euros/year before tax<br />

72000 Euros/year after tax<br />

b) I<strong>de</strong>m for “external assistance”<br />

SHARED COST PROJECT<br />

662160 €<br />

663000 €<br />

144000 €<br />

93600 €<br />

TOTAL 237600 €<br />

TOTAL


c) A list of meeting for planning and travel and subsistence<br />

COST Euros<br />

3 Meetings for planning & coordination 36000 €<br />

Land snails sampling in Spain (see below for sampling) 37800 €<br />

3 Hispano America/Europa extra trip to verification and adviser 44400 €<br />

Details of Meeting for planning & coordination<br />

(3 staff x 7 days x 3 meetings). Argentina, Bolivia y Costa Rica<br />

Precio billete avión ida/vuelta: 3000 Euros/persona x 3 personas x 3 viajes= 27000 €<br />

Alojamiento hotel: 100 Euros/noche persona x 5 noches x 3 personas x 3 viajes = 4500 €<br />

Manutención: 70 Euros/day persona x 7 días x 3 personas x 3 viajes = 4500 €<br />

TOTAL: 36000 Euros<br />

TOTAL 118200 €<br />

Details of land snail sampling in Spain<br />

Sampling for land snail <strong>de</strong>nsity and activity in crops, monthly: 2011, 2012 y 2013.<br />

12 annual trips, three zones visited from 5 characteristic crops in each zone. Each trip will involve three<br />

people for a total 3 days per trip.<br />

Year 2011: 12 trips x 3 people x 3 days x (60 € hotel + 50 € subsistence) = 11800 €<br />

Year 2012: 12600 €<br />

Year 2013: 13400 €<br />

TOTAL: 37800 €<br />

Extra Hispano American trip for verification and adviser<br />

3 extra trips to Hispano America/Europe to check in situ project’ <strong>de</strong>velopment and correct possible<br />

mistakes.<br />

Trip for 2 people and 20 days lenth.<br />

Return Plane ticket: 4000 €/trip/person = 24000 €/3 return ticket/2 people<br />

Hotel: 20 nights x 3 trips x 2 people x 100 € Room = 12000 €<br />

Subsistence: 20 days x 3 trips x 2 people x 70 € subsistence = 8400 €<br />

TOTAL: 44400 €<br />

d) A list of durable equipment<br />

2 cámaras FITOCLIMA D1200PLH con control total <strong>de</strong>l medio interior: temperatura,<br />

humedad, iluminación, aireación.<br />

Mo<strong>de</strong>lo ARALAB D1200PLH y precio: 27000 €/unit<br />

Invertido <strong>de</strong> bajos aumentos mod. Ix51. Optica <strong>de</strong> campo claro. Salida triocular lateral<br />

para foto/tv. Con sistema <strong>de</strong> fotografía y vi<strong>de</strong>o recor<strong>de</strong>r<br />

Inverted Stereo zoom microscope, with viseLed White LED illumination system Digital<br />

Camera<br />

54000 €<br />

30000 €<br />

10000 €<br />

Digital System to Store activity dates, images and habitat variables 9000 €<br />

5 Digitals AXIS IP cameras to control activity of field land snails with remote control and<br />

Wifi connection<br />

13000 €<br />

TOTAL 116000 €


e) Consumables. Details of others cost<br />

Computing 4000 €<br />

Field sampling facilities 6000 €<br />

Field experiments 10000 €<br />

Laboratory test facilities 10000 €<br />

Laboratory test consumables 10000 €<br />

TOTAL 40000 €


DIRECCIONES E-MAIL Proyecto <strong>de</strong> la Unión Europea 2009<br />

EUROPA<br />

Dr. José Castillejo Murillo<br />

Departamento <strong>de</strong> Zoología<br />

Facultad <strong>de</strong> Biología<br />

Universidad <strong>de</strong> <strong>Santiago</strong> <strong>de</strong> <strong>Compostela</strong><br />

15782 <strong>Santiago</strong> <strong>de</strong> <strong>Compostela</strong><br />

La Coruña. España<br />

E-Mail: jose.castillejo@usc.es<br />

--------------------------<br />

Dr. David M Glen<br />

Styloma Research & Consulting<br />

Phoebe, The Lippiatt, Cheddar, Somerset, BS27 3QP, UK<br />

Tel: +44 (0)1934 743277<br />

Mobile: +44 (0)7815 624971<br />

David Glen davidmglen@btopenworld.com<br />

--------------------------<br />

Dr. André Chabert<br />

ACTA. 4 place Gensoul<br />

69287 Lyon Ce<strong>de</strong>x 12<br />

France<br />

E-mail: andre.chabert@acta.asso.fr<br />

--------------------------<br />

Dr Albert Ester<br />

PAV. E<strong>de</strong>lhertweg<br />

P.O. Box 430<br />

8200 AK Lelystad. The Netherlands<br />

E-mail: Albert Ester albert.ester@wur.nl<br />

--------------------------<br />

Dr. A.S.H. Breure.<br />

National Museum of Natural History<br />

P.O. Box 9517. Lei<strong>de</strong>n. Holanda ( The Netherlands)<br />

Phone: +31 71 56 78 552 Room Number D 03.47<br />

E-mail: breure@naturalis.nnm.nl<br />

--------------------------<br />

Dr. BERNHARD HAUSDORF<br />

Zoologisches Institut und Zoologisches Museum <strong>de</strong>r Universität Hamburg,<br />

Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany<br />

E-mail: hausdorf@zoologie.uni-hamburg.<strong>de</strong><br />

--------------------------<br />

David Glen davidmglen@btopenworld.com<br />

Albert Ester albert.ester@wur.nl<br />

Brigitta Grimm brig@nhm.ac.uk<br />

Gordon Port gordon.port@ncl.ac.uk<br />

Bill Bailey bbailey@man.ac.uk<br />

Bernhard Speiser Bernhard.speiser@fibl.ch<br />

Gerard Hommay hommay@colmar.inra.fr<br />

Andre Chabert andre.chabert@acta.asso.fr<br />

-------------------------------------<br />

Syngenta Crop Protection<br />

Syngenta Crop Protection UK Ltd.<br />

CPC4 Capital Park. Fulbourn<br />

Cambridge CB21 5XE. UK<br />

E-mail: customer.services@syngenta.com


AMERICA<br />

CHILE<br />

Dr. Sergio Letelier V.<br />

Laboratorio <strong>de</strong> malacología<br />

Museo Nacional <strong>de</strong> Historia Natural<br />

<strong>Santiago</strong> <strong>de</strong> Chile<br />

Interior Quinta Normal s/n, Casilla 787<br />

56-02-6804648 <strong>Santiago</strong> <strong>de</strong> Chile<br />

Chile<br />

E-mail: sletelier@mnhn.cl<br />

---------------------------------<br />

Dr. Carlos Fernán<strong>de</strong>z<br />

Director Regional<br />

INIA La Platina<br />

Santa Rosa, 11610 – La Pintana<br />

<strong>Santiago</strong><br />

Chile<br />

E-mail: cfernan<strong>de</strong>zb@inia.cl<br />

--------------------------------------------<br />

Dra. Marta Isabel Abalos Romero<br />

Directora Ejecutiva INFOR<br />

Dirección: <strong>Santiago</strong>, Chile<br />

Correo-e: mabalos@infor.cl<br />

------------------------------------------<br />

Dr. Jaime <strong>de</strong>l Canto<br />

Subdirector Regional <strong>de</strong> Administración y Finanzas<br />

INIA La Platina<br />

Santa Rosa, 11610 – La Pintana<br />

<strong>Santiago</strong>. Chile<br />

E-mail: j<strong>de</strong>lcanto@inia.cl<br />

------------------------------------------------<br />

Dr. Leopoldo Sánchez Grunert<br />

Director Nacional INIA<br />

Dirección: <strong>Santiago</strong>, Chile<br />

Correo-e: lsanchez@inia.cl<br />

----------------------------------------------------<br />

Dr. Marcos Gerding<br />

Instituto <strong>de</strong> Investigaciones Agropecuarias (INIA)<br />

Centro Regional <strong>de</strong> Investigación Quilamapu<br />

Centro Tecnológico <strong>de</strong> Control Biológico<br />

Chillán, Chile.<br />

Tel: +56 - 42 - 209705<br />

Fax +56 - 42 - 209720<br />

E-mail: mgerding@inia.cl<br />

-------------------------------------------<br />

Centro Tecnológico <strong>de</strong> Control Biológico<br />

Avda. Vicente Mén<strong>de</strong>z 515.<br />

Chillán – Chile.<br />

Tel. (56- 42)- 209 700<br />

Fax. (56 – 42) – 209 720<br />

E-mail: controlbiologicochile@inia.cl<br />

----------------------------------------------


CHILE<br />

Facultad <strong>de</strong> Ciencias Biologicas<br />

Pontificia Universidad Católica<br />

Avenida Bernardo O'Higgins 340 ó Portugal 49<br />

<strong>Santiago</strong>, Chile Casilla 114-D<br />

Telefóno: (56 2) 354 2673<br />

Fax: (56 2) 354 2369<br />

E-mail: <strong>de</strong>canato@bio.puc.cl<br />

Universidad <strong>de</strong> Concepción Chile<br />

Facultad <strong>de</strong> Ciencias Biológicas, Universidad <strong>de</strong> Concepción, Chile<br />

Casilla 160 C Fono: 204508,<br />

Mail: csbiolog@u<strong>de</strong>c.cl


ARGENTINA<br />

Vernavá, María Natalia<br />

Avenida Alem 706 - 4 C,<br />

(8000) Bahía Blanca. Argentina<br />

E-mail: nvernava@uns.edu.ar<br />

E-mail: mnvernava@hotmail.com<br />

--------------------------------------------<br />

Dra. Carla Salvio<br />

Faculty of Agricultural Sciences<br />

National University of Mar <strong>de</strong>l Plata<br />

Experimental Station of National Institute of Agricultural Technology (INTA)<br />

C.C: 276 (7620) Balcarce. Argentina<br />

E-mail: acastillo@balcarce.inta.gov.ar


URUGUAY<br />

Dr. Dan Piestun Malinow<br />

Dr. Mario Garcia Petillo<br />

Instituto Nacional Investigaciones Agropecuarias<br />

Ingeniero Agrónomo, Dr.<br />

An<strong>de</strong>s 1365 P.12<br />

Teléfono:9020550 (oficina)<br />

E-mail: dpiestun@inia.org.uy<br />

E-mail: mgarcia@dn.inia.org.uy<br />

E-mail: mallegri@inia.org.uy<br />

Área Ciencias Agrarias<br />

Facultad <strong>de</strong> Agronomía<br />

Dirección: Av. Garzón 780 - C.P.: 12.900<br />

Tel.: (598 2) 3597191-94 Fax: 3590436<br />

http://www.fagro.edu.uy/<br />

Montevi<strong>de</strong>o - Uruguay<br />

Regional Norte<br />

Dirección: Rivera 1350<br />

Tel.: (598 73) 34816 / 20412 / 29149 / 22154 / 26603 Fax: (073) 20412<br />

Dirección: Uruguay 1375<br />

Tel.: (598 73) 20108<br />

Correo electrónico: web@unorte.edu.uy<br />

http://www.unorte.edu.uy/<br />

Salto - Uruguay<br />

Estación Experimental “Dr. Mario Cassinoni” (E.E.M.A.C.) - Paysandú<br />

Ruta 3 - km 363 - C.P.: 60.000<br />

Tel.: (598 72) 41282 / 02250 / 02259<br />

Telefax: (598 72) 27950<br />

http://www.fagro.edu.uy/~eemac/<br />

Paysandú - Uruguay<br />

DECANATO (Universidad <strong>de</strong> la República <strong>de</strong> Uruguay)<br />

<strong>de</strong> la Facultad <strong>de</strong> Agronomía<br />

Ing. Agr., Agrícola-Gana<strong>de</strong>ra, FA-UDELAR, 1974<br />

M.Sc., Manejo <strong>de</strong> Suelos, Iowa State Univ., 1986<br />

Ph.D., Manejo <strong>de</strong> Suelos, Iowa State Univ., 1991<br />

e-mail: <strong>de</strong>canato@fagro.edu.uy<br />

Departamento <strong>de</strong> Producción Vegetal<br />

Encargada <strong>de</strong> Dirección: Ing. Agr. (PhD) Milka Ferrer<br />

e-mail: mferrer@fagro.edu.uy<br />

Dan Piestun Malinow<br />

INIA Uruguay: dpiestun@inia.org.uy


BOLIVIA<br />

Dra. Elva Terceros Cuellas<br />

Directora General INIAF<br />

La Paz, Bolivia<br />

Correo-e: elva.terceros@iniaf.gov.bo<br />

----------------------------------------------------<br />

Víctor Hugo Cardoso<br />

Secretarío Ejecutivo<br />

PROCIANDINO<br />

Av. Palca y Calle 54 Zona Chasquipampa -<br />

La Paz. Bolivia<br />

Teléfono: (591-292772145<br />

Fax: (591-2) 2773399<br />

E-mail: victor.cardoso@iica.int.bo<br />

Facultad <strong>de</strong> Ciencias Agrícolas, Pecuarias, Forestales y Veterinarias<br />

“Martín Cár<strong>de</strong>nas”<br />

Casilla No. 4894 Teléfonos: 4333808 - 4329666<br />

Fax: (591)(4) 4762385<br />

Cochabamba-Bolivia<br />

E-mail: postmaster@agr.umss.edu.bo (<strong>de</strong>vuelto)<br />

E-mail: agro@agr.umss.edu.bo (<strong>de</strong>vuelto)<br />

marioescalier@yahoo.com<br />

cocamorante.mario@gmail.com<br />

cocamario@hotmail.com<br />

--------------------------------------<br />

Instituto Boliviano <strong>de</strong> Biología <strong>de</strong> Altura (IBBA)<br />

Calle Claudio Sanjinés s/n (Miraflores)<br />

Telf.: (591-2) 2242064 / (591- 2) 2242059<br />

Fax :(591-2) 2221418 Casilla postal: 641<br />

email: Ifisibba@fdm.umsalud.edu.bo (Devuelto)<br />

La Paz - Bolivia


PERÚ<br />

Dr. Enrique La Hoz Brito.<br />

Director General <strong>de</strong> Investigación.<br />

DIA - INIAAv. La Molina (Ex Av. La Universidad) No. 1981 Lima 1<br />

Perú<br />

E-mail: elahoz@inia.gob.pe<br />

elahoz@inia.gob.pe<br />

Enrique La Hoz <br />

"Risi Carbone, Juan Jose M." <br />

----------------------------------------------<br />

Dra. Rina Ramírez<br />

Museo <strong>de</strong> Historia Natural. Universidad Nacional Mayor <strong>de</strong> San Marcos,<br />

Lima – Perú. Apartado 14-0434, Lima14, Perú<br />

E-mail: rina_rm@yahoo.com<br />

--------------------------------------------------<br />

Universidad Nacional Agraria La Molina<br />

Facultad <strong>de</strong> Agronomía. Perú<br />

Marlene Aguilar Hernán<strong>de</strong>z MARLENE AGUILAR <br />

----------------------------------------------------------<br />

Universidad Nacional <strong>de</strong> Trujillo-Peru<br />

Profesor <strong>de</strong> zoología y entomología<br />

AURELIANO RAMIREZ CRUZ (Dr .Martin Delgado)<br />

E-mail: aure_15@hotmail.com<br />

Nombre : Andrés V. Casas Díaz<br />

Categoría : Profesor Principal, <strong>de</strong>dicación exclusiva<br />

Especialidad: Olericultura<br />

Título : Ing. Agr. Mg.Sc.<br />

Cursos: Olericultura Especial (T), (P)<br />

Fisiología y Manejo Postcosecha (P)<br />

correo : cda@lamolina.edu.pe<br />

Màs información: Programa <strong>de</strong> Hortalizas<br />

Nombre: Julio Toledo Hevia<br />

Categoría : Profesor Principal, <strong>de</strong>dicación exclusiva<br />

Especialidad: Olericultura y Manejo Postcosecha<br />

Titulo :Ing. Agr. Ph. D.<br />

Cursos: Fisiología y Manejo Postcosecha (T)<br />

Fisiología <strong>de</strong> Cultivos Hortícolas (T), (P)<br />

correo : jtoledo@lamolina.edu.pe


ECUADOR<br />

Universidad Central <strong>de</strong> Ecuador<br />

Centro <strong>de</strong> Coordinación Académica <strong>de</strong> Biología<br />

Relaciones internacionales: rel_int@ac.uce.edu.ec<br />

Instituto <strong>de</strong> Investigaciones Agrícolas<br />

Facultad <strong>de</strong> Ciencias Agrícolas ( Interesado)<br />

Universidad Central <strong>de</strong>l Ecuador<br />

Narciza Yar (FUNCIONARIA DE LA FACULTAD DE CIENCIAS AGRÍCOLAS)<br />

E -mail: narcizayarm@hotmail.com<br />

Universidad Central <strong>de</strong> Ecuador<br />

Vicerrector Académico y <strong>de</strong> Investigación<br />

Dr. Jorge Luciano Arroba Rimassa<br />

E-mail: jarroba@ac.uce.edu.ec<br />

Universidad Agraria <strong>de</strong>l Ecuador<br />

Director<br />

E-mail: elmisionero@uagraria.edu.ec<br />

Universidad Nacional <strong>de</strong> Loja (Ecuador)<br />

DIRECTORES DE LAS ÁREAS<br />

Área Agropecuaria y <strong>de</strong> Recursos Naturales Renovables<br />

Ing. Edgar Benítez<br />

E-mail: agropecuaria@unl.edu.ec<br />

Pontificia Universidad Católica <strong>de</strong>l Ecuador<br />

Facultad <strong>de</strong> Ciencias Exactas y Naturales<br />

ESCUELA DE CIENCIAS BIOLÓGICAS<br />

Alvaro Barragán<br />

E-mail: arbarragan@puce.edu.ec (Interesado)<br />

E-mail: webmaster@puce.edu.ec (Devuelto)


BRASIL<br />

Dr. José Willibaldo Thomé<br />

Faculta<strong>de</strong> <strong>de</strong> Biociéncias<br />

PUCRS. Av Ipiranga, 6681<br />

Predio 12-D. 90.619.900<br />

Porto Alegre, Río Gran<strong>de</strong> do Sul<br />

Brazil<br />

E-mail: thomejw@pucrs.br<br />

Facultad Ciencias Biologicas: biociencias@pucrs.br<br />

Lenita <strong>de</strong> Freitas Tallarico (Biologist)<br />

Laboratorio <strong>de</strong> Parasitología/Malacología<br />

Instituto Butantan<br />

Avda. Voital Brasil, 1500<br />

CEP-05503-900 Sao Paulo. Brasil<br />

E-mail: letallarico2@butantan.gov.br<br />

Facultad <strong>de</strong> Engenheria Agricola<br />

Brazil<br />

Faculda<strong>de</strong> <strong>de</strong> Engenharia Agrícola<br />

Campus Universitário, s/n<br />

96010-900 Capão do Leão, RS<br />

Fone: (53)32757317<br />

Fax: (53) 32757373<br />

E-mail: jluiz@ufpel.tche.br (Devuelto)<br />

MARIA LAURA GOMES SILVA DA LUZ<br />

Processamento <strong>de</strong> Produtos Agropecuários<br />

E-mail: lauraluz@terra.com.br


COLOMBIA<br />

Dra. Marleni Ramírez<br />

Directora Regional <strong>de</strong> Biodiversity Internacional<br />

CGIAR Bogotá, Colombia<br />

Correo-e: m.ramirez@cgiar.org<br />

----------------------------------------<br />

Dr. Luis Enrique Vega<br />

CONIF Director ejecutivos<br />

Bogotá, Colombia<br />

Correo-e: enriquevega@conif.org.co<br />

------------------------------------------------<br />

Dra. Clara Inés Medina Bermú<strong>de</strong>z<br />

Universidad Militar <strong>de</strong> Nueva Granada<br />

Bogotá. Colombia.<br />

E-mail: cmedinabster@gmail.com<br />

clara.medina@unimilitar.edu.co<br />

------------------------------------------------------<br />

Dra. Luz Elena Velásquez Trujillo<br />

Coordinadora Línea <strong>de</strong> Investigación Malacología Médica & Tremátodos<br />

Programa <strong>de</strong> Estudio y Control <strong>de</strong> Enfermeda<strong>de</strong>s Tropicales –PECET<br />

Universidad <strong>de</strong> Antioquia<br />

Me<strong>de</strong>llín, Colombia<br />

E-mail: luzelena333@yahoo.com<br />

-----------------------------------------------------<br />

Dra. Berta Miriam Gaviria G.,<br />

Dr. Rafael Navarro Álzate<br />

Laboratorio <strong>de</strong> Sanidad Vegetal<br />

Universidad Católica <strong>de</strong> Oriente<br />

Rionegro. Me<strong>de</strong>llín<br />

Colombia. Teléfono: 316666 Ext. 299<br />

E-mail: rnavarro@uco.edu.co<br />

E-mail: bgaviria@uco.edu.co<br />

------------------------------------------<br />

Facultad <strong>de</strong> Ciencias Agropecuarias<br />

Universidad Nacional <strong>de</strong> Colombia, Se<strong>de</strong> Me<strong>de</strong>llín<br />

Calle 59A No. 63-020, Bloque 41, Oficina 209<br />

Teléfono: (574) 430 90 00 - Fax: (574) 230 04 20<br />

Colombia, Me<strong>de</strong>llín, Antioquia.<br />

Departamento <strong>de</strong> Ciencias Agronómicas<br />

Alberto Álvarez Cardona<br />

E-mail: posgeamb@unalmed.edu.co (Devuelto)<br />

reuna@unalmed.edu.co<br />

apcastilo@unalmed.edu.co (Devuelto)<br />

fcaviaca@unalmed.edu.co<br />

oriunmed@unalmed.edu.co<br />

gcorrea@unalmed.edu.co<br />

-------------------------------------------------------<br />

Facultad <strong>de</strong> Agronomía en Bogotá<br />

Universidad Nacional <strong>de</strong> Colombia<br />

Carrera 45 No 26-85 - Edificio 500<br />

Bogotá D.C. - Colombia<br />

Prof. Augusto Ramírez Godo<br />

Correo Electrónico: augramirezg@unal.edu.co<br />

-------------------------------------------


CUBA<br />

Universidad <strong>de</strong> la Habana:<br />

Dra. Alicia Otazo<br />

Decano Fac. Biologia. Cuba<br />

E-mail: aotazo@fbio.uh.cu<br />

---------------------------------------<br />

Lic. Carlos Manuel Pérez Cueva<br />

Vicerrector. Cuba<br />

E-mail: carlosm@rect.uh.cu<br />

------------------------------------------<br />

Dr.Gustavo Cobreiro Suárez<br />

Rector Universidad. Cuba<br />

E-mail: rector@rect.uh.cu<br />

-----------------------------------<br />

Dr. Alejandro Barro<br />

Facultad <strong>de</strong> Biología<br />

Departamento <strong>de</strong> Biología Animal y Humana<br />

Universidad <strong>de</strong> La Habana,<br />

Calle 25, No. 455, Vedado,<br />

Ciudad <strong>de</strong> La Habana, Cuba.<br />

E-mail: abarro@fbio.uh.cu


COSTA RICA<br />

Dr. Galileo Rivas (Contacto)<br />

Lí<strong>de</strong>r Programa <strong>de</strong> Producción Agroecológica <strong>de</strong> Cultivos Alimenticios<br />

Centro Agronómico Tropical <strong>de</strong> Investigación y Enseñanza, CATIE<br />

División <strong>de</strong> Investigación y Desarrollo<br />

7170 Turrialba, Cartago. Costa Rica<br />

Tel: + 506 25582391<br />

Fax: + 506 25582045<br />

E-mail: grivas@catie.ac.cr<br />

www.catie.ac.cr<br />

---------------------------------------------<br />

John Beer<br />

CATIE<br />

Costa Rica<br />

Correo-e: jbeer@catie.ac.cr<br />

-----------------<br />

José Joaquin Campos Arce<br />

Director General CATIE<br />

Costa Rica<br />

Correo-e: dbarquer@catie.ac.cr<br />

--------------------<br />

Francisco Javier Enciso Duran<br />

Especialista Regional en Tecnología e Innovación IICA<br />

Costa Rica<br />

Correo-e: Laura.Men<strong>de</strong>z@iica.int<br />

------------------------<br />

Nicolás Mateo Valver<strong>de</strong><br />

Secretario ejecutivo. FONTAGRO<br />

Costa Rica<br />

Correo-e: fontagro@iadb.org<br />

------------------------------------------


MEXICO<br />

Dra. Edna Naranjo-García<br />

Departamento <strong>de</strong> Zoología<br />

Instituto <strong>de</strong> Biología<br />

Universidad Nacional Autónoma <strong>de</strong> México<br />

Apartado Postal 70-153<br />

04510 México, D.F.<br />

México<br />

E-mail: naranjo@servidor.unam.mx<br />

Facultad <strong>de</strong> Biologia<br />

Edificio "R". Ciudad Universitaria.<br />

Av. Fco. J. Múgica s/n. Col. Felícitas <strong>de</strong>l Río<br />

Tel. y Fax (443) 3.16.74.12 C. P. 58030<br />

Morelia, Michoacán, México<br />

E-mail: biologia@jupiter.umich.mx


PARAGUAY<br />

Universidad Nacional <strong>de</strong> Asunción<br />

Dr. LUIS GUILLERMO MALDONADO CHAMORRO<br />

Director <strong>de</strong> Ingeniería Agronómica<br />

FACULTAD DE CIENCIAS AGRARIAS (CAMPUS UNIVERSITARIO) SAN LORENZO PARAGUAY<br />

E-mail: dircia@agr.una.py<br />

Claudia Carolina Cabral Antunez. M.Sc. - Ing.Agr.<br />

Directora <strong>de</strong>l Departamento <strong>de</strong> Protección Vegetal.<br />

Asignaturas: Manejo Integrado <strong>de</strong> Plagas, Control Biológicos <strong>de</strong> Plagas, Entomología I<br />

Alicia Susana Aquino Jara. M.Sc. - Ing.Agr.<br />

Jefa <strong>de</strong> la División <strong>de</strong> Fitopatología<br />

E-mail: protvege@agr.una.py<br />

Asignaturas: Microbiología, Fitopatología<br />

Percy Antonio Salas Pino, M.Sc., Ing.Agr.<br />

Jefe <strong>de</strong> la División <strong>de</strong> Malezas<br />

E-mail: julios98@yahoo.com.<br />

Asignaturas: Agronomía General, Cultivos I, Malezas II<br />

Darío César Pino Quintana, M.Sc., Ing.Agr.<br />

División <strong>de</strong> Fitopatología<br />

E-mail: dariopino1@hotmail.com<br />

Asignaturas: Agronomía General, Microbiología,Protección Vegetal I<br />

Cristhian Grabowski, Ing.Agr<br />

División <strong>de</strong> Fitopatología.<br />

E-mail: cjgraboswski@yahoo.com.<br />

Asignaturas: Jefe <strong>de</strong> Trabajos Prácticos <strong>de</strong> Microbiología, Fitopatología y Patología Forestal.<br />

Maria Bernarda Ramirez <strong>de</strong> Lopez Ing. Agr.<br />

Divsión Entomología.<br />

E-mail: mabramirez@hotmail.com<br />

Marcos Salvador Villalba Vásquez<br />

Paraguay<br />

Correo-e: dia@telesurf.com.py (Devuelto)


VENEZUELA<br />

Dr. Orlando Moreno<br />

Gerente General INIA<br />

Venezuela<br />

Correo-e: yreyes@inia.gob.ve<br />

-------------------------------------<br />

Director: Camarada Hernán Nieto.<br />

e-mail: hnieto@inia.gob.ve<br />

Dirección: Av. Urdaneta. Edif. INIA al lado <strong>de</strong>l MAT.<br />

Mérida, estado Mérida.<br />

Benezuela<br />

email: me_dir@inia.gob.ve<br />

-----------------------------------------<br />

Universidad Central <strong>de</strong> Venezuela<br />

Facultad <strong>de</strong> Agronomía<br />

Delia Polanco: polanco.<strong>de</strong>lia@yahoo.es<br />

M.A. Hortalizas Mauro Albarracin E-mail: albarracinm@agr.ucv.ve<br />

Universidad Central <strong>de</strong> Venezuela<br />

Facultad <strong>de</strong> Agronomía<br />

Decano: Dr. Leonardo Taylhardat<br />

E-mail: taylhardatl@agr.ucv.ve (Devuelto)<br />

Coordinadora <strong>de</strong> Estaciones Experimentales<br />

Prof. Xiomara Abreu<br />

E-mail: abreux@agr.ucv.ve<br />

IBE Instituto <strong>de</strong> Biología Experimental<br />

Dirección: Calle Suapure, Colinas <strong>de</strong> Bello Monte, Caracas Venezuela.<br />

Apartado postal: 47114, Caracas 1041A, Venezuela.<br />

Teléfonos: (58 212) 751-0111<br />

Fax: (58 212) 753-5897 (Devuelto)<br />

E-mail: diribe@ciens.ucv.ve<br />

Universidad Simón Bolívar<br />

Decanato <strong>de</strong> Investigación Sartenejas<br />

Edificio <strong>de</strong> Mecánica y Materiales, Piso 3.<br />

Teléfono: 58-0212-9063900/9063901/9063902<br />

Fax:58-0212-9063903<br />

Correo electrónico: <strong>de</strong>c-id@usb.ve Devuelto)<br />

Página web: http://www.did.usb.ve/<br />

Dirección <strong>de</strong> Investigación Se<strong>de</strong> Litoral.<br />

Edificio <strong>de</strong> Mecánica y Materiales, Piso 3.<br />

Teléfono: 58-0212-9063900/9063901/9063902<br />

Fax:58-0212-9063903<br />

Correo Electrónico: div-inv@usb.ve<br />

Página Web: http://www.dir-inv.nul.usb.ve/

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!