19.07.2017 Views

1

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1.10 INDICES<br />

Index is the power to which number is raised to<br />

and the number is called a base.<br />

For example 2 3 , 3 is index of 2 and 2 is a base.<br />

1.11. The fundamental rules of indices<br />

1.<br />

2.<br />

But<br />

a<br />

5<br />

3<br />

But<br />

5<br />

But 5<br />

a<br />

4<br />

m<br />

5<br />

125 625<br />

5<br />

5<br />

750 78125<br />

a<br />

34<br />

78125 78125<br />

3<br />

4<br />

125 625 5<br />

m<br />

a<br />

m<br />

2<br />

3<br />

n<br />

5<br />

n<br />

7<br />

7<br />

34<br />

a<br />

mn<br />

mn<br />

a a (Addition of indices)<br />

2<br />

But 2<br />

4 2<br />

2<br />

8 4 2<br />

a<br />

2<br />

8 4 2<br />

m<br />

a<br />

n<br />

4<br />

2 2<br />

3<br />

2<br />

1<br />

a<br />

n<br />

a<br />

2<br />

32<br />

1<br />

2<br />

a<br />

mn<br />

3 34<br />

3. 2<br />

2<br />

8<br />

4<br />

2<br />

12<br />

4096 4096<br />

m n mn<br />

a<br />

4.<br />

32<br />

mn<br />

INDICES, SURDS AND LOGARITHMS:<br />

(Subtraction of indices)<br />

a (Multiplication of indices)<br />

1<br />

4<br />

3<br />

4 <br />

3<br />

0.015625<br />

<br />

<br />

1<br />

64<br />

1<br />

64<br />

0.015625<br />

0.015625 <br />

m<br />

1<br />

a (Negative index)<br />

m<br />

a<br />

3 2<br />

5.<br />

3<br />

2<br />

64 3 2<br />

<br />

64<br />

<br />

64<br />

6.<br />

<br />

3<br />

16<br />

4096<br />

<br />

4<br />

16<br />

m<br />

n n m<br />

a a n a m<br />

; n> 0<br />

(Rational indices)<br />

0<br />

100 = 1<br />

1 a<br />

a<br />

0<br />

1<br />

1<br />

1<br />

4<br />

a<br />

1<br />

a<br />

11<br />

a<br />

(index Zero )<br />

7. 81 <br />

4<br />

81 3<br />

8. 9<br />

1<br />

a m a ; m 0<br />

(S imple fractional index)<br />

a<br />

3<br />

2<br />

p<br />

q<br />

m<br />

<br />

9<br />

1<br />

3<br />

2<br />

<br />

1<br />

2 3<br />

9<br />

<br />

0<br />

1<br />

2<br />

<br />

1<br />

3<br />

9 27<br />

1 1 1<br />

<br />

p q<br />

p<br />

;<br />

p<br />

a<br />

q<br />

q<br />

a<br />

a<br />

(Negative rational indices)<br />

2<br />

2<br />

9. 2<br />

5 2 5 4 25 100<br />

m m m<br />

ab a b<br />

(Distribution of index)<br />

1.12 Simplification of an expression<br />

Example 1. (a) Simplify the following<br />

(a)(i)<br />

2<br />

1<br />

(i)<br />

4 3<br />

t t 2<br />

(ii)<br />

Solution<br />

4 3<br />

t<br />

<br />

2a<br />

7c<br />

t<br />

3<br />

4<br />

1<br />

2<br />

b<br />

d<br />

2<br />

3<br />

(ii)<br />

2a<br />

7c<br />

-3<br />

4<br />

b<br />

d<br />

2<br />

3


1<br />

3<br />

1 2<br />

<br />

t 4 t<br />

2 <br />

<br />

<br />

3 1<br />

t 4 t<br />

4<br />

t<br />

= t<br />

<br />

<br />

<br />

<br />

3<br />

<br />

1<br />

4 4<br />

<br />

<br />

<br />

<br />

<br />

2<br />

a<br />

1<br />

3<br />

2c4b2<br />

<br />

7a3d3<br />

Example 2: Simplify the following<br />

Solution<br />

<br />

(i) <br />

<br />

(ii)<br />

<br />

(i) <br />

27 <br />

(ii)<br />

8<br />

27<br />

<br />

<br />

<br />

1<br />

3<br />

81 <br />

<br />

16<br />

3<br />

4<br />

1<br />

1<br />

8 3<br />

3<br />

27 <br />

<br />

8 <br />

81 <br />

<br />

16<br />

<br />

<br />

<br />

3<br />

2<br />

3<br />

4<br />

4<br />

<br />

<br />

8 <br />

1<br />

<br />

27 <br />

1<br />

3<br />

3<br />

4<br />

3<br />

4<br />

4<br />

27<br />

<br />

8<br />

1<br />

3<br />

1<br />

3<br />

81<br />

<br />

16<br />

3<br />

<br />

2<br />

3<br />

4<br />

3<br />

4<br />

3<br />

4<br />

4<br />

3<br />

4<br />

4<br />

<br />

Example 3: Simplify:(i)<br />

<br />

<br />

3<br />

2<br />

3<br />

<br />

<br />

1<br />

3<br />

1<br />

3<br />

3<br />

3<br />

<br />

2<br />

3<br />

3<br />

3<br />

<br />

2<br />

<br />

<br />

1<br />

b2<br />

7 d3<br />

<br />

c4<br />

<br />

1<br />

3<br />

3<br />

1<br />

3<br />

3<br />

27<br />

8<br />

7<br />

4 3<br />

2 5<br />

x<br />

yz x<br />

yz<br />

xz 2<br />

2n1<br />

n1<br />

32<br />

<br />

42<br />

<br />

(ii)<br />

Solution:<br />

2<br />

n1<br />

2<br />

n<br />

7<br />

4 3<br />

2 5<br />

(i) x<br />

yz x<br />

yz<br />

xz 2<br />

4 3<br />

2<br />

5<br />

x yz x yz <br />

=<br />

7<br />

xz 2<br />

1<br />

2<br />

<br />

3<br />

2<br />

5<br />

1 1<br />

8 2 6<br />

x y z<br />

x 2 y 2 z 2<br />

= 7 7<br />

x 2 z 2<br />

5 1 1<br />

8<br />

2<br />

6<br />

2 2 2<br />

=<br />

x<br />

y<br />

x<br />

7<br />

2<br />

z<br />

z<br />

7<br />

2<br />

5 1 1 7 7<br />

8 2<br />

6<br />

<br />

= <br />

<br />

x 2 y 2 z 2 <br />

<br />

<br />

x 2 z 2<br />

<br />

<br />

<br />

<br />

5 7 <br />

5 <br />

1 7<br />

8<br />

<br />

6<br />

<br />

= <br />

<br />

x 2 2 <br />

y 2 <br />

z 2 2<br />

<br />

<br />

<br />

<br />

<br />

=<br />

x<br />

5<br />

2 2 9<br />

y<br />

z<br />

n1<br />

n1<br />

32<br />

<br />

42<br />

<br />

(ii)<br />

2<br />

n1<br />

Example 4:<br />

Solution:<br />

3 2<br />

=<br />

x x 3<br />

x<br />

x<br />

1<br />

3<br />

x<br />

2 1<br />

<br />

3 3<br />

x<br />

1<br />

<br />

1<br />

2<br />

2<br />

n<br />

n 1<br />

3<br />

2<br />

2 4<br />

2<br />

<br />

2<br />

n n<br />

2<br />

2 2<br />

n<br />

6<br />

2 2<br />

2<br />

2<br />

2 2<br />

=<br />

n n<br />

2<br />

=<br />

2<br />

n<br />

n<br />

<br />

<br />

Simplify:<br />

=<br />

1<br />

=<br />

x<br />

2<br />

3<br />

x <br />

x<br />

<br />

<br />

6 2<br />

2 1<br />

x<br />

1<br />

2<br />

1<br />

<br />

3<br />

n<br />

4<br />

1<br />

3<br />

<br />

2<br />

x x 3<br />

=<br />

x<br />

x 1<br />

x 1<br />

23<br />

=<br />

5<br />

6 x 6<br />

x<br />

3<br />

1<br />

6<br />

x<br />

x<br />

2<br />

3<br />

<br />

x<br />

5<br />

<br />

5<br />

x 2 xy<br />

Example 5: Simplify <br />

3<br />

xy y<br />

1<br />

2<br />

x<br />

1<br />

1<br />

3<br />

x<br />

x y<br />

n


Solution<br />

<br />

x<br />

<br />

<br />

<br />

x x xy<br />

<br />

3<br />

xy y<br />

x<br />

x xy<br />

x<br />

x y<br />

= <br />

2<br />

yx<br />

y x y<br />

3<br />

x<br />

x xy x y<br />

xxy<br />

y <br />

3<br />

y<br />

y x y<br />

2<br />

y<br />

xy<br />

<br />

x<br />

x<br />

x<br />

y<br />

x<br />

x xy<br />

xy<br />

x xy<br />

x xy <br />

x xy <br />

x xy<br />

2<br />

y<br />

x y<br />

x y<br />

2<br />

2<br />

3<br />

2<br />

xy<br />

x<br />

x y<br />

y<br />

y<br />

x y<br />

4<br />

3<br />

<br />

1.13 Solving Equations<br />

Example 1: Find the value of x in the<br />

5<br />

x<br />

6 6 9<br />

equation 6<br />

36<br />

Solution:<br />

6<br />

5<br />

x 5<br />

x<br />

6 6 5<br />

x2<br />

x<br />

6 6<br />

3<br />

2<br />

36<br />

5<br />

6<br />

x<br />

6 6 3 x<br />

6 6<br />

36<br />

Comparing the powers;<br />

3 x 9<br />

x 6<br />

Example 2:Find the value of x and y if<br />

5<br />

x<br />

25<br />

2y<br />

Solution:<br />

5<br />

5<br />

x<br />

x<br />

25<br />

<br />

5<br />

x4y<br />

2y<br />

<br />

2 2y<br />

1<br />

and<br />

1<br />

0<br />

5<br />

and<br />

0<br />

3<br />

5x<br />

9<br />

9<br />

3<br />

y<br />

5x<br />

3<br />

<br />

1<br />

9<br />

9<br />

5x<br />

y<br />

3<br />

5x2y<br />

<br />

3<br />

2y<br />

1<br />

9<br />

x<br />

9<br />

2<br />

1<br />

5 5<br />

3 3<br />

Comparing powers with both cases we have;<br />

x 4y<br />

0 …… ………………(i) and<br />

5x<br />

2y<br />

2…..….……………(ii)<br />

2(ii) – (i)<br />

3<br />

10x<br />

4x<br />

4<br />

x 4y<br />

0 <br />

9x<br />

4<br />

4<br />

x <br />

9<br />

From equation (i) if we replace x we have<br />

4<br />

4y<br />

0<br />

9<br />

4<br />

4y<br />

<br />

9<br />

1<br />

y <br />

9<br />

Exercise 1 (a)<br />

1. Solve the equation:<br />

3<br />

2<br />

i) 64<br />

x1 <br />

y , ii 9 3<br />

81<br />

2. Find the values of x and y in the<br />

equations.<br />

2y 3 <br />

3 2 x and 2<br />

2y x<br />

64<br />

3. Simplify the following expressions<br />

i)<br />

ii)<br />

iii)<br />

1<br />

t<br />

x<br />

t<br />

x<br />

<br />

x<br />

xy<br />

1<br />

<br />

t<br />

<br />

1<br />

2<br />

t<br />

2 3<br />

x<br />

xy <br />

n1<br />

n1<br />

9<br />

6<br />

<br />

2n1<br />

n<br />

3<br />

2<br />

<br />

4. Simplify the following<br />

i)<br />

ii)<br />

iii)<br />

x<br />

n1<br />

n1<br />

<br />

42<br />

<br />

3 2<br />

2<br />

n1<br />

t 2<br />

2t<br />

1<br />

8<br />

4<br />

<br />

t<br />

t<br />

2<br />

<br />

42<br />

5<br />

2<br />

2<br />

3<br />

x<br />

2 2x<br />

2 2<br />

1.20SURDS:<br />

These are numbers which cannot be evaluated<br />

exactly hence they are irrational e.g.<br />

7 , 61, 20 .etc.In short they are numbers<br />

n


which when converted to decimal cannot be<br />

exact but they are approximated e.g. 7 =<br />

2.6458 (4dpts)<br />

1.21: Definition of rational number and<br />

irrational number.<br />

Rational number is a number which can be q<br />

p<br />

where p and q are integers but q 0 . All<br />

proper fractions, improper fractions, mixed<br />

fractions and integers are rational numbers and<br />

so are terminating or recurring decimal<br />

fractions.<br />

An irrational number is not a rational number.<br />

If an irrational number is written in decimal it<br />

has no repeating pattern e.g. 7,<br />

e , . etc.<br />

Surds are numbers which cannot be evaluated<br />

exactly hence they are irrational numbers but<br />

irrational numbers are not surds like π is an<br />

irrational number but not a Surd. Surd is an<br />

expression containing 1 or more square roots of<br />

prime numbers e.g. 2 3, 7, 3 5 4 2 . etc.<br />

1.22: Some identities in Surds<br />

(1) 2 3 6<br />

t n tn<br />

t t <br />

(2) <br />

n n <br />

2<br />

(3) 7 5 7 5 2 7 5<br />

2<br />

t n t n 2 tn<br />

(4) 5 <br />

2<br />

3 5 3<br />

2 5<br />

3<br />

t <br />

2<br />

n t n 2 tn<br />

2<br />

(5) 2<br />

3 4 3<br />

4 3<br />

2 2<br />

a<br />

b a b 2a<br />

b<br />

(6) 7 3 7 3<br />

7 3<br />

a b a b<br />

a b<br />

(7) 3<br />

2 3<br />

2<br />

3<br />

2 2<br />

2<br />

a<br />

b a<br />

b<br />

a b<br />

1.23 Simplification of Surds is a process which<br />

surd and an expression is reduced to its<br />

lowest form.<br />

Example 1Simplify 150 to its simplest form.<br />

Solution 150 25 6<br />

25 6 5 6<br />

Example 2Simplify 8 512 8<br />

simplest form.<br />

3 to its<br />

Solution 3 4<br />

2 256 2 4<br />

2<br />

3 4 2 256 2 4 2<br />

3<br />

2<br />

216<br />

2 2<br />

2<br />

6<br />

216<br />

2 2 2<br />

6<br />

218<br />

2<br />

216<br />

Example 3 Reduce the expression<br />

98 50 8 32 72 to its simplest<br />

form.<br />

Solution<br />

49 2 25 2 4 2 16 2 36 2<br />

<br />

<br />

7<br />

49 <br />

16 <br />

2 5<br />

2 <br />

2 <br />

2 2<br />

25 <br />

36 <br />

2 <br />

2 4<br />

Example 4: Simplify<br />

at denominator.<br />

Solution<br />

3<br />

1<br />

3<br />

x<br />

3<br />

1<br />

3<br />

2<br />

x x<br />

<br />

x<br />

x<br />

2 <br />

<br />

x 3 1<br />

<br />

<br />

<br />

<br />

1 1<br />

<br />

x 2 3<br />

4 <br />

2 6<br />

2<br />

1<br />

<br />

2<br />

4<br />

2<br />

x x 3<br />

without surd<br />

x<br />

<br />

1<br />

2<br />

x<br />

1<br />

1<br />

3


x<br />

2<br />

3<br />

x<br />

<br />

<br />

x<br />

<br />

<br />

<br />

=<br />

1<br />

5<br />

6<br />

2<br />

3<br />

<br />

<br />

x<br />

<br />

<br />

<br />

<br />

x<br />

<br />

<br />

2<br />

3<br />

<br />

1<br />

<br />

<br />

<br />

5<br />

6<br />

6<br />

5<br />

<br />

<br />

<br />

<br />

<br />

1<br />

<br />

<br />

<br />

x<br />

1.24 Rationalization of Surds<br />

Rationalization is a process of removal of surds<br />

from denominator.<br />

Example 1: Simplify<br />

1 1<br />

(a) <br />

3 5 3 5 3<br />

(b)<br />

3 <br />

3 <br />

Solution:<br />

2<br />

2<br />

(a)<br />

3<br />

5 3<br />

3<br />

5 3 3<br />

5 3<br />

3 5 <br />

9<br />

3<br />

3<br />

<br />

5 3<br />

5 3 5 9<br />

5 <br />

42<br />

3<br />

<br />

5 3<br />

4<br />

6 5 2 3 21 5 63<br />

84<br />

63 2 3 15<br />

84<br />

<br />

3<br />

4<br />

<br />

3<br />

42<br />

<br />

5<br />

5 5<br />

28<br />

3 2 3 2 <br />

(b)<br />

3 2 3 2<br />

<br />

6<br />

5<br />

6<br />

5<br />

<br />

<br />

5<br />

<br />

3 2 2<br />

<br />

3 2<br />

<br />

5 3<br />

3<br />

5 3<br />

<br />

6<br />

5 2<br />

6<br />

Example 2: Simplify<br />

Solution:<br />

3<br />

3<br />

2 2<br />

2 2<br />

3<br />

2 2 33<br />

2 2 3<br />

3<br />

2 2 33<br />

2 2 3<br />

9<br />

<br />

2<br />

6 6 6<br />

9 4<br />

2<br />

30 12<br />

6<br />

<br />

18 12<br />

6 4<br />

3<br />

30 12<br />

<br />

6<br />

Example 3: Simplify<br />

Solution:<br />

<br />

<br />

<br />

=<br />

1<br />

1<br />

2 <br />

2 <br />

5<br />

5<br />

1<br />

1<br />

2 5 2 5<br />

2 5 2 5<br />

2 <br />

5 2 <br />

2 <br />

6 <br />

2 5 2 5<br />

2 3<br />

2 5 3<br />

3<br />

2<br />

3<br />

<br />

5<br />

3<br />

10 <br />

6 3<br />

Example 4: (a) Express<br />

3<br />

3<br />

3<br />

6<br />

5 2<br />

2 <br />

2 <br />

5<br />

10 5<br />

6<br />

1<br />

3<br />

5<br />

3 10<br />

a b c, where a , b and c are rational.<br />

32<br />

3<br />

(b)<br />

5 3<br />

a b<br />

c<br />

Solution:<br />

make it in form<br />

1<br />

3 1<br />

3 6<br />

3 10<br />

(a) <br />

6 3 10<br />

6<br />

3 10<br />

6<br />

3<br />

6<br />

in the form


6<br />

=<br />

3 10<br />

6310<br />

6<br />

2<br />

16 3 28<br />

=<br />

108 100<br />

16 3 28<br />

=<br />

8<br />

7<br />

= 2 3<br />

2<br />

310<br />

32<br />

3<br />

(b)<br />

5 3<br />

32<br />

3 5 3<br />

=<br />

5 3 5 3<br />

2<br />

3 3 5 3<br />

=<br />

5 2 15 15 3 2<br />

2<br />

=<br />

3<br />

15 2 3<br />

5 3<br />

2<br />

5 3<br />

6 2 15 3 5 3 3<br />

=<br />

2<br />

3<br />

= 3<br />

15 5 3<br />

2<br />

Example 5: Simplify<br />

1 1 1<br />

(a) <br />

1 x 1<br />

x 1<br />

x<br />

(b)<br />

<br />

<br />

<br />

x <br />

Solution:<br />

(a)<br />

1 <br />

<br />

x <br />

11<br />

x <br />

1<br />

x 1<br />

x <br />

1<br />

=<br />

1<br />

x<br />

x<br />

<br />

1<br />

<br />

1<br />

x 1<br />

1 <br />

<br />

x <br />

3<br />

3<br />

11<br />

x 1<br />

<br />

1<br />

x 1<br />

x 1<br />

x<br />

x<br />

x<br />

1<br />

<br />

1<br />

x<br />

1<br />

x 1<br />

x 1<br />

=<br />

=<br />

<br />

<br />

x 1<br />

3 3<br />

<br />

x 1<br />

1 x<br />

(b)<br />

<br />

<br />

<br />

<br />

<br />

<br />

x <br />

x<br />

<br />

1 <br />

<br />

x <br />

x 1<br />

x <br />

<br />

x <br />

<br />

2<br />

2<br />

x<br />

x<br />

x<br />

x 1<br />

x 1<br />

<br />

x<br />

<br />

x x <br />

x<br />

x x x 1<br />

<br />

x<br />

1 1<br />

x x <br />

x x<br />

=<br />

x <br />

x <br />

x<br />

x<br />

1<br />

<br />

x<br />

1 <br />

<br />

x <br />

x<br />

1<br />

1.25 Equations with Surds<br />

They are solved by isolating surds on one side<br />

of the equation, then squaring throughout until<br />

surd has disappeared.<br />

However this method introduces extra solutions<br />

because a negative sign when squared is equal<br />

to a positive when squared i.e.<br />

2 2<br />

x <br />

x x.<br />

Hence solution of the equation with surds<br />

should be checked by substituting the solutions<br />

got in the original equation before giving final<br />

solution.<br />

NB: This part should be learnt after the<br />

quadratic equation is taught.<br />

Example 1Simplify 14 4 6<br />

Solution<br />

Suppose 14 4 6 a 2 b <br />

Squaring both sides of the equation we have<br />

2<br />

14 4 6 a 2 b 2<br />

4 6 a 4b<br />

4 ab<br />

14 <br />

By comparing R.H.S and L.H.S.<br />

14 a 4b……………………..(i)<br />

ab 6……………………………(ii)<br />

a 14 4b Substituting for a<br />

14<br />

4b<br />

b <br />

6<br />

7b<br />

2b 2 3<br />

2b<br />

2 7b 3 0


2<br />

7 7 43<br />

2<br />

b <br />

4<br />

7 5 1<br />

= 3 or<br />

4 2<br />

When b 3<br />

a 14<br />

43 2<br />

1<br />

When b <br />

2<br />

1<br />

a 14 4<br />

12<br />

2<br />

When a 2 b 3<br />

2 2 3 2<br />

14 4 6 <br />

∴ 14 4 6 2 2 3 does not satisfy<br />

1<br />

When a 12<br />

and b <br />

2<br />

14 4<br />

<br />

<br />

6 <br />

<br />

2<br />

12 2<br />

3 <br />

2<br />

1<br />

2<br />

<br />

<br />

<br />

14<br />

4 6 2 3 2<br />

Example 2:<br />

equation<br />

2<br />

satisfies<br />

Solve for x in the following<br />

(i) x 1 3<br />

(ii)<br />

Solution:<br />

(i) x 1 3<br />

2 2<br />

x 1 3<br />

x 1 9<br />

x 8<br />

(ii)<br />

2 x 5 1<br />

x<br />

(iii) 3x<br />

5 x 3<br />

(iv) 3 x x 5 3<br />

2 x 5 1<br />

x<br />

2<br />

2x<br />

5 x<br />

1 2<br />

2x<br />

5 x<br />

5 x<br />

x<br />

2<br />

2 <br />

4<br />

x 2<br />

1<br />

2<br />

2x<br />

1<br />

When x 2<br />

4 5 1<br />

2<br />

3 1 2 .Satisfies<br />

When x 2<br />

4 5 1<br />

2<br />

1<br />

1 2<br />

Does not satisfy<br />

Hence x 2<br />

(iii) 3x<br />

5 x 3<br />

3 x 5 3 x<br />

2<br />

3x<br />

5 3<br />

x 2<br />

x<br />

2<br />

9x 4 0<br />

2<br />

9 9 41<br />

4<br />

x <br />

2<br />

9 8.0623<br />

<br />

2<br />

x 8.5311 or 0.4689<br />

When x 8. 5311<br />

3<br />

8.5311 5 8.5311 3<br />

Does not satisfy.<br />

When x 0. 4689<br />

3<br />

0.4689 5 0.4689 3<br />

3 3Satisfies<br />

Hence x = 0.4689<br />

(iv) 3 x x 5 3<br />

2 2<br />

3 x x 5 3<br />

x<br />

5 9<br />

9x<br />

6 x x 5 <br />

10 x 5 6 xx<br />

5 9<br />

6 x x 5 10<br />

x 4<br />

2<br />

6 x x 5 10x<br />

4 2<br />

2<br />

36 x x<br />

5 100 x 80 x 16<br />

9x<br />

2<br />

45x<br />

25x<br />

2<br />

16x<br />

2 65x 4 0<br />

65 <br />

x <br />

2<br />

20x<br />

4<br />

65 416<br />

4<br />

32


65 63<br />

x <br />

32<br />

= 4 or 0. 0625<br />

When x 4<br />

3 4 4 5 3<br />

6 9 3<br />

3 =3<br />

Since the LHS = RHS.<br />

Hence it satisfies the equation.<br />

When x 0. 0625<br />

3 0.0625 0.0625 5 3<br />

0.75 – 2.25 ≠ 3Does not satisfy<br />

Hence x 4 .<br />

Example 3 Solve the following equation,<br />

verify your solutions in each case.<br />

(i) 2x<br />

1<br />

x x 3<br />

(ii)<br />

Solution:<br />

x 6 4 x 1<br />

3x<br />

(i) 2x<br />

1<br />

x x 3<br />

2x<br />

1<br />

x 2 x 3 2<br />

x 1<br />

x 2 x 2x<br />

1<br />

x<br />

3x<br />

1 x<br />

3 2 x2x<br />

1<br />

2 3<br />

2<br />

2x<br />

4 2 2 x2x<br />

1 <br />

4x<br />

2 16<br />

x 16<br />

4x<br />

2x<br />

1<br />

2<br />

4x 16x<br />

16<br />

8x<br />

4x<br />

4x<br />

2 12x 16<br />

0<br />

12 <br />

x <br />

12<br />

12 20<br />

x <br />

8<br />

x 4 or -1<br />

2<br />

<br />

2<br />

4<br />

416<br />

8<br />

When x = -1, 1<br />

1<br />

4<br />

Does not satisfy<br />

When x 4<br />

8 1 – 4 = 4 3<br />

3 – 2 = 1 Satisfies<br />

x 4<br />

<br />

<br />

(ii)<br />

x 6 4 x 1<br />

3x<br />

2<br />

x 6 4 x 1<br />

3x<br />

2<br />

x 6<br />

4<br />

x<br />

2 x<br />

64<br />

x 1<br />

3x<br />

2 x 64<br />

x 10<br />

1<br />

3x<br />

2 x<br />

64<br />

x 3x<br />

9<br />

2 x<br />

64<br />

x 2 <br />

3x<br />

9 2<br />

2<br />

4x 64<br />

x 9x<br />

81 54x<br />

2<br />

2<br />

x x 24 6x<br />

9x<br />

54 x 81<br />

4 4<br />

8x<br />

4x<br />

2<br />

96 9x<br />

13x<br />

2 62 x 15<br />

0<br />

2<br />

54x<br />

81<br />

62 62 13<br />

415<br />

x <br />

213<br />

62 68<br />

=<br />

26<br />

6<br />

= or 5<br />

26<br />

3<br />

= or 5<br />

13<br />

When x 5<br />

we will have<br />

2<br />

<br />

5 6 4<br />

5 1<br />

15<br />

1 9 16<br />

13<br />

4 it Satisfies<br />

3<br />

When x we will have<br />

13<br />

<br />

<br />

<br />

3<br />

13<br />

<br />

6<br />

<br />

<br />

81 <br />

<br />

13<br />

<br />

9<br />

<br />

<br />

4<br />

<br />

<br />

49 <br />

<br />

13 <br />

7<br />

<br />

3<br />

13<br />

2<br />

<br />

<br />

<br />

<br />

<br />

<br />

4<br />

13<br />

13 13 13<br />

16 2 <br />

13 13<br />

16 2 Does not satisfy<br />

Hence x = -5 only.<br />

<br />

<br />

<br />

<br />

1<br />

<br />

<br />

3<br />

13


Example 4: Solve the following equation<br />

3 x 7<br />

x 16<br />

2x<br />

Solution:<br />

Squaring both sides we have<br />

3 x<br />

2 3<br />

x7<br />

x 7<br />

x 16 2x<br />

2 3<br />

x7<br />

x 10<br />

16<br />

2x<br />

2 3<br />

x 7<br />

x 2x<br />

6<br />

Squaring both sides we have;<br />

2<br />

3<br />

x7<br />

x 36 24x<br />

4<br />

4 x<br />

2x<br />

x<br />

2<br />

2<br />

10<br />

x 12<br />

0<br />

5x<br />

6 0<br />

x 6<br />

or 1<br />

When x 6<br />

is substituted back in the above<br />

equation we have<br />

3 6 7<br />

6 16<br />

12<br />

3 1 2<br />

Hence x = -6 satisfies<br />

When x = 1 is substituted back in the above<br />

equation we have<br />

3 1 7<br />

1 16<br />

21<br />

2 8 18<br />

2 2 2 3 2<br />

2<br />

3 2<br />

1 <br />

<br />

Dividing through by<br />

2<br />

<br />

1 3does not satisfy<br />

Hence the root is x = -6<br />

Example 5 Find the square root of<br />

(i) 5 + 2<br />

Solution:<br />

6 (ii) 18 – 12 2<br />

<br />

(i) Let the square root of<br />

a <br />

b<br />

5<br />

2 6 a b<br />

Squaring both sides we have<br />

5 2<br />

6<br />

5 2 be<br />

2<br />

6 a b a b 2 ab<br />

Comparing parts we have<br />

5 a b ………………………(i) and<br />

6 ab…………………………(ii)<br />

From equation b 5 a and substituting b in<br />

(ii)<br />

2<br />

We have 6 a5<br />

a 5a<br />

a<br />

a<br />

2<br />

5a<br />

6 0<br />

a<br />

2 a<br />

3<br />

0<br />

a 2 or 3<br />

When b = 3 then a = 2 and<br />

When a = 3 then b = 2<br />

Hence square root of 5 2 6 is 3 2<br />

(ii) Let square root of 18 12 2 be x y<br />

18<br />

12<br />

2 x y<br />

Squaring both sides<br />

18 12<br />

18 2<br />

2<br />

2 x y x y 2 xy<br />

2<br />

6<br />

2 x y 2 xy`<br />

Comparing parts we have<br />

18 x y ……………………...(i) and<br />

72 xy ………………………...(ii)<br />

From (i)<br />

(ii)<br />

y 18 x and substituting for y in<br />

We have <br />

2<br />

x<br />

2<br />

72 x 18 x 18x<br />

x<br />

18x 72 0<br />

2<br />

18 18 41<br />

72<br />

x <br />

2<br />

18 6<br />

x <br />

2<br />

18 6 18 6<br />

= or<br />

2 2<br />

= 12 or 6<br />

Hence square root of<br />

18 12 2 is 12 <br />

6<br />

Exercise 1 (b)<br />

1. Find the square root of:<br />

i) 14 6 5 , ii) 13 2 42


3 <br />

2. express (i)<br />

3 <br />

form<br />

p q<br />

r<br />

2<br />

2<br />

and ii)<br />

<br />

<br />

<br />

3 <br />

3 <br />

2 <br />

<br />

2<br />

<br />

3. Express the following without a surd in<br />

the denominator.<br />

2 3<br />

i)<br />

<br />

1<br />

3 3 2 3<br />

1<br />

1<br />

ii)<br />

<br />

1<br />

x 1<br />

1<br />

x 1<br />

<br />

4. Rationalize the denominators and<br />

simplify as far as possible the following.<br />

1<br />

i)<br />

2 5 5 1<br />

3 2 4<br />

ii)<br />

3 2 2<br />

5.Given that to six significant figures.<br />

6 2.44949 , evaluate as accurately as<br />

possible 1<br />

, justify the accuracy<br />

2<br />

3 6<br />

you have given.<br />

6. Solve for x in the following equations.<br />

i)<br />

ii)<br />

7. Rationalize the surd<br />

8. Solve:<br />

i)<br />

ii)<br />

iii)<br />

iv)<br />

2<br />

2<br />

9. solve the following:<br />

i)<br />

ii)<br />

iii)<br />

2<br />

x<br />

6 4<br />

x 1<br />

3x<br />

3x<br />

4 2 x<br />

2<br />

3<br />

1<br />

5 <br />

1<br />

<br />

3 3 <br />

x<br />

2 x<br />

3<br />

1<br />

x 4 4 x<br />

1<br />

4x<br />

2 x<br />

1 7<br />

5x<br />

x<br />

2 3x<br />

4 2<br />

6<br />

x 1<br />

x 5<br />

3x<br />

x<br />

1 3 2x<br />

5 x<br />

2<br />

4x<br />

13 x<br />

1 12<br />

x<br />

10. Simplify the following expressions<br />

2<br />

5<br />

in<br />

0<br />

i.<br />

ii.<br />

iii.<br />

48 <br />

28<br />

112<br />

72 <br />

243<br />

8 <br />

98<br />

11. Solve the equation<br />

x 3 x 2x<br />

1<br />

<br />

1<br />

2 1<br />

2<br />

12. Express in the form<br />

5 3 5 3<br />

a b c d , hence state values of a, b, c<br />

and.<br />

1.30LOGARITHM:<br />

Definition: Logarithm is the power or index to<br />

which a number (base) is raised to produce a<br />

given number.<br />

Example 1: Logarithm of 100 to base 10 is 2<br />

and mathematically can be written as<br />

log 10<br />

100 2 .<br />

Which means 100 = 10 2 = 10 10<br />

Example 2: log 2 8 3<br />

8 = 2 3 = 2<br />

22<br />

Example 3: log 5 625 = 4<br />

625 = 5 4 = 5<br />

555<br />

Example 4: log 10<br />

1000 3<br />

1000 = 10 3 = 10 10 10<br />

Example 5: log 10 2 0. 3010<br />

0.3010<br />

2 = 10<br />

1.31Simple Elementary Rules for<br />

Logarithms<br />

1. log ab log a log b<br />

x<br />

a <br />

2. log x<br />

log x a log x b<br />

b <br />

n<br />

3. log a nlog<br />

a<br />

4.<br />

5.<br />

x<br />

log<br />

log x P <br />

log<br />

log a <br />

x<br />

1<br />

log<br />

c<br />

a<br />

c<br />

x<br />

x<br />

P<br />

x<br />

n 1<br />

6. log x m log x m<br />

n<br />

x<br />

x


1<br />

7. log P t x t<br />

log P<br />

8. log x 1<br />

x<br />

9. log 1<br />

0<br />

x<br />

10. log y does not exist<br />

x<br />

1.32Proving the laws of logarithms<br />

Example 1. To prove that<br />

log a b log ab log a log<br />

c<br />

x<br />

b<br />

Solution; If<br />

Given that<br />

log<br />

And given that<br />

x<br />

x<br />

log c a <br />

x<br />

x<br />

a x and log<br />

x<br />

log c b <br />

y<br />

x<br />

a c<br />

y<br />

x<br />

x<br />

y<br />

b c<br />

b y<br />

Then a b c c<br />

Using the standard rules of indices we have<br />

x<br />

y<br />

ab c<br />

And hence<br />

log<br />

c<br />

ab log<br />

c<br />

c<br />

x<br />

y<br />

Using the standard rules of logarithms<br />

log ab x ylog<br />

<br />

c<br />

x y<br />

<br />

c<br />

c<br />

y<br />

x 1<br />

log<br />

c<br />

ab log ab log a log b<br />

Example 2.Prove that<br />

a <br />

log<br />

c log<br />

c<br />

a log<br />

b <br />

c<br />

c<br />

b .<br />

Solution.If c x a then log a x and if c y b<br />

then<br />

log<br />

c<br />

b y<br />

Using the standard rules of indices we have<br />

x<br />

a c x<br />

y<br />

c<br />

y<br />

b c<br />

a <br />

x<br />

log<br />

c log<br />

c<br />

c<br />

b <br />

x log a , y log<br />

log<br />

c<br />

c<br />

a <br />

log<br />

b <br />

c<br />

y<br />

c<br />

<br />

b<br />

a log<br />

Example 3.Prove that<br />

c<br />

x<br />

y1<br />

x y<br />

c<br />

b<br />

n<br />

log a nlog<br />

c<br />

c<br />

c<br />

But<br />

a<br />

Solution Let<br />

Then<br />

log<br />

c<br />

x log c<br />

n<br />

a c<br />

nx<br />

;<br />

Taking log<br />

But<br />

x<br />

log<br />

x<br />

a c<br />

a log<br />

a<br />

c<br />

log c<br />

c<br />

a<br />

n<br />

a<br />

nx<br />

a<br />

nlog<br />

c<br />

c<br />

x<br />

nxlog<br />

c<br />

a<br />

Example 4. Prove that<br />

Solution. Let<br />

t<br />

P x<br />

log P <br />

c<br />

log<br />

x<br />

t log<br />

c<br />

log<br />

x<br />

x<br />

log<br />

t <br />

log<br />

xlog<br />

c<br />

P t<br />

c<br />

c<br />

But t log x<br />

log c P<br />

P <br />

log x<br />

c<br />

P<br />

x<br />

P<br />

Example 5. Prove that<br />

Solution. Let<br />

taking<br />

log<br />

a<br />

a<br />

log<br />

1 t log<br />

1<br />

t <br />

log<br />

log<br />

x<br />

x<br />

a t<br />

c<br />

c nx<br />

c x<br />

log<br />

log x P <br />

log<br />

log a <br />

x<br />

1<br />

log<br />

a<br />

c<br />

c<br />

x<br />

P<br />

x<br />

t<br />

a x<br />

log a on both sides we have<br />

log<br />

x<br />

a<br />

a <br />

x<br />

a<br />

t<br />

x<br />

a<br />

1<br />

log<br />

Example 6: Prove that<br />

Solution: But<br />

n<br />

x<br />

a<br />

x<br />

log m log<br />

Let m = x y<br />

n 1<br />

log x m log<br />

n<br />

1<br />

m n<br />

x<br />

x<br />

m


log<br />

log<br />

then<br />

log<br />

m<br />

x<br />

m<br />

x<br />

1<br />

n<br />

m<br />

x<br />

y log<br />

y<br />

m<br />

x<br />

1<br />

y log<br />

n<br />

1<br />

y<br />

n<br />

But y log<br />

n 1<br />

log<br />

x m log x m<br />

n<br />

1.33 Change of Base in the logarithm<br />

When solving equation involving more than<br />

one base we must first change those bases to<br />

one base only then we can solve the equation<br />

when it is in one base only by using<br />

a log<br />

log b <br />

log<br />

a<br />

c<br />

b<br />

c<br />

1<br />

n<br />

m<br />

x<br />

x<br />

x<br />

1<br />

y<br />

n<br />

Example 1. Solve log 5 x log x 5 2. 5<br />

Solution:<br />

Let log 5 n<br />

x<br />

n<br />

5 x<br />

log 5 5 log<br />

log<br />

n <br />

log<br />

5<br />

5<br />

n 5<br />

5<br />

<br />

x<br />

x<br />

1<br />

log<br />

5<br />

x<br />

Then log 5 x log x 5 2. 5 becomes<br />

1 5<br />

log 5 x <br />

log x<br />

2<br />

<br />

log x<br />

log<br />

5<br />

<br />

5<br />

2<br />

5<br />

<br />

1<br />

x<br />

5<br />

2<br />

5<br />

5 log<br />

2<br />

2<br />

log<br />

1 x<br />

x 5<br />

2<br />

log<br />

2 5 x<br />

2 5 log<br />

Let log 5 x y<br />

2y 2 2 5y<br />

x 5<br />

2y<br />

2 5y 2 0<br />

x<br />

x<br />

5 <br />

y <br />

2<br />

5 4<br />

2<br />

2<br />

2<br />

2<br />

5 <br />

<br />

5 9 5 3 5 - 3<br />

y or <br />

4 4 4<br />

1<br />

Since y log 5 x 2 or<br />

2<br />

The log 5 x 2<br />

x 5 2 25<br />

1<br />

or log 5 x <br />

2<br />

1<br />

<br />

x 5 2 5<br />

x 25 or 5<br />

Example 2. Solve the equations<br />

(i) 0.3 x1 0.<br />

7 x<br />

x<br />

(ii) 0.1 0.2 5<br />

(iii)<br />

Solution:<br />

2<br />

3 x 1 2<br />

x<br />

Inx<br />

3<br />

(iv) e Ine 8<br />

(i) 0.3 x1 0.<br />

7 x<br />

x<br />

log<br />

0.3 log 0. 7<br />

<br />

1 10 x 10<br />

3 7<br />

x 1log<br />

10 xlog<br />

10<br />

10 10<br />

x log 3 log 10 x log<br />

x<br />

2<br />

25 16<br />

4<br />

1<br />

or<br />

2<br />

1 10 10 10 7 log 10 10<br />

x<br />

1 0.4771<br />

1 x0.8451<br />

1<br />

x 1 0.5225 0.<br />

1545x<br />

0.5225<br />

x 0.5225 0.<br />

1545 x<br />

0.5225<br />

0.1545<br />

x 0. 5225 x<br />

0.5225<br />

0.3684 x<br />

0.5225<br />

x 1.4184<br />

0.3684<br />

x<br />

(ii) 0.1 0.2 5<br />

x<br />

1 2 <br />

<br />

10<br />

10<br />

<br />

1<br />

x log 10 5log 10<br />

10<br />

5<br />

2<br />

10


log 101<br />

log 10 10 5log<br />

10 2 log 10 10<br />

0 1 50.3010<br />

1<br />

x<br />

x<br />

x 3.4950<br />

x 3.495<br />

3 x 1 2<br />

x<br />

(iii) 2 3<br />

x 1<br />

log 2 x<br />

2log<br />

3<br />

3 10 10<br />

log<br />

log<br />

0.4771<br />

<br />

0.3010<br />

10 <br />

3x<br />

1 x<br />

2 x<br />

2 <br />

<br />

10<br />

3<br />

2<br />

3x<br />

1 x<br />

21.5850<br />

<br />

3x<br />

11.585x<br />

3.1701<br />

3x<br />

1.585x<br />

3.1701 1<br />

1.415<br />

x 2.1701<br />

2.1701<br />

x <br />

1.415<br />

x 1.5336<br />

Inx<br />

(iv) e Ine 8<br />

x<br />

But<br />

e Inx x and<br />

Ine x x<br />

x x 8<br />

2x<br />

8<br />

x 4<br />

Example 3. Solve the simultaneous equations<br />

log b a 2log a b 3 and log 9 a log 9 b 3<br />

Solution:<br />

From log a 2log b 3<br />

log<br />

b<br />

b<br />

a<br />

a log b 2 3<br />

a<br />

********************************<br />

Side work;<br />

Let<br />

2 t<br />

b a<br />

log<br />

b<br />

2log<br />

b<br />

b<br />

log<br />

2<br />

t <br />

a<br />

b<br />

2<br />

t log<br />

b t log<br />

2 t log<br />

2<br />

log<br />

b<br />

t<br />

b<br />

a<br />

b<br />

b<br />

a<br />

a<br />

a<br />

*****************************<br />

log<br />

2<br />

a <br />

log<br />

b<br />

3<br />

a<br />

b log<br />

a 2 3log<br />

a<br />

2<br />

log<br />

a 3log<br />

a<br />

2 0<br />

Let<br />

2<br />

b<br />

log<br />

b<br />

a m<br />

m 3m 2 0<br />

m 1 m 2 <br />

b<br />

0<br />

m 1 or 2<br />

log a 1<br />

or log<br />

b<br />

1<br />

a b<br />

or<br />

b<br />

a b<br />

2<br />

a 2<br />

a b or a b …………….(i)<br />

From log 9 a log 9 b 3<br />

log 9 ab 3<br />

ab 9 3 729 ……………..(ii)<br />

When a = b then b 2 = 9 3<br />

b <br />

9 3 27<br />

2<br />

Therefore when a = 27 then b = 27 and when a<br />

= -27, b = -27<br />

When a = b 2 then substituting for a in equation<br />

(ii)b 3 = 9 3 , b= 9<br />

When b = 9 then a = 81<br />

Example 4. Given that log 2 x 2log 4 y 4,<br />

Show that xy 16 . Solve simultaneous<br />

equations.<br />

log 10 x y 1<br />

And log 2 x 2log 4 y 4<br />

Solution:<br />

log x 2log 4 y<br />

2 <br />

log 2 x log 4 y 4<br />

Let<br />

y<br />

2<br />

log 4<br />

t<br />

y<br />

2<br />

4 2<br />

2<br />

t<br />

2t<br />

2 2t<br />

log 2 y log 2 2<br />

2log<br />

2 y 2t<br />

log 2<br />

t log 2 y<br />

log 2 x log 4 y 4<br />

Becomes log 2 x log 2 y 4<br />

log 2 xy 4<br />

2<br />

2<br />

b<br />

4<br />

2<br />

b


4<br />

xy 2 = 16<br />

From x<br />

y 1<br />

log 10<br />

1<br />

x y 10<br />

x y<br />

10 …………….(i)<br />

xy 16 …………………(ii)<br />

From (i)<br />

x 10 y<br />

<br />

Substituting for x in equation (ii)<br />

10<br />

y y <br />

10 y y 2 16<br />

y<br />

y<br />

2<br />

2<br />

<br />

16<br />

10<br />

y 16<br />

0<br />

10<br />

y 16<br />

0<br />

10 <br />

y <br />

10 <br />

<br />

10 <br />

<br />

2<br />

10 6<br />

<br />

2<br />

16<br />

or<br />

2<br />

2<br />

10<br />

4 116<br />

2 1<br />

100 64<br />

2<br />

36<br />

4<br />

2<br />

= 8 or 2<br />

When y = 8, x = 2 from x = 10 – y<br />

y = 2, x = 8<br />

Example 5 Solve the equation<br />

3<br />

Solution. x 1<br />

3x<br />

2 22<br />

<br />

22<br />

3 x<br />

and 3<br />

x<br />

x2 2<br />

3 3<br />

3 x 2<br />

3 3 x<br />

2 2<br />

2<br />

3x<br />

3<br />

x<br />

2<br />

3<br />

<br />

2<br />

2<br />

3 x 1 2<br />

x<br />

3x<br />

2 <br />

<br />

2<br />

<br />

3<br />

log<br />

<br />

10 log<br />

x<br />

10<br />

3 2 <br />

3x<br />

log 10 2 xlog<br />

10 3 2log 10 3 log 10 2<br />

0.3010<br />

x0.4771<br />

20.4771<br />

0. 3010<br />

3x<br />

<br />

0.9030<br />

x 0.4771 x 0.9542 0.3010<br />

3<br />

0.4260<br />

x 0.6532<br />

x 1.5333<br />

3 x 1 2<br />

3<br />

x<br />

3x<br />

1<br />

10 2<br />

<br />

x<br />

log 10 3<br />

2<br />

3x<br />

1<br />

log 10 2 x 2 log 10<br />

Alternative 1 2<br />

log<br />

3<br />

3x<br />

1log<br />

10 2 x<br />

2log<br />

10 3 0<br />

3x<br />

1 0.3010 x<br />

20.4771<br />

0<br />

0.9030<br />

x 0.3010 0.4771 x 0.9542 0<br />

0.426<br />

x 0.6532<br />

x 1.5333<br />

Example 6.Find the values of x and y if<br />

x4y<br />

5 5<br />

0<br />

and 3<br />

5x2y<br />

3<br />

x4<br />

y<br />

Solution.From 5 5<br />

sides<br />

0<br />

2<br />

We have x<br />

ylog<br />

5 0log 5<br />

4 5 5<br />

taking log<br />

5<br />

on both<br />

x 4y<br />

0 ………………………….(i)<br />

5x2y<br />

2<br />

And from 3 3 taking log<br />

3<br />

on both<br />

sides<br />

5x<br />

2ylog<br />

3<br />

3 2log<br />

3<br />

3<br />

5x<br />

2y<br />

2…………………..(ii)<br />

From i – ii, x + 4y = 0<br />

10x + 4y = - 4<br />

- 9x 4<br />

- 4<br />

x <br />

9<br />

x<br />

From i, y <br />

4<br />

4<br />

y 4<br />

9<br />

<br />

1<br />

9<br />

Exercise 1(c)<br />

1. Solve the simultaneous equations<br />

1<br />

log x y and 1<br />

log 5 x log y 5<br />

2<br />

2. Solve for z in the equation<br />

log 46<br />

z log 2 z<br />

3. Solve for x in equations<br />

(i) log 5 3log 5 x 2<br />

x .<br />

(ii) log 10 x log x 100 3


4. Solve the simultaneous equations:<br />

x<br />

y x<br />

y<br />

log 25 log 5 and x y 8<br />

5. Solve the following simultaneous<br />

equations:<br />

1 3<br />

log 2 x log 2 y 2log 4 6 and<br />

3<br />

128 2<br />

x log 8 y log 8<br />

x 3 4<br />

6. Solve log 4<br />

log x 2. 5<br />

2<br />

5<br />

p<br />

2<br />

p<br />

5<br />

16<br />

2 <br />

y<br />

7. Solve log log 3<br />

8<br />

y<br />

8. Solve log log 1<br />

x x x 5<br />

9. If log 3 log 9 log 27 . Find x.<br />

3<br />

10. Solve the simultaneous equations<br />

a<br />

b<br />

a<br />

ab<br />

log b 2log 3 and log 9 3<br />

2<br />

x<br />

11. Solve log4<br />

6log x 1<br />

0<br />

12. Solve the simultaneous equations<br />

xy<br />

x<br />

5<br />

log<br />

25<br />

1 and log 3log<br />

5<br />

1.34 Simplification of logarithmic<br />

expression.<br />

This is done by reducing logarithmic<br />

expression to its simplest form.<br />

Example 1.Use logarithm to evaluate<br />

(i) log 3<br />

18 and (ii) (1.75) 0.67<br />

Solution:<br />

(i) Let log 3 18 n<br />

n<br />

18 3<br />

log 1018<br />

nlog<br />

10<br />

3<br />

log<br />

n <br />

log<br />

10<br />

10<br />

18<br />

3<br />

1.2553<br />

<br />

0.4771<br />

= 2.6310<br />

log 3 18 2.6310<br />

0.67<br />

(ii) Let 1<br />

.75 t<br />

4<br />

y<br />

2<br />

2<br />

0.67 log 101.75<br />

log 10 t<br />

0.2430<br />

t<br />

0.67<br />

log 10<br />

10 0. 1628<br />

t or anti - log 0.1628 t =<br />

1.4548<br />

<br />

0.67<br />

1.75 1. 4548<br />

Example 2.If log 7 2 0.356 , log 7 3 0. 566<br />

Find the value of<br />

7 25 7 <br />

2log<br />

7 log 7<br />

2log 7<br />

<br />

15<br />

12 3 <br />

Solution<br />

log<br />

<br />

log 7<br />

<br />

7<br />

<br />

<br />

<br />

<br />

<br />

7<br />

15<br />

7<br />

15<br />

2<br />

25 <br />

log 7<br />

12<br />

<br />

<br />

<br />

2<br />

25<br />

<br />

12<br />

<br />

<br />

2<br />

7 <br />

<br />

3 <br />

<br />

2<br />

7 <br />

log 7<br />

<br />

3 <br />

<br />

<br />

<br />

<br />

49 25 9 <br />

= log 7 <br />

225 12 49 <br />

1 1 9 <br />

= log 7 <br />

9 12 1 <br />

1<br />

= log 7 log 7 1<br />

log 7 12<br />

12<br />

2<br />

= 0 log 3<br />

<br />

7 2<br />

= log 7 3<br />

2log 7 2<br />

= -0.566 – 2(0.356)<br />

= -1.278<br />

Example 3. (i) Express as a single logarithm<br />

1 <br />

4 <br />

2log<br />

x 3log x 4 log x<br />

<br />

2 <br />

5 <br />

(ii) Express as a single logarithm<br />

5<br />

log n x log nx<br />

1 log n x<br />

2<br />

Solution<br />

1 <br />

4 <br />

(b) (i) 2log<br />

x 3log x 4 log x<br />

<br />

2 <br />

5 <br />

log<br />

x<br />

1 <br />

<br />

2 <br />

2<br />

log<br />

x<br />

4<br />

3<br />

log<br />

x<br />

4 <br />

<br />

5


Using the rules of logarithm<br />

2<br />

<br />

<br />

1 3<br />

4<br />

2<br />

1 5<br />

log<br />

<br />

3<br />

x<br />

log x 4 log x 20<br />

4 4 4<br />

<br />

5 <br />

Therefore<br />

1 <br />

4 <br />

2log<br />

x<br />

3log x 4 log x<br />

log x 20<br />

2 <br />

5 <br />

5<br />

(ii) log n x log nx<br />

1 log n x<br />

2<br />

log x 2 log<br />

log<br />

n<br />

n<br />

x<br />

5<br />

5<br />

2<br />

2<br />

<br />

<br />

log x x 1<br />

n<br />

n<br />

<br />

x<br />

1 log x<br />

x 1<br />

log<br />

x<br />

<br />

n<br />

x<br />

5<br />

2<br />

n<br />

1<br />

<br />

x<br />

1x<br />

2<br />

100 a<br />

Example 4:Express log in terms of<br />

3<br />

b c<br />

log a,log<br />

b and log c<br />

Solution<br />

100 a<br />

log<br />

3<br />

2<br />

1<br />

2<br />

b c<br />

is common logarithm<br />

since no base is given we assume it<br />

2<br />

100 a<br />

log<br />

1<br />

log<br />

3 2<br />

b c<br />

1<br />

= 2 2log 10 a 3log 10 b log 10 c<br />

2<br />

Example 5:<br />

log<br />

3<br />

1 <br />

<br />

3 <br />

Solution<br />

3<br />

log<br />

2<br />

100 a<br />

3<br />

10 log 10 log 10 b log 10<br />

Simplify;<br />

3<br />

<br />

<br />

2<br />

1 <br />

243 log 327<br />

<br />

2 <br />

2<br />

log a 2<br />

3<br />

8<br />

3<br />

log<br />

3<br />

<br />

a<br />

3<br />

c<br />

1<br />

2<br />

<br />

1<br />

3<br />

1 <br />

log<br />

3<br />

<br />

3 <br />

log<br />

3<br />

1 <br />

243 log<br />

327<br />

<br />

2 <br />

log<br />

3<br />

2<br />

a<br />

<br />

2<br />

8<br />

3<br />

log<br />

3<br />

a<br />

3<br />

1<br />

8<br />

3 3<br />

1<br />

3<br />

5 <br />

log 3<br />

log 3 log 32<br />

<br />

3 3 3<br />

3log 3 a 1<br />

<br />

<br />

2log 3 a 2<br />

3 8<br />

<br />

3<br />

log 3 5log 3 log 32<br />

3 3log 3 1<br />

=<br />

3 3 3 a <br />

2log<br />

3 a 1<br />

3log<br />

=<br />

3 3 5log 3 3 4log 3 3 3log 3 a 1<br />

2 log a 1<br />

=<br />

=<br />

3 5 4 3log<br />

3<br />

a 1<br />

2 log a 1<br />

<br />

<br />

3<br />

3 3log 3 a<br />

2 log a 1<br />

3<br />

<br />

<br />

=<br />

3<br />

<br />

3<br />

2<br />

log<br />

log<br />

3<br />

3<br />

<br />

a<br />

a<br />

<br />

<br />

1<br />

1<br />

= 2<br />

3<br />

2<br />

Example 6: Find the value of 512 <br />

9<br />

2<br />

Solution.To find value of 512 <br />

9<br />

Let 9<br />

2<br />

x <br />

512 <br />

Take common log on both sides<br />

2<br />

log 10 x log 10 512<br />

9<br />

log 10 x 0.602060<br />

0.60206<br />

1<br />

<br />

x 10 hence 512<br />

9 <br />

4<br />

Exercise 1 (d)<br />

1<br />

2<br />

1<br />

4<br />

4 2<br />

1. Simplify 1<br />

log 10<br />

2log<br />

10 x<br />

2<br />

<br />

x <br />

2. Simplify<br />

log<br />

3<br />

1 <br />

<br />

3 <br />

3<br />

log<br />

3<br />

243 log<br />

log<br />

3<br />

3a<br />

2<br />

3<br />

55 <br />

log<br />

2 <br />

3<br />

3<br />

a 1


3. Express as a single logarithm<br />

1 <br />

4 <br />

2 log 3log 4 log<br />

7<br />

<br />

2 7 7<br />

5 <br />

4. Express as a single logarithm<br />

5<br />

log x log x 1<br />

log<br />

2 40 40 10<br />

5. Find the value of<br />

9 25 <br />

2log 7 log <br />

105<br />

7<br />

12 <br />

x<br />

If given that log<br />

log<br />

7<br />

2 0.356 and log 7 3 0.566<br />

1. Simplify log 7 98 log 7 30 log 7 75<br />

1.35 Solve equations involving logarithm<br />

Example 1If log a a 2 2 , find the value of<br />

a<br />

Solution<br />

2<br />

a 2 a<br />

a<br />

2<br />

a<br />

2a<br />

1<br />

a 2<br />

But<br />

a 2 0<br />

Hence<br />

1 cannot be base.<br />

a 2<br />

0<br />

or a 1<br />

Example 2. Solve the equations<br />

1 2<br />

(a) log 8 x log 8 <br />

6 3<br />

x<br />

2<br />

x 6<br />

(b) 3 3 0<br />

Solution:<br />

1<br />

(a) log x log 8<br />

6<br />

8 <br />

2<br />

3<br />

log x log 81<br />

log 8 6<br />

8 <br />

x<br />

log 8 <br />

6<br />

x<br />

<br />

6<br />

2<br />

3<br />

2<br />

3<br />

2<br />

3<br />

8 2<br />

3<br />

2<br />

3<br />

x<br />

<br />

6<br />

2<br />

3<br />

2<br />

2 3 2<br />

2<br />

x 2 6<br />

2<br />

x 24<br />

x<br />

6<br />

2<br />

x 6<br />

(b) 3 3 0<br />

3<br />

3<br />

3<br />

3<br />

x<br />

x<br />

6<br />

6<br />

Let<br />

3<br />

t<br />

6<br />

2<br />

3<br />

3<br />

<br />

3<br />

2<br />

x<br />

2<br />

x<br />

6<br />

3<br />

0<br />

6<br />

0<br />

3<br />

x 2<br />

3<br />

x 0<br />

3<br />

x 2<br />

<br />

3<br />

x 0<br />

3<br />

x t<br />

2<br />

t<br />

t 0<br />

6<br />

3 t<br />

<br />

t 3 6 OR t 0<br />

But<br />

3<br />

x<br />

x<br />

t 3<br />

3<br />

6<br />

Or 3<br />

x<br />

0<br />

Comparing powers<br />

x 6<br />

Or<br />

log<br />

x 6<br />

3 3 log 3 3<br />

x log 3 3 6log 3 3<br />

x 6<br />

Or<br />

log<br />

x 6<br />

10 3 log 10 3<br />

x log 10 3 6log 10 3<br />

6log<br />

10<br />

3<br />

x <br />

log 3<br />

x 6<br />

10<br />

Example 3Find x if log 8<br />

log 2 16 1<br />

Solution<br />

From log 8 log 2 16 1<br />

Let<br />

x<br />

x<br />

x<br />

log 2 16 t<br />

x<br />

2 t 2t<br />

x<br />

x<br />

16 <br />

log x 16 2t<br />

log x x 2t<br />

x


1<br />

t log x 16<br />

2<br />

1<br />

log x 8 log x 16 1<br />

2<br />

1<br />

log 8 log 16 2<br />

x x 1<br />

log<br />

log<br />

log<br />

x<br />

x<br />

x<br />

8 log<br />

x<br />

8 <br />

1<br />

4 <br />

2 1<br />

2 x x<br />

x 2<br />

1<br />

4 1<br />

Example 4 Solve the equation<br />

2 x 5<br />

4.381 8. 032<br />

x<br />

Solution<br />

2 5<br />

To solve equation x<br />

4.381<br />

x 8. 032<br />

2<br />

x 5<br />

log 10 4.381 log 108.<br />

032 x<br />

2x<br />

5log<br />

10 4.381 xlog<br />

10 8. 032<br />

2x<br />

50.641573<br />

x0.904824<br />

<br />

1.28314x-3.207865=0.904824x<br />

0.378322<br />

x 3.207865<br />

x 8.4779192<br />

x 8.5<br />

3<br />

10 10<br />

Example 5 log x 8<br />

Solution<br />

3<br />

10 log 10 x 8<br />

8<br />

log 10 x 0.008<br />

3<br />

10<br />

0.008<br />

x 10 = 1.0186<br />

Exercise 1(e)<br />

1. Solve simultaneous equations<br />

9<br />

log 25 xy and log 5 x 10<br />

log 5 y<br />

2<br />

3<br />

2. Given that y log a x and z log x a .<br />

Show that zy=3, hence find the values of<br />

y and z if<br />

log 3log<br />

a<br />

x<br />

log log<br />

a log 27<br />

a<br />

a<br />

2<br />

2<br />

3. Solve the equation log 4x<br />

log x <br />

4. Solve<br />

i)<br />

x<br />

a<br />

25 5<br />

3<br />

<br />

2<br />

x 1<br />

ln<br />

log e log 5<br />

ln x<br />

log 10e<br />

10<br />

10<br />

<br />

2 <br />

ii ) log 5 xlog<br />

5(<br />

) 1<br />

0<br />

x <br />

5. Solve the simultaneous equations<br />

2 1<br />

<br />

log 9xy <br />

and log 3 x log<br />

3 y 3<br />

2<br />

log 4 log 2 x log 2 log 4 x<br />

7. Solve for x in the equation<br />

log 14 x log 7 4x<br />

8. Solve the simultaneous equations<br />

log y 2log<br />

y log<br />

30<br />

x <br />

6. Solve for x if <br />

x 1 and 0<br />

2x<br />

1<br />

x<br />

9. Solve equation 5 4 215<br />

<br />

10. Solve the following simultaneous<br />

equations<br />

x<br />

y<br />

2 y<br />

i) 2 4 12 and32<br />

<br />

22<br />

<br />

16<br />

x<br />

y<br />

ii) 2 3 5 and 2<br />

3<br />

23<br />

x<br />

y<br />

x<br />

x 3<br />

y2<br />

x 2 y<br />

2<br />

iii) 2 3 44 and 2 3 221<br />

iv)log 4 x 2 – 6 log x 4 = 1<br />

1.36 Proof of identities involving<br />

logarithm<br />

Example 1 Given that log 4 p 2log 4 q 2<br />

Show that pq = 16.<br />

Hence solve for p and q in simultaneous<br />

equation<br />

log 10 p q 1<br />

And log 2 p 2log 4 q 4<br />

Solution:<br />

log 4 p 2log 16 q 2<br />

*******************************<br />

Side work;<br />

Let log 16 q t


log<br />

log<br />

4<br />

2<br />

q 16<br />

q t log<br />

2<br />

q<br />

4<br />

t<br />

4<br />

2t<br />

log<br />

2<br />

4<br />

4<br />

1<br />

t log 4 q<br />

2<br />

******************************<br />

1<br />

log 4 p 2<br />

log 4 q 2<br />

2<br />

log 4 p log 4 q 2<br />

log 4 pq 2<br />

pq 4 2 16 As required<br />

If y 1<br />

log 10<br />

x and xy = 16 ………..*<br />

p q 10 1 p q 10 .……………...**<br />

From ** q 10 p and substituting for y in<br />

equation * we have<br />

p 10 p <br />

p<br />

16<br />

2<br />

10<br />

p 16<br />

0<br />

10 <br />

p <br />

10 36<br />

<br />

2<br />

10 6<br />

<br />

2<br />

p = 8 or 2<br />

2<br />

10 416<br />

1<br />

21<br />

When p = 2 and q = 8 and when p = 8<br />

and q = 2<br />

Example 2 Prove that<br />

2 <br />

<br />

2y<br />

y<br />

2log <br />

a x y 2log a x log a 1<br />

2 <br />

<br />

x x <br />

Solution<br />

Let<br />

2 log<br />

t log<br />

a<br />

a<br />

x log<br />

a<br />

<br />

<br />

2y<br />

y<br />

1<br />

<br />

x x<br />

2<br />

2 <br />

x 2xy<br />

y<br />

x log a<br />

2<br />

x<br />

2<br />

2<br />

<br />

t<br />

<br />

2<br />

<br />

<br />

<br />

2<br />

2 <br />

x 2xy<br />

y<br />

t log a x <br />

2<br />

x<br />

From rules of logarithms<br />

t log<br />

Hence<br />

2log<br />

a<br />

a<br />

2<br />

<br />

<br />

<br />

x<br />

2 2xy<br />

y<br />

2 <br />

log x<br />

y 2<br />

a<br />

t 2 log<br />

<br />

x <br />

y<br />

x<br />

y 2log <br />

a x log a 1<br />

<br />

2<br />

x x <br />

<br />

2y<br />

Example 3 If<br />

a log b c,<br />

b log c a and c log a b .<br />

Prove that abc 1<br />

Solution<br />

Convert them to common base say base b Let<br />

t<br />

log c<br />

a t a c log a t log c<br />

log<br />

t <br />

log<br />

Let<br />

log<br />

b<br />

log<br />

b<br />

b<br />

a<br />

a<br />

c<br />

b n<br />

b n log<br />

b<br />

a<br />

b<br />

b a<br />

n<br />

b<br />

log<br />

n <br />

log<br />

Then , from abc log<br />

clog<br />

alog<br />

b<br />

a<br />

Substituting back into right side of equation we<br />

have<br />

log b a log b b<br />

abc log b c <br />

log c log a<br />

Hence abc 1<br />

b<br />

b<br />

b<br />

b<br />

b<br />

b<br />

a<br />

Example 4 Given that<br />

<br />

x <br />

1<br />

1<br />

log 1 a,<br />

log<br />

x 1<br />

b<br />

8 15 and<br />

<br />

1 <br />

log<br />

x 1<br />

c,<br />

Show that<br />

24 <br />

log<br />

x<br />

<br />

1 <br />

<br />

1<br />

80<br />

<br />

a b c<br />

<br />

Solution:<br />

From<br />

1 1 1 <br />

a b c log x 1<br />

log x 1<br />

log x 1<br />

<br />

8 15 24 <br />

c<br />

y<br />

2


99 16 25<br />

log x log x log x<br />

88 15 24<br />

Using the rules of logarithms<br />

9 15 24<br />

a b c log x <br />

8 16 25<br />

81 1 <br />

log x log x1<br />

<br />

80 80 <br />

Example 5 Given that<br />

4log<br />

64 N p and 2log 416N<br />

qand<br />

q p 8. Find N .<br />

Solution<br />

Let log<br />

log<br />

4 64<br />

N<br />

be<br />

4 4<br />

64 <br />

N t N 64<br />

4 3t<br />

log 4 N log 4 4<br />

4<br />

log 4 N 3t<br />

1 4<br />

t log 4 N log<br />

3<br />

t<br />

4<br />

N<br />

4<br />

3<br />

2<br />

16<br />

N log N 8<br />

log 3<br />

log<br />

16N<br />

N<br />

2<br />

N<br />

4<br />

N 3<br />

N<br />

N<br />

4 4 <br />

<br />

2<br />

16 N<br />

<br />

4<br />

<br />

N 3<br />

<br />

<br />

2<br />

4 <br />

4<br />

3<br />

2<br />

4<br />

2<br />

3<br />

2<br />

3<br />

N <br />

4<br />

4<br />

4<br />

4<br />

4<br />

4<br />

8<br />

4<br />

<br />

<br />

8<br />

4<br />

3<br />

4 6<br />

4 2 4 4096<br />

Example 6 Given that<br />

log y w a and log x w b<br />

t<br />

where w 1<br />

log<br />

Prove that<br />

n x log n y a b<br />

<br />

log n x log n y a b<br />

Verify your answer without using a calculator<br />

or tables when<br />

y 4,<br />

n 2, x 8 and w 4096<br />

Solution:<br />

log y w a<br />

(a)<br />

w y<br />

log<br />

n<br />

log<br />

a <br />

log<br />

w alog<br />

n<br />

n<br />

w<br />

y<br />

a b log<br />

<br />

a b log<br />

log<br />

n<br />

<br />

w<br />

<br />

<br />

n<br />

n<br />

1<br />

log<br />

n<br />

n<br />

w<br />

y<br />

a<br />

<br />

y<br />

y<br />

log<br />

<br />

log<br />

1<br />

log<br />

n<br />

n<br />

n<br />

w<br />

x<br />

log<br />

n<br />

log<br />

log<br />

log<br />

<br />

log<br />

<br />

log<br />

x <br />

n<br />

log<br />

x<br />

w b<br />

w x<br />

w blog<br />

n<br />

n<br />

n<br />

n<br />

w<br />

b<br />

x<br />

w log<br />

<br />

y log<br />

1<br />

w<br />

<br />

log n y<br />

n<br />

n<br />

n<br />

b<br />

x<br />

w<br />

x<br />

1<br />

log<br />

log <br />

= <br />

<br />

n x log n y<br />

log x y<br />

<br />

n log n<br />

log n y log n x log n y log n x <br />

log n x log n y<br />

<br />

log x log y<br />

n<br />

n<br />

Given y = 4, n = 2, x = 8, and w = 4096<br />

a b<br />

log 4 4096 6 ,log 8 4096 4<br />

6 4 log 2 8 log 4<br />

<br />

2<br />

6 4 log 8 log 4<br />

2 3 2<br />

<br />

10 3 2<br />

1 1 <br />

5 5<br />

Hence it is verified<br />

Example 7<br />

2<br />

Solution<br />

Let log y a<br />

a<br />

y x<br />

log<br />

y<br />

x<br />

y a log<br />

1 a log<br />

a <br />

1<br />

log<br />

y<br />

y<br />

y<br />

x<br />

2<br />

Prove that<br />

x<br />

x<br />

log y <br />

x<br />

1<br />

log<br />

y<br />

x<br />

n<br />

<br />

<br />

x


Hence log y <br />

Example 8<br />

x<br />

1<br />

log<br />

y<br />

x<br />

Show that<br />

Given that log 3 2 0. 631<br />

log<br />

6<br />

log 3 x<br />

x .<br />

1<br />

log 2<br />

Find without using tables or calculator log 6<br />

4<br />

correct to3 significant figures.<br />

Solution<br />

Let<br />

log 6 x t<br />

t<br />

x 6 2<br />

3<br />

<br />

t<br />

<br />

<br />

log 3 x t log 3 2 log 3 3<br />

log 3 x tlog<br />

3 2 1<br />

log 3 x<br />

t <br />

1<br />

log 2<br />

3<br />

Since t log 6 x<br />

log<br />

Hence<br />

3 x<br />

log 6 x <br />

1<br />

log 2<br />

log<br />

6<br />

<br />

log 3 4 2 log 3 2<br />

4 <br />

1<br />

log 2 1<br />

log 2<br />

<br />

3<br />

2 0.631<br />

0.774 (3sign figures)<br />

1<br />

0.631<br />

Example 9 Show that<br />

1<br />

log a nlog<br />

a m<br />

n<br />

m<br />

Solution<br />

Let log m x<br />

log<br />

log<br />

a<br />

n<br />

m<br />

a<br />

m<br />

1<br />

Hence<br />

n<br />

x<br />

m a<br />

m<br />

n<br />

<br />

a<br />

a<br />

nxlog<br />

nx<br />

=<br />

=<br />

log<br />

nx<br />

a<br />

a<br />

m<br />

nlog a<br />

log<br />

a<br />

n<br />

m<br />

a<br />

1<br />

m<br />

n<br />

log<br />

a<br />

3<br />

m<br />

3<br />

n<br />

nlog<br />

a<br />

m<br />

3<br />

<br />

Exercise 1 (f)<br />

1. Prove that log ab log a log b .<br />

Hence solve the equation<br />

x 3 x<br />

3<br />

log log 2<br />

4 4<br />

c<br />

2. Given that<br />

log 5 x p and log 30 x q .<br />

Show that<br />

i)<br />

ii)<br />

iii)<br />

log<br />

3log<br />

log<br />

5 log 6<br />

2<br />

x<br />

x log<br />

2<br />

p 6log<br />

4 log<br />

x<br />

4<br />

c<br />

q<br />

. Hence solve:<br />

p q<br />

8 2<br />

x<br />

2<br />

p<br />

3<br />

c<br />

2 7 0<br />

2 2<br />

3. If a b 23ab,<br />

show that<br />

a b <br />

log<br />

10<br />

a log<br />

10b<br />

2log<br />

10<br />

<br />

5 <br />

4. Prove that log ab log b + log c a.<br />

Hence solve the equation<br />

log<br />

4x<br />

3 3log<br />

4x<br />

3<br />

c<br />

5. Given that 3<br />

2log 2 log y , show<br />

c<br />

x 2<br />

2<br />

that y 8x , hence, find the root of the<br />

equation 2log x log 14x<br />

3<br />

3<br />

2 2<br />

<br />

6. Prove that if x log bc , y log ac and<br />

z log c ab then x y z 2 xyz<br />

n<br />

7. If y a bx is satisfied by the values<br />

x 1 2 4<br />

5 <br />

y 7 10 15 show that n log 2 <br />

3 <br />

and deduce the values a and b<br />

x y x y<br />

8. If 2 3 3 4 6, show by taking<br />

logarithm to base two and eliminating<br />

log 2<br />

3 that x y 2x<br />

3y<br />

a<br />

2 2 2 <br />

1<br />

9. (a) Show that log a x log c x<br />

log a<br />

(b) Prove that<br />

log y <br />

x<br />

c<br />

1<br />

log<br />

y<br />

x<br />

b


Miscellaneous Exercise 1<br />

1. (a) Rationalizing each fraction as a separate<br />

item<br />

5 5<br />

(i) <br />

5 3 5 3<br />

x<br />

(ii) 1<br />

x <br />

1<br />

x <br />

(b) Express the following surd number with<br />

rational denominators<br />

(i)<br />

(ii)<br />

6 <br />

6 <br />

3<br />

3 <br />

1<br />

2<br />

2<br />

2 2<br />

1<br />

x <br />

x<br />

1<br />

log 3 x<br />

2. (a) Evaluate (i)<br />

log<br />

x<br />

8<br />

(ii) log 3<br />

2log 15 log 0.14 10 log 7<br />

2 6 7 7 98<br />

3. Show that log b <br />

a<br />

1<br />

log<br />

Using the result to prove that<br />

log b<br />

log c log c<br />

a<br />

b<br />

4. Express the following as a single logarithm<br />

1<br />

3<br />

(i) 2log a log 10b 3<br />

log 2 5 4<br />

2<br />

(ii) log 6 8log 16 9log 18<br />

7 3 2 10<br />

5.(a) Simplify the expression<br />

(i) 5<br />

4 20 8<br />

(ii)<br />

3<br />

9<br />

5n<br />

a<br />

b<br />

3n1<br />

2n<br />

2n2<br />

<br />

6<br />

2n3<br />

n2<br />

6<br />

2 6. (a) If a log x pq,<br />

b log p rq,<br />

c log r pq<br />

prove that a b c abc 2<br />

(b) Show that log blog<br />

a 1and hence<br />

a<br />

5 64 <br />

evaluate log 2log 4 24<br />

7. Solve simultaneous equations<br />

x2<br />

y1<br />

(a) 5 7 3468 and 7 5 76<br />

(b) 6log<br />

3 x 6log 27 y 7 and<br />

log x 4log y 9 .<br />

4 9 3 <br />

8. Solve (a)<br />

2<br />

a<br />

b<br />

y x<br />

log 9 x log 9 x log 9 x log 9 x 5<br />

3<br />

4<br />

3<br />

(b) log 4 x log 4 7 .<br />

2<br />

9.a) Express<br />

5<br />

(i) log a x log ax<br />

1 log a x<br />

2<br />

and(ii) 7log<br />

a 2 3log a 12 5log a 3 as a<br />

single logarithm.<br />

1<br />

(b) Prove that log 2 10 and<br />

log 2<br />

evaluate log e<br />

100 correct to 3 significant<br />

figures taking e as 2.718.<br />

log 10 a<br />

10.(a) Prove that log e a ,hence show<br />

log e<br />

that log 718 2 ln 2<br />

2.<br />

<br />

(b) (i) Prove that<br />

10<br />

10<br />

a <br />

log log c a log c b<br />

b <br />

2 <br />

(ii) Find x if log 8 log 2 1<br />

11. (a) Solve the simultaneous equations<br />

p and 3 2 2 2 16<br />

2 4 12<br />

(b) If<br />

q<br />

Find x<br />

x<br />

p<br />

x<br />

2q<br />

log x log 9 x log 81 x<br />

3 <br />

1<br />

3 5<br />

(c) Simplify<br />

2 5<br />

16<br />

28<br />

12. (a) (i) Find log 8<br />

64 4 without using<br />

calculator or tables.<br />

2 3<br />

(ii) Simplify log<br />

q log<br />

p <br />

p <br />

(b) Find the values of t and m such that<br />

(i) log 9 t log 9 m 1and<br />

log 9 t log 9 m log 91.5<br />

<br />

log<br />

8<br />

t 8 log<br />

8<br />

t 8 <br />

(ii)<br />

3<br />

13. (a) Given that<br />

log<br />

log<br />

10<br />

10<br />

7<br />

<br />

3<br />

9<br />

5<br />

q<br />

, solve for<br />

p and q the simultaneous equations<br />

p 3 1<br />

3<br />

q<br />

p 1<br />

7 and 9<br />

(b)(i) Prove that log<br />

x<br />

2q1<br />

63<br />

q log<br />

r<br />

.<br />

p log<br />

r<br />

pq


Hence, solve theequations<br />

log y 3 log 3 y <br />

2<br />

e e .<br />

(ii) log 5 x log x 5 2. 5<br />

14. (a)Rationalize the surd<br />

1 1<br />

<br />

3 3 3 5 3<br />

4<br />

2<br />

(b) Simplify 1 log 2log<br />

4 10 x<br />

8x<br />

<br />

Express as a single logarithm and simplify<br />

your answer<br />

1 1<br />

log <br />

2 x <br />

x 1<br />

log<br />

2 x 1<br />

x<br />

15.(a) Solve the equation<br />

2<br />

2<br />

2 2 x<br />

4<br />

<br />

(b) Find the square root of 70 14 25<br />

4 2 <br />

<br />

1<br />

<br />

16.(a)Simplify (i) d<br />

d <br />

d 3 d 3<br />

<br />

<br />

n1<br />

n1<br />

32<br />

<br />

42<br />

<br />

(ii)<br />

2<br />

n1<br />

2<br />

(b) Using logarithm tables evaluate<br />

1<br />

(i) .0713 12<br />

0<br />

5<br />

(ii) 0 . 00237<br />

(iii) log 5 0. 24<br />

17.(a) Rationalize the denominators of<br />

2 2 5<br />

11 3 7<br />

(i)<br />

(ii)<br />

3 2<br />

7 4 11<br />

(b) Express the following in the form<br />

x y z<br />

n<br />

(i) 3 21<br />

2 3<br />

(ii)<br />

(c) Simplify (i)<br />

24 3 6 294 <br />

216<br />

(ii) 48 2 12 27<br />

18.(a)Show that (i)<br />

log<br />

c<br />

1<br />

<br />

3<br />

d log<br />

1<br />

9<br />

d<br />

<br />

1<br />

27<br />

a log<br />

(ii) x a<br />

1 <br />

log x <br />

a (iii) log x 1<br />

x <br />

(b) Express as single logarithm<br />

3<br />

(i) 3log<br />

a a log a a 2log<br />

b a<br />

2<br />

(ii) 2log 3 3log 2 3log 6<br />

19.(a) Solve the pair of equations<br />

x<br />

y<br />

x<br />

y<br />

27 9 and 2x y 64 .<br />

(b) Find values of<br />

12<br />

3<br />

2<br />

1<br />

6<br />

2<br />

16<br />

27 18<br />

(c)Express the following in simplest form<br />

as possible<br />

(i) (a+ b ) (c - b ) (ii)(2 + 3) 3 + (2 – 3) 3<br />

2<br />

1<br />

8<br />

1<br />

2<br />

20. Solve 2 x<br />

1 x<br />

4 1<br />

21. Solve the following pair of<br />

simultaneous equations.<br />

(i) log 2 x + 2log 4 y = 4 and x + 12y = 52<br />

(ii) 5 x+2 + 7 y+1 = 3468 and 7 y = 5 x − 76<br />

c<br />

a

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!