19.07.2017 Views

7

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

INTEGRATION AND ITS APPLICATIONS:<br />

7.10 Integration is the process or act or an<br />

instance of making up a whole or is a process<br />

of uniting parts together. Integration is<br />

considered also to be reverse of differentiation.<br />

7.11. Integration as reverse of differentiation<br />

in polynomial functions<br />

In the process of Carrying differentiation<br />

the following steps are done.<br />

1. Multiple the old power by old coefficient<br />

to get new coefficient of derivative<br />

2. Reduce the old power by 1 (one) to get<br />

new power of derivative i.e.<br />

n n1<br />

ax<br />

<br />

nax<br />

d<br />

dx is differentiation<br />

dx<br />

coefficient<br />

3. If a is old coefficient, n is old power, then<br />

na is new coefficient of derivative while<br />

n-1 is new power of derivative.<br />

na<br />

n1<br />

x<br />

is a derivative of<br />

a<br />

n<br />

x<br />

In the process of Carrying integration the<br />

following steps are done.<br />

1. Increase the old power by 1 (one) to get<br />

new power of integral<br />

2. Divide old coefficient by new power to<br />

get new coefficient on integral<br />

n a n1<br />

ax dx x C dx is differential<br />

<br />

n 1<br />

coefficient<br />

3. If a is old coefficientand n is old power<br />

a<br />

then n 1<br />

is new coefficientof integral<br />

while n + 1 is new power of integral.<br />

a n1<br />

n<br />

x C<br />

is the integral of ax<br />

n 1<br />

7.12. Indefinite integral<br />

3 4 2 <br />

If we differentiate x x 3x<br />

8with respect<br />

to x, we obtain<br />

3x<br />

2 8x<br />

3<br />

. On integrating<br />

3x 2 + 8x + 3 we cannot recover the constant<br />

term (8). To recover this constant we normally<br />

add an arbitrary constant, say K, to the integral.<br />

The arbitrary constant added to the integral is<br />

called constant of integration (which can be<br />

any letter a part from x for this case).<br />

244<br />

2<br />

3 2<br />

I.e. 3<br />

x 8x<br />

3dx<br />

x 4x<br />

3x<br />

K in this<br />

case our K is equal to 8. Hence we cover back<br />

our original function.<br />

3 5x<br />

<br />

3<br />

4<br />

Example: Find integral of x <br />

x<br />

with<br />

respect to x.<br />

Solution:<br />

3 8 <br />

<br />

x 5x<br />

dx<br />

4<br />

<br />

x <br />

3<br />

8<br />

x dx 5xdx<br />

dx<br />

4<br />

x<br />

3<br />

4<br />

x dx<br />

5xdx<br />

8x<br />

dx<br />

1 31<br />

5 11<br />

8 41<br />

x x x C<br />

3 1<br />

11<br />

4 1<br />

1 4 5 2 8 3<br />

x x x C<br />

4 2 4 1<br />

1 4 5 2 8<br />

x x C<br />

4 2<br />

3<br />

3x<br />

Example 2: integrate ax<br />

to x<br />

Solution:<br />

<br />

<br />

ax<br />

2<br />

2<br />

ax dx bxdx<br />

cdx<br />

a 3 b 2<br />

x x cx A<br />

3 2<br />

<br />

bx c dx<br />

Example 3: Integrate 2 3 2<br />

Solution<br />

<br />

<br />

<br />

<br />

4t<br />

<br />

2t<br />

3<br />

2<br />

2<br />

dt<br />

4t2dt<br />

12tdt<br />

9dt<br />

4 3 2<br />

t 6t<br />

9t<br />

C<br />

3<br />

<br />

12t<br />

9 dt<br />

Example 4<br />

dy<br />

Solve 3x<br />

2 2x<br />

1<br />

dx<br />

2<br />

bx c with respect<br />

t with respect to t.


Solution<br />

dy<br />

3x<br />

dx<br />

<br />

dy <br />

<br />

2<br />

dy 3x<br />

dx 2x<br />

dx 1dx<br />

y C x<br />

y x<br />

3x<br />

3<br />

3<br />

3<br />

2<br />

2<br />

2x<br />

1<br />

x<br />

x<br />

<br />

2x<br />

1<br />

dx<br />

2<br />

2<br />

2<br />

x K<br />

x K C<br />

y x x x B<br />

Since C and K are constants of integration but<br />

(constant) – (other constant) gives another<br />

constant. That is why K – C = B which is<br />

another constant. For instance 5 – 3 = 2. And<br />

for this reason we add a constant only on one<br />

side at the end of integration.<br />

NB: integration where there is no limits, you<br />

have to add arbitrary constant call constant of<br />

integration. This type of integration is called<br />

indefinite integration and integral obtained is<br />

indefinite integral like<br />

<br />

3<br />

2 x 2<br />

x<br />

xdx<br />

2x<br />

C<br />

4<br />

3<br />

is indefinite<br />

integral<br />

7.13 Definite integral<br />

When the limits are given the integral we<br />

obtain after integration is called definite<br />

integral. Therefore we do not add a constant at<br />

the end of integration.<br />

Example 1:<br />

4<br />

Evaluate x 3<br />

4dx<br />

2<br />

Solution:<br />

4 3<br />

x<br />

4dx<br />

2<br />

4<br />

x<br />

4<br />

4x<br />

k<br />

4<br />

2<br />

<br />

<br />

<br />

<br />

4<br />

4<br />

64<br />

16<br />

k 4<br />

8 k<br />

80 k 12<br />

k<br />

68<br />

4<br />

2<br />

k 4<br />

4<br />

4 4<br />

2<br />

2<br />

<br />

K <br />

<br />

NB: When limits are given, there is no need to<br />

add the constant, K, of integration because it<br />

will cancel each other.<br />

5<br />

Example 2: 2<br />

Solution:<br />

5 2<br />

6x<br />

dx<br />

2<br />

6<br />

<br />

<br />

x<br />

3<br />

2<br />

3<br />

5<br />

<br />

2<br />

6x 2 dx<br />

3 5 3 3<br />

x<br />

2 5 <br />

2<br />

<br />

2<br />

<br />

2125<br />

8<br />

266<br />

Example 3: Evaluate<br />

Solution:<br />

2 3<br />

4r<br />

dr<br />

0<br />

4<br />

<br />

<br />

r<br />

3<br />

1<br />

<br />

r<br />

<br />

4<br />

16<br />

<br />

2<br />

0<br />

4<br />

2<br />

0<br />

16 0<br />

31<br />

<br />

<br />

<br />

4<br />

2<br />

0<br />

<br />

2 4 0<br />

dy 3 2<br />

Example 4: If 8x<br />

6x<br />

4x<br />

1, find y if<br />

dx<br />

from x = 1 to x = 2<br />

r 3<br />

dr<br />

245


Solution<br />

dy 3<br />

8x<br />

6x<br />

dx<br />

y <br />

<br />

dy <br />

8<br />

y <br />

4<br />

y 2 16<br />

y 21<br />

3<br />

dy 8x<br />

<br />

<br />

<br />

2<br />

8x<br />

1<br />

6x<br />

<br />

2<br />

8x<br />

1<br />

3<br />

4 2 6 3 2 4 2 2<br />

x<br />

x<br />

x<br />

x<br />

1<br />

3<br />

2<br />

3<br />

2<br />

dx <br />

6x<br />

1 28<br />

1 24<br />

1 2<br />

1<br />

y 30 14<br />

6 1<br />

4x<br />

1<br />

2<br />

6x<br />

1<br />

1<br />

<br />

4x<br />

1<br />

dx<br />

<br />

2<br />

2<br />

<br />

4x<br />

1dx<br />

2<br />

dx <br />

<br />

1<br />

2<br />

4xdx<br />

<br />

1<br />

Example 5 Given that 2y<br />

3<br />

the value a.<br />

Solution<br />

<br />

2<br />

<br />

2 2<br />

y<br />

3ya<br />

0<br />

2<br />

4<br />

6<br />

a<br />

3a<br />

2 a<br />

a<br />

a<br />

2<br />

<br />

2y<br />

3 dy 0<br />

3a<br />

2 0<br />

a<br />

1a<br />

2<br />

a 1<br />

Or a 2<br />

a 1<br />

2<br />

3a<br />

0<br />

0<br />

not 2<br />

0<br />

<br />

2<br />

a<br />

2<br />

1<br />

<br />

2<br />

1dx<br />

1<br />

dy 0 . Find<br />

EXERCISE 7 (a)<br />

1. Find the integrals for the following<br />

2<br />

(i) t<br />

t dt<br />

2 3<br />

(ii) 3<br />

k 4k<br />

dk<br />

<br />

(iii) 2<br />

da<br />

<br />

a 2<br />

(iv) x<br />

12 xdx<br />

(v)<br />

<br />

2<br />

<br />

<br />

y<br />

<br />

<br />

3<br />

2<br />

y dy<br />

<br />

1<br />

<br />

2. Evaluate the following definite integral<br />

3<br />

(i) t dt 1<br />

(ii)<br />

2 2<br />

t<br />

1 dt<br />

1<br />

(iii)<br />

3<br />

1<br />

x 4 dx<br />

(iv)<br />

3<br />

1<br />

dx<br />

x <br />

<br />

1 3<br />

<br />

(v)<br />

2<br />

1 <br />

x dx<br />

1<br />

x <br />

3. Find the following<br />

(i) 4<br />

x 3dx<br />

(ii) 4<br />

3y 2 dy<br />

1<br />

(iii) <br />

dt<br />

t 3<br />

(iv) z dz<br />

4. Find <br />

x dt in each of the following<br />

(i) x t<br />

3 2 t 2 <br />

4<br />

4t<br />

3t<br />

(ii) x <br />

2<br />

2t<br />

6t<br />

3<br />

(iii) x <br />

2 t<br />

2<br />

t 2<br />

(iv)<br />

t<br />

5. Find the indefinite integrals of the<br />

following<br />

(i) m 4<br />

dm<br />

(ii) m 2<br />

dm<br />

1<br />

(iii) dm<br />

4<br />

m<br />

1<br />

(iv) m 2 dm<br />

6. Evaluate the following.<br />

4<br />

(i) e de 0<br />

3<br />

5<br />

(ii) 4x 3dx<br />

0<br />

246


9<br />

(iii) <br />

4<br />

7. Evaluate<br />

1<br />

f 2<br />

df<br />

x<br />

5 3x<br />

2 5x<br />

1<br />

(i) 1<br />

2<br />

(ii)<br />

<br />

3 1 3 4<br />

y<br />

<br />

2 <br />

y y<br />

2<br />

2 16<br />

Z Z<br />

(iii) 9<br />

3<br />

t 3t<br />

45<br />

(iv) <br />

5<br />

<br />

<br />

t <br />

1<br />

Z<br />

8. If<br />

<br />

3t<br />

2 dt 27 , find Z and give reason<br />

O<br />

t 2<br />

9. If y<br />

2y<br />

6dy<br />

0 find the value of t<br />

O<br />

and give reason.<br />

2<br />

a<br />

x 1<br />

10. Given that <br />

30<br />

1<br />

<br />

dx<br />

, find the<br />

x <br />

value of a.<br />

7.20 Area Under Curve<br />

Draw a rough graph (curve) within wanted<br />

region by locating at least 3 points on the<br />

curve. Indicate element by shading it as<br />

indicated in the figure 129 below.<br />

Figure 129<br />

x<br />

x<br />

Shaded part is called an element. The area of<br />

element = x( y y)<br />

y x x<br />

y<br />

If both x and y are very small then<br />

x y 0<br />

x 0 and y 0 .<br />

area of element = y x .<br />

The area bounded by ABQP as x 0<br />

b<br />

of area of elements = yx<br />

<br />

The required area =<br />

is sum<br />

a<br />

Example 1: Find area under y 3x<br />

2 6x<br />

1<br />

and bounded by x 1 and x 2,<br />

and the x axis<br />

Solution<br />

Figure 130<br />

Area of the element = y δx (Area of a shaded<br />

part in figure 130)<br />

A<br />

<br />

2<br />

1<br />

<br />

3<br />

= x 3x<br />

2 x<br />

= (-8 + 12 + 2) – (-1 + 3 + 1)<br />

= 6 – 3 = 3<br />

Example 2: Find the area enclosed between the<br />

2<br />

two curves y 9 x and y 2x<br />

2 6x<br />

Solution<br />

2<br />

<br />

xa<br />

b<br />

3x<br />

6x<br />

1<br />

dx<br />

2 1<br />

2<br />

2<br />

<br />

When 9 x 2x<br />

6x<br />

give points of<br />

intersection.<br />

2<br />

3x<br />

6x<br />

9 0<br />

x<br />

2<br />

2x<br />

3 0<br />

x<br />

3x<br />

1<br />

x 3<br />

or<br />

-1<br />

0<br />

<br />

ydx<br />

247


Figure 131<br />

The area of the element = y x (Shaded part in<br />

figure 131)<br />

Where y = y 1 – y 2 (as y 1 is above y 2 within the<br />

interval between those intersection points)<br />

The required area<br />

3<br />

3<br />

2 2<br />

ydx =<br />

9 x<br />

<br />

<br />

2<br />

x 6x<br />

dx<br />

1<br />

1<br />

3<br />

2<br />

=<br />

<br />

9 3x<br />

6xdx<br />

1<br />

3 1<br />

3 2<br />

= 9x<br />

x 3x<br />

<br />

= (27 – 27 + 17) – (-9 + 1 + 3)<br />

= 27 +5<br />

=32<br />

Example 3: Find the area enclosed by part of<br />

y 9x<br />

2 3 for which x is positive and y –<br />

axis, and the lines y = 3 and y = 4.<br />

y<br />

x y<br />

y = 4<br />

The area of element is x y (Shaded part in<br />

figure 132), the sum of areas of all element<br />

between y = 3 and<br />

y = 4 is<br />

4<br />

xy .<br />

<br />

y 3<br />

Hence the area enclosed<br />

1<br />

4<br />

y 3<br />

2<br />

= dy<br />

y<br />

3<br />

9 <br />

1<br />

=<br />

3<br />

4 1<br />

<br />

y<br />

32<br />

dy<br />

y 3<br />

1 2<br />

= <br />

3<br />

3<br />

<br />

y<br />

3<br />

<br />

3<br />

2<br />

<br />

<br />

<br />

2<br />

3<br />

<br />

= 32<br />

9 <br />

y <br />

<br />

<br />

3<br />

2 3 3 <br />

= 4<br />

32<br />

3<br />

32<br />

<br />

9 <br />

<br />

2<br />

3<br />

2<br />

3<br />

= 1<br />

<br />

2 0 2<br />

3 9 <br />

2<br />

<br />

9<br />

but area enclosed by the part of y = 9x 2 + 3for<br />

1<br />

which x is positive and y axis is of the area<br />

2<br />

1<br />

enclosed, hence the area required is sq. units.<br />

9<br />

Example 4: Find the whole area enclosed by<br />

the curve y = sin x and the x – axis between<br />

x = 0 and x = 2 <br />

Solution<br />

A sketch of wanted area.<br />

4<br />

4<br />

3<br />

y = 3<br />

Figure 132<br />

x<br />

Figure 133<br />

248


Area of element of part 1 above x – axis<br />

y 1 x(Shaded part in figure 133)<br />

Area under curve above x – axis<br />

<br />

sin xdx cos<br />

x<br />

<br />

0<br />

<br />

0<br />

= - (-1 – 1)<br />

= 2.<br />

Area of element of part 2 below x – axis<br />

y 2<br />

x (This area is equal to the area shaded in<br />

part 1 above x-axis in figure 133)<br />

Area of under curve below x – axis<br />

2<br />

2<br />

sin xdx cos<br />

x<br />

<br />

<br />

<br />

<br />

cos 2<br />

cos <br />

11<br />

2<br />

Hence -2 indicates that the area is below<br />

x – axis therefore the area is 2.<br />

The whole area required<br />

<br />

<br />

<br />

2<br />

sin xdx<br />

sin x dx<br />

<br />

= 4 sq units.<br />

NB: If there are some areas below and above<br />

the x axis you work those areas separately but<br />

not at once because you will add negative and<br />

positive area which will give you less area than<br />

what is required yet there is no area which is a<br />

negative as you take their magnitude to get area<br />

required.<br />

Example 5: Find the area enclosed by a curve<br />

whose parametric equations are<br />

2<br />

1<br />

t 2t<br />

x and y and the line y 1<br />

1<br />

t 1<br />

t<br />

Solution<br />

x <br />

1 2<br />

Cartesian equation of the curve is x 1<br />

Hence for curve to meet y = 1 we have<br />

2<br />

x 2x<br />

1<br />

1 <br />

x 1<br />

x + 1 = x 2 – 2x + 1<br />

x 2 – 3x = 0<br />

x(x – 3) = 0 x = 0 and x = 3<br />

.<br />

y 1 = 1<br />

y<br />

Figure 134<br />

Area of element y x = (y 1 – y 2 )dx (See figure<br />

134)<br />

Area required = <br />

3<br />

2 <br />

<br />

x 2x<br />

1<br />

1<br />

dx<br />

<br />

<br />

x 1<br />

<br />

0<br />

3<br />

2<br />

x 1<br />

x 2x<br />

1<br />

<br />

<br />

<br />

dx<br />

<br />

x 1<br />

<br />

0<br />

3<br />

2<br />

<br />

x 3x<br />

<br />

dx<br />

<br />

<br />

x 1<br />

<br />

0<br />

3<br />

3<br />

4<br />

4 x dx<br />

dx<br />

x 1<br />

0<br />

0<br />

3<br />

x<br />

2<br />

x <br />

4x<br />

4ln<br />

x<br />

1 3 0<br />

2 0<br />

9 <br />

12 4ln<br />

4 ln 1<br />

2 <br />

15<br />

4ln 1.9584<br />

sq units.<br />

2<br />

Example 6: Find area bounded by the curve<br />

represented parametrically by<br />

1<br />

2<br />

y t and x t and the lines x 1 and x 4<br />

t<br />

Solution<br />

From x = t 2 t = x<br />

2<br />

x 1<br />

x 1<br />

y = <br />

x x<br />

Hence Cartesian equation of the curve is<br />

y<br />

2<br />

x 2x<br />

1<br />

y 2 <br />

x 1<br />

x<br />

249


x 1<br />

y <br />

x<br />

1 <br />

x(1)<br />

x<br />

1<br />

<br />

dy<br />

2 x<br />

<br />

<br />

dx<br />

x<br />

dy<br />

for turning point 0<br />

dx<br />

1 <br />

0 x x<br />

1<br />

<br />

2 x <br />

2x<br />

x 1<br />

<br />

<br />

2 x<br />

0 = 2x – x – 1<br />

0 = x – 1<br />

x = 1<br />

11<br />

2 2<br />

y(1) = or 2or<br />

2<br />

1 1 1<br />

turning point are (1,2) and (1, -2)<br />

X LHS 1 RHS<br />

dy - 0 +<br />

dx<br />

Min<br />

When x x<br />

Or<br />

X LHS 1 RHS<br />

dy + 0 -<br />

dx<br />

When<br />

x <br />

x<br />

Max<br />

Hence (1,2) is minimum point while (1, -2) is<br />

maximum point<br />

Asymptotes vertical x 0<br />

x = 0<br />

Slanting<br />

x<br />

y =<br />

x<br />

x<br />

1<br />

x<br />

1<br />

x or y 2 = x<br />

x 1<br />

intercept when y = 0 0 =<br />

x<br />

x = -1 is outside the limit when x = 4<br />

4 1<br />

5<br />

y = 2.5 or 2.5(1dp).<br />

4 2<br />

y<br />

(0,0)<br />

(1, 2)<br />

Figure 135<br />

Figure 135 is a sketch of the curve y = t + t<br />

1<br />

and x = t 2 .<br />

(1, -2)<br />

y<br />

Figure 136<br />

x =1<br />

Area of element shaded = 2y x (See figure<br />

136)<br />

Area required =<br />

4 1<br />

4<br />

x 1<br />

2 dx<br />

<br />

x <br />

1<br />

4 1 3<br />

<br />

2<br />

2 <br />

x dx x<br />

1<br />

1<br />

1<br />

2<br />

y<br />

y<br />

2 ydx<br />

<br />

dx<br />

<br />

x =4<br />

(4, 2.5)<br />

x<br />

(y = x)<br />

(4, -2.5)<br />

x<br />

250


2<br />

2<br />

x<br />

3<br />

<br />

3<br />

2<br />

2x<br />

1<br />

2<br />

<br />

<br />

<br />

<br />

4<br />

1<br />

3 3<br />

1 1<br />

4 <br />

2 2<br />

2 2<br />

4<br />

1<br />

44<br />

1<br />

<br />

3 <br />

4<br />

8<br />

1 42<br />

1<br />

3<br />

40<br />

= 3<br />

However, since the area under curve is asked<br />

there will be no need for asymptotes.<br />

EXERCISE 7 (b)<br />

x 1<br />

1. Find area enclose by curve <br />

f ( x)<br />

<br />

<br />

x <br />

from x = 1 to x = 9 and x = axis.<br />

2. Show that the area enclosed by the curve y<br />

x<br />

= e and y – axis, and the line y = 2 is given<br />

1<br />

by 2ln 2<br />

2<br />

3. Find the area enclosed by the curve<br />

y = x( 4 – x), the x- axis and the lines<br />

x = 0 and x = 6.<br />

4. Find the area bounded by the curve y = x 2 +<br />

2, the x- axis and the line y = 3 and y = 5<br />

5. Calculate the area enclosed by the curve y =<br />

4-x 2 and y = -3x.<br />

4<br />

6. The line x+y = 5 and the curve y <br />

x<br />

intersect at A and B.<br />

(i) What are the co-ordinates of A and B?<br />

ii) Find the area enclosed the curve, line<br />

and x-asis.<br />

7. The line y = x meets the curve y = 5x-x 2 at<br />

origin and point H.<br />

(i) Find the co-ordinates of H.<br />

(ii) Calculate the area of the region enclosed<br />

between the curve and the line.<br />

y<br />

Figure137<br />

If f(x) > 0 and area between y = f(x),<br />

y = 0, x = a and x = b is rotated about x – axis<br />

so that it forms the solid above. In case we<br />

want to find the volume of the solid we divide<br />

x – axis , from a to b into equal intervals each<br />

of length x so that we form a series of very<br />

thin cylinder or a disc of thickness x .<br />

Volume of each of these discs <br />

y 2 x.<br />

Hence to get volume of solid range from x = a<br />

to x = b will be the sum of volumes of those<br />

discs.<br />

<br />

x<br />

b<br />

xa<br />

y 2 x<br />

Required volume =<br />

b y 2 dx<br />

a<br />

Volumes formed in this nature are always<br />

called volumes of revolution.<br />

Example 1: Find the volume of the solid<br />

generated when region bounded by the curve y<br />

= cos2x and x – axis for the value of x between<br />

<br />

0 and is rotated about the x – axis.<br />

4<br />

Solution<br />

7.21 Volumes of Revolution<br />

Draw a rough graph (curve) within wanted<br />

region and indicate element as in the figure 137<br />

below.<br />

Figure 138<br />

Volume of each disc<br />

138)<br />

2<br />

y x.<br />

(See figure<br />

251


Curve of volume of disc =<br />

Required volume<br />

<br />

4<br />

<br />

x0<br />

2<br />

( y x)<br />

<br />

(0 – 0)<br />

Example 3: Find volume of area enclosed by a<br />

8 8<br />

line y = 8 and curve y x 2 4 when rotated<br />

2<br />

<br />

<br />

about;<br />

8<br />

(i) y = 8<br />

Sum of volumes of each of those disc<br />

2<br />

y<br />

The volume required<br />

6<br />

2 2<br />

2<br />

8 x 4<br />

dx<br />

x y<br />

<br />

2<br />

y 3<br />

2<br />

Required volume<br />

2 2<br />

4 x dx<br />

6<br />

<br />

<br />

x 2 dy<br />

2<br />

(ii) x – axis.<br />

Example 2: Find the volume formed when area<br />

4<br />

enclosed by y x from y = 3 to y = 6 when it Solution<br />

is rotated about x = 0.<br />

(i)<br />

y<br />

Solution<br />

y = x 4<br />

(0,12)<br />

(-2,8)<br />

(2,8) y = 8<br />

(0,4)<br />

Figure 140<br />

Figure 139<br />

The points of intersection for the line and curve<br />

2<br />

x 4 8 x 2 4 x 2.<br />

The volume of each circular disc x 2 y (See The volume of each cylindrical element<br />

shaded part in figure 139)<br />

y 2 x.<br />

(See figure 140)<br />

3<br />

<br />

<br />

<br />

2<br />

<br />

<br />

1 cos 4 x dx<br />

x 1 <br />

sin 8<br />

2 <br />

x<br />

2 8 <br />

<br />

2<br />

<br />

4<br />

<br />

0<br />

<br />

4<br />

<br />

0<br />

cos<br />

2 2<br />

xdx<br />

<br />

4<br />

0<br />

252<br />

6<br />

<br />

<br />

3<br />

y 2 1<br />

2 <br />

<br />

y<br />

3 <br />

2 <br />

6<br />

3 <br />

3<br />

2<br />

dy<br />

3<br />

2<br />

<br />

<br />

<br />

<br />

3<br />

6<br />

3<br />

3<br />

2<br />

1<br />

2<br />

<br />

<br />

<br />

2<br />

2<br />

6 6 6 ( 3 3 3 )<br />

3<br />

3<br />

2<br />

( 9 . 500 ) <br />

3<br />

6 . 33 19 . 9 ( 1 dp ).<br />

1<br />

2


(ii)<br />

2<br />

<br />

(16 8x<br />

Figure 141<br />

2<br />

x<br />

The required volume = the volume(1)generated<br />

by rotation, about the x–axis, of the rectangle<br />

ABDE minus the volume (2) generated by<br />

rotation about the x–axis of the area y = x 2 + 4<br />

From x = -2 to x = +2 ie ABCDE<br />

4<br />

) dx<br />

2<br />

5<br />

2<br />

8 3 x <br />

16<br />

x x <br />

<br />

3 5 <br />

2<br />

88<br />

32 <br />

32 <br />

32 <br />

3 5 <br />

1 2 <br />

2 32 21 6 <br />

3 5<br />

<br />

<br />

2 4 <br />

64<br />

42<br />

<br />

12<br />

<br />

3 5 <br />

<br />

2 4<br />

<br />

<br />

<br />

3 5<br />

<br />

12 10<br />

34<br />

<br />

15<br />

2 <br />

32<br />

<br />

15<br />

<br />

512<br />

<br />

15<br />

64<br />

42 12<br />

<br />

2 8 2 <br />

64<br />

3<br />

32<br />

<br />

5<br />

Volume (1) r<br />

h 4 256<br />

Element of (2) y 2 dx (See figure 141)<br />

<br />

<br />

<br />

Volume (2)<br />

<br />

<br />

<br />

2<br />

<br />

2<br />

2<br />

2<br />

2<br />

( x 4) dx<br />

2<br />

2<br />

5<br />

x 8 <br />

3<br />

<br />

x 16x<br />

<br />

5 3 <br />

2<br />

32 8 <br />

2 8<br />

32 <br />

5 3 <br />

119.5<br />

Required volume ( 256 119.5)<br />

136.<br />

5<br />

2<br />

EXERCISE 7 (c)<br />

1. A shell is formed by rotating the portion of<br />

the parabola y 2 4x<br />

for which 0 x 1<br />

through two right angled about its axis.<br />

Find the volume of the solid form.<br />

2. Find the volume of the solid by revolution<br />

formed by rotating the area enclosed the<br />

curve y 2x<br />

2 1,<br />

the y-axis and the line<br />

y 2 and y 5 but lying in the first<br />

quadrant.<br />

3<br />

3. An area is bounded by the curve y x <br />

x<br />

the x-axis and the ordinates x 1<br />

and<br />

x 3. calculate the volume of solid<br />

obtained by rotating the area through 360 0<br />

about the x-axis.<br />

2<br />

4. The curve y 4x<br />

x . calculate the volume<br />

generated when the area bounded by the<br />

curve and the x-axis is rotated the four right<br />

angle about x-axis.<br />

5. The part of the curve y= x 3 from x=1 to x=2<br />

is rotated completely round the<br />

y-axis. Find volume of the solid generated.<br />

6. Find the volume of the paraboloid<br />

generated when the area in the first<br />

quadrant and bounded by the parabola<br />

y 2 = x and the lines x = 3, y = 0 and x = 0 is<br />

rotated through four right angle about the x-<br />

axis.<br />

7. Find the volume generated when the area<br />

between the curve y 2 = x and the line<br />

2<br />

( x 8x<br />

16)<br />

dx<br />

253


y = x is rotated completely about the x-<br />

axis.<br />

2<br />

x<br />

8. The portion of the curve y from<br />

2<br />

x = 0 to x = 2 is rotated about the x – axis<br />

through 360 0 to from solid. Find volume of<br />

solid generated.<br />

9. Calculate the volume generated when the<br />

region enclosed by the y = 1 + 2e -x and the<br />

line x = 0, x = 1 and y = 1 is revolved<br />

completely about the x – axis.<br />

10. Find the volume of the solid generated by<br />

rotating the area enclosed by the curve<br />

y = 4-x 2 and x – axis about the y – axis.<br />

11. Determine the volume of the solid<br />

generated when the region bounded by<br />

curve y = cos2x and the x – axis for values<br />

of x between 0 and 4<br />

is rotated about the x<br />

– axis.<br />

12. Find the volume of the solid of revolution<br />

formed by rotating the area enclosed<br />

13. Sketch the curve y 2 = x-1. The area<br />

contained by curve, the y-axis and line<br />

y 2 is completely rotated about the y-<br />

axis. Find the volume of solid formed.<br />

14. Find the volume generated when the finite.<br />

Region enclosed by between the curve y =<br />

ln x, the x- axis and the ordinate bat x = 2 is<br />

revolved completely about the line x = -1.<br />

15. The area enclosed by the curve y = x 2 +2<br />

and line y = 2 for 2 x 0 is rotated<br />

about y = 2. Find the volume generated.<br />

16. Given that the curve y = 3x 2 – 4x + 1is<br />

rotated through 2<br />

about the x-axis, Find<br />

the volume generated between x = 0 and x<br />

= 2.<br />

17. The area bounded between the curve y =<br />

15x (2-x) and the x-axis is rotated through<br />

2<br />

radius about the x-axis. Find volume of<br />

the solid generated.<br />

18. Find volume of the solid formed by rotating<br />

area enclosed between the curve y-2x = 0<br />

and y + x 2 – 4x = 0.<br />

19. Find the volume of the solid generated by<br />

revolving about the line y = -4, the finite<br />

region bounded by the parabola y = 1 – x 2<br />

and the x-axis.<br />

20. Area bounded by curve y = x 2 and y=2-x 2<br />

calculate the volume of the solid generated<br />

when area is rotated through radians<br />

about the y-axis.<br />

7.22 Non-uniform acceleration in a straight<br />

Displacement, x, is distance covered in specific<br />

direction that is why we can consider<br />

movement in a straight line.<br />

Velocity, v, is rate of change of displacement<br />

dx<br />

i.e. v .<br />

dt<br />

To obtain displacement we integrate velocity<br />

with respect to time, t, while to obtain velocity<br />

we integrate acceleration with respect to<br />

time, t,<br />

dv<br />

(A) When consider a <br />

dt<br />

Example 1: A body of mass 2Kg initially at rest<br />

at origin is acted upon by the force<br />

<br />

<br />

2 i<br />

t j<br />

3t<br />

k <br />

~ ~ ~ <br />

t N.<br />

Find (i) its acceleration at any time t.<br />

(ii) its velocity after 3 seconds.<br />

(iii) its position after 3 seconds.<br />

(iv) the distance it has travelled after 3<br />

seconds.<br />

Solution:<br />

(i)<br />

(ii)<br />

From F = ma<br />

f 1<br />

a <br />

<br />

2t<br />

i<br />

t j<br />

3t<br />

k<br />

m 2 ~ ~ ~<br />

t 3<br />

t i j t k<br />

~ 2 ~ 2 ~<br />

v a dt<br />

<br />

<br />

<br />

<br />

2 2<br />

t t 3 2<br />

i<br />

j<br />

t C1<br />

2 ~ 4 ~ 4<br />

Since it started from rest then C 1 =0 i.e.<br />

when t = 0 and v= 0.<br />

2 2<br />

t t 3 2<br />

v i<br />

j<br />

t<br />

2 ~ 4 ~ 4<br />

254


(iii)<br />

9 9 27<br />

V (3) i<br />

j<br />

2 ~ 4 ~ 4 k<br />

~<br />

x v dt<br />

<br />

3 3<br />

t t 1<br />

i<br />

j<br />

t<br />

6 ~ 12 ~ 4<br />

3<br />

k<br />

C<br />

~<br />

Since it started from origin C 2 = 0 i.e.<br />

when t = 0 and x = 0 x<br />

3 3<br />

t t 1 3<br />

i<br />

j<br />

t k<br />

6 ~ 12 ~ 4 ~<br />

9 9 27<br />

V (3) i<br />

j<br />

k<br />

2 ~ 4 ~ 4 ~<br />

(iv) d(3) = x (3)<br />

<br />

9 <br />

<br />

2 <br />

2<br />

9 <br />

<br />

4 <br />

2<br />

2<br />

2<br />

27 <br />

<br />

4 <br />

81 81 729<br />

<br />

4 16 16<br />

8.4187 m.<br />

Example 2: A Particle Q moves in a straight line<br />

AB so that its acceleration at time, t, is 3t 2 –16t +<br />

20ms -2 . Given that its initial velocity is<br />

-16tms -1 . Find (i) the time it comes to rest at B if<br />

it is at rest at A after 2 seconds (ii) Distance<br />

covered from A to B.<br />

Find the (i) v a dt<br />

t<br />

<br />

8t<br />

20t<br />

c<br />

3 2<br />

=<br />

1<br />

3 2<br />

t 0 ; 16<br />

0<br />

80<br />

20(0) C<br />

16<br />

3 2<br />

v t 8t<br />

20t<br />

16.<br />

At rest v = 0 and t = 2 is one of solution.<br />

t<br />

3<br />

8t<br />

t2 3 2<br />

t<br />

2t<br />

2<br />

6t<br />

20t<br />

16<br />

2<br />

6t<br />

20t<br />

16<br />

2<br />

12t<br />

8t<br />

16<br />

8t<br />

16<br />

0 0<br />

But (t 2 – 6t + 8) = (t - 4) (t - 2) = 0<br />

t=4 or 2<br />

Hence at B, t = 4<br />

1<br />

(ii)<br />

x <br />

4<br />

vdt<br />

AB<br />

2<br />

3<br />

t<br />

8 3 2 <br />

x AB<br />

t 10t<br />

16t<br />

4 3<br />

<br />

<br />

2<br />

64<br />

8<br />

<br />

<br />

<br />

64101616(4)<br />

4 3<br />

<br />

<br />

8<br />

8<br />

<br />

<br />

<br />

8 1041612<br />

4<br />

3<br />

<br />

<br />

512<br />

8 64 <br />

<br />

<br />

16 160<br />

64 40 32<br />

3<br />

4 3 <br />

<br />

568<br />

<br />

12<br />

47.33 m.<br />

Example 3: A and B are two adjacent schools<br />

and C is a trading centre on a straight line in<br />

between A and B. A teacher driving can only<br />

stop at A and B has a velocity of<br />

3 3 2 <br />

t t km/<br />

min at t minutes past<br />

8 8 <br />

8.00am, and it passes C at 8.00am.<br />

Find (i) the time of departure from A and<br />

arrival at B.<br />

(ii) an expression for the distance of the car<br />

from A in terms of t .<br />

(iii) the average velocity between A and B in<br />

nearest Km/hr.<br />

(iv) the maximum velocity attained in Km/hr.<br />

Solutions<br />

(i) At A and B velocity is zero.<br />

3 3 2<br />

t t 0<br />

8 8<br />

2<br />

3t<br />

8t<br />

3 0<br />

t 8<br />

100<br />

6<br />

3 or<br />

1<br />

<br />

3<br />

minutes<br />

Time of departure from A at 7:<br />

59 : 40 am and time of arrival at B<br />

at 8 : 03 am.<br />

(ii) x v dt<br />

<br />

2<br />

t 1<br />

t t<br />

8 2 8<br />

3 3<br />

c.<br />

4<br />

255


1<br />

at t and x 0<br />

3<br />

(iii)<br />

(iv)<br />

3 1 1 1 1 1 <br />

0 C<br />

8 3 2 3 8 3 <br />

1 1 1<br />

c<br />

8 18 216<br />

7<br />

C <br />

108.<br />

2<br />

3 t 1 3 7<br />

x t t <br />

8 2 8 108<br />

9 9 27 7<br />

x3<br />

<br />

8 2 8 108<br />

493<br />

D Km<br />

216<br />

Total time<br />

1<br />

t 3 as t is time pass 8am at B<br />

3<br />

D<br />

average velocity = T<br />

dv<br />

dt<br />

formin<br />

or max . v,<br />

2<br />

d v<br />

2<br />

dt<br />

V max = <br />

493 10<br />

Km / min<br />

216 3<br />

493 3 <br />

60<br />

216 10 <br />

41 Km / hr.<br />

3<br />

1<br />

t<br />

4<br />

t <br />

3<br />

8<br />

<br />

(B) from a =<br />

4<br />

3<br />

4<br />

3<br />

dv<br />

dt<br />

<br />

3<br />

<br />

8<br />

25<br />

Km<br />

24<br />

62.5Km<br />

2<br />

3<br />

dx<br />

500<br />

2t<br />

5<br />

t 10seconds<br />

.<br />

(i) a = -cv 3<br />

dv 3<br />

cv<br />

dt<br />

3<br />

v dv <br />

c dt<br />

2<br />

v<br />

ct<br />

k<br />

2<br />

2<br />

v 2ct<br />

B<br />

3<br />

a cv<br />

3<br />

2 c10<br />

1<br />

c <br />

4<br />

500<br />

0 t min<br />

3<br />

1 2<br />

0<br />

B<br />

2<br />

veindicates<br />

max <br />

10 500<br />

1 2 1<br />

t <br />

2<br />

v 500<br />

2<br />

4<br />

2t<br />

100<br />

5<br />

<br />

<br />

3<br />

500<br />

<br />

2 500<br />

v <br />

/ min<br />

2t<br />

5<br />

1<br />

(iii) v 500 2t<br />

5 2<br />

/ hrs.<br />

10<br />

<br />

1<br />

dv<br />

x 500 2<br />

5<br />

2<br />

t dt<br />

0<br />

dt<br />

10<br />

dv <br />

500 2t<br />

5 1 <br />

2 c..<br />

dt<br />

dx<br />

dx<br />

dv dx <br />

<br />

dx dt <br />

dv <br />

v<br />

dx <br />

dv<br />

a v<br />

Example 1: A particle moves in a straight<br />

horizontal line and is subjected to retardation<br />

whose magnitude is proportional toV 3 . the<br />

initial speed of the particle is 10ms -1 and initial<br />

retardation is 2ms -1 .<br />

(i) show that its velocity time t later is V 2 =<br />

(ii) Find the displacement of the particle after<br />

When t = 0, v = 10 and a = 2<br />

<br />

<br />

<br />

0<br />

256


500 2t<br />

5<br />

<br />

<br />

<br />

500 5 <br />

62 m<br />

5<br />

<br />

<br />

1<br />

2<br />

<br />

<br />

5<br />

<br />

<br />

EXERCISE 7 (d)<br />

1. A body of 2 units moves under the action of<br />

a force which depends on the time t given<br />

2<br />

24t<br />

i 36t<br />

16<br />

j . Given that at t = 0<br />

by <br />

~<br />

the body is located at 3i j and has a<br />

velocity<br />

~<br />

~<br />

~<br />

~<br />

6i<br />

15j<br />

. Find (i) velocity of the<br />

body at t = 2<br />

(iii) displacement of the body at t = 2.<br />

2. The speed of a particle is given by<br />

2<br />

t 2t<br />

4 and given that the particle moves<br />

in a straight line.<br />

Find (i) the value of t when the acceleration<br />

is zero.<br />

(ii) the distance covered by the particle<br />

between the instants when t = 1 and t = 3<br />

3. A particle starts from the point O with<br />

initial speed u and moves in a straight line .<br />

8<br />

At and instant its acceleration is given by v<br />

, where v is the speed of the particle . The<br />

particle passes through the point p with<br />

speed 24.<br />

(i) Show that the particle moves from O to<br />

3u<br />

2<br />

P in time and that the distance OP<br />

16<br />

7u 2<br />

is .<br />

24<br />

4. A particle Q starts from rest at point O and<br />

its acceleration at any time t seconds later is<br />

given by (3 – 2t). Find the displacement of<br />

particle Q from point O when it is next at<br />

rest.<br />

5. A body of 3Kg moves in a straight line is<br />

acted upon bby the force (12t – 8)N. Given<br />

that its initial velocity is – 8ms -1 , find (i)<br />

the value of t at the point A and B when the<br />

when the body is instantaneous by at rest.<br />

(ii) the distance between A and B.<br />

~<br />

6. Given that a particle is moving in a straight<br />

line Oy with retardation of 2t 2 ms -2 at any<br />

time t seconds. The particle starts from a<br />

point A with velocity of 5ms -1 . Describe its<br />

motion after.<br />

(i) 1seconds. (ii) 5 seconds<br />

7. A particle is moving in a straight line with<br />

an acceleration of 8t, where t is the time.<br />

When t = 3 second the particle has a<br />

displacement of 36 m from O and a velocity<br />

of 37ms -1 ! Find<br />

(i) Velocity and (ii) position of the<br />

particle when t = 2 seconds.<br />

8. The acceleration of particle moving in a<br />

straight line from point O after leaving O is<br />

(2 – 6t)ms -1 , when t is time after leaving O.<br />

If its speed at O is 2ms -2 . Find the time at<br />

which after leaving O.<br />

(i) it first comes to rest.<br />

(ii) the particle returns to O.<br />

(iii)the particle is at a distance of 2 from<br />

O.<br />

9. A particle moves in a straight line and<br />

passes affixed point A with acceleration (16<br />

– 4t) a, where t is the time in second s after<br />

passing point A. Given that velocity of the<br />

particle is 38ms -1 when t = 3, find the<br />

(i) Velocity in terms of t at any time after<br />

point A.<br />

(ii) displacement from point A after t = 4<br />

10. A car starts from rest and its acceleration<br />

t <br />

after t seconds is p ms -1 . Until it<br />

6 <br />

reaches a velocity of 60ms -1 at the end of 60<br />

seconds. Find value of P and distance<br />

traveled in this first minute if it traveled in<br />

straight line.<br />

11. A and B are two adjacent railway stations,<br />

and C is a signal box on the straight line<br />

between them. A train which stops at A and<br />

2<br />

3 t t<br />

B has a velocity of <br />

Km/min at t<br />

8 2 2 <br />

minutes past 6.00pm, and the train passes C<br />

at 6.00pm. Find<br />

(i) an expression for the distance of the<br />

train from A in terms of t<br />

(ii) the average between A and B in Km/hr.<br />

257


(iii)the maximum velocity attained in<br />

Km/hr.<br />

12. A particle moves along a straight line from<br />

1<br />

a fixed O with acceleration ms -2 .<br />

<br />

2<br />

t 1<br />

find<br />

velocity and (ii) displacement of particle<br />

from O after time t if the particle starts from<br />

rest and it is 2m away from O tat beginning.<br />

13. A particle of mass 2 units moves under the<br />

action of a force which depends on the time<br />

2<br />

t given by F 24t<br />

i (36t<br />

16)<br />

j given<br />

~ ~<br />

~<br />

that at t = 0, the particle is located at 3i<br />

j<br />

and has a velocity<br />

. Find<br />

(i) Velocity and kinetic energy of the particle<br />

at t = 2sec.<br />

(ii) displacement of the particle at t = 3sec.<br />

14. A particle of mass 2kg initially at rest at (0,<br />

2t<br />

<br />

<br />

0, 0) is acted upon by the force t N<br />

t <br />

3 <br />

Find; (i) its acceleration at any time t.<br />

(ii) its velocity after 3 seconds.<br />

(iii) its position after 3 seconds.<br />

(iv) the distance the particle has<br />

travelled after 3 seconds.<br />

7.14 Integration of trigonometrical function<br />

1. Sine and cosine of angles<br />

d<br />

From (sin x)<br />

cos x<br />

dx<br />

d sin x cos x dx<br />

<br />

<br />

<br />

cos xdx <br />

<br />

d<br />

from cos<br />

x<br />

sin<br />

x<br />

dx<br />

d(cos<br />

x)<br />

sin<br />

xdx<br />

<br />

sin xdx <br />

<br />

<br />

d sin x<br />

sin x C<br />

<br />

<br />

~<br />

cos<br />

x C<br />

<br />

d cos x<br />

6i15<br />

j<br />

~<br />

~<br />

~<br />

2. Odd powers of sine and cosine of angles<br />

If x is any angle in radian then we must recall<br />

these identities<br />

2<br />

2<br />

sin x cos x 1<br />

2<br />

2<br />

1<br />

tan x sec x<br />

2<br />

2<br />

1<br />

cot x cos ec x<br />

Example 1:<br />

<br />

<br />

sin<br />

3<br />

Example 2:<br />

but<br />

sin<br />

3<br />

xdx <br />

<br />

<br />

sin<br />

xdx<br />

sin<br />

2<br />

cos<br />

<br />

<br />

1 2<br />

sin xdx <br />

xsin<br />

xdx<br />

<br />

x sin xdx<br />

<br />

cos<br />

2<br />

xsin<br />

xdx<br />

Let u = cos x<br />

2 du<br />

cos<br />

x u sin x<br />

sin<br />

x<br />

2<br />

cos x u du<br />

1 3<br />

cos x u C<br />

3<br />

5<br />

4<br />

cos xdx cos xcos<br />

xdx<br />

<br />

cos<br />

2 2<br />

<br />

x cos xdx sin<br />

2<br />

x<br />

2 4<br />

<br />

1<br />

2sin x sin xcos<br />

xdx<br />

2<br />

4<br />

<br />

cos<br />

x 2sin xcos<br />

xdx<br />

sin<br />

<br />

2<br />

cos xdx 2 sin xcos<br />

xdx <br />

<br />

cos xdx sin x K<br />

<br />

1<br />

2<br />

<br />

<br />

2<br />

2<br />

sin<br />

<br />

u<br />

2<br />

2<br />

u 2<br />

x cos x dx<br />

cos x<br />

dx<br />

3<br />

du<br />

cos x<br />

1<br />

x cos<br />

3<br />

3<br />

1 2<br />

u sin x,<br />

x cos x C<br />

sin<br />

cos xdx<br />

xcos<br />

xdx<br />

4<br />

du<br />

cos x<br />

xcos<br />

xdx<br />

dx<br />

258


2<br />

u<br />

3<br />

<br />

<br />

sin 4 xcos<br />

x dx<br />

<br />

If K<br />

<br />

NB: When integrating sine or cosine of odd<br />

powers. First reduce its power by one times<br />

sine or cosine of order one respectively.<br />

7<br />

6<br />

E.g. cos cos cos<br />

so that a factor with<br />

even powers can be expressed using identity<br />

2<br />

2<br />

1 sin cos <br />

7<br />

2 3<br />

cos 1sin<br />

cos<br />

3. Even powers of sine and cosine of angles<br />

Suppose we have x to be any angle then we<br />

can use double angle formula as the key factor<br />

in the integration of sine and cosine of even<br />

powers.<br />

2<br />

2<br />

Recall cos 2x<br />

cos x sin x<br />

1<br />

So that cos 2 x 1<br />

cos 2x<br />

2<br />

1<br />

sin 2 x 1<br />

cos 2x<br />

2<br />

Example 1:<br />

u sin x,<br />

<br />

4<br />

2<br />

<br />

sin xdx sin x<br />

<br />

1<br />

cos<br />

3<br />

<br />

5<br />

K<br />

4 u<br />

u du K 3<br />

5<br />

K<br />

2<br />

K<br />

3<br />

2<br />

xdx sin x sin<br />

3<br />

<br />

<br />

2<br />

1<br />

sin<br />

5<br />

2<br />

sin<br />

3<br />

5<br />

5<br />

1<br />

<br />

<br />

2<br />

<br />

4<br />

x K<br />

Cthen,<br />

<br />

2<br />

dx<br />

1<br />

cos 2x<br />

<br />

du<br />

cosx<br />

2<br />

<br />

dx<br />

<br />

1 2<br />

dx<br />

1<br />

2cos2x cos 2x dx<br />

<br />

1 1<br />

1<br />

2cos 2xdx<br />

cos<br />

2 2xdx<br />

4<br />

4<br />

3<br />

3<br />

<br />

x K<br />

3<br />

2<br />

1<br />

x sin<br />

5<br />

<br />

5<br />

x C<br />

Example 2:<br />

x 2x<br />

<br />

cos <br />

2 dx<br />

1 1<br />

cos dx<br />

3 2 3 <br />

1 1 2x<br />

dx cos dx<br />

2 2<br />

3<br />

x 3 2 x<br />

sin K<br />

2 4 3<br />

<br />

x 1 1 1<br />

sin 2x<br />

1<br />

cos 4xdx<br />

4 4 4 2<br />

x 1 x 1 1 <br />

sin 2 x sin 4 x C<br />

4 4 8 8 4 <br />

<br />

Example 3:<br />

1<br />

1<br />

dx <br />

1<br />

cos x 2 x<br />

1<br />

cos<br />

sin<br />

2<br />

1<br />

<br />

dx<br />

2 x <br />

1<br />

2cos 1<br />

2 <br />

1 x 1 2 x<br />

sec<br />

<br />

2 dx tan C<br />

2 2 2 1 2<br />

1<br />

x<br />

dx tan C<br />

1 cos x 2<br />

4. Product of sine and cosine of angles.<br />

Make use of factor formulae<br />

P Q P Q<br />

Recall sin P sin Q 2sin cos<br />

2 2<br />

P Q P Q<br />

sin P sin Q 2cos sin<br />

2 2<br />

P Q P Q<br />

cos P cos Q 2cos cos<br />

2 2<br />

P Q P Q<br />

cos P cos Q 2sin<br />

sin<br />

2 2<br />

Example 1:<br />

<br />

3 x 1 1<br />

sin 4 xdx sin 2 x sin 4 x C<br />

8 4 32<br />

<br />

2sin 5xcos xdx<br />

Comparing<br />

P Q P Q<br />

2sin<br />

cos sin P cos Q<br />

2 2<br />

2<br />

dx<br />

x <br />

<br />

2 <br />

259


P Q P Q<br />

5x<br />

and x<br />

2<br />

2<br />

P Q 10 x ……………….(i)<br />

P Q 2x<br />

…………………(ii)<br />

(i) + (ii) 2P 12 x;<br />

P 6x<br />

angle to a bigger angle)<br />

(add smaller<br />

Substituting for P in equation (ii) we have<br />

6x Q 2x;<br />

Q 4x<br />

(Subtract smaller angle<br />

from bigger angle) thereafter recall proper<br />

factor-formula.<br />

2sin 5 cos xdx <br />

<br />

sin 6x<br />

<br />

Example 2:<br />

<br />

2<br />

<br />

0<br />

x sin 4x<br />

dx<br />

P = 2x + x = 3x<br />

And Q = 2x – x = x<br />

<br />

2 sin 2 x cos xdx <br />

<br />

0<br />

1<br />

<br />

6<br />

<br />

<br />

<br />

1 3 1<br />

cos cos 0 cos<br />

cos 0 <br />

6 2 2 2 <br />

<br />

1 3<br />

<br />

6<br />

2<br />

<br />

3<br />

Example 3:<br />

<br />

2<br />

3 cos 5<br />

sin x xdx<br />

0<br />

P = 5x + 3x = 8x and Q = 5x – 3x = 2x<br />

<br />

<br />

2<br />

1 2<br />

sin 3 x cos 5 x (sin 8 x sin 2 x ) dx<br />

2<br />

<br />

0<br />

sin 2 x cos xdx<br />

<br />

2<br />

cos 3 x 0<br />

cos x 0<br />

1<br />

cos<br />

6<br />

3 <br />

<br />

2<br />

1 1<br />

cos 6 x cos 4 x C<br />

6 4<br />

1<br />

6<br />

<br />

1<br />

2<br />

1<br />

2<br />

<br />

0<br />

<br />

<br />

2<br />

0<br />

<br />

1<br />

sin 3 x sin x dx<br />

2<br />

<br />

<br />

2<br />

1<br />

6<br />

<br />

1<br />

2<br />

<br />

2<br />

<br />

260<br />

1 1 <br />

<br />

<br />

cos 8 x cos 2 x<br />

16 4 <br />

0<br />

1 1 1 1 <br />

<br />

cos 4<br />

cos <br />

cos 0 cos 0<br />

16 4 16 4 <br />

1 1 1 1 <br />

<br />

<br />

<br />

16 4 16 4 <br />

1<br />

1<br />

1 1 1<br />

<br />

16 4 16 4 2<br />

Example 4:<br />

3<br />

<br />

sin 4<br />

sin 2d<br />

P = 4 + 2 = 6 and Q = 4 - 2 = 2<br />

3<br />

3sin 4<br />

sin 2d <br />

<br />

cos6<br />

cos 2<br />

d<br />

2<br />

1 3<br />

sin 6 cos 2 K<br />

4 4<br />

EXERCISE 7 (e)<br />

1. Evaluate<br />

<br />

(i) 2<br />

0<br />

cos x sin 2xdx<br />

and<br />

<br />

ii) 2 cos2x<br />

sin<br />

0<br />

2. Evaluate<br />

3<br />

tan x<br />

i) 4 dx<br />

0 3<br />

sec x<br />

ii) 1 cos<br />

0<br />

3. Evaluate<br />

<br />

4 2<br />

xdx<br />

xdx<br />

i) 2 cos 2x<br />

sin 4xdx<br />

0<br />

<br />

ii) 6 cos<br />

0<br />

4. Evaluate<br />

<br />

<br />

3<br />

0<br />

3<br />

xdx<br />

2<br />

(1 cos3x<br />

) dx<br />

5. Find sin xdx<br />

6. Evaluate<br />

<br />

(i) 2<br />

0<br />

and<br />

cos 2x<br />

sin 4xdx


(ii) 4 2sin 3x<br />

cos 2xdx<br />

<br />

6<br />

7.15 Integration of exponential function<br />

Example 1:<br />

Let t 5x<br />

10e dx<br />

<br />

5x<br />

dt<br />

dx<br />

5<br />

t dt t<br />

10e<br />

2e<br />

dt<br />

5 <br />

2 e t K<br />

<br />

Example 2:<br />

<br />

xe<br />

( x 2 1)<br />

dx<br />

2<br />

Let m 2x<br />

1<br />

dm<br />

dx<br />

4x<br />

m<br />

m<br />

<br />

xe<br />

dm<br />

<br />

4x<br />

4<br />

1 e m c<br />

<br />

<br />

e<br />

4<br />

Example 3:<br />

<br />

sin<br />

x 2 dx<br />

x<br />

<br />

e <br />

<br />

<br />

Example 4:<br />

1<br />

<br />

2<br />

<br />

<br />

4xe x 1 0<br />

<br />

Let<br />

2dx<br />

d<br />

dx<br />

<br />

<br />

x 2<br />

10 e<br />

xe<br />

<br />

e<br />

<br />

2<br />

x<br />

dx 2 e<br />

5 x 5 x<br />

<br />

<br />

<br />

2xe<br />

2<br />

x x 2<br />

2<br />

x<br />

e <br />

2<br />

2xe dx dx<br />

2<br />

x 1 x<br />

e xdx<br />

e<br />

<br />

2 1<br />

e dx 2<br />

x e<br />

2x<br />

dm<br />

2<br />

x 1 1 2<br />

x 1 <br />

dx e<br />

4<br />

K<br />

C<br />

x<br />

x<br />

sin x 2 e dx cos x 2 e K<br />

<br />

x 2<br />

Or<br />

Let t = x 2<br />

dt<br />

dx <br />

2x<br />

4<br />

<br />

4<br />

2<br />

2e<br />

xe<br />

t<br />

2<br />

x<br />

<br />

<br />

<br />

1dx<br />

<br />

t dt<br />

xe 1<br />

2x<br />

t 1<br />

e dt dt<br />

2 t<br />

t cC<br />

4x<br />

<br />

e<br />

2x<br />

EXERCISE 7 (f)<br />

<br />

1. Find (i) <br />

<br />

e x 1<br />

dx ,<br />

2<br />

e <br />

x<br />

(ii) <br />

<br />

e<br />

dx ,<br />

2x<br />

1<br />

e <br />

2x<br />

(iii) <br />

<br />

e<br />

2 x<br />

dx , (iv) 2x<br />

x e dx<br />

1<br />

e <br />

(v) <br />

x<br />

2<br />

<br />

x<br />

<br />

<br />

1<br />

0<br />

2 1<br />

1<br />

0<br />

2<br />

x0<br />

2e<br />

1 2<br />

e 0<br />

e x 2e 1<br />

2 0<br />

1 2<br />

<br />

<br />

4xe x 1<br />

<br />

dx<br />

2e<br />

1<br />

4.44(2dps)<br />

0<br />

<br />

xe x2 dx (vi) xe ax2 dx<br />

7.16 Integration by inspection or<br />

Recognition<br />

Whenever we recognise that there exist<br />

function and its derivative (function and its<br />

derivative exist) we change the function to<br />

different variable and carry out the integration.<br />

2 3 5<br />

Example 1: x 4x<br />

5 dx<br />

2<br />

Since x is a factor of derivative of 4x<br />

3 5<br />

Let u 4x<br />

3 5<br />

du 2 du<br />

12x dx <br />

2<br />

dx<br />

12x<br />

2 3 5<br />

2 5 du<br />

x 4x<br />

5<br />

dx x u<br />

2<br />

12x<br />

1<br />

u 5 du<br />

12<br />

1 6<br />

u K <br />

6 12<br />

2 3 5 1 3 6<br />

x 4 x 5 dx 4 x 5 C<br />

72<br />

K<br />

where C <br />

72<br />

2<br />

261


Example 2:<br />

<br />

cos 2<br />

2xsin<br />

2<br />

xdx<br />

We can consider sin 2x<br />

as a factor of<br />

derivative of cos 2x.<br />

Let t cos 2x<br />

dt<br />

dx<br />

2sin 2x<br />

2<br />

2 dt<br />

cos 2xsin<br />

x dx t sin 2x<br />

2sin 2x<br />

1<br />

t 2 dt<br />

2<br />

3<br />

t<br />

C<br />

6<br />

2<br />

1 3<br />

cos 2 x sin 2 xdx cos 2 x C<br />

6<br />

2<br />

Example 3: x<br />

<br />

3<br />

x<br />

1dx<br />

<br />

1<br />

3<br />

<br />

m<br />

Let x<br />

3<br />

3x<br />

2<br />

1<br />

m<br />

dx dm<br />

2<br />

since x is a factor of derivative<br />

dx <br />

<br />

1<br />

2<br />

<br />

x<br />

2<br />

<br />

x<br />

dm<br />

2<br />

3x<br />

<br />

3<br />

x 1 dx <br />

<br />

dm <br />

3 2 3<br />

x 1 dx x 1 <br />

2<br />

x<br />

Example 4: dx<br />

6<br />

1<br />

x<br />

3<br />

Let u x<br />

du <br />

2<br />

3x<br />

dx<br />

2<br />

x du<br />

<br />

2 2<br />

1<br />

u 3x<br />

1 du<br />

<br />

3<br />

2<br />

1<br />

u<br />

2<br />

2<br />

9<br />

m<br />

1<br />

2<br />

3<br />

2<br />

C<br />

9<br />

x<br />

2<br />

m<br />

1<br />

2<br />

3<br />

2<br />

dm<br />

3 x<br />

3<br />

of x<br />

2<br />

C<br />

<br />

<br />

1<br />

<br />

x<br />

1<br />

sin<br />

3<br />

<br />

1<br />

dx sin<br />

3<br />

Example 5:<br />

x 2<br />

dx<br />

2<br />

x 4x<br />

4<br />

let u = x 2 – 4x + 4<br />

du<br />

dx <br />

2 x 4<br />

x 2 du<br />

<br />

u 2x<br />

4<br />

1 1<br />

du<br />

2<br />

u<br />

1<br />

ln u C<br />

2<br />

1 ln x<br />

2 4 x 4 C<br />

2<br />

1 2<br />

EXERCISE 7 (g)<br />

<br />

cos x<br />

1. Evaluate<br />

2 dx<br />

0 2<br />

1<br />

sin x<br />

3<br />

2<br />

2. Find<br />

x<br />

x e dx<br />

<br />

3. evaluate <br />

3x<br />

4x<br />

1<br />

dx<br />

3 2<br />

x 2x<br />

x <br />

x<br />

4. Show that <br />

2<br />

1 cos x<br />

2<br />

2<br />

x dx<br />

5. Evaluate 0 3<br />

( 1<br />

x )<br />

x 2 C ln x C<br />

ln<br />

2<br />

2<br />

2<br />

x <br />

2<br />

x 1 3<br />

6<br />

1<br />

u C<br />

dx <br />

C<br />

1<br />

2<br />

1<br />

2<br />

6. Find ( 1 3cos x)<br />

2<br />

sin 2xdx<br />

e<br />

7. Evaluate 2 dx<br />

e xln<br />

x<br />

8. Evaluate<br />

2<br />

x<br />

tan<br />

<br />

<br />

2<br />

<br />

<br />

<br />

C<br />

262


(i) <br />

(ii)<br />

0<br />

<br />

2<br />

x ( 1<br />

x<br />

2 ) 3 dx<br />

2<br />

x 2<br />

dx<br />

x 4x<br />

1 2<br />

9. Evaluate 2 2<br />

sin x cos<br />

0<br />

5 x<br />

1<br />

10. Find 3 2 dx<br />

x 2x<br />

<br />

<br />

<br />

<br />

xdx<br />

cos x<br />

11. Evaluate<br />

2<br />

0 2 1<br />

sin<br />

dx<br />

x<br />

4<br />

2<br />

12. Evaluate x x <br />

13. Evaluate<br />

(i) <br />

<br />

3<br />

2 2<br />

x<br />

0<br />

0<br />

sin( x<br />

9 dx<br />

3<br />

) dx<br />

7.17 Integration using trigonometric inverse<br />

function<br />

Recall<br />

y sin 1<br />

x<br />

2<br />

sin y x but cosy = 1 sin y<br />

cos ydy dx<br />

2<br />

as sin<br />

2<br />

y cos y 1<br />

dy 1 2<br />

2<br />

cos y 1<br />

sin y<br />

dx cos y<br />

<br />

1<br />

2<br />

1<br />

sin y<br />

<br />

1<br />

2<br />

1 x<br />

d 1<br />

1<br />

sin<br />

x<br />

<br />

dx<br />

2<br />

1<br />

x<br />

<br />

<br />

1<br />

When y cos 1<br />

cos y x<br />

x<br />

<br />

1 1<br />

x<br />

2<br />

<br />

dx sin<br />

2<br />

sin ydy dx but sin y 1<br />

cos y<br />

2<br />

2<br />

dy 1 as sin y cos y 1<br />

<br />

2<br />

2<br />

dx sin<br />

y<br />

sin y 1<br />

cos y.<br />

<br />

x <br />

K<br />

dy<br />

dx<br />

When y tan 1<br />

tan y x<br />

dy<br />

sec 2 y 1<br />

dx<br />

dy 1<br />

but sec<br />

2<br />

dx sec y<br />

dy<br />

dx<br />

1<br />

<br />

2<br />

1<br />

tan y<br />

Example 1: Find<br />

Example 2:<br />

x<br />

dy 1<br />

<br />

2<br />

dx 1<br />

x<br />

d 1<br />

1<br />

tan x<br />

<br />

dx 1<br />

x<br />

1<br />

dx tan<br />

2<br />

1 x<br />

<br />

2<br />

Let sin u x<br />

cos udu dx<br />

1<br />

<br />

2<br />

1 sin u<br />

2<br />

but 1<br />

sin u cosu<br />

1<br />

ucu<br />

cosu cos<br />

du u k but u sin<br />

<br />

<br />

<br />

<br />

1<br />

<br />

1<br />

x<br />

<br />

dx sin<br />

<br />

<br />

1 1<br />

2<br />

1<br />

x<br />

2<br />

<br />

<br />

<br />

<br />

d<br />

dx<br />

<br />

1<br />

2<br />

1<br />

<br />

1<br />

cos<br />

y 1<br />

tan<br />

x <br />

<br />

-1<br />

1<br />

1<br />

cos udu<br />

1<br />

x <br />

2 2<br />

a b x<br />

C<br />

2<br />

1<br />

x<br />

2<br />

x 2<br />

x<br />

k<br />

dx<br />

x<br />

<br />

1<br />

<br />

dx cos<br />

<br />

dx<br />

2<br />

1<br />

x<br />

y<br />

2<br />

<br />

1<br />

x <br />

K<br />

dy<br />

dx<br />

<br />

<br />

1<br />

1<br />

2<br />

1<br />

cos y 2<br />

263


264<br />

Example 3:<br />

Example 4:<br />

0.2272<br />

2<br />

3<br />

= <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

72<br />

3<br />

4<br />

3<br />

6<br />

3<br />

dx<br />

x<br />

a<br />

b<br />

a<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

2<br />

2<br />

2<br />

1<br />

1<br />

1<br />

u<br />

u<br />

dx<br />

udu<br />

b<br />

a<br />

a<br />

b<br />

dx<br />

du<br />

u<br />

x<br />

a<br />

b<br />

u<br />

2<br />

2<br />

cos<br />

sin<br />

but 1<br />

cos<br />

cos<br />

Let sin<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

udu<br />

b<br />

a<br />

u<br />

a<br />

cos<br />

sin<br />

1<br />

1<br />

1<br />

2<br />

<br />

<br />

du<br />

u<br />

u<br />

b<br />

cos<br />

cos<br />

1<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

dx<br />

x<br />

dx<br />

x 2<br />

2<br />

9<br />

4<br />

1<br />

1<br />

3<br />

1<br />

4<br />

9<br />

1<br />

udu<br />

dx<br />

x<br />

u<br />

cos<br />

2<br />

3<br />

3<br />

2<br />

Let<br />

<br />

<br />

<br />

<br />

<br />

<br />

udu<br />

u<br />

cos<br />

2<br />

3<br />

sin<br />

1<br />

1<br />

3<br />

1<br />

2<br />

<br />

<br />

u<br />

udu<br />

cos<br />

cos<br />

2<br />

3<br />

3<br />

1<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

u<br />

3<br />

2<br />

sin<br />

but<br />

1<br />

dx<br />

du<br />

u<br />

dx<br />

udu<br />

x<br />

u<br />

<br />

<br />

<br />

<br />

2<br />

2<br />

tan<br />

1<br />

2<br />

3<br />

sec<br />

2<br />

3<br />

3<br />

2<br />

Let tan<br />

2<br />

3<br />

2<br />

3<br />

1<br />

3<br />

2<br />

tan<br />

6<br />

3<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

<br />

<br />

<br />

<br />

1<br />

tan<br />

3<br />

tan<br />

6<br />

3 1<br />

1 <br />

<br />

<br />

=<br />

<br />

6<br />

3 u<br />

<br />

<br />

6 3<br />

du<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

. 0.3128<br />

. 0.2272<br />

2<br />

2<br />

2<br />

tan<br />

1<br />

2<br />

3<br />

tan<br />

1<br />

1<br />

3<br />

1<br />

3<br />

4<br />

1<br />

1<br />

3<br />

1<br />

u du<br />

u<br />

dx<br />

x<br />

<br />

<br />

<br />

<br />

<br />

dx<br />

x<br />

dx<br />

x 2<br />

2<br />

3<br />

2<br />

3<br />

2<br />

3<br />

4<br />

1<br />

1<br />

3<br />

1<br />

4<br />

3<br />

1<br />

<br />

<br />

3<br />

2<br />

sin<br />

2<br />

1<br />

4<br />

9<br />

1 1<br />

2<br />

C<br />

x<br />

dx<br />

x<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

C<br />

u<br />

du<br />

2<br />

1<br />

2<br />

1<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

C<br />

x<br />

a<br />

b<br />

b<br />

x<br />

b<br />

a<br />

1<br />

2<br />

2<br />

2<br />

sin<br />

1<br />

1<br />

<br />

<br />

<br />

<br />

<br />

<br />

x<br />

a<br />

b<br />

u<br />

C<br />

u<br />

b<br />

du<br />

b<br />

1<br />

sin<br />

but<br />

1<br />

1<br />

0.3128<br />

2<br />

3<br />

u<br />

x<br />

0.3128<br />

0.2272<br />

0.3128<br />

0.2272


In general<br />

1 1 dx<br />

dx <br />

2 2 2 2<br />

a b x a 2 <br />

b <br />

2<br />

1 x <br />

2 <br />

a <br />

1<br />

<br />

2<br />

a<br />

a 2<br />

sec udu<br />

b<br />

2<br />

1<br />

tan u<br />

2<br />

1 sec udu<br />

<br />

ab<br />

2<br />

sec u<br />

1<br />

du<br />

ab<br />

1 u K<br />

ab<br />

1 1<br />

tan<br />

ab<br />

b<br />

Let tan u <br />

a<br />

a<br />

sec<br />

b<br />

2<br />

u tan<br />

udu dx<br />

1<br />

but 1<br />

tan<br />

x<br />

b <br />

x<br />

a <br />

2<br />

u sec<br />

Example 1:<br />

1<br />

dx<br />

<br />

2<br />

25 x<br />

3<br />

1 1<br />

dx<br />

25<br />

2<br />

x 3<br />

1<br />

<br />

5 <br />

x 3<br />

Let tan u <br />

5<br />

2<br />

5 sec udu dx<br />

2<br />

1 5sec u<br />

2<br />

2<br />

<br />

du but sec u 1 tan u<br />

25 <br />

2<br />

1 tan u<br />

2<br />

1 sec u 1<br />

du u k<br />

5<br />

2<br />

sec u 5<br />

1 1 1 x 3 <br />

<br />

dx tan K<br />

<br />

2<br />

25 x 3 5 5 <br />

Example 2:<br />

1<br />

dx<br />

<br />

2<br />

4 x 1<br />

<br />

<br />

<br />

b <br />

x K<br />

a <br />

<br />

<br />

<br />

2<br />

u<br />

1<br />

2<br />

1<br />

2<br />

<br />

<br />

1 x 1<br />

dx 2sin u<br />

2<br />

2<br />

x 1<br />

1<br />

<br />

<br />

dx 2cos udu<br />

<br />

2<br />

<br />

1<br />

2cos udu<br />

2<br />

1<br />

sin u<br />

<br />

Hence<br />

<br />

du u k<br />

EXERCISE 7 (h)<br />

1<br />

1. Find (a) dx<br />

4 3x 2<br />

dx<br />

2. Find (i) <br />

2<br />

9 25x<br />

dx<br />

(iii) <br />

2<br />

64 9x<br />

<br />

Let<br />

Example 3:<br />

1<br />

dx<br />

x 18<br />

1<br />

dx <br />

2 2<br />

2 12x<br />

21 2x<br />

6x<br />

9<br />

21 <br />

dx 1 dx<br />

<br />

<br />

2 3<br />

2 2<br />

x<br />

3 3 1<br />

3<br />

2 x<br />

3<br />

2<br />

tan u x<br />

3<br />

3<br />

dx <br />

3<br />

secudu<br />

2<br />

2<br />

but 1<br />

tan u sec<br />

3 2<br />

sec udu<br />

1 2<br />

=<br />

3 2<br />

1<br />

tan u<br />

<br />

<br />

1<br />

3 <br />

<br />

2<br />

1 1<br />

tan<br />

6<br />

4<br />

<br />

<br />

<br />

<br />

1 1<br />

dx sin<br />

2<br />

<br />

2<br />

<br />

3<br />

2<br />

<br />

x 1<br />

u<br />

sec udu<br />

<br />

2<br />

sec u<br />

<br />

2 x 3<br />

<br />

1<br />

u K<br />

6<br />

<br />

<br />

K<br />

<br />

x 1 <br />

<br />

2 <br />

K<br />

3<br />

(b) dx<br />

81144 x 2<br />

2dx<br />

(ii) <br />

2<br />

9 16<br />

x<br />

dx<br />

(iv) <br />

16 x<br />

2<br />

265


5dx<br />

3. Find (i) <br />

2<br />

9 4x<br />

dx<br />

4. Find (i) 2<br />

x 6x<br />

13<br />

dx<br />

5. Find (i) 2<br />

x 2x<br />

10<br />

6dx<br />

(ii) 16<br />

x<br />

2<br />

5dx<br />

(ii) 2<br />

2x<br />

5x<br />

6<br />

5dx<br />

(ii) <br />

2<br />

7 36 x<br />

7.18 Integration of partial fraction<br />

1. Partial fractions<br />

What to be done when we want to express<br />

fraction into partial fractions.<br />

Step: check the highest power of x in<br />

numerator and denominator after expansion to<br />

ensure the fraction is proper. If;<br />

a) Highest power of x in numerator is less<br />

than that of denominators then the fraction<br />

is proper.<br />

b) Highest power of x in numerator is equal or<br />

greater than that of denominator then the<br />

fraction is not proper or is improper.<br />

Improper fractions must be expressed as<br />

mixed fraction before as expressing it into<br />

partial fraction by carrying long division<br />

3<br />

x<br />

Example 1: express as mixed fraction<br />

2<br />

x 1<br />

Solution<br />

3<br />

x<br />

2<br />

x 1<br />

x<br />

2<br />

x 1<br />

3 2<br />

x 0x<br />

0x<br />

0<br />

3<br />

x 0x<br />

x<br />

x<br />

<br />

as 3 2<br />

3<br />

x x x<br />

x x <br />

2<br />

2<br />

2<br />

x 1<br />

x 1<br />

x 1<br />

3<br />

x 3<br />

Example 2: Express<br />

<br />

2<br />

x 2 x 1<br />

fraction<br />

Solution:<br />

3<br />

x 3<br />

2<br />

x<br />

2x<br />

1<br />

3<br />

x 3<br />

<br />

2<br />

x 1<br />

<br />

i.<br />

e 3 3<br />

<br />

as a mixed<br />

x<br />

3<br />

2x<br />

2<br />

3<br />

x 3<br />

x<br />

1<br />

x 2 x<br />

3<br />

3<br />

0x<br />

2x<br />

2x<br />

2<br />

2<br />

2<br />

0x<br />

3<br />

x 2<br />

x 1<br />

2<br />

2x<br />

x 1<br />

1<br />

2<br />

2<br />

x<br />

2x<br />

1 x<br />

2x<br />

1<br />

4<br />

x 2 x1<br />

Example 3: express<br />

2 2<br />

x<br />

32<br />

x <br />

fraction.<br />

Solution:<br />

4<br />

x 2x1<br />

2 2<br />

x<br />

32<br />

x <br />

4<br />

x 2x<br />

1<br />

<br />

4 2<br />

x x 6<br />

1<br />

<br />

i.<br />

e.4<br />

<br />

as a mixed<br />

4<br />

4 3 2<br />

4 3 3<br />

x 0x<br />

x 0x<br />

6 x 0x<br />

0x<br />

2x<br />

1<br />

4<br />

x 2x<br />

1<br />

4 3 2<br />

x 0x<br />

x 0x<br />

6<br />

2<br />

x 2x<br />

5<br />

2<br />

x 2x<br />

5<br />

1<br />

2 2 2<br />

2<br />

x<br />

32<br />

x x<br />

3<br />

2<br />

x <br />

2<br />

x<br />

2x<br />

5<br />

1<br />

2<br />

2<br />

x<br />

3 2<br />

x <br />

Step 2: Check whether the denominator can be<br />

factorised and if so factorise it completely<br />

(i) Find out there is difference on the two<br />

squares at denominator<br />

2x<br />

x 14<br />

Example 1: Express<br />

2<br />

4<br />

x 1 x 3<br />

simpler fraction<br />

Solution:<br />

2<br />

2x<br />

x 4<br />

2x<br />

12<br />

x 1<br />

<br />

2<br />

4<br />

x 1 x 3 2x<br />

12x<br />

1x<br />

3<br />

2<br />

2<br />

2x<br />

x 4<br />

into<br />

4x<br />

2 1is different of the two squares i.e<br />

2<br />

4x<br />

1<br />

<br />

266


Example 2: Express<br />

fraction<br />

x<br />

x<br />

4<br />

2<br />

1<br />

in to simpler<br />

Hence<br />

2x<br />

3 2x<br />

3<br />

2x<br />

3<br />

<br />

<br />

4 3 2 2<br />

x x 2x<br />

x<br />

<br />

x<br />

2 x<br />

1 xxx<br />

2x<br />

1<br />

Solution:<br />

4<br />

x 1<br />

2<br />

x<br />

<br />

4<br />

x 1<br />

2 2<br />

2<br />

x<br />

1x<br />

1 x<br />

1x<br />

1x<br />

1<br />

2<br />

x<br />

2<br />

x<br />

1 x<br />

1 x<br />

1<br />

3 2<br />

3x<br />

x 2x<br />

Example 3: Express<br />

2 2<br />

<br />

4x<br />

19<br />

x <br />

Solution:<br />

<br />

4x 2 1<br />

1<br />

2x1<br />

2x<br />

2<br />

9<br />

x <br />

3<br />

x3<br />

x<br />

3 2<br />

3x<br />

x 2x<br />

3 2<br />

3x<br />

x 2x<br />

<br />

2 2<br />

1<br />

4x<br />

9<br />

x 1<br />

2x1<br />

2x3<br />

x3<br />

x<br />

2. Find out if there is common factor at<br />

denominator.<br />

2<br />

x 1<br />

Example 1: Express<br />

3 2 into<br />

x 4x<br />

3x<br />

simpler fraction.<br />

Solution:x is common factor and pull it out.<br />

2<br />

2<br />

x 1<br />

x 1<br />

<br />

3 2<br />

2<br />

x 4x<br />

3x<br />

x x 4x<br />

3<br />

2<br />

but x 4x 3 can be factorised as<br />

2<br />

x 4x<br />

3 x<br />

3x<br />

1<br />

2<br />

2<br />

x 1<br />

x 1<br />

<br />

3 2<br />

x 4x<br />

3x<br />

x x 3 x 1<br />

Then<br />

<br />

2x<br />

3<br />

Example 2: Express 4 3 2<br />

x x 2x<br />

Solution:<br />

Common factor is x 2 .<br />

4 3 2 2 2<br />

x x 2x<br />

x x x 2<br />

2<br />

x<br />

<br />

<br />

x<br />

2x<br />

1<br />

<br />

<br />

Step 3: Check the nature of factors at the<br />

denominator.<br />

1. Check whether the factor at denominator is<br />

linear in order to choose the constants for<br />

partial fractions. If linear factor (constant)<br />

put capital letter on top of it because<br />

derivative of the linear factor is a constant.<br />

Example 1: Express<br />

fraction form.<br />

Solution:<br />

2<br />

x 1<br />

<br />

A<br />

x<br />

x<br />

2<br />

x 1<br />

x<br />

1x<br />

3<br />

xx<br />

1x<br />

3 x<br />

1 x<br />

3<br />

Example 2: Express<br />

x<br />

12x<br />

1<br />

fraction form<br />

Solution:<br />

3x<br />

1<br />

<br />

x 1<br />

2x<br />

1<br />

<br />

B<br />

<br />

3x<br />

1<br />

x 1<br />

2x<br />

1<br />

A<br />

<br />

B<br />

C<br />

in to partial<br />

in partial<br />

Step 4: Check whether the factors at<br />

denominator are repeated so that you start with<br />

power 1 and increase until you reach the power<br />

given of repeated factor as you put constant<br />

(capital letter) on top of them<br />

6x<br />

Example 1: Express <br />

2 in to<br />

x 2 x 4<br />

partial fraction form.<br />

Solution:<br />

6x<br />

<br />

A<br />

x<br />

2x<br />

4 4 x 2 x 4 x<br />

4 2<br />

Example 2: Express <br />

3<br />

partial fraction form.<br />

Solution<br />

<br />

B<br />

<br />

2<br />

x 2x<br />

8<br />

x 1<br />

x 3<br />

C<br />

into<br />

267


2<br />

x 2x<br />

8<br />

<br />

A<br />

<br />

x<br />

1x<br />

4 2 x 1<br />

x 3 x<br />

3 2 x<br />

3 3<br />

B<br />

<br />

C<br />

<br />

D<br />

then compare the co-efficiencies of x of<br />

different powers.<br />

Step 5: check whether there is quadratic factor<br />

at denominator. Before you conclude that the<br />

factor is quadratic factor make sure it cannot be<br />

factorised to become linear factors. Like x<br />

2 4<br />

is not quadratic factor because<br />

2<br />

x 4 x 2 x 2 , but if factorised into<br />

<br />

surds i.e. x 2 – 2 = (x – 2)<br />

( x 2)<br />

is<br />

considered not factorisable, hence x<br />

2 2 2(1)<br />

A(1<br />

1)<br />

B(1<br />

1)<br />

2 2A<br />

A 1<br />

remains a quadratic factor . If it is a quadratic When x = -1<br />

factor then express its numerators as Ax B 2(<br />

1)<br />

A(<br />

11)<br />

B(<br />

11)<br />

2<br />

2B<br />

B <br />

where A and B are constants 2(<br />

1)<br />

because A(<br />

1when 1) Byou<br />

( 11)<br />

2<br />

2B<br />

B 1<br />

2<br />

differentiate ax bx c you obtain 2 ax b<br />

since constants 2 a a a A as one constant. Example 2<br />

This is the reason why all constants are capital<br />

11x<br />

1<br />

Express<br />

in the form<br />

letters.<br />

<br />

2<br />

x 1x<br />

1<br />

2<br />

x x 3<br />

A Bx C<br />

Example 1: Express<br />

x<br />

2<br />

2x<br />

2 into partial <br />

9<br />

x 1 2<br />

x 1<br />

fraction form<br />

Solution:<br />

Solution<br />

x<br />

2<br />

2<br />

x 3 Ax B Cx<br />

D<br />

<br />

11x<br />

1<br />

Ax<br />

1 ( Bx C)(<br />

x 1)<br />

x<br />

2<br />

2x<br />

2<br />

9 x<br />

2<br />

2 x<br />

2<br />

9<br />

When x = 1<br />

12 A(2)<br />

A 6<br />

Example 2: Express<br />

form<br />

Solution:<br />

x<br />

2<br />

5<br />

<br />

x<br />

4<br />

1<br />

x<br />

2<br />

5<br />

2<br />

x 5<br />

x<br />

4<br />

1<br />

into partial fraction<br />

<br />

x<br />

2<br />

1 x<br />

2<br />

1 x<br />

1x<br />

1x<br />

2<br />

1<br />

x<br />

2<br />

5 A B Cx<br />

D<br />

<br />

x<br />

4<br />

1<br />

x 1<br />

x 1<br />

x<br />

2<br />

1<br />

x<br />

2<br />

5<br />

Step 4: How to find the constants<br />

NB:<br />

1. Start by eliminating linear factors.<br />

2. If all the linear factors have been eliminated,<br />

put x = 0<br />

3. In case the two above have been done and<br />

there are still some constants left expand<br />

both sides and bring them under same LCM<br />

Example 1.<br />

2x<br />

A B<br />

Find A and B<br />

<br />

<br />

<br />

x 1<br />

x 1<br />

x 1<br />

x 1<br />

denominator with only linear factors<br />

Solution<br />

2x<br />

A x 1<br />

B x 1<br />

When x = 1<br />

<br />

<br />

<br />

2<br />

2<br />

11x<br />

1<br />

Ax A Bx Bx Cx C<br />

Comparing coefficients of x on both sides for<br />

2<br />

x A B 0 6 B 0<br />

B 6<br />

for x 11 C B substituting for B<br />

11 C ( 6)<br />

C 5<br />

11x<br />

1<br />

6 6x<br />

5<br />

<br />

2<br />

1 2<br />

x 1<br />

x 1<br />

x x 1<br />

6 6x<br />

5<br />

<br />

2<br />

2<br />

x 1<br />

x 1<br />

x 1<br />

Example 3<br />

1<br />

If =<br />

2<br />

( x 2)( x 1)<br />

A B D<br />

then find A, B and C.<br />

x 2 x 1<br />

2<br />

( x 1)<br />

1<br />

268


Solution<br />

2x<br />

Example 1: Express<br />

as partial<br />

1 A B D<br />

<br />

x 1 x 1<br />

2<br />

2<br />

( x 2)( x 1)<br />

x 2 x 1<br />

( x 1)<br />

2x<br />

fraction. Hence find<br />

dx<br />

2<br />

1 A(<br />

x 1)<br />

B(<br />

x 1)(<br />

x 2) D(<br />

x 2)<br />

x<br />

1 x 1<br />

When x = 1<br />

2x<br />

A B <br />

1<br />

<br />

denominator with<br />

1 3D<br />

D <br />

<br />

<br />

x 1<br />

x 1<br />

x 1<br />

x 1 <br />

3<br />

only linear factors<br />

When x = -2<br />

2x<br />

Ax<br />

1 Bx<br />

1<br />

2 1<br />

1 A(<br />

3)<br />

A <br />

When x = 1<br />

9<br />

2(1)<br />

A(1<br />

1)<br />

B(1<br />

1)<br />

2 2A<br />

A 1<br />

2<br />

2<br />

1 Ax 2Ax<br />

A Bx Bx 2B<br />

Dx 2 When x = -1<br />

3<br />

comparing coefficients of x on both sides. 2(<br />

1)<br />

A(<br />

11)<br />

B(<br />

11)<br />

2<br />

2B<br />

B 1<br />

2(<br />

1<br />

1) A(<br />

11)<br />

B(<br />

11)<br />

2<br />

2B<br />

B 1<br />

0 A<br />

B B <br />

9<br />

2x<br />

1 1<br />

dx dx dx<br />

1<br />

<br />

hence<br />

x<br />

1 x 1<br />

x 1<br />

x 1<br />

2<br />

( x 2)( x 1)<br />

ln( x 1 ) ln( x 1 ) K<br />

1 1 1<br />

<br />

9( x 2) 9( x 2) 2<br />

3( x 1)<br />

Example 4<br />

2<br />

x 2x<br />

7 A Bx D<br />

If<br />

, find A, B<br />

2<br />

2<br />

( x 3)( x 1)<br />

( x 3) ( x 1)<br />

and D<br />

Solution<br />

2<br />

2<br />

x 2x<br />

7 A(<br />

x 1)<br />

( Bx D)(<br />

x 3)<br />

When x = 3<br />

9 6 7 A(10)<br />

A 1<br />

2<br />

2<br />

2<br />

x 2x<br />

7 Ax A Bx 3Bx<br />

Dx 3D<br />

Comparing coefficients and constants on both<br />

sides;<br />

1 A B ……………………(i)<br />

2 D 3B ………………..(ii)<br />

7 A 3D ………………….(iii)<br />

Hence<br />

4 3<br />

x 2x<br />

4x<br />

4 1<br />

x 1<br />

<br />

2<br />

( x 3)( x 1)<br />

x 3 x<br />

Integration using partial fraction<br />

2<br />

1<br />

2<br />

2 x<br />

dx ln( x 1 )( x 1 ) K<br />

x 1 x 1 <br />

Example 2: Express<br />

A Bx C<br />

<br />

x 1 2<br />

x 1<br />

hence find<br />

11x<br />

2<br />

11x<br />

1<br />

A x 1<br />

( Bx C)(<br />

x 1<br />

When x = 1<br />

12 A(2)<br />

A 6<br />

in the form<br />

<br />

2<br />

x 1x<br />

1<br />

11x<br />

1<br />

2<br />

x<br />

1x<br />

1 dx<br />

2<br />

2<br />

11x<br />

1<br />

Ax A Bx Bx Cx C<br />

Comparing coefficients of x on both sides for<br />

2<br />

x A B 0 6 B 0<br />

B 6<br />

for x 11 C B substituting for B<br />

11 C ( 6)<br />

C 5<br />

11x<br />

1<br />

6 6x<br />

5<br />

<br />

2<br />

1 1 1<br />

2<br />

x x x x 1<br />

6 6x<br />

5<br />

<br />

2<br />

2<br />

x 1<br />

x 1<br />

x 1<br />

11x<br />

1<br />

dx<br />

2<br />

x 1<br />

x 1<br />

<br />

ln( x<br />

2 1 ) K<br />

1<br />

)<br />

269


6 6x<br />

5<br />

dx dx <br />

1<br />

2<br />

x 1<br />

2<br />

x <br />

<br />

dx<br />

x 1<br />

1<br />

6x<br />

6ln( x 1)<br />

tan ( x)<br />

dx<br />

2<br />

x 1<br />

Let u x 2 1<br />

du dx<br />

2x<br />

6x<br />

6x<br />

6x<br />

du<br />

<br />

2 2<br />

x 1<br />

x 1<br />

u 2x<br />

du<br />

= 3<br />

u<br />

3 ln u K<br />

3 ln( x 1 ) K<br />

11 x 1<br />

dx<br />

2<br />

( x 1 )( x 1 )<br />

6 ln( x 1 ) 5 (tan<br />

1<br />

( x ) 3 ln( x 1 ) K<br />

1<br />

Example 3: If =<br />

2<br />

( x 2)( x 1)<br />

A B D<br />

then find A, B and C.<br />

x 2 x 1<br />

2<br />

( x 1)<br />

1<br />

Hence find<br />

<br />

2<br />

x<br />

2x<br />

1 dx<br />

1 A B D<br />

<br />

2<br />

2<br />

( x 2)( x 1)<br />

x 2 x 1<br />

( x 1)<br />

1 A(<br />

x 1)<br />

When x = 1<br />

2<br />

B(<br />

x 1)(<br />

x 2) D(<br />

x 2)<br />

1<br />

1 3D<br />

D <br />

3<br />

When x = -2<br />

2 1<br />

1 A(<br />

3)<br />

A <br />

9<br />

2<br />

2<br />

1 Ax 2Ax<br />

A Bx Bx 2B<br />

Dx 2<br />

3<br />

comparing coefficients of x on both sides.<br />

1<br />

0 A<br />

B B <br />

9<br />

1<br />

hence<br />

2<br />

( x 2)( x 1)<br />

1 1 1<br />

<br />

9( x 2) 9( x 2) 2<br />

3( x 1)<br />

2<br />

<br />

<br />

1<br />

dx <br />

2<br />

( x 2)( x 1)<br />

1<br />

<br />

( x 2 )( x 1 )<br />

Example 4: Express f(x)<br />

4 3 2<br />

x 2x<br />

x 4x<br />

4<br />

as a partial fraction.<br />

2<br />

x 1<br />

x 3<br />

Hence find<br />

<br />

Solution:<br />

4 3 2<br />

x 2x<br />

x 4x<br />

4<br />

2<br />

( x 3)( x 1)<br />

<br />

<br />

<br />

f<br />

dx<br />

x<br />

2<br />

x 2x<br />

7<br />

x 1<br />

2<br />

( x 3)( x 1)<br />

because of carrying<br />

long divisions.<br />

We can express<br />

2<br />

x 2x<br />

7<br />

2<br />

( x 3)( x 1)<br />

in partial<br />

fraction.<br />

2<br />

x 2x<br />

7 A Bx D<br />

<br />

2<br />

2<br />

( x 3)( x 1)<br />

( x 3) ( x 1)<br />

2<br />

2<br />

x 2x<br />

7 A(<br />

x 1)<br />

( Bx D)(<br />

x 3)<br />

When x = 3<br />

9 6 7 A(10)<br />

A 1<br />

<br />

1<br />

dx<br />

9( x 2)<br />

1<br />

1<br />

dx <br />

9( x 1)<br />

3<br />

1 1<br />

1<br />

ln( x 2 ) ln( x 1 ) K<br />

9 9 3 ( x 1 )<br />

1 x 2 1<br />

ln K<br />

9 x 1 3 ( x 1 )<br />

2<br />

dx<br />

2<br />

2<br />

2<br />

x 2x<br />

7 Ax A Bx 3Bx<br />

Dx 3D<br />

Comparing coefficients and constants on both<br />

sides;<br />

1 A B ……………………(i)<br />

2 D 3B ………………..(ii)<br />

7 A 3D ………………….(iii)<br />

Hence<br />

4 3<br />

x 2x<br />

4x<br />

4 1 2<br />

x 1<br />

<br />

2<br />

2<br />

( x 3)( x 1)<br />

x 3 x 1<br />

<br />

2<br />

( x 1)<br />

dx<br />

270


x<br />

4<br />

2x<br />

3<br />

x<br />

2<br />

4x<br />

4<br />

<br />

dx<br />

( x 3)( x<br />

2<br />

1)<br />

1 2<br />

( x 1)<br />

dx dx dx<br />

( x 3) x<br />

2<br />

1<br />

Example 5: Find<br />

Solution:<br />

EXERCISE 7 (i)<br />

1. Use partial fractions to evaluate<br />

6 dx<br />

(i) 4 2<br />

x 2x 3<br />

3 2<br />

6 2x<br />

2x<br />

2<br />

ii) Find 4 2 2<br />

(1 x)<br />

(1 x )<br />

2x<br />

x 14<br />

2. Express f ( x)<br />

<br />

as a partial<br />

2<br />

2<br />

(4x<br />

1)(<br />

x 3)<br />

fractions and hence evaluate 3<br />

3. Find<br />

( x 3)<br />

(i) <br />

( x 1)(3x<br />

1)<br />

2<br />

2<br />

2<br />

dx<br />

5x<br />

16<br />

(ii) <br />

dx<br />

4<br />

x 16<br />

2x<br />

x<br />

4. Find (i) <br />

2 2 3<br />

dx<br />

( x 2)(3x<br />

1)<br />

ii)<br />

2<br />

<br />

( x<br />

2<br />

5. Express<br />

2<br />

x<br />

dx<br />

3<br />

1)(3x<br />

1)<br />

2x<br />

2<br />

<br />

x 4<br />

( x 3)(4x<br />

2<br />

x 2<br />

dx<br />

( x 1)(<br />

x 1)<br />

x 2 3 <br />

dx 1<br />

<br />

( x 1)(<br />

x 1)<br />

<br />

( x 1)(<br />

x 1)<br />

<br />

3<br />

3<br />

1dx<br />

dx dx<br />

2( x 1)<br />

2( x 1)<br />

<br />

<br />

2<br />

x<br />

<br />

2<br />

x ln( x 3 ) 2 tan<br />

2<br />

x 2<br />

dx x <br />

( x 1 )( x 1 )<br />

2<br />

1)<br />

1<br />

3<br />

2<br />

( x ) K<br />

x<br />

In<br />

x<br />

and<br />

1<br />

dx<br />

1<br />

C<br />

1<br />

f ( x)<br />

dx<br />

6. Express<br />

<br />

f ( x)<br />

dx<br />

7. Express<br />

f<br />

x<br />

x 4<br />

x)<br />

<br />

( x 3)(1 x<br />

(<br />

3<br />

2<br />

<br />

hence evaluate<br />

8. Find<br />

(i)<br />

ii)<br />

<br />

<br />

3<br />

<br />

2<br />

hence find<br />

)<br />

1<br />

into partial fractions,<br />

x 1<br />

3<br />

<br />

2<br />

x<br />

x<br />

dx<br />

2<br />

x x 20<br />

3<br />

x<br />

dx<br />

2<br />

( x 1)( x 4)<br />

2<br />

2<br />

1<br />

dx .<br />

x 1<br />

12x<br />

x<br />

9. Express as a partial fractions.<br />

2<br />

( x 1)(2x<br />

1)<br />

7x<br />

2<br />

10. Express f ( x)<br />

<br />

as a partial<br />

2 2<br />

( x 1)<br />

(4 x )<br />

fraction hence, find <br />

f ( x)<br />

dx<br />

x(<br />

x 1)<br />

11. Find the integral of <br />

dx<br />

2<br />

( x 2)<br />

11x<br />

12<br />

12. Express<br />

in partial<br />

3 2<br />

2x<br />

x 15x<br />

18<br />

fractions hence evaluate 6<br />

ydx<br />

5<br />

3<br />

2<br />

3x<br />

2x<br />

3x<br />

1<br />

13. Express<br />

into partial<br />

2<br />

x(<br />

x 1)<br />

fractions<br />

2<br />

3x<br />

1<br />

x<br />

14. Express f ( x)<br />

into partial<br />

3<br />

(1 x)(<br />

x 2)<br />

fraction. Hence evaluate 4<br />

2<br />

<br />

<br />

3<br />

2<br />

f ( x)<br />

dx<br />

2x<br />

14x<br />

3<br />

15. Express f ( x)<br />

into partial<br />

2<br />

2x<br />

9x<br />

4<br />

fractions hence find<br />

<br />

f ( x)<br />

dx<br />

4<br />

x 2x<br />

16. Express dx as partial fractions.<br />

2<br />

( x 1)(<br />

x 1)<br />

2<br />

( x 2x)<br />

Hence find <br />

dx<br />

2<br />

( x 1)(<br />

x 1)<br />

271


4x<br />

17. Express 2 3x<br />

2<br />

dx in partial fractions.<br />

( x 1)(2x<br />

3)<br />

x 3x<br />

2<br />

Find <br />

dx<br />

( x 1)(2x<br />

3)<br />

4 2<br />

3<br />

5x<br />

2x<br />

5x<br />

18. Express f ( x)<br />

<br />

in partial<br />

4<br />

x 1<br />

fractions hence evaluate 2<br />

f ( x)<br />

dx . Correct<br />

to 4 decimal places.<br />

7.19 Integration by Substitution method<br />

1<br />

Example 1. Find dx by using cos x<br />

1 cos x<br />

2<br />

2 x<br />

cos x 2cos 1<br />

2<br />

1<br />

dx<br />

2 x<br />

(1 2cos 1)<br />

2<br />

1 1 2 x 1 x<br />

sec tan C<br />

2 x 2 2 2 2<br />

2 cos<br />

2<br />

Example 2. Find x dx<br />

x (3 1 )<br />

2<br />

( u u<br />

<br />

2 u 3x<br />

1<br />

1) 2<br />

u du<br />

2<br />

3 3 3x<br />

u 1<br />

2u<br />

dx du<br />

3<br />

2 2 2<br />

(<br />

u 1)<br />

u du<br />

9<br />

2 4 2<br />

u<br />

u du<br />

9<br />

2 5 2 3<br />

u u K<br />

45 27<br />

Example 3 Find<br />

<br />

Use u <br />

2 3<br />

u<br />

( 3 u<br />

2 5 ) K<br />

135<br />

2<br />

3<br />

3 x 1 2 3 3 x 1 5 K<br />

135<br />

2<br />

1<br />

( x 2)( x 1)<br />

(3x<br />

1)<br />

4<br />

dx<br />

<br />

Let u x 1<br />

x u 1<br />

dx du<br />

4<br />

( u 3) u du<br />

<br />

u du<br />

u 5 4<br />

( 3 )<br />

1 5<br />

( x 1)<br />

(5x<br />

13)<br />

k<br />

30<br />

x(<br />

x 4)<br />

Example 4 dx<br />

2<br />

( x 2)<br />

<br />

<br />

( x 2 )( x 1 )<br />

( u 2)( u 2)<br />

du<br />

2<br />

u<br />

2<br />

6<br />

u<br />

6<br />

u<br />

3<br />

u<br />

5<br />

5<br />

( u 2)2u<br />

2<br />

du (2u<br />

<br />

u <br />

2 3<br />

u 3 <br />

<br />

<br />

<br />

K<br />

6 5 <br />

4<br />

<br />

5<br />

K<br />

dx ( x 1 )<br />

u 4 u K<br />

3<br />

Let u x 2<br />

x u 2<br />

dx du<br />

x 1 3 <br />

K<br />

6 5 <br />

u 4 4 4<br />

du 1 du u K<br />

2<br />

2<br />

u u u<br />

x ( x 4 )<br />

4<br />

dx ( x 2 ) K<br />

2<br />

( x 2 )<br />

( x 2 )<br />

1 ( x 2 ) 4 2 K<br />

x 2<br />

x<br />

Example 5 dx<br />

( x 2)<br />

Let<br />

u x 2<br />

2<br />

u 2 x<br />

dx 2udu<br />

2<br />

4) du<br />

5<br />

272


Example 6 Use the substitution<br />

evaluate.<br />

<br />

Let<br />

x sin <br />

dx cos<br />

d <br />

<br />

<br />

<br />

1<br />

2 dx<br />

1 2<br />

2 x 1 x<br />

2<br />

<br />

<br />

<br />

4<br />

<br />

6<br />

<br />

4<br />

<br />

6<br />

<br />

cot <br />

( 1) (1.7321)<br />

0.7321(4dps)<br />

Example 7: Evaluate<br />

Solution:<br />

Let x<br />

x<br />

dx <br />

( x 2 )<br />

cos 2<br />

dx 2sin 2d<br />

<br />

<br />

<br />

1<br />

0<br />

2<br />

(sin )<br />

1 x <br />

<br />

1 x <br />

<br />

0<br />

<br />

2<br />

cos <br />

( 1<br />

cos ec d <br />

<br />

4<br />

<br />

6<br />

<br />

4<br />

<br />

4<br />

<br />

sin<br />

1<br />

2<br />

dx<br />

x 2 )<br />

dx<br />

x<br />

1<br />

2<br />

1<br />

2<br />

x<br />

0<br />

1<br />

2<br />

d <br />

)<br />

<br />

1<br />

0 1<br />

4<br />

<br />

<br />

6<br />

<br />

4<br />

1<br />

x<br />

dx<br />

x<br />

x sin to<br />

<br />

<br />

4<br />

0<br />

1 cos 2 <br />

( 2 sin 2 ) d <br />

1 cos 2 <br />

1 cos 2 <br />

2 sin 2 d <br />

0 1 cos 2 <br />

<br />

4<br />

2<br />

(<br />

3<br />

3<br />

2<br />

( x 2 ) K<br />

Example 8: Evaluate<br />

Solution:<br />

Let<br />

<br />

2 1<br />

<br />

t tan<br />

2<br />

1 2 <br />

dt sec d<br />

2 2<br />

2dt<br />

d<br />

<br />

2 <br />

sec<br />

2<br />

2dt<br />

<br />

2 <br />

1<br />

tan<br />

2<br />

2dt<br />

<br />

2<br />

1<br />

t<br />

3<br />

<br />

0<br />

=<br />

2<br />

<br />

<br />

<br />

<br />

sin <br />

2 sin 2 d <br />

cos <br />

0<br />

<br />

<br />

4 2 sin cos <br />

2 d <br />

cos <br />

<br />

2<br />

4 sin d <br />

0<br />

<br />

<br />

0<br />

4 1<br />

4 ( 1 cos 2 ) d <br />

2<br />

<br />

0<br />

2 sin 2 0<br />

<br />

2 3 <br />

<br />

0 1 sin <br />

d<br />

2 d <br />

<br />

2 tan<br />

1 2<br />

2 <br />

1 tan<br />

2<br />

2<br />

2 sin <br />

sin 2 d <br />

<br />

2 cos <br />

<br />

0<br />

2<br />

<br />

4<br />

<br />

4<br />

2<br />

<br />

4<br />

273


2 <br />

1 tan <br />

4<br />

= 3 <br />

2 d <br />

0 2 <br />

1 tan tan<br />

2 2 <br />

2 2dt<br />

(1 t )<br />

1<br />

2<br />

3<br />

1<br />

t<br />

0<br />

2<br />

1<br />

t 2t<br />

1 dt<br />

3<br />

2 0<br />

2<br />

(1 t)<br />

6 <br />

<br />

1 <br />

t <br />

Example 9: Find<br />

<br />

<br />

EXERCISE 7 (j)<br />

1. Use substitution t tan to find<br />

2<br />

d<br />

i) 1<br />

cos <br />

d<br />

ii) 1<br />

sin cos<br />

2. Use the substitution x = sec to evaluate<br />

(i) <br />

ii) <br />

5<br />

2<br />

1 4 2<br />

5<br />

x<br />

1<br />

Let<br />

0<br />

x<br />

2 2<br />

<br />

x u<br />

2<br />

x u<br />

x<br />

x<br />

dx<br />

6<br />

2<br />

dx<br />

(x 1)<br />

3<br />

dx<br />

( x 1)<br />

dx 2udu<br />

2u<br />

du<br />

2<br />

( u 1)<br />

u<br />

2<br />

1<br />

du 2 du<br />

2<br />

u u <br />

2<br />

( 1) 1 u<br />

<br />

dx<br />

( x 1 )<br />

2 tan<br />

2 tan<br />

x<br />

1<br />

1<br />

(<br />

x<br />

( u ) K<br />

x ) K<br />

3. Use the substation x 2 = to find<br />

2<br />

x<br />

<br />

dx<br />

<br />

2<br />

1 cosx<br />

4. use the substitution u = x 3 + 2x 2 + x to<br />

2<br />

3<br />

3x<br />

4x<br />

<br />

evaluate <br />

<br />

<br />

dx<br />

1 2 2<br />

x 2x<br />

x <br />

5. By using substitution x = tan to evaluate<br />

12<br />

1<br />

5<br />

dx<br />

<br />

4<br />

3<br />

3<br />

2 2<br />

)<br />

x(1<br />

x<br />

1<br />

6. By using x or x = sec 2 to evaluate<br />

u<br />

2 dx<br />

<br />

x<br />

x<br />

1 2<br />

1<br />

2 2 x <br />

7. Use x = 2cos2 to evaluate dx<br />

0<br />

2 x <br />

8. Using the substitution u 2 = 2x – 1, evaluate<br />

5 3x<br />

dx<br />

1<br />

2x<br />

1<br />

b) Find 3x<br />

dx<br />

x 3<br />

9. Using the substitution x = e y , find<br />

3 ln x 3 ln x<br />

(i) dx (ii) dx<br />

2 2<br />

x<br />

x<br />

10. Using the substitution u = 2-x show that<br />

1 x<br />

dx 3 4ln 2<br />

0 2 x<br />

11. Evaluate the integral<br />

1<br />

1<br />

2 2<br />

1<br />

i) x 1 x dx ii)<br />

0 dx<br />

0 2<br />

(1 x<br />

2 )<br />

12. a) Use u tan to evaluate<br />

2<br />

<br />

5<br />

2<br />

<br />

d<br />

0 3sin 4 cos <br />

x 3<br />

b) Find <br />

x e dx<br />

2<br />

13. a) Use the substitution u=x to evaluate<br />

3 1<br />

dx<br />

1<br />

x x<br />

<br />

cos x<br />

2<br />

b) Evaluate dx , correct to 3<br />

0 2<br />

1<br />

sin x<br />

decimal places.<br />

274


1<br />

14. a) Find dx<br />

3<br />

2<br />

(4 x<br />

2 )<br />

1<br />

b) Evaluate the integral<br />

2<br />

dx<br />

0<br />

1<br />

cos x<br />

2 1<br />

15. Use x = 2cos to evaluate <br />

dx<br />

1 2 2<br />

x 4 x<br />

16. (i) Use the substitution x = sin to evaluate<br />

1<br />

2<br />

1<br />

x <br />

dx<br />

0<br />

1<br />

x <br />

(ii) Use the substitution x = cos 2 to<br />

evaluate<br />

17. Integrate<br />

<br />

1<br />

2<br />

0 1<br />

1<br />

x <br />

dx<br />

x <br />

1<br />

2<br />

2<br />

(1 9x<br />

)(1 9x<br />

)<br />

x<br />

1<br />

sin x 1 8<br />

18. Show that<br />

2<br />

dx<br />

ln<br />

0<br />

5 cos x 3 3<br />

19. Show that if x = cos2,<br />

<br />

1<br />

2<br />

with respect to<br />

1 1<br />

x <br />

dx<br />

1<br />

0<br />

1<br />

x 2<br />

3 x<br />

20. Express f ( x)<br />

<br />

as partial<br />

2<br />

(1 x)(1<br />

x )<br />

fractions find <br />

f ( x)<br />

dx<br />

12<br />

5<br />

dx<br />

21. Evaluate 4<br />

by using<br />

3<br />

3<br />

2<br />

x( 1<br />

x<br />

2 )<br />

substitution x = tan .<br />

<br />

d<br />

22. Evaluate<br />

4<br />

0 2<br />

2<br />

3sin cos <br />

1<br />

23. Show that 5 1<br />

25x<br />

<br />

2 2<br />

2<br />

<br />

dx <br />

0<br />

40<br />

24. Use the substitution u = e x to show that<br />

x<br />

ln 3 e <br />

<br />

0 2x<br />

1<br />

e 12<br />

3<br />

8x<br />

25. Find the integral <br />

dx<br />

1 x<br />

8<br />

26. Evaluate 0<br />

sin( 2x<br />

)cos 5x<br />

cos 2xdx<br />

27. Find (i) sec 2 xsin xdx<br />

1<br />

ii) <br />

dx<br />

<br />

2<br />

1 sin x<br />

x<br />

iii) <br />

dx<br />

16 x<br />

2<br />

1 1<br />

28. Show that<br />

2<br />

<br />

<br />

x <br />

dx<br />

( 2 2)<br />

0<br />

1<br />

x 2 2<br />

29. Show that<br />

x 1 2 1 4x<br />

1<br />

dx ln( 2x<br />

x 1)<br />

tan <br />

2<br />

2x<br />

x 1<br />

4<br />

2 7 7 <br />

x<br />

Find dx<br />

5<br />

2x<br />

1<br />

<br />

<br />

1<br />

31. Integrate<br />

with respect <br />

3sin 2 4cos2<br />

32. Evaluate <br />

sin x<br />

3<br />

<br />

dx<br />

2sin x cos x<br />

2<br />

0 sec<br />

33. Evaluate (i) <br />

d <br />

4<br />

cos<br />

sin <br />

<br />

(ii) 4 2<br />

tan d <br />

0<br />

34. Using the substitution t = tan x<br />

<br />

1<br />

(i)<br />

4<br />

0 2<br />

1<br />

sin x<br />

<br />

dx<br />

(ii)<br />

4<br />

0 2<br />

2<br />

4cos x 9sin x<br />

2 2<br />

35. Evaluate (i) x ( 1<br />

x ) dx<br />

<br />

<br />

1<br />

0<br />

1<br />

2<br />

(ii)<br />

4 2<br />

(sec 1)<br />

dx<br />

0<br />

36. Use the substitution t = sin x to evaluate<br />

<br />

4cos x<br />

2<br />

<br />

2 to two decimal places<br />

3 sin x<br />

6<br />

x<br />

Find (i) dx<br />

1 x<br />

2<br />

(ii)<br />

<br />

x tan 1<br />

(<br />

3<br />

x dx<br />

5<br />

2 x<br />

37. (a) Evaluate dx<br />

0 4<br />

(16 x )<br />

(b) Using the substitution x = 4sin 2 u to<br />

2<br />

evaluate x ( 4 x)<br />

dx<br />

0<br />

3<br />

2<br />

C<br />

275


38. Use the substitution x = 2cos to<br />

dv<br />

x<br />

2 1<br />

<br />

dx<br />

dx<br />

1 2 2<br />

x 4 x )<br />

2<br />

x<br />

v <br />

2<br />

7.110 Integration by parts<br />

1<br />

u sin ( x)<br />

d du dv<br />

Recall ( uv)<br />

v u<br />

du 1<br />

dx dx dx<br />

<br />

d du dv<br />

dx 2<br />

1<br />

x <br />

( uv)<br />

dx v dx v dx<br />

dx dx dx<br />

2<br />

2<br />

x 1<br />

x 1<br />

du dv<br />

uv v dx u dx<br />

d ( )<br />

sin ( x)<br />

<br />

dx<br />

2<br />

dx <br />

2 2<br />

dx<br />

1<br />

x <br />

dv du<br />

2<br />

uv u dx v dx<br />

x <br />

dx dx<br />

From <br />

<br />

1<br />

dx<br />

2 <br />

2<br />

dv<br />

du<br />

1<br />

x <br />

u dx uv v dx<br />

dx <br />

Let<br />

dx<br />

Example 1: Evaluate<br />

sin u x<br />

<br />

2 2<br />

2<br />

x sin u<br />

x cos xdx<br />

0<br />

cos udu dx<br />

2<br />

dv<br />

sin<br />

u<br />

1<br />

Let u x cos x<br />

<br />

cos udu<br />

dx<br />

2<br />

2<br />

1<br />

sin u<br />

du<br />

1<br />

and v sin x<br />

1 2<br />

dx<br />

sin udu<br />

2<br />

1 1<br />

1<br />

1 <br />

<br />

<br />

<br />

1<br />

cos 2u du <br />

2 2<br />

<br />

cos 2u<br />

<br />

du<br />

2<br />

4<br />

4<br />

x cos xdx<br />

<br />

0<br />

u 1<br />

<br />

sin 2 u C<br />

4 8<br />

2 2<br />

x sin x sin x 1 dx<br />

0 0<br />

<br />

1 1<br />

sin<br />

1 ( x ) sin u cos u C<br />

<br />

<br />

4 4<br />

2<br />

2<br />

x sin x cos x<br />

0<br />

0<br />

sin u x<br />

<br />

2<br />

sin 0<br />

cos<br />

cos 0<br />

cos u (1 x<br />

2 2 2 <br />

<br />

1 1<br />

1<br />

2<br />

<br />

sin ( x)<br />

x 1<br />

x c x sin ( )<br />

0 0 1<br />

4 4 <br />

1 x<br />

2<br />

2<br />

<br />

x 1 1 1 1 2<br />

<br />

sin ( x ) sin ( x ) x 1 x C<br />

2<br />

<br />

x cos xdx <br />

2 4 4<br />

0<br />

2 <br />

1 1 2 1 2<br />

sin ( x ) 2 x 1 x 1 x C<br />

4<br />

4<br />

<br />

Example 2. Find x sin 1 ( x)<br />

dx<br />

<br />

1<br />

<br />

<br />

sin 1 ( x dx<br />

x )<br />

276<br />

Example 3. Find<br />

<br />

xln xdx


2<br />

x<br />

v <br />

2<br />

2 2<br />

x x 1<br />

ln x dx<br />

2 2 x<br />

2<br />

x x<br />

ln x dx<br />

2 2<br />

2 2<br />

x x <br />

ln x K <br />

<br />

2 4 <br />

Example 5.<br />

x<br />

xe dx<br />

<br />

xe<br />

xe<br />

x<br />

x<br />

Let<br />

u Inx<br />

Example 4. Find<br />

ln xdx<br />

du 1<br />

Let u ln x <br />

dx x<br />

dv<br />

1<br />

v x<br />

dx<br />

1<br />

xln<br />

x x dx<br />

x<br />

xln<br />

x <br />

<br />

<br />

<br />

<br />

e<br />

1dx<br />

x ln x x C<br />

e<br />

x<br />

x<br />

C<br />

dx<br />

u x <br />

dv<br />

dx<br />

e<br />

x<br />

du<br />

dx<br />

1<br />

v e<br />

x<br />

5. Find (i) <br />

xsin<br />

3x dx<br />

(ii) <br />

xsec<br />

2<br />

x dx<br />

1<br />

3<br />

6. Evaluate ln( 1<br />

x ) dx<br />

0<br />

2<br />

1<br />

7. Evaluate (i) x<br />

2 ln xdx<br />

(ii) 2<br />

xe 2x<br />

dx<br />

8. Find (i) x<br />

2 e<br />

x dx (ii) ln x dx<br />

(iii) <br />

-1<br />

sin (x)dx<br />

9. Find (i) xsin x<br />

<br />

(ii) Evaluate 0<br />

dx<br />

4<br />

x e<br />

x dx<br />

1<br />

1<br />

10. Evaluate tan x<br />

<br />

<br />

0<br />

7.23 The mean value of a function<br />

Consider a function over a closed interval [a,b].<br />

to find the average (mean) value we use mean<br />

value theorem of integral. This involves the use<br />

of mean value of rectangle whose height is<br />

referred as mean value of the function over the<br />

integral defined. If we need to find the area<br />

under the curve between a and b (As indicated<br />

by shaded part in figure 142)<br />

f(x)<br />

f(b)<br />

dx<br />

1<br />

EXERCISE 7 (k)<br />

<br />

1. Evaluate 2<br />

0<br />

x sin 2 2xdx<br />

f(a)<br />

2. Show that<br />

<br />

0<br />

3<br />

3<br />

1<br />

1<br />

6x<br />

tan (3x)<br />

dx (4<br />

3<br />

9<br />

3<br />

Figure 142<br />

x=a<br />

x=b<br />

x<br />

2<br />

3. Evaluate ln( x 4) dx<br />

5<br />

3<br />

<br />

4. Evaluate<br />

4<br />

x cos2<br />

2x<br />

<br />

0<br />

dx<br />

277


Figure 143<br />

Rectangle part shaded in figure 143 whose<br />

height is f(c) crosses the curve same interval<br />

and its area is equal to area under curve in the<br />

interval. This is called mean value theorem.<br />

If f(x) is continuous function on the mean value<br />

closed interval [a, b], there exists a number C in<br />

closed interval a and b such that area of<br />

rectangle = [f(c)] [b-a]. but area under the curve<br />

in figure 142 between a and b is<br />

b<br />

<br />

a<br />

f xdx<br />

hence<br />

equating these two areas we have<br />

f<br />

b<br />

<br />

<br />

a<br />

cb<br />

a f x<br />

dx<br />

b<br />

1<br />

b c <br />

a<br />

Mean value, f c f x<br />

Example 1: find the mean value of<br />

x<br />

2<br />

2 for x 1 and<br />

Solution:<br />

M.<br />

V<br />

f(b)<br />

f(c)<br />

f(a)<br />

f(x)<br />

x=a<br />

4<br />

x 4<br />

dx<br />

3 4<br />

2 1 <br />

2 <br />

x<br />

x dx 2 9<br />

1<br />

,<br />

4 1<br />

x<br />

3 3 <br />

<br />

a<br />

x=b<br />

Example 2: The displacement x of the particle<br />

at time t, is given by x sin t . Find the mean<br />

<br />

value of its velocity over the interval O t <br />

2<br />

(i) with respect to time and (ii) respect to<br />

displacement x<br />

.<br />

x<br />

1<br />

Solution:<br />

dx<br />

V cos t<br />

dt<br />

1<br />

M.<br />

V <br />

<br />

0<br />

2<br />

2<br />

<br />

<br />

sin<br />

t 2<br />

0<br />

<br />

<br />

2<br />

<br />

2 <br />

<br />

sin sin 0<br />

2 <br />

<br />

2<br />

1<br />

0<br />

<br />

2<br />

<br />

11<br />

ii)<br />

v cos t <br />

1<br />

1<br />

M. V <br />

1<br />

0 <br />

0<br />

1 1<br />

2 2<br />

<br />

<br />

1<br />

2<br />

<br />

<br />

<br />

2<br />

<br />

0<br />

<br />

2<br />

0<br />

1<br />

x<br />

<br />

<br />

1<br />

sin<br />

o<br />

cot dt<br />

1<br />

sin<br />

2<br />

t<br />

<br />

1<br />

x<br />

t 0<br />

<br />

2<br />

x 0 1<br />

1<br />

2<br />

1<br />

x<br />

2<br />

dx<br />

<br />

1<br />

cos 2u<br />

<br />

0<br />

2<br />

u<br />

dx<br />

1<br />

2<br />

du<br />

cos u<br />

Let x=x sin u<br />

x 0 1<br />

u 0<br />

<br />

2<br />

dx cos u d u<br />

du <br />

<br />

2<br />

<br />

0<br />

cos<br />

2<br />

2<br />

u<br />

du<br />

278


u<br />

<br />

<br />

2<br />

<br />

<br />

4<br />

<br />

<br />

4<br />

1<br />

sin<br />

4<br />

1<br />

sin<br />

4<br />

<br />

2u<br />

<br />

<br />

<br />

2<br />

0<br />

0<br />

<br />

2<br />

1<br />

sin 0<br />

4<br />

EXERCISE 7 (l)<br />

1. Find the mean value power out in hour if<br />

P 1000 4800 200t<br />

2<br />

<br />

<br />

<br />

2. Find mean value xx 4<br />

for0<br />

t 24<br />

y in the<br />

intervals 0 x 4<br />

3. Find the mean value of the function<br />

<br />

x cos x for x <br />

4 3<br />

2<br />

4. Find the mean value of 2xe x for0<br />

x 2<br />

5. Find the mean value of sin xsec<br />

x for<br />

<br />

0 x <br />

3<br />

6. Find the mean value of<br />

x<br />

3<br />

ln x<br />

for 1 x 2<br />

7. Find the mean value of<br />

3 x 4<br />

8. Find the mean value of<br />

<br />

<br />

interval <br />

,<br />

6 2 <br />

x<br />

2<br />

2<br />

1<br />

for<br />

3x 2<br />

4cos x<br />

3<br />

cos<br />

<br />

9. Find mean value of sin 1 x<br />

with in<br />

3 <br />

<br />

interval <br />

0 ,<br />

4 .<br />

<br />

10. Find the mean value of<br />

3 x 5<br />

x<br />

2<br />

2<br />

x<br />

with in<br />

1<br />

for<br />

4x 29<br />

Sample Questions<br />

Q1. (a) Find the area enclosed by the curve<br />

y x 2 2 and x – axis and the line x = 3.<br />

(b) Find the area of the region bounded by the<br />

1<br />

curve y and x – axis, and the line x<br />

x2x<br />

1<br />

= 1 and x = 2.<br />

Solution:<br />

(a)<br />

Figure 144<br />

Area of element = yδx (See figure 144)<br />

Area of lamina from x = 2 and x = 3<br />

Hence area needed<br />

<br />

2ydx<br />

3<br />

<br />

3 2<br />

2<br />

( x 2) dx<br />

3<br />

x <br />

2x<br />

3 <br />

3<br />

3 <br />

2(3)<br />

<br />

<br />

3 <br />

2<br />

(9 6) (2)<br />

3<br />

2(2) 6(2)<br />

3 <br />

3<br />

9 4(2)<br />

<br />

3<br />

= 4.8856(4dps)<br />

(b)<br />

3<br />

2<br />

3<br />

2 <br />

2(2)<br />

<br />

3 <br />

<br />

2(2)<br />

<br />

<br />

<br />

<br />

<br />

279


(i)<br />

y1 2x<br />

y<br />

and<br />

3<br />

x<br />

y2<br />

<br />

4<br />

y 2<br />

Figure 145<br />

x<br />

2<br />

x<br />

y 1 – y 2<br />

= y<br />

y 1<br />

Area of element y x (See figure 145)<br />

Area of lamina from x = 1 and x = 2<br />

2<br />

yx<br />

<br />

<br />

1<br />

2<br />

<br />

1<br />

A<br />

<br />

x 2<br />

1<br />

dx<br />

x(2x<br />

1)<br />

B<br />

x<br />

1<br />

<br />

1<br />

x(2x<br />

1)<br />

(2x<br />

1)<br />

A Bx 1<br />

A 1<br />

1<br />

x <br />

2<br />

1<br />

B 1,<br />

B 2<br />

2<br />

2<br />

1 2 <br />

dx<br />

<br />

x 2x<br />

1<br />

<br />

1<br />

2<br />

2 2 <br />

ln<br />

x1 <br />

<br />

ln( 2x<br />

1<br />

2 <br />

1<br />

ln 2 ln 1<br />

ln(5) ln 3<br />

ln( 23)<br />

ln(5 1)<br />

6 <br />

ln <br />

5 <br />

0.18223<br />

Q2. Given curves y 2 2x and x 3 4y<br />

Find<br />

(i) the area they enclose and<br />

(ii) the volume generated by revolving this area<br />

in (i) through 2 about x-axis.<br />

Figure 146<br />

Area of element y x (See figure 146)<br />

2<br />

3 <br />

x<br />

2x<br />

dx<br />

<br />

4 <br />

0<br />

<br />

4<br />

2<br />

2 3 <br />

<br />

2 2 x<br />

x <br />

<br />

3 15 <br />

0<br />

<br />

4<br />

2 2 2 2 2 <br />

<br />

<br />

0<br />

3 16 <br />

<br />

<br />

8 5<br />

1<br />

<br />

3 3<br />

(ii)<br />

Figure 147<br />

Volume = y 2 dx (See figure 147)<br />

Volume 1 2xdx<br />

x<br />

2 <br />

2 <br />

x<br />

Volume <br />

<br />

4<br />

<br />

<br />

2<br />

<br />

0<br />

2<br />

0<br />

2<br />

2<br />

<br />

2<br />

2<br />

<br />

0<br />

x<br />

4<br />

7<br />

x <br />

dx <br />

7 <br />

16 <br />

2<br />

0<br />

8<br />

<br />

7<br />

280


8 20<br />

volume generated 4<br />

<br />

7 7<br />

2<br />

NB:Becausey 1<br />

y<br />

2<br />

2<br />

<br />

y<br />

y 2<br />

Q3. (a) Find the capacity of water which is<br />

needed to fill a hemispherical bowl of<br />

height 7cm and radius of 10cm.<br />

Figure 148<br />

From figure 148 let depth at any point be x<br />

below the centre and radius of cross – section<br />

2 2 2<br />

be so that r 10 x<br />

Volume of the hemispherical below<br />

10 10<br />

2<br />

2 2<br />

r dx 10 x dx<br />

<br />

7<br />

<br />

<br />

(b) Find the formula for the volume of a sphere<br />

of radius r<br />

Solution<br />

Figure 149<br />

7<br />

3<br />

10<br />

<br />

100 x <br />

x <br />

3<br />

7<br />

10<br />

<br />

1000 343 <br />

100 x 700<br />

<br />

<br />

3 3 <br />

1000<br />

343 <br />

300 <br />

3 <br />

657<br />

300 cm 3<br />

3<br />

r<br />

1<br />

<br />

2<br />

r<br />

2 2 2<br />

Volume r x dx (See figure 149)<br />

3<br />

3<br />

3 r<br />

3 r<br />

r<br />

r<br />

<br />

3 2<br />

3 2 3<br />

2r<br />

r<br />

3<br />

3 3<br />

6r 2r<br />

3<br />

4 r<br />

3<br />

3<br />

Q4. Show that the volume generated by the<br />

revolution about the x – axis of the area<br />

included between that axis and the curve<br />

5<br />

a b<br />

cy ( x a)(<br />

x b)<br />

is<br />

2<br />

30 c<br />

Solution<br />

Volume<br />

Then<br />

Volume<br />

<br />

<br />

2<br />

c<br />

2a<br />

2<br />

<br />

<br />

r<br />

r<br />

<br />

r<br />

<br />

r<br />

<br />

<br />

r<br />

<br />

<br />

y <br />

a<br />

<br />

b<br />

<br />

<br />

r<br />

2<br />

2<br />

<br />

x<br />

3<br />

x <br />

x 3 <br />

r<br />

<br />

3<br />

r<br />

2<br />

r<br />

<br />

dx<br />

<br />

<br />

<br />

r<br />

<br />

<br />

<br />

3<br />

3<br />

3<br />

3 3 r<br />

a<br />

<br />

b<br />

y 2 dx<br />

x<br />

ax<br />

b<br />

a<br />

<br />

b<br />

<br />

<br />

2<br />

c<br />

( x<br />

4<br />

bx 2ax<br />

c<br />

<br />

x a<br />

2<br />

c<br />

a<br />

<br />

b<br />

b<br />

3<br />

x<br />

b<br />

2<br />

x<br />

a x<br />

b<br />

2<br />

a<br />

a b<br />

<br />

c <br />

5 3<br />

x<br />

2<br />

2ab<br />

2bx<br />

2<br />

3<br />

2<br />

2<br />

a<br />

x 4abx<br />

dx<br />

dx<br />

5 3 2<br />

5<br />

1 4 a<br />

ba <br />

2 2 3<br />

2<br />

2<br />

x<br />

)<br />

2<br />

<br />

<br />

<br />

2<br />

a b<br />

3<br />

a b<br />

2<br />

<br />

2<br />

<br />

281


5 5<br />

4 5 3 2<br />

b<br />

1<br />

a b a<br />

2<br />

a b<br />

2<br />

4 <br />

4 b<br />

a b)<br />

<br />

3 <br />

<br />

5 3<br />

1 5 a 3 2 3 2 3<br />

b b a b a b<br />

2 3<br />

4 4 <br />

ab ab<br />

4<br />

<br />

3<br />

<br />

<br />

4<br />

1 5 a b 1 3 2 <br />

a a b <br />

2<br />

<br />

c 30<br />

6 3 <br />

4<br />

ab 1 2 3 <br />

a b <br />

6 3<br />

<br />

<br />

=<br />

<br />

1<br />

ab<br />

2<br />

4<br />

5ab b<br />

<br />

= a b 5<br />

2<br />

30 c<br />

Q5. A curve is given by the parametric<br />

equations x 4cos 2t,<br />

y 2sin<br />

t .<br />

<br />

(i) Sketch the curve for t <br />

2 2<br />

(ii) Find the area enclosed by curve and y –<br />

axis.<br />

5<br />

<br />

1<br />

30<br />

5 4<br />

3 2 2<br />

a 5 a b 10 a b 10 a b<br />

2<br />

30 c<br />

Solution:<br />

t 0 <br />

<br />

2 4<br />

4 2<br />

x -4.000 0.000 4.00 0.000 -4.000<br />

0<br />

y -2.000 -1.414 0 1.414 2.000<br />

y<br />

b<br />

5<br />

4<br />

<br />

3<br />

<br />

<br />

4<br />

<br />

Area required 2 ydx (See figure 150)<br />

0<br />

x<br />

0<br />

cos 2t<br />

<br />

4<br />

2sin t<br />

8sin 2t<br />

<br />

dt<br />

1<br />

x <br />

<br />

2t<br />

cos <br />

4<br />

4<br />

4<br />

<br />

x t<br />

0 <br />

4<br />

4 0<br />

Negative will be removed by changing limits.<br />

But sin 2t<br />

2sin t cos t<br />

<br />

<br />

4<br />

Let u sin t<br />

32 sin<br />

2<br />

t cos dt du<br />

dt<br />

0<br />

cos t<br />

32<br />

4<br />

<br />

0<br />

16 sin t sin 2 tdt<br />

<br />

<br />

32<br />

<br />

<br />

<br />

<br />

2<br />

2<br />

<br />

0<br />

u<br />

2<br />

22<br />

<br />

2<br />

<br />

u du<br />

2<br />

2<br />

<br />

0 <br />

<br />

du<br />

cos t <br />

cos t<br />

<br />

<br />

<br />

t u<br />

0 0<br />

2<br />

4 2<br />

3<br />

2<br />

3<br />

<br />

2<br />

0<br />

2<br />

2<br />

= 3.7713 (4dps)<br />

32 u<br />

6<br />

Figure 150<br />

Q6. Find the area enclosed between the curves<br />

3 2<br />

y x x 5x<br />

and the lines x = -2 and x<br />

= 0 and y = 0. Hence find the area enclosed<br />

between the curve and line y = x + 6 where -2 <<br />

x < 0 when rotated through 90 0 about x-axis.<br />

282


Solution:<br />

X -3 -2 -1 0 1 2<br />

y -15 4 9 6 1 0<br />

<br />

<br />

266.2857243<br />

145.6 74.66666667<br />

24<br />

70.01904763<br />

<br />

Since the area is rotated through 90 0 , hence the<br />

volume generated =<br />

<br />

70.01904763<br />

54.9928 cubic units<br />

4<br />

Figure 151<br />

Area of element = y x (See figure 151)<br />

Area of part required is sum of area of elements<br />

0<br />

x<br />

2<br />

Hence required area<br />

0<br />

3 2<br />

= x x 5x<br />

6 dx<br />

1<br />

4 1 3 5 2 <br />

<br />

x x x 6x<br />

4 3 2 <br />

<br />

2<br />

1 4 1 3 5 2<br />

0 ( 2)<br />

( 2)<br />

( 2)<br />

6( 2)<br />

4 3 2<br />

8<br />

( 4 10<br />

12)<br />

3<br />

15.33(2dpts)<br />

Volume of area enclosed between the curve and<br />

the line y x 6<br />

<br />

<br />

0<br />

<br />

2<br />

f ( x)<br />

xdx<br />

<br />

2<br />

<br />

0<br />

<br />

2<br />

3<br />

0<br />

3 2 2<br />

x<br />

x 5x<br />

6 dx x<br />

6<br />

7 1 6 9 5 11 4<br />

<br />

x x x x<br />

3 5 2 <br />

<br />

<br />

13 3 2<br />

x 30x<br />

36x<br />

<br />

<br />

3<br />

<br />

3<br />

x<br />

6x<br />

<br />

3<br />

2<br />

( x x 5 x 6) 2 ( x 6 ) 2 dx<br />

2<br />

<br />

36x<br />

<br />

0<br />

2<br />

0<br />

<br />

2<br />

0<br />

2<br />

2<br />

dx<br />

Q7. Find the area enclosed y x 3 2,<br />

x = 1, x = 2 and the x – axis.<br />

x 0 1 2 3<br />

Figure 152<br />

y 2 3 10 21<br />

The area of element y x (See figure 152).<br />

The total area of whole lamina<br />

x = 1 to x = 2<br />

2<br />

ydx<br />

<br />

1<br />

2<br />

<br />

3<br />

<br />

x 2 dx<br />

<br />

1<br />

2<br />

4<br />

x<br />

2<br />

4 <br />

x<br />

<br />

1<br />

x<br />

16<br />

1 <br />

4 2<br />

4 4 <br />

283


1<br />

8 2 <br />

4<br />

32 8 1<br />

4<br />

Q8. (i) Find<br />

x<br />

x<br />

2<br />

2<br />

<br />

2x<br />

1<br />

<br />

4<br />

x 1<br />

<br />

2x<br />

1<br />

<br />

<br />

When x = 1<br />

When x = -1<br />

x<br />

2<br />

2x<br />

1<br />

dx<br />

4<br />

x 1<br />

<br />

x<br />

2<br />

<br />

2x<br />

1<br />

2 2<br />

x<br />

1 x 1<br />

A<br />

<br />

B<br />

x<br />

1 x<br />

1<br />

Cx D<br />

<br />

2<br />

x 1<br />

2<br />

2<br />

Ax<br />

1x<br />

1<br />

Bx<br />

1x<br />

1<br />

2<br />

Cx<br />

Dx<br />

1<br />

1 + 2 – 1 = B(2)(2) B = 2<br />

1<br />

1 – 2 – 1 = A(-2)(2) A = 2<br />

1<br />

When x = 0<br />

-1 = A(-1) (1) + B(1)(1) + D(-1) D = 1<br />

Comparing coefficient of x 3<br />

0 = A + B + C C = -1<br />

2<br />

x 2x<br />

1<br />

1 1 x 1<br />

<br />

4<br />

1 2 1 2 1<br />

2<br />

x x x x 1<br />

1 1 x 1<br />

<br />

2x<br />

1 2x<br />

1 2 2<br />

x 1<br />

x 1<br />

<br />

x<br />

(ii)<br />

2<br />

<br />

23<br />

4<br />

2x<br />

1<br />

1<br />

dx dx <br />

4 <br />

x 1<br />

2<br />

x<br />

dx <br />

2 <br />

x 1<br />

1 1<br />

ln<br />

2 2<br />

1<br />

ln<br />

2<br />

1<br />

x<br />

dx<br />

1<br />

x<br />

0<br />

2<br />

Let x tan u<br />

2<br />

dx 2 tan u sec udu<br />

1<br />

x<br />

1 2x<br />

1<br />

1<br />

dx<br />

2<br />

x 1<br />

x<br />

1 ln x<br />

1<br />

dx<br />

2<br />

1<br />

x<br />

1<br />

tan x<br />

K<br />

<br />

<br />

4<br />

<br />

0<br />

<br />

<br />

2<br />

tan u<br />

2tan usec<br />

2<br />

1<br />

tan u<br />

<br />

4<br />

2 tan<br />

3<br />

u sec udu<br />

2<br />

0<br />

<br />

4<br />

<br />

0<br />

<br />

44<br />

2<br />

<br />

0<br />

2<br />

tan<br />

(sec<br />

<br />

<br />

4<br />

<br />

2<br />

sec<br />

2<br />

0<br />

let t = sec u<br />

1<br />

3<br />

<br />

4<br />

<br />

Q 9. (a) Find (i)<br />

<br />

u(secu<br />

tan u)<br />

du<br />

u 1)sec<br />

u tan udu<br />

2<br />

1 . 4142<br />

2<br />

(ii)<br />

<br />

2<br />

u tan u secu<br />

du 2<br />

2 t dt 2 sec u<br />

0<br />

0<br />

2 3 1 . 4142<br />

t 1 2 sec u<br />

3<br />

1<br />

4 2 2<br />

( 2 ) 2 <br />

1<br />

2<br />

3 3 ( 2 ) 2<br />

1<br />

1<br />

4 2 2<br />

( 2 ) 2 ( 2 ) 2 2<br />

3 3 2<br />

1<br />

2<br />

<br />

2 4 ) 1 . 8047<br />

<br />

4<br />

0<br />

<br />

<br />

4<br />

udu<br />

<br />

4<br />

<br />

0<br />

<br />

e x dx<br />

0<br />

<br />

sec x dx<br />

secu<br />

tan udu<br />

284


(b) Find (i)<br />

Solution<br />

<br />

<br />

e x<br />

0<br />

(ii)<br />

(a) (i) dx =<br />

<br />

3<br />

x<br />

dx<br />

2<br />

x x 20<br />

1<br />

2<br />

x<br />

2<br />

x<br />

1x<br />

4 dx<br />

1<br />

<br />

1<br />

x<br />

e<br />

1<br />

= 0 <br />

1 <br />

= 1<br />

1<br />

(ii) sec x dx=<br />

dx<br />

cos x<br />

x<br />

Let t = tan<br />

2<br />

dt<br />

dx = 2<br />

2<br />

1<br />

t<br />

1 2 <br />

dx = 1<br />

t <br />

2dt<br />

<br />

<br />

cos x <br />

2 2<br />

1<br />

t 1<br />

t <br />

2<br />

=<br />

1<br />

t 1<br />

t<br />

<br />

0<br />

<br />

<br />

Using partial fraction<br />

A B 2<br />

<br />

2<br />

1<br />

t 1<br />

t 1<br />

t<br />

A = 1 and B = 1<br />

2 1 1<br />

dt dt dt<br />

2<br />

1<br />

t 1<br />

t 1<br />

t<br />

ln (1 + t) – ln (1 – t) + c<br />

1<br />

t <br />

= ln C<br />

1<br />

t <br />

x<br />

<br />

<br />

1 tan<br />

<br />

ln 2 C<br />

x<br />

<br />

1 tan<br />

2 <br />

(b) (i)<br />

3<br />

x<br />

21x<br />

20 <br />

dx <br />

2<br />

x x <br />

2 <br />

20 x x 20 <br />

21x<br />

20 A B<br />

<br />

x 5 x 4 x 5 x <br />

x<br />

1 <br />

dx<br />

4<br />

dt<br />

21x – 20 = A(x – 4) + B(x + 5)<br />

When x = 4 B =<br />

9<br />

64<br />

135<br />

When x = -5 A =<br />

9<br />

3<br />

x<br />

dx<br />

<br />

x<br />

1dx<br />

2<br />

x x 20<br />

135 64<br />

dx dx<br />

9( x 5) 9( x 4)<br />

(ii)<br />

2<br />

2<br />

x 135<br />

x ln( x 5)<br />

2 9<br />

64<br />

ln( x 4)<br />

C<br />

9<br />

2<br />

2<br />

x<br />

<br />

2<br />

x 1 x 4<br />

1<br />

2<br />

x A Bx c<br />

but<br />

<br />

2<br />

2<br />

x<br />

1 x 4 x 1<br />

x 4<br />

x 2 = A (x 2 + 4) + (Bx + c) (x – 1)<br />

When x = 1<br />

1<br />

1 = 5A A =<br />

5<br />

Coeff. Of x 2<br />

1 = A + B<br />

4<br />

B =<br />

5<br />

Const. O = 4A - C<br />

4<br />

C =<br />

5<br />

x<br />

2<br />

x<br />

1x<br />

4<br />

1<br />

2<br />

2<br />

1 1<br />

dx dx<br />

5 x 1<br />

1<br />

2<br />

4 x 1<br />

dx<br />

5 2<br />

x 4<br />

1<br />

1<br />

2<br />

ln<br />

x<br />

1<br />

<br />

5 1<br />

2 2 2<br />

ln<br />

x<br />

4<br />

1<br />

5<br />

2<br />

1<br />

x <br />

tan<br />

<br />

2<br />

<br />

1<br />

285


1 1 2<br />

ln 1 ln 2 ln 8<br />

2 2 5<br />

2 1<br />

ln 5 tan 1<br />

<br />

tan<br />

5<br />

1 2 8 <br />

<br />

2 8<br />

ln <br />

5 5<br />

0 . 5856 <br />

Solution<br />

1<br />

Cos 3x<br />

<br />

0<br />

1 <br />

<br />

2 <br />

<br />

3<br />

2<br />

Q 10 (a) Evaluate 1 dx<br />

<br />

<br />

<br />

3<br />

Cos 3x<br />

<br />

0<br />

<br />

3<br />

2<br />

1 dx<br />

3<br />

2 <br />

2 3x<br />

Cos 3x<br />

1 Cos dx<br />

0<br />

<br />

3<br />

3<br />

1dx<br />

2Cos3xdx<br />

<br />

0 0<br />

<br />

3<br />

1<br />

1<br />

Cos6xdx<br />

2<br />

<br />

ln 2 <br />

2<br />

<br />

3<br />

2<br />

3<br />

ln<br />

5<br />

1<br />

2<br />

0 . 3466<br />

<br />

0<br />

ln 2 <br />

x <br />

0<br />

sin 3 x 0<br />

<br />

3<br />

<br />

<br />

<br />

<br />

0 . 3976<br />

0 . 2390<br />

x 1<br />

<br />

sin 6 <br />

2<br />

x<br />

o<br />

0<br />

12<br />

<br />

2<br />

o<br />

sin<br />

sin 0 <br />

3 3<br />

3<br />

1<br />

0 6<br />

0 <br />

6 12<br />

2<br />

1 <br />

<br />

<br />

3 6<br />

6 6 2<br />

5<br />

<br />

3<br />

4<br />

<br />

3<br />

<br />

0 . 1475 <br />

(b) Evaluate<br />

<br />

4<br />

<br />

<br />

2<br />

d<br />

2 2<br />

3sin<br />

Cos <br />

Solution<br />

<br />

4<br />

d<br />

<br />

2 2<br />

3sin<br />

Cos <br />

<br />

2 2<br />

<br />

4<br />

2<br />

sec <br />

<br />

d<br />

2<br />

3tan 1<br />

<br />

22<br />

2<br />

sec dt<br />

=<br />

2 2<br />

1 3tan <br />

<br />

<br />

sec <br />

dt<br />

Let t = tan d<br />

sec <br />

1<br />

2 <br />

= 1<br />

t 1<br />

dt<br />

2 2<br />

<br />

<br />

1<br />

3t<br />

1 t<br />

1<br />

1<br />

dt<br />

2<br />

1<br />

3t<br />

<br />

1 1 1<br />

tan t 3<br />

3<br />

1 1<br />

1 1<br />

tan 3 tan <br />

3<br />

3<br />

<br />

1 1 <br />

<br />

<br />

3 3 3 2 <br />

Q 11. Evaluate<br />

<br />

2<br />

dx<br />

(a)<br />

3 5cos x<br />

0<br />

<br />

2<br />

3<br />

(b)<br />

dx<br />

1<br />

sin x<br />

0<br />

2<br />

4<br />

1 5<br />

<br />

<br />

3 6 <br />

286


(a)<br />

Solution<br />

<br />

2<br />

dx<br />

3 5cos x<br />

0<br />

<br />

let t = tan 2<br />

dx =<br />

<br />

<br />

<br />

2dt<br />

1<br />

t<br />

1<br />

2dt<br />

<br />

2 2<br />

31 t <br />

51 t <br />

2<br />

<br />

<br />

2<br />

8 2t<br />

dt<br />

<br />

2<br />

4 t<br />

1 A B<br />

<br />

2<br />

4 t 2 t 2 t<br />

1 A2<br />

t<br />

B2<br />

t<br />

A 11<br />

and B 11<br />

4<br />

4<br />

1 1 1<br />

dt dt<br />

42<br />

t<br />

4 2 t<br />

1 1<br />

ln 2 t ln 2 t C<br />

4 4<br />

1 2 t <br />

ln C<br />

4 2 t <br />

<br />

22<br />

dx<br />

<br />

3 5cos x<br />

0<br />

x<br />

<br />

<br />

4<br />

1 2 tan x 4<br />

ln 2<br />

<br />

4 2 tan x x <br />

<br />

2<br />

0<br />

1 1 1 1<br />

ln 3<br />

ln 2 ln 1<br />

ln<br />

4 2 4 4<br />

1 3 <br />

ln <br />

4 8 <br />

<br />

2<br />

3 5<br />

1<br />

1<br />

t<br />

t<br />

2<br />

2<br />

2<br />

2dt<br />

1 t<br />

<br />

<br />

<br />

2<br />

<br />

<br />

<br />

2<br />

287<br />

<br />

2<br />

3<br />

(b) dx let t = tan<br />

x<br />

1<br />

sin x 22<br />

0<br />

dt 1 sec<br />

2 x <br />

dx 2 22<br />

2dt<br />

dx <br />

2<br />

1<br />

t<br />

Q 12. Find<br />

(a)<br />

(b)<br />

(a)<br />

1<br />

<br />

3 2dt<br />

<br />

2t<br />

2<br />

1<br />

0<br />

1<br />

t<br />

2<br />

1<br />

t<br />

1<br />

dt<br />

6<br />

2<br />

1<br />

2t<br />

t<br />

0<br />

6<br />

1<br />

1<br />

<br />

0<br />

3<br />

dt<br />

t<br />

Solution<br />

<br />

2<br />

1 <br />

6<br />

<br />

1<br />

t <br />

1<br />

0<br />

1<br />

<br />

- 6<br />

<br />

1<br />

2<br />

<br />

3<br />

6<br />

<br />

<br />

<br />

<br />

x<br />

0<br />

1<br />

<br />

1<br />

x<br />

x<br />

<br />

dx<br />

<br />

3<br />

x<br />

dx<br />

3<br />

x<br />

1<br />

<br />

1<br />

<br />

2<br />

x<br />

x<br />

t<br />

0<br />

1<br />

<br />

dx<br />

<br />

<br />

<br />

<br />

using x = sin <br />

using x = 3 cos 2


(b)<br />

dx<br />

cos<br />

dx cos<br />

d<br />

d<br />

<br />

<br />

<br />

<br />

<br />

<br />

1<br />

sin <br />

cos<br />

d<br />

2<br />

1<br />

sin <br />

x<br />

<br />

1<br />

sin d<br />

cos<br />

K<br />

sin<br />

1<br />

x <br />

x 1<br />

<br />

dx<br />

<br />

1<br />

x <br />

x 1<br />

1<br />

<br />

1<br />

x<br />

2<br />

<br />

K<br />

dx 6sin 2 d<br />

12 sin cos<br />

d<br />

<br />

<br />

<br />

<br />

1<br />

x<br />

1<br />

x<br />

1<br />

cos 2<br />

12 sin cos d<br />

<br />

1<br />

cos 2<br />

2cos <br />

12 sin cos d<br />

<br />

2<br />

2sin <br />

cos <br />

12 sin cos d<br />

<br />

sin <br />

2<br />

12<br />

cos d<br />

2<br />

dx<br />

3 3cos 2<br />

12 sin cos d<br />

<br />

3 3cos 2<br />

<br />

1<br />

12<br />

1<br />

cos 2<br />

<br />

2<br />

6<br />

3sin 2<br />

K<br />

3cos<br />

Q 13. Evaluate<br />

<br />

1<br />

2<br />

x <br />

3<br />

3 <br />

9 x<br />

2<br />

K<br />

<br />

<br />

4<br />

1<br />

dx<br />

2<br />

1<br />

sin x<br />

0<br />

<br />

<br />

<br />

4<br />

4<br />

2<br />

1<br />

sec x<br />

dx <br />

dx<br />

2<br />

2 2<br />

1 sin x sec x tan x<br />

0<br />

0<br />

Let tan x = u<br />

<br />

let<br />

1<br />

<br />

x<br />

u<br />

0 0<br />

0<br />

Q 14. Evaluate<br />

du<br />

dx =<br />

2<br />

sec<br />

du<br />

<br />

2<br />

1<br />

tan x<br />

du<br />

<br />

2<br />

1<br />

u<br />

<br />

4<br />

1<br />

u<br />

2<br />

1<br />

u<br />

0<br />

1<br />

du<br />

<br />

2<br />

1 2u<br />

0<br />

<br />

<br />

<br />

<br />

<br />

2<br />

u<br />

2<br />

1<br />

0<br />

x<br />

du<br />

<br />

1<br />

u<br />

2<br />

<br />

<br />

<br />

2u<br />

tan<br />

1 2<br />

d<br />

sec d<br />

2<br />

<br />

4<br />

1 2<br />

1<br />

tan d<br />

<br />

2<br />

1 1 2<br />

1<br />

tan d<br />

<br />

2<br />

1<br />

tan 2<br />

u <br />

1 tan 1<br />

2<br />

1<br />

2<br />

2<br />

<br />

d<br />

1<br />

<br />

2<br />

1<br />

tan<br />

2<br />

<br />

<br />

0<br />

4<br />

<br />

tan<br />

2 0. 6755<br />

1 1<br />

288


(a)<br />

(b)<br />

(c)<br />

(a)<br />

ln 2<br />

<br />

0<br />

e<br />

<br />

1<br />

e<br />

x<br />

<br />

dx<br />

Solution<br />

ln 2<br />

dx<br />

x 2<br />

0 e<br />

1<br />

let y = e x<br />

dy = e x dx<br />

dy<br />

dx =<br />

y<br />

<br />

1<br />

3<br />

x ln x<br />

<br />

2<br />

2<br />

dx<br />

1<br />

e x 22<br />

1 dx<br />

<br />

2<br />

dy<br />

yy<br />

1<br />

1<br />

2<br />

A<br />

y<br />

B<br />

C<br />

2<br />

y<br />

1 y 1<br />

y<br />

1<br />

2<br />

Ay<br />

1 Byy<br />

1 Cy<br />

y<br />

1<br />

<br />

1<br />

y 0 A 1<br />

Ceoff.<br />

of<br />

2<br />

y<br />

<br />

y 1<br />

C 1<br />

1<br />

0 A B B 1<br />

2<br />

dy<br />

2<br />

yy<br />

1<br />

1<br />

2<br />

1 1 1<br />

dy dy <br />

y y 1<br />

<br />

2<br />

y 1<br />

1<br />

2<br />

2<br />

2 1 <br />

ln<br />

y ln<br />

y 1<br />

<br />

1 1 <br />

1<br />

<br />

y 1<br />

1 1<br />

ln 2 ln 1<br />

ln 3 ln 2 <br />

3 2<br />

<br />

<br />

ln<br />

<br />

4 1<br />

3<br />

<br />

6<br />

<br />

6<br />

<br />

2<br />

(b)<br />

<br />

<br />

(c)<br />

3<br />

x<br />

x<br />

3<br />

e<br />

3<br />

x<br />

<br />

ln<br />

2<br />

x<br />

dx<br />

1<br />

dv 3<br />

let x<br />

dx<br />

4<br />

x<br />

V <br />

4<br />

2<br />

U ln<br />

x<br />

du 2<br />

ln x<br />

dx x<br />

2 x 2 x<br />

ln<br />

x dx ln<br />

x <br />

4 4<br />

1 4 2 x<br />

x ln<br />

x <br />

4 <br />

4<br />

1 4 2 x<br />

x ln<br />

x ln x <br />

4<br />

8 <br />

<br />

x<br />

<br />

<br />

4<br />

e<br />

<br />

1<br />

<br />

32<br />

ln x<br />

4<br />

<br />

<br />

2<br />

ln x<br />

dx<br />

<br />

2<br />

4<br />

<br />

2<br />

1 0<br />

4<br />

<br />

4<br />

5 e 1 <br />

1<br />

<br />

let<br />

<br />

<br />

<br />

e<br />

1<br />

4<br />

4<br />

4<br />

x<br />

<br />

<br />

8<br />

1<br />

e x 2<br />

dx<br />

<br />

<br />

let<br />

e<br />

<br />

8<br />

1 <br />

1<br />

<br />

ln x<br />

<br />

x = ln y<br />

e x = y<br />

dy dx<br />

y<br />

1<br />

dy <br />

y <br />

2<br />

1<br />

y 2 <br />

<br />

1<br />

1 y<br />

y u<br />

e<br />

<br />

32<br />

<br />

1<br />

2<br />

2<br />

4<br />

1<br />

e<br />

1<br />

u<br />

dy 2u du<br />

4<br />

2 <br />

ln<br />

x<br />

x <br />

3<br />

ln xdx<br />

2<br />

3<br />

x<br />

dx<br />

8<br />

4<br />

x <br />

<br />

<br />

32 <br />

1<br />

32<br />

e<br />

1<br />

dx<br />

289


Q 15. (a) Evaluate<br />

(i)<br />

(ii)<br />

(b)<br />

(a) (i)<br />

Find<br />

Solution<br />

let<br />

<br />

u<br />

2u du<br />

2<br />

u 1<br />

2<br />

2u<br />

1 <br />

du 2 1<br />

du<br />

2<br />

u 1<br />

2<br />

u 1<br />

<br />

<br />

<br />

1<br />

2 du<br />

1 du du<br />

u 1 u 1<br />

u 1 <br />

2 u ln <br />

u 1 <br />

e<br />

<br />

1<br />

<br />

2<br />

xsin<br />

2 2 x dx<br />

<br />

0<br />

e<br />

1<br />

<br />

2 1 e<br />

<br />

2 1 e<br />

ln x<br />

dx<br />

x<br />

<br />

ln x<br />

x<br />

1<br />

x 2<br />

x<br />

<br />

<br />

<br />

u = ln x<br />

du <br />

1<br />

dx x<br />

dx x du<br />

x<br />

1<br />

2<br />

2<br />

u 1<br />

ln<br />

2<br />

u 1 <br />

<br />

x tan 1<br />

u<br />

1 0<br />

e 1<br />

ln<br />

<br />

<br />

<br />

1<br />

xdx<br />

e<br />

e<br />

x<br />

x<br />

<br />

<br />

<br />

<br />

<br />

1<br />

1<br />

2<br />

<br />

1 <br />

<br />

2<br />

(ii)<br />

(b)<br />

1<br />

u <br />

x<br />

<br />

2 2<br />

<br />

0<br />

<br />

1<br />

0<br />

2<br />

1<br />

<br />

2<br />

1<br />

2<br />

u <br />

x du<br />

<br />

<br />

2 <br />

sin<br />

2 2 x dx<br />

x<br />

<br />

0<br />

xx<br />

2<br />

x<br />

1<br />

cos 4x<br />

dx<br />

2<br />

0<br />

<br />

2<br />

x 1<br />

dx xcos 4x dx<br />

2 2<br />

0<br />

<br />

2 2<br />

x 2 1 x 1 <br />

sin 4x<br />

sin 4x dx<br />

<br />

<br />

4<br />

<br />

2 4 8 <br />

0<br />

<br />

<br />

2<br />

2 2<br />

2<br />

x 2 x 2 1<br />

<br />

<br />

sin 4x<br />

2<br />

<br />

sin 4x dx<br />

<br />

<br />

4<br />

<br />

8<br />

0<br />

0 8<br />

0<br />

<br />

2<br />

1<br />

2<br />

sin 2 cos 4x<br />

2<br />

16 16 32 0<br />

2<br />

1 1 <br />

cos 2 cos 0<br />

16 32 32 <br />

2<br />

1 1<br />

<br />

16 32 32<br />

2<br />

<br />

<br />

16<br />

<br />

1<br />

x tan<br />

x<br />

dx<br />

0<br />

290


1<br />

x tan<br />

1<br />

u tan<br />

x<br />

du 1<br />

<br />

dx 2<br />

1<br />

x<br />

dv<br />

x<br />

dx<br />

2<br />

x<br />

V <br />

2<br />

x<br />

2<br />

x 1<br />

tan<br />

2<br />

dx<br />

x<br />

<br />

<br />

2<br />

x 1 <br />

dx<br />

2 2<br />

1<br />

x <br />

(b) (i)<br />

2<br />

Q 16. (a) Evaluate<br />

dx<br />

x<br />

e 1<br />

let y = e x<br />

dy x<br />

(ii)<br />

e<br />

dx<br />

dy<br />

dxdx<br />

y<br />

y<br />

1<br />

(b) Find (i)<br />

(ii)<br />

x sec x dx<br />

<br />

3<br />

x<br />

dx<br />

2<br />

1<br />

x <br />

Solution<br />

(a)<br />

dx<br />

x<br />

e 1<br />

dx 1 dy <br />

<br />

x y<br />

e<br />

2<br />

x<br />

tan<br />

2<br />

2<br />

x<br />

tan<br />

2<br />

1<br />

1<br />

1<br />

x <br />

x <br />

<br />

<br />

y<br />

1<br />

dy<br />

y -1 <br />

1 1<br />

<br />

2 1 x<br />

x<br />

tan<br />

2<br />

<br />

y<br />

1<br />

<br />

2<br />

<br />

dx<br />

<br />

x C<br />

291<br />

<br />

y<br />

Let<br />

1<br />

1<br />

<br />

1 Ay B<br />

B 1<br />

<br />

A B<br />

<br />

y y 1<br />

y<br />

ln<br />

<br />

and<br />

<br />

y 1<br />

u = x<br />

du<br />

1<br />

dx<br />

dv<br />

sec<br />

dx<br />

v tan x<br />

A 1<br />

2<br />

dx<br />

2<br />

x<br />

ln e 1<br />

<br />

x<br />

e 1<br />

<br />

<br />

<br />

1<br />

1<br />

<br />

<br />

x<br />

x<br />

2<br />

e<br />

1<br />

ln e<br />

1 2<br />

1<br />

1.854587 0.541325 1<br />

0.3133 (4dps)<br />

2<br />

sec x<br />

dx<br />

2<br />

x<br />

2<br />

1<br />

= x tan x – (- ln cos x) + C<br />

= x tan x + ln cos x + C.<br />

3<br />

x<br />

dx<br />

<br />

2<br />

1 x<br />

Let x = sin u<br />

dx = cos u du<br />

3<br />

sin u<br />

cos<br />

u du<br />

<br />

<br />

2<br />

1<br />

sin u<br />

sin 3 u<br />

cos u du<br />

cos u<br />

<br />

<br />

<br />

sin 3 u du<br />

sin 2 u sin<br />

u du<br />

<br />

dy<br />

<br />

y 1 y<br />

<br />

<br />

1 1 <br />

dy<br />

y 1 y <br />

ln y 1 ln y<br />

<br />

x<br />

<br />

x<br />

e 1 ln e C<br />

ln<br />

<br />

x sec 2 x dx x tanx tan x . 1 dx


cos u cos u C<br />

cos u (cos 2 u – 1)<br />

1<br />

Q17: (a) Find<br />

3 cos d<br />

using t = tan <br />

2<br />

d<br />

(b) Find<br />

4 3sin <br />

using t = tan <br />

2<br />

(a)<br />

<br />

1 cos 2<br />

u sin u du<br />

<br />

<br />

sin u du <br />

<br />

<br />

<br />

2<br />

cos usin<br />

u du<br />

3<br />

2 2<br />

1<br />

x 1<br />

x 1<br />

2 2<br />

x 1<br />

x <br />

Solution<br />

1<br />

3 cos d<br />

<br />

let t = tan<br />

2<br />

1 2 <br />

dt sec d<br />

2 2<br />

2 dt<br />

d <br />

2<br />

1 t<br />

1<br />

3 cos d<br />

2dt<br />

1 <br />

<br />

<br />

2 2<br />

1<br />

t <br />

1<br />

t <br />

3 <br />

2 <br />

1<br />

t <br />

2dt<br />

<br />

2 2<br />

3 3t<br />

1<br />

t<br />

2<br />

dt<br />

2 4t 2<br />

1<br />

dt<br />

1<br />

2t 2<br />

292<br />

<br />

<br />

Q18 (a) Show that<br />

sec<br />

<br />

2<br />

u du<br />

21<br />

tan<br />

<br />

1<br />

2<br />

du<br />

<br />

1<br />

u<br />

2<br />

1 1<br />

tan t<br />

2<br />

2 C<br />

1 1<br />

tan 2 tan C<br />

2<br />

2<br />

(b)<br />

d<br />

4 3sin <br />

let t = tan <br />

2<br />

2dt<br />

d<br />

<br />

2<br />

1<br />

t<br />

1 2dt<br />

<br />

<br />

2t 2<br />

4 3<br />

<br />

1<br />

t <br />

2<br />

1<br />

t <br />

<br />

2dt<br />

dt<br />

<br />

2<br />

2<br />

4t<br />

4 6t<br />

2t<br />

3t<br />

1<br />

<br />

dt<br />

<br />

2<br />

7 <br />

<br />

<br />

16 3 <br />

2 t <br />

<br />

1<br />

<br />

16<br />

<br />

7 4 <br />

8 1<br />

<br />

<br />

2<br />

7 16 3 <br />

t<br />

<br />

1<br />

<br />

<br />

7 4 <br />

<br />

<br />

let tan u <br />

<br />

<br />

4 7<br />

7<br />

4 7<br />

7<br />

1<br />

2<br />

<br />

0<br />

<br />

1 x <br />

<br />

1 x <br />

2<br />

4 3 <br />

t<br />

<br />

7 4 <br />

2<br />

sec u du<br />

2<br />

1 tan u<br />

tan<br />

1<br />

<br />

<br />

<br />

1<br />

2<br />

u<br />

1 <br />

dx <br />

2 3<br />

<br />

7<br />

4<br />

sec<br />

2 <br />

2<br />

2<br />

u<br />

4 3 <br />

tan C<br />

7 2 4 <br />

<br />

3 <br />

<br />

du dt


(b)<br />

(a)<br />

Find the integral<br />

2<br />

5x<br />

16<br />

dx.<br />

4<br />

x 16<br />

Solution<br />

1<br />

1<br />

2<br />

1<br />

1<br />

x 2<br />

dx<br />

1<br />

x <br />

0<br />

Let x cos 2θ<br />

dx = -2 sin 2θ dθ<br />

x <br />

<br />

0<br />

1<br />

2<br />

1<br />

2<br />

1<br />

1<br />

x 2<br />

dx<br />

1<br />

x <br />

0<br />

<br />

66<br />

<br />

<br />

<br />

4<br />

4<br />

<br />

6<br />

<br />

44<br />

<br />

6<br />

<br />

<br />

<br />

1<br />

1<br />

cos 2<br />

<br />

2<br />

<br />

1<br />

1<br />

cos 2<br />

<br />

<br />

<br />

2<br />

<br />

1<br />

2<br />

cos<br />

<br />

4sin cosd<br />

<br />

<br />

sin <br />

<br />

4<br />

<br />

4<br />

<br />

4 cos d<br />

<br />

66<br />

<br />

4<br />

<br />

<br />

6<br />

2<br />

1<br />

4 1<br />

cos 2 d<br />

2<br />

<br />

1<br />

<br />

1<br />

<br />

<br />

<br />

4<br />

2<br />

sin 2<br />

4<br />

<br />

6<br />

6<br />

6<br />

<br />

2sin 2<br />

d<br />

The limits are interchanged<br />

because of<br />

the negative<br />

<br />

b)<br />

Q19<br />

(b)<br />

<br />

2 <br />

4 6<br />

2 3<br />

<br />

6 2<br />

2<br />

5x<br />

16<br />

dx<br />

4<br />

x 16<br />

9 9<br />

dx <br />

8 x 2 8<br />

<br />

Solution<br />

d<br />

(a) (i)<br />

sin <br />

=<br />

d<br />

2sin<br />

<br />

cos<br />

<br />

2 2<br />

<br />

<br />

<br />

<br />

1<br />

dx<br />

x 2<br />

1 1<br />

dx<br />

2 2<br />

x 4<br />

9 9<br />

ln x 2 ln x 2<br />

8 8<br />

1 1 x <br />

tan C<br />

4 2 <br />

x 2 1<br />

ln tan<br />

8 x 2 4<br />

d<br />

Find (a) (i)<br />

sin <br />

d<br />

(ii)<br />

cos <br />

d<br />

(iii)<br />

a bcos<br />

x<br />

2e<br />

(i)<br />

2x<br />

e 1<br />

dx<br />

x<br />

e<br />

(ii)<br />

dx<br />

2<br />

2<br />

e<br />

x 1<br />

sec<br />

2<br />

<br />

<br />

2<br />

d <br />

2 2<br />

tan<br />

<br />

2<br />

22<br />

dt<br />

where t tan <br />

t<br />

2<br />

<br />

<br />

<br />

9 1<br />

2<br />

<br />

<br />

sin sin<br />

2 3<br />

1 <br />

2 3 2 3 <br />

<br />

2<br />

<br />

x <br />

C .<br />

2 <br />

293


log<br />

2dt<br />

(ii) Let t tan d<br />

<br />

2<br />

2 1<br />

t<br />

2<br />

d<br />

1<br />

t 2dt<br />

2<br />

dt<br />

2 2<br />

t t<br />

2<br />

cos<br />

1 1 1<br />

t<br />

1 1<br />

dt dt<br />

1<br />

t<br />

1<br />

t<br />

1<br />

t <br />

ln C<br />

1<br />

t <br />

<br />

ln C<br />

4 2 <br />

d<br />

t<br />

<br />

<br />

<br />

2<br />

a b cos 2<br />

t 2<br />

t<br />

a b 1 <br />

1 <br />

<br />

2<br />

t<br />

<br />

(iii)<br />

1 <br />

dt<br />

2<br />

a b ( a b)<br />

t<br />

2<br />

<br />

<br />

<br />

a b a b <br />

<br />

2 <br />

tan<br />

1 tan<br />

C<br />

a b a b a b 2 <br />

If a c b, the integral involves a logarithm and is<br />

effected by partial fractions.<br />

x<br />

2e<br />

(b) (i)<br />

e<br />

2x 1<br />

Let y = e x<br />

dy <br />

x<br />

e<br />

dx<br />

dy<br />

dx =<br />

y<br />

<br />

2y<br />

dy <br />

<br />

2<br />

y 1<br />

y <br />

1<br />

2 dy<br />

<br />

2<br />

1 y<br />

1<br />

2 tan y C<br />

<br />

<br />

e<br />

e<br />

t log<br />

e<br />

<br />

x<br />

2 1<br />

2<br />

e<br />

2 tan<br />

x<br />

1<br />

<br />

tan C<br />

2<br />

<br />

x<br />

e <br />

C .<br />

<br />

dt<br />

<br />

(ii)<br />

Q 20<br />

(i)<br />

<br />

x<br />

2e<br />

2x<br />

e 1<br />

dx<br />

Let y = e x<br />

dy<br />

dx =<br />

y<br />

<br />

2y<br />

dy <br />

<br />

2<br />

y 1<br />

y <br />

2<br />

2<br />

y 1<br />

dy<br />

1 A B<br />

2 <br />

y 1<br />

y 1<br />

y 1<br />

1 = A(y – 1) + B(y + 1)<br />

1<br />

B =<br />

1 and A <br />

<br />

2 2<br />

1<br />

1 <br />

2 dy<br />

<br />

2y 1 2y<br />

1<br />

<br />

ln y 1 ln y 1 C<br />

=<br />

y 1<br />

ln C<br />

y 1<br />

<br />

Evaluate<br />

<br />

1<br />

(i)<br />

dx<br />

2<br />

x 4<br />

2<br />

x<br />

1<br />

(ii)<br />

dx<br />

x ln x<br />

Solution<br />

1<br />

dx<br />

<br />

x<br />

2 4 x<br />

2<br />

Let x = 2 sin <br />

dx = 2 cos d <br />

1 1<br />

2cos<br />

d<br />

<br />

<br />

2<br />

4sin <br />

2<br />

4 4sin <br />

4<br />

<br />

<br />

x<br />

2 e <br />

e<br />

dx ln<br />

2 x<br />

e 1<br />

<br />

e<br />

1<br />

cos ec d cot C<br />

4<br />

1 2<br />

x<br />

x<br />

1 <br />

C<br />

1<br />

<br />

<br />

294


(ii)<br />

<br />

1<br />

x ln<br />

x dx<br />

u ln x<br />

du 1<br />

<br />

dx x<br />

dx xdu<br />

1<br />

du<br />

x .x<br />

du<br />

u C<br />

ln x C<br />

MISCELLANEOUS EXERCISE 7:<br />

1(a) When the area bounded by the curve<br />

y = 5x (2 – x) and the x – axis is rotated<br />

through 2 radians about the x – axis.<br />

Find the volume of the solid generated<br />

(b) The area enclosed by the curve<br />

y = x 2 + 2 and line y = 2 for 2 x 0<br />

rotated about y = 2.<br />

Find the volume generated.<br />

2(a) Find the enclosed by the x–axis, the line<br />

8<br />

x = 4 and the y = x<br />

2<br />

x<br />

If this area is now rotated about the x–axis<br />

through 2 , determine the volume the solid<br />

generated, correct to 3 sig. fig<br />

(b) Determine the volume of the solid<br />

generated when the region bounded by the<br />

curve y = cos2x and the x–axis for the value of<br />

x between 0 and 4<br />

is rotated about x–axis<br />

3. A shell is formed by rotating the portion of<br />

the parabola y 2 = 4x for 0 ≤ x ≤ 1 through<br />

two right angles about its axis. Find the<br />

volume of the solid formed.<br />

1<br />

4. Find (i) dx and<br />

1<br />

cos x<br />

is<br />

(ii)<br />

sin .<br />

7 xdx<br />

5. Given that curve y = x -<br />

x<br />

(i) determine the turning point<br />

(ii) find intercept<br />

(iii) sketch the curve and find the area enclosed<br />

by curve, x = 3 and x-axis<br />

2<br />

2x<br />

x 14<br />

6. Express y = as partial<br />

2<br />

4x<br />

1<br />

x 3<br />

fractions Hence evaluate<br />

1<br />

Π<br />

2<br />

7. Evaluate (i) sin 2x cosx dx and<br />

<br />

0<br />

2<br />

<br />

3<br />

3<br />

(ii)<br />

dx<br />

5 4cos x<br />

0<br />

3<br />

x 3<br />

8. Express as partial fractions.<br />

2<br />

x 1<br />

x 2<br />

Hence or otherwise find<br />

9. Show that<br />

2 x 2 <br />

x ln x 4 2 ln A 2<br />

x 2<br />

<br />

<br />

<br />

1<br />

10. Find<br />

d 3 2cos<br />

3 2<br />

3x<br />

2x<br />

6x<br />

2<br />

11. Express f ( x)<br />

<br />

as<br />

2 2<br />

x x 2 x 2<br />

partial fraction and find<br />

12. Find the volume generated by rotating the<br />

curve y = x 2 – 1 from x = -1 to x = 1<br />

through 360 0 about the x- axis<br />

8<br />

2<br />

<br />

<br />

<br />

ln x 4dx<br />

<br />

2 <br />

2<br />

<br />

<br />

ydx<br />

3<br />

x 3<br />

2<br />

x<br />

1 x 2<br />

x<br />

<br />

f xdx<br />

<br />

dx<br />

295


13. The curve y = (x – 1) 2 (2x – x 2 ) cuts x–axis<br />

at three different points A, B and C<br />

(i) Find the co-ordinates of A, B and C.<br />

(ii)<br />

Find the turning points of the curve,<br />

and determine their natures<br />

(iii) Sketch the curve<br />

(iv) Find the area bounded by curve and<br />

x–axis.<br />

<br />

3<br />

<br />

14. Evaluate (i) sin 3x<br />

dx<br />

6 <br />

0<br />

Π<br />

(ii)<br />

6 sin x sin 3x dx.<br />

0<br />

1<br />

3<br />

x<br />

(iii)<br />

2<br />

1<br />

x<br />

0<br />

6x<br />

15. Express f(x) = into partial<br />

2<br />

x 4 x 2<br />

fractions. Hence find f ( x)<br />

dx<br />

<br />

16. A triangle A(0,0), B(3,3) and C(1,2) is<br />

rotated about the x – axis. Find the volume<br />

of the solid generated by that rotation.<br />

2x<br />

17. (a) Find dx<br />

2<br />

4 x<br />

<br />

2<br />

cos x<br />

(b) Evaluate dx<br />

2<br />

1<br />

sin x<br />

0<br />

(c)<br />

Find<br />

<br />

xsec<br />

2<br />

xdx<br />

18. The area enclosed by curve y = 15 – 3x 2<br />

and chord joining the points (0, 15) and (2, -3)<br />

is rotated through 360 0 about the x – axis to<br />

generate solid.<br />

(i) Find the area enclosed between the chord<br />

and the solid<br />

(ii) Find the volume of the solid generated<br />

19. (a) Prove by both integration by-parts and<br />

using double-angle that<br />

1<br />

sin<br />

<br />

2 xdx x<br />

cos<br />

xsin<br />

xC.<br />

2<br />

1<br />

x<br />

dx tan C<br />

1 cos x 2<br />

(b) Show that<br />

1<br />

x 3<br />

20. Evaluate (i) <br />

dx<br />

3 x <br />

0<br />

1<br />

2x<br />

3<br />

(ii)<br />

.<br />

2<br />

4<br />

<br />

dx<br />

x<br />

0<br />

<br />

6 5<br />

21. (a) Prove that cos xdx <br />

32<br />

0<br />

3x<br />

11<br />

(b) Find<br />

dx<br />

2<br />

x 4x<br />

5<br />

4<br />

2x<br />

17<br />

x 1<br />

22. Express f(x) = as partial<br />

2<br />

x 2 x 5<br />

fractions, hence find<br />

<br />

f<br />

<br />

xdx<br />

2<br />

dx 1<br />

23. Show that<br />

dx <br />

1<br />

2 4 2<br />

1 x x<br />

12<br />

2<br />

2<br />

x<br />

x 3<br />

8x<br />

24. Find (i) x16 dx and (ii) e dx<br />

4<br />

5<br />

11x<br />

12<br />

25. Evaluate<br />

dx<br />

2<br />

2x<br />

3x<br />

x 6<br />

4<br />

4dx<br />

26. Find<br />

2 2<br />

9sin x cos x<br />

1<br />

2<br />

1<br />

27. Evaluate dx by using<br />

<br />

2<br />

1<br />

x 1<br />

x <br />

0<br />

x = cos<br />

<br />

4<br />

4 3<br />

1<br />

(b) Show that sin xdx <br />

32 4<br />

0<br />

296


3<br />

2<br />

2x<br />

1<br />

28. (a) Evaluate<br />

2<br />

x<br />

1 x<br />

2 dx<br />

2<br />

(b) Show that the area enclosed by curve y = e x ,<br />

y axis and the line y = 2 is 2 ln 2 – 1.<br />

29. (a) Integrate x tan -1 (x) with respect to x.<br />

1<br />

1<br />

Hence evaluate x tan x dx<br />

<br />

<br />

0<br />

(b)<br />

1<br />

1<br />

tan x Evaluate<br />

dx<br />

2<br />

1<br />

x<br />

0<br />

30. (a) Use the substitution of x =<br />

1<br />

u<br />

to<br />

2<br />

dx<br />

evaluate<br />

2<br />

x x<br />

1<br />

1<br />

(b) Express<br />

3 2<br />

3x<br />

2x<br />

6x<br />

2<br />

f x<br />

<br />

2 2<br />

x<br />

x 2 x 2<br />

as<br />

partial fractions hence find f<br />

<br />

xdx.<br />

31. (a) Show that<br />

<br />

(b) Find xsec<br />

x xdx<br />

, hence evaluate<br />

<br />

<br />

2<br />

4<br />

2<br />

x sec x x<br />

dx<br />

0<br />

<br />

4 2 2<br />

2cos x sin x<br />

32. (a) Evaluate<br />

dx<br />

2<br />

1<br />

cos x<br />

0<br />

x<br />

(b) Find dx<br />

1<br />

2x<br />

2<br />

4x<br />

33. (a) Integrate (i)<br />

6<br />

1<br />

x<br />

2<br />

4x<br />

x 1<br />

(iii) (iii)<br />

6 2<br />

1 x x x x 3<br />

(iv) tan 3 x with respect to x<br />

<br />

0<br />

4<br />

dx ln 3<br />

3<br />

5sin x<br />

2<br />

<br />

<br />

<br />

297

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!