13.12.2012 Views

A study of propagation of cosh-squared-Gaussian beam through ...

A study of propagation of cosh-squared-Gaussian beam through ...

A study of propagation of cosh-squared-Gaussian beam through ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

A <strong>study</strong> <strong>of</strong> <strong>propagation</strong> <strong>of</strong> <strong>cosh</strong>-<strong>squared</strong>-<strong>Gaussian</strong> <strong>beam</strong>... 901<br />

In order to calculate the integral we should select a form <strong>of</strong> hard aperture function<br />

introduced in many references [23–26]. We use one given in Ref. [24]:<br />

tx ( ) An (8)<br />

a<br />

where An and Bn are the expansion and <strong>Gaussian</strong> coefficients, respectively, which can<br />

be obtained directly from computation <strong>of</strong> relations [25, 26].<br />

By substituting relations (1), (3), and (8) into relation (7), and performing tedious<br />

integration:<br />

2<br />

----------- x 2<br />

N ⎛ ⎞<br />

= ∑ exp⎜–<br />

⎟<br />

n = 1 ⎝ ⎠<br />

x<br />

(9)<br />

an approximate analytical expression for the output field distribution in the FRFT plane<br />

is obtained:<br />

2n<br />

α x 2<br />

∞<br />

⎛– – 2βx⎞ ∫ exp<br />

dx<br />

⎝ ⎠<br />

– ∞<br />

⎛ β<br />

– --------- ⎞<br />

⎝ α ⎠<br />

2n π β-------α<br />

2<br />

⎛ ⎞ ( 2n)!<br />

α<br />

⎜---------- ⎟ ---------------------------------<br />

⎝ α ⎠ l! ( 2n– 2l)!<br />

4β 2<br />

⎛ ⎞<br />

⎜-------------- ⎟<br />

⎝ ⎠<br />

l<br />

=<br />

n<br />

exp ∑<br />

l = 0<br />

where<br />

Ex ( ) = An n = 1<br />

×<br />

N<br />

∑<br />

B n<br />

2<br />

iπw 0 ( πxw0) – ----------------<br />

4ξn 2<br />

iπx<br />

– ------------------------------λ<br />

fsξ n sinφ<br />

2<br />

cosφ<br />

exp<br />

– --------------------------λ<br />

fs sinφ<br />

Ω<br />

1<br />

2 2 2<br />

⎛ w0 λ fs sinφ<br />

⎞ ⎛ 2πiw0Ω x ⎞<br />

+ exp⎜------------------------------------------<br />

⎟<strong>cosh</strong>⎜------------------------------<br />

⎟<br />

⎝ ξn ⎠ ⎝ ξn ⎠<br />

2<br />

2 Bnw 0λ<br />

fs sinφ<br />

ξn λ fs sinφ iπw 0 cosφ<br />

a 2<br />

= + + ----------------------------------------<br />

a<br />

δ =<br />

----------w0<br />

Relations (10) to (12) are the general expressions, which are valid within<br />

the paraxial approximation. Then, apart from the standard focal length f s and<br />

FRFT order p, the intensity distributions on FRFT plane depend on the truncation<br />

parameter δ as well.<br />

We see that whenever a/w 0 →∞, Eq. (10) reduces to Eq. (4). Also, for Ω =0<br />

Eqs. (4) and (10) reduce to the optical field distributions <strong>of</strong> <strong>Gaussian</strong> <strong>beam</strong> passing<br />

<strong>through</strong> ideal and apertured FRFT systems, respectively, as one expects.<br />

Although Eqs. (10) to (12) are the approximate analytical expressions, they provide<br />

a more convenient method for <strong>study</strong>ing the <strong>propagation</strong> characteristics <strong>of</strong> a flattened<br />

<strong>Gaussian</strong> <strong>beam</strong> <strong>through</strong> the two types <strong>of</strong> apertured FRFT systems than those using<br />

the diffraction integral formula directly.<br />

×<br />

(10)<br />

(11)<br />

(12)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!