13.12.2012 Views

Acid Amplifier - Sematech

Acid Amplifier - Sematech

Acid Amplifier - Sematech

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Acid</strong> <strong>Amplifier</strong>s Designed For EUV Resists<br />

Can Help Beat the RLS Trade-off<br />

Seth Kruger, 1 Craig Higgins, 1 Srividya Revuru, 1 Sara Cruz, 2<br />

Vaida Auzelyte, 3 Pratap Sahoo, 3 Harun Solak, 3 and Robert Brainard 1<br />

1. College of Nanoscale Science and Engineering, University at Albany, NY 12203<br />

2. Undergraduate summer intern from Mexico<br />

3. Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland<br />

I. Introduction<br />

II. Kinetics<br />

III. Modeling<br />

IV. Lithography<br />

V. Conclusions<br />

II.<br />

Kinetics<br />

III.<br />

Modeling<br />

Synthesis<br />

1<br />

IV.<br />

Lithography


Resolution<br />

Sensitivity<br />

I. EUV Resist Goals<br />

Minimize:<br />

LER<br />

Resolution<br />

Line Edge Roughness (LER)<br />

Sensitivity<br />

RLS Tradeoff<br />

(Resolution) 3 x (LER) 2 x Esize = Z-Parameter<br />

T. Wallow, C. Higgins, R. Brainard et al. Proc. SPIE 6921 (2008)<br />

2


Resolution<br />

Film<br />

Quantum<br />

Yield<br />

How to Simultaneously Improve<br />

Resolution, LER and Sensitivity?<br />

Sensitivity<br />

≡<br />

LER<br />

Moles of <strong>Acid</strong>s<br />

Generated in the Film<br />

Moles of Photons<br />

Absorbed by the Film<br />

We propose that higher<br />

quantum yield will allow us to<br />

go from…<br />

Here<br />

3<br />

to<br />

Here<br />

…with no penalty to sensitivity.


<strong>Acid</strong> <strong>Amplifier</strong>s<br />

One possible way to effectively increase the quantum yield<br />

of the resist is through the use of acid amplifiers (AAs).<br />

HA<br />

∆<br />

T A<br />

X<br />

Trigger<br />

(T)<br />

Body<br />

Body<br />

3HB<br />

Body<br />

Activated<br />

<strong>Acid</strong> Precursor (A)<br />

A<br />

∆<br />

H +<br />

4<br />

Body +<br />

Autocatalysis<br />

H +<br />

H +<br />

HA<br />

H +<br />

H +<br />

H +<br />

H +


<strong>Acid</strong> Catalyzed<br />

-<br />

RSO3 OH<br />

RSO 3H<br />

3HB<br />

O<br />

O 2<br />

S<br />

R<br />

U = Uncatalyzed<br />

T = Trigger Pull<br />

A = <strong>Acid</strong> Generation<br />

U<br />

Proposed Mechanism<br />

OH 2<br />

CAT<br />

OH<br />

O<br />

Uncatalyzed<br />

O 2<br />

S<br />

CH2<br />

R<br />

+<br />

O<br />

-H +<br />

-H 2O<br />

T<br />

O 2<br />

S<br />

R<br />

UNCAT<br />

O<br />

5<br />

O 2<br />

S R<br />

A<br />

+<br />

R =<br />

HO3S R<br />

+<br />

O<br />

CH2<br />

O 2<br />

S R<br />

CF 3


AA Decomposition and Behavior in Resist<br />

AA Decomposition<br />

Kinetics<br />

∆<br />

Thermal<br />

No <strong>Acid</strong><br />

(slow)<br />

UNCAT<br />

AA<br />

H +<br />

<strong>Acid</strong> Catalyzed<br />

(fast)<br />

CAT<br />

<strong>Acid</strong> Diffusion<br />

(slow)<br />

<strong>Acid</strong> Behavior<br />

in Resist<br />

6<br />

H +<br />

H +<br />

P<br />

<strong>Acid</strong> Catalyzed<br />

ESCAP Deprotection<br />

(fast)


II. AA Decomposition Kinetics using<br />

19 F-NMR Spectroscopy<br />

Solvent system is a good model for resist environment<br />

OH<br />

3HB<br />

Solvent System for Kinetics<br />

O<br />

d 6<br />

O 2<br />

S<br />

R<br />

Add base to<br />

absorb the acid<br />

CAT<br />

Fast<br />

Catalyzed<br />

Slow<br />

Uncatalyzed<br />

UNCAT<br />

50 / 50 wt %<br />

δ+<br />

δ+<br />

OH 2<br />

OH<br />

δ+<br />

O<br />

O 2<br />

S<br />

O<br />

δ−<br />

R<br />

O 2<br />

S<br />

R<br />

Resist Polymer<br />

7<br />

δ+<br />

O<br />

δ−<br />

O 2<br />

S R<br />

65/20/15<br />

+<br />

HO3S R


ln(AA [M])<br />

-2.5<br />

-3<br />

-3.5<br />

-4<br />

-4.5<br />

-5<br />

-5.5<br />

-6<br />

With and Without Base<br />

CAT<br />

Without Base<br />

Autocatalyzed<br />

0 100 200 300 400 500 600 700 800<br />

Time [min]<br />

UNCAT<br />

8<br />

With Base<br />

(Uncatalyzed<br />

& First-Order)<br />

1.2 eq.<br />

Decomposition<br />

at 100 °C


Reaction Rates Ratios<br />

at 100 °C<br />

k CAT<br />

k UNCAT<br />

1425<br />

1359<br />

25<br />

OAc<br />

O<br />

O<br />

S<br />

OH<br />

O<br />

O<br />

S<br />

9<br />

O<br />

O<br />

CF 3<br />

CF 3<br />

k CAT<br />

k UNCAT<br />

490<br />

1


Uncatalyzed<br />

(Thermal)<br />

OH<br />

UNCAT<br />

δ+<br />

III. Kinetic Modeling<br />

T<br />

Trigger<br />

Pull<br />

Ea Thermal –Ea Trigger<br />

<strong>Acid</strong><br />

Formation<br />

O2 S<br />

δ+<br />

δ+<br />

O R<br />

OH2 δ− δ+<br />

O O<br />

2<br />

S<br />

O R<br />

OH<br />

3HB<br />

O<br />

O 2<br />

S<br />

R<br />

10<br />

A<br />

CAT<br />

δ−<br />

O 2<br />

S R<br />

+<br />

HO3S R


Thermal Stability Test<br />

Thermal <strong>Acid</strong> Generator (TAG)<br />

∆ 150 s<br />

Passed 110 °C<br />

Passed 70 °C<br />

Failed<br />

H + H +<br />

H +<br />

H +<br />

H +<br />

H +<br />

H + H +<br />

H +<br />

H + H +<br />

H + H +<br />

H + H H+<br />

+<br />

H +<br />

H +<br />

H +<br />

H +<br />

H +<br />

H +<br />

Develop<br />

H + H +<br />

Bake 13.4 pH<br />

11


OH<br />

OH<br />

OAc<br />

OH<br />

3AB<br />

O O<br />

S<br />

O<br />

3HB<br />

11HB<br />

O O<br />

S<br />

O<br />

4HB<br />

O O<br />

S<br />

O<br />

O<br />

S<br />

O O<br />

<strong>Acid</strong> <strong>Amplifier</strong> Examples<br />

CF 3<br />

CF 3<br />

CF3<br />

CF 3<br />

OH<br />

OH<br />

O O<br />

O<br />

S<br />

3HA<br />

OAc<br />

O O<br />

O<br />

S<br />

3AA<br />

OH<br />

4HA<br />

O<br />

S<br />

O O<br />

8HB<br />

O O<br />

S<br />

O<br />

Unexposed Film<br />

Thickness Loss (UFTL)<br />

Test Results<br />

CF 3<br />

OH<br />

8HA<br />

O O<br />

S<br />

O<br />

Passed 110 °C<br />

Passed 70 °C<br />

Failed<br />

OH<br />

O O<br />

3HD<br />

O<br />

S<br />

CH3<br />

OH<br />

O O<br />

O<br />

S<br />

3HF<br />

CF 3<br />

12<br />

OAc<br />

OH<br />

O S<br />

O O<br />

5AB<br />

OAc<br />

O<br />

S<br />

O O<br />

OH<br />

6AB<br />

6HB<br />

O S<br />

O O<br />

5HB<br />

O S<br />

O O<br />

CF3<br />

CF3<br />

CF3<br />

CF3


Ea (Thermal) - Ea (Trigger)<br />

(kcal/mol)<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

-15<br />

5HB<br />

k CAT /k UNCAT<br />

6HB<br />

1<br />

Modeling Results<br />

4HA<br />

8HA<br />

4HB<br />

8HB<br />

25<br />

Passed 110 °C<br />

Passed 70 °C<br />

Failed<br />

11HB<br />

3HA<br />

3HF<br />

3HD<br />

13<br />

3HB<br />

5AB<br />

3AA<br />

3AB<br />

6AB<br />

1360 1425 490


Thermal Stability and Modeled III. Computer Activation Modeling Energy<br />

Uncatalyzed Ea (kcal/mol)<br />

65<br />

55<br />

45<br />

35<br />

25<br />

15<br />

Robust<br />

Unstable<br />

Thermal<br />

8HF<br />

-35 -25 -15 -5 5 15<br />

6HB<br />

8HD<br />

8HB<br />

11HB<br />

8HA<br />

3HD<br />

3HB<br />

14<br />

3HA<br />

3HF<br />

3AB<br />

6AB<br />

7AB<br />

3AA<br />

2AA<br />

Passed 110 °C<br />

Passed 70 °C<br />

Failed<br />

<strong>Acid</strong> Catalyzed<br />

Uncatalyzed Ea – Trigger Pull Ea (kcal/mol)


PAG + hν<br />

<strong>Acid</strong> <strong>Amplifier</strong> (AA)<br />

OH<br />

IV. Lithography<br />

Resist Chemistry and Process<br />

H + H +<br />

H + H+<br />

H +<br />

O O<br />

65/20/15<br />

Polymer<br />

H + H +<br />

H +<br />

H +<br />

H +<br />

Resist Thickness 125 nm<br />

PEB<br />

H +<br />

H + H +<br />

H +<br />

H +<br />

H +<br />

H +<br />

H +<br />

H +<br />

H + H +<br />

H +<br />

H +<br />

H + H +<br />

H +<br />

H + H +<br />

H +<br />

H +<br />

H +<br />

7.5 wt% PAG<br />

H + H +<br />

H +<br />

H +<br />

H +<br />

H +<br />

H +<br />

H +<br />

15<br />

Develop<br />

OH<br />

O O<br />

S<br />

O<br />

3HB<br />

~2 wt% 70 mM<br />

OH -<br />

AA<br />

CF 3<br />

0.5 or 1 wt % Base


Fluorinated AAs Give Better<br />

Sensitivity than Nonfluorinated<br />

E 0 (mJ/cm 2 )<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

Process:<br />

Tool: BMET<br />

7.5 wt% PAG<br />

No AA<br />

10X<br />

Faster<br />

5X<br />

Faster<br />

0<br />

0.05 0.1 0.15 0.2 0.25 0.3<br />

PAB: 130˚C / 60<br />

PEB: 130˚C / 90<br />

Develop: 45 sec<br />

[Base]/[PAG]<br />

O O<br />

16<br />

AA-1A<br />

O O<br />

AA-1B<br />

O<br />

O S<br />

O<br />

O<br />

O S<br />

O<br />

310 mM AA<br />

7.5 wt%<br />

8.8 wt%<br />

CH 3<br />

CF 3


Fluorinated Tosic <strong>Acid</strong> Shows Better Controlled<br />

<strong>Acid</strong> Diffusion than Tosic <strong>Acid</strong><br />

O O<br />

Ec ≡ Critical Dose<br />

Dose resist starts to clear<br />

outside the open frame<br />

O<br />

O S<br />

CH3 1A O<br />

1B<br />

Base<br />

(wt %)<br />

0.35<br />

0.5<br />

0.8<br />

1.1<br />

1.1<br />

1.2<br />

Ec E0<br />

1A 1B<br />

O O<br />

6.8<br />

> 3.5*<br />

> 1.9*<br />

O<br />

O S<br />

O<br />

*Did not reach Ec<br />

CF 3<br />

Using AA-1A<br />

2-3 wafers cleared completely<br />

Diffusion<br />

Issue?<br />

17<br />

Ec =


# of molecules/cm 2 X 10 14<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Outgassing vs. Dose<br />

6HB<br />

8HB<br />

3HF<br />

3HB<br />

2 3 4 5 6 7<br />

Dose (mJ/cm 2 )<br />

18<br />

No AA<br />

6AB<br />

Outgassing increases with dose as expected


70 mM<br />

Normalized<br />

Film Thickness<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

OH<br />

<strong>Acid</strong> <strong>Amplifier</strong>s Improve Sensitivity<br />

And Are Not Photosensitive<br />

Eo = 1.6 mJ/cm 2<br />

0<br />

0.1 1 10<br />

Tool: AMET<br />

Base 0.5 wt %<br />

PAB 110 °C / 60 s<br />

PEB 110 °C / 60 s<br />

O(p-CF 3 Ts)<br />

Dose (mJ/cm 2 )<br />

Control<br />

No <strong>Acid</strong> <strong>Amplifier</strong><br />

Eo = 6.4 mJ/cm 2<br />

Normalized<br />

Film Thickness<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

AA resists without PAG<br />

No change in dissolution<br />

rate ≤ 20 mJ/cm 2<br />

OH<br />

19<br />

OA c<br />

O(p-CF 3 TS)<br />

O(p-CF 3 Ts)<br />

OH<br />

OAc<br />

O(p-CF 3 TS)<br />

1 10<br />

Dose (mJ/cm 2 )<br />

OTs


Effect of Trigger<br />

and <strong>Acid</strong> Precursor No AA<br />

60 nm L/S<br />

<strong>Acid</strong> Precursors:<br />

-CF 3 gives better sensitivity,<br />

LER and exposure latitude<br />

E size (mJ/cm 2 )<br />

LER (nm)<br />

Z-Parameter<br />

Triggers: -OH vs. -OAc<br />

-OH gives better sensitivity<br />

than -OAc<br />

Process:<br />

Tool: BMET<br />

Base 0.5 wt%<br />

70 mM AA<br />

PAB: 130˚C / 60<br />

PEB: 130˚C / 90<br />

Develop: 45 sec<br />

7.6<br />

4.0<br />

26<br />

E size (mJ/cm 2 )<br />

LER (nm)<br />

Z-Parameter<br />

O<br />

OH<br />

20<br />

O<br />

O<br />

O<br />

O<br />

S<br />

O<br />

5.4<br />

4.7<br />

26<br />

O<br />

S<br />

O<br />

3.5<br />

9.1<br />

63<br />

CH 3<br />

CH 3<br />

O<br />

OH<br />

O<br />

O<br />

O S<br />

O<br />

O<br />

4.9<br />

4.2<br />

19<br />

O<br />

S<br />

O<br />

1.9<br />

7.9<br />

26<br />

CF 3<br />

CF 3


Esize (mJ/cm 2 )<br />

Secondary-Trigger<br />

<strong>Acid</strong> <strong>Amplifier</strong><br />

20<br />

15<br />

10<br />

5<br />

0<br />

AA Loading<br />

0 0.05 0.1 0.15 0.2 0.25<br />

Tool: BMET<br />

Base 1 wt %<br />

PAB 110 °C / 60 s<br />

PEB 110 °C / 60 s<br />

50 nm<br />

Lines/Spaces<br />

6.7 wt%<br />

AA Loading (mol/kg)<br />

LER (nm)<br />

OH<br />

21<br />

O<br />

O<br />

S O<br />

Increased sensitivity without penalty to LER.<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

50 nm<br />

Lines/Spaces<br />

AA Loading<br />

CF 3<br />

6 8 10 12 14<br />

Esize (mJ/cm 2 )


EL & Z-Parameter O<br />

O<br />

Exposure Latitude (%)<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Tool: BMET<br />

Base 1 wt %<br />

PAB 110 °C / 60 s<br />

PEB 110 °C / 60 s<br />

50 nm<br />

Lines/Spaces<br />

AA Loading<br />

6 8 10 12 14<br />

Esize (mJ/cm 2 )<br />

Z-parameter (10 -8 mJ nm 3 )<br />

22<br />

OH<br />

Despite some loss in exposure latitude,<br />

Overall gains in Z-parameter quite strong.<br />

30<br />

25<br />

20<br />

15<br />

50 nm<br />

Lines/Spaces<br />

S O<br />

AA Loading<br />

CF 3<br />

0 0.05 0.1 0.15 0.2 0.25<br />

AA Loading (mol/kg)


No AA<br />

With AA<br />

Tool: BMET<br />

Base 1 wt %<br />

PAB 90 °C / 60 s<br />

PEB 90 °C / 60 s<br />

<strong>Acid</strong> <strong>Amplifier</strong>: Improved Image Quality<br />

Resolution<br />

40 nm 38 nm 36 nm<br />

E size (mJ/cm 2 )<br />

LER (nm)<br />

21.7<br />

8.6<br />

9.4<br />

Esize (mJ/cm 16.6<br />

4.9<br />

2 )<br />

LER (nm) 5.8<br />

23<br />

32 nm 30 nm<br />

OAc<br />

CF 3<br />

O<br />

S<br />

O O 6AB


Improved Combined Performance<br />

Z-Parameter = (Resolution) 3 x (LER) 2 x Esize<br />

LER 2 (nm 2 )<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Z = 54<br />

OAc<br />

O S<br />

OH<br />

CF 3<br />

O O<br />

S<br />

O<br />

3HB<br />

CF 3<br />

AAs Improve<br />

Z-Parameter<br />

No AA<br />

Z = 74<br />

O O Z = 25<br />

0<br />

0 0.5 1 1.5 2 2.5<br />

Half Pitch 3 X Esize (10 -8 mJ nm)<br />

24


Kinetics<br />

Lithography<br />

• Fluorinated acids give better<br />

performance than non-fluorinated acids.<br />

• No outgassing problems.<br />

V. Conclusions<br />

• Added base allows the comparisons between catalyzed and uncatalyzed<br />

reactions.<br />

• AA triggers significantly modify reactivity of AAs.<br />

Modeling<br />

• Predictions of the chemical reactivity.<br />

Diffusion vs.<br />

Catalysis<br />

<strong>Acid</strong> <strong>Amplifier</strong>s are Capable of Simultaneously Improving<br />

Resolution, LER and Sensitivity in EUV Resists<br />

25<br />

H +<br />

H +<br />

P


Group Members<br />

Brian Cardineau<br />

ROX Team<br />

Greg Denbeaux<br />

Acknowledgments<br />

Financial Support from:<br />

Intel Corporation<br />

Additional Help From<br />

Todd Younkin<br />

Wang Yueh<br />

Steve Putna<br />

AMET and BMET Teams<br />

Thanks to duPont for supplying polymers.<br />

26

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!