13.12.2012 Views

Podosomes at a Glance - Journal of Cell Science - The Company of ...

Podosomes at a Glance - Journal of Cell Science - The Company of ...

Podosomes at a Glance - Journal of Cell Science - The Company of ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>Science</strong><br />

<strong>Cell</strong> <strong>Science</strong> <strong>at</strong> a <strong>Glance</strong> 2079<br />

<strong>Podosomes</strong> <strong>at</strong> a glance<br />

Stefan Linder* and Petra Kopp<br />

Institut für Prophylaxe und Epidemiologie der<br />

Kreislaufkrankheiten, Ludwig-Maximilians-<br />

Universität, Pettenk<strong>of</strong>erstr. 9, 80336 München,<br />

Germany<br />

*Author for correspondence (e-mail:<br />

stefan.linder@med.uni-muenchen.de)<br />

<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>Science</strong> 118, 2079-2082<br />

Published by <strong>The</strong> <strong>Company</strong> <strong>of</strong> Biologists 2005<br />

doi:10.1242/jcs.02390<br />

<strong>Cell</strong>s can contact the extracellular m<strong>at</strong>rix<br />

(ECM) through a variety <strong>of</strong> specialized<br />

structures. <strong>The</strong>se cell-m<strong>at</strong>rix contacts<br />

contain membrane proteins such as<br />

integrins, which bind both m<strong>at</strong>rix<br />

components and cellular proteins, thus<br />

bridging the substr<strong>at</strong>um and the<br />

cytoskeleton (reviewed in Adams,<br />

2001). M<strong>at</strong>rix contacts provide the<br />

physical linkage th<strong>at</strong> enables cells to<br />

Overlay Talin F-actin<br />

Structure<br />

Functions<br />

10 µm<br />

Adhesion<br />

Close contact to substr<strong>at</strong>um<br />

Enrichment <strong>of</strong> adhesion-medi<strong>at</strong>ing integrins<br />

Form<strong>at</strong>ion <strong>at</strong> substr<strong>at</strong>e-<strong>at</strong>tached cell side<br />

adhere to and migr<strong>at</strong>e on (or through) the<br />

m<strong>at</strong>rix. Moreover, they can also act as<br />

localized ‘relay st<strong>at</strong>ions’ for important<br />

signaling p<strong>at</strong>hways. Well-known cellm<strong>at</strong>rix<br />

contacts include focal complexes<br />

and focal adhesions, whereas others,<br />

such as fibrillar adhesions, podosomes<br />

and invadopodia are just beginning to<br />

<strong>at</strong>tract widespread <strong>at</strong>tention.<br />

Focal complexes have a dash-like<br />

appearance, a length <strong>of</strong> ~0.5 µm and<br />

constitute some <strong>of</strong> the earliest m<strong>at</strong>rix<br />

contacts formed by a protruding cell.<br />

<strong>The</strong>y are integrin-based and enriched in<br />

talin, paxillin and vinculin (Zamir and<br />

Geiger, 2001). Focal complexes can<br />

m<strong>at</strong>ure into focal adhesions through the<br />

applic<strong>at</strong>ion <strong>of</strong> force – for example, during<br />

the retraction <strong>of</strong> cellular protrusions. This<br />

transform<strong>at</strong>ion is accompanied by an<br />

increase in size, the form<strong>at</strong>ion <strong>of</strong> actin<br />

<strong>Podosomes</strong> <strong>at</strong> a <strong>Glance</strong><br />

Stefan Linder and Petra Kopp<br />

Plasma<br />

membrane<br />

Vinculin TIRF Overlay<br />

PI3K<br />

Src<br />

10 µm<br />

Human macrophage expressing YFP-vinculin<br />

Ring structure<br />

Integrins &<br />

associ<strong>at</strong>ed proteins<br />

Podosome model<br />

Core<br />

F-actin &<br />

associ<strong>at</strong>ed proteins<br />

Pyk2/FAK<br />

Paxillin Talin<br />

Dynamin MMPs CDC42<br />

WASP/<br />

Vinculin<br />

α-Actinin<br />

β2/β3 Integrin<br />

β1 Integrin<br />

N-WASP<br />

jcs.biologists.org<br />

M<strong>at</strong>rix degrad<strong>at</strong>ion<br />

Enrichment <strong>of</strong> m<strong>at</strong>rix metalloproteinases<br />

Colocaliz<strong>at</strong>ion with m<strong>at</strong>rix degrad<strong>at</strong>ion<br />

F-actin Alexa 488-fibronectin Overlay<br />

Linder and<br />

Aepfelbacher, 2003<br />

F-actin<br />

Arp2/3<br />

complex<br />

Fimbrin<br />

Gelsolin<br />

Cortactin<br />

Osiak et al., 2005<br />

10 µm<br />

Human umbilical vein endothelial cell (HUVEC) on labeled m<strong>at</strong>rix<br />

bundles (stress fibres), th<strong>at</strong> contact the<br />

structure, and the recruitment <strong>of</strong> zyxin<br />

(Zaidel-Bar et al., 2004). Focal adhesions<br />

are formed on rigid substr<strong>at</strong>es and contain<br />

high levels <strong>of</strong> phosphotyrosine but low<br />

amounts <strong>of</strong> the actin-binding protein<br />

tensin. On s<strong>of</strong>t m<strong>at</strong>rices, however, focal<br />

adhesions can give rise to a third type <strong>of</strong><br />

contact, fibrillar adhesions. In contrast to<br />

focal adhesions, fibrillar adhesions<br />

display high levels <strong>of</strong> tensin but contain<br />

little phosphotyrosine (Zamir et al., 1999).<br />

In sum, these m<strong>at</strong>rix contacts not only<br />

impart close adhesion to the substr<strong>at</strong>um<br />

but also act as mechanosensors, and their<br />

ultim<strong>at</strong>e form (focal adhesion vs fibrillar<br />

adhesion) depends strongly on m<strong>at</strong>rix<br />

rigidity (Zamir and Geiger, 2001).<br />

<strong>Podosomes</strong> and invadopodia<br />

<strong>Podosomes</strong> and invadopodia constitute<br />

trailing edge<br />

WASP/<br />

N-WASP<br />

Arp2/3 complex<br />

Actin<br />

nucle<strong>at</strong>ion<br />

CDC42<br />

F-actin<br />

severing<br />

+uncapping<br />

Ring Core<br />

Attachment<br />

Regul<strong>at</strong>ion<br />

Gelsolin PI3K<br />

Dynamics<br />

10 µm<br />

Rho (Rac)<br />

PtdIns(3,4)P2 PtdIns(3,4,5)P3 Vinculin<br />

Talin<br />

leading edge<br />

Ring structure<br />

form<strong>at</strong>ion<br />

Paxillin<br />

Integrin activ<strong>at</strong>ion<br />

RTK signaling<br />

Pyk2/FAK<br />

Src<br />

kinase<br />

PKC<br />

Primary human<br />

macrophage<br />

expressing<br />

GFP-actin<br />

Dissolution ( ) and fission (O) <strong>of</strong> podosomes<br />

© <strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>Science</strong> 2005 (118, pp. 2079-2082)<br />

(See poster insert)


<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>Science</strong><br />

2080<br />

<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>Science</strong> 118 (10)<br />

two forms <strong>of</strong> dot-like m<strong>at</strong>rix contact th<strong>at</strong><br />

differ from those described above<br />

structurally and functionally (reviewed<br />

in Linder and Aepfelbacher, 2003;<br />

Buccione et al., 2004). Structurally, their<br />

most distinguishing fe<strong>at</strong>ure is their twopart<br />

architecture: they have a core <strong>of</strong> Factin<br />

and actin-associ<strong>at</strong>ed proteins th<strong>at</strong> is<br />

surrounded by a ring structure consisting<br />

<strong>of</strong> plaque proteins such as talin or<br />

vinculin. This actin-rich core is not<br />

present in other cell-m<strong>at</strong>rix contacts.<br />

Consequently, actin regul<strong>at</strong>ory p<strong>at</strong>hways<br />

exert a major additional influence on<br />

podosome-type contacts. Functionally,<br />

the ability <strong>of</strong> podosomes and<br />

invadopodia to engage in m<strong>at</strong>rix<br />

degrad<strong>at</strong>ion clearly sets them apart from<br />

other cell-m<strong>at</strong>rix contacts.<br />

<strong>Podosomes</strong> are typically formed in cells<br />

<strong>of</strong> the monocytic lineage, such as<br />

macrophages (Lehto et al., 1982; Linder<br />

et al., 1999), osteoclasts (Marchisio et<br />

al., 1984) or (imm<strong>at</strong>ure) dendritic cells<br />

(Burns et al., 2001). However, they can<br />

also be found or induced in a variety <strong>of</strong><br />

other cell types, including smooth<br />

muscle cells (Gimona et al., 2003) and<br />

endothelial cells (Moreau et al., 2003;<br />

Osiak et al., 2005).<br />

By contrast, invadopodia are found in<br />

fibroblasts transformed with viral<br />

oncogenes encoding protein tyrosine<br />

kinases (Tarone et al., 1985) and in some<br />

malignant cell types (Buccione et al.,<br />

2004). Indeed, the first observ<strong>at</strong>ion <strong>of</strong><br />

podosome-type adhesions 25 years ago<br />

described such virally induced<br />

invadopodia (David-Pfeuty and Singer,<br />

1980).<br />

<strong>Podosomes</strong> and invadopodia differ in<br />

their respective sizes and numbers.<br />

Typically, a cell forms dozens <strong>of</strong><br />

podosomes, but there are only a few<br />

invadopodia per cell. However, wh<strong>at</strong><br />

invadopodia lack in numbers, they make<br />

up for in size: <strong>Podosomes</strong> have a<br />

diameter <strong>of</strong> 0.5-1 µm and a depth <strong>of</strong> 0.2-<br />

0.4 µm, whereas invadopodia can<br />

correspond to an array <strong>of</strong> membrane<br />

invagin<strong>at</strong>ions th<strong>at</strong> have a diameter <strong>of</strong> ~8<br />

µm and also can form root-like<br />

extensions into the m<strong>at</strong>rix th<strong>at</strong> are<br />

several micrometers deep (Buccione et<br />

al., 2004; McNiven et al., 2004).<br />

Despite these differences, basic<br />

similarities between the two structures,<br />

both in composition and architecture, are<br />

apparent. Indeed, it has been proposed<br />

th<strong>at</strong> invadopodia might develop from<br />

podosomal precursors (Linder and<br />

Aepfelbacher, 2003; Buccione et al.,<br />

2004). It is therefore an <strong>at</strong>tractive<br />

specul<strong>at</strong>ion th<strong>at</strong> podosomes and<br />

invadopodia represent a continuum <strong>of</strong><br />

specialized m<strong>at</strong>rix contacts comparable<br />

to the succession <strong>of</strong> focal complexes,<br />

focal adhesions and fibrillar adhesions<br />

described above.<br />

<strong>The</strong> growing list <strong>of</strong> podosomecontaining<br />

cells may point to a<br />

widespread ability <strong>of</strong> cells to form this<br />

type <strong>of</strong> actin-rich structure. Furthermore,<br />

the fact th<strong>at</strong> podosomes are also formed<br />

on s<strong>of</strong>t substr<strong>at</strong>es, such as endothelial<br />

monolayers (Linder and Aepfelbacher,<br />

2003), adds to the notion th<strong>at</strong> podosomes<br />

are physiological structures th<strong>at</strong> are also<br />

formed in the context <strong>of</strong> tissues.<br />

Functions<br />

<strong>The</strong> main functions <strong>of</strong> podosomes<br />

appear to be adhesion and m<strong>at</strong>rix<br />

degrad<strong>at</strong>ion. Moreover, podosomes have<br />

also been implic<strong>at</strong>ed in cell migr<strong>at</strong>ion<br />

and invasion. However, much <strong>of</strong> the<br />

evidence for these functions is still<br />

circumstantial and needs to be rigorously<br />

tested.<br />

It is very possible th<strong>at</strong> podosomes have<br />

a role in adhesion, because they establish<br />

close contact to the substr<strong>at</strong>um, which<br />

can be shown by total internal reflection<br />

(TIRF) microscopy, are enriched in<br />

adhesion-medi<strong>at</strong>ing integrins (Linder<br />

and Aepfelbacher, 2003) and form only<br />

<strong>at</strong> the substr<strong>at</strong>e-<strong>at</strong>tached cell side.<br />

<strong>The</strong> aptly named invadopodia were<br />

defined through their ability to perform<br />

m<strong>at</strong>rix degrad<strong>at</strong>ion (Buccione et al.,<br />

2004; McNiven et al., 2004). For<br />

podosomes, the case has been less clear<br />

cut: podosomes in osteoclasts are<br />

enriched in m<strong>at</strong>rix metalloproteases<br />

(S<strong>at</strong>o et al., 1997; Delaissé et al., 2000),<br />

but it was not shown until recently th<strong>at</strong>,<br />

in various cell systems, podosomes<br />

overlap regions <strong>of</strong> m<strong>at</strong>rix degrad<strong>at</strong>ion<br />

(Burgstaller and Gimona, 2005; Osiak et<br />

al., 2005). It is therefore very possible<br />

th<strong>at</strong> podosomes, like invadopodia, have<br />

an inherent ability to lyse the ECM.<br />

<strong>Podosomes</strong> may also play an accessory<br />

role in cell migr<strong>at</strong>ion. <strong>The</strong>y might help to<br />

establish localized anchorage, thus<br />

stabilizing sites <strong>of</strong> cell protrusion and<br />

ultim<strong>at</strong>ely enabling productive directional<br />

movement. <strong>The</strong> observ<strong>at</strong>ion th<strong>at</strong><br />

podosomes are recruited to sites <strong>of</strong> cell<br />

protrusion, especially to the leading edge,<br />

appears to be in line with such a concept.<br />

Podosome-type adhesions are mainly<br />

formed in cells th<strong>at</strong> have to cross tissue<br />

boundaries such as monocytes,<br />

imm<strong>at</strong>ure dendritic cells or some types<br />

<strong>of</strong> cancer cell (invadopodia in this case).<br />

Podosome-localized m<strong>at</strong>rix degrad<strong>at</strong>ion<br />

<strong>at</strong> the leading edge may therefore also<br />

confer invasive potential to cells.<br />

Finally, podosomes are a prominent part<br />

<strong>of</strong> the actin cytoskeleton in osteoclasts,<br />

where they form continuous belts <strong>at</strong> the<br />

cell periphery (Pfaff and Jurdic, 1999).<br />

<strong>The</strong>ir probable roles in adhesion and<br />

m<strong>at</strong>rix degrad<strong>at</strong>ion suggest an important<br />

role in bone homeostasis. Moreover, their<br />

fusion was believed to form the boneremodeling<br />

organelle <strong>of</strong> osteoclasts, the<br />

so-called sealing zone, a tightly adherent<br />

structure surrounding the space into<br />

which lytic enzymes and protons are<br />

secreted (Lakkakorpi and Väänänen,<br />

1996). However, recent d<strong>at</strong>a suggest th<strong>at</strong><br />

both types <strong>of</strong> organelle are formed<br />

independently (Saltel et al., 2004).<br />

Furthermore, on mineralized bone, their<br />

physiological substr<strong>at</strong>e, osteoclasts form<br />

only sealing zones, but not podosomes<br />

(Saltel et al., 2004). <strong>The</strong> proposed role<br />

for podosomes – as opposed to sealing<br />

zones – in bone homeostasis is therefore<br />

again open for deb<strong>at</strong>e.<br />

Structure and components<br />

<strong>Podosomes</strong> comprise a core <strong>of</strong> F-actin<br />

and actin-associ<strong>at</strong>ed proteins embedded<br />

in a ring structure <strong>of</strong> integrins and<br />

integrin-associ<strong>at</strong>ed proteins (see poster,<br />

middle and right). Ring and core are<br />

probably linked by bridging molecules<br />

such as α-actinin, and the whole structure<br />

is surrounded by a cloud <strong>of</strong> mostly<br />

monomeric actin molecules (Destaing et<br />

al., 2003). Many podosome components<br />

show a distinct localiz<strong>at</strong>ion to either the<br />

core or ring structure. Typical core<br />

components are F-actin, actin regul<strong>at</strong>ors<br />

such as members <strong>of</strong> the Wiskott-Aldrich<br />

Syndrome protein (WASP) family, the


<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>Science</strong><br />

<strong>Cell</strong> <strong>Science</strong> <strong>at</strong> a <strong>Glance</strong> 2081<br />

Arp2/3 complex, gelsolin and cortactin,<br />

whereas adhesion medi<strong>at</strong>ors such as<br />

paxillin, vinculin or talin, and kinases<br />

such as PI3K or Pyk2/FAK preferentially<br />

associ<strong>at</strong>e with the ring structure (Linder<br />

and Aepfelbacher, 2003; Buccione et al.,<br />

2004).<br />

<strong>Podosomes</strong> are anchored in the<br />

extracellular m<strong>at</strong>rix through integrins.<br />

<strong>The</strong>se are distributed over the whole<br />

outer surface <strong>of</strong> the podosome, but show<br />

an isotype-specific localiz<strong>at</strong>ion: β1<br />

integrins localize mostly to the core,<br />

whereas β2 and β3 integrins localize to<br />

the ring.<br />

Regul<strong>at</strong>ion<br />

<strong>Podosomes</strong> are influenced by a variety <strong>of</strong><br />

cellular signaling p<strong>at</strong>hways. Major<br />

modes <strong>of</strong> podosome regul<strong>at</strong>ion include<br />

signaling by Rho family GTPases, actin<br />

regul<strong>at</strong>ory p<strong>at</strong>hways, protein tyrosine<br />

phosphoryl<strong>at</strong>ion, and the influence <strong>of</strong> the<br />

microtubule system.<br />

Rho GTPases<br />

<strong>The</strong> RhoGTPases RhoA, Rac1 and<br />

CDC42 have all been shown to regul<strong>at</strong>e<br />

podosome turnover in various cell types.<br />

<strong>The</strong>ir influence on podosomes is<br />

undisputed; however, their particular<br />

mode <strong>of</strong> action may depend on the cell<br />

type. For example, both dominant active<br />

and inactive mutants <strong>of</strong> these GTPases<br />

can interfere with podosome form<strong>at</strong>ion<br />

or localiz<strong>at</strong>ion in dendritic cells (Burns<br />

et al., 2001), while expression <strong>of</strong><br />

dominant active CDC42 leads to<br />

podosome form<strong>at</strong>ion in aortic<br />

endothelial cells (Moreau et al., 2003).<br />

In any case, podosome turnover appears<br />

to need subcellular fine tuning <strong>of</strong> the<br />

GTP/GDP cycles <strong>of</strong> these cellular master<br />

switches (Linder and Aepfelbacher,<br />

2003). Accordingly, active Rho has been<br />

localized to invadopodia in transformed<br />

fibroblasts (Berdeaux et al., 2004).<br />

Actin regul<strong>at</strong>ion<br />

<strong>The</strong> most prominent fe<strong>at</strong>ure <strong>of</strong><br />

podosomes is their F-actin-rich core,<br />

which is also necessary for the stability<br />

<strong>of</strong> the whole structure (Lehto et al.,<br />

1982). Members <strong>of</strong> the WASP family, as<br />

well as actin-nucle<strong>at</strong>ing Arp2/3 complex<br />

are both strongly enriched in the<br />

podosome core. Absence <strong>of</strong> these<br />

components, either induced artificially<br />

(Linder et al., 2000a) or in disease<br />

(Linder et al., 1999; Burns et al., 2001)<br />

(reviewed in Calle et al., 2004), results<br />

in disruption <strong>of</strong> podosomes. Another<br />

prominent podosome component<br />

involved in actin regul<strong>at</strong>ion is gelsolin. It<br />

probably contributes to actin turnover<br />

through its ability to both sever and cap<br />

actin filaments (Chellaiah et al., 1998).<br />

Tyrosine phosphoryl<strong>at</strong>ion<br />

It was noted early on th<strong>at</strong> podosome-type<br />

adhesions can be induced by<br />

transform<strong>at</strong>ion <strong>of</strong> cells with viruses<br />

whose oncogenes encode tyrosine<br />

kinases such as v-Src (Tarone et al.,<br />

1985; Marchisio et al., 1987). Indeed,<br />

one <strong>of</strong> the best ways to visualize<br />

podosomes is by staining phosphoryl<strong>at</strong>ed<br />

tyrosine (Linder and Apfelbacher, 2003),<br />

which is highly enriched in some types <strong>of</strong><br />

adhesive structure. Not surprisingly,<br />

cellular tyrosine kinases such as Src and<br />

Csk play major roles in podosome<br />

regul<strong>at</strong>ion (Howell and Cooper, 1994),<br />

and tools for podosome manipul<strong>at</strong>ion<br />

include Src kinase inhibitors, which<br />

disrupt podosomes (Linder et al., 2000b),<br />

and vanad<strong>at</strong>e, a phosphotyrosine<br />

phosph<strong>at</strong>ase inhibitor, which is able to<br />

induce podosome form<strong>at</strong>ion (Marchisio<br />

et al., 1988).<br />

Microtubules<br />

Microtubules are closely associ<strong>at</strong>ed with<br />

podosomes. Moreover, they have been<br />

shown to stabilize podosome p<strong>at</strong>terns<br />

such as the marginal belts in osteoclasts<br />

(Babb et al., 1997), to influence the<br />

fusion and fission r<strong>at</strong>es <strong>of</strong> podosome<br />

precursors in murine macrophages<br />

(Evans et al., 2003) and to regul<strong>at</strong>e<br />

podosome form<strong>at</strong>ion in human<br />

macrophages (Linder et al., 2000b).<br />

A model for podosome form<strong>at</strong>ion<br />

Analysis <strong>of</strong> podosome-inducing p<strong>at</strong>hways<br />

has been performed in a variety <strong>of</strong><br />

cell types. From these d<strong>at</strong>a we can<br />

propose the following simplified model<br />

for podosome form<strong>at</strong>ion: <strong>The</strong> key signal<br />

for initi<strong>at</strong>ion is <strong>at</strong>tachment <strong>of</strong> the cell to<br />

the substr<strong>at</strong>e, because podosomes are<br />

only observed in adherent cells. This<br />

leads to clustering and activ<strong>at</strong>ion <strong>of</strong><br />

integrins and signaling by receptor<br />

tyrosine kinases. One <strong>of</strong> the most<br />

upstream signals is probably PKC<br />

activity. This is underscored by the fact<br />

th<strong>at</strong> podosome form<strong>at</strong>ion can be induced<br />

by PKC-activ<strong>at</strong>ing agents, such as<br />

phorbol esters (Gimona et al., 2003).<br />

An important subsequent switch is<br />

activ<strong>at</strong>ion <strong>of</strong> Src. Downstream, a variety<br />

<strong>of</strong> p<strong>at</strong>hways are initi<strong>at</strong>ed, most notably<br />

PI3K signaling (Chellaiah et al., 1998),<br />

which leads to the form<strong>at</strong>ion <strong>of</strong> the<br />

phosph<strong>at</strong>idylinositols PtdIns(3,4)P2 and<br />

PtdIns(3,4,5)P3, and activ<strong>at</strong>ion <strong>of</strong> focal<br />

adhesion kinase (FAK) or its<br />

haem<strong>at</strong>opoietic rel<strong>at</strong>ive Pyk2. 3�<br />

phosphoinositide signaling is also<br />

influenced by the RhoGTPases Rho and<br />

(probably) Rac (Chellaiah et al., 2001;<br />

Sechi and Wehland, 2000).<br />

CDC42, another RhoGTPase, is crucial<br />

for the local initi<strong>at</strong>ion <strong>of</strong> actin filament<br />

form<strong>at</strong>ion, which gives rise to the<br />

form<strong>at</strong>ion <strong>of</strong> the actin-rich core<br />

structure. This is achieved by releasing<br />

the autoinhibition <strong>of</strong> N-WASP or its<br />

rel<strong>at</strong>ive WASP, which in turn activ<strong>at</strong>es<br />

actin-nucle<strong>at</strong>ing Arp2/3 complex<br />

(Linder et al., 1999; Linder et al., 2000a;<br />

Burns et al., 2001). Turnover <strong>of</strong> corelocalized<br />

actin filaments is probably<br />

facilit<strong>at</strong>ed by gelsolin (Chellaiah et al.,<br />

1998) and the GTPase dynamin<br />

(McNiven et al., 2004; Buccione et al.,<br />

2004). Additionally, dynamin may also<br />

play a role in podosome-localized m<strong>at</strong>rix<br />

degrad<strong>at</strong>ion by facilit<strong>at</strong>ing m<strong>at</strong>rix<br />

metalloprotease release.<br />

It is unclear how core- and ringform<strong>at</strong>ion<br />

are coordin<strong>at</strong>ed. However,<br />

similarly to core molecules, central<br />

components <strong>of</strong> the ring structure, such as<br />

talin and vinculin, are also influenced by<br />

phosphoinositides (Sechi and Wehland,<br />

2000), and activ<strong>at</strong>ion <strong>of</strong> paxillin through<br />

integrin-rel<strong>at</strong>ed signaling (Pfaff and<br />

Jurdic, 2001) may constitute one <strong>of</strong> the<br />

earliest signals in ring form<strong>at</strong>ion.<br />

Dynamics<br />

<strong>Podosomes</strong> are highly dynamic<br />

organelles with a half-life <strong>of</strong> 2-12<br />

minutes. Moreover, their inner dynamic<br />

is even faster: F-actin in the core turnes<br />

over 2-3 times during the life span <strong>of</strong> a<br />

podosome (Destaing et al., 2003).<br />

Individual podosomes are motile within


<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>Science</strong><br />

2082<br />

<strong>Journal</strong> <strong>of</strong> <strong>Cell</strong> <strong>Science</strong> 118 (10)<br />

a certain radius, but movement <strong>of</strong> larger<br />

podosome groups is achieved through<br />

assembly <strong>at</strong> the front and disassembly <strong>at</strong><br />

the rear. This is especially visible in<br />

migr<strong>at</strong>ory cells where podosomes are<br />

recruited to the leading edge.<br />

<strong>Podosomes</strong> can assemble de novo or by<br />

branching <strong>of</strong>f precursor clusters, which<br />

undergo constant fusion and fission<br />

(Evans et al., 2003) (see poster, lower<br />

right). ‘Regular’ podosomes are mostly<br />

found in the inner regions <strong>of</strong> the cell,<br />

while the larger precursor clusters<br />

localize to the cell periphery or the<br />

leading lamella <strong>of</strong> migr<strong>at</strong>ing cells.<br />

Disease<br />

<strong>Podosomes</strong> are assembled from<br />

molecules th<strong>at</strong> have multiple functions<br />

in the cell, such as actin and Src kinases.<br />

Inhibitors <strong>of</strong> podosome assembly<br />

therefore also have pr<strong>of</strong>ound effects<br />

on other parts <strong>of</strong> the cytoskeleton.<br />

Similarly, the absence <strong>of</strong> podosomes in<br />

diseases based on defects in a podosome<br />

component(s) may only constitute a side<br />

effect. <strong>The</strong> podosome aficionado should<br />

therefore take care to ascertain whether<br />

a lack <strong>of</strong> podosomes causes or is simply<br />

symptom<strong>at</strong>ic <strong>of</strong> a particular phenotype.<br />

Podosome-associ<strong>at</strong>ed diseases include<br />

Wiskott-Aldrich Syndrome (WAS) and<br />

chronic myeloid leukemia (CML).<br />

WAS-p<strong>at</strong>ient macrophages (Linder et<br />

al., 1999) and dendritic cells from CML<br />

p<strong>at</strong>ients (Dong et al., 2003) both display<br />

pronounced defects in podosome<br />

form<strong>at</strong>ion and chemotaxis.<br />

We thank Bettina Ebbing for help with TIRF<br />

microscopy, Alexander Bershadsky for the gift <strong>of</strong><br />

YFP-vinculin, Peter C. Weber and Jürgen<br />

Heesemann for continuous support and Barbara<br />

Böhlig for expert technical assistance. Work from<br />

our lab is supported by the Deutsche<br />

Forschungsgemeinschaft (GRK 438, SFB 413), the<br />

Friedrich Baur Stiftung and the August Lenz<br />

Stiftung. We apologize to all whose work was not<br />

mentioned owing to space limit<strong>at</strong>ions.<br />

References<br />

Adams, J. C. (2001). <strong>Cell</strong>-m<strong>at</strong>rix contact structures.<br />

<strong>Cell</strong>. Mol. Life Sci. 58, 371-392.<br />

Babb, S. G., M<strong>at</strong>sudaira, P., S<strong>at</strong>o, M., Correia, I.<br />

and Lim, S. S. (1997). Fimbrin in podosomes <strong>of</strong><br />

monocyte-derived osteoclasts. <strong>Cell</strong> Motil.<br />

Cytoskeleton 37, 308-325.<br />

Berdeaux, R. L., Diaz, B., Kim, L. and Martin, G.<br />

S. (2004). Active Rho is localized to podosomes<br />

induced by oncogenic Src and is required for their<br />

assembly and function. J. <strong>Cell</strong> Biol. 166, 317-323.<br />

Buccione, R., Orth, J. D. and McNiven, M. A.<br />

(2004). Foot and mouth: podosomes, invadopodia and<br />

circular dorsal ruffles. N<strong>at</strong>. Rev. Mol.<strong>Cell</strong> Biol. 5, 647-<br />

657.<br />

Burgstaller, G. and Gimona, M. (2005). Podosomemedi<strong>at</strong>ed<br />

m<strong>at</strong>rix resorption and cell motility in<br />

vascular smooth muscle cells. Am. J. Physiol. Heart<br />

Circ. Physiol. (epub Feb. 4)<br />

Burns, S., Thrasher, A. J., Blundell, M. P.,<br />

Machesky, L. and Jones, G. E. (2001). Configur<strong>at</strong>ion<br />

<strong>of</strong> human dendritic cell cytoskeleton by Rho GTPases,<br />

the WAS protein, and differenti<strong>at</strong>ion. Blood 98, 1142-<br />

1149.<br />

Calle, Y., Chou, H. C., Thrasher, A. J. and Jones,<br />

G. E. (2004). Wiskott-Aldrich syndrome protein and<br />

the cytoskeletal dynamics <strong>of</strong> dendritic cells. J. P<strong>at</strong>hol.<br />

204, 460-469.<br />

Chellaiah, M., Fitzgerald, C., Alvarez, U. and<br />

Hruska, K. (1998). c-Src is required for stimul<strong>at</strong>ion<br />

<strong>of</strong> gelsolin-associ<strong>at</strong>ed phosph<strong>at</strong>idylinositol 3-kinase.<br />

J. Biol. Chem. 273, 11908-11916.<br />

Chellaiah, M. A., Biswas, R. S., Yuen, D., Alvarez,<br />

U. M. and Hruska, K. A. (2001).<br />

Phosph<strong>at</strong>idylinositol 3,4,5-trisphosph<strong>at</strong>e directs<br />

associ<strong>at</strong>ion <strong>of</strong> Src homology 2-containing signaling<br />

proteins with gelsolin. J. Biol. Chem. 276, 47434-<br />

47444.<br />

David-Pfeuty, T. and Singer, S. J. (1980). Altered<br />

distributions <strong>of</strong> the cytoskeletal proteins vinculin and<br />

alpha-actinin in cultured fibroblasts transformed by<br />

Rous sarcoma virus. Proc. N<strong>at</strong>l. Acad. Sci. USA 77,<br />

6687-6691.<br />

Delaissé, J. M., Engsig, M. T., Everts, V., del<br />

Carmen Ovejero, M., Ferreras, M., Lund, L., Vu,<br />

T. H., Werb, Z., Winding, B., Lochter, A. et al.<br />

(2000). Proteinases in bone resorption: obvious and<br />

less obvious roles. Clin. Chim. Acta 291, 223-234.<br />

Destaing, O., Saltel, F., Geminard, J. C., Jurdic, P.<br />

and Bard, F. (2003). <strong>Podosomes</strong> display actin<br />

turnover and dynamic self-organiz<strong>at</strong>ion in osteoclasts<br />

expressing actin-green fluorescent protein. Mol. Biol.<br />

<strong>Cell</strong> 14, 407-416.<br />

Dong, R., Cwynarski, K., Entwistle, A., Marelli-<br />

Berg, F., Dazzi, F., Simpson, E., Goldman, J. M.,<br />

Melo, J. V., Lechler, R. I., Bellantuono, I. et al.<br />

(2003). Dendritic cells from CML p<strong>at</strong>ients have<br />

altered actin organiz<strong>at</strong>ion, reduced antigen processing,<br />

and impaired migr<strong>at</strong>ion. Blood 101, 3560-3567.<br />

Evans, J.G., Correia, I., Krasavina, O., W<strong>at</strong>son, N.<br />

and M<strong>at</strong>sudaira, P. (2003). Macrophage podosomes<br />

assemble <strong>at</strong> the leading lamella by growth and<br />

fragment<strong>at</strong>ion. J. <strong>Cell</strong> Biol. 161, 697-705.<br />

Gimona, M., Kaverina, I., Resch, G. P., Vignal, E.<br />

and Burgstaller, G. (2003). Calponin repe<strong>at</strong>s regul<strong>at</strong>e<br />

actin filament stability and form<strong>at</strong>ion <strong>of</strong> podosomes in<br />

smooth muscle cells. Mol. Biol. <strong>Cell</strong> 14, 2482-2491.<br />

Howell, B. W. and Cooper, J. A. (1994). Csk<br />

suppression <strong>of</strong> Src involves movement <strong>of</strong> Csk to sites<br />

<strong>of</strong> Src activity. Mol. <strong>Cell</strong> Biol. 14, 5402-5411.<br />

Lakkakorpi, P. T. and Väänänen, H. K. (1996).<br />

Cytoskeletal changes in osteoclasts during the<br />

resorption cycle. Microsc. Res. Tech. 33, 171-181.<br />

Lehto, V. P., Hovi, T., Vartio, T., Badley, R. A. and<br />

Virtanen, I. (1982). Reorganiz<strong>at</strong>ion <strong>of</strong> cytoskeletal<br />

and contractile elements during transition <strong>of</strong> human<br />

monocytes into adherent macrophages. Lab. Invest.<br />

47, 391-399.<br />

Linder, S. and Aepfelbacher, M. (2003).<br />

<strong>Podosomes</strong>: adhesion hot-spots <strong>of</strong> invasive cells.<br />

Trends <strong>Cell</strong> Biol. 13, 376-385.<br />

Linder, S., Nelson, D., Weiss, M. and Aepfelbacher,<br />

M. (1999). Wiskott-Aldrich syndrome protein<br />

regul<strong>at</strong>es podosomes in primary human macrophages.<br />

Proc. N<strong>at</strong>l. Acad. Sci. USA 96, 9648-9653.<br />

Linder, S., Higgs, H., Hufner, K., Schwarz, K.,<br />

Pannicke, U. and Aepfelbacher, M. (2000a). <strong>The</strong><br />

polariz<strong>at</strong>ion defect <strong>of</strong> Wiskott-Aldrich syndrome<br />

macrophages is linked to dislocaliz<strong>at</strong>ion <strong>of</strong> the Arp2/3<br />

complex. J. Immunol. 165, 221-225.<br />

Linder, S., Hufner, K., Wintergerst, U. and<br />

Aepfelbacher, M. (2000b). Microtubule-dependent<br />

form<strong>at</strong>ion <strong>of</strong> podosomal adhesion structures in<br />

primary human macrophages. J. <strong>Cell</strong> Sci. 113, 4165-<br />

4176.<br />

Marchisio, P. C., Cirillo, D., Naldini, L.,<br />

Primavera, M. V., Teti, A. and Zambonin-Zallone,<br />

A. (1984). <strong>Cell</strong>-substr<strong>at</strong>um interaction <strong>of</strong> cultured<br />

avian osteoclasts is medi<strong>at</strong>ed by specific adhesion<br />

structures. J. <strong>Cell</strong> Biol. 99, 1696-1705.<br />

Marchisio, P. C., Cirillo, D., Teti, A., Zambonin-<br />

Zallone, A. and Tarone, G. (1987). Rous sarcoma<br />

virus-transformed fibroblasts and cells <strong>of</strong> monocytic<br />

origin display a peculiar dot-like organiz<strong>at</strong>ion <strong>of</strong><br />

cytoskeletal proteins involved in micr<strong>of</strong>ilamentmembrane<br />

interactions. Exp. <strong>Cell</strong> Res. 169, 202-214.<br />

Marchisio, P. C., D’Urso, N., Comoglio, P. M.,<br />

Giancotti, F. G. and Tarone, G. (1988). Vanad<strong>at</strong>etre<strong>at</strong>ed<br />

baby hamster kidney fibroblasts show<br />

cytoskeleton and adhesion p<strong>at</strong>terns similar to their<br />

Rous sarcoma virus-transformed counterparts. J. <strong>Cell</strong><br />

Biochem. 37, 151-159.<br />

McNiven, M. A., Baldassarre, M. and Buccione, R.<br />

(2004). <strong>The</strong> role <strong>of</strong> dynamin in the assembly and<br />

function <strong>of</strong> podosomes and invadopodia. Front.<br />

Biosci. 9, 1944-1953.<br />

Moreau, V., T<strong>at</strong>in, F., Varon, C. and Genot, E.<br />

(2003). Actin can reorganize into podosomes in aortic<br />

endothelial cells, a process controlled by Cdc42 and<br />

RhoA. Mol. <strong>Cell</strong> Biol. 23, 6809-6822.<br />

Osiak, A.-E., Zenner, G. and Linder, S. (2005).<br />

Subconfluent endothelial cells form podosomes<br />

downstream <strong>of</strong> cytokine and RhoGTPase signaling.<br />

Exp. <strong>Cell</strong> Res., in press<br />

Pfaff, M. and Jurdic, P. (2001). <strong>Podosomes</strong> in<br />

osteoclast-like cells: structural analysis and<br />

cooper<strong>at</strong>ive roles <strong>of</strong> paxillin, proline-rich tyrosine<br />

kinase 2 (Pyk2) and integrin alphaVbeta3. J. <strong>Cell</strong> Sci.<br />

114, 2775-2786.<br />

Saltel, F., Destaing, O., Bard, F., Eichert, D. and<br />

Jurdic, P. (2004). Ap<strong>at</strong>ite-medi<strong>at</strong>ed actin dynamics in<br />

resorbing osteoclasts. Mol. Biol. <strong>Cell</strong> 15, 5231-5241.<br />

S<strong>at</strong>o, T., del Carmen Ovejero, M., Hou, P.,<br />

Heegaard, A. M., Kumegawa, M., Foged, N. T. and<br />

Delaisse, J. M. (1997). Identific<strong>at</strong>ion <strong>of</strong> the<br />

membrane-type m<strong>at</strong>rix metalloproteinase MT1-MMP<br />

in osteoclasts. J. <strong>Cell</strong> Sci. 110, 589-596.<br />

Sechi, A. S. and Wehland, J. (2000). <strong>The</strong> actin<br />

cytoskeleton and plasma membrane connection:<br />

PtdIns(4,5)P(2) influences cytoskeletal protein activity<br />

<strong>at</strong> the plasma membrane. J. <strong>Cell</strong> Sci. 113, 3685-3695.<br />

Tarone, G., Cirillo, D., Giancotti, F. G., Comoglio,<br />

P. M. and Marchisio, P. C. (1985). Rous sarcoma<br />

virus-transformed fibroblasts adhere primarily <strong>at</strong><br />

discrete protrusions <strong>of</strong> the ventral membrane called<br />

podosomes. Exp. <strong>Cell</strong> Res. 159, 141-157.<br />

Zaidel-Bar, R., Cohen, M., Addadi, L. and Geiger,<br />

B. (2004). Hierarchical assembly <strong>of</strong> cell-m<strong>at</strong>rix<br />

adhesion complexes Biochem. Soc. Trans. 32, 416-<br />

420.<br />

Zamir, E. and Geiger, B. (2001). Molecular<br />

complexity and dynamics <strong>of</strong> cell-m<strong>at</strong>rix adhesions. J.<br />

<strong>Cell</strong> Sci. 114, 3583-3590.<br />

Zamir, E., K<strong>at</strong>z, B. Z., Aota, S., Yamada, K. M.,<br />

Geiger, B. and Kam, Z. (1999). Molecular diversity<br />

<strong>of</strong> cell-m<strong>at</strong>rix adhesions. J. <strong>Cell</strong> Sci. 112, 1655-1669.<br />

<strong>Cell</strong> <strong>Science</strong> <strong>at</strong> a <strong>Glance</strong> on the Web<br />

Electronic copies <strong>of</strong> the poster insert are<br />

available in the online version <strong>of</strong> this article<br />

<strong>at</strong> jcs.biologists.org. <strong>The</strong> JPEG images can<br />

be downloaded for printing or used as<br />

slides.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!