05.09.2017 Views

Basic Metallography ( Bapak Ir. Nizhamul Latif, M.Sc)

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

METALLOGRAPHY


PERTANYAAN<br />

• Apa itu Metalografi ?<br />

• Untuk apa dilakukan Pemeriksaan<br />

Metalografi dan Apa Manfaatnya?<br />

• Aplikasi apa saja yang memerlukan<br />

pemeriksaan Metalografi ?<br />

• Bagaimana Metoda dan Teknik<br />

Pemeriksaan Metalografi ?


Apa itu Metalografi ?<br />

<strong>Metallography</strong> By Definition :<br />

The structural study of metals and their alloys by<br />

means of various procedures eg. Microscopy, X-Ray<br />

difraction, etc.<br />

(chambers mater, <strong>Sc</strong>i and tech. Dictionary, 1993)<br />

Metallografi Meliputi :<br />

• Teknik atau cara memunculkan struktur yang<br />

diamati.<br />

• Peralatan yang digunakan untuk melakukan<br />

analisis struktur.<br />

• Interpretasi atau analisis fenomena struktur<br />

yang diamati.


PERTANYAAN<br />

• Apa itu Metalografi ?<br />

• Untuk apa dilakukan Pemeriksaan<br />

Metalografi dan Apa Manfaatnya?<br />

• Aplikasi apa saja yang memerlukan<br />

pemeriksaan Metalografi ?<br />

• Bagaimana Metoda dan Teknik<br />

Pemeriksaan Metalografi ?


Untuk apa dilakukan Pemeriksaan Metalografi<br />

dan Apa Manfaatnya?<br />

1. Mengetahui struktur<br />

mikro atau fasa bahan<br />

logam seperti :<br />

a. Untuk baja<br />

‣ ferrit,<br />

‣ Fasa perlit,<br />

‣ Fasa,martensit, dsb.<br />

b. Untuk Besi Cor<br />

b. Fas grafit berserpih,<br />

c. Fasa nodular,dsb.<br />

Martensit<br />

apakah sudah sesuai<br />

dengan spesifikasi teknis<br />

perencanaan ?.<br />

Struktur mikro<br />

berupa ferit, perlit,<br />

steadit dan grafit.<br />

Martensit, austenit<br />

sisa dan grafit<br />

nodular


Untuk apa dilakukan Pemeriksaan Metalografi<br />

dan Apa Manfaatnya?<br />

2. Memperlihatkan cacad<br />

material yang disebabkan<br />

oleh<br />

proses<br />

produksi/fabrikasi,<br />

seperti:<br />

a. impurities,<br />

b. rongga penyusutan,<br />

c. cacad pengelasan,<br />

dsb.nya;<br />

dikaitkan dengan kondisi<br />

operasi dan lingkungan<br />

yang mungkin mempunyoi<br />

andil dalam proses<br />

kerusakan..


Untuk apa dilakukan Pemeriksaan Metalografi<br />

dan Apa Manfaatnya?<br />

3. Mengukur ketebalon :<br />

a. lopisan pengerasan,<br />

atau jenis pelapis lain,<br />

b. ukuran butiran,<br />

c. Luas daerah pengaruh<br />

panas (HAZ) akibat<br />

proses pengelasan.<br />

Plasma Sprayed Chromium Oxide<br />

Coating


Untuk apa dilakukan Pemeriksaan Metalografi<br />

dan Apa Manfaatnya?<br />

4. Memperlihatkan bentuk<br />

penjolaran retakan,<br />

seperti :<br />

a. retak interkristallin,<br />

b. transkristallin,<br />

c. retak korosi, dsb.nya.<br />

Interkristalin


Untuk apa dilakukan Pemeriksaan Metalografi<br />

dan Apa Manfaatnya?<br />

5. Memperlihatkan penyimpangan struktur mikro<br />

bahan logam akibat proses perlakuan ponas,<br />

seperti :<br />

a. quenching,<br />

b. hardening,<br />

c. normalisasi dsb. nya.<br />

Keretakan pada baja Cr-<br />

Mo-V disebabkan oleh<br />

laju pendinginan cepat<br />

Korosi tegang dekat<br />

daerah lasan akibat<br />

tidak dilakukan stress<br />

relivied annealing


TRANSFORMASI FASA


PHASE TRANSFORMATIONS<br />

• Transforming one phase into another takes time.<br />

• How does the rate of transformation depend on<br />

time and T?<br />

• How can we control the transformation so that<br />

we can engineering non-equilibrium structures?<br />

• How different are the mechanical properties of<br />

non-equilibrium structures?


IMPORTANCE OF COOLING<br />

Cu-Ni alloy<br />

TIME<br />

Fast cooling<br />

Non-equilibrium phases<br />

Slow cooling<br />

Equilibrium phases


COOLING AUSTENITE<br />

Austenite<br />

Pearlite<br />

• Mainly interested in eutectoid cooling: g a + Fe 3 C (pearlite), 0.77 wt% C<br />

• Cooling rate can result in a wide variety of phases and microstructures<br />

– Equilibrium phases: pearlite, bainite<br />

– Non-equilibrium phases: martensite


Strength<br />

Ductility<br />

MECHANICAL PROPERTIES<br />

• Martensite<br />

• Tempered martensite<br />

• Bainite<br />

• Fine pearlite<br />

• Coarse pearlite<br />

• Can control the formation of specific phases and<br />

microstructure so that desired properties result


FRACTION OF TRANSFORMATION<br />

• Fraction transformed depends on time,<br />

at constant temperature (e.g., g pearlite)<br />

y<br />

1<br />

e<br />

kt<br />

n<br />

Avrami equation<br />

(k, n are constants)<br />

• Transformation rate , r = 1/t 0.5


EUTECTOID TRANSFORMATION RATE ~ DT<br />

• Pertumbuhan pearlite dari austenite:<br />

• Laju Reaksi meningkat sesuai DT.


TIME-TEMPERATURE TRANSFORMATION (TTT) DIAGRAMS<br />

• Fe-C system, Komposisi Eutectoid (C o = 0.77wt%C)<br />

• Transformasi pada T = 675C.<br />

Also called<br />

isothermal<br />

transformation<br />

diagram


EX: COOLING HISTORY Fe-C SYSTEM<br />

• Komposisi Eutectoid , C o = 0.77wt%C<br />

• Mulai pada T > 727C<br />

• Pendinginan cepat sampai 625 0 C dan ditahan secara isotermal.<br />

• Pendinginansampai temperatut yg lebih rendah shg diperoleh struktur mikro<br />

yang halus


Two cases:<br />

PEARLITE MORPHOLOGY<br />

• Ttransf just below TE<br />

--Larger T: diffusion is faster<br />

--Pearlite is coarser.<br />

• Ttransf well below TE<br />

--Smaller T: diffusion is slower<br />

--Pearlite is finer.<br />

- Smaller DT:<br />

colonies are<br />

larger<br />

- Larger DT:<br />

colonies are<br />

smaller


OTHER TRANSFORMATION PRODUCTS<br />

• Bainite:<br />

--a strips with long, fine<br />

rods of Fe 3 C<br />

• Isothermal Transf. Diagram<br />

Fe3C<br />

(cementite)<br />

a(ferrite)<br />

5 m<br />

(Adapted from Fig. 10.8, Callister, 6e. (Fig.<br />

10.8 from Metals Handbook, 8th ed.,<br />

Vol. 8, <strong>Metallography</strong>, Structures, and<br />

Phase Diagrams, American Society for<br />

Metals, Materials Park, OH, 1973.)<br />

Note: reaction rate<br />

increases with decreasing<br />

temperature first, and then<br />

decreases


NUCLEATION AND GROWTH<br />

• Reaction rate is a result of nucleation and growth of crystals.<br />

Nucleation rate increases with DT<br />

Growth rate increases with T<br />

• Examples:


OTHER PRODUCTS: MARTENSITE<br />

• Martensite:<br />

--rapid cooling from above eutectoid temperature to room T<br />

--g(FCC) to Martensite (Body Centered Tetragonal)<br />

--involves collective motion of a lot of atoms<br />

• Isothermal Transf. Diagram<br />

• g to M transformation..<br />

-- is rapid! At speed of sound<br />

-- % transf. depends on T only.


• Martensite:<br />

--g(FCC) to Martensite (BCT)<br />

• Isothermal Transf. Diagram<br />

Adapted<br />

from Fig.<br />

10.13,<br />

Callister 6e.<br />

OTHER PRODUCTS: Fe-C SYSTEM (2)<br />

(involves single atom jumps)<br />

Fe atom<br />

sites<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

potential<br />

C atom sites<br />

(Adapted from Fig.<br />

10.11, Callister, 6e.<br />

60 m<br />

Martentite needles<br />

Austenite<br />

(Adapted from Fig. 10.12, Callister,<br />

6e. (Fig. 10.12 courtesy United<br />

States Steel Corporation.)<br />

• g to M transformation..<br />

-- is rapid!<br />

-- % transf. depends on T only.<br />

11


PRODUCTS OF COOLING AUSTENITE<br />

• Slow cooling pearlite<br />

• Cool rapidly to upto 550<br />

C, and hold pearlite<br />

• Cool rapidly to 550-225 C<br />

and hold bainite<br />

• Cool rapidly to below 225<br />

C martensite


COOLING EX: Fe-C SYSTEM (1)<br />

Rapidly cool to 350 C<br />

Hold for 10000 seconds<br />

Rapidly cool to room T<br />

100% Austenite<br />

100% Bainite<br />

100% Bainite


COOLING EX: Fe-C SYSTEM (2)<br />

Rapidly cool to 250 C<br />

Hold for 100 seconds<br />

Rapidly cool to room T<br />

100% Austenite<br />

100% Austenite<br />

Mostly Martensite + traces of Austenite


COOLING EX: Fe-C SYSTEM (3)<br />

100% Austenite<br />

50% Austenite,<br />

50% Pearlite<br />

Rapidly cool to 650 C<br />

Hold for 20 seconds<br />

Rapidly cool to 400 C<br />

Hold for 1000 seconds<br />

Rapidly cool to room T<br />

50% Austenite,<br />

50% Pearlite<br />

50% Bainite, 50% Pearlite<br />

50% Bainite, 50% Pearlite


OTHER PRODUCTS: Fe-C SYSTEM (1)<br />

• Spheroidite:<br />

--a crystals with spherical Fe 3 C<br />

--diffusion dependent.<br />

--heat bainite or pearlite for long times<br />

--reduces interfacial area (driving force)<br />

• Isothermal Transf. Diagram<br />

a<br />

(ferrite)<br />

Fe3C<br />

(cementite)<br />

60 m<br />

(Adapted from Fig. 10.10, Callister,<br />

6e. (Fig. 10.10 copyright United<br />

States Steel Corporation, 1971.)<br />

Adapted from Fig. 10.9,Callister 6e.<br />

(Fig. 10.9 adapted from H. Boyer (Ed.) Atlas of<br />

Isothermal Transformation and Cooling<br />

Transformation Diagrams, American Society for<br />

Metals, 1997, p. 28.)<br />

10


TEMPERING MARTENSITE<br />

• reduces brittleness of martensite,<br />

• reduces internal stress caused by quenching.<br />

Adapted from<br />

Fig. 10.25,<br />

Callister 6e.<br />

(Fig. 10.25<br />

adapted from<br />

Fig. furnished<br />

courtesy of<br />

Republic Steel<br />

Corporation.)<br />

Adapted from<br />

Fig. 10.24,<br />

Callister 6e.<br />

(Fig. 10.24<br />

copyright by<br />

United States<br />

Steel<br />

Corporation,<br />

1971.)<br />

18


Strength<br />

Ductility<br />

MECHANICAL PROPERTIES<br />

• Martensite<br />

• Tempered martensite<br />

• Bainite<br />

• Fine pearlite<br />

• Coarse pearlite<br />

• Spheroidite<br />

• Can control the formation of specific phases and<br />

microstructure through a cooling schedule<br />

so that desired properties result


HYPOEUTECTOID & HYPEREUTECTOID<br />

Austenite<br />

Pearlite<br />

• Eutectoid (0.77 wt% C) <br />

pearlite (ferrite & cementite<br />

layers)<br />

• Hypoeutectoid (< 0.77 wt% C)<br />

pearlite & ferrite<br />

• Hypereutectoid (> 0.77 wt% C)<br />

pearlite & cementite<br />

• Ferrite is soft and cementite is<br />

hard<br />

• Thus, hardness and strength<br />

increase with carbon content


HYPER eutectiod Steel TTT Curve


Alloy Steel TTT Curve


Continuous Cooling Transformation (CCT)


Continuous Cooling Transformation (CCT)


Continuous Cooling Transformation (CCT)


MECHANICAL PROP: Fe-C SYSTEM (1)


MECHANICAL PROP: Fe-C SYSTEM (2)<br />

• Fine Pearlite vs Martensite:<br />

• Hardness: fine pearlite


SUMMARY: PROCESSING OPTIONS<br />

Adapted from<br />

Fig. 10.27,<br />

Callister 6e.<br />

19


Spheroidite<br />

Austenite<br />

Rapid<br />

Quench<br />

AS: Alloy Steel<br />

PCS: Plain-carbon Steel<br />

Martensite<br />

Re-heat<br />

Slow<br />

Cooling<br />

Moderate cooling (AS)<br />

Isothermal treatment (PCS)<br />

Re-heat<br />

Tempered<br />

Martensite<br />

coarse<br />

Pearlite<br />

fine<br />

Bainite


• Particles impede dislocations.<br />

• Ex: Al-Cu system<br />

• Procedure:<br />

--Pt A: solution heat treat<br />

(get a solid solution)<br />

--Pt B: quench to room temp.<br />

--Pt C: reheat to nucleate<br />

small q crystals within<br />

a crystals.<br />

• Other precipitation<br />

systems:<br />

• Cu-Be<br />

• Cu-Sn<br />

• Mg-Al<br />

PRECIPITATION HARDENING<br />

Adapted from Fig. 11.22, Callister 6e. (Fig. 11.22 adapted<br />

from J.L. Murray, International Metals Review 30, p.5, 1985.)<br />

Adapted from Fig.<br />

11.20, Callister 6e.<br />

16


PRECIPITATION HARDENING<br />

T 0<br />

T 2<br />

• Two stage heat treatment. Procedure:<br />

--T 0 : solution heat treatment<br />

(get single phase solid solution)<br />

--Quench to T 1 .<br />

--T 2 : reheat to nucleate precipitates


PRECIPITATION HARDENING


PRECIPITATION HARDENING


PRECIPITATE EFFECT ON TS, %EL<br />

• 2014 Al Alloy:<br />

• TS peaks with<br />

precipitation time.<br />

• Increasing T accelerates<br />

process.<br />

• %EL reaches minimum<br />

with precipitation time.<br />

Adapted from Fig. 11.25 (a) and (b), Callister 6e. (Fig. 11.25 adapted from Metals Handbook:<br />

Properties and Selection: Nonferrous Alloys and Pure Metals, Vol. 2, 9th ed., H. Baker<br />

(Managing Ed.), American Society for Metals, 1979. p. 41.)<br />

17


PERTANYAAN<br />

• Apa itu Metalografi ?<br />

• Untuk apa dilakukan Pemeriksaan<br />

Metalografi dan Apa Manfaatnya?<br />

• Aplikasi apa saja yang memerlukan<br />

pemeriksaan Metalografi ?<br />

• Bagaimana Metoda dan Teknik<br />

Pemeriksaan Metalografi ?


Aplikasi apa saja yang memerlukan<br />

pemeriksaan Metalografi ?<br />

Aplikasi Metalografi :<br />

1. Analisa Kerusakan<br />

2. Penentuan Umur Sisa Mesin & Peralatan Industri<br />

3. Indetifikasi Material<br />

4. Heat Treatment<br />

5. Forming (Pembentukan)<br />

6. Welding Pengelasan.<br />

7. Coating/ Pelapisan<br />

8. Dll.


PERTANYAAN<br />

• Apa itu Metalografi ?<br />

• Untuk apa dilakukan Pemeriksaan<br />

Metalografi dan Apa Manfaatnya?<br />

• Aplikasi apa saja yang memerlukan<br />

pemeriksaan Metalografi ?<br />

• Bagaimana Metoda dan Teknik<br />

Pemeriksaan Metalografi ?

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!