27.02.2018 Views

Assessment of the Potential Impacts of Hydraulic Fracturing for Oil and Gas on Drinking Water Resources

Document From TamilRi.com

Document From TamilRi.com

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

External Review Draft | EPA/600/R-15/047a | June 2015 | www.epa.gov/hfstudy<br />

<str<strong>on</strong>g>Assessment</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Potential</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Hydraulic</str<strong>on</strong>g> <str<strong>on</strong>g>Fracturing</str<strong>on</strong>g><br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>Oil</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Gas</str<strong>on</strong>g> <strong>on</strong> <strong>Drinking</strong><br />

<strong>Water</strong> <strong>Resources</strong><br />

Executive Summary<br />

Office <str<strong>on</strong>g>of</str<strong>on</strong>g> Research <str<strong>on</strong>g>and</str<strong>on</strong>g> Development<br />

Washingt<strong>on</strong>, D.C.


<str<strong>on</strong>g>Hydraulic</str<strong>on</strong>g> <str<strong>on</strong>g>Fracturing</str<strong>on</strong>g> <strong>Drinking</strong> <strong>Water</strong> <str<strong>on</strong>g>Assessment</str<strong>on</strong>g><br />

Executive Summary<br />

Executive Summary<br />

June 2015<br />

This document is a draft <str<strong>on</strong>g>for</str<strong>on</strong>g> review purposes <strong>on</strong>ly <str<strong>on</strong>g>and</str<strong>on</strong>g> does not c<strong>on</strong>stitute Agency policy.<br />

DRAFT—DO NOT CITE OR QUOTE


<str<strong>on</strong>g>Hydraulic</str<strong>on</strong>g> <str<strong>on</strong>g>Fracturing</str<strong>on</strong>g> <strong>Drinking</strong> <strong>Water</strong> <str<strong>on</strong>g>Assessment</str<strong>on</strong>g><br />

Executive Summary<br />

Executive Summary<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

Since <str<strong>on</strong>g>the</str<strong>on</strong>g> early 2000s, oil <str<strong>on</strong>g>and</str<strong>on</strong>g> natural gas producti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> United States has been trans<str<strong>on</strong>g>for</str<strong>on</strong>g>med<br />

through technological innovati<strong>on</strong>. <str<strong>on</strong>g>Hydraulic</str<strong>on</strong>g> fracturing, combined with advanced directi<strong>on</strong>al<br />

drilling techniques, made it possible to ec<strong>on</strong>omically extract oil <str<strong>on</strong>g>and</str<strong>on</strong>g> gas resources previously<br />

inaccessible. The resulting surge in producti<strong>on</strong> increased domestic energy supplies <str<strong>on</strong>g>and</str<strong>on</strong>g> brought<br />

ec<strong>on</strong>omic benefits to many areas <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> United States.<br />

The growth in domestic oil <str<strong>on</strong>g>and</str<strong>on</strong>g> gas producti<strong>on</strong> also raised c<strong>on</strong>cerns about potential impacts to<br />

human health <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>ment, including potential effects <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> quality <str<strong>on</strong>g>and</str<strong>on</strong>g> quantity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

drinking water resources. Some residents living close to oil <str<strong>on</strong>g>and</str<strong>on</strong>g> gas producti<strong>on</strong> wells have reported<br />

changes in <str<strong>on</strong>g>the</str<strong>on</strong>g> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> drinking water <str<strong>on</strong>g>and</str<strong>on</strong>g> assert that hydraulic fracturing is resp<strong>on</strong>sible <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

changes. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r c<strong>on</strong>cerns include competiti<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> water between hydraulic fracturing activities <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>r water users, especially in areas <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> country experiencing drought, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> disposal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

wastewater generated from hydraulic fracturing.<br />

The U.S. C<strong>on</strong>gress urged <str<strong>on</strong>g>the</str<strong>on</strong>g> U.S. Envir<strong>on</strong>mental Protecti<strong>on</strong> Agency (EPA) to study <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong>ship<br />

between hydraulic fracturing <str<strong>on</strong>g>and</str<strong>on</strong>g> drinking water. This report syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sizes available scientific<br />

literature <str<strong>on</strong>g>and</str<strong>on</strong>g> data to assess <str<strong>on</strong>g>the</str<strong>on</strong>g> potential <str<strong>on</strong>g>for</str<strong>on</strong>g> hydraulic fracturing <str<strong>on</strong>g>for</str<strong>on</strong>g> oil <str<strong>on</strong>g>and</str<strong>on</strong>g> gas to change <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

quality or quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> drinking water resources, <str<strong>on</strong>g>and</str<strong>on</strong>g> identifies factors affecting <str<strong>on</strong>g>the</str<strong>on</strong>g> frequency or<br />

severity <str<strong>on</strong>g>of</str<strong>on</strong>g> any potential changes. This report can be used by federal, tribal, state, <str<strong>on</strong>g>and</str<strong>on</strong>g> local <str<strong>on</strong>g>of</str<strong>on</strong>g>ficials;<br />

industry; <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> public to better underst<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> address any vulnerabilities <str<strong>on</strong>g>of</str<strong>on</strong>g> drinking water<br />

resources to hydraulic fracturing activities.<br />

What is <str<strong>on</strong>g>Hydraulic</str<strong>on</strong>g> <str<strong>on</strong>g>Fracturing</str<strong>on</strong>g>?<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

<str<strong>on</strong>g>Hydraulic</str<strong>on</strong>g> fracturing is a stimulati<strong>on</strong> technique used to increase oil <str<strong>on</strong>g>and</str<strong>on</strong>g> gas producti<strong>on</strong> from<br />

underground rock <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s. <str<strong>on</strong>g>Hydraulic</str<strong>on</strong>g> fracturing involves <str<strong>on</strong>g>the</str<strong>on</strong>g> injecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fluids under pressures<br />

great enough to fracture <str<strong>on</strong>g>the</str<strong>on</strong>g> oil- <str<strong>on</strong>g>and</str<strong>on</strong>g> gas-producing <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s. The fluid generally c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

water, chemicals, <str<strong>on</strong>g>and</str<strong>on</strong>g> proppant (comm<strong>on</strong>ly s<str<strong>on</strong>g>and</str<strong>on</strong>g>). The proppant holds open <str<strong>on</strong>g>the</str<strong>on</strong>g> newly created<br />

fractures after <str<strong>on</strong>g>the</str<strong>on</strong>g> injecti<strong>on</strong> pressure is released. <str<strong>on</strong>g>Oil</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> gas flow through <str<strong>on</strong>g>the</str<strong>on</strong>g> fractures <str<strong>on</strong>g>and</str<strong>on</strong>g> up <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

producti<strong>on</strong> well to <str<strong>on</strong>g>the</str<strong>on</strong>g> surface.<br />

<str<strong>on</strong>g>Hydraulic</str<strong>on</strong>g> fracturing has been used since <str<strong>on</strong>g>the</str<strong>on</strong>g> late 1940s <str<strong>on</strong>g>and</str<strong>on</strong>g>, <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> first 50 years, was mostly used<br />

in vertical wells in c<strong>on</strong>venti<strong>on</strong>al <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s. 1 <str<strong>on</strong>g>Hydraulic</str<strong>on</strong>g> fracturing is still used in <str<strong>on</strong>g>the</str<strong>on</strong>g>se settings, but<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> process has evolved; technological developments (including horiz<strong>on</strong>tal <str<strong>on</strong>g>and</str<strong>on</strong>g> directi<strong>on</strong>al drilling)<br />

have led to <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> hydraulic fracturing in unc<strong>on</strong>venti<strong>on</strong>al hydrocarb<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s that could not<br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise be pr<str<strong>on</strong>g>of</str<strong>on</strong>g>itably produced (see Figure ES-1). These <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s include:<br />

1 C<strong>on</strong>venti<strong>on</strong>al <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>ten allow oil <str<strong>on</strong>g>and</str<strong>on</strong>g> natural gas to flow to <str<strong>on</strong>g>the</str<strong>on</strong>g> wellbore without hydraulic fracturing <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

typically c<strong>on</strong>tain trapped oil <str<strong>on</strong>g>and</str<strong>on</strong>g> natural gas that migrated from o<str<strong>on</strong>g>the</str<strong>on</strong>g>r subsurface locati<strong>on</strong>s. <str<strong>on</strong>g>Hydraulic</str<strong>on</strong>g> fracturing can be<br />

used to enhance oil <str<strong>on</strong>g>and</str<strong>on</strong>g> gas producti<strong>on</strong> from <str<strong>on</strong>g>the</str<strong>on</strong>g>se <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s. In unc<strong>on</strong>venti<strong>on</strong>al <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s, hydraulic fracturing is<br />

needed to extract ec<strong>on</strong>omical quantities <str<strong>on</strong>g>of</str<strong>on</strong>g> oil <str<strong>on</strong>g>and</str<strong>on</strong>g> gas.<br />

This document is a draft <str<strong>on</strong>g>for</str<strong>on</strong>g> review purposes <strong>on</strong>ly <str<strong>on</strong>g>and</str<strong>on</strong>g> does not c<strong>on</strong>stitute Agency policy.<br />

June 2015 ES-1 DRAFT—DO NOT CITE OR QUOTE


<str<strong>on</strong>g>Hydraulic</str<strong>on</strong>g> <str<strong>on</strong>g>Fracturing</str<strong>on</strong>g> <strong>Drinking</strong> <strong>Water</strong> <str<strong>on</strong>g>Assessment</str<strong>on</strong>g><br />

Executive Summary<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

• Shales. Organic-rich, black shales are <str<strong>on</strong>g>the</str<strong>on</strong>g> source rocks in which oil <str<strong>on</strong>g>and</str<strong>on</strong>g> gas <str<strong>on</strong>g>for</str<strong>on</strong>g>m <strong>on</strong><br />

geological timescales. <str<strong>on</strong>g>Oil</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> gas are c<strong>on</strong>tained in <str<strong>on</strong>g>the</str<strong>on</strong>g> pore space <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> shale. Some shales<br />

c<strong>on</strong>tain predominantly gas or oil; many shale <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s c<strong>on</strong>tain both.<br />

• Tight <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s. “Tight” <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s are relatively low permeability, n<strong>on</strong>-shale,<br />

sedimentary <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s that can c<strong>on</strong>tain oil <str<strong>on</strong>g>and</str<strong>on</strong>g> gas. Like in shales, oil <str<strong>on</strong>g>and</str<strong>on</strong>g> gas are<br />

c<strong>on</strong>tained in <str<strong>on</strong>g>the</str<strong>on</strong>g> pore space <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>. Tight <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s can include s<str<strong>on</strong>g>and</str<strong>on</strong>g>st<strong>on</strong>es,<br />

siltst<strong>on</strong>e, <str<strong>on</strong>g>and</str<strong>on</strong>g> carb<strong>on</strong>ates, am<strong>on</strong>g o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs.<br />

• Coalbeds. In coalbeds, methane (<str<strong>on</strong>g>the</str<strong>on</strong>g> primary comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> natural gas) is generally<br />

adsorbed to <str<strong>on</strong>g>the</str<strong>on</strong>g> coal ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than c<strong>on</strong>tained in <str<strong>on</strong>g>the</str<strong>on</strong>g> pore space or structurally trapped in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>. Pumping <str<strong>on</strong>g>the</str<strong>on</strong>g> injected <str<strong>on</strong>g>and</str<strong>on</strong>g> native water out <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coalbeds after fracturing<br />

serves to depressurize <str<strong>on</strong>g>the</str<strong>on</strong>g> coal, <str<strong>on</strong>g>the</str<strong>on</strong>g>reby allowing <str<strong>on</strong>g>the</str<strong>on</strong>g> methane to desorb <str<strong>on</strong>g>and</str<strong>on</strong>g> flow into <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

well <str<strong>on</strong>g>and</str<strong>on</strong>g> to <str<strong>on</strong>g>the</str<strong>on</strong>g> surface.<br />

Figure ES-1. Schematic cross-secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> general types <str<strong>on</strong>g>of</str<strong>on</strong>g> oil <str<strong>on</strong>g>and</str<strong>on</strong>g> gas resources <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

orientati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong> wells used in hydraulic fracturing.<br />

Shown are c<strong>on</strong>ceptual illustrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> types <str<strong>on</strong>g>of</str<strong>on</strong>g> oil <str<strong>on</strong>g>and</str<strong>on</strong>g> gas wells. A vertical well is producing from a<br />

c<strong>on</strong>venti<strong>on</strong>al oil <str<strong>on</strong>g>and</str<strong>on</strong>g> gas deposit (right). In this case, a gray c<strong>on</strong>fining layer serves to “trap” oil (green)<br />

or gas (red). Also shown are wells producing from unc<strong>on</strong>venti<strong>on</strong>al <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s: a vertical coalbed<br />

methane well (sec<strong>on</strong>d from right); a horiz<strong>on</strong>tal well producing from a shale <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> (center); <str<strong>on</strong>g>and</str<strong>on</strong>g> a<br />

well producing from a tight s<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> (left). Note: Figure not to scale. Modified from USGS<br />

(2002) <str<strong>on</strong>g>and</str<strong>on</strong>g> Newell (2011).<br />

This document is a draft <str<strong>on</strong>g>for</str<strong>on</strong>g> review purposes <strong>on</strong>ly <str<strong>on</strong>g>and</str<strong>on</strong>g> does not c<strong>on</strong>stitute Agency policy.<br />

June 2015 ES-2 DRAFT—DO NOT CITE OR QUOTE


<str<strong>on</strong>g>Hydraulic</str<strong>on</strong>g> <str<strong>on</strong>g>Fracturing</str<strong>on</strong>g> <strong>Drinking</strong> <strong>Water</strong> <str<strong>on</strong>g>Assessment</str<strong>on</strong>g><br />

Executive Summary<br />

1<br />

2<br />

3<br />

The combined use <str<strong>on</strong>g>of</str<strong>on</strong>g> hydraulic fracturing with horiz<strong>on</strong>tal (or more generically, directi<strong>on</strong>al) drilling<br />

has led to an increase in oil <str<strong>on</strong>g>and</str<strong>on</strong>g> gas activities in areas <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> country with historical oil <str<strong>on</strong>g>and</str<strong>on</strong>g> gas<br />

producti<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> an expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oil <str<strong>on</strong>g>and</str<strong>on</strong>g> gas activities to new regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> country.<br />

Scope <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Assessment</str<strong>on</strong>g><br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

We defined <str<strong>on</strong>g>the</str<strong>on</strong>g> scope <str<strong>on</strong>g>of</str<strong>on</strong>g> this assessment by <str<strong>on</strong>g>the</str<strong>on</strong>g> following activities involving water that support<br />

hydraulic fracturing (i.e., <str<strong>on</strong>g>the</str<strong>on</strong>g> hydraulic fracturing water cycle; see Figure ES-2): 1<br />

• <strong>Water</strong> acquisiti<strong>on</strong>: <str<strong>on</strong>g>the</str<strong>on</strong>g> withdrawal <str<strong>on</strong>g>of</str<strong>on</strong>g> ground or surface water needed <str<strong>on</strong>g>for</str<strong>on</strong>g> hydraulic<br />

fracturing fluids;<br />

• Chemical mixing: <str<strong>on</strong>g>the</str<strong>on</strong>g> mixing <str<strong>on</strong>g>of</str<strong>on</strong>g> water, chemicals, <str<strong>on</strong>g>and</str<strong>on</strong>g> proppant <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> well pad to create<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> hydraulic fracturing fluid;<br />

• Well injecti<strong>on</strong>: <str<strong>on</strong>g>the</str<strong>on</strong>g> injecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hydraulic fracturing fluids into <str<strong>on</strong>g>the</str<strong>on</strong>g> well to fracture <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

geologic <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>;<br />

• Flowback <str<strong>on</strong>g>and</str<strong>on</strong>g> produced water: <str<strong>on</strong>g>the</str<strong>on</strong>g> return <str<strong>on</strong>g>of</str<strong>on</strong>g> injected fluid <str<strong>on</strong>g>and</str<strong>on</strong>g> water produced from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> (collectively referred to as produced water in this report) to <str<strong>on</strong>g>the</str<strong>on</strong>g> surface, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

subsequent transport <str<strong>on</strong>g>for</str<strong>on</strong>g> reuse, treatment, or disposal; <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

• Wastewater treatment <str<strong>on</strong>g>and</str<strong>on</strong>g> waste disposal: <str<strong>on</strong>g>the</str<strong>on</strong>g> reuse, treatment <str<strong>on</strong>g>and</str<strong>on</strong>g> release, or<br />

disposal <str<strong>on</strong>g>of</str<strong>on</strong>g> wastewater generated at <str<strong>on</strong>g>the</str<strong>on</strong>g> well pad, including produced water.<br />

This assessment reviews, analyzes, <str<strong>on</strong>g>and</str<strong>on</strong>g> syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sizes in<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> relevant to <str<strong>on</strong>g>the</str<strong>on</strong>g> potential impacts <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

hydraulic fracturing <strong>on</strong> drinking water resources at each stage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> hydraulic fracturing water<br />

cycle. <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> are defined as any change in <str<strong>on</strong>g>the</str<strong>on</strong>g> quality or quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> drinking water resources.<br />

Where possible, we identify <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanisms resp<strong>on</strong>sible or potentially resp<strong>on</strong>sible <str<strong>on</strong>g>for</str<strong>on</strong>g> any impacts.<br />

For example, a spill <str<strong>on</strong>g>of</str<strong>on</strong>g> hydraulic fracturing fluid is a mechanism by which drinking water resources<br />

could be impacted.<br />

<strong>Drinking</strong> water resources are defined within this report as any body <str<strong>on</strong>g>of</str<strong>on</strong>g> ground water or surface<br />

water that now serves, or in <str<strong>on</strong>g>the</str<strong>on</strong>g> future could serve, as a source <str<strong>on</strong>g>of</str<strong>on</strong>g> drinking water <str<strong>on</strong>g>for</str<strong>on</strong>g> public or<br />

private use. This is broader than most federal <str<strong>on</strong>g>and</str<strong>on</strong>g> state regulatory definiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> drinking water <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

encompasses both fresh <str<strong>on</strong>g>and</str<strong>on</strong>g> n<strong>on</strong>-fresh bodies <str<strong>on</strong>g>of</str<strong>on</strong>g> water. Trends indicate that both types <str<strong>on</strong>g>of</str<strong>on</strong>g> water<br />

bodies are currently being used, <str<strong>on</strong>g>and</str<strong>on</strong>g> will c<strong>on</strong>tinue to be used in <str<strong>on</strong>g>the</str<strong>on</strong>g> future, as sources <str<strong>on</strong>g>of</str<strong>on</strong>g> drinking<br />

water.<br />

This assessment focuses <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> potential impacts from activities in <str<strong>on</strong>g>the</str<strong>on</strong>g> hydraulic fracturing water<br />

cycle <strong>on</strong> drinking water resources. We do this so federal, tribal, state, <str<strong>on</strong>g>and</str<strong>on</strong>g> local <str<strong>on</strong>g>of</str<strong>on</strong>g>ficials; industry;<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> public can better underst<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> address any vulnerabilities <str<strong>on</strong>g>of</str<strong>on</strong>g> drinking water resources to<br />

hydraulic fracturing activities. We do not address o<str<strong>on</strong>g>the</str<strong>on</strong>g>r c<strong>on</strong>cerns raised about hydraulic fracturing<br />

specifically or about oil <str<strong>on</strong>g>and</str<strong>on</strong>g> gas explorati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> producti<strong>on</strong> activities more generally. Activities that<br />

1 In this assessment, we refer to <str<strong>on</strong>g>the</str<strong>on</strong>g> “EPA” when referencing o<str<strong>on</strong>g>the</str<strong>on</strong>g>r EPA studies. If a c<strong>on</strong>clusi<strong>on</strong> or analysis was d<strong>on</strong>e<br />

specifically by <str<strong>on</strong>g>the</str<strong>on</strong>g> authors <str<strong>on</strong>g>of</str<strong>on</strong>g> this assessment, we refer to it <str<strong>on</strong>g>and</str<strong>on</strong>g> its findings in <str<strong>on</strong>g>the</str<strong>on</strong>g> first pers<strong>on</strong>.<br />

This document is a draft <str<strong>on</strong>g>for</str<strong>on</strong>g> review purposes <strong>on</strong>ly <str<strong>on</strong>g>and</str<strong>on</strong>g> does not c<strong>on</strong>stitute Agency policy.<br />

June 2015 ES-3 DRAFT—DO NOT CITE OR QUOTE


<str<strong>on</strong>g>Hydraulic</str<strong>on</strong>g> <str<strong>on</strong>g>Fracturing</str<strong>on</strong>g> <strong>Drinking</strong> <strong>Water</strong> <str<strong>on</strong>g>Assessment</str<strong>on</strong>g><br />

Executive Summary<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

are not c<strong>on</strong>sidered include: acquisiti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> transport <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g> hydraulic fracturing fluids<br />

besides water (e.g., s<str<strong>on</strong>g>and</str<strong>on</strong>g> mining <str<strong>on</strong>g>and</str<strong>on</strong>g> chemical producti<strong>on</strong>) outside <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> stated water cycle; site<br />

selecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> well pad development; o<str<strong>on</strong>g>the</str<strong>on</strong>g>r infrastructure development (e.g., roads, pipelines,<br />

compressor stati<strong>on</strong>s); site reclamati<strong>on</strong>; <str<strong>on</strong>g>and</str<strong>on</strong>g> well closure. A summary <str<strong>on</strong>g>and</str<strong>on</strong>g> evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> current or<br />

proposed regulati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> policies is bey<strong>on</strong>d <str<strong>on</strong>g>the</str<strong>on</strong>g> scope <str<strong>on</strong>g>of</str<strong>on</strong>g> this report. Additi<strong>on</strong>ally, this report does<br />

not discuss <str<strong>on</strong>g>the</str<strong>on</strong>g> potential impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> hydraulic fracturing <strong>on</strong> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r water users (e.g., agriculture or<br />

industry), o<str<strong>on</strong>g>the</str<strong>on</strong>g>r aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>ment (e.g., seismicity, air quality, or ecosystems), worker<br />

health or safety, or communities. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, this report is not a human health risk assessment. It<br />

does not identify populati<strong>on</strong>s that are exposed to chemicals, estimate <str<strong>on</strong>g>the</str<strong>on</strong>g> extent <str<strong>on</strong>g>of</str<strong>on</strong>g> exposure, or<br />

estimate <str<strong>on</strong>g>the</str<strong>on</strong>g> incidence <str<strong>on</strong>g>of</str<strong>on</strong>g> human health impacts.<br />

Figure ES-2. The stages <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> hydraulic fracturing water cycle.<br />

Shown here is a generalized l<str<strong>on</strong>g>and</str<strong>on</strong>g>scape depicting <str<strong>on</strong>g>the</str<strong>on</strong>g> activities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> hydraulic fracturing water cycle<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir relati<strong>on</strong>ship to each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r, as well as <str<strong>on</strong>g>the</str<strong>on</strong>g>ir relati<strong>on</strong>ship to drinking water resources. Arrows<br />

depict <str<strong>on</strong>g>the</str<strong>on</strong>g> movement <str<strong>on</strong>g>of</str<strong>on</strong>g> water <str<strong>on</strong>g>and</str<strong>on</strong>g> chemicals. Specific activities in <str<strong>on</strong>g>the</str<strong>on</strong>g> “Wastewater Treatment <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Waste Disposal” inset are (a)underground injecti<strong>on</strong> c<strong>on</strong>trol (UIC) well disposal, (b) wastewater<br />

treatment <str<strong>on</strong>g>and</str<strong>on</strong>g> reuse, <str<strong>on</strong>g>and</str<strong>on</strong>g> (c) wastewater treatment <str<strong>on</strong>g>and</str<strong>on</strong>g> discharge at a centralized waste treatment<br />

(CWT) facility. Note: Figure not to scale.<br />

This document is a draft <str<strong>on</strong>g>for</str<strong>on</strong>g> review purposes <strong>on</strong>ly <str<strong>on</strong>g>and</str<strong>on</strong>g> does not c<strong>on</strong>stitute Agency policy.<br />

June 2015 ES-4 DRAFT—DO NOT CITE OR QUOTE


<str<strong>on</strong>g>Hydraulic</str<strong>on</strong>g> <str<strong>on</strong>g>Fracturing</str<strong>on</strong>g> <strong>Drinking</strong> <strong>Water</strong> <str<strong>on</strong>g>Assessment</str<strong>on</strong>g><br />

Executive Summary<br />

Approach<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

This assessment relies <strong>on</strong> relevant scientific literature <str<strong>on</strong>g>and</str<strong>on</strong>g> data. Literature evaluated included<br />

articles published in science <str<strong>on</strong>g>and</str<strong>on</strong>g> engineering journals, federal <str<strong>on</strong>g>and</str<strong>on</strong>g> state government reports, n<strong>on</strong>governmental<br />

organizati<strong>on</strong> (NGO) reports, <str<strong>on</strong>g>and</str<strong>on</strong>g> industry publicati<strong>on</strong>s. Data sources examined<br />

included federal- <str<strong>on</strong>g>and</str<strong>on</strong>g> state-collected data sets, databases maintained by federal <str<strong>on</strong>g>and</str<strong>on</strong>g> state<br />

government agencies, o<str<strong>on</strong>g>the</str<strong>on</strong>g>r publicly-available data <str<strong>on</strong>g>and</str<strong>on</strong>g> in<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> data, including<br />

c<strong>on</strong>fidential <str<strong>on</strong>g>and</str<strong>on</strong>g> n<strong>on</strong>-c<strong>on</strong>fidential business in<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>, submitted by industry to <str<strong>on</strong>g>the</str<strong>on</strong>g> EPA. 1 The<br />

relevant literature <str<strong>on</strong>g>and</str<strong>on</strong>g> data complement research c<strong>on</strong>ducted by <str<strong>on</strong>g>the</str<strong>on</strong>g> EPA under its Plan to Study <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Potential</str<strong>on</strong>g> <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Hydraulic</str<strong>on</strong>g> <str<strong>on</strong>g>Fracturing</str<strong>on</strong>g> <strong>on</strong> <strong>Drinking</strong> <strong>Water</strong> <strong>Resources</strong> (hereafter referred to as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

“Study Plan”) <str<strong>on</strong>g>and</str<strong>on</strong>g> published by scientific journals or as peer-reviewed EPA reports; those articles<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> reports are cited throughout this assessment. The research topic areas <str<strong>on</strong>g>and</str<strong>on</strong>g> projects described<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> Study Plan were designed to meet <str<strong>on</strong>g>the</str<strong>on</strong>g> data <str<strong>on</strong>g>and</str<strong>on</strong>g> in<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> needs <str<strong>on</strong>g>of</str<strong>on</strong>g> this assessment <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

were developed with substantial expert <str<strong>on</strong>g>and</str<strong>on</strong>g> public input.<br />

Proximity <str<strong>on</strong>g>of</str<strong>on</strong>g> Current Activity <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>Drinking</strong> <strong>Water</strong> <strong>Resources</strong><br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

Thous<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> wells are drilled <str<strong>on</strong>g>and</str<strong>on</strong>g> fractured every year in <str<strong>on</strong>g>the</str<strong>on</strong>g> United States, with activities<br />

c<strong>on</strong>centrated in specific locati<strong>on</strong>s. We estimate 25,000-30,000 new wells were drilled <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

hydraulically fractured annually in <str<strong>on</strong>g>the</str<strong>on</strong>g> United States between 2011 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2014. Additi<strong>on</strong>al, preexisting<br />

wells (wells more than <strong>on</strong>e year old that may or may not have been hydraulically fractured<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> past) were also likely fractured. <str<strong>on</strong>g>Hydraulic</str<strong>on</strong>g> fracturing took place in at least 25 states between<br />

1990 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2013. The EPA’s analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> disclosures made to FracFocus 1.0 (hereafter “FracFocus”)<br />

c<strong>on</strong>tained wells from 20 <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se states. 2 Almost half <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se wells were in Texas. Colorado was a<br />

distant sec<strong>on</strong>d, while Pennsylvania <str<strong>on</strong>g>and</str<strong>on</strong>g> North Dakota were third <str<strong>on</strong>g>and</str<strong>on</strong>g> fourth, respectively. <str<strong>on</strong>g>Hydraulic</str<strong>on</strong>g><br />

fracturing activities were fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r localized within <str<strong>on</strong>g>the</str<strong>on</strong>g> 20 states. Of <str<strong>on</strong>g>the</str<strong>on</strong>g> approximately 1,500<br />

counties or county equivalents in <str<strong>on</strong>g>the</str<strong>on</strong>g>se 20 states, slightly over 400 c<strong>on</strong>tained all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> wells<br />

disclosed to FracFocus during this time period. In Colorado, over 85% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> hydraulically fractured<br />

wells disclosed were located in two counties. The price <str<strong>on</strong>g>of</str<strong>on</strong>g> gas <str<strong>on</strong>g>and</str<strong>on</strong>g> oil may cause short term<br />

volatility in <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> wells drilled <str<strong>on</strong>g>and</str<strong>on</strong>g> fractured per year, yet hydraulic fracturing is expected<br />

to c<strong>on</strong>tinue to exp<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> drive an increase in domestic oil <str<strong>on</strong>g>and</str<strong>on</strong>g> gas producti<strong>on</strong> in coming decades.<br />

<str<strong>on</strong>g>Hydraulic</str<strong>on</strong>g>ally fractured wells can be located near residences <str<strong>on</strong>g>and</str<strong>on</strong>g> drinking water resources.<br />

Between 2000 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2013, approximately 9.4 milli<strong>on</strong> people lived within <strong>on</strong>e mile <str<strong>on</strong>g>of</str<strong>on</strong>g> a hydraulically<br />

1 Some in<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> provided to <str<strong>on</strong>g>the</str<strong>on</strong>g> EPA in resp<strong>on</strong>se to two separate in<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> requests to service companies <str<strong>on</strong>g>and</str<strong>on</strong>g> well<br />

operators was claimed as c<strong>on</strong>fidential business in<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>.<br />

2 FracFocus is a publicly accessible website (www.fracfocus.org) managed by <str<strong>on</strong>g>the</str<strong>on</strong>g> Ground <strong>Water</strong> Protecti<strong>on</strong> Council <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Interstate <str<strong>on</strong>g>Oil</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Gas</str<strong>on</strong>g> Compact Commissi<strong>on</strong> where oil <str<strong>on</strong>g>and</str<strong>on</strong>g> gas producti<strong>on</strong> well operators may disclose in<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong><br />

voluntarily or pursuant to state requirements about <str<strong>on</strong>g>the</str<strong>on</strong>g> ingredients used in hydraulic fracturing fluids at individual<br />

wells. The EPA analyzed disclosures from FracFocus 1.0 <str<strong>on</strong>g>for</str<strong>on</strong>g> over 38,000 oil <str<strong>on</strong>g>and</str<strong>on</strong>g> gas producti<strong>on</strong> wells hydraulically<br />

fractured between January 1, 2011 <str<strong>on</strong>g>and</str<strong>on</strong>g> February 28, 2013. A disclosure refers to data submitted <str<strong>on</strong>g>for</str<strong>on</strong>g> a specific oil <str<strong>on</strong>g>and</str<strong>on</strong>g> gas<br />

producti<strong>on</strong> well <str<strong>on</strong>g>for</str<strong>on</strong>g> a specific fracture date. Most wells had <strong>on</strong>ly <strong>on</strong>e disclosure, but a small number <str<strong>on</strong>g>of</str<strong>on</strong>g> wells (876 wells)<br />

had multiple disclosures. For <str<strong>on</strong>g>the</str<strong>on</strong>g> purposes <str<strong>on</strong>g>of</str<strong>on</strong>g> this Executive Summary, we equate disclosures with wells when discussing<br />

this study.<br />

This document is a draft <str<strong>on</strong>g>for</str<strong>on</strong>g> review purposes <strong>on</strong>ly <str<strong>on</strong>g>and</str<strong>on</strong>g> does not c<strong>on</strong>stitute Agency policy.<br />

June 2015 ES-5 DRAFT—DO NOT CITE OR QUOTE


<str<strong>on</strong>g>Hydraulic</str<strong>on</strong>g> <str<strong>on</strong>g>Fracturing</str<strong>on</strong>g> <strong>Drinking</strong> <strong>Water</strong> <str<strong>on</strong>g>Assessment</str<strong>on</strong>g><br />

Executive Summary<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

fractured well. Approximately 6,800 sources <str<strong>on</strong>g>of</str<strong>on</strong>g> drinking water <str<strong>on</strong>g>for</str<strong>on</strong>g> public water systems were<br />

located within <strong>on</strong>e mile <str<strong>on</strong>g>of</str<strong>on</strong>g> at least <strong>on</strong>e hydraulically fractured well during <str<strong>on</strong>g>the</str<strong>on</strong>g> same period. These<br />

drinking water sources served more than 8.6 milli<strong>on</strong> people year-round in 2013.<br />

Although proximity <str<strong>on</strong>g>of</str<strong>on</strong>g> hydraulic fracturing activities to a drinking water resource is not in <str<strong>on</strong>g>of</str<strong>on</strong>g> itself<br />

sufficient <str<strong>on</strong>g>for</str<strong>on</strong>g> an impact to occur,, it does increase <str<strong>on</strong>g>the</str<strong>on</strong>g> potential <str<strong>on</strong>g>for</str<strong>on</strong>g> impacts. Residents <str<strong>on</strong>g>and</str<strong>on</strong>g> drinking<br />

water resources in areas experiencing hydraulic fracturing activities are most likely to be affected<br />

by any potential impacts, should <str<strong>on</strong>g>the</str<strong>on</strong>g>y occur. However, hydraulic fracturing can also affect drinking<br />

water resources outside <str<strong>on</strong>g>the</str<strong>on</strong>g> immediate vicinity <str<strong>on</strong>g>of</str<strong>on</strong>g> a hydraulically fractured well; a truck carrying<br />

wastewater could spill or a release <str<strong>on</strong>g>of</str<strong>on</strong>g> inadequately treated wastewater could have downstream<br />

effects.<br />

Major Findings<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

From our assessment, we c<strong>on</strong>clude <str<strong>on</strong>g>the</str<strong>on</strong>g>re are above <str<strong>on</strong>g>and</str<strong>on</strong>g> below ground mechanisms by which<br />

hydraulic fracturing activities have <str<strong>on</strong>g>the</str<strong>on</strong>g> potential to impact drinking water resources. These<br />

mechanisms include water withdrawals in times <str<strong>on</strong>g>of</str<strong>on</strong>g>, or in areas with, low water availability; spills <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

hydraulic fracturing fluids <str<strong>on</strong>g>and</str<strong>on</strong>g> produced water; fracturing directly into underground drinking<br />

water resources; below ground migrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> liquids <str<strong>on</strong>g>and</str<strong>on</strong>g> gases; <str<strong>on</strong>g>and</str<strong>on</strong>g> inadequate treatment <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

discharge <str<strong>on</strong>g>of</str<strong>on</strong>g> wastewater.<br />

We did not find evidence that <str<strong>on</strong>g>the</str<strong>on</strong>g>se mechanisms have led to widespread, systemic impacts <strong>on</strong><br />

drinking water resources in <str<strong>on</strong>g>the</str<strong>on</strong>g> United States. Of <str<strong>on</strong>g>the</str<strong>on</strong>g> potential mechanisms identified in this report,<br />

we found specific instances where <strong>on</strong>e or more mechanisms led to impacts <strong>on</strong> drinking water<br />

resources, including c<strong>on</strong>taminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> drinking water wells. The number <str<strong>on</strong>g>of</str<strong>on</strong>g> identified cases,<br />

however, was small compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> hydraulically fractured wells.<br />

This finding could reflect a rarity <str<strong>on</strong>g>of</str<strong>on</strong>g> effects <strong>on</strong> drinking water resources, but may also be due to<br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>r limiting factors. These factors include: insufficient pre- <str<strong>on</strong>g>and</str<strong>on</strong>g> post-fracturing data <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> quality<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> drinking water resources; <str<strong>on</strong>g>the</str<strong>on</strong>g> paucity <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g-term systematic studies; <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

sources <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>taminati<strong>on</strong> precluding a definitive link between hydraulic fracturing activities <str<strong>on</strong>g>and</str<strong>on</strong>g> an<br />

impact; <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> inaccessibility <str<strong>on</strong>g>of</str<strong>on</strong>g> some in<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> <strong>on</strong> hydraulic fracturing activities <str<strong>on</strong>g>and</str<strong>on</strong>g> potential<br />

impacts.<br />

Below, we provide a synopsis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> assessment’s key findings, organized by each stage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

hydraulic fracturing water cycle. We provide answers to <str<strong>on</strong>g>the</str<strong>on</strong>g> research questi<strong>on</strong>s presented in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Study Plan <str<strong>on</strong>g>and</str<strong>on</strong>g> Chapter 1. While come citati<strong>on</strong>s are provided here, individual chapters should be<br />

c<strong>on</strong>sulted <str<strong>on</strong>g>for</str<strong>on</strong>g> additi<strong>on</strong>al detail <str<strong>on</strong>g>and</str<strong>on</strong>g> citati<strong>on</strong>s.<br />

<strong>Water</strong> Acquisiti<strong>on</strong><br />

<strong>Water</strong> is a major comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> nearly all hydraulic fracturing operati<strong>on</strong>s. It typically makes up<br />

almost 90% or more <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fluid volume injected into a well, <str<strong>on</strong>g>and</str<strong>on</strong>g> each hydraulically fractured well<br />

requires thous<str<strong>on</strong>g>and</str<strong>on</strong>g>s to milli<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> gall<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> water. Cumulatively, hydraulic fracturing activities in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> United States used <strong>on</strong> average 44 billi<strong>on</strong> gal <str<strong>on</strong>g>of</str<strong>on</strong>g> water a year in 2011 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2012, according to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

This document is a draft <str<strong>on</strong>g>for</str<strong>on</strong>g> review purposes <strong>on</strong>ly <str<strong>on</strong>g>and</str<strong>on</strong>g> does not c<strong>on</strong>stitute Agency policy.<br />

June 2015 ES-6 DRAFT—DO NOT CITE OR QUOTE


<str<strong>on</strong>g>Hydraulic</str<strong>on</strong>g> <str<strong>on</strong>g>Fracturing</str<strong>on</strong>g> <strong>Drinking</strong> <strong>Water</strong> <str<strong>on</strong>g>Assessment</str<strong>on</strong>g><br />

Executive Summary<br />

1<br />

2<br />

3<br />

EPA’s analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> FracFocus disclosures. Although this represents less than 1% <str<strong>on</strong>g>of</str<strong>on</strong>g> total annual water<br />

use <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>sumpti<strong>on</strong> at this scale, water withdrawals could potentially impact <str<strong>on</strong>g>the</str<strong>on</strong>g> quantity <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

quality <str<strong>on</strong>g>of</str<strong>on</strong>g> drinking water resources at more local scales. 1<br />

Research Questi<strong>on</strong>s: <strong>Water</strong> Acquisiti<strong>on</strong><br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

• What are <str<strong>on</strong>g>the</str<strong>on</strong>g> types <str<strong>on</strong>g>of</str<strong>on</strong>g> water used <str<strong>on</strong>g>for</str<strong>on</strong>g> hydraulic fracturing?<br />

<strong>Water</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> hydraulic fracturing typically comes from surface water, ground water, or reused<br />

hydraulic fracturing wastewater. <str<strong>on</strong>g>Hydraulic</str<strong>on</strong>g> fracturing operati<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> eastern United States<br />

generally rely <strong>on</strong> surface water, while operati<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> more semi-arid to arid western states<br />

generally use mixed supplies <str<strong>on</strong>g>of</str<strong>on</strong>g> surface <str<strong>on</strong>g>and</str<strong>on</strong>g> ground water. In <str<strong>on</strong>g>the</str<strong>on</strong>g> Marcellus Shale in Pennsylvania,<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> example, most water used <str<strong>on</strong>g>for</str<strong>on</strong>g> hydraulic fracturing originates from surface water, whereas<br />

surface <str<strong>on</strong>g>and</str<strong>on</strong>g> ground water are used in approximately equal proporti<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> Barnett Shale in<br />

Texas (see Figure ES-3a,b). In areas that lack available surface water (e.g., western Texas), ground<br />

water supplies most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> water needed <str<strong>on</strong>g>for</str<strong>on</strong>g> hydraulic fracturing.<br />

Across <str<strong>on</strong>g>the</str<strong>on</strong>g> United States, <str<strong>on</strong>g>the</str<strong>on</strong>g> vast majority <str<strong>on</strong>g>of</str<strong>on</strong>g> water used in hydraulic fracturing is fresh, although<br />

operators also make use <str<strong>on</strong>g>of</str<strong>on</strong>g> lower-quality water, including reused hydraulic fracturing wastewater. 2<br />

Based <strong>on</strong> available data, <str<strong>on</strong>g>the</str<strong>on</strong>g> median reuse <str<strong>on</strong>g>of</str<strong>on</strong>g> wastewater as a percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> injected volumes is 5%<br />

nati<strong>on</strong>ally, with <str<strong>on</strong>g>the</str<strong>on</strong>g> percentage varying by locati<strong>on</strong>. 3 Available data <strong>on</strong> reuse trends indicate<br />

increased reuse <str<strong>on</strong>g>of</str<strong>on</strong>g> wastewater over time in both Pennsylvania <str<strong>on</strong>g>and</str<strong>on</strong>g> West Virginia. Reuse as a<br />

percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> injected volumes is lower in o<str<strong>on</strong>g>the</str<strong>on</strong>g>r areas, including regi<strong>on</strong>s with more water stress,<br />

likely because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> availability <str<strong>on</strong>g>of</str<strong>on</strong>g> disposal wells. For example, reused wastewater is<br />

approximately 18% <str<strong>on</strong>g>of</str<strong>on</strong>g> injected volumes in <str<strong>on</strong>g>the</str<strong>on</strong>g> Marcellus Shale in Pennsylvania’s Susquehanna<br />

River Basin, whereas it is approximately 5% in <str<strong>on</strong>g>the</str<strong>on</strong>g> Barnett Shale in Texas (see Figure ES-3a,b).<br />

1 <strong>Water</strong> use is water withdrawn from ground- or surface water <str<strong>on</strong>g>for</str<strong>on</strong>g> a specific purpose, part or all <str<strong>on</strong>g>of</str<strong>on</strong>g> which may be returned<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> local hydrologic cycle. If no water is returned, water use equals water c<strong>on</strong>sumpti<strong>on</strong>. <strong>Water</strong> c<strong>on</strong>sumpti<strong>on</strong> is water<br />

that is removed from <str<strong>on</strong>g>the</str<strong>on</strong>g> local hydrologic cycle following its use (e.g., via evaporati<strong>on</strong>, transpirati<strong>on</strong>, incorporati<strong>on</strong> into<br />

products or crops, c<strong>on</strong>sumpti<strong>on</strong> by humans or livestock) <str<strong>on</strong>g>and</str<strong>on</strong>g> is <str<strong>on</strong>g>the</str<strong>on</strong>g>re<str<strong>on</strong>g>for</str<strong>on</strong>g>e unavailable to o<str<strong>on</strong>g>the</str<strong>on</strong>g>r water users (Maupin et al.,<br />

2014). In <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> hydraulic fracturing, water can be c<strong>on</strong>sumed by <str<strong>on</strong>g>the</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> injected water to subsurface z<strong>on</strong>es or via<br />

underground disposal <str<strong>on</strong>g>of</str<strong>on</strong>g> wastewaters, am<strong>on</strong>g o<str<strong>on</strong>g>the</str<strong>on</strong>g>r means.<br />

2 In this assessment, hydraulic fracturing “wastewater” refers to both produced water <str<strong>on</strong>g>and</str<strong>on</strong>g> any o<str<strong>on</strong>g>the</str<strong>on</strong>g>r water generated as a<br />

hydraulic fracturing site. As used in this assessment, <str<strong>on</strong>g>the</str<strong>on</strong>g> term “wastewater” is not intended to c<strong>on</strong>stitute a term <str<strong>on</strong>g>of</str<strong>on</strong>g> art <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

legal or regulatory purposes.<br />

3 Reused wastewater as a percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> injected water differs from <str<strong>on</strong>g>the</str<strong>on</strong>g> percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> wastewater that is managed through<br />

reuse, as opposed to o<str<strong>on</strong>g>the</str<strong>on</strong>g>r wastewater management opti<strong>on</strong>s. For example, in <str<strong>on</strong>g>the</str<strong>on</strong>g> Marcellus in Pennsylvania,<br />

approximately 18% <str<strong>on</strong>g>of</str<strong>on</strong>g> injected water is reused produced water, while approximately 70% <str<strong>on</strong>g>of</str<strong>on</strong>g> wastewater or more is<br />

managed through reuse (Figure ES-3a).<br />

This document is a draft <str<strong>on</strong>g>for</str<strong>on</strong>g> review purposes <strong>on</strong>ly <str<strong>on</strong>g>and</str<strong>on</strong>g> does not c<strong>on</strong>stitute Agency policy.<br />

June 2015 ES-7 DRAFT—DO NOT CITE OR QUOTE


<str<strong>on</strong>g>Hydraulic</str<strong>on</strong>g> <str<strong>on</strong>g>Fracturing</str<strong>on</strong>g> <strong>Drinking</strong> <strong>Water</strong> <str<strong>on</strong>g>Assessment</str<strong>on</strong>g><br />

Executive Summary<br />

Figure ES-3. <strong>Water</strong> budgets representative <str<strong>on</strong>g>of</str<strong>on</strong>g> practices in <str<strong>on</strong>g>the</str<strong>on</strong>g> Marcellus Shale in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Susquehanna River Basin in Pennsylvania (a) <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Barnett Shale in Texas (b).<br />

Pie size <str<strong>on</strong>g>and</str<strong>on</strong>g> arrow thickness represent <str<strong>on</strong>g>the</str<strong>on</strong>g> relative volume <str<strong>on</strong>g>of</str<strong>on</strong>g> water as it flows through <str<strong>on</strong>g>the</str<strong>on</strong>g> hydraulic<br />

fracturing water cycle. Wastewater going to a centralized waste treatment (CWT) facility may be<br />

ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r discharged to surface water or reused. Wastewater going to an underground injecti<strong>on</strong> c<strong>on</strong>trol<br />

(UIC) well is disposed <str<strong>on</strong>g>of</str<strong>on</strong>g> below ground. These examples represent typical water management practices<br />

as depicted <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most recent time period reviewed by this assessment. They do not represent any<br />

specific well. Note: Values <str<strong>on</strong>g>for</str<strong>on</strong>g> Marcellus Shale are specific to <str<strong>on</strong>g>the</str<strong>on</strong>g> Susquenhanna River Basin, except <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> produced water volumes. The l<strong>on</strong>gest-term measurement available was from <str<strong>on</strong>g>the</str<strong>on</strong>g> West Virginia<br />

porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Marcellus Shale.<br />

This document is a draft <str<strong>on</strong>g>for</str<strong>on</strong>g> review purposes <strong>on</strong>ly <str<strong>on</strong>g>and</str<strong>on</strong>g> does not c<strong>on</strong>stitute Agency policy.<br />

June 2015 ES-8 DRAFT—DO NOT CITE OR QUOTE


<str<strong>on</strong>g>Hydraulic</str<strong>on</strong>g> <str<strong>on</strong>g>Fracturing</str<strong>on</strong>g> <strong>Drinking</strong> <strong>Water</strong> <str<strong>on</strong>g>Assessment</str<strong>on</strong>g><br />

Executive Summary<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

• How much water is used per well?<br />

The nati<strong>on</strong>al median volume <str<strong>on</strong>g>of</str<strong>on</strong>g> water used per hydraulically fractured well is approximately 1.5<br />

milli<strong>on</strong> gal (5.7 milli<strong>on</strong> L), according to <str<strong>on</strong>g>the</str<strong>on</strong>g> EPA’s analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> FracFocus disclosures. This estimate<br />

likely represents a wide variety <str<strong>on</strong>g>of</str<strong>on</strong>g> fractured well types, including vertical wells that generally use<br />

much less water per well than horiz<strong>on</strong>tal wells. Thus, published estimates <str<strong>on</strong>g>for</str<strong>on</strong>g> horiz<strong>on</strong>tal shale gas<br />

wells are typically higher (e.g., approximately 4 milli<strong>on</strong> gall<strong>on</strong>s (Vengosh et al., 2014)). There is also<br />

wide variati<strong>on</strong> within <str<strong>on</strong>g>and</str<strong>on</strong>g> am<strong>on</strong>g states <str<strong>on</strong>g>and</str<strong>on</strong>g> basins in <str<strong>on</strong>g>the</str<strong>on</strong>g> median water volumes used per well,<br />

from more than 5 milli<strong>on</strong> gal (19 milli<strong>on</strong> L) in Arkansas, Louisiana <str<strong>on</strong>g>and</str<strong>on</strong>g> West Virginia to less than 1<br />

milli<strong>on</strong> gal (3.8 milli<strong>on</strong> L) in Cali<str<strong>on</strong>g>for</str<strong>on</strong>g>nia, New Mexico, <str<strong>on</strong>g>and</str<strong>on</strong>g> Utah, am<strong>on</strong>g o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs. This variati<strong>on</strong> results<br />

from several factors, including well length, <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> geology, <str<strong>on</strong>g>and</str<strong>on</strong>g> fracturing fluid <str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong>.<br />

• How might cumulative water withdrawals <str<strong>on</strong>g>for</str<strong>on</strong>g> hydraulic fracturing affect drinking water<br />

quantity?<br />

Cumulatively, hydraulic fracturing uses billi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> gall<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> water each year at <str<strong>on</strong>g>the</str<strong>on</strong>g> nati<strong>on</strong>al <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

state scales, <str<strong>on</strong>g>and</str<strong>on</strong>g> even in some counties. As noted above, hydraulic fracturing water use <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

c<strong>on</strong>sumpti<strong>on</strong> are generally less than 1% <str<strong>on</strong>g>of</str<strong>on</strong>g> total annual water use <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>sumpti<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g>se scales.<br />

However, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are a few counties in <str<strong>on</strong>g>the</str<strong>on</strong>g> United States where <str<strong>on</strong>g>the</str<strong>on</strong>g>se percentages are higher. For<br />

2011 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2012, annual hydraulic fracturing water use was 10% or more compared to 2010 total<br />

annual water use in 6.5% <str<strong>on</strong>g>of</str<strong>on</strong>g> counties with FracFocus disclosures analyzed by <str<strong>on</strong>g>the</str<strong>on</strong>g> EPA, 30% or more<br />

in 2.2% <str<strong>on</strong>g>of</str<strong>on</strong>g> counties, <str<strong>on</strong>g>and</str<strong>on</strong>g> 50% or more in 1.0% <str<strong>on</strong>g>of</str<strong>on</strong>g> counties. C<strong>on</strong>sumpti<strong>on</strong> estimates followed <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

same general pattern. In <str<strong>on</strong>g>the</str<strong>on</strong>g>se counties, hydraulic fracturing is a relatively large user <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>sumer<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> water.<br />

High fracturing water use or c<strong>on</strong>sumpti<strong>on</strong> al<strong>on</strong>e does not necessarily result in impacts to drinking<br />

water resources. Ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r, impacts result from <str<strong>on</strong>g>the</str<strong>on</strong>g> combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> water use or c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

water availability at local scales. In our survey <str<strong>on</strong>g>of</str<strong>on</strong>g> published literature, we did not find a case where<br />

hydraulic fracturing water use or c<strong>on</strong>sumpti<strong>on</strong> al<strong>on</strong>e caused a drinking water well or stream to run<br />

dry. This could indicate an absence <str<strong>on</strong>g>of</str<strong>on</strong>g> effects or a lack <str<strong>on</strong>g>of</str<strong>on</strong>g> documentati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> literature we<br />

reviewed. Additi<strong>on</strong>ally, water availability is rarely impacted by just <strong>on</strong>e use or factor al<strong>on</strong>e. In<br />

Louisiana, <str<strong>on</strong>g>for</str<strong>on</strong>g> example, <str<strong>on</strong>g>the</str<strong>on</strong>g> state requested hydraulic fracturing operati<strong>on</strong>s switch from ground to<br />

surface water, due to c<strong>on</strong>cerns that ground water withdrawals <str<strong>on</strong>g>for</str<strong>on</strong>g> fracturing could, in combinati<strong>on</strong><br />

with o<str<strong>on</strong>g>the</str<strong>on</strong>g>r uses, adversely affect drinking water supplies.<br />

The potential <str<strong>on</strong>g>for</str<strong>on</strong>g> impacts to drinking water resources from hydraulic fracturing water withdrawals<br />

is highest in areas with relatively high fracturing water use <str<strong>on</strong>g>and</str<strong>on</strong>g> low water availability. Sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> western Texas are two locati<strong>on</strong>s where hydraulic fracturing water use, low water availability,<br />

drought, <str<strong>on</strong>g>and</str<strong>on</strong>g> reliance <strong>on</strong> declining ground water has <str<strong>on</strong>g>the</str<strong>on</strong>g> potential to affect <str<strong>on</strong>g>the</str<strong>on</strong>g> quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> drinking<br />

water resources. Any impacts are likely to be realized locally within <str<strong>on</strong>g>the</str<strong>on</strong>g>se areas. In a detailed case<br />

study <str<strong>on</strong>g>of</str<strong>on</strong>g> sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn Texas, Scanl<strong>on</strong> et al. (2014) observed generally adequate water supplies <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

hydraulic fracturing, except in specific locati<strong>on</strong>s. They found excessive drawdown <str<strong>on</strong>g>of</str<strong>on</strong>g> local ground<br />

water in a small proporti<strong>on</strong> (approximately 6% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> area) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Eagle Ford Shale. They suggested<br />

water management, particularly a shift towards brackish water use, could minimize potential future<br />

impacts to fresh water resources.<br />

This document is a draft <str<strong>on</strong>g>for</str<strong>on</strong>g> review purposes <strong>on</strong>ly <str<strong>on</strong>g>and</str<strong>on</strong>g> does not c<strong>on</strong>stitute Agency policy.<br />

June 2015 ES-9 DRAFT—DO NOT CITE OR QUOTE


<str<strong>on</strong>g>Hydraulic</str<strong>on</strong>g> <str<strong>on</strong>g>Fracturing</str<strong>on</strong>g> <strong>Drinking</strong> <strong>Water</strong> <str<strong>on</strong>g>Assessment</str<strong>on</strong>g><br />

Executive Summary<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

The potential <str<strong>on</strong>g>for</str<strong>on</strong>g> impacts to drinking water quantity due to hydraulic fracturing water use appears<br />

to be lower—but not eliminated—in o<str<strong>on</strong>g>the</str<strong>on</strong>g>r areas <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> United States. Future problems could arise if<br />

hydraulic fracturing increases substantially in areas with low water availability, or in times <str<strong>on</strong>g>of</str<strong>on</strong>g> water<br />

shortages. In detailed case studies in western Colorado <str<strong>on</strong>g>and</str<strong>on</strong>g> nor<str<strong>on</strong>g>the</str<strong>on</strong>g>astern Pennsylvania, <str<strong>on</strong>g>the</str<strong>on</strong>g> EPA did<br />

not find current impacts, but did c<strong>on</strong>clude that streams could be vulnerable to water withdrawals<br />

from hydraulic fracturing. In nor<str<strong>on</strong>g>the</str<strong>on</strong>g>ast Pennsylvania, water management, such as minimum stream<br />

flow requirements, limits <str<strong>on</strong>g>the</str<strong>on</strong>g> potential <str<strong>on</strong>g>for</str<strong>on</strong>g> impacts, especially in small streams. In western North<br />

Dakota, ground water is limited, but <str<strong>on</strong>g>the</str<strong>on</strong>g> industry may have sufficient supplies <str<strong>on</strong>g>of</str<strong>on</strong>g> surface water from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Missouri River system. These locati<strong>on</strong>-specific examples emphasize <str<strong>on</strong>g>the</str<strong>on</strong>g> need to focus <strong>on</strong><br />

regi<strong>on</strong>al <str<strong>on</strong>g>and</str<strong>on</strong>g> local dynamics when c<strong>on</strong>sidering potential impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> hydraulic fracturing water<br />

acquisiti<strong>on</strong> <strong>on</strong> drinking water resources.<br />

• What are <str<strong>on</strong>g>the</str<strong>on</strong>g> possible impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> water withdrawals <str<strong>on</strong>g>for</str<strong>on</strong>g> hydraulic fracturing <strong>on</strong> water quality?<br />

<strong>Water</strong> withdrawals <str<strong>on</strong>g>for</str<strong>on</strong>g> hydraulic fracturing, similar to all water withdrawals, have <str<strong>on</strong>g>the</str<strong>on</strong>g> potential to<br />

alter <str<strong>on</strong>g>the</str<strong>on</strong>g> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> drinking water resources. Ground water withdrawals exceeding natural<br />

recharge rates decrease water storage in aquifers, potentially mobilizing c<strong>on</strong>taminants or allowing<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> infiltrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lower quality water from <str<strong>on</strong>g>the</str<strong>on</strong>g> l<str<strong>on</strong>g>and</str<strong>on</strong>g> surface or adjacent <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s. Withdrawals<br />

could also decrease ground water discharge to streams, potentially affecting surface water quality.<br />

Areas with large amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> sustained ground water pumping are most likely to experience<br />

impacts, particularly drought-pr<strong>on</strong>e regi<strong>on</strong>s with limited ground water recharge.<br />

Surface water withdrawals also have <str<strong>on</strong>g>the</str<strong>on</strong>g> potential to affect water quality. Withdrawals may lower<br />

water levels <str<strong>on</strong>g>and</str<strong>on</strong>g> alter stream flow, potentially decreasing a stream’s capacity to dilute<br />

c<strong>on</strong>taminants. Case studies by <str<strong>on</strong>g>the</str<strong>on</strong>g> EPA show that streams can be vulnerable to changes in water<br />

quality due to water withdrawals, particularly smaller streams <str<strong>on</strong>g>and</str<strong>on</strong>g> during periods <str<strong>on</strong>g>of</str<strong>on</strong>g> low flow.<br />

Management <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>and</str<strong>on</strong>g> timing <str<strong>on</strong>g>of</str<strong>on</strong>g> surface water withdrawals has been shown to help mitigate<br />

potential impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> hydraulic fracturing withdrawals <strong>on</strong> water quality.<br />

Chemical Mixing<br />

<str<strong>on</strong>g>Hydraulic</str<strong>on</strong>g> fracturing fluids are developed to per<str<strong>on</strong>g>for</str<strong>on</strong>g>m specific functi<strong>on</strong>s, including: create <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

extend fractures, transport proppant, <str<strong>on</strong>g>and</str<strong>on</strong>g> place proppant in <str<strong>on</strong>g>the</str<strong>on</strong>g> fractures. The fluid generally<br />

c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> three parts: (1) <str<strong>on</strong>g>the</str<strong>on</strong>g> base fluid, which is <str<strong>on</strong>g>the</str<strong>on</strong>g> largest c<strong>on</strong>stituent by volume <str<strong>on</strong>g>and</str<strong>on</strong>g> is typically<br />

water; (2) <str<strong>on</strong>g>the</str<strong>on</strong>g> additives, which can be a single chemical or a mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> chemicals; <str<strong>on</strong>g>and</str<strong>on</strong>g> (3) <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

proppant. Additives are chosen to serve a specific purpose (e.g., adjust pH, increase viscosity, limit<br />

bacterial growth). Chemicals generally comprise a small percentage (typically 2% or less) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

overall injected fluid volume. Because over <strong>on</strong>e milli<strong>on</strong> gall<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> fluids are typically injected per<br />

well, thous<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> gall<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> chemicals can be potentially stored <strong>on</strong>-site <str<strong>on</strong>g>and</str<strong>on</strong>g> used during hydraulic<br />

fracturing activities.<br />

On-site storage, mixing, <str<strong>on</strong>g>and</str<strong>on</strong>g> pumping <str<strong>on</strong>g>of</str<strong>on</strong>g> chemicals <str<strong>on</strong>g>and</str<strong>on</strong>g> hydraulic fracturing fluids have <str<strong>on</strong>g>the</str<strong>on</strong>g> potential<br />

to result in accidental releases, such as spills or leaks. <str<strong>on</strong>g>Potential</str<strong>on</strong>g> impacts to drinking water resources<br />

from spills <str<strong>on</strong>g>of</str<strong>on</strong>g> hydraulic fracturing fluids <str<strong>on</strong>g>and</str<strong>on</strong>g> chemicals depend <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> spills,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fate, transport, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> toxicity <str<strong>on</strong>g>of</str<strong>on</strong>g> chemicals spilled.<br />

This document is a draft <str<strong>on</strong>g>for</str<strong>on</strong>g> review purposes <strong>on</strong>ly <str<strong>on</strong>g>and</str<strong>on</strong>g> does not c<strong>on</strong>stitute Agency policy.<br />

June 2015 ES-10 DRAFT—DO NOT CITE OR QUOTE


<str<strong>on</strong>g>Hydraulic</str<strong>on</strong>g> <str<strong>on</strong>g>Fracturing</str<strong>on</strong>g> <strong>Drinking</strong> <strong>Water</strong> <str<strong>on</strong>g>Assessment</str<strong>on</strong>g><br />

Executive Summary<br />

Research Questi<strong>on</strong>s: Chemical Mixing<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

• What is currently known about <str<strong>on</strong>g>the</str<strong>on</strong>g> frequency, severity, <str<strong>on</strong>g>and</str<strong>on</strong>g> causes <str<strong>on</strong>g>of</str<strong>on</strong>g> spills <str<strong>on</strong>g>of</str<strong>on</strong>g> hydraulic<br />

fracturing fluids <str<strong>on</strong>g>and</str<strong>on</strong>g> additives?<br />

The frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>-site spills from hydraulic fracturing could be estimated <str<strong>on</strong>g>for</str<strong>on</strong>g> two states, but not<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> operati<strong>on</strong>s nati<strong>on</strong>ally or <str<strong>on</strong>g>for</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r areas. Frequency estimates from data <str<strong>on</strong>g>and</str<strong>on</strong>g> literature ranged<br />

from <strong>on</strong>e spill <str<strong>on</strong>g>for</str<strong>on</strong>g> every 100 wells in Colorado to between approximately 0.4 <str<strong>on</strong>g>and</str<strong>on</strong>g> 12.2 spills <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

every 100 wells in Pennsylvania. 1 These estimates include spills <str<strong>on</strong>g>of</str<strong>on</strong>g> hydraulic fracturing fluids <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

chemicals, <str<strong>on</strong>g>and</str<strong>on</strong>g> produced water reported in state databases. Available data generally precluded<br />

estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> hydraulic fracturing fluid <str<strong>on</strong>g>and</str<strong>on</strong>g>/or chemical spill rates separately from estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> an<br />

overall spill frequency. It is unknown whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g>se spill estimates are representative <str<strong>on</strong>g>of</str<strong>on</strong>g> nati<strong>on</strong>al<br />

occurrences. If <str<strong>on</strong>g>the</str<strong>on</strong>g> estimates are representative, <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> spills nati<strong>on</strong>ally could range from<br />

approximately 100 to 3,700 spills annually, assuming 25,000 to 30,000 new wells are fractured per<br />

year.<br />

The EPA characterized volumes <str<strong>on</strong>g>and</str<strong>on</strong>g> causes <str<strong>on</strong>g>of</str<strong>on</strong>g> hydraulic fracturing-related spills identified from<br />

selected state <str<strong>on</strong>g>and</str<strong>on</strong>g> industry data sources. The spills occurred between January 2006 <str<strong>on</strong>g>and</str<strong>on</strong>g> April 2012<br />

in 11 states <str<strong>on</strong>g>and</str<strong>on</strong>g> included 151 cases in which fracturing fluids or chemicals spilled <strong>on</strong> or near a well<br />

pad. Due to <str<strong>on</strong>g>the</str<strong>on</strong>g> methods used <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> EPA’s characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> spills, <str<strong>on</strong>g>the</str<strong>on</strong>g>se cases were likely a<br />

subset <str<strong>on</strong>g>of</str<strong>on</strong>g> all fracturing fluid <str<strong>on</strong>g>and</str<strong>on</strong>g> chemical spills during <str<strong>on</strong>g>the</str<strong>on</strong>g> study’s time period. The reported<br />

volume <str<strong>on</strong>g>of</str<strong>on</strong>g> fracturing fluids or chemicals spilled ranged from 5 gal to more than 19,000 gal (19 to<br />

72,000 L), with a median volume <str<strong>on</strong>g>of</str<strong>on</strong>g> 420 gal (1,600 L) per spill. Spill causes included equipment<br />

failure, human error, failure <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tainer integrity, <str<strong>on</strong>g>and</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r causes (e.g., wea<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>and</str<strong>on</strong>g> v<str<strong>on</strong>g>and</str<strong>on</strong>g>alism).<br />

The most comm<strong>on</strong> cause was equipment failure, specifically blowout preventer failure, corrosi<strong>on</strong>,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> failed valves. More than 30% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 151 fracturing fluid or chemical spills were from fluid<br />

storage units (e.g., tanks, totes, <str<strong>on</strong>g>and</str<strong>on</strong>g> trailers).<br />

• What are <str<strong>on</strong>g>the</str<strong>on</strong>g> identities <str<strong>on</strong>g>and</str<strong>on</strong>g> volumes <str<strong>on</strong>g>of</str<strong>on</strong>g> chemicals used in hydraulic fracturing fluids, <str<strong>on</strong>g>and</str<strong>on</strong>g> how<br />

might this compositi<strong>on</strong> vary at a given site <str<strong>on</strong>g>and</str<strong>on</strong>g> across <str<strong>on</strong>g>the</str<strong>on</strong>g> country?<br />

In this assessment, we identified a list <str<strong>on</strong>g>of</str<strong>on</strong>g> 1,076 chemicals used in hydraulic fracturing fluids. This is<br />

a cumulative list over multiple wells <str<strong>on</strong>g>and</str<strong>on</strong>g> years. These chemicals include acids, alcohols, aromatic<br />

hydrocarb<strong>on</strong>s, bases, hydrocarb<strong>on</strong> mixtures, polysaccharides, <str<strong>on</strong>g>and</str<strong>on</strong>g> surfactants. According to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

EPA’s analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> disclosures to FracFocus, <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> unique chemicals per well ranged from 4<br />

to 28, with a median <str<strong>on</strong>g>of</str<strong>on</strong>g> 14 unique chemicals per well.<br />

Our analysis indicates that chemical use varies <str<strong>on</strong>g>and</str<strong>on</strong>g> that no single chemical is used at all well sites<br />

across <str<strong>on</strong>g>the</str<strong>on</strong>g> country, although several chemicals are widely used. Methanol, hydrotreated light<br />

petroleum distillates, <str<strong>on</strong>g>and</str<strong>on</strong>g> hydrochloric acid were reported as used in 65% or more <str<strong>on</strong>g>of</str<strong>on</strong>g> wells,<br />

according to FracFocus disclosures analyzed by <str<strong>on</strong>g>the</str<strong>on</strong>g> EPA. Only 32 chemicals, excluding water,<br />

quartz, <str<strong>on</strong>g>and</str<strong>on</strong>g> sodium chloride, were used in more than 10% <str<strong>on</strong>g>of</str<strong>on</strong>g> wells according to <str<strong>on</strong>g>the</str<strong>on</strong>g> EPA’s analysis<br />

1 Spill frequency estimates are <str<strong>on</strong>g>for</str<strong>on</strong>g> a given number <str<strong>on</strong>g>of</str<strong>on</strong>g> wells over a given period <str<strong>on</strong>g>of</str<strong>on</strong>g> time. These are not annual estimates nor<br />

are <str<strong>on</strong>g>the</str<strong>on</strong>g>y <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lifetime <str<strong>on</strong>g>of</str<strong>on</strong>g> a well.<br />

This document is a draft <str<strong>on</strong>g>for</str<strong>on</strong>g> review purposes <strong>on</strong>ly <str<strong>on</strong>g>and</str<strong>on</strong>g> does not c<strong>on</strong>stitute Agency policy.<br />

June 2015 ES-11 DRAFT—DO NOT CITE OR QUOTE


<str<strong>on</strong>g>Hydraulic</str<strong>on</strong>g> <str<strong>on</strong>g>Fracturing</str<strong>on</strong>g> <strong>Drinking</strong> <strong>Water</strong> <str<strong>on</strong>g>Assessment</str<strong>on</strong>g><br />

Executive Summary<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> FracFocus disclosures. The compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hydraulic fracturing fluids varies by state, by well, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

within <str<strong>on</strong>g>the</str<strong>on</strong>g> same service company <str<strong>on</strong>g>and</str<strong>on</strong>g> geologic <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>. This variability likely results from several<br />

factors, including <str<strong>on</strong>g>the</str<strong>on</strong>g> geology <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> availability <str<strong>on</strong>g>and</str<strong>on</strong>g> cost <str<strong>on</strong>g>of</str<strong>on</strong>g> different chemicals, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

operator preference.<br />

Estimates from <str<strong>on</strong>g>the</str<strong>on</strong>g> EPA’s database developed from FracFocus suggest median volumes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

individual chemicals injected per well ranged from a few gall<strong>on</strong>s to thous<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> gall<strong>on</strong>s, with an<br />

overall median <str<strong>on</strong>g>of</str<strong>on</strong>g> 650 gal (2,500 L) per chemical per well. Based <strong>on</strong> this overall median <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

assuming 14 unique chemicals are used per well, an estimated 9,100 gal (34,000 L) <str<strong>on</strong>g>of</str<strong>on</strong>g> chemicals<br />

may be injected per well. Given that <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> chemicals per well ranges from 4 to 28, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

estimated volume <str<strong>on</strong>g>of</str<strong>on</strong>g> chemicals injected per well may range from approximately 2,600 to 18,000 gal<br />

(9,800 to 69,000 L).<br />

• What are <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical, physical, <str<strong>on</strong>g>and</str<strong>on</strong>g> toxicological properties <str<strong>on</strong>g>of</str<strong>on</strong>g> hydraulic fracturing chemical<br />

additives?<br />

Measured or estimated physicochemical properties were obtained <str<strong>on</strong>g>for</str<strong>on</strong>g> 453 chemicals <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total<br />

1,076 chemicals reported in hydraulic fracturing fluids. We could not estimate physicochemical<br />

properties <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> inorganic chemicals or mixtures. The 453 chemicals have a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

physicochemical properties.<br />

Properties affecting <str<strong>on</strong>g>the</str<strong>on</strong>g> likelihood <str<strong>on</strong>g>of</str<strong>on</strong>g> a spilled chemical reaching <str<strong>on</strong>g>and</str<strong>on</strong>g> impacting a drinking water<br />

resource include mobility, solubility, <str<strong>on</strong>g>and</str<strong>on</strong>g> volatility. Of <str<strong>on</strong>g>the</str<strong>on</strong>g> 453 chemicals <str<strong>on</strong>g>for</str<strong>on</strong>g> which physicochemical<br />

properties were available, 18 <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> top 20 most mobile <strong>on</strong>es were reported in <str<strong>on</strong>g>the</str<strong>on</strong>g> EPA’s FracFocus<br />

database <str<strong>on</strong>g>for</str<strong>on</strong>g> 2% or less <str<strong>on</strong>g>of</str<strong>on</strong>g> wells. Choline chloride <str<strong>on</strong>g>and</str<strong>on</strong>g> tetrakis (hydroxymethyl) phosph<strong>on</strong>ium were<br />

excepti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> were reported in 14% <str<strong>on</strong>g>and</str<strong>on</strong>g> 11% <str<strong>on</strong>g>of</str<strong>on</strong>g> wells, respectively. These two chemicals appear<br />

to be relatively more comm<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g>, if spilled, would move quickly through <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>ment with<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> flow <str<strong>on</strong>g>of</str<strong>on</strong>g> water. The majority <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 453 chemicals associate str<strong>on</strong>gly with soils <str<strong>on</strong>g>and</str<strong>on</strong>g> organic<br />

materials, suggesting <str<strong>on</strong>g>the</str<strong>on</strong>g> potential <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se chemicals to persist in <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>ment as l<strong>on</strong>g-term<br />

c<strong>on</strong>taminants. Many <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 453 chemicals fully dissolve in water, but <str<strong>on</strong>g>the</str<strong>on</strong>g>ir aqueous solubility varies<br />

greatly. Few <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chemicals volatilize, <str<strong>on</strong>g>and</str<strong>on</strong>g> thus a large proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> most hydraulic fracturing<br />

chemicals tend to remain in water.<br />

Oral reference values <str<strong>on</strong>g>and</str<strong>on</strong>g> oral slope factors meeting <str<strong>on</strong>g>the</str<strong>on</strong>g> criteria used in this assessment were not<br />

available <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> majority <str<strong>on</strong>g>of</str<strong>on</strong>g> chemicals used in hydraulic fracturing fluids, representing a significant<br />

data gap <str<strong>on</strong>g>for</str<strong>on</strong>g> hazard identificati<strong>on</strong>. 1,2 Reference values <str<strong>on</strong>g>and</str<strong>on</strong>g> oral slope factors are important <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

underst<str<strong>on</strong>g>and</str<strong>on</strong>g>ing <str<strong>on</strong>g>the</str<strong>on</strong>g> potential human health effects resulting from exposure to a chemical. Chr<strong>on</strong>ic<br />

oral reference values <str<strong>on</strong>g>and</str<strong>on</strong>g>/or oral slope factors from selected federal, state, <str<strong>on</strong>g>and</str<strong>on</strong>g> internati<strong>on</strong>al<br />

sources were available <str<strong>on</strong>g>for</str<strong>on</strong>g> 90 (8%) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 1,076 chemicals used in hydraulic fracturing fluids. From<br />

1 A reference value is an estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> an exposure to <str<strong>on</strong>g>the</str<strong>on</strong>g> human populati<strong>on</strong> (including susceptible subgroups) <str<strong>on</strong>g>for</str<strong>on</strong>g> a given<br />

durati<strong>on</strong> that is likely to be without an appreciable risk <str<strong>on</strong>g>of</str<strong>on</strong>g> adverse health effects over a lifetime. Reference value is a<br />

generic term not specific to a given route <str<strong>on</strong>g>of</str<strong>on</strong>g> exposure.<br />

2 An oral slope factor is an upper-bound, approximating 95% c<strong>on</strong>fidence limit, <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> increased cancer risk from a lifetime<br />

oral exposure to an agent.<br />

This document is a draft <str<strong>on</strong>g>for</str<strong>on</strong>g> review purposes <strong>on</strong>ly <str<strong>on</strong>g>and</str<strong>on</strong>g> does not c<strong>on</strong>stitute Agency policy.<br />

June 2015 ES-12 DRAFT—DO NOT CITE OR QUOTE


<str<strong>on</strong>g>Hydraulic</str<strong>on</strong>g> <str<strong>on</strong>g>Fracturing</str<strong>on</strong>g> <strong>Drinking</strong> <strong>Water</strong> <str<strong>on</strong>g>Assessment</str<strong>on</strong>g><br />

Executive Summary<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

U.S. federal sources al<strong>on</strong>e, chr<strong>on</strong>ic oral reference values were available <str<strong>on</strong>g>for</str<strong>on</strong>g> 73 chemicals (7%) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

1,076 chemicals, <str<strong>on</strong>g>and</str<strong>on</strong>g> oral slope factors were available <str<strong>on</strong>g>for</str<strong>on</strong>g> 15 chemicals (1%). Of <str<strong>on</strong>g>the</str<strong>on</strong>g> 32 chemicals<br />

reported as used in at least 10% <str<strong>on</strong>g>of</str<strong>on</strong>g> wells in <str<strong>on</strong>g>the</str<strong>on</strong>g> EPA’s FracFocus database (excluding water, quartz,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> sodium chloride), seven (21%) have a federal chr<strong>on</strong>ic oral reference value. Oral reference<br />

values <str<strong>on</strong>g>and</str<strong>on</strong>g> oral slope factors are a key comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> risk assessment process, although<br />

comprehensive risk assessments that characterize <str<strong>on</strong>g>the</str<strong>on</strong>g> health risk associated with exposure to <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

chemicals are not available.<br />

Of <str<strong>on</strong>g>the</str<strong>on</strong>g> chemicals that had values available, <str<strong>on</strong>g>the</str<strong>on</strong>g> health endpoints associated with those values<br />

include <str<strong>on</strong>g>the</str<strong>on</strong>g> potential <str<strong>on</strong>g>for</str<strong>on</strong>g> carcinogenesis, immune system effects, changes in body weight, changes in<br />

blood chemistry, cardiotoxicity, neurotoxicity, liver <str<strong>on</strong>g>and</str<strong>on</strong>g> kidney toxicity, <str<strong>on</strong>g>and</str<strong>on</strong>g> reproductive <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

developmental toxicity. However, it is important to note that evaluating any potential risk to human<br />

populati<strong>on</strong>s would require knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> specific chemicals that are present at a particular site,<br />

whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r or not humans are exposed to those chemicals <str<strong>on</strong>g>and</str<strong>on</strong>g>, if so, at what levels <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g> what<br />

durati<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> toxicity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chemicals. Since most chemicals are used infrequently <strong>on</strong> a<br />

nati<strong>on</strong>wide basis, potential exposure is likely to be a local or regi<strong>on</strong>al issue, ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than a nati<strong>on</strong>al<br />

issue. Accordingly, c<strong>on</strong>siderati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hazards <str<strong>on</strong>g>and</str<strong>on</strong>g> risks associated with <str<strong>on</strong>g>the</str<strong>on</strong>g>se chemical additives<br />

would be most useful <strong>on</strong> a site-specific basis <str<strong>on</strong>g>and</str<strong>on</strong>g> is bey<strong>on</strong>d <str<strong>on</strong>g>the</str<strong>on</strong>g> scope <str<strong>on</strong>g>of</str<strong>on</strong>g> this assessment.<br />

• If spills occur, how might hydraulic fracturing chemical additives c<strong>on</strong>taminate drinking water<br />

resources?<br />

There are several mechanisms by which a spill can potentially c<strong>on</strong>taminate drinking water<br />

resources. These include overl<str<strong>on</strong>g>and</str<strong>on</strong>g> flow to nearby surface water, soil c<strong>on</strong>taminati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> eventual<br />

transport to surface water, <str<strong>on</strong>g>and</str<strong>on</strong>g> infiltrati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>taminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> underlying ground water. Of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

151 spills characterized by <str<strong>on</strong>g>the</str<strong>on</strong>g> EPA, fluids reached surface water in 13 (9% <str<strong>on</strong>g>of</str<strong>on</strong>g> 151) cases <str<strong>on</strong>g>and</str<strong>on</strong>g> soil in<br />

97 (64%) cases. N<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> spills <str<strong>on</strong>g>of</str<strong>on</strong>g> hydraulic fracturing fluid were reported to have reached<br />

ground water. This could be due to an absence <str<strong>on</strong>g>of</str<strong>on</strong>g> impact; however, it can take several years <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

spilled fluids to infiltrate soil <str<strong>on</strong>g>and</str<strong>on</strong>g> leach into ground water. Thus, it may not be immediately<br />

apparent whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r a spill has reached ground water or not.<br />

Based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> relative importance <str<strong>on</strong>g>of</str<strong>on</strong>g> each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se mechanisms, impacts have <str<strong>on</strong>g>the</str<strong>on</strong>g> potential to occur<br />

quickly, be delayed short or l<strong>on</strong>g periods, or have a c<strong>on</strong>tinual effect over time. In Kentucky, <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

example, a spill impacted a surface water body relatively quickly when hydraulic fracturing fluid<br />

entered a creek, significantly reducing <str<strong>on</strong>g>the</str<strong>on</strong>g> water’s pH <str<strong>on</strong>g>and</str<strong>on</strong>g> increasing its c<strong>on</strong>ductivity (Papoulias<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Velasco, 2013).<br />

Well Injecti<strong>on</strong><br />

<str<strong>on</strong>g>Hydraulic</str<strong>on</strong>g> fracturing fluids are injected into oil or gas wells under high pressures. The fluids flow<br />

through <str<strong>on</strong>g>the</str<strong>on</strong>g> well (comm<strong>on</strong>ly thous<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> feet below <str<strong>on</strong>g>the</str<strong>on</strong>g> surface) into <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> z<strong>on</strong>e (i.e., <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

geologic <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> being fractured) where <str<strong>on</strong>g>the</str<strong>on</strong>g> fluid injecti<strong>on</strong> pressures are sufficient to create<br />

fractures in <str<strong>on</strong>g>the</str<strong>on</strong>g> rock.<br />

There are two major subsurface mechanisms by which <str<strong>on</strong>g>the</str<strong>on</strong>g> injecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fluid <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> creati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

propagati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fractures can lead to c<strong>on</strong>taminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> drinking water resources: (1) <str<strong>on</strong>g>the</str<strong>on</strong>g> unintended<br />

This document is a draft <str<strong>on</strong>g>for</str<strong>on</strong>g> review purposes <strong>on</strong>ly <str<strong>on</strong>g>and</str<strong>on</strong>g> does not c<strong>on</strong>stitute Agency policy.<br />

June 2015 ES-13 DRAFT—DO NOT CITE OR QUOTE


<str<strong>on</strong>g>Hydraulic</str<strong>on</strong>g> <str<strong>on</strong>g>Fracturing</str<strong>on</strong>g> <strong>Drinking</strong> <strong>Water</strong> <str<strong>on</strong>g>Assessment</str<strong>on</strong>g><br />

Executive Summary<br />

1<br />

2<br />

3<br />

4<br />

5<br />

movement <str<strong>on</strong>g>of</str<strong>on</strong>g> liquids or gases out <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> well or al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> outside <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> well<br />

into a drinking water resource via deficiencies in <str<strong>on</strong>g>the</str<strong>on</strong>g> well’s casing or cement, <str<strong>on</strong>g>and</str<strong>on</strong>g> (2) <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

unintended movement <str<strong>on</strong>g>of</str<strong>on</strong>g> liquids or gases from <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> z<strong>on</strong>e through subsurface geologic<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s into a drinking water resource. Combinati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se two mechanisms are also<br />

possible.<br />

Research Questi<strong>on</strong>s: Well Injecti<strong>on</strong><br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

• How effective are current well c<strong>on</strong>structi<strong>on</strong> practices at c<strong>on</strong>taining fluids—both liquids <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

gases—be<str<strong>on</strong>g>for</str<strong>on</strong>g>e, during, <str<strong>on</strong>g>and</str<strong>on</strong>g> after fracturing?<br />

Producti<strong>on</strong> wells are c<strong>on</strong>structed to access <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>vey hydrocarb<strong>on</strong>s from <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s in which<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>y are found to <str<strong>on</strong>g>the</str<strong>on</strong>g> surface, <str<strong>on</strong>g>and</str<strong>on</strong>g> to isolate fluid-bearing z<strong>on</strong>es (c<strong>on</strong>taining oil, gas, or water) from<br />

each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r. Typically, multiple casings are emplaced <str<strong>on</strong>g>and</str<strong>on</strong>g> cemented al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> wellbore to protect<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> isolate <str<strong>on</strong>g>the</str<strong>on</strong>g> oil <str<strong>on</strong>g>and</str<strong>on</strong>g>/or natural gas from <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s it must travel through to reach <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

surface.<br />

Below ground drinking water resources are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten separated from <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> well using casing<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> cement. Cemented surface casing, in particular, is an important well c<strong>on</strong>structi<strong>on</strong> feature <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

isolating drinking water resources from liquids <str<strong>on</strong>g>and</str<strong>on</strong>g> gases that may move through <str<strong>on</strong>g>the</str<strong>on</strong>g> subsurface. A<br />

limited risk modeling study <str<strong>on</strong>g>of</str<strong>on</strong>g> selected injecti<strong>on</strong> wells in <str<strong>on</strong>g>the</str<strong>on</strong>g> Willist<strong>on</strong> Basin in North Dakota<br />

suggests that <str<strong>on</strong>g>the</str<strong>on</strong>g> risk <str<strong>on</strong>g>of</str<strong>on</strong>g> aquifer c<strong>on</strong>taminati<strong>on</strong> from leaks inside <str<strong>on</strong>g>the</str<strong>on</strong>g> well to <str<strong>on</strong>g>the</str<strong>on</strong>g> drinking water<br />

resource decreases by a factor <str<strong>on</strong>g>of</str<strong>on</strong>g> approximately <strong>on</strong>e thous<str<strong>on</strong>g>and</str<strong>on</strong>g> when surface casing extends below<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> bottom <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> drinking water resource (Michie <str<strong>on</strong>g>and</str<strong>on</strong>g> Koch, 1991). Most wells used in hydraulic<br />

fracturing operati<strong>on</strong>s have casing <str<strong>on</strong>g>and</str<strong>on</strong>g> a layer <str<strong>on</strong>g>of</str<strong>on</strong>g> cement to protect drinking water resources, but<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re are excepti<strong>on</strong>s: a survey c<strong>on</strong>ducted by <str<strong>on</strong>g>the</str<strong>on</strong>g> EPA <str<strong>on</strong>g>of</str<strong>on</strong>g> oil <str<strong>on</strong>g>and</str<strong>on</strong>g> gas producti<strong>on</strong> wells hydraulically<br />

fractured by nine oil <str<strong>on</strong>g>and</str<strong>on</strong>g> gas service companies in 2009 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2010 estimated that at least 3% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

wells (600 out <str<strong>on</strong>g>of</str<strong>on</strong>g> 23,000 wells) did not have cement across a porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> casing installed through<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> protected ground water resource identified by well operators. The absence <str<strong>on</strong>g>of</str<strong>on</strong>g> cement does not<br />

in <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> itself lead to an impact. However, it does reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> overall number <str<strong>on</strong>g>of</str<strong>on</strong>g> casing <str<strong>on</strong>g>and</str<strong>on</strong>g> cement<br />

barriers fluids must travel through to reach ground water resources.<br />

<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> to drinking water resources from subsurface liquid <str<strong>on</strong>g>and</str<strong>on</strong>g> gas movement may occur if casing<br />

or cement are inadequately designed or c<strong>on</strong>structed, or fail. There are several examples <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

occurrences in hydraulically fractured wells that have or may have resulted in impacts to drinking<br />

water resources. In <strong>on</strong>e example, an inner string <str<strong>on</strong>g>of</str<strong>on</strong>g> casing burst during hydraulic fracturing, which<br />

resulted in a release <str<strong>on</strong>g>of</str<strong>on</strong>g> fluids <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> l<str<strong>on</strong>g>and</str<strong>on</strong>g> surface <str<strong>on</strong>g>and</str<strong>on</strong>g> possibly into <str<strong>on</strong>g>the</str<strong>on</strong>g> aquifer near Killdeer, North<br />

Dakota. The EPA found that, based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> data analysis per<str<strong>on</strong>g>for</str<strong>on</strong>g>med <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> study, <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly potential<br />

source c<strong>on</strong>sistent with c<strong>on</strong>diti<strong>on</strong>s observed in two impacted m<strong>on</strong>itoring wells was <str<strong>on</strong>g>the</str<strong>on</strong>g> blowout that<br />

occurred during hydraulic fracturing (U.S. EPA, 2015j). In o<str<strong>on</strong>g>the</str<strong>on</strong>g>r examples, inadequately cemented<br />

casing has c<strong>on</strong>tributed to impacts to drinking water resources. In Bainbridge, Ohio, inadequately<br />

cemented casing in a hydraulically fractured well c<strong>on</strong>tributed to <str<strong>on</strong>g>the</str<strong>on</strong>g> buildup <str<strong>on</strong>g>of</str<strong>on</strong>g> natural gas <str<strong>on</strong>g>and</str<strong>on</strong>g> high<br />

pressures al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> outside <str<strong>on</strong>g>of</str<strong>on</strong>g> a producti<strong>on</strong> well. This ultimately resulted in movement <str<strong>on</strong>g>of</str<strong>on</strong>g> natural<br />

gas into local drinking water aquifers (Bair et al., 2010; ODNR, 2008). In <str<strong>on</strong>g>the</str<strong>on</strong>g> Mamm Creek gas field<br />

This document is a draft <str<strong>on</strong>g>for</str<strong>on</strong>g> review purposes <strong>on</strong>ly <str<strong>on</strong>g>and</str<strong>on</strong>g> does not c<strong>on</strong>stitute Agency policy.<br />

June 2015 ES-14 DRAFT—DO NOT CITE OR QUOTE


<str<strong>on</strong>g>Hydraulic</str<strong>on</strong>g> <str<strong>on</strong>g>Fracturing</str<strong>on</strong>g> <strong>Drinking</strong> <strong>Water</strong> <str<strong>on</strong>g>Assessment</str<strong>on</strong>g><br />

Executive Summary<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

38<br />

in Colorado, inadequate cement placement in a producti<strong>on</strong> well allowed methane <str<strong>on</strong>g>and</str<strong>on</strong>g> benzene to<br />

migrate al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> well <str<strong>on</strong>g>and</str<strong>on</strong>g> through natural faults <str<strong>on</strong>g>and</str<strong>on</strong>g> fractures to drinking water<br />

resources (Science Based Soluti<strong>on</strong>s LLC, 2014; Crescent, 2011; COGCC, 2004). These cases illustrate<br />

how c<strong>on</strong>structi<strong>on</strong> issues, sustained casing pressure, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> natural faults <str<strong>on</strong>g>and</str<strong>on</strong>g> fractures<br />

can work toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r to create pathways <str<strong>on</strong>g>for</str<strong>on</strong>g> fluids to migrate toward drinking water resources.<br />

<str<strong>on</strong>g>Fracturing</str<strong>on</strong>g> older wells may also increase <str<strong>on</strong>g>the</str<strong>on</strong>g> potential <str<strong>on</strong>g>for</str<strong>on</strong>g> impacts to drinking water resources via<br />

movement <str<strong>on</strong>g>of</str<strong>on</strong>g> gases <str<strong>on</strong>g>and</str<strong>on</strong>g> liquids from <str<strong>on</strong>g>the</str<strong>on</strong>g> inside <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> well or al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> outside <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

producti<strong>on</strong> well to ground water resources. The EPA estimated that 6% <str<strong>on</strong>g>of</str<strong>on</strong>g> 23,000 oil <str<strong>on</strong>g>and</str<strong>on</strong>g> gas<br />

producti<strong>on</strong> wells were drilled more than 10 years be<str<strong>on</strong>g>for</str<strong>on</strong>g>e being hydraulically fractured in 2009 or<br />

2010. Although new wells can be designed to withst<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> stresses associated with hydraulic<br />

fracturing operati<strong>on</strong>s, older wells may not have been built or tested to <str<strong>on</strong>g>the</str<strong>on</strong>g> same specificati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ir reuse <str<strong>on</strong>g>for</str<strong>on</strong>g> this purpose could be <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>cern. Moreover, aging <str<strong>on</strong>g>and</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> well can c<strong>on</strong>tribute<br />

to casing degradati<strong>on</strong>, which can be accelerated by exposure to corrosive chemicals, such as<br />

hydrogen sulfide, carb<strong>on</strong>ic acid, <str<strong>on</strong>g>and</str<strong>on</strong>g> brines.<br />

• Can subsurface migrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fluids—both liquids <str<strong>on</strong>g>and</str<strong>on</strong>g> gases—to drinking water resources<br />

occur, <str<strong>on</strong>g>and</str<strong>on</strong>g> what local geologic or artificial features might allow this?<br />

Physical separati<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> z<strong>on</strong>e <str<strong>on</strong>g>and</str<strong>on</strong>g> drinking water resources can help protect<br />

drinking water. Many hydraulic fracturing operati<strong>on</strong>s target deep <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s such as <str<strong>on</strong>g>the</str<strong>on</strong>g> Marcellus<br />

Shale or <str<strong>on</strong>g>the</str<strong>on</strong>g> Haynesville Shale (Louisiana/Texas), where <str<strong>on</strong>g>the</str<strong>on</strong>g> vertical distance between <str<strong>on</strong>g>the</str<strong>on</strong>g> base <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

drinking water resources <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> top <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> shale <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> may be a mile or greater. Numerical<br />

modeling <str<strong>on</strong>g>and</str<strong>on</strong>g> microseismic studies based <strong>on</strong> a Marcellus Shale-like envir<strong>on</strong>ment suggest that<br />

fractures created during hydraulic fracturing are unlikely to extend upward from <str<strong>on</strong>g>the</str<strong>on</strong>g>se deep<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s into shallow drinking water aquifers.<br />

Not all hydraulic fracturing is per<str<strong>on</strong>g>for</str<strong>on</strong>g>med in z<strong>on</strong>es that are deep below drinking water resources.<br />

For example, operati<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> Antrim Shale (Michigan) <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> New Albany Shale<br />

(Illinois/Indiana/Kentucky) take place at shallower depths (100 to 1,900 ft or 30 to 579 m), with<br />

less vertical separati<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> drinking water resources. The EPA’s survey <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

oil <str<strong>on</strong>g>and</str<strong>on</strong>g> gas producti<strong>on</strong> wells hydraulically fractured by nine service companies in 2009 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2010<br />

estimated that 20% <str<strong>on</strong>g>of</str<strong>on</strong>g> 23,000 wells had less than 2,000 ft (610 m) <str<strong>on</strong>g>of</str<strong>on</strong>g> measured distance between<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> point <str<strong>on</strong>g>of</str<strong>on</strong>g> shallowest hydraulic fracturing <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> base <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> protected ground water resources<br />

reported by well operators.<br />

There are also places in <str<strong>on</strong>g>the</str<strong>on</strong>g> subsurface where oil <str<strong>on</strong>g>and</str<strong>on</strong>g> gas resources <str<strong>on</strong>g>and</str<strong>on</strong>g> drinking water resources<br />

co-exist in <str<strong>on</strong>g>the</str<strong>on</strong>g> same <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>. Evidence indicates that hydraulic fracturing occurs within <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s. This results in <str<strong>on</strong>g>the</str<strong>on</strong>g> introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fracturing fluids into <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s that may currently<br />

serve, or in <str<strong>on</strong>g>the</str<strong>on</strong>g> future could serve, as a source <str<strong>on</strong>g>of</str<strong>on</strong>g> drinking water <str<strong>on</strong>g>for</str<strong>on</strong>g> public or private use. According<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> data examined, <str<strong>on</strong>g>the</str<strong>on</strong>g> overall frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> this practice appears to be low, with<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> activity generally c<strong>on</strong>centrated in some areas in <str<strong>on</strong>g>the</str<strong>on</strong>g> western United States. The practice <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

injecting fracturing fluids into a <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> that also c<strong>on</strong>tains a drinking water resource directly<br />

affects <str<strong>on</strong>g>the</str<strong>on</strong>g> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> that water, since some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fluid likely remains in <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> following<br />

hydraulic fracturing. <str<strong>on</strong>g>Hydraulic</str<strong>on</strong>g> fracturing in a drinking water resource is a c<strong>on</strong>cern in <str<strong>on</strong>g>the</str<strong>on</strong>g> short-<br />

This document is a draft <str<strong>on</strong>g>for</str<strong>on</strong>g> review purposes <strong>on</strong>ly <str<strong>on</strong>g>and</str<strong>on</strong>g> does not c<strong>on</strong>stitute Agency policy.<br />

June 2015 ES-15 DRAFT—DO NOT CITE OR QUOTE


<str<strong>on</strong>g>Hydraulic</str<strong>on</strong>g> <str<strong>on</strong>g>Fracturing</str<strong>on</strong>g> <strong>Drinking</strong> <strong>Water</strong> <str<strong>on</strong>g>Assessment</str<strong>on</strong>g><br />

Executive Summary<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

term (should <str<strong>on</strong>g>the</str<strong>on</strong>g>re be people currently using <str<strong>on</strong>g>the</str<strong>on</strong>g>se z<strong>on</strong>es as a drinking water supply) <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>gterm<br />

(if drought or o<str<strong>on</strong>g>the</str<strong>on</strong>g>r c<strong>on</strong>diti<strong>on</strong>s necessitate <str<strong>on</strong>g>the</str<strong>on</strong>g> future use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se z<strong>on</strong>es <str<strong>on</strong>g>for</str<strong>on</strong>g> drinking water).<br />

Liquid <str<strong>on</strong>g>and</str<strong>on</strong>g> gas movement from <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> z<strong>on</strong>e to underground drinking water resources may<br />

also occur via o<str<strong>on</strong>g>the</str<strong>on</strong>g>r producti<strong>on</strong> wells or injecti<strong>on</strong> wells near hydraulic fracturing operati<strong>on</strong>s.<br />

Fractures created during hydraulic fracturing can intersect nearby wells or <str<strong>on</strong>g>the</str<strong>on</strong>g>ir fracture networks,<br />

resulting in <str<strong>on</strong>g>the</str<strong>on</strong>g> flow <str<strong>on</strong>g>of</str<strong>on</strong>g> fluids into those wells. These well communicati<strong>on</strong>s, or “frac hits,” are more<br />

likely to occur if wells are close to each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r or <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> same well pad. In <str<strong>on</strong>g>the</str<strong>on</strong>g> Wood<str<strong>on</strong>g>for</str<strong>on</strong>g>d Shale in<br />

Oklahoma, <str<strong>on</strong>g>the</str<strong>on</strong>g> likelihood <str<strong>on</strong>g>of</str<strong>on</strong>g> well communicati<strong>on</strong> was less than 10% between wells more than 4,000<br />

ft (1,219 m) apart, but rose to nearly 50% between wells less than 1,000 ft (305 m) apart (Ajani <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Kelkar, 2012). If an <str<strong>on</strong>g>of</str<strong>on</strong>g>fset well is not able to withst<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> stresses applied during <str<strong>on</strong>g>the</str<strong>on</strong>g> hydraulic<br />

fracturing <str<strong>on</strong>g>of</str<strong>on</strong>g> a neighboring well, well comp<strong>on</strong>ents may fail, which could result in a release <str<strong>on</strong>g>of</str<strong>on</strong>g> fluids<br />

at <str<strong>on</strong>g>the</str<strong>on</strong>g> surface from <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g>fset well. The EPA identified incidents in which surface spills <str<strong>on</strong>g>of</str<strong>on</strong>g> hydraulic<br />

fracturing-related fluids were attributed to well communicati<strong>on</strong> events.<br />

Older or inactive wells—including oil <str<strong>on</strong>g>and</str<strong>on</strong>g> gas wells, injecti<strong>on</strong> wells, or drinking water wells—near a<br />

hydraulic fracturing operati<strong>on</strong> may pose an even greater potential <str<strong>on</strong>g>for</str<strong>on</strong>g> impacts. A study in Oklahoma<br />

found that older wells were more likely to be negatively affected by <str<strong>on</strong>g>the</str<strong>on</strong>g> stresses applied by<br />

hydraulic fracturing in neighboring wells (Ajani <str<strong>on</strong>g>and</str<strong>on</strong>g> Kelkar, 2012). In some cases, inactive wells in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> vicinity <str<strong>on</strong>g>of</str<strong>on</strong>g> hydraulic fracturing activities may not have been plugged properly—many wells<br />

plugged be<str<strong>on</strong>g>for</str<strong>on</strong>g>e <str<strong>on</strong>g>the</str<strong>on</strong>g> 1950s were d<strong>on</strong>e so with little or no cement. The Interstate <str<strong>on</strong>g>Oil</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Gas</str<strong>on</strong>g> Compact<br />

Commissi<strong>on</strong> estimates that over <strong>on</strong>e milli<strong>on</strong> wells may have been drilled in <str<strong>on</strong>g>the</str<strong>on</strong>g> United States prior<br />

to a <str<strong>on</strong>g>for</str<strong>on</strong>g>mal regulatory system being in place, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> status <str<strong>on</strong>g>and</str<strong>on</strong>g> locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> many <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se wells are<br />

unknown (IOGCC, 2008). State programs exist to plug identified inactive wells, <str<strong>on</strong>g>and</str<strong>on</strong>g> work is <strong>on</strong>going<br />

to identify <str<strong>on</strong>g>and</str<strong>on</strong>g> address such wells.<br />

Flowback <str<strong>on</strong>g>and</str<strong>on</strong>g> Produced <strong>Water</strong><br />

<strong>Water</strong>, <str<strong>on</strong>g>of</str<strong>on</strong>g> variable quality, is a byproduct <str<strong>on</strong>g>of</str<strong>on</strong>g> oil <str<strong>on</strong>g>and</str<strong>on</strong>g> gas producti<strong>on</strong>. After hydraulic fracturing, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

injecti<strong>on</strong> pressure is released <str<strong>on</strong>g>and</str<strong>on</strong>g> water flows back from <str<strong>on</strong>g>the</str<strong>on</strong>g> well. Initially this water is similar to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> hydraulic fracturing fluid, but as time goes <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> is affected by <str<strong>on</strong>g>the</str<strong>on</strong>g> characteristics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> possible reacti<strong>on</strong>s between <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fracturing fluid. <strong>Water</strong><br />

initially produced from <str<strong>on</strong>g>the</str<strong>on</strong>g> well after hydraulic fracturing is sometimes called flowback in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

literature, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> term appears in this assessment. However, hydraulic fracturing fluids <str<strong>on</strong>g>and</str<strong>on</strong>g> any<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> water returning to <str<strong>on</strong>g>the</str<strong>on</strong>g> surface are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten referred to collectively as produced water. This<br />

definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> produced water is used in this assessment.<br />

The amount <str<strong>on</strong>g>of</str<strong>on</strong>g> produced water varies, but typically averages 10% to 25% <str<strong>on</strong>g>of</str<strong>on</strong>g> injected volumes,<br />

depending up<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> time since fracturing <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> particular well (see Figure ES-3a).<br />

However, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are excepti<strong>on</strong>s to this, such as in <str<strong>on</strong>g>the</str<strong>on</strong>g> Barnett Shale in Texas where <str<strong>on</strong>g>the</str<strong>on</strong>g> total volume<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> produced water can equal or exceed <str<strong>on</strong>g>the</str<strong>on</strong>g> injected volume <str<strong>on</strong>g>of</str<strong>on</strong>g> hydraulic fracturing fluid (see Figure<br />

ES-3b). Flow rates are generally high initially, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>n decrease over time throughout oil or gas<br />

producti<strong>on</strong>.<br />

This document is a draft <str<strong>on</strong>g>for</str<strong>on</strong>g> review purposes <strong>on</strong>ly <str<strong>on</strong>g>and</str<strong>on</strong>g> does not c<strong>on</strong>stitute Agency policy.<br />

June 2015 ES-16 DRAFT—DO NOT CITE OR QUOTE


<str<strong>on</strong>g>Hydraulic</str<strong>on</strong>g> <str<strong>on</strong>g>Fracturing</str<strong>on</strong>g> <strong>Drinking</strong> <strong>Water</strong> <str<strong>on</strong>g>Assessment</str<strong>on</strong>g><br />

Executive Summary<br />

1<br />

2<br />

3<br />

4<br />

<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <strong>on</strong> drinking water resources have <str<strong>on</strong>g>the</str<strong>on</strong>g> potential to occur if produced water is spilled <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

enters surface water or ground water. Envir<strong>on</strong>mental transport <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical c<strong>on</strong>stituents in<br />

produced water depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> spill (e.g., volume <str<strong>on</strong>g>and</str<strong>on</strong>g> durati<strong>on</strong>), <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> spilled fluids, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> surrounding envir<strong>on</strong>ment.<br />

Research Questi<strong>on</strong>s: Flowback <str<strong>on</strong>g>and</str<strong>on</strong>g> Produced <strong>Water</strong><br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

• What is currently known about <str<strong>on</strong>g>the</str<strong>on</strong>g> frequency, severity, <str<strong>on</strong>g>and</str<strong>on</strong>g> causes <str<strong>on</strong>g>of</str<strong>on</strong>g> spills <str<strong>on</strong>g>of</str<strong>on</strong>g> flowback <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

produced water?<br />

Surface spills <str<strong>on</strong>g>of</str<strong>on</strong>g> produced water from hydraulically fractured wells have occurred. As noted in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Chemical Mixing secti<strong>on</strong> above, <str<strong>on</strong>g>the</str<strong>on</strong>g> frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>-site spills from hydraulic fracturing activities<br />

could be estimated <str<strong>on</strong>g>for</str<strong>on</strong>g> two states, but not nati<strong>on</strong>ally. Estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> spill frequencies at hydraulic<br />

fracturing sites in Colorado <str<strong>on</strong>g>and</str<strong>on</strong>g> Pennsylvania, including spills <str<strong>on</strong>g>of</str<strong>on</strong>g> produced water, ranged from<br />

approximately 0.4 to 12.2 spills per 100 wells. Available data generally precluded estimates <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

produced water spill rates separately from estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> overall spill frequency. Away from <str<strong>on</strong>g>the</str<strong>on</strong>g> well,<br />

produced water spills from pipelines <str<strong>on</strong>g>and</str<strong>on</strong>g> truck transport also have <str<strong>on</strong>g>the</str<strong>on</strong>g> potential to impact drinking<br />

water resources.<br />

The EPA characterized spill volumes <str<strong>on</strong>g>and</str<strong>on</strong>g> causes <str<strong>on</strong>g>for</str<strong>on</strong>g> 225 cases in which produced water spilled <strong>on</strong><br />

or near a well pad. These spills occurred between January 2006 <str<strong>on</strong>g>and</str<strong>on</strong>g> April 2012 in 11 states. The<br />

median reported volume per produced water spill was 990 gall<strong>on</strong>s (3,750 L), more than double that<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> spills <str<strong>on</strong>g>of</str<strong>on</strong>g> hydraulic fracturing fluids <str<strong>on</strong>g>and</str<strong>on</strong>g> chemicals. The causes <str<strong>on</strong>g>of</str<strong>on</strong>g> produced water spills were<br />

reported as human error, equipment failure, c<strong>on</strong>tainer integrity failure, miscellaneous causes (e.g.,<br />

well communicati<strong>on</strong>), <str<strong>on</strong>g>and</str<strong>on</strong>g> unknown causes. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total volume spilled (74%) <str<strong>on</strong>g>for</str<strong>on</strong>g> all 225 cases<br />

combined was caused by a failure <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tainer integrity.<br />

• What is <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hydraulic fracturing flowback <str<strong>on</strong>g>and</str<strong>on</strong>g> produced water, <str<strong>on</strong>g>and</str<strong>on</strong>g> what<br />

factors might influence this compositi<strong>on</strong>?<br />

A combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> factors influence <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> produced water, including: <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> injected hydraulic fracturing fluids, <str<strong>on</strong>g>the</str<strong>on</strong>g> type <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> fractured, subsurface processes, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

residence time. The initial chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> produced water primarily reflects <str<strong>on</strong>g>the</str<strong>on</strong>g> chemistry<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> injected fluids. At later times, <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> produced water reflects <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

geochemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fractured <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>.<br />

Produced water varies in quality from fresh to highly saline, <str<strong>on</strong>g>and</str<strong>on</strong>g> can c<strong>on</strong>tain high levels <str<strong>on</strong>g>of</str<strong>on</strong>g> major<br />

ani<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> cati<strong>on</strong>s, metals, organics, <str<strong>on</strong>g>and</str<strong>on</strong>g> naturally occurring radi<strong>on</strong>uclides. Produced water from<br />

shale <str<strong>on</strong>g>and</str<strong>on</strong>g> tight gas <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s typically c<strong>on</strong>tains high levels <str<strong>on</strong>g>of</str<strong>on</strong>g> total dissolved solids (TDS) <str<strong>on</strong>g>and</str<strong>on</strong>g> i<strong>on</strong>ic<br />

c<strong>on</strong>stituents (e.g., bromide, calcium, chloride, ir<strong>on</strong>, potassium, manganese, magnesium, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

sodium). Produced water also may c<strong>on</strong>tain metals (e.g., barium, cadmium, chromium, lead, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

mercury), <str<strong>on</strong>g>and</str<strong>on</strong>g> organic compounds such as benzene. Produced water from coalbed methane<br />

typically has much lower TDS levels compared to o<str<strong>on</strong>g>the</str<strong>on</strong>g>r produced water types, particularly if <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

coalbed was deposited under fresh water c<strong>on</strong>diti<strong>on</strong>s..<br />

This document is a draft <str<strong>on</strong>g>for</str<strong>on</strong>g> review purposes <strong>on</strong>ly <str<strong>on</strong>g>and</str<strong>on</strong>g> does not c<strong>on</strong>stitute Agency policy.<br />

June 2015 ES-17 DRAFT—DO NOT CITE OR QUOTE


<str<strong>on</strong>g>Hydraulic</str<strong>on</strong>g> <str<strong>on</strong>g>Fracturing</str<strong>on</strong>g> <strong>Drinking</strong> <strong>Water</strong> <str<strong>on</strong>g>Assessment</str<strong>on</strong>g><br />

Executive Summary<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

38<br />

We identified 134 chemicals that have been detected in hydraulic fracturing produced water. These<br />

include chemicals added during <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical mixing stage, as well as naturally occurring organic<br />

chemicals <str<strong>on</strong>g>and</str<strong>on</strong>g> radi<strong>on</strong>uclides, metals, <str<strong>on</strong>g>and</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g> subsurface rock <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s<br />

mobilized by <str<strong>on</strong>g>the</str<strong>on</strong>g> hydraulic fracturing process. Data <strong>on</strong> measured chemical c<strong>on</strong>centrati<strong>on</strong>s in<br />

produced water were available <str<strong>on</strong>g>for</str<strong>on</strong>g> 75 <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se 134 chemicals.<br />

Most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> available data <strong>on</strong> produced water c<strong>on</strong>tent are <str<strong>on</strong>g>for</str<strong>on</strong>g> shale <str<strong>on</strong>g>and</str<strong>on</strong>g> coalbed methane<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s, while less data are available <str<strong>on</strong>g>for</str<strong>on</strong>g> tight <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s, such as s<str<strong>on</strong>g>and</str<strong>on</strong>g>st<strong>on</strong>es. The compositi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> produced water must be determined through sampling <str<strong>on</strong>g>and</str<strong>on</strong>g> analysis, both <str<strong>on</strong>g>of</str<strong>on</strong>g> which have<br />

limitati<strong>on</strong>s—<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>mer due to challenges in accessing producti<strong>on</strong> equipment, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> latter due to<br />

difficulties identifying target analytes be<str<strong>on</strong>g>for</str<strong>on</strong>g>e analysis <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lack <str<strong>on</strong>g>of</str<strong>on</strong>g> appropriate analytical<br />

methods. Most current data are <str<strong>on</strong>g>for</str<strong>on</strong>g> inorganic chemicals, while less data exist <str<strong>on</strong>g>for</str<strong>on</strong>g> organic chemicals.<br />

Many more organic chemicals were reported as used in hydraulic fracturing fluid than have been<br />

identified in produced water. The difference may be due to analytical limitati<strong>on</strong>s, limited study<br />

scopes, <str<strong>on</strong>g>and</str<strong>on</strong>g> undocumented subsurface reacti<strong>on</strong>s.<br />

• What are <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical, physical, <str<strong>on</strong>g>and</str<strong>on</strong>g> toxicological properties <str<strong>on</strong>g>of</str<strong>on</strong>g> hydraulic fracturing flowback<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> produced water c<strong>on</strong>stituents?<br />

The identified c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g> produced water include inorganic chemicals (cati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> ani<strong>on</strong>s, i.e.,<br />

metals, metalloids, n<strong>on</strong>-metals, <str<strong>on</strong>g>and</str<strong>on</strong>g> radioactive materials), organic chemicals <str<strong>on</strong>g>and</str<strong>on</strong>g> compounds, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

unidentified materials measured as total organic carb<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> dissolved organic carb<strong>on</strong>. Some<br />

c<strong>on</strong>stituents are readily transported with water (i.e., chloride <str<strong>on</strong>g>and</str<strong>on</strong>g> bromide), while o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs depend<br />

str<strong>on</strong>gly <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> geochemical c<strong>on</strong>diti<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> receiving water body (i.e., radium <str<strong>on</strong>g>and</str<strong>on</strong>g> barium), <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir transport is based <strong>on</strong> site-specific factors. We were able to obtain actual or<br />

estimated physicochemical properties <str<strong>on</strong>g>for</str<strong>on</strong>g> 86 (64%) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 134 chemicals identified in produced<br />

water.<br />

As in <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> chemicals in hydraulic fracturing fluid, chemical properties that affect <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

likelihood <str<strong>on</strong>g>of</str<strong>on</strong>g> an organic chemical in produced water reaching <str<strong>on</strong>g>and</str<strong>on</strong>g> impacting drinking water<br />

resources include: mobility, solubility, <str<strong>on</strong>g>and</str<strong>on</strong>g> volatility. In general, physicochemical properties suggest<br />

that organic chemicals in produced water tend to be less mobile in <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>ment. C<strong>on</strong>sequently,<br />

if spilled, <str<strong>on</strong>g>the</str<strong>on</strong>g>se chemicals may remain in soils or sediments near spill sites. Low mobility may result<br />

in smaller dissolved c<strong>on</strong>taminant plumes in ground water, although <str<strong>on</strong>g>the</str<strong>on</strong>g>se chemicals can be<br />

transported with sediments in surface water or small particles in ground water. Organic chemical<br />

properties vary with salinity, <str<strong>on</strong>g>and</str<strong>on</strong>g> effects depend <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical.<br />

Oral reference values <str<strong>on</strong>g>and</str<strong>on</strong>g>/or oral slope factors from selected federal, state, <str<strong>on</strong>g>and</str<strong>on</strong>g> internati<strong>on</strong>al<br />

sources were available <str<strong>on</strong>g>for</str<strong>on</strong>g> 83 (62%) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 134 chemicals detected in produced water. From U.S.<br />

federal sources al<strong>on</strong>e, chr<strong>on</strong>ic oral reference values were available <str<strong>on</strong>g>for</str<strong>on</strong>g> 70 (52%) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 134<br />

chemicals, <str<strong>on</strong>g>and</str<strong>on</strong>g> oral slope factors were available <str<strong>on</strong>g>for</str<strong>on</strong>g> 20 chemicals (15%). Of <str<strong>on</strong>g>the</str<strong>on</strong>g> chemicals that had<br />

values available, noted health effects include <str<strong>on</strong>g>the</str<strong>on</strong>g> potential <str<strong>on</strong>g>for</str<strong>on</strong>g> carcinogenesis, immune system<br />

effects, changes in body weight, changes in blood chemistry, pulm<strong>on</strong>ary toxicity, neurotoxicity, liver<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> kidney toxicity, <str<strong>on</strong>g>and</str<strong>on</strong>g> reproductive <str<strong>on</strong>g>and</str<strong>on</strong>g> developmental toxicity. As noted above, evaluating any<br />

potential risk to human populati<strong>on</strong>s would require knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> specific chemicals that are<br />

This document is a draft <str<strong>on</strong>g>for</str<strong>on</strong>g> review purposes <strong>on</strong>ly <str<strong>on</strong>g>and</str<strong>on</strong>g> does not c<strong>on</strong>stitute Agency policy.<br />

June 2015 ES-18 DRAFT—DO NOT CITE OR QUOTE


<str<strong>on</strong>g>Hydraulic</str<strong>on</strong>g> <str<strong>on</strong>g>Fracturing</str<strong>on</strong>g> <strong>Drinking</strong> <strong>Water</strong> <str<strong>on</strong>g>Assessment</str<strong>on</strong>g><br />

Executive Summary<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

present at a particular site, whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r or not humans are exposed to those chemicals <str<strong>on</strong>g>and</str<strong>on</strong>g>, if so, at<br />

what levels <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g> what durati<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> toxicity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chemicals. The chemicals present in<br />

produced water can vary based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> specific well, due to differences in fracturing<br />

fluid <str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> geology. Accordingly, c<strong>on</strong>siderati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hazards <str<strong>on</strong>g>and</str<strong>on</strong>g> risks associated<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g>se chemicals would be most useful <strong>on</strong> a site-specific basis <str<strong>on</strong>g>and</str<strong>on</strong>g> is bey<strong>on</strong>d <str<strong>on</strong>g>the</str<strong>on</strong>g> scope <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

assessment.<br />

• If spills occur, how might hydraulic fracturing flowback <str<strong>on</strong>g>and</str<strong>on</strong>g> produced water c<strong>on</strong>taminate<br />

drinking water resources?<br />

<str<strong>on</strong>g>Impacts</str<strong>on</strong>g> to drinking water resources from spills or releases <str<strong>on</strong>g>of</str<strong>on</strong>g> produced water depend <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

volume, timing, <str<strong>on</strong>g>and</str<strong>on</strong>g> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> produced water. <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> are more likely <str<strong>on</strong>g>the</str<strong>on</strong>g> greater <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

volume <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> spill, <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>ger <str<strong>on</strong>g>the</str<strong>on</strong>g> durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> release, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> higher <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

produced water c<strong>on</strong>stituents (i.e., salts, naturally occurring radioactive material, <str<strong>on</strong>g>and</str<strong>on</strong>g> metals).<br />

The EPA characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hydraulic fracturing-related spills found that 8% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 225 produced<br />

water spills included in <str<strong>on</strong>g>the</str<strong>on</strong>g> study reached surface water or ground water. These spills tended to be<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> greater volume than spills that did not reach a water body. A well blowout in Brad<str<strong>on</strong>g>for</str<strong>on</strong>g>d County,<br />

Pennsylvania spilled an estimated 10,000 gal (38,000 L) <str<strong>on</strong>g>of</str<strong>on</strong>g> produced water into a tributary <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Tow<str<strong>on</strong>g>and</str<strong>on</strong>g>a Creek, a state-designated trout fishery. The largest volume spill identified in this<br />

assessment occurred in North Dakota, where approximately 2.9 milli<strong>on</strong> gal (11 milli<strong>on</strong> L) <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

produced water spilled from a broken pipeline <str<strong>on</strong>g>and</str<strong>on</strong>g> impacted surface <str<strong>on</strong>g>and</str<strong>on</strong>g> ground water.<br />

Chr<strong>on</strong>ic releases can <str<strong>on</strong>g>and</str<strong>on</strong>g> do occur from produced water disposed in unlined pits or impoundments,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> can have l<strong>on</strong>g-term impacts. Ground water impacts may persist l<strong>on</strong>ger than surface water<br />

impacts because <str<strong>on</strong>g>of</str<strong>on</strong>g> lower flow rates <str<strong>on</strong>g>and</str<strong>on</strong>g> decreased mixing. Plumes from unlined pits used <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

produced water have been shown to persist <str<strong>on</strong>g>for</str<strong>on</strong>g> l<strong>on</strong>g periods <str<strong>on</strong>g>and</str<strong>on</strong>g> extend to nearby surface water<br />

bodies.<br />

Wastewater Management <str<strong>on</strong>g>and</str<strong>on</strong>g> Waste Disposal<br />

<str<strong>on</strong>g>Hydraulic</str<strong>on</strong>g> fracturing generates large volumes <str<strong>on</strong>g>of</str<strong>on</strong>g> produced water that require management. In this<br />

secti<strong>on</strong> we refer to produced water <str<strong>on</strong>g>and</str<strong>on</strong>g> any o<str<strong>on</strong>g>the</str<strong>on</strong>g>r waters generated <strong>on</strong>site by <str<strong>on</strong>g>the</str<strong>on</strong>g> single term<br />

“wastewater.” Clark <str<strong>on</strong>g>and</str<strong>on</strong>g> Veil (2009) estimated that, in 2007, approximately <strong>on</strong>e milli<strong>on</strong> active oil<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> gas wells in <str<strong>on</strong>g>the</str<strong>on</strong>g> United States generated 2.4 billi<strong>on</strong> gal per day (9.1 billi<strong>on</strong> L per day) <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

wastewater. There is currently no reliable way to estimate what fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this total volume can be<br />

attributed to hydraulically fractured wells. Wastewater volumes in a regi<strong>on</strong> can increase sharply as<br />

hydraulic fracturing activity increases.<br />

Wastewater management <str<strong>on</strong>g>and</str<strong>on</strong>g> disposal could affect drinking water resources through multiple<br />

mechanisms, including: inadequate treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> wastewater prior to discharge to a receiving<br />

water, accidental releases during transport or leakage from wastewater storage pits, unpermitted<br />

discharges, migrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>stituents in wastewaters following l<str<strong>on</strong>g>and</str<strong>on</strong>g> applicati<strong>on</strong>, inappropriate<br />

management <str<strong>on</strong>g>of</str<strong>on</strong>g> residual materials from treatment, or accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> wastewater c<strong>on</strong>stituents in<br />

sediments near outfalls <str<strong>on</strong>g>of</str<strong>on</strong>g> centralized waste treatment facilities (CWTs) or publicly owned<br />

treatment works (POTWs) that have treated hydraulic fracturing wastewater. The scope <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

This document is a draft <str<strong>on</strong>g>for</str<strong>on</strong>g> review purposes <strong>on</strong>ly <str<strong>on</strong>g>and</str<strong>on</strong>g> does not c<strong>on</strong>stitute Agency policy.<br />

June 2015 ES-19 DRAFT—DO NOT CITE OR QUOTE


<str<strong>on</strong>g>Hydraulic</str<strong>on</strong>g> <str<strong>on</strong>g>Fracturing</str<strong>on</strong>g> <strong>Drinking</strong> <strong>Water</strong> <str<strong>on</strong>g>Assessment</str<strong>on</strong>g><br />

Executive Summary<br />

1<br />

2<br />

assessment excludes potential impacts to drinking water from <str<strong>on</strong>g>the</str<strong>on</strong>g> disposal <str<strong>on</strong>g>of</str<strong>on</strong>g> hydraulic fracturing<br />

wastewater in underground injecti<strong>on</strong> c<strong>on</strong>trol (UIC) wells.<br />

Research Questi<strong>on</strong>s: Wastewater Management <str<strong>on</strong>g>and</str<strong>on</strong>g> Waste Disposal<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

• What are <str<strong>on</strong>g>the</str<strong>on</strong>g> comm<strong>on</strong> treatment <str<strong>on</strong>g>and</str<strong>on</strong>g> disposal methods <str<strong>on</strong>g>for</str<strong>on</strong>g> hydraulic fracturing wastewater,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> where are <str<strong>on</strong>g>the</str<strong>on</strong>g>se methods practiced?<br />

<str<strong>on</strong>g>Hydraulic</str<strong>on</strong>g> fracturing wastewater is managed using several opti<strong>on</strong>s, including: disposal in UIC wells<br />

(also called disposal wells); through evaporati<strong>on</strong> p<strong>on</strong>ds; treatment at CWTs, followed by reuse or<br />

by discharge to ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r surface waters or POTWs; reuse with minimal or no treatment; <str<strong>on</strong>g>and</str<strong>on</strong>g> l<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

applicati<strong>on</strong> or road spreading. Treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> hydraulic fracturing wastewater by POTWs was used in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> past in Pennsylvania. This decreased sharply following new state-level requirements <str<strong>on</strong>g>and</str<strong>on</strong>g> a<br />

request by <str<strong>on</strong>g>the</str<strong>on</strong>g> Pennsylvania Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Protecti<strong>on</strong> (PA DEP) <str<strong>on</strong>g>for</str<strong>on</strong>g> well operators<br />

to stop sending Marcellus Shale wastewater to POTWs (<str<strong>on</strong>g>and</str<strong>on</strong>g> 15 CWTs) discharging to surface<br />

waters.<br />

Wastewater management decisi<strong>on</strong>s are generally based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> availability <str<strong>on</strong>g>and</str<strong>on</strong>g> associated costs<br />

(including transportati<strong>on</strong>) <str<strong>on</strong>g>of</str<strong>on</strong>g> disposal or treatment facilities. A survey <str<strong>on</strong>g>of</str<strong>on</strong>g> state agencies found that,<br />

in 2007, more than 98% <str<strong>on</strong>g>of</str<strong>on</strong>g> produced water from <str<strong>on</strong>g>the</str<strong>on</strong>g> oil <str<strong>on</strong>g>and</str<strong>on</strong>g> gas industry was managed via<br />

underground injecti<strong>on</strong> (Clark <str<strong>on</strong>g>and</str<strong>on</strong>g> Veil, 2009). Available in<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> suggests that disposal wells are<br />

also <str<strong>on</strong>g>the</str<strong>on</strong>g> primary management practice <str<strong>on</strong>g>for</str<strong>on</strong>g> hydraulic fracturing wastewater in most regi<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

United States (e.g., <str<strong>on</strong>g>the</str<strong>on</strong>g> Barnett Shale; see Figure ES-3b). The Marcellus Shale regi<strong>on</strong> is a notable<br />

excepti<strong>on</strong>, where most wastewater is reused because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> small number <str<strong>on</strong>g>of</str<strong>on</strong>g> disposal wells in<br />

Pennsylvania (see Figure ES-3a). Although this assessment does not address potential effects <strong>on</strong><br />

drinking water resources from <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> disposal wells, any changes in cost <str<strong>on</strong>g>of</str<strong>on</strong>g> disposal or<br />

availability <str<strong>on</strong>g>of</str<strong>on</strong>g> disposal wells would likely influence wastewater management decisi<strong>on</strong>s.<br />

Wastewater from some hydraulic fracturing operati<strong>on</strong>s is sent to CWTs, which may discharge<br />

treated wastewater to surface waters, POTWs, or back to well operators <str<strong>on</strong>g>for</str<strong>on</strong>g> reuse in o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

hydraulic fracturing operati<strong>on</strong>s. Available data indicate that <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> CWTs <str<strong>on</strong>g>for</str<strong>on</strong>g> treating hydraulic<br />

fracturing wastewater is greater in <str<strong>on</strong>g>the</str<strong>on</strong>g> Marcellus Shale regi<strong>on</strong> than o<str<strong>on</strong>g>the</str<strong>on</strong>g>r parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> country. Most<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> CWTs accepting hydraulic fracturing wastewater in Pennsylvania cannot significantly reduce<br />

TDS, <str<strong>on</strong>g>and</str<strong>on</strong>g> many <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se facilities provide treated wastewater to well operators <str<strong>on</strong>g>for</str<strong>on</strong>g> reuse <str<strong>on</strong>g>and</str<strong>on</strong>g> do not<br />

currently discharge treated wastewater to surface water.<br />

Reuse <str<strong>on</strong>g>of</str<strong>on</strong>g> wastewater <str<strong>on</strong>g>for</str<strong>on</strong>g> subsequent hydraulic fracturing operati<strong>on</strong>s may require no treatment,<br />

minimal treatment, or more extensive treatment. Operators reuse a substantial amount (ca. 70-<br />

90%) <str<strong>on</strong>g>of</str<strong>on</strong>g> Marcellus Shale wastewater in Pennsylvania (see Figure ES-3a). Lesser amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> reuse<br />

occur in o<str<strong>on</strong>g>the</str<strong>on</strong>g>r areas (e.g., <str<strong>on</strong>g>the</str<strong>on</strong>g> Barnett Shale; see Figure ES-3b). In certain <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s, such as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Bakken Shale in North Dakota, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is currently no indicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> appreciable reuse.<br />

In some cases, wastewater is used <str<strong>on</strong>g>for</str<strong>on</strong>g> l<str<strong>on</strong>g>and</str<strong>on</strong>g> applicati<strong>on</strong>s such as irrigati<strong>on</strong> or road spreading <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

deicing or dust suppressi<strong>on</strong>. L<str<strong>on</strong>g>and</str<strong>on</strong>g> applicati<strong>on</strong> has <str<strong>on</strong>g>the</str<strong>on</strong>g> potential to introduce wastewater<br />

c<strong>on</strong>stituents into surface water <str<strong>on</strong>g>and</str<strong>on</strong>g> ground water due to run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <str<strong>on</strong>g>and</str<strong>on</strong>g> migrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> brines. Studies <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

This document is a draft <str<strong>on</strong>g>for</str<strong>on</strong>g> review purposes <strong>on</strong>ly <str<strong>on</strong>g>and</str<strong>on</strong>g> does not c<strong>on</strong>stitute Agency policy.<br />

June 2015 ES-20 DRAFT—DO NOT CITE OR QUOTE


<str<strong>on</strong>g>Hydraulic</str<strong>on</strong>g> <str<strong>on</strong>g>Fracturing</str<strong>on</strong>g> <strong>Drinking</strong> <strong>Water</strong> <str<strong>on</strong>g>Assessment</str<strong>on</strong>g><br />

Executive Summary<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

road spreading <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>venti<strong>on</strong>al oil <str<strong>on</strong>g>and</str<strong>on</strong>g> gas brines have found elevated levels <str<strong>on</strong>g>of</str<strong>on</strong>g> metals in soils <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

chloride in ground water.<br />

• How effective are c<strong>on</strong>venti<strong>on</strong>al POTWs <str<strong>on</strong>g>and</str<strong>on</strong>g> commercial treatment systems in removing<br />

organic <str<strong>on</strong>g>and</str<strong>on</strong>g> inorganic c<strong>on</strong>taminants <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>cern in hydraulic fracturing wastewater?<br />

Publicly owned treatment works using basic treatment processes are not designed to effectively<br />

reduce TDS c<strong>on</strong>centrati<strong>on</strong>s in highly saline hydraulic fracturing wastewater—although specific<br />

c<strong>on</strong>stituents or c<strong>on</strong>stituents groups can be removed (e.g., metals, oil, <str<strong>on</strong>g>and</str<strong>on</strong>g> grease by chemical<br />

precipitati<strong>on</strong> or o<str<strong>on</strong>g>the</str<strong>on</strong>g>r processes). In some cases, wastewater treated at CWTs may be sent to a<br />

POTW <str<strong>on</strong>g>for</str<strong>on</strong>g> additi<strong>on</strong>al treatment <str<strong>on</strong>g>and</str<strong>on</strong>g> discharge. It is blended with POTW influent to prevent<br />

detrimental effects <strong>on</strong> biological processes in <str<strong>on</strong>g>the</str<strong>on</strong>g> POTW that aid in <str<strong>on</strong>g>the</str<strong>on</strong>g> treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> wastewater.<br />

Centralized waste treatment facilities with advanced wastewater treatment opti<strong>on</strong>s such as reverse<br />

osmosis, <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal distillati<strong>on</strong>, or mechanical vapor recompressi<strong>on</strong>, reduce TDS c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

can treat c<strong>on</strong>taminants currently known to be in hydraulic fracturing wastewater. However, <str<strong>on</strong>g>the</str<strong>on</strong>g>re<br />

are limited data <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hydraulic fracturing wastewater, particularly <str<strong>on</strong>g>for</str<strong>on</strong>g> organic<br />

c<strong>on</strong>stituents. It is unknown whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r advanced treatment systems are effective at removing<br />

c<strong>on</strong>stituents that are generally not tested <str<strong>on</strong>g>for</str<strong>on</strong>g>.<br />

• What are <str<strong>on</strong>g>the</str<strong>on</strong>g> potential impacts from surface water disposal <str<strong>on</strong>g>of</str<strong>on</strong>g> treated hydraulic fracturing<br />

wastewater <strong>on</strong> drinking water treatment facilities?<br />

<str<strong>on</strong>g>Potential</str<strong>on</strong>g> impacts to drinking water resources may occur if hydraulic fracturing wastewater is<br />

inadequately treated <str<strong>on</strong>g>and</str<strong>on</strong>g> discharged to surface water. Inadequately treated hydraulic fracturing<br />

wastewater may increase c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> TDS, bromide, chloride, <str<strong>on</strong>g>and</str<strong>on</strong>g> iodide in receiving waters.<br />

In particular, bromide <str<strong>on</strong>g>and</str<strong>on</strong>g> iodide are precursors <str<strong>on</strong>g>of</str<strong>on</strong>g> disinfecti<strong>on</strong> byproducts (DBPs) that can <str<strong>on</strong>g>for</str<strong>on</strong>g>m in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> organic carb<strong>on</strong> in drinking water treatment plants or wastewater treatment plants.<br />

<strong>Drinking</strong> water treatment plants are required to m<strong>on</strong>itor <str<strong>on</strong>g>for</str<strong>on</strong>g> certain types <str<strong>on</strong>g>of</str<strong>on</strong>g> DBPs, because some<br />

are toxic <str<strong>on</strong>g>and</str<strong>on</strong>g> can cause cancer.<br />

Radi<strong>on</strong>uclides can also be found in inadequately treated hydraulic fracturing wastewater from<br />

certain shales, such as <str<strong>on</strong>g>the</str<strong>on</strong>g> Marcellus. A recent study by <str<strong>on</strong>g>the</str<strong>on</strong>g> PA DEP (2015b) found elevated radium<br />

c<strong>on</strong>centrati<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> tens to thous<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> picocuries per liter <str<strong>on</strong>g>and</str<strong>on</strong>g> gross alpha <str<strong>on</strong>g>and</str<strong>on</strong>g> gross beta in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

hundreds to thous<str<strong>on</strong>g>and</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> picocuries per liter in effluent samples from some CWTs receiving oil <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

gas wastewater. Radium, gross alpha, <str<strong>on</strong>g>and</str<strong>on</strong>g> gross beta were also detected in effluents from POTWs<br />

receiving oil <str<strong>on</strong>g>and</str<strong>on</strong>g> gas wastewater (mainly as effluent from CWTs), though at lower c<strong>on</strong>centrati<strong>on</strong>s<br />

than from <str<strong>on</strong>g>the</str<strong>on</strong>g> CWTs. Research in Pennsylvania also indicates <str<strong>on</strong>g>the</str<strong>on</strong>g> accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> radium in<br />

sediments <str<strong>on</strong>g>and</str<strong>on</strong>g> soils affected by <str<strong>on</strong>g>the</str<strong>on</strong>g> outfalls <str<strong>on</strong>g>of</str<strong>on</strong>g> some treatment plants that have h<str<strong>on</strong>g>and</str<strong>on</strong>g>led oil <str<strong>on</strong>g>and</str<strong>on</strong>g> gas<br />

wastewater, including Marcellus Shale wastewater, <str<strong>on</strong>g>and</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r wastewaters (PA DEP, 2015b;<br />

Warner et al., 2013a). Mobilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> radium from sediments <str<strong>on</strong>g>and</str<strong>on</strong>g> potential impacts <strong>on</strong> downstream<br />

water quality depend up<strong>on</strong> how str<strong>on</strong>gly <str<strong>on</strong>g>the</str<strong>on</strong>g> radium has sorbed to sediments. <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> may also<br />

occur if sediment is resuspended (e.g., following storm events). There is no evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> radi<strong>on</strong>uclide<br />

c<strong>on</strong>taminati<strong>on</strong> in drinking water intakes due to inadequately treated hydraulic fracturing<br />

wastewater.<br />

This document is a draft <str<strong>on</strong>g>for</str<strong>on</strong>g> review purposes <strong>on</strong>ly <str<strong>on</strong>g>and</str<strong>on</strong>g> does not c<strong>on</strong>stitute Agency policy.<br />

June 2015 ES-21 DRAFT—DO NOT CITE OR QUOTE


<str<strong>on</strong>g>Hydraulic</str<strong>on</strong>g> <str<strong>on</strong>g>Fracturing</str<strong>on</strong>g> <strong>Drinking</strong> <strong>Water</strong> <str<strong>on</strong>g>Assessment</str<strong>on</strong>g><br />

Executive Summary<br />

1<br />

2<br />

3<br />

4<br />

5<br />

<str<strong>on</strong>g>Hydraulic</str<strong>on</strong>g> fracturing wastewaters c<strong>on</strong>tain o<str<strong>on</strong>g>the</str<strong>on</strong>g>r c<strong>on</strong>stituents such as barium, bor<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> heavy<br />

metals. Barium in particular has been documented in some shale gas produced waters. Little data<br />

exist <strong>on</strong> metal <str<strong>on</strong>g>and</str<strong>on</strong>g> organic compound c<strong>on</strong>centrati<strong>on</strong>s in untreated <str<strong>on</strong>g>and</str<strong>on</strong>g> treated wastewaters in<br />

order to evaluate whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r treatment is effective, <str<strong>on</strong>g>and</str<strong>on</strong>g> whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g>re are potential downstream<br />

effects <strong>on</strong> drinking water resources when wastewater is treated <str<strong>on</strong>g>and</str<strong>on</strong>g> discharged.<br />

Key Data Limitati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> Uncertainties<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

This assessment used available data <str<strong>on</strong>g>and</str<strong>on</strong>g> literature to examine <str<strong>on</strong>g>the</str<strong>on</strong>g> potential impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> hydraulic<br />

fracturing from oil <str<strong>on</strong>g>and</str<strong>on</strong>g> gas <strong>on</strong> drinking water resources nati<strong>on</strong>ally. As part <str<strong>on</strong>g>of</str<strong>on</strong>g> this ef<str<strong>on</strong>g>for</str<strong>on</strong>g>t, we<br />

identified data limitati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> uncertainties associated with current in<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> <strong>on</strong> hydraulic<br />

fracturing <str<strong>on</strong>g>and</str<strong>on</strong>g> its potential to affect drinking water resources. In particular, data limitati<strong>on</strong>s<br />

preclude a determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> impacts with any certainty. These limitati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

uncertainties are discussed in brief below.<br />

Limitati<strong>on</strong>s in M<strong>on</strong>itoring Data <str<strong>on</strong>g>and</str<strong>on</strong>g> Chemical In<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong><br />

While many activities c<strong>on</strong>ducted as part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> hydraulic fracturing water cycle take place above<br />

ground, hydraulic fracturing itself occurs below ground <str<strong>on</strong>g>and</str<strong>on</strong>g> is not directly observable. Additi<strong>on</strong>ally,<br />

potential mechanisms identified in this assessment may result in impacts to drinking water<br />

resources that are below ground (e.g., spilled fluids leaching into ground water). Data that could be<br />

used to characterize <str<strong>on</strong>g>the</str<strong>on</strong>g> presence, migrati<strong>on</strong>, or trans<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chemicals in <str<strong>on</strong>g>the</str<strong>on</strong>g> subsurface<br />

be<str<strong>on</strong>g>for</str<strong>on</strong>g>e, during, <str<strong>on</strong>g>and</str<strong>on</strong>g> after hydraulic fracturing were found to be scarce relative to <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

hydraulically fractured oil <str<strong>on</strong>g>and</str<strong>on</strong>g> gas producti<strong>on</strong> wells. Specifically, local water quality data needed to<br />

compare pre- <str<strong>on</strong>g>and</str<strong>on</strong>g> post-hydraulic fracturing c<strong>on</strong>diti<strong>on</strong>s are not c<strong>on</strong>sistently collected or readily<br />

available. The limited amount <str<strong>on</strong>g>of</str<strong>on</strong>g> data collected be<str<strong>on</strong>g>for</str<strong>on</strong>g>e <str<strong>on</strong>g>and</str<strong>on</strong>g> during hydraulic fracturing activities<br />

reduces <str<strong>on</strong>g>the</str<strong>on</strong>g> ability to determine whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r hydraulic fracturing affected drinking water resources in<br />

cases <str<strong>on</strong>g>of</str<strong>on</strong>g> alleged c<strong>on</strong>taminati<strong>on</strong>.<br />

In<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> (identity, frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> use, physicochemical <str<strong>on</strong>g>and</str<strong>on</strong>g> toxicological properties, etc.) <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

chemicals associated with <str<strong>on</strong>g>the</str<strong>on</strong>g> hydraulic fracturing water cycle is not complete <str<strong>on</strong>g>and</str<strong>on</strong>g> limits<br />

underst<str<strong>on</strong>g>and</str<strong>on</strong>g>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> potential impacts <strong>on</strong> drinking water resources. Well operators claimed at least<br />

<strong>on</strong>e chemical as c<strong>on</strong>fidential at more than 70% <str<strong>on</strong>g>of</str<strong>on</strong>g> wells reported to FracFocus <str<strong>on</strong>g>and</str<strong>on</strong>g> analyzed by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

EPA. The identity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se chemicals, <str<strong>on</strong>g>and</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r chemicals in produced water, are needed to<br />

underst<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir properties <str<strong>on</strong>g>and</str<strong>on</strong>g> would also help in<str<strong>on</strong>g>for</str<strong>on</strong>g>m what chemicals to test <str<strong>on</strong>g>for</str<strong>on</strong>g> to establish<br />

baseline c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> to test <str<strong>on</strong>g>for</str<strong>on</strong>g> in <str<strong>on</strong>g>the</str<strong>on</strong>g> event <str<strong>on</strong>g>of</str<strong>on</strong>g> a suspected drinking water impact. Of <str<strong>on</strong>g>the</str<strong>on</strong>g> 1,173<br />

total chemicals identified by <str<strong>on</strong>g>the</str<strong>on</strong>g> EPA in hydraulic fracturing fluid <str<strong>on</strong>g>and</str<strong>on</strong>g> flowback <str<strong>on</strong>g>and</str<strong>on</strong>g> produced<br />

water, 147 have chr<strong>on</strong>ic oral reference values <str<strong>on</strong>g>and</str<strong>on</strong>g>/or oral slope factors from <str<strong>on</strong>g>the</str<strong>on</strong>g> sources that met<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> selecti<strong>on</strong> criteria <str<strong>on</strong>g>for</str<strong>on</strong>g> inclusi<strong>on</strong> in this assessment. Because <str<strong>on</strong>g>the</str<strong>on</strong>g> majority <str<strong>on</strong>g>of</str<strong>on</strong>g> chemicals identified<br />

in this report do not have chr<strong>on</strong>ic oral reference values <str<strong>on</strong>g>and</str<strong>on</strong>g>/or oral slope factors, risk assessors at<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> local <str<strong>on</strong>g>and</str<strong>on</strong>g> regi<strong>on</strong>al level may need to use alternative sources <str<strong>on</strong>g>of</str<strong>on</strong>g> toxicity in<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> that could<br />

introduce greater uncertainties.<br />

This document is a draft <str<strong>on</strong>g>for</str<strong>on</strong>g> review purposes <strong>on</strong>ly <str<strong>on</strong>g>and</str<strong>on</strong>g> does not c<strong>on</strong>stitute Agency policy.<br />

June 2015 ES-22 DRAFT—DO NOT CITE OR QUOTE


<str<strong>on</strong>g>Hydraulic</str<strong>on</strong>g> <str<strong>on</strong>g>Fracturing</str<strong>on</strong>g> <strong>Drinking</strong> <strong>Water</strong> <str<strong>on</strong>g>Assessment</str<strong>on</strong>g><br />

Executive Summary<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

O<str<strong>on</strong>g>the</str<strong>on</strong>g>r C<strong>on</strong>tributing Limitati<strong>on</strong>s<br />

We found o<str<strong>on</strong>g>the</str<strong>on</strong>g>r limitati<strong>on</strong>s that hamper <str<strong>on</strong>g>the</str<strong>on</strong>g> ability to fully assess <str<strong>on</strong>g>the</str<strong>on</strong>g> potential impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> hydraulic<br />

fracturing <strong>on</strong> drinking water resources nati<strong>on</strong>ally. These include <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>and</str<strong>on</strong>g> locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

hydraulically fractured wells, <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> drinking water resources, <str<strong>on</strong>g>and</str<strong>on</strong>g> in<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> <strong>on</strong> changes<br />

in industry practices. The lack <str<strong>on</strong>g>of</str<strong>on</strong>g> a definitive well count particularly c<strong>on</strong>tributes to uncertainties<br />

regarding total water use or total wastewater volume estimates, <str<strong>on</strong>g>and</str<strong>on</strong>g> would limit any kind <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cumulative impact assessment. Lack <str<strong>on</strong>g>of</str<strong>on</strong>g> specific in<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> about private drinking water well<br />

locati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> depths <str<strong>on</strong>g>of</str<strong>on</strong>g> drinking water resources in relati<strong>on</strong> to hydraulically fractured rock<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> well c<strong>on</strong>structi<strong>on</strong> features (e.g., casing <str<strong>on</strong>g>and</str<strong>on</strong>g> cement) limits <str<strong>on</strong>g>the</str<strong>on</strong>g> ability to assess<br />

whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r subsurface drinking water resources are isolated from hydraulically fractured oil <str<strong>on</strong>g>and</str<strong>on</strong>g> gas<br />

producti<strong>on</strong> wells. Finally, this assessment is a snapshot in time, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> industry is rapidly changing<br />

(e.g., <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> wells fractured, <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> activities, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chemicals used). It is unclear<br />

how changes in industry practices could affect potential drinking water impacts in <str<strong>on</strong>g>the</str<strong>on</strong>g> future.<br />

C<strong>on</strong>siderati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> future development scenarios was not a part <str<strong>on</strong>g>of</str<strong>on</strong>g> this assessment, but such an<br />

evaluati<strong>on</strong> could help establish potential short- <str<strong>on</strong>g>and</str<strong>on</strong>g> l<strong>on</strong>g-term impacts to drinking water resources<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> how to assess <str<strong>on</strong>g>the</str<strong>on</strong>g>m.<br />

C<strong>on</strong>clusi<strong>on</strong>s<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

Through this nati<strong>on</strong>al-level assessment, we have identified potential mechanisms by which<br />

hydraulic fracturing could affect drinking water resources. Above ground mechanisms can affect<br />

surface <str<strong>on</strong>g>and</str<strong>on</strong>g> ground water resources <str<strong>on</strong>g>and</str<strong>on</strong>g> include water withdrawals at times or in locati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> low<br />

water availability, spills <str<strong>on</strong>g>of</str<strong>on</strong>g> hydraulic fracturing fluid <str<strong>on</strong>g>and</str<strong>on</strong>g> chemicals or produced water, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

inadequate treatment <str<strong>on</strong>g>and</str<strong>on</strong>g> discharge <str<strong>on</strong>g>of</str<strong>on</strong>g> hydraulic fracturing wastewater. Below ground mechanisms<br />

include movement <str<strong>on</strong>g>of</str<strong>on</strong>g> liquids <str<strong>on</strong>g>and</str<strong>on</strong>g> gases via <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> well into underground drinking water<br />

resources <str<strong>on</strong>g>and</str<strong>on</strong>g> movement <str<strong>on</strong>g>of</str<strong>on</strong>g> liquids <str<strong>on</strong>g>and</str<strong>on</strong>g> gases from <str<strong>on</strong>g>the</str<strong>on</strong>g> fracture z<strong>on</strong>e to <str<strong>on</strong>g>the</str<strong>on</strong>g>se resources via<br />

pathways in subsurface rock <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s.<br />

We did not find evidence that <str<strong>on</strong>g>the</str<strong>on</strong>g>se mechanisms have led to widespread, systemic impacts <strong>on</strong><br />

drinking water resources in <str<strong>on</strong>g>the</str<strong>on</strong>g> United States. Of <str<strong>on</strong>g>the</str<strong>on</strong>g> potential mechanisms identified in this report,<br />

we found specific instances where <strong>on</strong>e or more <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se mechanisms led to impacts <strong>on</strong> drinking<br />

water resources, including c<strong>on</strong>taminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> drinking water wells. The cases occurred during both<br />

routine activities <str<strong>on</strong>g>and</str<strong>on</strong>g> accidents <str<strong>on</strong>g>and</str<strong>on</strong>g> have resulted in impacts to surface or ground water. Spills <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

hydraulic fracturing fluid <str<strong>on</strong>g>and</str<strong>on</strong>g> produced water in certain cases have reached drinking water<br />

resources, both surface <str<strong>on</strong>g>and</str<strong>on</strong>g> ground water. Discharge <str<strong>on</strong>g>of</str<strong>on</strong>g> treated hydraulic fracturing wastewater has<br />

increased c<strong>on</strong>taminant c<strong>on</strong>centrati<strong>on</strong>s in receiving surface waters. Below ground movement <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fluids, including gas, most likely via <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> well, have c<strong>on</strong>taminated drinking water<br />

resources. In some cases, hydraulic fracturing fluids have also been directly injected into drinking<br />

water resources, as defined in this assessment, to produce oil or gas that co-exists in those<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s.<br />

The number <str<strong>on</strong>g>of</str<strong>on</strong>g> identified cases where drinking water resources were impacted are small relative to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> hydraulically fractured wells. This could reflect a rarity <str<strong>on</strong>g>of</str<strong>on</strong>g> effects <strong>on</strong> drinking water<br />

This document is a draft <str<strong>on</strong>g>for</str<strong>on</strong>g> review purposes <strong>on</strong>ly <str<strong>on</strong>g>and</str<strong>on</strong>g> does not c<strong>on</strong>stitute Agency policy.<br />

June 2015 ES-23 DRAFT—DO NOT CITE OR QUOTE


<str<strong>on</strong>g>Hydraulic</str<strong>on</strong>g> <str<strong>on</strong>g>Fracturing</str<strong>on</strong>g> <strong>Drinking</strong> <strong>Water</strong> <str<strong>on</strong>g>Assessment</str<strong>on</strong>g><br />

Executive Summary<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

resources, or may be an underestimate as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> several factors. There is insufficient pre- <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

post-hydraulic fracturing data <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> drinking water resources. This inhibits a<br />

determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> impacts. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r limiting factors include <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

causes <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>taminati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> short durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> existing studies, <str<strong>on</strong>g>and</str<strong>on</strong>g> inaccessible in<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> related<br />

to hydraulic fracturing activities.<br />

This state-<str<strong>on</strong>g>of</str<strong>on</strong>g>-<str<strong>on</strong>g>the</str<strong>on</strong>g>-science assessment c<strong>on</strong>tributes to <str<strong>on</strong>g>the</str<strong>on</strong>g> underst<str<strong>on</strong>g>and</str<strong>on</strong>g>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> potential impacts <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

hydraulic fracturing <strong>on</strong> drinking water resources <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> factors that may influence those impacts.<br />

The findings in this assessment can be used by federal, state, tribal, <str<strong>on</strong>g>and</str<strong>on</strong>g> local <str<strong>on</strong>g>of</str<strong>on</strong>g>ficials; industry; <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> public to better underst<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> address any vulnerabilities <str<strong>on</strong>g>of</str<strong>on</strong>g> drinking water resources to<br />

hydraulic fracturing activities. This assessment can also be used to help facilitate <str<strong>on</strong>g>and</str<strong>on</strong>g> in<str<strong>on</strong>g>for</str<strong>on</strong>g>m<br />

dialogue am<strong>on</strong>g interested stakeholders, <str<strong>on</strong>g>and</str<strong>on</strong>g> support future ef<str<strong>on</strong>g>for</str<strong>on</strong>g>ts, including: providing c<strong>on</strong>text to<br />

site-specific exposure or risk assessments, local <str<strong>on</strong>g>and</str<strong>on</strong>g> regi<strong>on</strong>al public health assessments, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

assessments <str<strong>on</strong>g>of</str<strong>on</strong>g> cumulative impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> hydraulic fracturing <strong>on</strong> drinking water resources over time<br />

or over defined geographic areas <str<strong>on</strong>g>of</str<strong>on</strong>g> interest. Finally, <str<strong>on</strong>g>and</str<strong>on</strong>g> most importantly, this assessment<br />

advances <str<strong>on</strong>g>the</str<strong>on</strong>g> scientific basis <str<strong>on</strong>g>for</str<strong>on</strong>g> decisi<strong>on</strong>s by federal, state, tribal, <str<strong>on</strong>g>and</str<strong>on</strong>g> local <str<strong>on</strong>g>of</str<strong>on</strong>g>ficials, industry, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> public, <strong>on</strong> how best to protect drinking water resources now <str<strong>on</strong>g>and</str<strong>on</strong>g> in <str<strong>on</strong>g>the</str<strong>on</strong>g> future.<br />

References <str<strong>on</strong>g>for</str<strong>on</strong>g> Executive Summary<br />

Ajani, A; Kelkar, M. (2012). Interference study in shale plays. Paper presented at SPE <str<strong>on</strong>g>Hydraulic</str<strong>on</strong>g> <str<strong>on</strong>g>Fracturing</str<strong>on</strong>g><br />

Technology C<strong>on</strong>ference, February 6-8, 2012, The Woodl<str<strong>on</strong>g>and</str<strong>on</strong>g>s, TX.<br />

Bair, ES; Freeman, DC; Senko, JM. (2010). Subsurface gas invasi<strong>on</strong> Bainbridge Township, Geauga County, Ohio.<br />

(Expert Panel Technical Report). Columbus, OH: Ohio Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Natural <strong>Resources</strong>.<br />

http://oil<str<strong>on</strong>g>and</str<strong>on</strong>g>gas.ohiodnr.gov/resources/investigati<strong>on</strong>s-reports-violati<strong>on</strong>s-re<str<strong>on</strong>g>for</str<strong>on</strong>g>ms#THR<br />

Clark, CE; Veil, JA. (2009). Produced water volumes <str<strong>on</strong>g>and</str<strong>on</strong>g> management practices in <str<strong>on</strong>g>the</str<strong>on</strong>g> United States (pp. 64).<br />

(ANL/EVS/R-09/1). Arg<strong>on</strong>ne, IL: Arg<strong>on</strong>ne Nati<strong>on</strong>al Laboratory.<br />

http://www.circle<str<strong>on</strong>g>of</str<strong>on</strong>g>blue.org/waternews/wpc<strong>on</strong>tent/uploads/2010/09/ANL_EVS__R09_produced_water_volume_report_2437.pdf<br />

COGCC. Colorado <str<strong>on</strong>g>Oil</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Gas</str<strong>on</strong>g> C<strong>on</strong>servati<strong>on</strong> Commissi<strong>on</strong> Order No. 1V-276, (2004).<br />

https://cogcc.state.co.us/orders/orders/1v/276.html<br />

Crescent (Crescent C<strong>on</strong>sulting, LLC). (2011). East Mamm creek project drilling <str<strong>on</strong>g>and</str<strong>on</strong>g> cementing study.<br />

Oklahoma City, OK. http://cogcc.state.co.us/Library/PiceanceBasin/EastMammCreek/ReportFinal.pdf<br />

EIA (Energy In<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> Administrati<strong>on</strong>). (2015a). Glossary. Available <strong>on</strong>line at<br />

http://www.eia.gov/tools/glossary/<br />

IOGCC (Interstate <str<strong>on</strong>g>Oil</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Gas</str<strong>on</strong>g> Compact Commissi<strong>on</strong>). (2008). Protecting our country's resources: The states'<br />

case, orphaned well plugging initiative. Oklahoma City, OK: Interstate <str<strong>on</strong>g>Oil</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Gas</str<strong>on</strong>g> Compact Commissi<strong>on</strong><br />

(IOGCC). http://iogcc.myshopify.com/products/protecting-our-countrys-resources-<str<strong>on</strong>g>the</str<strong>on</strong>g>-states-caseorphaned-well-plugging-initiative-2008<br />

Maupin, MA; Kenny, JF; Huts<strong>on</strong>, SS; Lovelace, JK; Barber, NL; Linsey, KS. (2014). Estimated use <str<strong>on</strong>g>of</str<strong>on</strong>g> water in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

United States in 2010. (USGS Circular 1405). Rest<strong>on</strong>, VA: U.S. Geological Survey.<br />

http://dx.doi.org/10.3133/cir1405<br />

Michie, TW; Koch, CA. (1991). Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> injecti<strong>on</strong>-well risk management in <str<strong>on</strong>g>the</str<strong>on</strong>g> Willist<strong>on</strong> Basin. J Pet Tech<br />

43: 737-741. http://dx.doi.org/10.2118/20693-PA<br />

This document is a draft <str<strong>on</strong>g>for</str<strong>on</strong>g> review purposes <strong>on</strong>ly <str<strong>on</strong>g>and</str<strong>on</strong>g> does not c<strong>on</strong>stitute Agency policy.<br />

June 2015 ES-24 DRAFT—DO NOT CITE OR QUOTE


<str<strong>on</strong>g>Hydraulic</str<strong>on</strong>g> <str<strong>on</strong>g>Fracturing</str<strong>on</strong>g> <strong>Drinking</strong> <strong>Water</strong> <str<strong>on</strong>g>Assessment</str<strong>on</strong>g><br />

Executive Summary<br />

Newell, R. (2011). Shale gas <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> outlook <str<strong>on</strong>g>for</str<strong>on</strong>g> U.S. natural gas markets <str<strong>on</strong>g>and</str<strong>on</strong>g> global gas resources.<br />

Presentati<strong>on</strong> presented at US EIA presentati<strong>on</strong> at OECD Meetings, June 21, 2011, Paris, France.<br />

ODNR, DMRM, (Ohio Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Natural <strong>Resources</strong>, Divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Mineral <strong>Resources</strong> Management). (2008).<br />

Report <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> natural gas invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aquifers in Bainbridge Township <str<strong>on</strong>g>of</str<strong>on</strong>g> Geauga<br />

County, Ohio. Columbus, OH: ODNR.<br />

http://oil<str<strong>on</strong>g>and</str<strong>on</strong>g>gas.ohiodnr.gov/portals/oilgas/pdf/bainbridge/report.pdf<br />

PA DEP (Pennsylvania Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Protecti<strong>on</strong>). (2015b). Technologically enhanced<br />

naturally occurring radioactive materials (TENORM) study report. Harrisburg, PA.<br />

http://www.elibrary.dep.state.pa.us/dsweb/Get/Document-105822/PA-DEP-TENORM-<br />

Study_Report_Rev._0_01-15-2015.pdf<br />

Papoulias, DM; Velasco, AL. (2013). Histopathological analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> fish from Acorn Fork Creek, Kentucky,<br />

exposed to hydraulic fracturing fluid releases. Sou<str<strong>on</strong>g>the</str<strong>on</strong>g>astern Naturalist 12: 92-111.<br />

Scanl<strong>on</strong>, BR; Reedy, RC; Nicot, JP. (2014). Will water scarcity in semiarid regi<strong>on</strong>s limit hydraulic fracturing <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

shale plays? Envir<strong>on</strong>mental Research Letters 9. http://dx.doi.org/10.1088/1748-9326/9/12/124011<br />

Science Based Soluti<strong>on</strong>s LLC. (2014). Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrogeology investigati<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> Mamm Creek field area,<br />

Garfield County. Laramie, Wyoming. http://www.garfield-county.com/oil-gas/documents/Summary-<br />

Hydrogeologic-Studies-Mamm%20Creek-Area-Feb-10-2014.pdf<br />

U.S. EPA (U.S. Envir<strong>on</strong>mental Protecti<strong>on</strong> Agency). (2015j). Retrospective case study in Killdeer, North Dakota:<br />

study <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> potential impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> hydraulic fracturing <strong>on</strong> drinking water resources [EPA Report]. (EPA<br />

600/R-14/103). Washingt<strong>on</strong>, D.C.<br />

USGS (U.S. Geological Survey). (2002). Natural gas producti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> United States [Fact Sheet]. (USGS Fact<br />

Sheet FS-113-01). Denver, CO.<br />

Vengosh, A; Jacks<strong>on</strong>, RB; Warner, N; Darrah, TH; K<strong>on</strong>dash, A. (2014). A critical review <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> risks to water<br />

resources from unc<strong>on</strong>venti<strong>on</strong>al shale gas development <str<strong>on</strong>g>and</str<strong>on</strong>g> hydraulic fracturing in <str<strong>on</strong>g>the</str<strong>on</strong>g> United States.<br />

Envir<strong>on</strong> Sci Technol 48: 36-52. http://dx.doi.org/10.1021/es405118y<br />

Warner, NR; Christie, CA; Jacks<strong>on</strong>, RB; Vengosh, A. (2013a). <str<strong>on</strong>g>Impacts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> shale gas wastewater disposal <strong>on</strong><br />

water quality in western Pennsylvania. Envir<strong>on</strong> Sci Technol 47: 11849-11857.<br />

http://dx.doi.org/10.1021/es402165b<br />

This document is a draft <str<strong>on</strong>g>for</str<strong>on</strong>g> review purposes <strong>on</strong>ly <str<strong>on</strong>g>and</str<strong>on</strong>g> does not c<strong>on</strong>stitute Agency policy.<br />

June 2015 ES-25 DRAFT—DO NOT CITE OR QUOTE


Office <str<strong>on</strong>g>of</str<strong>on</strong>g> Research <str<strong>on</strong>g>and</str<strong>on</strong>g> Development<br />

Washingt<strong>on</strong>, DC 20460<br />

Offi cial Business<br />

Penalty <str<strong>on</strong>g>for</str<strong>on</strong>g> Private Use<br />

$300

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!