12.04.2018 Views

Chapter 21. Adina Paytan. Tracing the Sources and Biogeochemical Cycling of Phosphorus in Aquatic Systems Using Isotopes of Oxygen in Phosphate

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

21 <strong>Trac<strong>in</strong>g</strong> <strong>the</strong> <strong>Sources</strong> <strong>and</strong> <strong>Biogeochemical</strong> <strong>Cycl<strong>in</strong>g</strong> <strong>of</strong> <strong>Phosphorus</strong> 425<br />

<strong>and</strong> dissolution <strong>of</strong> various P bear<strong>in</strong>g m<strong>in</strong>erals <strong>and</strong> studies<br />

<strong>of</strong> P adsorption <strong>and</strong> desorption onto/from m<strong>in</strong>eral<br />

surfaces <strong>in</strong>dicate that <strong>the</strong> fractionation associated with<br />

<strong>the</strong>se processes (given equilibration time <strong>of</strong> more than a<br />

few hours) is small – <strong>in</strong> <strong>the</strong> range <strong>of</strong> 1‰ (Jaisi et al.<br />

2009; Liang 2005; Liang <strong>and</strong> Blake 2006b). Typically<br />

<strong>the</strong> heavier isotopes <strong>in</strong> <strong>the</strong>se reactions are associated<br />

with <strong>the</strong> m<strong>in</strong>eral phase while <strong>the</strong> solution reta<strong>in</strong>s phosphate<br />

with lighter isotopes. Precipitation or dissolution<br />

<strong>of</strong> apatite m<strong>in</strong>erals (<strong>in</strong>organically) will be accompanied<br />

by a small oxygen isotope fractionation <strong>in</strong> <strong>the</strong> range <strong>of</strong><br />

þ0.7 ‰ to þ1‰ (Blake et al. 1997). Similarly, adsorption<br />

or precipitation with sesquioxides <strong>and</strong> hydroxides<br />

impr<strong>in</strong>ts a small positive isotope effect (Jaisi et al.<br />

2009). In contrast, enzyme mediated biological activity<br />

could break <strong>the</strong> P-O bond <strong>in</strong> processes that <strong>in</strong>volve<br />

large isotopic fractionation. Intracellular as well as<br />

extracellular enzymes are expressed by various organisms<br />

for <strong>the</strong> uptake <strong>and</strong> utilization <strong>of</strong> P <strong>and</strong> may play a<br />

role <strong>in</strong> determ<strong>in</strong><strong>in</strong>g <strong>the</strong> oxygen isotopic composition <strong>of</strong><br />

phosphate <strong>in</strong> aquatic systems. Different enzymatic processes<br />

<strong>in</strong>duce different isotopic fractionations<br />

(Table <strong>21.</strong>1). The most dom<strong>in</strong>ant enzymatic process<br />

controll<strong>in</strong>g d 18 O p <strong>in</strong> <strong>the</strong> environment is <strong>the</strong> <strong>in</strong>tracellular<br />

activity <strong>of</strong> pyrophosphatase (PPase) (Blake et al. 2005),<br />

which <strong>in</strong>volves equilibrium isotopic exchange. Blake<br />

et al. (2005) found that this enzymatic activity results <strong>in</strong><br />

isotopic equilibrium <strong>of</strong> oxygen <strong>in</strong> phosphate similar to<br />

that described by Long<strong>in</strong>elli <strong>and</strong> Nuti (1973). The<br />

equation for phosphate extracted from microbial cultures<br />

was described by Blake et al. (1997):<br />

Tð CÞ¼155:8 6:4ðd 18 O p d 18 O w Þ (<strong>21.</strong>2)<br />

These equilibrium relations have been observed<br />

<strong>in</strong> tissues <strong>of</strong> a variety <strong>of</strong> organisms, <strong>in</strong>clud<strong>in</strong>g fish,<br />

mammals (Kolodny et al. 1983), bacteria <strong>and</strong> algae<br />

(Blake et al. 1997, 2005; <strong>Paytan</strong>etal.2002). Results<br />

<strong>of</strong> an algae culture experiment <strong>in</strong>dicate that <strong>in</strong>tracellular<br />

oxygen isotope exchange between phosphorus compounds<br />

<strong>and</strong> water with<strong>in</strong> cells is very rapid (<strong>Paytan</strong><br />

et al. 2002). These processes are expected to occur <strong>in</strong><br />

all organisms <strong>and</strong> phosphate released from cells to <strong>the</strong><br />

environment will carry this equilibrium signature <strong>and</strong><br />

impact dissolved phosphate d 18 O p values lead<strong>in</strong>g to<br />

equilibrium values. Extracellular rem<strong>in</strong>eralization <strong>and</strong><br />

hydrolization <strong>of</strong> organic P (P o ) compounds by phosphohydrolase<br />

enzymes such as alkal<strong>in</strong>e phosphatase<br />

(APase) <strong>and</strong> 5 0 -nucleotidase, <strong>in</strong>volves <strong>in</strong>corporation <strong>of</strong><br />

one or more oxygen atoms from <strong>the</strong> ambient water with<br />

an isotope fractionation <strong>of</strong> 30 <strong>and</strong> 10‰,respectively<br />

(Liang <strong>and</strong> Blake 2006b). A summary <strong>of</strong> published<br />

fractionation values to date is given <strong>in</strong> Table <strong>21.</strong>1. The<br />

result<strong>in</strong>g phosphate from such processes will reflect <strong>the</strong><br />

fractionation <strong>and</strong> would typically shift d 18 O p towards<br />

values that are lower than equilibrium. Work by several<br />

groups is currently ongo<strong>in</strong>g to determ<strong>in</strong>e <strong>the</strong> isotope<br />

fractionation associated with additional enzymes, <strong>and</strong><br />

will enable better <strong>in</strong>terpretation <strong>of</strong> field data. Uptake <strong>and</strong><br />

utilization (assimilation) <strong>of</strong> phosphate by aquatic plants,<br />

algae, <strong>and</strong> microorganisms is also associated with isotope<br />

fractionation. The phosphate with lighter isotopes<br />

is preferentially utilized, a process that could enrich <strong>the</strong><br />

residual solution with phosphate that has heavy isotopes<br />

(Blake et al. 2005).<br />

The isotopic composition <strong>of</strong> dissolved phosphate<br />

<strong>and</strong> particularly <strong>the</strong> degree <strong>of</strong> isotope equilibrium or<br />

deviation from equilibrium <strong>of</strong> phosphate <strong>in</strong> various<br />

aquatic systems has been used for decipher<strong>in</strong>g <strong>the</strong><br />

extent <strong>of</strong> biological utilization <strong>and</strong> turnover <strong>of</strong> phosphate<br />

<strong>in</strong> aquatic systems (Colman et al. 2005; Elsbury<br />

et al. 2009; McLaughl<strong>in</strong> et al. 2006b, d, 2011). This<br />

application is based on <strong>the</strong> assumption that extensive<br />

recycl<strong>in</strong>g <strong>and</strong> turnover will lead to isotopic equilibrium<br />

while deviation from equilibrium may reflect<br />

source signatures or o<strong>the</strong>r processes that do not result<br />

<strong>in</strong> isotopic equilibrium such as expression <strong>of</strong> extracellular<br />

enzymes or phosphate uptake (Fig. <strong>21.</strong>5). The<br />

follow<strong>in</strong>g sections will describe <strong>the</strong> methodology<br />

(sample preparation <strong>and</strong> analysis), give examples <strong>of</strong><br />

application <strong>of</strong> this system <strong>in</strong> various sett<strong>in</strong>gs <strong>and</strong><br />

address <strong>the</strong> needs for future progress <strong>in</strong> this field.<br />

<strong>21.</strong>2 Materials <strong>and</strong> Methods<br />

For analysis <strong>of</strong> d 18 O P by isotope ratio mass spectrometry<br />

(IRMS), it is necessary to convert <strong>the</strong> phosphate <strong>in</strong>to a<br />

pure solid phase without isotopic alteration. The purification<br />

steps are <strong>of</strong> great importance, s<strong>in</strong>ce <strong>the</strong> presence<br />

<strong>of</strong> oxygen sources o<strong>the</strong>r than phosphate compromises<br />

<strong>the</strong> results (Weidemann-Bidlack et al. 2008). The f<strong>in</strong>al<br />

compound analyzed should be non-hygroscopic, stable<br />

under laboratory conditions, <strong>and</strong> should decompose to<br />

form carbon monoxide (CO) at temperatures atta<strong>in</strong>able<br />

<strong>in</strong> a lab furnace. Silver phosphate (Ag 3 PO 4 ) has<br />

been proven a convenient phase for this purpose

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!