15.12.2012 Views

CORROSION INDUCED FAILURES OF PRESTRESSING STEEL ...

CORROSION INDUCED FAILURES OF PRESTRESSING STEEL ...

CORROSION INDUCED FAILURES OF PRESTRESSING STEEL ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Corrosion induced failures of prestressing steel<br />

<strong>CORROSION</strong> <strong>INDUCED</strong> <strong>FAILURES</strong> <strong>OF</strong> <strong>PRESTRESSING</strong> <strong>STEEL</strong><br />

KORROSIONSBEDINGTE VERSAGENSMECHANISMEN BEI<br />

SPANNSTAHL<br />

RUPTURES D'ARMATURE DE PRECONTRAINTE INDUITES PAR<br />

<strong>CORROSION</strong><br />

Ulf Nürnberger<br />

SUMMARY<br />

Rarely in prestressed concrete structures occurring fractures of prestressing<br />

steel in prestressed concrete structure can, as a rule, be attributed to corrosion<br />

induced influences. The mechanism of these failures often is not well understood.<br />

In this connection it is difficult to establish the necessary recommendation<br />

not only for design and execution but also for building materials and prestressing<br />

systems in order to avoid future problems. This paper gives a survey about<br />

corrosion induced failure mechanisms of prestressing steels with a particular<br />

emphasis on post-tensioning tendons.<br />

Depending on the prevailing corrosion situation and the load conditions as<br />

well as the prestressing steel properties the following possibilities of fracture<br />

must be distinguished:<br />

• Brittle fracture due to exceeding the residual load capacity. Brittle fracture is<br />

particularly promoted by local corrosion attack and hydrogen embrittlement.<br />

• Fracture as a result of hydrogen induced stress-corrosion cracking.<br />

• Fracture as a result of fatigue and corrosion influences, distinguishing between<br />

corrosion fatigue cracking and fretting corrosion/fretting fatigue.<br />

ZUSAMMENFASSUNG<br />

Die gelegentlich an den im Spannbetonbau verwendeten Spannstählen auftretenden<br />

Brüche sind im Regelfall auf korrosionsbedingte Einflüsse zurückzuführen.<br />

Die Versagensmechanismen werden häufig nicht ausreichend verstanden.<br />

Deshalb ist es schwierig, die notwendigen Empfehlungen nicht nur für Planung<br />

und Ausführung sondern auch für die Auswahl der Baustoffe und Vorspannsysteme<br />

zu geben, um zukünftige Probleme auszuschließen. Der Beitrag<br />

9<br />

Otto-Graf-Journal Vol. 13, 2002


U. NÜRNBERGER<br />

stellt in einem Überblick die korrosionsbedingten Versagensmechanismen von<br />

Spannstählen, mit Schwerpunkt der Probleme bei nachträglich vorgespannten<br />

Zuggliedern, dar.<br />

In Abhängigkeit sowohl von der vorherrschenden Korrosionssituation und<br />

den Belastungsverhältnissen als auch den Spannstahleigenschaften müssen die<br />

folgenden Brucharten unterschieden werden:<br />

• Sprödbruch durch Überschreiten der Resttragfähigkeit. Das Auftreten eines<br />

Sprödbruches wird unterstützt durch einen lokalen Korrosionsangriff und eine<br />

Wasserstoffversprödung.<br />

• Bruch infolge wasserstoffinduzierter Spannungsrisskorrosion.<br />

• Brüche als Folge von Ermüdung und Korrosionseinflüssen. Hierbei ist zu<br />

unterscheiden zwischen Schwingungsrisskorrosion und Reibkorrosion/Reibermüdung.<br />

RESUME<br />

Les ruptures occasionnelles des armatures de précontrainte peuvent en général<br />

être attribués à l'influence de la corrosion. Le mécanisme de ces ruptures<br />

n'est souvent pas bien compris. Il est par conséquent difficile d'émettre des recommandations,<br />

non seulement pour la conception et l'exécution, mais également<br />

pour le choix des matériaux et des systèmes de précontrainte. Cet article<br />

donne un aperçu sur les mécanismes de ruptures induites par corrosion des<br />

armatures de précontrainte, en particulier sur les armatures précontraintes par<br />

post-tension.<br />

En fonction des conditions corrosives de l'environnement, des conditions<br />

de chargement et des propriétés de l'armature précontrainte, on distingue les types<br />

de rupture suivants:<br />

• rupture fragile due au dépassement de la capacité résiduelle de charge. La<br />

rupture fragile est favorisée par la corrosion locale et la fragilisation par hydrogène.<br />

• rupture par corrosion sous contrainte induite par l'hydrogène.<br />

• rupture en raison des influences combinées de fatigue et corrosion. On distingue<br />

la fatigue sous corrosion et la corrosion par friction/fatigue par friction.<br />

KEYWORDS: prestressed concrete, corrosion, failures, steel<br />

10


1. INTRODUCTION<br />

Corrosion induced failures of prestressing steel<br />

Most of the prestressed concrete structures built in the last 50 years in accordance<br />

with the rules for good design, detailing and practice of execution have<br />

demonstrated an excellent durability [1]. Analyses of occasional problems confirm<br />

that instances of serious failures are rare considering the volume of<br />

prestressing steels that has been in use worldwide.<br />

Major issues which strongly influence the level of durability actually<br />

achieved are insufficient design (poor construction), incorrect execution of<br />

planned design (poor workmanship), unsuitable mineral building materials, unsuitable<br />

post-tensioning system components, including the prestressing steel [1-<br />

3]. Insufficient design and incorrect work execution will mean that the necessary<br />

corrosion control is not guaranteed from the beginning in all areas or that as a<br />

result of natural influences (i. e. carbonation, chloride ingress) it will get lost<br />

soon within the time frame of the originally anticipated life time. Unsuitable materials<br />

or inappropriate substances in materials will further corrosion and/or<br />

stress corrosion cracking. Sensitive prestressing steels cannot withstand even<br />

inevitable building-site influences or will fail while in use.<br />

Most corrosion defects are caused by water which seeps through zones of<br />

porous concrete and vulnerable areas such as leaking seals, joints, anchorages or<br />

cracks, and which flows through the network of ducts which have been grouted<br />

to a greater or lesser extent. The major threat is corrosion due to chlorides. The<br />

source of chlorides can be either de-icing salts or seawater.<br />

Rarely occurring fractures of prestressing steel and failures of prestressed<br />

concrete structure can, as a rule, be attributed to corrosion induced cracking. The<br />

mechanism of these failures often is not well understood. In this connection it is<br />

difficult to establish the necessary recommendation not only for design and execution<br />

but also for building materials and prestressing systems in order to avoid<br />

future problems.<br />

This paper gives a survey about corrosion induced failure mechanisms of<br />

prestressing steels with a particular emphasis on post-tensioning tendons.<br />

11<br />

Otto-Graf-Journal Vol. 13, 2002


U. NÜRNBERGER<br />

2. FRACTURE MECHANISMS <strong>OF</strong> <strong>PRESTRESSING</strong> <strong>STEEL</strong><br />

The types of corrosion occurring at times as well as their specific manifestation<br />

must be regarded as an essential influencing factor on the behaviour of the<br />

prestressing steels under unforeseen or inappropriate service conditions. The<br />

exclusive determination that corrosion was involved is not enough for a critical<br />

case study and for future damage prevention.<br />

Depending on the prevailing corrosion situation and the load conditions as<br />

well as the prestressing steel properties the following possibilities of fracturing<br />

must be distinguished:<br />

• Brittle fracture due to exceeding the residual load capacity. Brittle fracture is<br />

particularly promoted by:<br />

− local corrosion attack (pitting and wide pitting corrosion),<br />

− hydrogen embrittlement.<br />

• Fracture as a result of stress corrosion cracking, where we distinguish between<br />

− anodic stress corrosion cracking and<br />

− hydrogen induced stress-corrosion cracking.<br />

• Fracture as a result of fatigue and corrosion influences, distinguishing between<br />

− corrosion fatigue cracking and<br />

− fretting corrosion/fretting fatigue.<br />

In the following such events will be described in more detail, also with regard<br />

to prestressed concrete construction.<br />

2.1 Brittle fracture<br />

Brittle fracture may occur in high-strength steels after swift tensile stress.<br />

This is the case in prestressing steels when there is a fracture under loads until<br />

reaching the permissible pre-strain as a result of these influences:<br />

− stress concentration in local notches (e. g. wide corrosion pit),<br />

− high stressing speed and low temperature,<br />

− an embrittlement of the steel structure after hydrogen adsorption<br />

(hydrogen embrittlement).<br />

12


Influence of corrosion<br />

Corrosion induced failures of prestressing steel<br />

Mainly uniform general corrosion (e. g. after a prolonged weathering on a<br />

building site) does not have any major impact on the load bearing capacity. Not<br />

until, due to corrosion, an underrun of the required residual cross section has<br />

taken place than a prestressing steel fracture may occur after exceeding the residual<br />

load bearing capacity. Such events may happen once prestressing steels in<br />

ungrouted tendon ducts are exposed over a long period of time to water and<br />

oxygen via untight anchorages or construction joints.<br />

If, however, the prestressing steel incurs a local corrosion attack in the<br />

form of pitting or wide pitting corrosion, the load bearing capacity may get lost<br />

at an early stages due to brittle fracture. The following effects are capable of<br />

triggering such attacks in prestressing steel:<br />

The presence of aggressive water in the not yet injected ducts of post tensioning<br />

tendons which result from bleeding of the concrete during the erection<br />

of the construction. Already in the not grouted and not prestressed condition the<br />

steel may suffer from strong pitting or wide pitting corrosion and the load bearing<br />

capacity can be reduced considerably.<br />

Bleeding is a separation of fresh concrete, where the solid content sinks<br />

down and the displaced water rises or penetrates in the inner hollows. In the<br />

bleeding water significantly high contents of sulphates and increased quantities<br />

of chlorides may be accumulated (Table 1) by leaching of the construction materials<br />

cement, aggregates and water. The high amounts of potassium-sulphates<br />

result from the gypsum in the cement. The watery phase of fresh concrete penetrates<br />

into the ducts through the anchorages, couplings and defects in the sheet<br />

and accumulates at the deepest points. Because of an access of air the alkaline<br />

water carbonates quickly. As early as in the non-grouted and non-prestressed<br />

condition the steel can suffer from strong pitting. Bleeding water attack may<br />

within a few weeks lead to pitting depths of up to 1 mm.<br />

Table 1: Analysis of bleeding water<br />

sulphate 1.90 - 5.20 g/l<br />

chloride 0.13 - 0.18 g/l<br />

calcium 0.06 - 0.09 g/l<br />

sodium 0.18 - 0.37 g/l<br />

potassium 3.60 - 7.30 g/l<br />

pH-value 10 - 13<br />

13<br />

Otto-Graf-Journal Vol. 13, 2002


U. NÜRNBERGER<br />

The access of chloride containing waters, e.g. above untight anchorages or<br />

joints, in a non-grouted tendon duct may lead to damaging local corrosion attack<br />

in prestressing steel during the life time and after years of use. Comparable attacks<br />

must be expected once chloride salts penetrate to the tendon through a<br />

concrete cover of inferior thickness and impermeability.<br />

The performance characteristics of corroded prestressing steels can be determined<br />

in tensile, fatigue and stress corrosion tests (Fig. 1). Such tests to establish<br />

the residual load bearing capacity will, for instance, be carried out while inspecting<br />

older buildings, after damaged prestressing steel samples had been<br />

drawn. This might help to gain the knowledge for necessary repair.<br />

High strength prestressing steels show a far more sensitive reaction to corrosion<br />

attack than reinforcing steels, and this increasingly in the sequence tensile<br />

test - fatigue test – stress corrosion test [4]. In case of uneven local corrosion a<br />

corrosion depth of 0.6 mm may suffice for breaking a cold deformed wire under<br />

tension of 70 % of the specified tendon strength of about 1800 N/mm 2 (Fig. 1,<br />

tensile test).<br />

At pitting depth of above 0.2 mm cold drawn wires may show fatigue limits<br />

(fatigue limits for stress cycles of N = 2 · 10 6 ) of 100 N/mm 2 and less (Fig. 1,<br />

fatigue test). Like-new smooth surfaced steels normally show a fatigue limit of<br />

more than 400 N/mm 2 .<br />

In all the performance characteristics of prestressing steels local corrosion<br />

attack has the most detrimental effect on the behaviour to hydrogen induced corrosion<br />

cracking. In a test developed by FIP the prestressing steel is immersed<br />

under tension into an ammonium thiocyanate solution. A minimum and average<br />

time of exposure before failure is specified. For cold drawn wire and strand<br />

these values are in the order of 1.5, respectively 5 hours. In this example these<br />

life times are underrun at corrosion depths of > 0.2 mm (Fig. 1, stress corrosion<br />

test).<br />

14


tensile strength R m in N/mm²<br />

2000<br />

1600<br />

1200<br />

800<br />

400<br />

lifetime in h<br />

tensile test<br />

0<br />

0<br />

0,0 0,2 0,4 0,6 0,8 1,0<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

A 10<br />

R m<br />

depth of uneven local corrosion<br />

in mm<br />

stress corrosion test<br />

FIP - test:<br />

20% NH 4SCN<br />

50° C<br />

0,0 0,2 0,4 0,6 0,8 1,0<br />

depth of uneven local corrosion<br />

in mm<br />

10<br />

8<br />

6<br />

4<br />

2<br />

elongation at fracture A 10 in %<br />

fatigue loading in N/mm²<br />

for N=2*10 6<br />

Effect of hydrogen (hydrogen embrittlement)<br />

Corrosion induced failures of prestressing steel<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

fatigue test<br />

0,0 0,2 0,4 0,6 0,8 1,0<br />

depth of uneven local corrosion<br />

in mm<br />

Fig. 1: Properties of cold-deformed<br />

prestressing steel wires St 1570/1770,<br />

dS = 5 mm, in relation to depth of uneven<br />

local corrosion [Nürnberger]<br />

(scattering of 90% of the test results)<br />

In a specific corrosion situation prestressing steel corrosion may release<br />

hydrogen which is then absorbed by the prestressing steel, which, if prestressed<br />

at the same time, will allow hydrogen induced stress corrosion cracking with<br />

crack initiation and crack propagation (chapter 2.2). Also if the prestressing steel<br />

is free of any tensile stresses (not prestressed), hydrogen can be absorbed in the<br />

event of corrosion. The steel will not crack, but depending on the quantity of<br />

hydrogen absorbed and the specific hydrogen sensitivity the prestressing steel<br />

may become brittle. This may have an adverse effect on the mechanical characteristics<br />

[5], more so on the deformation properties than on the tensile strength.<br />

15<br />

Otto-Graf-Journal Vol. 13, 2002


U. NÜRNBERGER<br />

reduction in area Z in %<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Z<br />

R m<br />

0<br />

-100<br />

0 10 1 20 2 30 5 40 10 50 20 50 60<br />

time of immersion in testing medium<br />

according FIP (20% NH 4 SCN, 50° C) in h<br />

2000<br />

1825 1900<br />

1650 1800<br />

1475 1700<br />

1300 1600<br />

1125 1500<br />

950<br />

775<br />

600<br />

425<br />

250<br />

Fig. 2 Tensile strength (Rm) and reduction in area (Z) of cold deformed prestressing steel<br />

wires (4 steel melts) after charging with hydrogen [5]<br />

Prestressing steel fractures as a result of corrosion-caused hydrogen embrittlement<br />

may occur, for instance, when prestressing to a high stress level or<br />

shortly after the prestressing, after the steel had been absorbing high quantities<br />

of hydrogen in an enduring unfavourable corrosion situation. If properly and<br />

swiftly processed, such damages, indeed, should not occur.<br />

2.2 Fractures because of stress-corrosion cracking<br />

Stress-corrosion cracking is understood to mean crack formation and crack<br />

propagation in a material under the effect of mechanical tensile stresses and of<br />

an aqueous corrosion medium.<br />

16<br />

75<br />

tensile strength R m in N/mm²


Anodic stress-corrosion cracking<br />

Corrosion induced failures of prestressing steel<br />

In the presence of nitrate-containing non-alkaline electrolytes (pH-value<br />

< 9) unalloyed and low-alloy steels may suffer an anodic stress-corrosion cracking.<br />

Crack formation and crack propagation are due to a selective metal dissolution<br />

(e. g. along grain boundaries of the steel structure) with a simultaneous effect<br />

of high mechanical tensile stresses [6] on condition that there is special tendency<br />

of the steels to passivate in nitrate-containing aqueous solutions.<br />

In the prestressed concrete construction the media-related pre-conditions,<br />

e.g. in the fertilizer storage and in stable ceilings, can be assumed as a fact. In<br />

stables brickwork, salpetre Ca (NO3)2 may be formed by urea. In the presence of<br />

moisture the nitrates may diffuse into the concrete and may cause stresscorrosion<br />

cracking in the case of pretensioned concrete components affecting the<br />

tension wires if the concrete cover is carbonated due to an inferior quality of the<br />

concrete [6].<br />

A specific nitrate sensitivity of the steels is always a pre-condition for an<br />

anodic stress-corrosion cracking. Low-carbon concrete steels are very susceptible<br />

to nitrate induced stress-corrosion cracking. The prestressing steels currently<br />

in use, however, are highly resistant to this type of corrosion.<br />

Hydrogen induced stress corrosion cracking [6,7]<br />

Fractures of prestressing steel as a rule can be referred to hydrogen induced<br />

stress corrosion cracking (H-SCC). It may happen during the erection of the<br />

construction or during later use. The following conditions are necessary:<br />

• a sensitive material or state,<br />

• a sufficient tension load,<br />

• at least a slight corrosion attack.<br />

The risk of fractures due to hydrogen induced stress corrosion cracking<br />

therefore results from the joint action of very prestressing steel properties and<br />

environmental parameters. What is needed is the presence of hydrogen which<br />

comes into being under certain corrosion conditions in neutral and particularly<br />

in acid aqueous media through the cathodic partial reaction of the corrosion.<br />

17<br />

Otto-Graf-Journal Vol. 13, 2002


Corrosion induced failures of prestressing steel<br />

A reduction of oxygen access may support evolution of adsorbable atomic<br />

hydrogen (then reaction 6 is hindered). Therefore at the surface of corroding<br />

steel the amount of adsorbable hydrogen atoms rises<br />

• with increasing hydrogen concentration (reaction 3 or 4 is accelerated),<br />

• in the presence of so-called promotors (reactions 5 is hindered),<br />

• in an electrolyte impoverished in oxygen (reaction 6 is hindered).<br />

From the practical point of view one can say that hydrogen assisted damages<br />

are only possible<br />

• in acid media or if the steel surface is polarized to low potentials (e. g. if<br />

the prestressing steel has contact with zinc or galvanized steel),<br />

• in the presence of promotors such as sulphides, thiocyanate or compounds<br />

of arsenic or selenium,<br />

• and under crevice conditions, because the electrolyte in the crevice is poor<br />

in oxygen.<br />

Fig. 3: Pitting induced stress corrosion cracking<br />

In concrete structures the attacking medium is mostly alkaline and acid<br />

media are limited to exceptions. Nevertheless, in natural environments the pitting<br />

induced H-SCC can take place (Fig. 3). Pitting induced H-SCC means crack<br />

initiation within a corrosion pit. In the corrosion pits the pH-value falls down<br />

because of hydrolysis of the Fe 2+ -ions. Pitting or spots of local corrosion can be<br />

explained by differential aeration or concentration cells. Especially effective is<br />

19<br />

Otto-Graf-Journal Vol. 13, 2002


U. NÜRNBERGER<br />

the attack of condensation water or salt enriched aqueous solution (bleed water,<br />

chapter 2.1), when erecting the constructions.<br />

In prestressed construction chloride contamination supports a local corrosion<br />

attack. In the case of sensitive prestressing steel all but minimal contents of<br />

hydrogen can lead to irreversible damages. Then a minimal local corrosion attack<br />

without visible corrosion products on the steel surface may lead to steel<br />

fracture.<br />

In prestressed concrete structures all types of uneven local corrosion should<br />

be prevented to exclude failures because of hydrogen assisted cracking.<br />

The preconditions for "classical" stress-corrosion cracking are most readily<br />

to be found in prestressed concrete construction, i. e. crack formation and<br />

propagation under purely static stress. By prestressing the stress amplitudes of<br />

the structure caused e. g. by wind and traffic are kept low. Nevertheless, the occurrence<br />

of pulsating loads or service-related strain changes of the steels will<br />

raise the crack corrosion risk since it will favour hydrogen induced "nonclassical"<br />

stress-corrosion cracking [6]. Plastic flow in steel favours an absorption<br />

of atomic hydrogen.<br />

stress amplitude 2 σA in N/mm 2<br />

200<br />

175<br />

150<br />

125<br />

100<br />

75<br />

50<br />

25<br />

0<br />

10 5<br />

air<br />

aqueous solution<br />

2 4 6 8<br />

10 6<br />

agent:<br />

2 4 6 8<br />

number of stress reversal<br />

5 g/<br />

l K 2SO4<br />

with<br />

0,<br />

5 g/<br />

l KCl without<br />

RT<br />

without failure<br />

10 7<br />

1g/l NH 4SCN<br />

2 4 6 8<br />

5 11 22 55 111 222 555 1111 2222 5555<br />

lifetime in hours<br />

Fig. 4: SCC-behaviour of prestressing steel St 1420/1570 (German standard) ∅ 12.2 mm<br />

without and with dynamic stress of low amplitude<br />

20<br />

10 8


Corrosion induced failures of prestressing steel<br />

Fig. 4 [8] compares the behaviour of a quenched and tempered prestressing<br />

steel (from a case of damage) sensitive to hydrogen in a stress-corrosion cracking<br />

test with and without superimposed fatigue loading of low amplitude (30 –<br />

80 N/mm 2 ). The aqueous test solution contains 5 g/l SO4 2- ,0.5 g/l Cl¯ without<br />

and alternatively with 1 g/l SCN¯ as a promotor for a hydrogen absorption. The<br />

stress-corrosion cracking test under static stress was realized at 80 % of the tensile<br />

strength. This stress corresponds to the constant maximum stress in the tensile<br />

fatigues test. Fig 4 represents the stress cycle number as a function of the<br />

amplitude, in the course of which also the life time, calculated over the frequency<br />

(f = 5s -1 ), is applied. The stress corrosion test results without superimposed<br />

fatigue loading are applied at a range of stress of 0 N/mm 2 . The hydrogen<br />

insensitive steel failed in the "static" test within a test period of 5000 hours in<br />

the promotor-containing solution but did not fail in the promotor-free solution. If<br />

a fatigue test of low amplitude is superimposed, the lifetime in the promotorcontaining<br />

solution will more and more decrease with rising amplitude. In the<br />

wave stress it is striking that fractures also occur on steels in the promotor-free<br />

solution.<br />

It was found that in cold deformed prestressing steels the influence of a superimposed<br />

fatigue loading on the hydrogen induced stress-corrosion cracking is<br />

revealing itself weaker. These tests lead to the conclusion that already fatigue<br />

loadings of low amplitude or elongations caused by changes in utilization tend<br />

to significantly jeopardize the susceptibility of prestressing steels to stresscorrosion<br />

cracking.<br />

2.3 Fractures because of fatigue and corrosion<br />

Prestressing steels can only be subject to a noticeable steel stress in dynamically<br />

strained reinforced concrete structures if there is concrete in a cracked<br />

state. The stress amplitudes of prestressing steel due to acting high dynamic<br />

loads ( e. g. a high traffic load of a bridge) may then amount to > 200 N/mm 2 in<br />

the crack region. In the uncracked state the steels will show ranges of stress of<br />

clearly less than 100 N/mm 2 .<br />

Cracks in concrete may occur in partially prestressed structures. Since such<br />

cracks tend to open and to close in a superimposed fatigue stress the following<br />

facts must be considered:<br />

21<br />

Otto-Graf-Journal Vol. 13, 2002


U. NÜRNBERGER<br />

Corrosion fatigue cracking<br />

If corrosion promoting aqueous media penetrate through the concrete crack<br />

to the dynamically stressed tendon, corrosion fatigue cracking is possible although<br />

this type of corrosion has not been observed in prestressing steel construction<br />

so far. Corrosion fatigue cracking [6] manifests itself in that a metallic<br />

material under dynamic stress in a reactive corrosion medium (water, salt solution)<br />

will show a much more unfavourable fatigue behaviour than under fatigue<br />

loading in air. This can be explained by characteristic interactions of metal<br />

physical and corrosive processes which favour initial precrack formation and<br />

propagation. As opposed to the stress-corrosion cracking the corrosion fatigue<br />

cracking does not require a specifically acting corrosion medium.<br />

In case of post-tensioning tendons the duct made of thin steel sheets does<br />

not offer a lasting corrosion protection and may even suffer fatigue fractures under<br />

dynamic stress [9].<br />

A decrease of the fatigue limit by corrosion is the more distinct the higher<br />

the strength of the steel and the more aggressive an attacking medium are.<br />

Hence the high strength prestressing steels, when e. g. simultaneously attacked<br />

by an aqueous chloride-containing medium, may show a very unfavourable fatigue<br />

behaviour.<br />

In traffic carrying bridge structures only the low-frequent stresses lead to<br />

high stress amplitudes. This results in additional unfavourable conditions with<br />

regard to corrosion fatigue cracking: with a falling frequency the influence corrosion<br />

will increase and the fatigue limit will consequently drop.<br />

For a cold drawn prestressing steel wire Fig. 5 shows a decrease of the corrosion<br />

fatigue limit in the sequence air-water-chloride solution. For frequencies<br />

of 0.5s -1 the fatigue limit for stress cycles of 10 7 is below 100 N/mm 2 .<br />

The problem of corrosion fatigue cracking of cracked components can be<br />

remedied by sufficient concrete cover and limiting the crack width. This is the<br />

way of keeping pollutants away from the prestressing steel surface.<br />

Fretting corrosion / fretting fatigue<br />

In the vicinity of concrete cracks due to fatigue loading displacements between<br />

the tendon and the injection mortar or the steel duct respectively will occur<br />

in a cracked component. In bended tendons a high radial pressure acts at the<br />

22


Corrosion induced failures of prestressing steel<br />

same time on the fretting prestressing steel surface. If air or oxygen advance to<br />

the fretting location through the concrete crack a fretting corrosion is favoured<br />

[6,10]. Fretting corrosion is described as damaging a metal surface similar to<br />

wear as a result of oscillating friction under radial pressure with a partner. In the<br />

presence of oxygen oxidation of the reactive surface will take place.<br />

In fatigue loaded steels and under fretting corrosion stress at the same time<br />

the fatigue behaviour is under a very unfavourable influence due to fretting fatigue<br />

[10]. This is attributable to structural disintegration and the occurrence of<br />

additional tensile strengths in the fretting area. In concrete embedded tendons,<br />

subjected to a relative movement and a radial pressure in the concrete crack between<br />

prestressing steel and duct or injection mortar respectively, tolerable fatigue<br />

limits of about 150 N/mm 2 for cycles to fracture of 2 x 10 6 were found<br />

[9,11].<br />

In prestressed concrete constructions also the anchorages of the tendons,<br />

due to fretting corrosion influences, show a fatigue limit which is reduced compared<br />

with the free length [12]. Under dynamic stress of the anchored tendon the<br />

fatigue limit, depending on the type of anchorage, is reduced to values between<br />

80 and 150 N/mm 2 . For this reason, anchorages will always be positioned in areas<br />

of least stress changes. In the fatigue experiment the prestressing steels always<br />

fracture in the force transmitting area, i. e. at the beginning of the anchorage.<br />

Here, the fatigue limit is reduced due to the presence of shifting between<br />

the prestressing steel and the anchor body and the high radial pressures at the<br />

same time.<br />

In prestressed concrete bridges, however, particularly the coupling joints<br />

proved to be problematic. If such joints crack as a result of imposed stresses<br />

(e.g. due to non uniform sun heating and low amount of reinforcement which<br />

crosses the coupling joint) the tendon couplings will suffer major stress fatigue<br />

cycles from the traffic load which also led to prestressing steel fractures owing<br />

to the stress-sensitive couplings [2,11].<br />

23<br />

Otto-Graf-Journal Vol. 13, 2002


U. NÜRNBERGER<br />

Fig. 5: Fatigue behaviour under pulsating tensile stresses of cold drawn prestressing steel<br />

wires (Rm ≈ 1750 N/mm 2 ) in air and corrosion- promoting aqueous solutions (Nürnberger)<br />

3. CONCLUSION<br />

Depending on the prevailing corrosion situation and the load conditions as<br />

well as the prestressing steel properties the following possibilities of fracturing<br />

must be distinguished:<br />

• Brittle fracture due to exceeding the residual load capacity. Brittle fracture<br />

is particularly promoted by local corrosion attack and hydrogen embrittlement.<br />

• Fracture as a result of hydrogen induced stress-corrosion cracking.<br />

• Fracture as a result of fatigue and corrosion influences, distinguishing between<br />

corrosion fatigue cracking and fretting corrosion/fretting fatigue.<br />

REFERENCES<br />

[1] Durability of post-tensioning tendons. Proceedings of workshop held in<br />

Gent University on 15 - 16 November 2001. fib technical report, bulletin<br />

15<br />

[2] Nürnberger, U.: Analyse und Auswertung von Schadensfällen bei Spannstählen.<br />

Forschung, Straßenbau und Straßenverkehrstechnik 308 (1980) 1 –<br />

195<br />

24


Corrosion induced failures of prestressing steel<br />

[3] Nürnberger, U.: Influence of material and processing on stress corrosion<br />

cracking of prestressing steel (case studies). Publ. of fib commission 9.5, to<br />

be published<br />

[4] Neubert B., Nürnberger, U.: Erkennen von Spannverfahrensschädigung –<br />

Untersuchung der statischen und dynamischen Kenngrößen in Abhängigkeit<br />

von Rostgrad. Bericht II.6-13675 der FMPA Baden-Württemberg, Otto-Graf-Institut,<br />

Stuttgart 31.01.1983<br />

[5] Nürnberger, U., Beul, W.: Entwicklung einfacher und reproduzierbarer<br />

Prüfverfahren für die Empfindlichkeit von Spannstählen gegenüber Spannungsrisskorrosion.<br />

Bericht 34-14071 der FMPA Baden-Württemberg, Otto-Graf-Institut,<br />

Stuttgart 01.03.1996<br />

[6] Nürnberger, U.: Korrosion und Korrosionsschutz im Bauwesen. Bauverlag,<br />

Wiesbaden 1995<br />

[7] Grimme, D., Isecke, B., Nürnberger, U., Riecke, E. M., Uhlig, G.: Spannungsrisskorrosion<br />

in Spannbetonbauwerken. Verlag Stahleisen mbH, Düsseldorf<br />

1983<br />

[8] Nürnberger, U., Beul, W.: Wasserstoffinduzierte Spannungsrisskorrosion<br />

von zugschwellbeanspruchten Spannstählen, S. 302 – 309; in "Bewehrte<br />

Betonbauteile unter Betriebsbedingungen". Wiley-VCH Verlag<br />

[9] Cordes, H.: Dauerhaftigkeit von Spanngliedern unter zyklischen Beanspruchungen.<br />

Sachstandsbericht. Schriftenreihe Deutscher Ausschuß für Stahlbeton<br />

370 (1986)<br />

[10] Patzak, M.: Die Bedeutung der Reibkorrosion für nichtruhende Verankerungen<br />

und Verbindungen metallischer Bauteile des konstruktiven Ingenieurbaus.<br />

Dissertation Universität Stuttgart, 1979<br />

[11] König, G., Maurer, R., Zichner, T.: Spannbeton-Bewährung im Brückenbau.<br />

Springer Verlag Berlin-Heidelberg-New York-London-Paris-Tokyo,<br />

1986<br />

[12] Rehm, G., Nürnberger, U., Patzak, M.: Keil- und Klemmverankerungen für<br />

dynamisch beanspruchte Zugglieder aus hochfesten Stählen. Bauingenieur<br />

52 (1977) 287 – 298<br />

25<br />

Otto-Graf-Journal Vol. 13, 2002


U. NÜRNBERGER<br />

26


Load bearing behaviour of fastenings with concrete screws<br />

LOAD BEARING BEHAVIOUR <strong>OF</strong> FASTENINGS WITH CONCRETE<br />

SCREWS<br />

TRAGVERHALTEN VON BEFESTIGUNGEN MIT SCHRAUBDÜBELN<br />

COMPORTEMENT SOUS CHARGE DES ANCRAGES AVEC VIS<br />

D'ANCRAGE<br />

Jürgen H. R. Küenzlen and Rolf Eligehausen<br />

SUMMARY<br />

Concrete screws are a relatively new fastening system. Their main<br />

advantage compared to traditional post-installed fastening systems is a quick and<br />

easy installation. A hole is drilled into the concrete and threads are cut in the<br />

concrete by the screw as it is installed.<br />

Concrete screws transfer tensile loads into the base material by mechanical<br />

interlock of the threads. Due to their load-bearing mechanism, concrete screws<br />

with a technical approval of the DIBt can be used for fastenings in cracked and<br />

non-cracked concrete.<br />

The typical failure mechanism for concrete screws is concrete-cone failure.<br />

With increasing embedment depth the ratio of the depth of the concrete failure<br />

cone to the embedment depth decreases. The failure load of concrete screws<br />

with continuous threads along the entire embedment depth increases<br />

proportionally to hef 1,5 (hef = effective embedment depth), but it is about 20 %<br />

smaller than the failure load of expansion and undercut anchors with the same<br />

embedment depth.<br />

In order for concrete screws to function properly, the threads cut into the<br />

wall of the drilled hole must not be damaged during the installation. This<br />

requirement is achieved by using the embedment depth defined in the Technical<br />

Approvals.<br />

27<br />

Otto-Graf-Journal Vol. 13, 2002


J. H. R. KÜENZLEN, R. ELIGEHAUSEN<br />

ZUSAMMENFASSUNG<br />

Schraubdübel sind ein relativ neues Befestigungssystem. Ihr großer Vorteil<br />

liegt in der einfachen und schnellen Montage. Es wird ein Loch in den Beton<br />

gebohrt, in das der Schraubdübel beim Setzen ein Gewinde schneidet.<br />

Schraubdübel werden in Durchsteckmontage gesetzt.<br />

Schraubdübel übertragen eine angreifende Zuglast über mechanische<br />

Verzahnung der Gewindeflanken, die in die Bohrlochwand einschneiden, in den<br />

Untergrund. Aufgrund ihres Tragmechanismus sind bauaufsichtlich zugelassene<br />

Schraubdübel für Befestigungen im ungerissenen und gerissenen Beton<br />

geeignet.<br />

Das Versagen erfolgt durch Betonausbruch, wobei mit zunehmender<br />

Verankerungstiefe das Verhältnis von Tiefe des Ausbruchkegels zu<br />

Verankerungstiefe abnimmt. Die Bruchlast steigt bei Schraubdübeln mit einem<br />

über die gesamte Verankerungstiefe durchgehende Gewinde proportional zu<br />

hef 1,5 an (hef = Verankerungstiefe), jedoch ist sie unter sonst gleichen<br />

Verhältnissen ca. 20 % niedriger als die Betonausbruchlast von Spreiz- und<br />

Hinterschnittdübeln.<br />

Damit Schraubdübel ordnungsgemäß funktionieren, dürfen die in den<br />

Beton geschnittenen Gewindegänge nicht während der Montage beschädigt<br />

werden. Diese Bedingung wird bei Einhaltung der in den bauaufsichtlichen<br />

Zulassungen festgelegten Verankerungstiefe eingehalten.<br />

RESUME<br />

Les vis d'ancrage sont un système de ancrage relativement nouveau. Leur<br />

principal avantage est une installation rapide et facile. Un trou est foré dans le<br />

béton et les spires sont taraudées dans le béton par la vis lors de sa mise en<br />

place. Les vis d'ancrage transfèrent les charges de tension dans le béton par le<br />

couplage mécanique des spires. En raison de leur mécanisme porteur, les vis<br />

d'ancrage avec un agrément technique du DIBt peuvent être utilisées pour des<br />

ancrages dans le béton fissuré et non-fissuré. Le mécanisme de rupture pour les<br />

vis d'ancrage est la rupture par cône de béton. Une augmentation de la<br />

profondeur d'encrage est accompagnée d'une diminution du rapport de la<br />

profondeur du cône de béton à la profondeur d'encrage. La charge de rupture des<br />

vis d'ancrage à filetage continu sur toute la profondeur d'ancrage augmente<br />

proportionnellement à hef 1,5 (hef = profondeur d'ancrage effective), elle est<br />

28


Load bearing behaviour of fastenings with concrete screws<br />

néanmoins environ 20 % inférieure à la charge de rupture des chevilles à<br />

expansion et des chevilles à verrouillage de forme avec la même profondeur<br />

d'ancrage. Afin que les vis d'ancrage puissent fonctionner correctement, les<br />

filetages taraudés dans le béton ne doivent pas être endommagés pendant<br />

l'installation. Ceci est réalisé si l'on respecte la profondeur d'ancrage définie<br />

dans l'agrément technique.<br />

KEYWORDS: concrete screw, shearing-off of threads, mechanical interlock<br />

1. INTRODUCTION<br />

Concrete screws are a relatively new fastening system. Their main<br />

advantage compared to traditional post-installed fastening systems is a quick and<br />

easy installation. A hole is drilled into the concrete and threads are cut in the<br />

concrete by the screw as it is installed.<br />

In Germany there are currently three different types of concrete screws<br />

from three manufacturers approved by the DIBt for fastenings with single<br />

anchors and groups in cracked and non-cracked concrete [1,2,3]. Further<br />

technical approvals exist for suspended ceilings and other comparable static<br />

systems.<br />

During the technical approval process a large number of tests were<br />

conducted at the Institute of Construction Materials at the University of<br />

Stuttgart. Furthermore, the load bearing behaviour of concrete screws was<br />

systematically investigated through experimental and numerical studies within<br />

the scope of a research project. Important results of research reports [5, 6, 7, 8]<br />

are presented below.<br />

2. CONCRETE SCREWS WITH TECHNICAL APPROVAL <strong>OF</strong> THE<br />

DIBT<br />

Figure 1 shows three concrete screws with a technical approval by the<br />

DIBt. The screws are intended for a drill hole diameter of d0 = 10mm and are<br />

made of galvanised steel. They differ principally in steel strength, core diameter<br />

and thread geometry. Two of the concrete screws have small steel teeth at the<br />

end of the screw for cutting the threads into the concrete. The third concrete<br />

screw has alternating high and low screw threads. Grooves are cut into the<br />

concrete by the specially formed high screw threads.<br />

29<br />

Otto-Graf-Journal Vol. 13, 2002


J. H. R. KÜENZLEN, R. ELIGEHAUSEN<br />

Figure 1: Concrete screws (d0 = 10mm) with a technical approval of the DIBt<br />

Concrete screws made of galvanised steel intended for a drill hole diameter<br />

of d0 = 5mm and d0 = 6mm are approved for suspended ceilings. Concrete<br />

screws with a drill bit diameter of d0 = 8mm and d0 =10mm have a technical<br />

approval for the fastenings of statically determined and undetermined supported<br />

components in cracked and non-cracked concrete. Fastenings with single<br />

anchors and groups are allowed.<br />

Technical approvals also exist for concrete screws made of stainless steel<br />

with drill bit diameters of d0 = 6mm to d0 = 10mm. To aid in the cutting of<br />

threads into the concrete, one concrete screw has an end made of galvanised<br />

steel. This end cannot be added to the embedment depth. Another concrete<br />

screw has small cutting pins made of carbon steel in the first turns to cut the<br />

threads into the concrete.<br />

While concrete screws made of galvanised steel are only allowed for use in<br />

dry environments, the concrete screws made of stainless steel can be used<br />

outdoors, in industrial environments and near the sea.<br />

Concrete screws made of galvanised steel are cold-rolled and subsequently<br />

tempered and heat-treated. Residual stress and incipient cracks in the steel can<br />

result from this process. To insure flawless products, special tests must be<br />

carried out during manufacturing within the scope of the internal quality control.<br />

Concrete screws made of galvanised steel, which are produced according to<br />

requirements for the technical approvals, have an indefinite lifespan in dry<br />

environments. If concrete screws made of galvanised steel are used in<br />

environments with a high corrosion risk (e.g. outdoors), a brittle failure can<br />

occur as a consequence of stress corrosion cracking. The time until failure<br />

cannot be predicted. In these cases concrete screws made of stainless steel (or<br />

other types of fastenings) must be used.<br />

30


Load bearing behaviour of fastenings with concrete screws<br />

In the following section results of tests with the concrete screws type 1 to<br />

type 3 are presented. It is pointed out that the numbering of the concrete screw<br />

types is not the same as shown in Figure 1 or in the cited references.<br />

3. LOAD BEARING BEHAVIOUR <strong>OF</strong> CONCRETE SCREWS<br />

During installation, concrete screws cut a thread into the wall of the drilled<br />

hole (Figure 2). Therefore, tensile loads are transferred into the base material by<br />

diagonal struts, i.e. mechanical interlock (Figure 3a). The load transfer<br />

mechanism is similar to that of deformed reinforcing bars cast into concrete<br />

(Figure 3b) because the flanks of the screw thread function in a similar manner<br />

as the ribs of reinforcing bars. However, the laws for deformed reinforcing bars<br />

are only partially valid for concrete screws. One reason for this is that damage<br />

due to small outbreaks in the threads cut into the wall of the drilled hole can<br />

occur, which reduce the area for the mechanical interlock. Additionally, the core<br />

diameter of the concrete screw is smaller than the drill hole diameter to allow for<br />

easier installation. Consequently, the lateral restraint of the concrete is lost in the<br />

region of the highly loaded concrete consoles. To achieve sufficient load transfer<br />

into the concrete, the „relative rib area“ of concrete screws, which corresponds<br />

roughly to the ratio between the depth and the spacing of the threads cut into the<br />

wall of the drilled hole, is much larger than that of commercially available<br />

deformed reinforcing bars.<br />

Figure 2: Concrete screw and a thread cut into the wall of the drilled hole [9]<br />

31<br />

Otto-Graf-Journal Vol. 13, 2002


J. H. R. KÜENZLEN, R. ELIGEHAUSEN<br />

a)<br />

b)<br />

Figure 3: Transmission of tension load into concrete<br />

a) Concrete screw<br />

b) Cast-in-place deformed reinforcing bar<br />

4. INSTALLATION <strong>OF</strong> CONCRETE SCREWS<br />

Concrete screws are normally screwed into the concrete using an electricscrew-gun.<br />

In technical approvals the power class [2,3] or the type of electricscrew-gun<br />

[1] is specified. The threads cut into the concrete must not be<br />

destroyed during installation. Limiting the applied torque can do this. Concrete<br />

screws can also be screwed in with a torque wrench. It cannot be excluded that<br />

concrete screws should not be screwed in using a commercial screw-wrench,<br />

because the torque necessary for tightening up after the screw head reaches the<br />

attachment can range between wide limits and therefore the threads cut into the<br />

concrete might be destroyed.<br />

The necessary installation torque for cutting the threads into the concrete<br />

should be small in order to achieve an easy installation. Moreover, the resistance<br />

against shearing-off of the threads should be as high as possible, so that the<br />

threads cut into the concrete are not destroyed while tightening up the concrete<br />

screws.<br />

Figure 4 shows the measured torques while screwing in a concrete screw<br />

(drill bit diameter d0 = 8mm) dependent on the swing angle. The failure<br />

happened by shearing-off of the threads. The anchorage material consisted of<br />

fine-grained concrete (maximum aggregate size 8mm) of the strength class B25.<br />

32


Drehmoment [Nm]<br />

125<br />

100<br />

75<br />

50<br />

25<br />

Load bearing behaviour of fastenings with concrete screws<br />

0<br />

0 250 500 750 1000 1250 1500 1750 2000<br />

Drehwinkel [Grad]<br />

Figure 4: Typical relationship between torque moment and swing angle (Concrete B25,<br />

grading curve BC 8, d0= 8mm, Failure mode: Shearing-off of the thread [10]<br />

Before the screw head reached the attachment, the necessary installation<br />

torque varied only slightly. If the concrete contains coarser aggregates, torque<br />

peaks can occur if a thread is cut into a big piece of aggregate.<br />

After the screw head reaches the attachment, the torque on the concrete<br />

screw rises sharply to the peak value TD. Subsequently, the shearing-off of the<br />

threads begins and the torque decreases rapidly to zero. The damage to the<br />

concrete threads after overtightening the concrete screw is shown in Figure 5.<br />

Figure 5a shows the threads after the screw head reaches the attachment<br />

(installation torque TE). For comparison, the threads cut into the concrete by the<br />

concrete screw (d0 = 10mm) at the remaining torques of TRest ~ 0,75TD,m and<br />

TRest ~ 0,19TD,m after reaching the peak value TD,m are shown in Figure 5b and<br />

Figure 5c, respectively.<br />

a) b) c)<br />

Figure 5: Threads cut into the wall of the drilled hole, concrete screw type 2 [10]<br />

a) Tinst = TE<br />

b) TRest = 100Nm (~0,75 TD,m)<br />

c) TRest = 25Nm (~0,19 TD,m)<br />

33<br />

Otto-Graf-Journal Vol. 13, 2002


J. H. R. KÜENZLEN, R. ELIGEHAUSEN<br />

again with an electric-screw-gun, the minimum time until failure tK decreases in<br />

comparison with concrete screws that were not unscrewed. If the unscrewing of<br />

the concrete screw takes place with an electric-screw-gun, the time until failure<br />

tK decreases significantly because it is not possible to unscrew concrete screws<br />

in a controlled manner with an electric-screw-gun.<br />

t K [sec]<br />

16<br />

12<br />

8<br />

4<br />

0<br />

installation with<br />

electric-screw-gun<br />

installation /unscrewing /<br />

installation with electricscrew-gun<br />

installation with electric-screwgun,<br />

unscrewing with torque<br />

wrench, installation with electricscrew-gun<br />

Figure 12: Influence of unscrewing of concrete screws on the time tK until failure (d0 = 10mm,<br />

fcc = 26N/mm², grading curve BC8, dcut = 10,44mm, hnom = 60mm, electric-screw-gun 1)<br />

4.3 Remaining load-carrying capacity<br />

To investigate the influence of the installation torque, i. e. the overtightening<br />

of the concrete screw, on the pull-out failure load, the concrete screws<br />

were installed until the screw head reached the attachment (T = TE), prestressed<br />

with T ~ 0,9 TD,m or until the torque moment fell to a preset value T = TRest after<br />

reaching the maximum torque. Afterwards the concrete screws were pulled out.<br />

Figure 13 shows the measured failure loads depending on the installation torque.<br />

If the torque of the concrete screw is stopped immediately after reaching the<br />

maximum torque, the measured pull-out failure loads are in the same range like<br />

in the tests with concrete screws that were prestressed with T = TE or with<br />

T ~ 0,9 TD,m. Furthermore, the load-displacement behaviour does not differ<br />

significantly (Figure 14). If the concrete screws are turned further, the failure<br />

load falls rapidly, because the threads cutting into the wall of the drilled hole are<br />

destroyed (cp. Figure 5). Furthermore, the load-displacement behaviour is less<br />

favourable. The behaviour shown in Figure 13 and Figure 14 also applies to<br />

other types of concrete screws if they are seated with an embedment depth at<br />

which shearing-off of the threads is possible.<br />

38


Nu [kN]<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

1,4 T = TE before shearing<br />

0,9 1,2<br />

TU,m = 135Nm<br />

1<br />

Load bearing behaviour of fastenings with concrete screws<br />

0,8<br />

T/T U,m [-]<br />

after reaching TU,m<br />

Figure 13: Influence of torque before and after reaching the failure torque on the pull-out<br />

load (d0 = 10mm, hnom = 50mm, dcut = 10,42 mm, fcc = 30N/mm²)<br />

Nu [kN]<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

T = 0,19 TD,m<br />

T = 0,75 TD,m<br />

0<br />

0 2 4 6 8 10<br />

s [mm]<br />

0,6<br />

0,4<br />

0,2<br />

T = TE<br />

T = 0,75xTD,m<br />

T = 0.19xTD,m<br />

Figure 14: Influence of the torque moment before and after reaching the<br />

failure torque on the load-displacement curves<br />

4.4 Required embedment depth<br />

In practice it cannot be excluded that concrete screws are further tightened<br />

after the screw head reaches the attachment, e. g. if the electric-screw-gun is not<br />

stopped immediately or if the attachment should be tightened against the surface<br />

of the concrete slab with a standard screw-wrench. Unscrewing of the concrete<br />

screws and screwing them in again can also occur. This may damage the threads<br />

cut into the wall of the drilled hole, if the embedment depth is not deep enough<br />

because in practice it is normally not possible to stop the installation after<br />

reaching the maximum torque TD. This has been shown by experiences in<br />

practice. A check of concrete screws (d0 = 6mm) that were seated with a small<br />

embedment depth showed that shearing-off of the threads during the installation<br />

had occurred with about 15% of the screws.<br />

39<br />

0<br />

Otto-Graf-Journal Vol. 13, 2002


Load bearing behaviour of fastenings with concrete screws<br />

Table 1: Characteristic values for the resistances under tension load of concrete screws<br />

(d0 = 10mm) with a Technical Approval of the DIBt<br />

Type of concrete screw [1] [2] [3]<br />

Drill hole diameter d0 [mm] 10 10 10<br />

Embedment depth hnom [mm] 70 75 85<br />

Steel failure<br />

Characteristic resistance NRk,s [kN] 54,1 75,4 58<br />

Characteristic resistance in noncracked<br />

concrete B 25<br />

Characteristic resistance in<br />

cracked concrete B 2<br />

Nominal effective embedment<br />

depth<br />

Pull-out failure<br />

NRk,p [kN] 12,0 16,0 20,0<br />

NRk,p [kN] 7,5 12,0 12,0<br />

Concrete cone failure<br />

hef,cal [mm] 50 50 60<br />

Characteristic screw spacing scr,N [mm] 150 150 180<br />

Characteristic edge distance ccr,N [mm] 75 75 90<br />

8. SUMMARY<br />

Concrete screws are a relatively new fastening system. Their main<br />

advantage compared to traditional post-installed fastening systems is a quick and<br />

easy installation. A hole is drilled into the concrete and threads are cut in the<br />

concrete by the screw as it is installed.<br />

Concrete screws transfer tensile loads into the base material by mechanical<br />

interlock of the threads. Due to their load-bearing mechanism, concrete screws<br />

with a technical approval of the DIBt can be used for fastenings in cracked and<br />

non-cracked concrete.<br />

The typical failure mechanism for concrete screws is concrete-cone failure.<br />

With increasing embedment depth the ratio of the depth of the concrete failure<br />

cone to the embedment depth decreases. The failure load of concrete screws<br />

with continuous threads along the entire embedment depth increases<br />

proportionally to hef 1,5 (hef = effective embedment depth), but it is about 20 %<br />

49<br />

Otto-Graf-Journal Vol. 13, 2002


J. H. R. KÜENZLEN, R. ELIGEHAUSEN<br />

smaller than the failure load of expansion and undercut anchors with the same<br />

embedment depth.<br />

In order for concrete screws to function properly, the threads cut into the<br />

wall of the drilled hole must not be damaged during the installation. This<br />

requirement is achieved by using the embedment depth defined in the Technical<br />

Approvals.<br />

9. ACKNOWLEDGMENT<br />

The primary funding for this research was provided by the Adolf Würth<br />

GmbH & Co. KG. The support of this manufacturer is very much appreciated.<br />

Special thanks are also accorded to Beate Vladika and Matthew Hoehler who<br />

spent many hours in improving the English.<br />

10. REFERENCES<br />

[1] [Deutsches Institut für Bautechnik] Allgemeine Bauaufsichtliche<br />

Zulassung Z-21.1-1712 für Hilti Schraubanker HUS-H zur Verankerung<br />

im gerissenen und ungerissenen Beton, Berlin, 2001<br />

[2] [Deutsches Institut für Bautechnik] Allgemeine Bauaufsichtliche<br />

Zulassung Z-21.1-1549 für HECO-MULTI-MONTI-Schraubanker MMS<br />

zur Verankerung im gerissenen und ungerissenen Beton, Berlin, 2001<br />

[3] [Deutsches Institut für Bautechnik] Allgemeine Bauaufsichtliche<br />

Zulassung Z-21.1-1624 für Toge Betonschraube TSM zur Verankerung<br />

im gerissenen und ungerissenen Beton, Berlin, 2001<br />

[4] European Organisation for Technical Approvals (EOTA): Leitlinie für die<br />

europäisch-technische Zulassung von Metalldübeln zur Verankerung in<br />

Beton. Deutsches Institut für Bautechnik, 28. Jahrgang, Sonderheft Nr. 16,<br />

Berlin, Dezember 1997<br />

[5] Küenzlen, J. H. R.; Eligehausen, R.: Setz- und Ausziehversuche in<br />

ungerissenem Beton mit Schraubdübeln. Bericht Nr. AF01/01-E00202/1,<br />

Institut für Werkstoffe im Bauwesen, Universität Stuttgart, 2001, nicht<br />

veröffentlicht<br />

[6] Küenzlen, J. H. R.; Eligehausen, R.: Tragverhalten von Schraubdübeln in<br />

niederfestem Beton. Bericht Nr. W8/1-01/1, Institut für Werkstoffe im<br />

Bauwesen, Universität Stuttgart, 2001, nicht veröffentlicht<br />

50


Load bearing behaviour of fastenings with concrete screws<br />

[7] Küenzlen, J. H. R.; Eligehausen, R.: Tragverhalten von Schraubdübeln in<br />

niederfestem Beton. Bericht Nr. W8/3-01/3, Institut für Werkstoffe im<br />

Bauwesen, Universität Stuttgart, 2001, nicht veröffentlicht<br />

[8] Küenzlen, J. H. R.; Eligehausen, R.: Einfluss verschiedener Parameter auf<br />

die Höchstlasten von Schraubdübeln, Institut für Werkstoffe im<br />

Bauwesen, Universität Stuttgart, 2001, Bericht in Vorbereitung<br />

[9] Küenzlen, J. H. R.; Sippel, T. M.: Behaviour and Design of Fastenings<br />

with Concrete Screws. In: RILEM Proceedings PRO 21 „Symposium on<br />

Connections between Steel and Concrete“, Cachan Cedex, 2001, S. 919-<br />

929.<br />

[10] Küenzlen, J. H. R.: Drehmomentversuche mit Schraubdübeln in<br />

ungerissenem Beton. Jahresbericht 2000/2001, Institut für Werkstoffe im<br />

Bauwesen, Universität Stuttgart, 2001<br />

[11] Eligehausen, R.; Hofacker, I. N.; Spieth, H. A.; Küenzlen, J. H. R.: Neue<br />

Entwicklungen in der Befestigungstechnik, Tagungsband, IBK-Bau-<br />

Fachtagung 263: Dübel und Befestigungstechnik, 2000, S. 2.1-2.14,<br />

[12] Meszaros, J.,: Tragverhalten von Einzelverbunddübeln unter zentrischer<br />

Kurzzeitbelastung. Dissertation, Universität Stuttgart, 2001<br />

[13] Eligehausen, R.; Fuchs, W.; Mayer, B.: Tragverhalten von<br />

Dübelbefestigungen bei Zugbeanspruchung. Beton + Fertigteil-Technik<br />

1987, Heft 12, S. 826-832 und 1988 Heft 1, S. 29-35.<br />

[14] Eligehausen, R.; Mallée, R.: Befestigungstechnik im Beton- und<br />

Mauerwerkbau. Ernst & und Sohn, Berlin, 2000.<br />

[15] Fuchs, W.; Eligehausen, R.: Das CC-Verfahren zur Berechnung der<br />

Betonausbruchlast von Verankerungen. Beton- und Stahlbetonbau, 1995,<br />

Heft 1, S. 6-9, Heft 2, S. 38-44, Heft 3, S. 73-76.<br />

[16] Deutsches Institut für Bautechnik: Bemessungsverfahren für Dübel zur<br />

Verankerung in Beton (Anhang zum Zulassungsbescheid). Berlin, 1993<br />

[17] DIN 1045, Beton und Stahlbeton, Bemessung und Ausführung, Ausgabe<br />

1978<br />

51<br />

Otto-Graf-Journal Vol. 13, 2002


J. H. R. KÜENZLEN, R. ELIGEHAUSEN<br />

52


Prestressed hollow-core concrete slabs – Problems and possibilities in fastening techniques<br />

PRESTRESSED HOLLOW-CORE CONCRETE SLABS – PROBLEMS<br />

AND POSSIBILITIES IN FASTENING TECHNIQUES<br />

SPANNBETON-HOHLDECKENPLATTEN – PROBLEME UND MÖG-<br />

LICHKEITEN IN DER BEFESTIGUNGSTECHNIK<br />

DALLES ALVEOLAIRES EN BÉTON PRÉCONTRAINT – PROBLÈ-<br />

MES ET POSSIBILITÉS DES TECHNIQUES D'ANCRAGE<br />

Clemens Lutz<br />

SUMMARY<br />

In the present, prestressed hollow-cored concrete slabs are tendentiously<br />

used as ceiling systems. Therefore, fastening techniques with regard to these<br />

slabs gain in an increasing importance. In this article, advantages of these members<br />

and problems by application of anchors are described, and different structural<br />

responses between several types of anchors are experimentally determined.<br />

Accordingly, it seems to be essential to choose or to adapt suitable anchors for<br />

ceiling systems.<br />

ZUSAMMENFASSUNG<br />

Spannbeton-Hohlplatten finden als Deckensystem eine immer breitere<br />

Verwendung und einen immer größeren Anwendungsbereich. Somit gewinnt<br />

auch eine korrekte Befestigung in diesen Platten zunehmend an Bedeutung. In<br />

diesem Artikel wird auf die Vorteile der Platten, aber auch auf die Problematik,<br />

die bei der Montage von Dübeln entstehen, eingegangen. Ferner wird gezeigt,<br />

dass es große qualitative Unterschiede bezüglich der Tauglichkeit verschiedener<br />

Befestigungssysteme gibt, weshalb eine sorgfältige Auswahl bzw. Anpassung<br />

prinzipiell geeigneter Dübel stattfinden muss.<br />

RESUME<br />

Actuellement, les dalles alvéolaires en béton précontraint sont utilisées de<br />

plus en plus fréquemment. Par conséquent, les ancrages appropriés gagnent<br />

d'importance. Dans cet article, nous traitons les avantages de ces dalles et les<br />

problèmes reliés à l'utilisation de chevilles. De plus, nous montrons que les dif-<br />

53<br />

Otto-Graf-Journal Vol. 13, 2002


C. LUTZ<br />

férents systèmes révèlent de grandes différences qualitatives, et qu'il est par<br />

conséquent essentiel de choisir et d'adapter des ancrages adéquats.<br />

KEYWORDS: prestressed hollow-core concrete slab, ceiling, anchorageable thickness,<br />

anchor<br />

1. ADVANTAGES AND PROBLEMS<br />

Prestressed hollow-cored concrete slabs made of high-strength concrete are<br />

prefabricated concrete members with large hollow proportions. In practice, they<br />

are interconnected after assembly by joint grouting compound. In comparison<br />

with conventional concrete members, this type of concrete plates has a lot of<br />

economical advantages, especially in saving material, energy and in reducing<br />

weight of transportation. Outstanding features are quality control, schedule time<br />

and costs. Additionally, formworks which are used to produce in-situ concrete<br />

are saved in application of these slabs. In the present, this ceiling system is increasingly<br />

used in industrial buildings, office buildings and also in domestic architecture.<br />

Figure 1 shows cross sections of two types of prestressed hollowcored<br />

concrete slabs (with different minimal anchorageable material thickness:<br />

25 mm and 30 mm).<br />

Figure 1: Cross sections of two types of prestressed hollow-cored concrete slabs<br />

(1: cavity, 2: prestressed wire, 3: steel, 4: minimal anchorageable material<br />

thickness dmat, here: 25 mm and 30 mm)<br />

54<br />

1<br />

4<br />

4


Prestressed hollow-core concrete slabs – Problems and possibilities in fastening techniques<br />

In spite of above mentioned advantages, the application of anchors in<br />

prestressed hollow-cored concrete slabs is not satisfied, particularly in case of<br />

thin members. The worst case is that anchors are fastened in near of position A<br />

(see fig. 2). The distance between the opposite of casting side and the hollows is<br />

the smallest. This distance is defined as minimal anchorageable material thickness<br />

dmat (in German: Spiegeldicke). For some types of slabs the value dmat is<br />

very small. This small value of thickness is relevant for load carrying capacity of<br />

anchor systems. Tables 1 and 2 show experimentally measured thickness dmat of<br />

slabs with a minimal anchorageable thickness of 30 mm and 25 mm respectively.<br />

All values in table 1 are above 30 mm. Some values in table 2 are only<br />

just 25 mm. For slabs with dmat = 25 mm there is no sufficient reserve in comparison<br />

to slabs with dmat= 30 mm! Furthermore, crashing of concrete closed to<br />

the hollows often occurs during drilling. Consequently, the minimal anchorageable<br />

material thickness and also the effective anchorage depth for anchors are<br />

reduced (see fig. 3) and load carrying capacities of ceiling systems are negatively<br />

influenced. Therefore, it is necessary to determine whether all types of<br />

fasteners are suitable to be used in prestressed hollow-cored concrete slabs. Additionally,<br />

it is prohibited to install an anchor in near of a strand of wire because<br />

of interests of safety (zone C in fig 2).<br />

zone C zone C<br />

zone B<br />

zone A<br />

zone B<br />

Figure 2: Sectors of a prestressed hollow-cored concrete slab.<br />

Zone A: minimal anchorageable material thickness;<br />

Zone B: anchorageable sector;<br />

Zone C: prohibited sector for fastenings because of interests of security<br />

(prestressed concrete wire)<br />

55<br />

Otto-Graf-Journal Vol. 13, 2002


C. LUTZ<br />

Table 1: measured values dmat (slab with a minimal anchorageable thickness of 30 mm)<br />

dmat [mm] (measured minimal<br />

anchorageable material<br />

thickness)<br />

39,6 42,3<br />

43,1 44,2<br />

42,3 45,0<br />

40,9 43,8<br />

37,8 39,2<br />

Range [mm] 38 (>30) to 45<br />

Average [mm] 41,8<br />

Variation coeff. [%] 5,70<br />

Table 2: measured values dmat (slab with a minimal anchorageable thickness of 25 mm)<br />

dmat [mm] (measured minimal<br />

anchorageable material<br />

thickness)<br />

25,1 26,7<br />

26,7 28,5<br />

27,6 28,5<br />

26,8 27,5<br />

26,2 28,6<br />

25,0 26,1<br />

Range [mm] 25 to 29<br />

Average [mm] 26,9<br />

Variation coeff. [%] 4,60<br />

dmat dmat, eff<br />

Figure 3: The minimal anchorageable material thickness dmat after drilling is reduced<br />

(:=dmat, eff < dmat).<br />

56


Prestressed hollow-core concrete slabs – Problems and possibilities in fastening techniques<br />

2. POSSIBILITIES AND TEST RESULTS<br />

In general, there are three types of possibilities to fasten installation pipes,<br />

suspendic and acoustics ceilings, lighting appliances, safety precaution systems<br />

and beams (see fig. 4). In the following, fastenings with different types of anchors<br />

according to possibility (1) will be studied in detail. As results, these anchors<br />

applied in prestressed hollow-cored concrete slabs show their quite different<br />

suitability.<br />

There are already several types of special fasteners on the market, which<br />

have approvals for using in hollow-cored concrete slabs. Objective of this work<br />

is to investigate suitability and quality of other types of anchors in these members.<br />

Therefore, pull-out tests were carried out in the uncracked concrete zone of<br />

these slabs with a minimal anchorageable material thickness dmat of 25 mm and<br />

30 mm. Herein, different types of anchors – concrete screws, injection anchors,<br />

suspendic ceiling fasteners, deformation-controlled expansion anchors and<br />

torque-controlled expansion anchors – were used. The sizes of anchors chosen<br />

for these experiments were between M6 and M10.<br />

(1) only anchors<br />

(2) post-installed bonded rebar connections; concrete suspension<br />

(3) construction, fastening through the slab<br />

Figure 4: Three types of possibilities to fasten installation pipes, suspendic and<br />

acoustics ceilings, lighting appliances, safety precaution and beams<br />

57<br />

Otto-Graf-Journal Vol. 13, 2002


C. LUTZ<br />

For each test, one borehole was produced with the help of a hammer drill.<br />

Position of the borehole was chosen in such a way that the thickness of concrete<br />

corresponds to the minimal anchorageable thickness dmat. Depth of the borehole<br />

is equal to this minimal thickness (position A, fig. 2). Typical crashing of concrete<br />

closed to the hollows was often observed after drilling. Consequently, the<br />

effective anchorage depth was reduced. After installation of the anchor system<br />

the fastener was subjected to concentric tension up to failure. For concrete<br />

screws, setting tests with concrete screws were also carried out additionally [1].<br />

Figure 5 outlines an equipment for pull-out tests where one load cell, two<br />

LVDTs and a steel support frame are used. Figure 6 shows a pull-out cone of a<br />

concrete screw. Pull-out test results for different types of anchors are represented<br />

in following figures. Figure 7 shows measured load carrying capacities of<br />

different types of anchors used in concrete slabs with a minimal anchorageable<br />

material thickness of 30 mm. All test results are given in relation to the failure<br />

load of concrete screws, type 1 (which is chosen as reference anchor).<br />

Figure 5: Pull-out tests in a prestressed hollow-cored concrete slab<br />

58


Prestressed hollow-core concrete slabs – Problems and possibilities in fastening techniques<br />

Figure 6: Pull-out cone of a concrete screw<br />

From figure 7, it can be seen that the highest load carrying capacity was obtained<br />

in torque-controlled expansion anchors (column 7). The average failure<br />

load was 93% higher in comparison to anchor, type 1 (reference anchor). Relative<br />

loading carrying capacities of other anchors are summarized in the following:<br />

- concrete screws, type 2 (column 2) +64%<br />

- deformation-controlled expansion anchors (column 4) +30%<br />

- injection anchors (column 6) +12%<br />

- special fasteners for hollow-cored concrete slabs (column 5) ±0<br />

- concrete screws, type 1 (column 1) ±0<br />

- suspendic ceiling fasteners (column 3) −26%<br />

59<br />

Otto-Graf-Journal Vol. 13, 2002


C. LUTZ<br />

Figure 7:<br />

Figure 8:<br />

Relative values of averaged<br />

failure load Nu.m [%]<br />

Nu,m [%]<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

100<br />

164<br />

74<br />

130<br />

100<br />

112<br />

193<br />

1 2 3 4 5 6 7<br />

Types Dübelart of anchors<br />

Pull-out test results for different types of anchors (minimal anchorageable material<br />

thickness: 30 mm). All test results are given in relation to the failure load of<br />

a concrete screw, type 1 [1].<br />

1: concrete screws, type 1<br />

2: concrete screws, type 2<br />

3: suspendic ceiling fasteners<br />

4: deformation-controlled expansion<br />

anchors<br />

Relative values of averaged<br />

failure load Nu.m [%]<br />

Nu,m [%]<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

100<br />

193<br />

5: special fasteners for hollow-cored<br />

concrete slabs<br />

6: injection anchors<br />

7: torque-controlled expansion anchors<br />

120<br />

289<br />

1 2 3 4<br />

Types Dübelart of anchors<br />

Pull-out test results for different types of anchors (minimal anchorageable material<br />

thickness: 25 mm). All test results are given in relation to the failure load of<br />

a concrete screw, type 1.<br />

1: concrete screws, type 1<br />

2: deformation-controlled expansion<br />

anchors<br />

60<br />

3: suspendic ceiling fasteners<br />

4: special fasteners for hollow-cored<br />

concrete slabs


Prestressed hollow-core concrete slabs – Problems and possibilities in fastening techniques<br />

Figure 8 shows experimental results of different types of anchors used in a<br />

thin hollow-cored concrete slab with a minimal anchorageable material thickness<br />

of 25 mm. All mean values of load carrying capacities are represented in<br />

relation to the averaged failure load of anchor, type 1. Relative loading carrying<br />

capacities of other types of anchors are summarized as follows:<br />

- special fasteners for hollow-cored concrete slabs (column 4)<br />

+189%<br />

- deformation-controlled expansion anchors (column 2) +93%<br />

- suspendic ceiling fasteners (column 3) +20%<br />

- concrete screws, type 1 (column 1) ±0<br />

For most of structural designs the averaged load carrying capacity is not<br />

alone the value which characterizes the material properties. Displacements and<br />

statistic values are also important factors. In figure 9 load-displacementdiagrams<br />

on the left and right are compared (diagram a and b): Failure load and<br />

statistic values according to the load carrying capacities of these both types of<br />

anchors are almost the same (see also table 3 for statistic values), whereas the<br />

displacements and statistic values according to the displacements are quite different.<br />

Therefore, it may be questioned, which type of anchor is more suitable<br />

for hollow-cored concrete slabs. Anchors of type 1 behave more brittle, anchors<br />

of type 2 behave more ductile. In this case, displacement at the permissible load<br />

is essential. Type 1 seems to behave more positive than type 2. In figure 9 c.)<br />

and d.) anchors of type 3 reach higher load carrying capacities on average in<br />

comparison with type 4, but they have also higher displacements. It is harmful if<br />

displacements are to high and come outside of linear area (see fig. 10).<br />

61<br />

Otto-Graf-Journal Vol. 13, 2002


C. LUTZ<br />

load<br />

load<br />

0<br />

Nx<br />

0<br />

Ny<br />

displacement<br />

a.) type 1<br />

displacement<br />

load<br />

0 0<br />

sx<br />

load<br />

displacement<br />

b.) type 2<br />

displacement<br />

c.) type 3 d.) type 4<br />

Nx<br />

0<br />

Ny<br />

0 0<br />

0<br />

sy sy<br />

Figure 9: Load-displacement-curves for different types of anchors.<br />

Diagrams a.) and b.): Difference in displacement with almost the same failure load.<br />

Diagrams c.) and d.): Difference in failure load and displacement<br />

Table 3: Statistic values of two types of anchors in a prestressed hollow-cored concrete slab<br />

with dmat= 30 mm (see figure 9)<br />

a.) Type 1 b.) Type 2<br />

Variation coefficient at failure load Nu,m [%] 17 17<br />

Displacement at 0,5 Nu,m [%] 100 560<br />

Variation coefficient for displacement at 0,5 Nu,m [%] 11 25<br />

62<br />

sx


Prestressed hollow-core concrete slabs – Problems and possibilities in fastening techniques<br />

Obviously, the load carrying capacity is not only the aspect characterizing<br />

anchors. In principle, three groups of anchors could be distinguished according<br />

to their load-displacement-behaviours (see fig. 11):<br />

- Group 1: anchors with little displacements, i.e. the tested injection anchors.<br />

- Group 2: anchors with larger displacements and high load carrying capacities,<br />

i. e. one of the tested torque-controlled expansion anchors.<br />

- Group 3: anchors with larger displacements and reduced load carrying capacities.<br />

Load N<br />

Linear-elastic<br />

area<br />

Linear-elastic area<br />

0 0.5 1 1.5 2<br />

Displacement s [mm]<br />

Figure 10: Experimental load-displacement-curves and simplified linear curves for two types<br />

of anchors in a prestressed hollow-cored concrete slab (here: with dmat= 30 mm).<br />

63<br />

Otto-Graf-Journal Vol. 13, 2002


C. LUTZ<br />

Load N [kN]<br />

Group 1<br />

Displacement s [mm]<br />

Group 2<br />

Group 3<br />

Figure 11: Load-displacement-curves of anchors in prestressed hollow-cored concrete slabs<br />

(here: with dmat= 30 mm) can be distinguished in three groups. There are serious differences<br />

in carrying load capacities, but also in displacements<br />

According to the above mentioned observations, it can be concluded that<br />

anchors of group 1 in connection with serious statistic values in according to<br />

load carrying capacities and displacements are most suitable to apply in<br />

prestressed hollow-cored concrete slabs. Though, further tests have to be done<br />

(sustained load, fatigue tests and so on).<br />

REFERENCES<br />

[1] LUTZ, C.: Anchors in prestressed hollow-cored concrete slabs. IWB<br />

Activities 3 (2001)<br />

[2] LUTZ, C.: Nachträgliche Befestigungen in Spannbeton-Hohlplatten. IWB<br />

Mitteilungen, Jahresbericht 2000-2001<br />

64


Pore-size determination from penetration tests on concrete with n-decane<br />

PORE-SIZE DETERMINATION FROM PENETRATION TESTS ON<br />

CONCRETE WITH N-DECANE<br />

PORENGRÖSSENBESTIMMUNG AUS N-DECAN-EINDRING-<br />

VERSUCHEN IN BETON<br />

DETERMINATION DES PORES DU A LA PENETRATION DE<br />

N-DECANE EN BETON<br />

Hans W. Reinhardt, Arno Pfingstner<br />

SUMMARY<br />

Absorption and infiltration tests on concrete mixes have been carried out<br />

with n-decane. The test results show a good agreement with theoretical predictions.<br />

The results indicate that the main parameter on the penetration is the water-cement<br />

ratio. Pore sizes which are reached are different for the absorption<br />

test and the infiltration test.<br />

ZUSAMMENFASSUNG<br />

Absorptions- und Infiltrationsversuche wurden an verschiedenen Betonen<br />

mit n-Decan durchgeführt. Die Ergebnisse haben eine gute Übereinstimmung<br />

mit theoretischen Vorhersagen gezeigt. Die Ergebnisse lassen den Schluss zu,<br />

dass der Wasserzementwert die maßgebliche Größe für das Eindringverhalten<br />

ist. Porengrößen, die erreicht wurden, sind bei Absorptions- und Infiltrationsversuchen<br />

verschieden.<br />

RESUME<br />

Des essais d'absorption et d'infiltration ont été réalisés sur des bétons de<br />

différentes compositions avec du n-décane. Les résultats montrent une bonne<br />

concordance avec des prévisions théoriques. Les résultats indiquent que le paramètre<br />

principal pour la pénétration dans le béton est le rapport eau-ciment. Les<br />

tailles des pores atteintes sont différentes pour les essais d'absorption et les essais<br />

d'infiltration.<br />

KEYWORDS: Concrete, n-decane, penetration, absorption, infiltration, highperformance<br />

concrete<br />

65<br />

Otto-Graf-Journal Vol. 13, 2002


H.W. REINHARDT, A. PFINGSTNER<br />

MOTIVE<br />

Since several years, tests have been carried out on the penetration behaviour<br />

of organic fluids in concrete [1-5]. Two types of tests are being carried out:<br />

the capillary suction test and the infiltration test with a certain hydraulic head.<br />

The test results show that the capillary suction test satisfies usually technical<br />

requirements for the application of the material properties in assessing the behaviour<br />

of real structures. However, from a scientific point of view both tests<br />

reveal more than the material property only. Comparing the test results of both<br />

test methods one can calculate the pore radius of capillary pores in concrete.<br />

This will be shown in the following.<br />

EXPERIMENTAL SET UP<br />

For suction tests, specimens were placed into the test fluid. The samples<br />

rested on glass rods to allow free access of the testing fluid to the inflow surface.<br />

The fluid level was approx. 10 mm above the lower end of the specimen. Penetration<br />

occurred by capillary forces acting against gravity.<br />

The experimental set-up for infiltration tests described in DAfStb guideline<br />

[6] was slightly modified. Preliminary tests had proven that the pressure<br />

head of 40 (+/- 5) cm specified there was too small to obtain measurable differences<br />

to capillary suction tests for high performance concretes. The required external<br />

pressure was estimated by calculation from the pore radius distributions of<br />

comparable concretes and fixed to 0,2 bar (20 kN/m 2 ) for all infiltration tests.<br />

This pressure was produced by a nitrogen bottle connected to the funnels on the<br />

samples by tubes.<br />

66


CONCRETES USED<br />

Pore-size determination from penetration tests on concrete with n-decane<br />

The composition of the concretes used is given in Table 1. Table 2 shows<br />

some relevant properties. The air content has been measured in the fresh state.<br />

Table 1. Composition of concretes<br />

Concr. Aggregates<br />

[kg/m 3 Grading Cement<br />

]<br />

[kg/m 3 Type of cement<br />

Wadded<br />

]<br />

[kg/m 3 SF (solid)<br />

] [kg/m 3 RE<br />

] [kg/m 3 SP<br />

] [kg/m 3 Wtot./(C+SF)<br />

] -<br />

MR 1905 AB 16 320 CEM I 32,5 R 160 0 0 2.50 0.50<br />

M1 1822 AB 16 338 CEM I 32,5 R 186 0 0 0.80 0.55<br />

M2 1535 AB 2 467 CEM I 32,5 R 257 0 0 0 0.55<br />

M3 1882 AB 32 309 CEM I 32,5 R 170 0 0 0 0.55<br />

M4 1895 U 16 309 CEM I 32,5 R 170 0 0 0 0.55<br />

M5 1677 C 16 405 CEM I 32,5 R 223 0 0 0.50 0.55<br />

M6 1769 AB 16 485 CEM I 42,5 R 150 0 0 9.30 0.32<br />

M7 1762 AB 16 465 CEM I 42,5 R 126 20 0 7.00 0.31<br />

M8 1755 AB 16 445 CEM I 42,5 R 109 40 2.56 10.80 0.32<br />

M9 1748 AB 16 425 CEM I 42,5 R 89 60 2.56 12.00 0.32<br />

M10 1441 AB 2 615 CEM I 42,5 R 153 55 3.59 11.08 0.32<br />

M11 1813 AB 16 338 CEM III/B 186 0 0 0 0.55<br />

M11 1522 AB 2 467 CEM III/B 257 0 0 0 0.55<br />

SF: silica fume RE: retarder SP: plasticizer C: cement W: water<br />

Table 2. Some properties of the concretes tested, mean of three tests<br />

Properties of fresh concrete Compressive strength after 28 days<br />

workability 1) , density of air con- density of hard.<br />

flow fresh concrete tent concrete 2)<br />

Mix<br />

Compressive strength<br />

smallest value mean value<br />

[cm] [kg/dm 3 ] [%] [kg/dm 3 ] [N/mm 2 ] [N/mm 2 ]<br />

MR/1 41.8 2.34 1.8 2.35 52.3 53.8<br />

MR/2 44.8 2.33 1.2 2.36 51.5 53.2<br />

M1/1 46.5 - - 2.33 41.8 44.0<br />

M1/2 46.5 2.35 1.5 2.33 45.4 46.2<br />

M2 43.5 2.16 3.6 2.19 41.8 43.1<br />

M3/1 44.5 2.39 0.9 2.37 42.5 43.6<br />

M3/2 46.5 2.39 0.4 2.35 42.2 43.0<br />

M4 46.5 2.40 0.3 2.38 47.5 49.0<br />

M5 43.8 2.28 1.8 2.18 38.2 38.8<br />

M6 43.0 2.40 1.75 2.39 75.2 77.2<br />

M7 48.3 2.37 1.4 2.41 80.9 84.3<br />

M8/1 42.0 2.37 1.5 2.40 88.0 90.5<br />

M8/2 44.8 2.37 0.7 2.40 85.1 86.2<br />

M9 44.0 2.38 1.6 2.38 85.4 88.9<br />

M10 44.5 2.22 2.8 2.24 77.2 78.9<br />

M11/1 47.5 2.36 0.55 2.35 40.9 43.0<br />

M11/2 46.5 2.35 0.44 2.34 45.5 46.0<br />

M12 51.0 2.36 1.4 2.19 33.8 35.6<br />

1)<br />

workability: average diameter of the spread concrete determined by the German flow table test<br />

2) determined on 100 mm cubes<br />

69<br />

Otto-Graf-Journal Vol. 13, 2002


H.W. REINHARDT, A. PFINGSTNER<br />

The density is the dry density after 28 days. The compressive strength has<br />

been measured on 100 mm cubes (150 mm for M3, due to the maximum aggregate<br />

size of 32 mm) after 1 day kept in the mould, 6 days in the moist room and<br />

21 days in the constant climate room at 20°C and 65% RH.<br />

RESULTS<br />

The results show typically the absorbed amount of liquid as function of<br />

time up to 72 hours generated in the capillary suction test and in the infiltration<br />

test. Fig. 2 to 4 show on the left the results of the capillary suction test and on<br />

the right of the infiltration test. The test results can be presented as a straight line<br />

of the absorbed amount vs. square root of time.<br />

There are similar plots for the penetration depth which has been measured<br />

by visual observation at the epoxy resin covered surface of the specimens. The<br />

results are also shown in Fig. 5 to 7.<br />

Absorbed volume [l/m 2 ]<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

MR1-SD<br />

MR3-SD<br />

M1/1-SD<br />

M1/3-SD<br />

M2-SD<br />

M3/1-SD<br />

M4/2-SD<br />

M5-SD<br />

MR1-SC<br />

M1/1-SC<br />

0<br />

0 1 2 3 4 5 6 7 8<br />

Square root of time [h 1<br />

9<br />

/2<br />

]<br />

Infiltrated volume [l/m 2 ]<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

MR1-ID<br />

MR3-ID<br />

M1/1-ID<br />

M1/3-ID<br />

M2-ID<br />

M3/1-ID<br />

M4/2-ID<br />

M5-SD<br />

0<br />

0 1 2 3 4 5 6 7 8<br />

Square root of time [h 1<br />

Fig. 2. Absorbed volume (left) and infiltrated volume (right) as function of square root<br />

of time: Portland cement concretes with normal strength<br />

70<br />

9<br />

/2<br />

]


Absorbed volume [l/m 2 ]<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

M6-SD<br />

M7-SD<br />

M8/2-SD<br />

M8/6-SD<br />

M9-SD<br />

M10-SD<br />

M8/2-SC<br />

0<br />

0 1 2 3 4 5 6 7 8<br />

Pore-size determination from penetration tests on concrete with n-decane<br />

Square root of time [h 1<br />

Infiltrated volume [l/m 2 ]<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

M6-ID<br />

M7-SD<br />

M8/2-ID<br />

M8/6-ID<br />

M9-ID<br />

M10-ID<br />

0<br />

9<br />

/2<br />

]<br />

0 1 2 3 4 5 6 7 8<br />

Square root of time [h 1<br />

Fig. 3. Absorbed volume (left) and infiltrated volume (right) as function of square root<br />

of time: Portland cement concretes with high strength<br />

Absorbed volume [l/m 2 ]<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

M11/1-SD<br />

M11/3-SD<br />

M12-SD<br />

0<br />

0 1 2 3 4 5 6 7 8<br />

Square root of time [h 1<br />

9<br />

/2<br />

]<br />

Infiltrated volume [l/m 2 ]<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

M11/1-ID<br />

M11/3-ID<br />

M12-ID<br />

0<br />

0 1 2 3 4 5 6 7 8<br />

Square root of time [h 1<br />

Fig. 4. Absorbed volume (left) and infiltrated volume (right) as function of square root<br />

of time: Blast furnace slag cement concretes<br />

The properties of n-decane are given in Table 3.<br />

Table 3. Physical values of n-decane at 20°C<br />

Fluid Formula Density Surface tension Dynamic viscosity<br />

Ratio<br />

( / ) 0.5<br />

[kg/dm 3 ] [mN/m] [mN.s/m 2 ] [m 0.5 /s 0.5 ]<br />

n-decane C10H22 0.73 23.9 0.88 5.21<br />

With those values the results have been evaluated and are presented in Table<br />

4.<br />

71<br />

9<br />

/2<br />

]<br />

9<br />

/2<br />

]<br />

Otto-Graf-Journal Vol. 13, 2002


H.W. REINHARDT, A. PFINGSTNER<br />

Table 4. Pore parameters calculated from test results with n-decane<br />

Concrete<br />

Sorptivity<br />

l m -2 h -1/2<br />

penetration coefficient<br />

mm h -1/2<br />

r, from B<br />

µm<br />

cos θ =<br />

r, from S<br />

µm<br />

cos θ =<br />

So Sp Bo Bp 1 2/π 1 2/π<br />

MR 0.750 0.931 10.5 12.1 0.79 0.50 1.29 0.82<br />

M1 1.054 1.342 12.2 14.7 1.10 0.70 1.48 0.94<br />

M2 1.491 1.971 14.1 17.2 1.16 0.74 1.79 1.14<br />

M3 1.001 1.111 12.5 13.7 0.47 0.30 0.55 0.35<br />

M4 1.006 1.162 13.3 15.2 0.71 0.45 0.80 0.51<br />

M5 1.378 1.567 13.7 15.2 0.58 0.37 0.70 0.45<br />

M6 0.661 0.757 10.3 11.0 0.38 0.24 0.74 0.47<br />

M7 0.552 0.626 9.2 10.0 0.44 0.28 0.68 0.43<br />

M8 0.422 0.471 7.2 8.0 0.56 0.36 0.59 0.38<br />

M9 0.378 0.474 7.4 9.0 1.09 0.69 1.37 0.87<br />

M10 0.659 0.756 8.1 8.9 0.47 0.30 0.76 0.48<br />

M11 1.169 1.366 13.5 15.2 0.63 0.40 0.87 0.55<br />

M12 1.307 2.245 11.9 18.5 3.37 2.15 4.66 2.97<br />

Absorption depth [mm]<br />

130<br />

120<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

MR1-SD<br />

MR3-SD<br />

M1/1-SD<br />

M1/3-SD<br />

M2-SD<br />

M3/1-SD<br />

M4/2-SD<br />

M5-SD<br />

MR1-SC<br />

0 1 2 3 4 5 6 7 8 9<br />

Square root of time [h 1/2 ]<br />

Infiltration depth [mm]<br />

130<br />

120<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

MR1-ID<br />

MR3-ID<br />

M1/1-ID<br />

M1/3-ID<br />

M2-ID<br />

M4/2-ID<br />

M5-ID<br />

0 1 2 3 4 5 6 7 8 9<br />

Square root of time [h 1/2 ]<br />

Fig. 5. Absorption depth (left) and infiltration depth (right): Portland cement concretes<br />

with normal strength<br />

Absorption depth [mm]<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

M6-SD<br />

M7-ID<br />

M8/2-SD<br />

M8/6-SD<br />

M9-SD<br />

M10-SD<br />

0 1 2 3 4 5 6 7 8 9<br />

Square root of time [h 1/2 ]<br />

Infiltration depth [mm]<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

M6-ID<br />

M7-ID<br />

M8/2-ID<br />

M8/6-ID<br />

M9-ID<br />

0 1 2 3 4 5 6 7 8 9<br />

Square root of time [h 1/2 ]<br />

Fig. 6. Absorption depth (left) and infiltration depth (right): Portland cement concretes<br />

with high strength<br />

72


Absorption depth [mm]<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

M11/1-SD<br />

M11/3-SD<br />

M11/1-SC<br />

0<br />

0 1 2 3 4 5 6 7 8<br />

Pore-size determination from penetration tests on concrete with n-decane<br />

Square root of time [h 1<br />

9<br />

/2<br />

]<br />

Infiltration depth [mm]<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

M11/1-ID<br />

M11/3-ID<br />

M12-ID<br />

0 1 2 3 4 5 6 7 8 9<br />

Square root of time [h 1/2 ]<br />

Fig. 7. Absorption depth (left) and infiltration depth (right): Blast furnace slag cement<br />

concretes<br />

DISCUSSION<br />

The sorption and infiltration tests show in Fig. 2 and 7 an almost perfect<br />

straight line in the square root of time plot. A second general feature is that the<br />

infiltration results are mostly close. In the sorption results, i.e. the pressure of 20<br />

kPa is not important.<br />

Concrete mixes M1 to M5 are made with a water-cement ratio of 0.55 but<br />

with variations in the grading curve. Fig. 2 shows that suction proceeds the fastest<br />

with a maximum grain size of two millimetre and a high cement content of<br />

467 kg/m 3 (M2). The same is also true for the infiltration test. Also the mix with<br />

fine grading C16 and a cement content of 465 kg/m 3 is fast in suction but not so<br />

fast in infiltration. The mixes M1, M3 and M4 vary less because the cement content<br />

is rather similar and also grading curves are similar. The concrete mix MR<br />

shows the lowest suction and infiltration rates because the water-cement ratio is<br />

only 0.50.<br />

Fig. 3 contains the results of the high performance concrete with watercement<br />

ratios of 0.32 and typically a high cement content. Except M10 which<br />

has a maximum grain size of 2 mm the others have all 16 mm maximum grain<br />

size. There is however a variation in silica fume content. M6 and M10 have the<br />

fastest absorption and infiltration. the reason for that is that there is either no silica<br />

fume used (M6) or the cement content is very high with 615 kg/m 3 (M10).<br />

One should notice that the vertical scale of Fig. 3 is less than half of Fig. 2. All<br />

other high performance concrete mixes show smaller absorption and infiltration<br />

qualities.<br />

73<br />

Otto-Graf-Journal Vol. 13, 2002


H.W. REINHARDT, A. PFINGSTNER<br />

A blast furnace slag cement has been used in the mixes of Fig. 4. The sorptive<br />

tests led to results which were similar to those with Portland cement and a<br />

water-cement ratio of 0.55 (Fig. 2). The infiltration tests on M12 which has a<br />

maximum grain size of 2 mm is different from the others since the infiltration<br />

rate is rather high. A similar result has been obtained in Fig. 2 with Portland cement.<br />

The absorption depth and the infiltration depth are rather similar as can be<br />

seen from Figs. 5 to 7. The absolute results of MR, M1 to M5 and M11 and M12<br />

are almost the same i. e. the influence of the grading curve is not so strong as in<br />

the case of the absorbed fluid volume. However, a closer look to the small variations<br />

reveals that the trends of grain size and cement content are the same as in<br />

the case of absorbed volume.<br />

Fig. 6 shows the smallest absorption and infiltration depth as has been expected<br />

since these concretes are high performance ones.<br />

Table 4 contains the values of the sorptivity and the penetration coefficient.<br />

The sorptivity is the quotient of absorbed volume per area divided by the square<br />

root of time. The penetration coefficient gives the penetration depth divided by<br />

the square root of time. Both quantities characterise physical properties of a material.<br />

Both material constants have been derived from sorption and infiltration<br />

tests, So and Sp and Bo and Bp respectively.<br />

The sorptivity So is in the range of 1.0 to 1.49 l m -2 h -1/2 for concrete with a<br />

water-cement ratio of 0.55. The corresponding value Sp lies in the range of 1.11<br />

to 1.97 l m -2 h -1/2 . The difference between sorption test and infiltration test is<br />

consistent. High performance concretes M6 to M10 show considerably lower<br />

values So between 0.38 and 0.66 l m -2 h -1/2 and Sp between 0.47 and 0.76 l m -2<br />

h -1/2 . The mixes with blast furnace slag cement fit into the ranges of mixes with<br />

Portland cement except M12 in the infiltration test with a high value of 2.24 l<br />

m -2 h -1/2 .<br />

The penetration coefficient Bo ranges between 12.2 and 14.1 mm h -1/2 for<br />

mixes with a water-cement ratio of 0.55. Bp lies between 13.7 and 15.2 mm h -1/2 ,<br />

i. e. a slight increase due to the pressure of 20 kPa. With a lower water-cement<br />

ratio of 0.32 the Bo drops to 7.2 and 10.3 mm h -1/2 and Bp drops to 8.0 and 11.0<br />

mm h -1/2 . All results are consistent as the influence of grain size, water-cement<br />

ratio and pressure are concerned. The B-values for blast furnace slag cement<br />

concrete are similar to those of Portland cement concrete.<br />

74


Pore-size determination from penetration tests on concrete with n-decane<br />

The effective pore radius r can be calculated from Bo and Bp as shown in<br />

Eq. (4) or equivalently also from the sorptivities since penetration coefficient<br />

and sorptivity are linked together via the porosity ε (see Eq. (5)). Since the porosity<br />

levels out a similar equation occurs for the sorptivity as for the penetration<br />

coefficient.<br />

Table 4 contains the results. It can be seen that the pore sizes range be-<br />

tween about 0.2 to more than 1.0 µm when the content angle is taken to zero.<br />

The values decrease when the cosine of the contact angle is taken as 2/π [3]. The<br />

absorbed values increase with the water-cement ratio. A deviation is obvious for<br />

M12 with blast furnace slag cement and a high cement content.<br />

The values of r calculated from the sorptivity are always larger than calculated<br />

from the penetration coefficient. This feature is certainly due to the fact<br />

that the single size tube model is only a rough approximation of reality. It reality<br />

the smallest pores have the greatest capillary suction form while the complete<br />

filling of the pores are lacking behind. This means that the penetration coefficient<br />

should take into account smaller pores than the sorptivity does.<br />

As the absolute values of r are concerned these are rather large compared to<br />

pore sizes which are calculated from many intrusion experiments [8]. Obviously,<br />

the pores which are reached by the organic fluid are the larger ones and the very<br />

small pores are either filled by water of are inaccessible due to other reasons, for<br />

instance due to the viscosity of the fluid or of the size of the molecule. This<br />

could also mean that the model of the sharp wetting front is questionable. On the<br />

other hand, it means that the selection of various fluids could give an impression<br />

of the pore sizes which can be detected.<br />

CONCLUSIONS<br />

∗ The experiments with n-decane have proven the capillary suction law which<br />

states that the absorbed volume and the penetration depth are a function of<br />

the square root of time.<br />

∗ The water-cement ratio is the main parameter governing the absorption<br />

properties.<br />

∗ The infiltration test with 20 kPa leads only to a minor increase of the penetration<br />

and absorption.<br />

75<br />

Otto-Graf-Journal Vol. 13, 2002


H.W. REINHARDT, A. PFINGSTNER<br />

∗ The pore sizes determined from the absorption test are larger than from the<br />

penetration test indicating a different access to pores by different mechanisms.<br />

∗ Maximum aggregate size and various cement contents lead to different<br />

physical properties.<br />

REFERENCES<br />

[1] Reinhardt, H. W. (ed.): Penetration and permeability of concrete: barriers<br />

to organic and contaminating liquids. London: E&FN Spon, 1997<br />

[2] Aufrecht, M.: Beton als sekundäre Dichtbarriere gegenüber umweltgefährdenden<br />

Flüssigkeiten - Technologie und Konzept für den Schadensfall,<br />

Dissertation Universität Stuttgart, 1994<br />

[3] Sosoro, M.: Modell zur Vorhersage des Eindringverhaltens von organischen<br />

Flüssigkeiten in Beton, DAfStb, H. 446, Berlin 1995<br />

[4] Brauer, N.: Analyse der Transportmechanismen für wassergefährdende<br />

Flüssigkeiten in Beton zur Berechnung des Medientransports in ungerissene<br />

und gerissene Betondruckzonen, DAfStb, H. 524, Berlin 2002<br />

[5] Paschmann, H., Grube, H., Thielen, G.: Untersuchungen zum Eindringen<br />

von Flüssigkeiten in Beton sowie zur Verbesserung der Dichtheit des Betons.<br />

DAfStb, H. 450, Berlin 1995<br />

[6] DAfStb Guideline "Betonbau beim Umgang mit wassergefährdenden Stoffen",<br />

Part 4, Berlin 1996<br />

[7] Pfingstner, A.: Determination of concrete pore structure parameters from<br />

penetration tests with n-decane, Otto Graf Journal 10 (1999), pp. 113-127<br />

[8] Reinhardt, H.-W., Gaber, K.: From pore size distribution to an equivalent<br />

pore size of cement mortar. In: Materials & Structures 23 (1990), pp. 3-15<br />

76


Analysis of crystalline materials contained in a palestine kohl vessel from the 4th century A.D.<br />

ANALYSIS <strong>OF</strong> CRYSTALLINE MATERIALS PRESERVED IN A PAL-<br />

ESTINE KOHL VESSEL FROM THE 4 TH CENTURY A.D.<br />

UNTERSUCHUNGEN AM KRISTALLINEN INHALT EINES KA-<br />

JALGLASES AUS PALÄSTINA, 4. JH. A.D.<br />

ANALYSE DU CONTENU CRISTALLIN D'UN RECIPIENT A KHOL<br />

DE PALESTINE DATANT DU 4ÈME SIÈCLE A.D.<br />

Friedrich Grüner<br />

SUMMARY<br />

The crystalline content of a Late Roman glass vessel used to hold cosmetic<br />

eye shadow (kohl) was analysed. The analytical techniques used were X-ray<br />

powder diffraction and scanning electron microscopy. The materials detected are<br />

described, indicating that they may have been used as kohl.<br />

ZUSAMMENFASSUNG<br />

Es wurde der kristalline Inhalt eines spätrömischen Doppelglasgefäßes aus<br />

Palästina mit Röntgenpulverdiffraktometrie und am Rastelektronenmikroskop<br />

untersucht. Der Gefäßinhalt wurde wahrscheinlich als Augenschminke (Kajal)<br />

benutzt.<br />

RESUME<br />

Le contenu cristallin d'un récipient romain provenant de Palestine a été analysé<br />

au diffractomètre poudre aux rayons X et au microscope électronique à balayage.<br />

Le contenu du récipient était probablement utilisé comme maquillage<br />

pour les yeux (khôl).<br />

KEYWORDS: kohl, glass vessel, galena, anglesite, cerussite, x – ray diffraction<br />

1. INTRODUCTION<br />

The following is a report on a study of the materials contained in a double –<br />

tube flask from the collection of the “Württembergisches Landesmuseum” in<br />

Stuttgart. A typical glass vessel for holding cosmetic eye – paints might have<br />

one, two or four individual tubes.<br />

77<br />

Otto-Graf-Journal Vol. 13, 2002


F. GRÜNER<br />

Studies of kohl previously reported in the literature have dealt with Egyptian<br />

material /1/ and Late Roman to Byzantine material /2/. Galena (lead sulfide)<br />

and the basic copper carbonate, malachite were widely used in Egypt for this<br />

purpose. Both types were used in the Predynastic period, but the use of malachite<br />

had stopped by the end of the New Kingdom. The use of galena continued<br />

into the Coptic period. In Palestine glass vessels from the mid 4 th to early 7 th<br />

century only galena was found in previous studies /2/.<br />

The double – tube flask of the collection of the Württembergische Landesmuseum<br />

was made out of one long glass bleb, which had been divided into two<br />

sections. Than both sections had been blown separately. The glass is light green<br />

in colour and shows many bubbles. Both tubes contained a chunk of altered,<br />

dark grey kohl (Fig. 1). One tube with a broken fragment shows part of a bronze<br />

or copper rod, sticking in the altered kohl. The total height of the vessel is 9.9<br />

cm, the diameter of each tube is approximately 1.7 cm.<br />

Fig. 1: Double tube flask made of light green glass with 4 bails. One tube is broken and<br />

shows the preserved residue of the kohl and the corroded bronze rod.<br />

78


Analysis of crystalline materials contained in a palestine kohl vessel from the 4th century A.D.<br />

Fig 2: Detailed photograph of the rod sticking in the kohl.<br />

In Fig 2 some details of the chunk and the sticking rod are shown. The rod<br />

is partly covered with green, blue – green and red coloured corrosion products.<br />

The surface of the kohl is dark grey in colour and shows sometimes metallic<br />

brightness.<br />

2. EXPERIMENTAL PROCEDURES<br />

For the detailed analyses at least one sample of the altered kohl was removed<br />

from each tube. The samples were prepared for X – ray diffraction<br />

(XRD), using a Siemens D 500 diffractometer. Scanning electron microscopy<br />

with energy dispersive spectrometry (SEM/EDS) were used to identify the<br />

chemical elements present. A Camscan scanning electron microscope including<br />

a Noran Voyager energy dispersive x-ray analyzer was used for microscopic investigation.<br />

3. ANALYTICAL RESULTS<br />

The results of the analyses of the kohl vessels are presented below. Two<br />

samples were removed from the surface of the solid chunk in both tubes. In both<br />

samples the most common alteration products of galena, anglesite (PbSO4) and<br />

cerussite (PbCO3) were present in major amounts. But galena (PbS) was also<br />

observed in minor amounts (see Fig. 2). Both samples are nearly identical in<br />

composition and could not be distinguished with x – ray diffraction.<br />

79<br />

Otto-Graf-Journal Vol. 13, 2002


F. GRÜNER<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

(Counts) 200<br />

qr<br />

S<br />

100<br />

10<br />

1<br />

0<br />

5 10 20 30 40 50 60 70<br />

SchminkeP2 - File: SchminkeP2.RAW - Type: 2Th/Th locked - Start: 5.000 ° - End: 70.<br />

83-1720 (C) - Anglesite - Pb(SO4) - Y: 69.31 % - d x by: 1. - WL: 1.5406 - Orthorhombi<br />

36-1461 (*) - Anglesite, syn - PbSO4 - Y: 75.98 % - d x by: 1. - WL: 1.5406 - Orthorho<br />

2-Theta - Scale<br />

05-0592 (I) - Galena, syn - PbS - Y: 14.79 % - d x by: 1. - WL: 1.5406 - Cubic - a 5.936<br />

47-1734 (*) - Cerussite, syn - PbCO3 - Y: 10.30 % - d x by: 1. - WL: 1.5406 - Orthorho<br />

Fig. 2: XRD plot of the powdered kohl sample. Anglesite and cerussite occurred as common<br />

alteration products, but galena is also present.<br />

It is reasonable that finely ground galena for use as kohl would have<br />

enough time to alterate into anglesite and cerrusite during ca. 1500 years of storage<br />

under unknown archaeological conditions. The analyses of a small piece of<br />

the rod, sticking inside the kohl showed cuprite and brochantite (see Fig. 3).<br />

3000<br />

2000<br />

1000<br />

(Counts)<br />

qr<br />

S<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

10<br />

0<br />

5 10 20 30 40 50 60 70<br />

Schminke P1 - File: SchminkeP1.RAW - Type: 2Th/Th locked - Start: 5.000 ° - End: 70<br />

75-1531 (C) - Cuprite - Cu2O - Y: 90.16 % - d x by: 1. - WL: 1.5406 - Cubic - a 4.26000<br />

43-1458 (I) - Brochantite-M - Cu4SO4(OH)6 - Y: 2.72 % - d x by: 1. - WL: 1.5406 - Mon<br />

2-Theta - Scale<br />

83-1720 (C) - Anglesite - Pb(SO4) - Y: 3.25 % - d x by: 1. - WL: 1.5406 - Orthorhombic<br />

36-1461 (*) - Anglesite, syn - PbSO4 - Y: 8.38 % - d x by: 1. - WL: 1.5406 - Orthorhom<br />

47-1734 (*) - Cerussite, syn - PbCO3 - Y: 0.61 % - d x by: 1. - WL: 1.5406 - Orthorhom<br />

Fig. 3: XRD plot of a mixed sample with kohl (anglesite, cerussite) and alteration products of<br />

the bronze rod (cuprite, brochantite).<br />

80


Analysis of crystalline materials contained in a palestine kohl vessel from the 4th century A.D.<br />

The complete vessel was placed under the scanning electron microscope<br />

for further investigations. The original surface of the kohl was studied in the<br />

broken tube. Elemental analysis showed high concentrations of lead and sulphur<br />

and some copper in the surrounding material of the rod, indicating a bronze alloy<br />

or copper metal. Other elements like Sb were absent, eliminating the use of<br />

stibnite as possible component in the kohl material.<br />

Fig. 4: Elemental analysis of a galena cube at the surface showing mainly Pb,<br />

S is buried by the Pb peak.<br />

Photomicrographs of the surface are shown in Fig. 5 and 6. The kohl consists<br />

of a very fine grained groundmass with hypidiomorphic intergrown cubes<br />

of galena.<br />

Fig. 5: Photomicrograph of the fine grained groundmass with intergrown galena cubes.<br />

81<br />

Otto-Graf-Journal Vol. 13, 2002


F. GRÜNER<br />

4. CONCLUSIONS<br />

Fig. 6: Detailed photomicrograph of a galena cube.<br />

In this study evidence was found only for galena as material used for the<br />

production of kohl. Both flasks contained identical materials. For its use as ancient<br />

make up (eye shadow) it should be ground very fine. It is reasonable to<br />

assume that most of the galena is altered to anglesite and cerussite during the<br />

long period of storage under unknown archaeological conditions.<br />

5. ACKNOWLEDGEMENT<br />

The author wish to thank Mrs. Dr. Honroth at the Württembergisches Landesmuseum<br />

for providing the sample material.<br />

REFERENCES<br />

[1] LUCAS, A., 1962: Ancient Egyptian Materials and Industries, 4th ed., revised<br />

by J.R. Harris (Edward Arnold, London, 1962), pp 80-84<br />

[2] BLANCHARD, W.D., STERN, E.M., STODULSKI, L.P., 1992: Analysis of Materials<br />

contained in Mid-4 th to Early 7 th Century A.D. Palestinian Kohl Tubes,<br />

Mat. Res. Soc. Symp. Proc. Vol. 267, pp 239-254<br />

82


Acoustic emission analysis of SFRC beams under cyclic bending loads<br />

ACOUSTIC EMISSION ANALYSIS <strong>OF</strong> SFRC BEAMS UNDER CYCLIC<br />

BENDING LOADS<br />

SCHALLEMISSIONSANALYSE AN STAHLFASERBETON UNTER<br />

ZYKLISCHEN BIEGEVERSUCHEN<br />

ANALYSE DES ÉMISSIONS ACOUSTIQUES DE BETONS<br />

RENFORCES PAR FIBRES D'ACIER SOUS FLEXION CYCLIQUE<br />

Florian Finck<br />

SUMMARY<br />

To further understand the failure processes within steel fibre reinforced<br />

concrete members under cyclic load, a series of 3-point bending tests was<br />

performed on notched beams using quantitative acoustic emission (AE)<br />

measurements. AE measurements supplement the mechanical test data by<br />

providing a large quantity of information about the progress of damage in terms<br />

of time, location and cause. Quantitative analysis of acoustic signals consists of<br />

an accurate localization of the fracturing and under certain assumptions an<br />

inversion for the moment tensor can be performed to gain information about the<br />

total energy released and the orientation of the rupture plane. After<br />

decomposition of the moment tensor, the type of rupture process can be<br />

quantified and visualized using ostensive crack models like those for shear and<br />

opening. In this article some first results of the fatigue test series and the<br />

analysis of the AE-data are presented.<br />

ZUSAMMENFASSUNG<br />

Zur Untersuchung von Schädigungsprozessen innerhalb<br />

stahlfaserbewehrter Betonbauteile unter zyklischer Last wurde eine Reihe von<br />

3-Punkt-Biegeversuchen durchgeführt und die auftretenden Schallereignisse<br />

aufgezeichnet. Neben den mechanischen Prüfdaten können so Informationen<br />

über den Zeitpunkt und den genauen Ort der fortlaufenden Schädigung<br />

gewonnen werden. Darüber hinaus kann unter bestimmten Voraussetzungen<br />

eine Inversion auf den Momententensor durchgeführt werden, welcher<br />

bruchmechanische Parameter, wie z. B. die Bruchenergie und die Orientierung<br />

der Bruchflächen enthält. Nach einer geeigneten Zerlegung des Tensors können<br />

die enthaltenen Bruchmoden quantifiziert und durch anschaulich Bruchmodelle,<br />

83<br />

Otto-Graf-Journal Vol. 13, 2002


F. FINCK<br />

wie die des Öffnungs- oder des Scherbruches beschrieben werden. In diesem<br />

Artikel werden erste Ergebnisse der Ermüdungsversuche und der<br />

Schallemissionsanalyse vorgestellt.<br />

RESUME<br />

Afin d'analyser les processus de détérioration à l'intérieur d'éléments en<br />

béton armé de fibres d'acier sous chargement cyclique, nous avons réalisé une<br />

série d'essais de flexion 3 points et enregistré les émissions acoustiques. Ainsi<br />

nous avons pu gagner, outre les données mécaniques, des informations sur la<br />

nature, le moment et le lieu exacts des émissions acoustiques, et, par là, sur la<br />

progression de la rupture. Dans certaines conditions, le tenseur des moments<br />

peut être calculé par inversion. Celui-ci contient des informations sur l'énergie<br />

libérée et l'orientation de la surface de rupture. Après la décomposition du<br />

tenseur de moment, les modes de rupture peuvent être quantifiés et visualisés à<br />

l'aide de modèles simples, comme ceux pour le cisaillement et l'ouverture. Dans<br />

cet article les premiers résultats des essais de fatigue et de l'analyse des<br />

émissions acoustiques sont présentés.<br />

KEYWORDS: fatigue test, steel fibre reinforced concrete, acoustic emission,<br />

moment tensor<br />

INTRODUCTION<br />

Steel fibre reinforced concrete (SFRC) has been in use since the late 60s,<br />

mainly as shotcrete for underground constructions and flooring. Some<br />

advantages of SFRC are a minimization of crack widths and permeability or an<br />

increased toughness. Although various basic works on the behaviour of SFRC<br />

members have been published [e.g. WEILER 2000], there remain open questions<br />

about the mechanical laws and processes that exist during failure. The<br />

interaction between steel fibre reinforcement and a cementitious matrix, as well<br />

as the characterization of failure of SFRC members, are mayor topics of the<br />

subproject A6 in the collaborative research centre SFB 381.<br />

In a fatigue test series with steel fibre reinforced concrete (SFRC) beams<br />

under cyclic 3-point bending load we studied the behaviour of ongoing failure.<br />

Thereby, the investigation of acoustic emissions under changing conditions<br />

(e. g. load, amplitude and frequency) was the main focus, not an accurate<br />

statistical investigation of the members. The external, i. e. visible, fatigue is<br />

84


Acoustic emission analysis of SFRC beams under cyclic bending loads<br />

given by mechanical test data containing the deflection in dependence on load<br />

and the number of load cycles. Additionally, acoustic emission analysis yields<br />

information about the internal processes of failure, which correspond to the<br />

emission of seismic energy due to cracking. Each single crack (event) is<br />

localized and for a selection of events moment tensors are evaluated. A suitable<br />

decomposition of this tensor [JOST & HERMANN 1989] yields parameters such as<br />

the energy released during rupture, the orientation and the size of the rupture<br />

plane and a combination of ostensive fracture modes. From these parameters the<br />

stress regime in the member and the mechanics of failure can be derived.<br />

SETUP <strong>OF</strong> THE FATIGUE TEST SERIES<br />

For the test series beams with dimensions 15 cm X 15 cm X 70 cm with a<br />

1.5 Vol.% reinforcement of Dramix ® RC 80/60 BN steel fibres (length: 60 mm,<br />

diameter: 0.75 mm) were used. On the bottom surface in the middle of the beam<br />

a notch with a depth of approximately 3.3 cm caused a well-defined start of a<br />

crack. The transmission of force by the servo hydraulic 100 kN test frame was<br />

realized using three steel cylinders. The two fixed lower supports had a distance<br />

of 60 cm and the upper support at the centre was free to rotate around the<br />

longitudinal axis of the beam to avoid torsional stress. Figure 1 shows details of<br />

the test setup, with the AE sensors attached to the specimen.<br />

Figure 1: Sketch of a notched SFRC beam under a cyclic 3-point bending load. AE sensors<br />

are mounted around the area of damage.<br />

85<br />

Otto-Graf-Journal Vol. 13, 2002


F. FINCK<br />

Piston displacement, load and crack opening were recorded over time. The<br />

acoustic emissions were recorded by an 8-channel transient recorder with a<br />

sample rate of 2.5 MHz per channel and an amplitude resolution of 12 Bit. Eight<br />

piezo-electric accelerometers were evenly distributed on the surfaces of the<br />

beam.<br />

First, the range of the failure load was evaluated in two static bending tests.<br />

Although, a large variation of this value has to be expected due to a change in<br />

the distribution of fibres and the composition of concrete in the beam, this value<br />

provides an estimate of the load profile for the dynamic tests. During the<br />

dynamic tests, load, amplitude and frequency were adapted to the progress of<br />

damage and the AE activity.<br />

PRESENTATION <strong>OF</strong> THE RESULTS<br />

In the following section the results of one test run are presented. A load of<br />

7.5 kN was applied statically before the load cycles began. In the second plot in<br />

figure 2 the different phases with changing load, amplitude and frequency<br />

during the fatigue test are labelled and coded by blue (dark grey) and green<br />

(light grey) respectively to be identified in the load over crack opening<br />

(displacement) plot and the crack opening over time or cycles plot. The<br />

frequency of the sinusoidal load cycles was 1 Hz from phase G. From that point<br />

the number of load cycles equals time in seconds plus 5000. On the bottom a<br />

histogram of the acoustic emission activity can be correlated with the ongoing<br />

failure in the beam.<br />

With each increase of the maximum load the crack opening, as well as the<br />

AE activity, increases rapidly but a relaxation is visible with the continuation of<br />

the test. The extending areas of the hysteretic ellipses in the load over crack<br />

opening plots are another indicator for the damage progress.<br />

86


Acoustic emission analysis of SFRC beams under cyclic bending loads<br />

Figure 2: Mechanical test data of one fatigue test. From top: load deflection curve,<br />

load over time profile, crack opening over time and the AE activity.<br />

87<br />

Otto-Graf-Journal Vol. 13, 2002


F. FINCK<br />

During the test a total of 385 acoustic emissions were recorded from which<br />

377 could be localized. The data quality was very good regarding noise due to<br />

the cyclic bending and the accuracy of the localization lies in a range of about<br />

1 cm.<br />

Figure 3 shows the located events from three prospectives: from above, a<br />

front view and a side view. The markers representing the sources of the acoustic<br />

emissions are given in the legend, corresponding to the test periods starting with<br />

the according labels (see also figure 2, 2 nd plot). This illustrates the temporal<br />

growth of the damaged zone.<br />

Figure 3: Projection of the localization of acoustic emissions. The different markers<br />

correspond to various test periods, as indicated in the legend.<br />

88


Acoustic emission analysis of SFRC beams under cyclic bending loads<br />

Nearly all acoustic emissions lie in the central region of the specimen in the<br />

vicinity of the main crack. Due to the steel fibres, some smearing of the damage<br />

zone takes place. The early events come from the lower half of the specimen<br />

since the crack starts in the edge of the notch due to tension. Then steel fibres<br />

are activated and accommodate load as they are pulled out. The crack grows<br />

towards the top of the specimen under a relative constant spatial AE activity<br />

from the complete region under fatigue. The width of the damage zone in ydirection<br />

is more or less in the range of the fibre length (i. e. 60 mm). This<br />

suggests that always the short end of the fibre is being pulled out, as expected.<br />

THE INVERSION <strong>OF</strong> MOMENT TENSORS<br />

To gather more information about the mechanical reasons of failure, we<br />

calculate moment tensors with a relative moment tensor inversion (RMTI)<br />

technique developed by DAHM 1993. The application and some theory of this<br />

method on acoustic emission data has been described previously [e. g. FINCK<br />

2002, FINCK 2001, GROSSE 1999]. An advantage of the RMTI is the elimination<br />

of the Green’s functions [AKI & RICHARDS 1980] of the medium by an inversion<br />

for a cluster of events. Two circles in figure 3 indicate the orientation of two<br />

clusters of 16 events each which were inverted for their moment tensors. C1 is a<br />

cluster from very early events in the tension zone, events in C2 originate from<br />

an advanced stage of the test.<br />

Figure 4: Radiation patterns of seismic energy and results from the moment tensor inversion<br />

for selected events from cluster C1 an C2 (see figure 3). Mr is the relative seismic moment,<br />

ISO is the isotropic component of the event and DC is the double-couple portion of the<br />

deviatoric component.<br />

89<br />

Otto-Graf-Journal Vol. 13, 2002


F. FINCK<br />

A combination of two different crack modes is expected for the performed<br />

test. First, the opening of the main crack should radiate energy similar to event<br />

EV 29 in cluster C1. An opening mainly perpendicular to the vertical cracksurface<br />

with particle motion outwards parallel to the y-axis and a significant<br />

remaining isotropic component. This conforms to mode 1. Second, a great<br />

number of events should correspond to the pull-out of steel fibres. Mainly a<br />

double couple mechanism for shear failure is expected in this case, with a small<br />

isotropic component only (conforming mode 2 or 3).<br />

A selection of the results is shown in figure 4. The first row contains results<br />

for cluster C1, the second for C2. Under the top view projection of the radiation<br />

patterns of seismic energy the relative seismic moment Mr, the isotropic<br />

component ISO and the double-couple portion DC of the deviatoric component<br />

are given with errors. The best results from a boot strap analysis [EFRON &<br />

TIBSHIRANI, 1986] can be found in the brackets. The majority of the moment<br />

tensors consist of a very small positive isotropic component. For event EV 29<br />

the errors are very high, so the results must be doubted, though the radiation<br />

pattern fits to first expectations. For the other events in C1 the DC component is<br />

rather small. The deviatoric components of these events can not be explained by<br />

one pure shear crack. Other deviatoric phenomena seem to take place. But the<br />

early events in C1 vary from the results for C2. The events occurred at an<br />

advanced stage of the test, where the fibre-pull out seems to be the major reason<br />

for acoustic activity. Here, the DC component is large.<br />

The results have a great stability for a changing composition of the<br />

investigated clusters. In earlier investigations the results for single events were<br />

dependent on the composure of the cluster, meaning that the existence or nonexistence<br />

of other events had an influence on the results. Also the errors are<br />

small.<br />

CONCLUSIONS<br />

We successfully obtained high quality acoustic emission data from cyclic<br />

bending tests of steel fibre reinforced concrete beams. The majority of these<br />

events could be localized and an inversion for the moment tensor of a selection<br />

of events was performed. Stable results from the moment tensor inversion can<br />

partially be correlated with the expected mechanisms of failure – an opening of<br />

the crack (mode 1) and mainly the pull-out of fibres (mode 2 or 3). Acoustic<br />

90


Acoustic emission analysis of SFRC beams under cyclic bending loads<br />

emission analysis helps understanding complex mechanisms of failure even over<br />

a large period of time.<br />

The decomposition of the moment tensor into crack modes known from<br />

geological investigations seem not to be suitable for experimental data from the<br />

laboratory. A decomposition taking crack modes from engineering models in to<br />

account, is needed. This subject will be of intensive interest in future<br />

ACKNOWLEDGEMENTS<br />

These investigations are part of our work in the collaborative research<br />

centre SFB 381 at the University of Stuttgart which is financially supported by<br />

the Deutsche Forschungsgemeinschaft (DFG). We gratefully acknowledge this<br />

support. The author would also like to thank Lindsay Linzer, Rock Engineering<br />

Dept., CSIR Miningtek for providing the radiation pattern generator.<br />

REFERENCES<br />

AKI, K., RICHARDS, P.G.: Quantitative Seismology; Volume 1. Freeman and<br />

Company, New York, 1980.<br />

DAHM, T.: Relativmethoden zur Bestimmung der Abstrahlcharakteristik von<br />

seismischen Quellen. Dissertation, Universität Karlsruhe, 1993.<br />

EFRON, B. TIBSHIRANI, R.: Bootstrap methods for standard errors, confidence<br />

intervals and other measures of statistical accuracy. Statistical Science 1,<br />

pp.54-77, 1986.<br />

FINCK, F.: Application of the moment tensor inversion in material testing. Otto-<br />

Graf-Journal, Vol. 12, pp. 145-156, 2001.<br />

FINCK, F., MOTZ, M., GROSSE, C.U., REINHARDT, H.-W., KRÖPLIN, B.:<br />

Integrated Interpretation and Visualization of a Pull-Out Test using Finite<br />

Element Modelling and Quantitative Acoustic Emission Analysis. Online<br />

publication: http://www.ndt.net/article/v07n09/09/09.htm, 2002.<br />

GROSSE, C.U.: Grundlagen der Inversion des Momententensors zur Analyse von<br />

Schallemissionsquellen. Werkstoffe und Werkstoffprüfung im Bauwesen.<br />

Festschrift zum 60. Geburtstag von Prof. Dr.-Ing. H.-W. Reinhardt, Libri<br />

BOD, Hamburg, pp. 82-105, 1999.<br />

91<br />

Otto-Graf-Journal Vol. 13, 2002


F. FINCK<br />

JOST, M.L., HERMANN, R.B.: A students guide to and review of moment tensors.<br />

Seism. Res. Letters, Vol. 60, pp. 37-57, 1989.<br />

WEILER, B.: Zerstörungsfreie Untersuchung von Stahlfaserbeton. Dissertation an<br />

der Universität Stuttgart, Shaker Verlag, 2000.<br />

92


About the Improvement of US measurement techniques<br />

ABOUT THE IMPROVEMENT <strong>OF</strong> US MEASUREMENT TECHNIQUES<br />

FOR THE QUALITY CONTROL <strong>OF</strong> FRESH CONCRETE<br />

GERÄTETECHNISCHE FORTSCHRITTE BEI DER QUALITÄTS-<br />

SICHERUNG VON FRISCHBETON MIT ULTRASCHALL<br />

AMÉLIORATION DES TECHNIQUES DE MESURE ULTRASONIQUES<br />

POUR LE CONTRÔLE DE QUALITÉ DU BÉTON FRAIS.<br />

Christian U. Grosse<br />

ABSTRACT<br />

Over the last decade a testing method based on ultrasound was developed<br />

at the Institute of Construction Materials of the University of Stuttgart to control<br />

the hardening process of cementitious materials by means of non-destructive<br />

testing. This paper describes the systematic improvement and re-design of the<br />

testing system and the investigation methods.<br />

ÜBERSICHT<br />

Am Institut für Werkstoffe im Bauwesen der Universität Stuttgart wurde in<br />

den letzten zehn Jahren ein Ultraschallverfahren zur die Analyse des Erstarrens<br />

und Erhärtens von zementgebundenen Materialien entwickelt. Der Artikel<br />

beschreibt die fortdauernde Verbesserung der Messtechnik im Hinblick auf die<br />

Qualitätskontrolle von Frischbeton und –mörtel.<br />

RESUME<br />

A l'université de Stuttgart, un procédé ultrasonique de contrôle de la prise<br />

et du durcissement des matériaux cimentaires a été développé au courant des dix<br />

dernières années. L'article présent décrit l'amélioration continue des dispositifs<br />

et de la procédure de mesurage en ce qui concerne le contrôle de la qualité des<br />

béton et mortiers frais.<br />

KEYWORDS: Fresh concrete, non-destructive testing, ultrasound<br />

93<br />

Otto-Graf-Journal Vol. 13, 2002


C. U. GROSSE<br />

INTRODUCTION<br />

Nowadays the characterization of cement-based materials during the<br />

stiffening process by ultrasound measurement techniques is well established.<br />

This paper deals with the ultrasound technique used in through transmission. In<br />

numerous publications [e. g. GROSSE & REINHARDT 1994, GROSSE ET AL. 1999,<br />

REINHARDT ET AL. 1999a] the patented test method [REINHARDT ET AL. 1999b]<br />

developed at the University of Stuttgart was described earlier. Methods based on<br />

ultrasound are better suited for the characterization of the setting and hardening<br />

of cement based materials than traditional test methods like the Vicat-needletest,<br />

the penetrometer test or the flow test, because the travel time, the<br />

attenuation and the frequency content of ultrasound waves sent through the<br />

material are closely correlated with the elastic properties of concrete or mortar.<br />

These parameters can be continuously monitored during the stiffening giving a<br />

comprehensive picture instead of snapshots of workability for example.<br />

A sophisticated device was developed and numerous experiments have<br />

been conducted in the past, investigating the influence of water-to-cement ratio,<br />

the type of cement, the use of additives and admixtures, the air bubble content<br />

and so far, for the setting and hardening of concrete or mortar. Newer features<br />

are the extraction of the initial and final setting time out of the signals [GROSSE<br />

& REINHARDT 2000] and the parallel registration of the state of hydration.<br />

However, the earlier described device lacks of handiness and several features,<br />

which could improve the art of such measurements further.<br />

EVOLUTION AND SURVEY <strong>OF</strong> DEVICES EXISTING AT THE<br />

UNIVERSITY <strong>OF</strong> STUTTGART<br />

The first measurements to control the setting and hardening of concrete at<br />

the University of Stuttgart using ultrasound are dated back to the early 1990’s.<br />

These experiments have been conducted in the frame of a research project<br />

sponsored by the German Reinforced Concrete Committee (DAfStb, V 345) and<br />

are published in the 1994 th volume of the Otto-Graf-Journal [GROSSE &<br />

REINHARDT 1994]. The tests were carried out with a rough set-up using a<br />

container made of 40 mm thick styrene foam (Styropor) plates and the dimensions<br />

300 mm × 300 mm × 80 mm (Fig. 1). The emitter was a simple steel ball impactor<br />

dropping a ball of 4 mm diameter on to a small aluminium plate, which was placed<br />

in contact with the fresh concrete.<br />

94


About the Improvement of US measurement techniques<br />

Fig. 1: Set-up with steel ball impactor and receiver.<br />

Dimensions of the container: 300 mm x 300 mm x 80 mm<br />

Later on the ideas were proofed by numerous students during their Diploma<br />

thesis, technician and student research assistants. Jochen FISCHER [1994], Bernd<br />

Weiler and the author [Grosse 1996] developed a device using three long styrene<br />

foam walls and two smaller rigid side walls out of aluminium plates and the same<br />

simple impactor as used earlier (Fig. 2).<br />

Fig. 2: Set-up of the smaller styrene foam container with two aluminium side walls.<br />

Dimensions of the container: 200 mm x 80 mm x 60 mm.<br />

95<br />

Otto-Graf-Journal Vol. 13, 2002


C. U. GROSSE<br />

While the first set-up caused problems to determine the correct travel<br />

distance of the pulse to the receiver, what is essential for velocity measurements,<br />

the second set-up was unsatisfactory as well, because of interfering waves<br />

resulting from the walls.<br />

A re-design of the device described in REINHARDT ET AL. [1996], WINDISCH<br />

[1996], HERB [1996] and REINHARDT ET AL. [1998] for concrete measurements<br />

was patented later [Reinhardt et al. 1999] and consisted of a mould completely<br />

out of PMMA of the dimensions 160 mm × 200 mm × 70 mm (Fig. 3), but the<br />

handling of this device was poor and the leakiness of the container caused a<br />

penetration of fluids especially during the compaction process. However, the<br />

device was modified by BEUTEL [1999] and tested to be suitable for field<br />

measurements.<br />

Fig. 3: Set-up of the first container out of PMMA only.<br />

Dimensions of the container: 160 mm x 200 mm x 70 mm.<br />

In the meantime the development of a test set-up adjusted to mortar<br />

materials run parallel. Due to smaller grain sizes (usually less 2 mm) the<br />

dimensions of a mortar device can significantly be reduced. Not all steps of the<br />

development can be described in detail. Figure 4 gives an impression of the<br />

iterative process of finding a suitable shape for the mould. The final container<br />

[GROSSE ET AL. 1999] had two walls of PMMA and a U-shaped rubber foam<br />

with an inner volume of 40 cm³ for the mortar (Fig. 5).<br />

96


About the Improvement of US measurement techniques<br />

Fig. 4: Evolution of containers, tested for mortar applications.<br />

There are two main advantages in respect to the concrete set-up. The<br />

amount of material necessary to be tested is significantly reduced and so is the<br />

amount of waste. Secondly, the pulse is not excited by an impactor, what is an<br />

advantage in terms of reliability and handiness.<br />

Fig. 5: Final set-up of the mortar device showing the mould (rubber foam and PMMA-walls)<br />

and the transducers.<br />

97<br />

Otto-Graf-Journal Vol. 13, 2002


C. U. GROSSE<br />

Consequently, a new device, illustrated in Fig. 6, was developed by<br />

STEGMAIER [2000] and Herb, whereby the dimensions were changed to 400 mm<br />

× 59 mm ×130 mm in accordance to the smaller mortar device. Similar to<br />

former concrete devices the wave is generated using a steel ball exciter, referred<br />

to as Ultrasound Impactor (USIP), hitting a small plate fixed on the PMMA<br />

casing. The resulting excitation can be seen as broad banded, having a relatively<br />

wide frequency bandwidth of up to 100 Hz.<br />

Fig.6: FreshCon device for concrete measurements developed on the basis of the older mortar<br />

device (see Fig.5).<br />

Though many difficulties were eliminated the system still shows up<br />

unresolved problems. Specifically, a wave travelling through the container wall<br />

which onset is detected before the irradiating primary wave can be observed.<br />

Further on, the energy evolution during the hardening of concrete is still difficult<br />

to analyze since the steel ball transmitter USIP, as a mechanical system,<br />

provides unreliable energy data and the plate where the steel ball is shot on<br />

easily disbond so that the coupling of the excited energy into the PMMA<br />

container changes during tests. These factors influence the obtained results and<br />

the reproducibility of tests.<br />

98


About the Improvement of US measurement techniques<br />

To summarize the pros and cons of the concrete device the following<br />

statements can be given:<br />

• Less reproducibility of impact energy results in energy determination uncertainties.<br />

• Contact problems of steel plate at PMMA container (delaminations).<br />

• Unreliable generation of impacts due to steel balls sticking in the impactor rod.<br />

• Possible side wall waves disturbing the measurement at early ages during<br />

investigations of very “slow” materials.<br />

• Pressure air equipment necessary for the impactor.<br />

It should be stated, that at the end of 2000 no possibility to record the<br />

hydration temperature in the same sample during the ultrasound measurements<br />

as a secondary control technique was available using the existing FreshCon<br />

software.<br />

ANALYSIS METHODS<br />

Using ultrasound methods the degree of hardening is characterized by the<br />

change of significant parameters. Not only the travel time of the ultrasonic pulse<br />

through the testing device, consequently the velocity of compressional waves<br />

but also the frequency content and the relative energy are recorded.<br />

On the basis of suitable parameters, e.g. the frequency content of the signal<br />

over the time, additionally a wavelet transformation (WT) is carried out in order<br />

to gather as much information as possible from the raw signal to evaluate<br />

concrete and mortar, respectively. The program AutoCWT, able to apply the<br />

WT was implemented by MANOCCHIO [2001], where the calculation kernel is<br />

taken from the program IWB-CWT, coded by BAHR [2001a]. More information<br />

about the application of wavelets in the characterization of the setting and<br />

hardening of cementitious materials can be obtained from Grosse [2001],<br />

GROSSE & REINHARDT [2001] or MANOCCHIO [2001].<br />

Further on as a new feature of the FreshCon system the ability to record the<br />

temperature evolution over the time is introduced as well as the determination of<br />

the associated hydration heat, following DIN-EN 196 part 9.<br />

99<br />

Otto-Graf-Journal Vol. 13, 2002


C. U. GROSSE<br />

Fig. 7: Set-up (top) for measurements of elastic parameters (velocity, energy, frequency) as<br />

well as the temperatures. Bottom: Screenshot of the new program version 2.04 of FreshCon.<br />

100


About the Improvement of US measurement techniques<br />

MEASUREMENTS <strong>OF</strong> HYDRATION TEMPERATURES<br />

The program FreshCon was extended to enable temperature measurements<br />

using the multi-channel National instrument computer board NI 4351. A<br />

screenshot of this program version is represented in Fig. 7, where also a picture<br />

of the test setup is given. The temperature distribution occurring during the<br />

hydration process is a characteristic for the state of hardening of cement-based<br />

materials. Therefore, statements can be deduced according the relations between<br />

two different materials. It should be mentioned that the hydration process in the<br />

semi adiabatic container in comparison to the testing device for ultrasound<br />

measurements is faster due to the accumulation of heat in the temperature<br />

container. Consequently, the sound velocity and temperature distribution cannot<br />

be correlated directly. A picture of the testing device for the determination of the<br />

heat of hydration, taken from KÖBLE [1999] is given in Fig. 8.<br />

328<br />

181<br />

232<br />

292<br />

cable Thermokabel to digital geführt thermometer in<br />

einem Plexiglasröhrchen<br />

wooden Holzdeckel lid<br />

rubber Zellgummidichtung, foam, d = 20 d mm = 2cm<br />

seal Dichtung<br />

polystyrene, Polystyrol, d = d = 5cm 50 mm<br />

seal Dichtung<br />

plate Plexiglasscheibe of lucite to fix zum thermocouple fixieren<br />

des Temperaturfühlers<br />

can Mörteldose, filled with h mortar = 12cm<br />

Dewar Dewar-Gefäß container Ø 16cm 160 mm<br />

polystyrene Polystyrolscheibe<br />

air Luft<br />

polystyrene<br />

Stützvorrichtung<br />

to hold<br />

aus<br />

Dewar<br />

Polystyrol<br />

container in upright position<br />

wooden Gehäuse box aus Holz<br />

Fig. 8: Set-up of the calorimeter device according KÖBLE [1999], dimensions in mm.<br />

Regarding the determination of the heat of hydration DIN EN 196 - 9 is<br />

followed, accordingly. The aim of the semi-adiabatic method, namely the<br />

Langavant - method, applicable to mortar, is the determination of the released<br />

amount of heat during the hydration process. For this purpose the online version<br />

of the program FreshCon, implemented by BAHR [2001b], was modified. The<br />

system is now able to record the temperature in the calorimeter (Fig. 8), the<br />

temperature in the tested material (Fig. 7, top) and the air temperature. All these<br />

data are obtained automatically and stored together with the data of the<br />

ultrasound measurements. A typical result is represented in Fig. 9, showing all<br />

101<br />

Otto-Graf-Journal Vol. 13, 2002


C. U. GROSSE<br />

three temperatures as a function of the concrete age. The temperature effect is<br />

dominant at the curve obtained using the calorimeter (straight line) due to the<br />

semi-adiabatic conditions in the Dewar container. Testing concrete materials a<br />

hydration effect is clearly seen at the temperature data obtained in the ultrasound<br />

container (dotted line) compared to the air temperature (dashed line).<br />

Air and Concrete temperature [°C]<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

Hydration<br />

Concrete<br />

Air<br />

Rilem Round Robin Tests<br />

iBMB: 18/19 Apr 2002<br />

Mixture: RB03 (concrete)<br />

Remarks: very dry, water added<br />

0<br />

0<br />

0 200 400 600 800 1000 1200 1400<br />

Time [min]<br />

Fig. 9: Results of temperature measurements using the new FreshCon version.<br />

DEVELOPMENT <strong>OF</strong> A NEW CONCRETE FRESHCON DEVICE<br />

Comparing the two devices for mortar and concrete measurements, the<br />

advantages of the mortar set-up should be summarized:<br />

• Good reproducibility of signal generation (energy).<br />

• Easy onset time determination due to signals with good reproducibility.<br />

• No pressure air equipment necessary.<br />

• Full automatic measurement and storing of waveforms.<br />

• Automatic determination of velocity and energy as well as additional parameters.<br />

• Full control of measurement parameters.<br />

To enhance the handling of concrete experiments accordingly, a new<br />

design of the device shown in Fig. 6 was suggested. For the new device the<br />

102<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

Hydration Heat [°C]


About the Improvement of US measurement techniques<br />

impactor was replaced by an US transmitter in combination with a wideband<br />

power amplifier and a function generator. No pressure air is need for this device;<br />

a control sensor next to the impactor recording the emitting pulse is no longer<br />

required.<br />

velocity [m/s]<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

velocity impactor<br />

velocity piezo<br />

rel. energy impactor<br />

rel. energy piezo<br />

0 120 240 360 480 600 720<br />

age [min]<br />

Fig. 10: Comparison experiments between impactor and US emitter.<br />

In several preliminary experiments the new set-up was tested by<br />

MANOCCHIO [2001] to compare the results of measurements by the impact<br />

generated signals and by piezo-electric emitters in parallel (Fig. 10). The two<br />

curves at the bottom of the right side in Fig. 10, recorded at the same time using<br />

the same material, represent the velocity evaluation of gypsum. Gypsum was<br />

used as a test material due to its fast hydration evolution. The two curves at the<br />

top position in Fig. 10 represent the relative energy. A decrease of the velocity<br />

and energies values is caused by shrinkage effects. Both curve pairs look very<br />

similar in respect to differently used pulse generation methods.<br />

This successful first test triggered the re-design of the concrete device (as<br />

well as of the mortar device). A flow chart of the new experimental set-up is<br />

given in Fig. 11. The electronic pulse is generated by a frequency generator and<br />

amplified by a power amplifier. Broadband piezo-electric transducers generate<br />

the ultrasound signal to be transmitted through the material. A transducer of the<br />

same type is used as a receiver and the signal is passed through a pre-amplifier<br />

to the PC-board A/D-converter, denoted as “computer-based signal processing”<br />

in Fig. 11. Special attention is given to the correct trigger time of the signal,<br />

what is essential for velocity measurements. A power amplifier of the companies<br />

KROHN-HITE CO. or DEVELOGIC GMBH is used along with sensors of the<br />

company VALLEN INSTRUMENTS.<br />

103<br />

1<br />

0.1<br />

0.01<br />

1E-3<br />

1E-4<br />

1E-5<br />

1E-6<br />

Otto-Graf-Journal Vol. 13, 2002<br />

rel. energy [-]


C. U. GROSSE<br />

Testing device<br />

(concrete or mortar)<br />

Fig. 11: Flow chart of newly developed FreshCon experiments.<br />

The new container/sensor design for concrete as well as for mortar<br />

experiments is shown in Fig. 12, demonstrating the similarity of these two. The<br />

U-shaped rubber in the middle of the container is essential. Regarding the<br />

concrete device, a special “long wall” container was produced for very “slow”<br />

materials to avoid waves propagating along the walls to be faster than the direct<br />

waves. The distance of the screw joints can be adjusted to the material<br />

properties.<br />

Fig. 12: Re-designed FreshCon container/sensor for mortar (left) and concrete (right)<br />

measurements.<br />

First experiments in the frame of a master thesis [KALCKBRENNER 2002]<br />

and during round robin test of a RILEM technical committee showed very<br />

promising results.<br />

104


ROUND ROBIN TESTS – STATUS<br />

About the Improvement of US measurement techniques<br />

The International Union of Testing and Research Laboratories for Materials<br />

and Structures, RILEM, as a non profit-making, non-governmental technical<br />

association is structured in groups of international experts, the so called<br />

Technical Committees (TC). In the framework of advanced testing of cementbased<br />

materials during setting and hardening the TC 185 - ATC organized a<br />

round robin test series. The purpose of these tests is to assess the capability of<br />

existing test methods based on non-destructive techniques in terms of suitability,<br />

sensitivity and accuracy. Results will be summarized in a state of the art report<br />

and a test recommendation is planned to be released. In the context of providing<br />

a direct comparability, experiments are carried out by different members at the<br />

same place using the same charge of materials/mixtures.<br />

The technical realization of the experiments is in the responsibility of the<br />

TC secretary (C. Grosse) and the local organizers. The ongoing test series<br />

started in 2001 with experiments in Vaulx-en-Velin (France) and was continued<br />

in Evanston/Chicago (USA) in spring 2002 and Brunswick (Germany) in<br />

summer 2002. The next round robin test is scheduled for spring 2003 in Delft<br />

(The Netherlands). In detail the following groups have been involved so far:<br />

• Ecole Nationale des Travaux Publics de l’Etat (ENTPE), Vaulx-en-Velin,<br />

France; Dr. L. Arnaud and Prof. C. Boutin.<br />

• Center for Advanced Cement-Based Materials (ACBM) at Northwestern<br />

University, Illinois, USA; Prof. S. Shah and Dipl.-Ing. T. Voigt.<br />

• Institute of Structural Materials, Solid Structures and Fire Protection<br />

(iBMB) of the Technical University of Brunswick, Germany; Prof. H.<br />

Budelmann, Dipl.-Math. M. Krauß.<br />

• Fraunhofer Institute for Non-Destructive Testing (IZFP) in Saarbrücken,<br />

Germany; Dr. G. Dobmann and Dr. B. Wolter.<br />

• Institute of Construction Materials (IWB) at the University of Stuttgart,<br />

Germany; Prof. H.-W. Reinhardt, Dr. C. Grosse and Dipl.-Ing. A. Kalckbrenner<br />

(M.Sc.).<br />

An experimental test program was compiled to be the basis for all<br />

experiments [GROSSE & REINHARDT 2002]. Six different mixtures are<br />

recommended to be tested – five other mixtures are tested additionally. Some of<br />

the results obtained by the Institute of Construction Materials (IWB) at the<br />

105<br />

Otto-Graf-Journal Vol. 13, 2002


C. U. GROSSE<br />

University of Stuttgart are published by KALCKBRENNER [2002] and correlated<br />

to the results of other groups. A comprehensive report will follow.<br />

To give an example of the data obtained during one test series Fig. 13<br />

demonstrate the variation of the velocities over the age of the material.<br />

Concerning these velocities an S-shaped curve is typical for cementitious<br />

materials. After a certain time at the beginning, while the velocity variation is<br />

small, the gradient is increasing significantly. Regarding the data RE5 from a<br />

mix with added retarder this increase occurs relatively late. To make the basic<br />

statements more evident the curves are smoothed and bad data points are<br />

removed. It is obvious that concrete mixes are “faster” than mortar mixes in<br />

respect to hardening, while the RE5 mix with retarder is the “slowest“ material.<br />

Velocity [m/s]<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

smoothed!<br />

RE1: concrete, w.c. 0.45<br />

RE2: concrete, w.c. 0.60<br />

RE3: mortar, w.c. 0.60<br />

RE4: mortar, with plasticizer<br />

RE5: mortar, with retarder<br />

RE6: mortar, with air entrainer<br />

0 200 400 600 800 1000 1200 1400<br />

Age [min]<br />

Fig. 13: Comparison of the velocity measurements testing mixtures RE 1-6.<br />

It should be stressed that only material properties related to the elastic behavior<br />

can be analyzed with ultrasound techniques. As far as the chemical properties<br />

are not related to the elastic properties, other measurement techniques have to be<br />

used in combination with ultrasound to get more data. The results of the round<br />

robin tests should indicate the value of the described ultrasound throughtransmission<br />

technique in comparison to other techniques like ultrasound<br />

reflection, nuclear magnetic resonance, electric and maturity methods.<br />

106


SUMMARY AND OUTLOOK<br />

About the Improvement of US measurement techniques<br />

The measuring device developed at the University of Stuttgart is able to<br />

analyze the setting and hardening of cementitious materials in a comprehensive<br />

way. The method is based on ultrasound and can be used for numerous<br />

applications, where reliable and reproducible data are required, what addresses<br />

material parameters like the water-to-cement-ratio, the type of cement or the<br />

effect of additives as retarders or accelerators. At the concreting site, where<br />

efficiency and a low budget are boundary conditions, the application of this new<br />

technique can help to enhance the stability during construction or the progress of<br />

the construction work saving both: time and money. Some examples are the<br />

development of admixtures, the in-situ quality control, the slip form concreting<br />

or the precasting. Certainly, the applications are not restricted to cementitious<br />

materials.<br />

Further improvements are concerning the velocity evaluation. Since the<br />

device consist of an analogue-to-digital converter of 5 MHz only, the resolution<br />

of the velocity calculations varies over age. Actually, the resolution decreases<br />

with increasing velocities. This is the reason of the so-called bit-pattern<br />

occurring usually at ages of 400 minutes and later. To ease the interpretation the<br />

velocity curves are smoothed using adjacent averaging (10 points), but it is<br />

suggested to plot the original data points into the smoothed curves as well.<br />

Using the offline version of the FreshCon picking algorithm the data can be reevaluated<br />

after the test concerning the onset times of the signals only.<br />

Surprisingly, curves re-picked by the operator are usually very similar to the<br />

automatically processed data so that a time consuming manually picking is not<br />

improving the results anymore.<br />

Formerly, the comparison of energy evaluation results was sophisticated<br />

due to the application of two different devices. Energy values as measured by<br />

the FreshCon software are basing on the squared amplitudes of the signal<br />

beginning at the signals onset of compressional waves. These values strongly<br />

depend on the energy released by the impact to the container. The<br />

reproducibility of the transmitter energy is low of impactor devices compared to<br />

devices using an ultrasound emitter. Changing the set-up as described made the<br />

interpretations regarding energies more reliable. There is still the disadvantage<br />

of energies emitted by piezo-driven devices to be of several magnitudes lower<br />

than impactor pulses. A new impactor device without pressure-air giving broadband<br />

pulses of reproducible magnitude is under development.<br />

107<br />

Otto-Graf-Journal Vol. 13, 2002


C. U. GROSSE<br />

Talking about the scientific aspects of the ultrasound technique, the method<br />

developed at the University of Stuttgart is under further progress. This is<br />

especially true concerning wavelet algorithms. The degree of automatization is<br />

enhanced and additional analysis techniques will be implemented in future.<br />

With regard to the international activities of the RILEM technical<br />

committee more information can be obtained from the author or at the TC’s<br />

homepage: http://www.rilem.org/atc.html. Colleagues working in this scientific<br />

field are offered to collaborate in this initiative.<br />

ACKNOWLEDGEMENTS<br />

The described design and re-design of ultrasound devices are the result of<br />

many years of scientific work. It is difficult to address the thanks to everybody<br />

who was involved. However, some colleagues should be mentioned in no<br />

particular order: Dr. B. Weiler, Dipl.-Ing. J. Fischer, Dipl.-Ing. I. Kolb, Dipl.-<br />

Ing. N. Windisch, Dipl.-Ing. A. Herb, Dipl.-Ing. S. Köble, Dipl.-Ing. R. Beutel,<br />

Dipl.-Ing. C. Manocchio, Dipl.-Ing. A. Kalckbrenner (M.Sc.), Mr. G. Bahr and<br />

Mr. G. Schmidt. A special acknowledgement is going to Prof. H.-W. Reinhardt<br />

who initiated this research project and contributed during the years in numerous<br />

ways.<br />

The results shown regarding measurements in the frame of the RILEM TC<br />

185-ATC were obtained during a collaboration with the research group of Dr.<br />

Laurent Arnaud, Laboratoire Géomatériaux, Département Génie Civil et<br />

Bâtiment, of the Ecole Nationale des Travaux Publics de l’Etat (ENTPE) in<br />

Vaulx-en-Velin near Lyon, France.<br />

108


REFERENCES<br />

About the Improvement of US measurement techniques<br />

Bahr, G.: Entwicklung von Algorithmen für die kontinuierliche Wavelet Transformation<br />

mit LabView. University of Stuttgart, internal report (2001a).<br />

Bahr, G.: Bedienungsanleitung FreshCon 2.04. University of Stuttgart, Institute<br />

of Construction Materials, manual (2001b).<br />

Beutel, R.: Praktische Anwendbarkeit der Ultraschallwellenmessung als Instrument<br />

zur Bestimmung des Erhärtungsgrades von Beton. Diploma thesis,<br />

University of Stuttgart, 2000.<br />

Fischer, J.: US-Messungen an Frischbeton. Diploma thesis, University of<br />

Stuttgart, 1994.<br />

Grosse, C. U., H.-W. Reinhardt: Continuous ultrasound measurements during<br />

setting and hardening of concrete. Otto-Graf-Journal 5 (1994), pp 76-98.<br />

Grosse, C. U.: Quantitative zerstörungsfreie Prüfung von Baustoffen mittels<br />

Schallemissionsanalyse und Ultraschall. PhD Thesis, University of Stuttgart,<br />

1996, 168 pages.<br />

Grosse, C. U., B. Weiler, A. Herb, G. Schmidt, K. Höfler: Advances in ultrasonic<br />

testing of cementitious materials. Festschrift zum 60. Geb. von Prof.<br />

Reinhardt (C. U. Grosse, Ed.), Libri publishing company, Hamburg (1999),<br />

pp. 106-116.<br />

Grosse, C. U., H.-W. Reinhardt: Ultrasound technique for quality control of<br />

cementitious materials. Proc. of 15. World Conf. on NDT, Rom 2000, (on<br />

CD-ROM and in the internet at www.ndt.net).<br />

Grosse, C. U.: Verbesserung der Qualitätssicherung von Frischbeton mit<br />

Ultraschall. Concrete Plant and Precast Technology, Vol. 67, No. 1 (2001),<br />

pp. 102-104.<br />

Grosse, C. U., H.-W. Reinhardt: Fresh concrete monitored by ultrasound<br />

methods. Otto-Graf-Journal Vol. 12 (2001), pp. 157-168.<br />

Herb, A.: Frischbeton: Korrelation zwischen Ergebnissen klassischer Konsistenzmessungen<br />

und Ultraschall-Verfahren. Diploma thesis, University of<br />

Stuttgart, 1996.<br />

Kalckbrenner, A.: On the modification of non-destructive ultrasound<br />

measurement techniques for quality control of cement based materials.<br />

Master Thesis, University of Stuttgart, 2002.<br />

109<br />

Otto-Graf-Journal Vol. 13, 2002


C. U. GROSSE<br />

Köble, S.: Physikalisch-chemischer Hintergrund des Hydratationsvorgangs von<br />

Frischmörtel im Hinblick auf Ultraschalluntersuchungen. Diploma thesis,<br />

University of Stuttgart, 1999.<br />

Manocchio, C.: Verwendung der Wavelet-Transformation zur Charakterisierung<br />

von Frischbeton mittels Ultraschall. Diploma thesis, University of Stuttgart,<br />

2001.<br />

Reinhardt, H.-W., C. U. Grosse: Setting and hardening of concrete continuously<br />

monitored by elastic waves. Proc. of the Int. RILEM Conf. "Prod. methods<br />

and workability of concrete", Paisley/Schottland (1996), pp. 415-425.<br />

Reinhardt, H.-W., C. U. Grosse, A. Herb: Kontinuierliche Ultraschallmessung<br />

während des Erstarrens und Erhärtens von Beton als Werkzeug des<br />

Qualitätsmanagements. Deutscher Ausschuss für Stahlbeton, No. 490<br />

(1999a), pp. 21-64.<br />

Reinhardt, H.-W., C. U. Grosse, A. Herb, B. Weiler, G. Schmidt: Verfahren zur<br />

Untersuchung eines erstarrenden und/oder erhärtenden Werkstoffs mittels<br />

Ultraschall. Patent pending under No. 198 56 259.4 at the German Patent<br />

Institution, Munich (1999b).<br />

Stegmaier, M.: Zerstörungsfreie Prüfung des Erstarrens und Erhärtens von<br />

Beton – Weiterentwicklung des Ultraschallprüfverfahrens. Diploma thesis,<br />

University of Stuttgart, 2000.<br />

Windisch, N.: Untersuchung der Erhärtung von Beton – hochfester Beton bzw.<br />

Fließbeton – mit Ultraschallwellen, Diploma thesis, University of Stuttgart,<br />

1996.<br />

110


Α δισχρετε βονδ µοδελ φορ 3∆ αναλψσισ οφ τεξτιλε ρεινφορχεδ ανδ πρεστρεσσεδ χονχρετε ελεµεντσ<br />

A DISCRETE BOND MODEL FOR 3D ANALYSIS <strong>OF</strong> TEXTILE REIN-<br />

FORCED AND PRESTRESSED CONCRETE ELEMENTS<br />

DISKRETES VERBUNDMODELL FÜR 3D-FE-BERECHNUNGEN VON<br />

TEXTILBEWEHRTEN UND VORGESPANNTEN BETONKONSTRUK-<br />

TIONEN<br />

UN MODELE DISCRET DE L'ADHERENCE POUR L'ANALYSE 3D DE<br />

STRUCTURES EN BETON RENFORCEES ET PRECONTRAINTES<br />

AVEC DES ARMATURES TEXTILES<br />

Μαρκυσ Κρ⎫γερ, ϑο�κο Ο�βολτ, Ηανσ−Ω. Ρεινηαρδτ<br />

SUMMARY<br />

Τεξτιλε ρεινφορχεδ χονχρετε στρυχτυρεσ σηοω σεϖεραλ σιγνιφιχαντ αδϖανταγεσ<br />

χοµπαρεδ το στεελ ρεινφορχεδ χονχρετε στρυχτυρεσ ωηιχη αρε ωελλ κνοων υπ το<br />

νοω. Ηοωεϖερ σοµε δισαδϖανταγεσ λικε τηε λοω υτιλιζατιον φαχτορ οφ τηε τεξτιλε<br />

ρεινφορχεδ ελεµεντσ βεχοµε οβϖιουσ. Ασ ιν ανψ ρεινφορχεδ στρυχτυρε, α τρανσφερ<br />

οφ φορχεσ φροµ ρεινφορχεµεντ το χονχρετε ισ αχχοµπλισηεδ τηρουγη βονδ. Τηερε−<br />

φορε υνδερστανδινγ ανδ φυρτηερ ιµπροϖεµεντ οφ βονδ προπερτιεσ βετωεεν τεξτιλε<br />

ανδ χονχρετε ισ ιµπορταντ. Ιν τηε παπερ βονδ προπερτιεσ βετωεεν διφφερεντ τεξτιλεσ<br />

ανδ ηιγη περφορµανχε φινε γραιν χονχρετε αρε δισχυσσεδ.<br />

Νυµεριχαλ σιµυλατιονσ ωιτη α ϖαριατιον οφ ινπυτ δατα ωερε περφορµεδ υσινγ<br />

α νονλινεαρ φινιτε ελεµεντ χοδε βασεδ ον τηε µιχροπλανε µοδελ φορ χονχρετε ανδ<br />

τηε δισχρετε βονδ µοδελ. Τηε βονδ µοδελ ισ βασεδ ον α δισχρετε Φινιτε ελεµεντσ<br />

φορµυλατιον ωηιχη χαν βε υσεδ φορ στεελ ρεινφορχεδ χονχρετε ασ ωελλ. Τηε νυ−<br />

µεριχαλ σιµυλατιονσ ανδ ϖαριατιον οφ παραµετερσ σηοω τηε ινφλυενχε οφ διφφερεντ<br />

βονδ χηαραχτεριστιχσ οφ τεξτιλε ρεινφορχεµεντσ ανδ τηερεφορε γιϖε σοµε ηιντσ ον<br />

ποσσιβλε οπτιµισατιον οφ τεξτιλε στρυχτυρεσ.<br />

ZUSAMMENFASSUNG<br />

Ωιε βερειτσ ιν δερ νευερεν Λιτερατυρ ερωηντ, ζειγεν τεξτιλε Βεωεηρυνγσ−<br />

µατεριαλιεν ιν ϖερσχηιεδενεν Ανωενδυνγσγεβιετεν δευτλιχηε ςορτειλε γεγεν⎫βερ<br />

κονϖεντιονελλερ Σταηλβεωεηρυνγ. Αβερ αυχη εινιγε Ναχητειλε ωιε διε γερινγε<br />

νυτζβαρε Φεστιγκειτ τεξτιλερ Βεωεηρυνγ ιν Βετονβαυτειλεν υνδ διε δαµιτ ϖερβυν−<br />

δενεν ηοηεν Κοστεν σπρεχηεν γεγεν εινεν Εινσατζ σολχηερ Βεωεηρυνγσµατερια−<br />

111<br />

Οττο−Γραφ−ϑουρναλ ςολ. 13, 2002


Μ. ΚΡ⇐ΓΕΡ, ϑ. Ο�ΒΟΛΤ, Η.−Ω. ΡΕΙΝΗΑΡ∆Τ<br />

λιεν. Ιµ Αλλγεµεινεν κοµµτ δεµ ςερβυνδ ζωισχηεν Βεωεηρυνγ υνδ Βετον βει<br />

δεραρτιγεν ςερβυνδωερκστοφφεν εινε ηοηε Βεδευτυνγ ζυ, σινδ διεσε δοχη υντερ<br />

ανδερεµ µα⇓γεβενδ φ⎫ρ δασ Τραγϖερηαλτεν. Ιµ ϖορλιεγενδεν Βειτραγ ωερδεν<br />

δαηερ ωεσεντλιχηε ςερβυνδειγενσχηαφτεν ϖερσχηιεδενερ τεξτιλερ Βεωεηρυνγεν ιν<br />

Βετον δισκυτιερτ υνδ ερλυτερτ.<br />

Ανηανδ ϖον νιχητλινεαρεν Φινιτε−Ελεµεντ−Βερεχηνυνγεν µιτ Παραµετερϖα−<br />

ριατιονεν ωιρδ ειν νευεσ ςερβυνδµοδελλ ζυρ Χηαρακτερισιερυνγ τεξτιλερ Βεωεη−<br />

ρυνγεν ιν Βετον ϖοργεστελλτ. ∆ασ ιν δεν ΦΕ−Χοδε ΜΑΣΑ εινγεβυνδενε ςερ−<br />

βυνδµοδελλ βασιερτ ιµ Ωεσεντλιχηεν αυφ δεν γλειχηεν Ανναηµεν ωιε σιε φ⎫ρ δεν<br />

Σταηλ−/Βετονϖερβυνδ γελτεν υνδ ωυρδε ιν εινιγεν ωενιγεν Πυνκτεν φ⎫ρ τεξτιλε<br />

Βεωεηρυνγεν ανγεπασστ. Νυµερισχηε Σιµυλατιονεν ζειγεν, ωιε Εινφλ⎫σσε τεξτι−<br />

λερ Βεωεηρυνγεν αυφγρυνδ υντερσχηιεδλιχηερ Στρυκτυρ υνδ Αρτ βερ⎫χκσιχητιγτ υνδ<br />

ωιε ζυδεµ τεξτιλε Βεωεηρυνγεν ηινσιχητλιχη δεσ Τραγϖερηαλτενσ τεξτιλβεωεηρτερ<br />

Βαυτειλε οπτιµιερτ ωερδεν κ⎞ννεν.<br />

RESUME<br />

Λεσ αρµατυρεσ τεξτιλεσ οντ πλυσιευρσ αϖανταγεσ σιγνιφιχατιφσ παρ ραππορτ αυξ<br />

αρµατυρεσ χονϖεντιοννελλεσ εν αχιερ. Χεπενδαντ χερταινσ ινχονϖ⎡νιεντσ χοµµε<br />

λε βασ ταυξ δ∋εξπλοιτατιον δε λα ρ⎡σιστανχε δε λ∋αρµατυρε τεξτιλε ετ λεσ χο⎦τσ ⎡λεϖ⎡σ<br />

θυι εν ρ⎡συλτεντ σ∋οπποσεντ ◊ λευρ αππλιχατιον ◊ γρανδε ⎡χηελλε. Λ∋αδη⎡ρενχε εντρε<br />

λ∋αρµατυρε ετ λε β⎡τον ϕουε υν ρ⎮λε ιµπορταντ δανσ λεσ µατ⎡ριαυξ χοµποσιτεσ, ελλε<br />

εστ σουϖεντ δ⎡χισιϖε πουρ λε χοµπορτεµεντ σουσ χηαργε δ∋υνε στρυχτυρε. ∆ανσ<br />

λ∋αρτιχλε πρ⎡σεντ, λεσ χαραχτ⎡ριστιθυεσ δε λ∋αδη⎡ρενχε δε διφφ⎡ρεντεσ αρµατυρεσ τεξ−<br />

τιλεσ σοντ δ⎡χριτεσ ετ δισχυτ⎡εσ.<br />

∆εσ σιµυλατιονσ νυµ⎡ριθυεσ αϖεχ υνε ϖαριατιον δεσ παραµ⎝τρεσ οντ ⎡τ⎡ εφ−<br />

φεχτυ⎡σ εν υτιλισαντ δεσ ⎡λ⎡µεντσ φινισ νον−λιν⎡αιρεσ βασ⎡σ συρ λε µοδ⎝λε ∀µιχρο−<br />

πλανε∀ πουρ λε β⎡τον ετ λε νουϖεαυ µοδ⎝λε δισχρετ δε λ∋αδη⎡ρενχε. Λε µοδ⎝λε δε<br />

λ∋αδη⎡ρενχε εστ βασ⎡ συρ υν µοδ⎝λε δισχρετ δε λ∋αδη⎡ρενχε θυι πευτ ⎢τρε ⎡γαλεµεντ<br />

εµπλοψ⎡ πουρ λε β⎡τον αϖεχ υνε αρµατυρε εν αχιερ. Λεσ σιµυλατιονσ νυµ⎡ριθυεσ<br />

ετ λα ϖαριατιον δεσ παραµ⎝τρεσ µοντρεντ λ∋ινφλυενχε δε διφφ⎡ρεντεσ χαραχτ⎡ριστιθυεσ<br />

δε λ∋αρµατυρε τεξτιλε. Ον πευτ εν δ⎡δυιρε δεσ µεσυρεσ πουρ οπτιµισερ λε χοµπορ−<br />

τεµεντ δεσ στρυχτυρεσ αϖεχ δεσ αρµατυρεσ τεξτιλεσ.<br />

ΚΕΨΩΟΡ∆Σ: υνχοατεδ τεξτιλεσ, ιµπρεγνατεδ τεξτιλεσ, χονχρετε, Χαρβον, ΑΡ<br />

γλασσ, βονδ, βονδ µοδελ, 3∆ ΦΕ αναλψσισ, πρεστρεσσ<br />

112


INTRODUCTION<br />

Α δισχρετε βονδ µοδελ φορ 3∆ αναλψσισ οφ τεξτιλε ρεινφορχεδ ανδ πρεστρεσσεδ χονχρετε ελεµεντσ<br />

Βονδ βεηαϖιουρ οφ τεξτιλε ρεινφορχεµεντ ιν χονχρετε ισ εξπεχτεδ το ϖαρψ<br />

φροµ τηατ οφ ΦΡΠ βαρσ ορ χονϖεντιοναλ στεελσ βαρσ. Μοστ τεξτιλε ροϖινγσ υσεδ ασ<br />

χονχρετε ρεινφορχεµεντ χονσιστ οφ τηουσανδσ οφ σινγλε φιλαµεντσ ανδ τηερεφορε<br />

χαν νοτ βε δεφινεδ ασ α σινγλε ροδ. Ιφ συχη α ροϖινγ ισ εµβεδδεδ ιν χονχρετε τηε<br />

σηαπε οφ τηε χροσσ σεχτιον δετερµινεσ τηε βονδεδ αρεα ανδ ιτ µυστ βε χλαριφιεδ<br />

ηοω µανψ φιλαµεντσ ωερε ιν διρεχτ χονταχτ ωιτη χονχρετε. Α γρεατ δεαλ οφ ρε−<br />

σεαρχη ηασ βεεν δονε ρεχεντλψ το χηαραχτεριζε βονδ βεηαϖιουρ οφ συχη µυλτιφιλα−<br />

µεντ ελεµεντσ ιν χονχρετε βυτ θυιτε νεω ιννοϖατιονσ νεχεσσιτατε φυρτηερ ρεσεαρχη<br />

/ΒΡΑΜΕΣΗΥΒΕΡ, 2000/, /ΝΑΜΜΥΡ, 1989/, /ΟΗΝΟ, 1994/. Μορεοϖερ θυιτε α νυµ−<br />

βερ οφ εξπεριµενταλ ινϖεστιγατιονσ ηαϖε βεεν χαρριεδ ουτ το υνδερστανδ βονδ βε−<br />

ηαϖιουρ οφ πρεστρεσσεδ ανδ/ορ ιµπρεγνατεδ τεξτιλεσ ορ ροϖινγσ.<br />

Ονε παραµετερ τηατ µαψ στρονγλψ ινφλυενχε τηε βονδ περφορµανχε ισ τηε διφ−<br />

φερενχε ιν τηε χοεφφιχιεντ οφ τηερµαλ εξπανσιον φροµ τηατ οφ στεελ ορ χονχρετε. Ιτ<br />

ισ αλσο κνοων τηατ τρανσϖερσε πρεσσυρε ιµπροϖεσ βονδ ωηιχη ισ νεγλεχτεδ ιν<br />

µανψ βονδ µοδελσ. Ηοωεϖερ, τηισ εφφεχτ σεεµσ το βε νοτ ιµπορταντ φορ εµβεδ−<br />

δεδ µυλτι−φιλαµεντ ροϖινγσ ωηιχη ηαϖε νοτ βεεν φυλλψ ινφιλτρατεδ ωιτη χεµεντ<br />

δυε το ϖοιδσ βετωεεν τηε ιννερ φιλαµεντσ. ∆εσπιτε τηισ τηε Ποισσον�σ εφφεχτ βε−<br />

χοµεσ σιγνιφιχαντ ανδ ινφλυενχεσ τηε τρανσϖερσε στρεσσ φιελδ ιφ τηε ροϖινγ ισ ιµ−<br />

πρεγνατεδ ανδ/ορ πρεστρεσσεδ. Σοµε τεστ ρεσυλτσ οφ χαρβον ρεινφορχεδ ανδ<br />

πρεστρεσσεδ σπεχιµεν αρε ιλλυστρατεδ ιν Φιγυρε 1 /ΚΡ⇐ΓΕΡ, 2001Β/.<br />

P/(c-∆s*), N/mm<br />

60<br />

55<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 1 2 3<br />

Carbon<br />

no prestressing<br />

prestress 150 N/roving<br />

prestress 250 N/roving<br />

Carbon, epoxy impreg.<br />

no prestressing<br />

prestress 375 N/roving<br />

prestress 625 N/roving<br />

4<br />

slip ∆s*, mm<br />

Φιγυρε 1: Βονδ στρεσσ περ υνιτ λενγτη ϖερσυσ σλιπ βασεδ ον 20µµ δουβλε σιδεδ πυλλ−ουτ<br />

(στορεδ ατ 20°Χ, 65% ΡΗ φορ 40 δαψσ) /ΚΡ⇐ΓΕΡ, 2001Β/<br />

113<br />

Οττο−Γραφ−ϑουρναλ ςολ. 13, 2002


Μ. ΚΡ⇐ΓΕΡ, ϑ. Ο�ΒΟΛΤ, Η.−Ω. ΡΕΙΝΗΑΡ∆Τ<br />

Ιτ χαν βε σεεν τηατ αν ιµπρεγνατιον οφ α χαρβον ροϖινγ ωιτη αν εποξψ ρεσιν<br />

γενεραλλψ ρεσυλτσ ιν α βεττερ βονδ ωηερεασ α ροϖινγ τηατ ωασ νοτ ιµπρεγνατεδ<br />

σηοωσ α λοω µαξιµυµ βονδ στρεσσ ανδ αφτερ βονδ φαιλυρε α ϖερψ λοω φριχτιοναλ<br />

ρεσιστανχε. Ιτ ισ ασσυµεδ τηατ τηε µαιν ρεασον φορ τηισ ισ τηε ριββεδ συρφαχε<br />

φορµεδ βψ τηε βινδερ τηρεαδσ ανδ τηε χηανγε οφ τηε ροϖινγ διαµετερ οϖερ ιτσ<br />

λενγτη, εσπεχιαλλψ ατ τηε χροσσινγ ποιντσ ωηερε τηε περπενδιχυλαρ ωοοφ ροϖινγ ισ<br />

φιξεδ. Τηε βινδερ τηρεαδσ αρε χαυσεδ βψ τηε ωαρπ κνιττινγ προχεσσ (Φιγυρε 2) ανδ<br />

ωερε φιξεδ βψ τηε εποξψ ρεσιν. Ιτ χαν βε σεεν φροµ φιγυρε 1 τηατ πρεστρεσσινγ<br />

λεαδσ το α ηιγηερ βονδ στρενγτη. Ασ δισχυσσεδ αβοϖε, βονδ περφορµανχε οφ τεξτιλε<br />

ρεινφορχεµεντ ιν χονχρετε δεπενδσ ον µανψ διφφερεντ παραµετερσ. Τηισ λεαδσ υσ<br />

το χονσιδερ α φορµυλατιον οφ α συχη βονδ µοδελ ιν ωηιχη τηεσε ασπεχτσ ωουλδ βε<br />

αχχουντεδ φορ.<br />

10 mm<br />

Φιγυρε 2: ∆εταιλ οφ αν εποξψ ιµπρεγνατεδ χαρβον φαβριχ<br />

DISCRETE BOND MODEL FOR FINITE ELEMENT ANALYSIS<br />

Φορ νυµεριχαλ στυδιεσ τηε βονδ προπερτιεσ βετωεεν τεξτιλεσ ανδ χονχρετε, δισχρετε<br />

ελεµεντσ ωερε υσεδ. Τηε βονδ µοδελ προποσεδ βψ /Ο�ΒΟΛΤ, 2002/ ηασ τηερεφορε<br />

βεεν µοδιφιεδ φορ τεξτιλε ρεινφορχεµεντ ανδ υσεδ τογετηερ ωιτη σολιδ φινιτε ελε−<br />

µεντσ ιν α 3∆ ΦΕ στυδιεσ.<br />

Ιν τηε νυµεριχαλ στυδιεσ βονδ βετωεεν τηε τεξτιλεσ ανδ χονχρετε ωασ σιµυλατεδ<br />

βψ δισχρετε βονδ ελεµεντ τηατ ηαϖε ρεχεντλψ βεεν ιµπλεµεντεδ ιντο 3∆ ΦΕ χοδε<br />

ΜΑΣΑ /Ο�ΒΟΛΤ, 2002/. Χονχρετε, ωηιχη ισ δισχρετιζεδ βψ τηε τηρεε διµενσιοναλ<br />

φινιτε ελεµεντσ, ισ µοδελλεδ βψ τηε µιχροπλανε µοδελ /Ο�ΒΟΛΤ, 2001/. Τηε βονδ<br />

ελεµεντσ χοννεχτ τηε χονχρετε φινιτε ελεµεντσ ωιτη τηε ρεινφορχεµεντ τηατ ισ ρεπ−<br />

ρεσεντεδ βψ τηε τρυσσ φινιτε ελεµεντσ (σεε Φιγυρε 3). Ονλψ δεγρεεσ οφ φρεεδοµ ιν<br />

τηε βαρ διρεχτιον αρε χονσιδερεδ. Ηοωεϖερ, βεσιδε τηε τανγεντιαλ στρεσσεσ παραλλελ<br />

το τηε βαρ διρεχτιον, τηε ραδιαλ στρεσσεσ περπενδιχυλαρ το τηε βαρ διρεχτιον αρε<br />

γενερατεδ ασ ωελλ. Ιτ ισ ασσυµεδ τηατ ατ α γιϖεν σλιπ τηε ραδιαλ στρεσσ δεπενδσ ον<br />

114


Α δισχρετε βονδ µοδελ φορ 3∆ αναλψσισ οφ τεξτιλε ρεινφορχεδ ανδ πρεστρεσσεδ χονχρετε ελεµεντσ<br />

ερατεδ ασ ωελλ. Ιτ ισ ασσυµεδ τηατ ατ α γιϖεν σλιπ τηε ραδιαλ στρεσσ δεπενδσ ον τηε<br />

γεοµετρψ οφ τηε βαρ ανδ τηε βαρ στραιν ασ ωελλ ασ ον τηε γεοµετρψ ανδ τηε βουνδ−<br />

αρψ χονδιτιονσ οφ τηε χονχρετε σπεχιµεν. Τηε ιντεραχτιον βετωεεν τανγεντιαλ ανδ<br />

ραδιαλ στρεσσεσ ισ αχχουντεδ φορ ιν τηρεε διφφερεντ ωαψσ: (ι) διρεχτλψ, τηε σηεαρ<br />

στρεσσ δεπενδσ ον τηε νονλοχαλ (ρεπρεσεντατιϖε) ραδιαλ στρεσσ οβταινεδ φροµ τηε<br />

χονχρετε ελεµεντσ χλοσε το τηε ρεινφορχινγ βαρ, (ιι) τηε λοχαλ στραιν οφ τηε βαρ ελε−<br />

µεντ ανδ ιτσ λατεραλ εξπανσιον ορ εξτενσιον ανδ (ιιι) ινδιρεχτλψ, ιν α ωαψ τηατ τηε<br />

λαργερ σηεαρ στρεσσ (ηιγηερ βονδ στρενγτη δυε το λαργερ ριβσ ορ ρουγηνεσσ οφ τηε<br />

βαρ ελεµεντ) χαυσε ηιγηερ αχτιϖατιον οφ στρεσσεσ ιν τηε ραδιαλ διρεχτιον.<br />

Ιν τηε πρεσεντ µοδελ, σπλιττινγ οφ χονχρετε ισ ινδιρεχτλψ αχχουντεδ φορ.<br />

Ναµελψ τηε ιντεραχτιον βετωεεν σηεαρ ανδ ραδιαλ στρεσσεσ ρεσυλτσ ιν χορρεσπονδ−<br />

ινγ τανγεντιαλ τενσιλε στρεσσεσ τηατ χαυσεσ χραχκινγ οφ τηε συρρουνδινγ νον−λινεαρ<br />

χονχρετε ελεµεντσ ανδ, τηερεφορε, φαιλυρε οφ βονδ ρεσιστανχε.<br />

Concrete<br />

element<br />

Bond element<br />

(zero width)<br />

fibre element<br />

Repeated<br />

nodes<br />

Φιγυρε 3: Βονδ ελεµεντσ ωιτη ζερο ωιδτη.<br />

Bond stress-slip relation in a 2D consideration<br />

Τηε εξπεριµενταλ εϖιδενχε /ΧΕΒ ΒΥΛΛΕΤΙΝ 230, 1996/ ινδιχατεσ τηατ τηε<br />

λοαδ τρανσφερ βετωεεν ρεινφορχεµεντ ανδ χονχρετε ισ αχχοµπλισηεδ τηρουγη βεαρ−<br />

ινγ οφ τηε ρεινφορχεδ στεελ λυγσ ον συρρουνδινγ χονχρετε ανδ τηρουγη φριχτιον. Ασ<br />

δισχυσσεδ βψ /ΨΑΝΚΕΛΕςΣΚΨ, 1987/, τηε τοταλ βονδ ρεσιστανχε χαν βε δεχοµ−<br />

ποσεδ ιντο τωο χοµπονεντσ: (ι) µεχηανιχαλ ιντεραχτιον χοµπονεντ !µ, ανδ (ιι)<br />

φριχτιον χοµπονεντ !φ. Τηε φριχτιον χοµπονεντ χαν βε σεπαρατεδ ιντο α ρεσιδυαλ<br />

φριχτιον !ρ ανδ α ϖιργιν φριχτιον !ϖ χοµπονεντ. Τηε ρεσιδυαλ φριχτιον ρεπρεσεντσ<br />

φριχτιοναλ ρεσιστανχε υπον σλιπ ρεϖερσαλ ωηερεασ τηε ϖιργιν φριχτιον χοµπονεντ ισ<br />

δυε το τηε αδδιτιοναλ φριχτιοναλ ρεσιστανχε δεϖελοπεδ υπον λοαδινγ το πρεϖιουσλψ<br />

υνδεϖελοπεδ σλιπ λεϖελσ. Ιτ ισ ασσυµεδ τηατ τεξτιλε ρεινφορχεµεντ βεηαϖεσ σιµι−<br />

λαρλψ ασ στεελ ρεινφορχεµεντ δοεσ, ωιτη τηε διφφερενχε τηατ µαινλψ τηε αδηεσιον οφ<br />

τηε τεξτιλε ανδ τηε ρουγηνεσσ οφ τηε συρφαχε ιµπροϖε τηε µεχηανιχαλ βονδ ινστεαδ<br />

οφ τηε στεελ λυγσ.<br />

115<br />

Οττο−Γραφ−ϑουρναλ ςολ. 13, 2002


Μ. ΚΡ⇐ΓΕΡ, ϑ. Ο�ΒΟΛΤ, Η.−Ω. ΡΕΙΝΗΑΡ∆Τ<br />

Βασεδ ον τηε εξπεριµενταλ ρεσυλτσ /ΕΛΙΓΕΗΑΥΣΕΝ, 1983/, /ΜΑΛςΑΡ, 1992/<br />

ανδ ασ ωελλ δοχυµεντεδ βψ /ΛΟΩΕΣ, 2002/, τηε βονδ σλιπ ρελατιονσηιπ οφ στεελ<br />

ρεινφορχεµεντ ιν χονχρετε χαν βε δεσχριβεδ βψ τηε παραµετερσ τηατ αρε συµµα−<br />

ριζεδ ιν Ταβλε 1. Τηε σαµε παραµετερσ αρε υσεδ φορ τεξτιλε ρεινφορχεµεντ, βυτ ιν α<br />

σλιγητλψ διφφερεντ µαννερ. Τηε χυρϖε οφ τηε βονδ στρεσσ ϖερσυσ σλιπ ρελατιονσηιπ<br />

υσεδ φορ τηε νυµεριχαλ στυδιεσ ισ ιλλυστρατεδ ιν Φιγυρε 4.<br />

Ταβλε1: Συµµαρψ οφ τηε µοδελ παραµετερσ<br />

∆εσχριπτιον οφ τηε µοδελ παραµετερ Μοδελ παραµετερ<br />

πεακ µεχηανιχαλ βονδ στρενγτη !µ = !µ,0 ∀ ∗ [ΜΠα]<br />

πεακ φριχτιοναλ βονδ στρενγτη !φ = !φ,0 ∀ ∗ [ΜΠα]<br />

πεακ ϖιργιν φριχτιον βονδ στρενγτη !φ,ϖ = (1−0.4) !φ [ΜΠα]<br />

πεακ ρεσιδυαλ φριχτιον βονδ στρενγτη !φ,ρ = 0.4 !φ [ΜΠα]<br />

σεχαντ το βονδ ρεσπονσε χυρϖε φορ ινιτιαλ λοαδινγ κσεχ [ΜΠα/µµ]<br />

σλιπ ατ ωηιχη πεακ βονδ στρενγτη ισ αχηιεϖεδ σ1 = (!µ+!φ)/κσεχ [µµ]<br />

σλιπ ατ ωηιχη βονδ στρενγτη βεγινσ το δεχρεασε σ2 = σ1+σ2∗ [µµ]<br />

σλιπ ατ ωηιχη µεχηανιχαλ βονδ ρεσιστανχε ισ λοστ σ3 [µµ]<br />

τανγεντ το τηε λοαδ−δισπλαχεµεντ χυρϖε υπον υνλοαδινγ κυνλοαδ [ΜΠα/µµ]<br />

ινιτιαλ τανγεντ το τηε βονδ−σλιπ ρεσπονσε κ1 [ΜΠα/µµ]<br />

τανγεντ το τηε βονδ−σλιπ χυρϖε ατ πεακ ρεσιστανχε κ2 = α⋅κσεχ [ΜΠα/µµ]<br />

∗ ∀ σεε νεξτ χηαπτερ<br />

Τηε παραµετερ !µ,0 ανδ !φ,0 ρεπρεσεντ τηε στρενγτη οφ τηε µεχηανιχαλ ανδ φριχτιοναλ<br />

χοµπονεντ (συβσχριπτ µ ανδ φ), ρεσπεχτιϖελψ, φορ τηε χασε οφ νο χονφινινγ πρεσ−<br />

συρε, νο δαµαγε ανδ ελαστιχαλλψ βεηαϖεδ ρεινφορχινγ βαρ ελεµεντ.<br />

Υπ το τηε σλιπ σ1 ατ ωηιχη πεακ βονδ στρενγτη ισ ρεαχηεδ (σεε Φιγυρε 4), αλλ<br />

ρεσπονσε χυρϖεσ αρε δεφινεδ βψ Μενεγοττο−Πιντο (ΜΠ) εθυατιον /ΜΕΝΕΓΟΤΤΟ−<br />

ΠΙΝΤΟ, 1973/. Τηε χυρϖε δεφινεσ α χυρϖε χοννεχτινγ τωο λινε σεγµεντσ ανδ ιτ<br />

ρεαδσ:<br />

1<br />

! ∀<br />

# 1 ∃Ρ<br />

τ () σ = τ⋅τ ! 0 = σ! ⋅ % β + (1−β) ⋅∋ & ⋅τ<br />

Ρ (<br />

% ) 1+ σ!<br />

∗ &<br />

+ ,<br />

ωηερε β ισ τηε ρατιο βετωεεν τηε ταργετ ανδ ινιτιαλ τανγεντσ, τ! ανδ σ ! αρε νορµαλ−<br />

ιζεδ στρεσσ ανδ δισπλαχεµεντ, ρεσπεχτιϖελψ, ανδ Ρ δεφινεσ τηε ραδιυσ οφ τηε χυρϖα−<br />

τυρε. ανδ σ αρε τηε παραµετερσ το χαλχυλατε τηε αβσολυτε στρεσσ ανδ δισπλαχε−<br />

τ0 0<br />

µεντ φροµ τηε νορµαλιζεδ παραµετερσ.<br />

0<br />

116<br />

(1)


β<br />

κ<br />

κ<br />

Α δισχρετε βονδ µοδελ φορ 3∆ αναλψσισ οφ τεξτιλε ρεινφορχεδ ανδ πρεστρεσσεδ χονχρετε ελεµεντσ<br />

2 = (2)<br />

1<br />

=α⋅ κ2κ σεχαντ , ωιτη 0≤α≤1<br />

(3)<br />

σ<br />

σ!<br />

=<br />

σ<br />

(4)<br />

Bond<br />

stress<br />

0<br />

(κ −κ<br />

) (1 )<br />

σ σ σ κ<br />

=⋅ =⋅⋅ −α⋅<br />

0 1<br />

σεχαντ<br />

κ1−κ2 2<br />

1 σεχαντ<br />

κ1− κσεχαντ<br />

σ κ<br />

0 0 1<br />

(6) τ=⋅<br />

= m+ f<br />

0<br />

m<br />

f,v<br />

f,r<br />

f,r<br />

s0<br />

k 1<br />

k secant<br />

Cyclic loading<br />

k 2=α·k secant<br />

kunload<br />

Monotonic<br />

loading<br />

s1 s3 Slip s<br />

s2<br />

Φιγυρε 4: Βονδ στρεσσ−σλιπ ρελατιον οφ τηε βονδ ελεµεντ µοδελ<br />

Variation of bond strength in a 3D stress field<br />

(5)<br />

f= f,r+ f,v<br />

Α φαχτορ ∀ (σεε Ταβλε 1) αχχουντσ φορ τηε δεπενδενχψ οφ τηε βονδ στρεσσ ον<br />

τηε στρεσσ−στραιν στατε οφ χονχρετε ανδ στεελ ιν τηε ϖιχινιτψ οφ τηε βονδ ζονε. Ασ α<br />

ρεσυλτ, τηε τωο διµενσιοναλ βονδ στρεσσ ϖερσυσ σλιπ ρελατιονσηιπ σηοων βεφορε ισ<br />

ινφλυενχεδ βψ λατεραλ εξπανσιον ορ εξτενσιον ιν διφφερεντ ωαψσ ανδ βεχοµεσ α<br />

τηρεε διµενσιοναλ µοδελ.<br />

117<br />

Οττο−Γραφ−ϑουρναλ ςολ. 13, 2002


Μ. ΚΡ⇐ΓΕΡ, ϑ. Ο�ΒΟΛΤ, Η.−Ω. ΡΕΙΝΗΑΡ∆Τ<br />

Τηε παραµετερ ∀ ισ χαλχυλατεδ ασ σηοων ιν εθυατιον (7). Τηρεε παραµετερσ<br />

αρε χονσιδερεδ: ∀Σ χοντρολσ τηε ινφλυενχε οφ τηε ψιελδινγ οφ στεελ ρεινφορχεµεντ<br />

ον τηε βονδ ρεσπονσε ανδ ισ σετ το ∀Σ=1 φορ τεξτιλε ρεινφορχεµεντ; ∀Χ αχχουντσ<br />

φορ τηε ινφλυενχε οφ τηε λατεραλ στρεσσεσ βετωεεν ρεινφορχεµεντ ανδ χονχρετε<br />

χαυσεδ βψ τηε στρεσσ ιν χονχρετε ανδ τηε λοχαλ στραιν οφ τηε βαρ ελεµεντ ανδ ιτσ<br />

λατεραλ εξπανσιον ορ εξτενσιον; ∀χψχ χοντρολσ τηε ινφλυενχε οφ τηε λοαδινγ−<br />

υνλοαδινγ−ρελοαδινγ ον τηε βονδ ρεσπονσε.<br />

Ω=Ω⋅Ω⋅Ω Σ Χ χψχ<br />

Ασ σηοων ιν εθυατιον (8) ανδ Φιγυρε 5, τηε παραµετερ ∀Χ, ωηιχη χαν τηεο−<br />

ρετιχαλλψ ϖαρψ βετωεεν 0 ανδ 2, αχχουντσ φορ τωο διφφερεντ εφφεχτσ. Τηε φιρστ ισ τηε<br />

ινφλυενχε οφ τηε λατεραλ στραιν οφ τηε στρεσσεδ βαρ ελεµεντ. Τηε παραµετερ ηΡ ισ α<br />

χονσταντ τηατ ρεπρεσεντσ τηε συρφαχε ρουγηνεσσ οφ τηε ρεινφορχεµεντ βαρ. Χοµ−<br />

παρεδ το τηε ριββεδ ρεινφορχεµεντ, ηΡ ισ χλοσε ρελατεδ το τηε ηειγητ οφ τηε στεελ<br />

λυγσ. ισ τηε ρεινφορχεµεντ στραιν, δ = 2ρσ τηε βαρ διαµετερ ανδ µ σ ισ τηε Ποισ−<br />

σον�σ ρατιο οφ τηε υσεδ ρεινφορχεµεντ ελεµεντ. Τηε φαχτορ αρ χοντρολσ τηε ινφλυ−<br />

ενχε οφ τηε ραδιαλ χονχρετε στρεσσ ανδ φορ τηε χαλχυλατιονσ ισ σετ το 1. Τηε παραµε−<br />

σ<br />

τερ αφ χοντρολσ τηε ινφλυενχε οφ τηε ρουγηνεσσ οφ τηε ρεινφορχεµεντ ηΡ ον τηε<br />

βονδ ρεσπονσε. Ιν τηε πρεσεντ στυδψ ιτ ωασ σετ το 2.<br />

σε<br />

Τηε παραµετερ επ,0 ισ τηε στραιν δυε το πρεστρεσσινγ οφ ρεινφορχεµεντ. Χονσε−<br />

θυεντλψ ιν τηε χασε οφ πρεστρεσσινγ ανδ νον εξτερναλ λοαδινγ τηε βονδ ισ ιν−<br />

χρεασεδ ονλψ βψ τηε ραδιαλ στρεσσ ιν χονχρετε νεαρβψ τηε ρεινφορχινγ βαρ.<br />

# ∃<br />

∋ (<br />

Ρ<br />

1<br />

Ω χ = 1, 0 + τανη ∋<br />

ρ φ σ ( σ π,0) (<br />

2<br />

∋ 0,1 φχ<br />

ρ ( σ<br />

∋ 1−<br />

2<br />

∋ (<br />

( ρσ ηΡ)<br />

(<br />

) + ∗ ⋅ α⋅−α⋅µ⋅ε−ε⋅ σ<br />

Ω<br />

χ<br />

2,0<br />

1,0<br />

0,0<br />

-3,0 -2,0 -1,0 0,0 1,0 2,0 3,0<br />

, ( )<br />

Ρ<br />

φ σ σ π,0 2<br />

ρ<br />

χ<br />

σ 1−<br />

⋅<br />

( ρσ + ηΡ)<br />

Φιγυρε 5: ∆εφινιτιον οφ !Χ ασ α φυνχτιον οφ λατεραλ στρεσσ ανδ στραιν σ−α⋅µ⋅ε−ε⋅<br />

118<br />

0,1 φ<br />

1<br />

2<br />

(7)<br />

(8)


Α δισχρετε βονδ µοδελ φορ 3∆ αναλψσισ οφ τεξτιλε ρεινφορχεδ ανδ πρεστρεσσεδ χονχρετε ελεµεντσ<br />

Τηε ινφλυενχε οφ τηε ραδιαλ στρεσσ ιν χονχρετε ιν τηε ϖιχινιτψ οφ τηε ρεινφορχ−<br />

ινγ βαρ ισ αχχουντεδ φορ βψ αν αϖεραγε ραδιαλ στρεσσ σ ρ περπενδιχυλαρ το τηε βαρ<br />

διρεχτιον. Τηε παραµετερ φχ ισ τηε υνιαξιαλ χοµπρεσσιϖε στρενγτη οφ χονχρετε. Ιν<br />

τηε φινιτε ελεµεντ αναλψσισ τηε αϖεραγε ραδιαλ στρεσσ ασσοχιατεδ το τηε ν−τη βαρ<br />

ελεµεντ ισ χαλχυλατεδ ασ:<br />

1<br />

σ = σ ∆ = − ∆<br />

(9)<br />

Ν Ν<br />

ι<br />

ρ − ρ ςι ωιτη ςΡ<br />

ι<br />

ς Ρ ι= 1 ι= 1<br />

ς<br />

ωηερε ∆ ςι δενοτεσ τηε ϖολυµε ωηιχη χορρεσπονδσ το τηε ι−τη ιντεγρατιον<br />

ι<br />

ποιντ οφ τηε φινιτε ελεµεντ ανδ σ τηε στρεσσ περπενδιχυλαρ το τηε ρεινφορχεµεντ.<br />

ρ<br />

Ν ισ α τοταλ νυµβερ οφ ιντεγρατιον ποιντσ τηατ φαλλ ιντο α χψλινδερ οφ α διαµετερ ∆<br />

(σεε Φιγυρε 6). Ιν τηε πρεσεντεδ µοδελ ∆ ισ ασσυµεδ το βε τηρεε τιµεσ α βαρ δι−<br />

αµετερ (∆ ≈ 3 δσ).<br />

Ιν (9) ςΡ ισ τηε ρεπρεσεντατιϖε ϖολυµε, ι.ε. τηε ϖολυµε οφ τηε<br />

χονχρετε χψλινδερ οφ διαµετερ ∆ τηατ ισ ασσοχιατεδ το τηε τρυσσ φινιτε ελεµεντ<br />

ωηιχη ρεπρεσεντσ α ρεινφορχινγ βαρ.<br />

Φιγυρε 6: Ρεπρεσεντατιϖε ϖολυµε<br />

Εξπεριµεντσ σηοω τηατ φορ χψχλινγ λοαδινγ−υνλοαδινγ−ρελοαδινγ τηε βονδ<br />

στρενγτη σιγνιφιχαντλψ δεχρεασεσ ωιτη ινχρεασε οφ νυµβερ οφ λοαδινγ χψχλεσ<br />

/ΕΛΙΓΕΗΑΥΣΕΝ, 1983/, /ΒΑΛΑΖΣ, 1991/. Ιν τηε πρεσεντ µοδελ τηισ εφφεχτ ισ αχ−<br />

χουντεδ φορ βψ τηε φαχτορ ∀χψχ τηατ ρεαδσ:<br />

1.1<br />

# # Λ ∃ ∃<br />

εξπ ∋ 1.2 (<br />

) ) ∗ (<br />

∗<br />

Ω χψχ = − ⋅<br />

∋<br />

∋ (<br />

Λ 0<br />

(10)<br />

ωηερε # ισ τηε αχχυµυλατεδ σηεαρ ενεργψ δισσιπατιον ανδ #0 ισ α χονσταντ<br />

ρεπρεσεντινγ τηε αρεα υνδερ τηε µονοτονιχ βονδ−σλιπ χυρϖε οφ ρεσπεχτιϖε σηεαρ<br />

χοµπονεντ. Τηε αβοϖε εθυατιον ηασ βεεν προποσεδ βψ /ΕΛΙΓΕΗΑΥΣΕΝ, 1983/ ανδ<br />

ιτ ισ βασεδ ον α λαργε νυµβερ οφ χψχλιχ τεστ δατα οφ στεελ ρεινφορχεδ χονχρετε.<br />

119<br />

Οττο−Γραφ−ϑουρναλ ςολ. 13, 2002


Μ. ΚΡ⇐ΓΕΡ, ϑ. Ο�ΒΟΛΤ, Η.−Ω. ΡΕΙΝΗΑΡ∆Τ<br />

Σιµιλαρ βεηαϖιορ σεεµσ αλσο το βε αππροξιµατελψ ϖαλιδ φορ τεξτιλε ρεινφορχεδ χον−<br />

χρετε, ηοωεϖερ, ιτ ισ νοτ χλαριφιεδ υπ το νοω.<br />

NUMERICAL STUDIES<br />

Ασ σηοων ιν τηε λαστ χηαπτερ τηε βονδ περφορµανχε οφ τηε µοδελ ισ ινφλυ−<br />

ενχεδ βψ ∀Χ ωηιχη αχχουντσ φορ: (ι) τηε ινφλυενχε οφ ραδιαλ στρεσσ οβταινεδ φροµ<br />

τηε συρρουνδινγ χονχρετε ελεµεντσ ανδ (ιι) τηε ινφλυενχε οφ ρεινφορχεµεντ στραιν.<br />

Το δεµονστρατε τηε εφφεχτσ οφ τηεσε τωο διφφερεντ ινφλυενχεσ νυµεριχαλ στυδιεσ<br />

ηαϖε βεεν χαρριεδ ουτ.<br />

Τωο ΦΕ µοδελσ (ΜΙ ανδ ΜΙΙ) ωερε εµπλοψεδ το σηοω τηε ινφλυενχε οφ τηε<br />

τρανσϖερσε στρεσσ φιελδ ανδ τηε ρεινφορχεµεντ στραιν ον τηε βονδ προπερτιεσ. Τηε<br />

ΦΕ µεση οφ τηεσε µοδελσ ισ σηοων ιν Φιγυρε 7. Ιτ ρεπρεσεντσ χονχρετε σπεχιµεν<br />

χονφινεδ ιν διρεχτιον ξ ανδ ψ. Τηε βουνδαρψ χονδιτιονσ ωερε σλιγητλψ διφφερεντ.<br />

Μοδελ Ι (ΜΙ) ηασ σοµε ρεστραινεδ νοδεσ ιν τηε ζ−διρεχτιον ονλψ ατ τηε βοττοµ συρ−<br />

φαχε, ωηερε τηε λοαδ ισ αππλιεδ το τηε βαρ ελεµεντ. Ιν Μοδελ ΙΙ (ΜΙΙ) αλλ τηε νοδεσ<br />

οϖερ τηε σπεχιµεν ηειγητ ωερε φιξεδ ιν τηε ζ−διρεχτιον. Χονσεθυεντλψ, τηε τρανσ−<br />

ϖερσε στρεσσ φιελδ αρουνδ τηε βαρ ελεµεντ ισ διφφερεντ. Τηε βαρ ελεµεντ ιτσελφ ισ<br />

πλαχεδ ιν τηε µιδδλε οφ τηε σπεχιµεν ανδ ισ πυλλεδ ιν ζ διρεχτιον ατ τηε ποιντ<br />

ζ = 20 µµ (βοττοµ συρφαχε).<br />

Φιγυρε 7: Φινιτε ελεµεντ µοδελσ ωιτη διφφερεντ βουνδαρψ χονδιτιονσ<br />

Ασ σηοων ιν ταβλε 2, τηε µαιν βονδ παραµετερσ ωερε σετ το χονσταντ φορ αλλ<br />

χαλχυλατιονσ. Νοτε τηατ τηεσε παραµετερσ ωερε χηοσεν ονλψ το θυαλιτατιϖελψ σηοω<br />

τηε περφορµανχε οφ τηε µοδελ ανδ ωερε νοτ χαλιβρατεδ φορ τηε υσε ιν τηε πραχτιχαλ<br />

120


Α δισχρετε βονδ µοδελ φορ 3∆ αναλψσισ οφ τεξτιλε ρεινφορχεδ ανδ πρεστρεσσεδ χονχρετε ελεµεντσ<br />

αππλιχατιονσ. Αδδιτιοναλλψ, ιτ ηασ το βε νοτεδ τηατ τηε ρεινφορχεµεντ ισ ασσυµεδ<br />

το βε λινεαρ ελαστιχ φορ αλλ τηε χαλχυλατιονσ, ι.ε. ∀Σ = 1.<br />

Ταβλε2: Συµµαρψ οφ τηε υσεδ µοδελ παραµετερσ φορ τηε ρεινφορχεµεντ<br />

∆εσχριπτιον οφ τηε µοδελ παραµετερ Μοδελ παραµετερ<br />

πεακ µεχηανιχαλ βονδ στρενγτη !µ = 9.0 [ΜΠα]<br />

πεακ φριχτιοναλ βονδ στρενγτη !φ = 4.0 [ΜΠα]<br />

σεχαντ το βονδ ρεσπονσε χυρϖε φορ ινιτιαλ λοαδινγ κσεχ = 50.0 [ΜΠα/µµ]<br />

σλιπ ατ ωηιχη βονδ στρενγτη βεγινσ το δεχρεασε σ2∗ = 0.03 [µµ]<br />

σλιπ ατ ωηιχη µεχηανιχαλ βονδ ρεσιστανχε ισ λοστ σ3 = 0.50 [µµ]<br />

τανγεντ το τηε λοαδ−δισπλαχεµεντ χυρϖε υπον υνλοαδινγ κυνλοαδ = 220.0 [ΜΠα/µµ]<br />

ινιτιαλ τανγεντ το τηε βονδ−σλιπ ρεσπονσε κ1 = 220.0 [ΜΠα/µµ]<br />

τανγεντ το τηε βονδ−σλιπ χυρϖε ατ πεακ ρεσιστανχε κ2 = 22.0 [ΜΠα/µµ]<br />

ραδιυσ οφ τηε χυρϖατυρε Ρ = 8.0 [−]<br />

Ποισσον�σ ρατιο µσ = 0.5 [−]<br />

Ψουνγ µοδυλυσ Εσ = 74000.0 [ΜΠα]<br />

ρεινφορχεµεντ αρεα Ασ = 0.93 [µµ″]<br />

βαρ διαµετερ 2 ⋅<br />

ρσ = 1.0 [µµ]<br />

συρφαχε ρουγηνεσσ ηΡ = 0.01 [µµ]<br />

Μορεοϖερ, το δεµονστρατε τηε εφφεχτ οφ πρεστρεσσινγ, τηρεε διφφερεντ χασεσ<br />

(α,β,χ) ωερε χονσιδερεδ ωιτη:<br />

(α) Ω = 1.0<br />

(11)<br />

(β)<br />

(χ)<br />

Χ,α<br />

Ω = + ∋⋅<br />

Χ,β 1.0 Ρ τανη (<br />

0,1 φχ<br />

∃<br />

) ∗<br />

# ∃<br />

∋ (<br />

1<br />

Ω = 1.0 + τανη ∋<br />

( )<br />

(<br />

−α⋅µ⋅ε−ε⋅ σ<br />

Ρ<br />

Χ,χ φ σ σ π,0 2<br />

0,1 φχ<br />

ρ ( σ<br />

∋ 1−<br />

2<br />

∋ (<br />

( ρσ + ηΡ)<br />

(<br />

∋⋅<br />

) ∗<br />

#σ<br />

Influence of the 3D stress field on the bond<br />

(12)<br />

(13)<br />

Ιν Φιγυρε 8 τηε ρεσυλτσ οφ τηε πυλλ ουτ στρεσσ ϖερσυσ σλιπ αρε σηοων. Ιν τηε<br />

χασε (α) τηε στρεσσ ϖερσυσ σλιπ χυρϖε οφ βοτη µοδελσ λοοκσ αλµοστ τηε σαµε φορ<br />

πρεστρεσσεδ ανδ νον πρεστρεσσεδ στατε, ι.ε. τηε χονχρετε στραιν ιν ζ διρεχτιον ισ<br />

νεγλιγιβλε. Τηερεφορε ιτ ισ σηοων ονλψ ονε χυρϖε. Ηοωεϖερ, ιτ χαν βε σεεν τηατ ιφ<br />

121<br />

Οττο−Γραφ−ϑουρναλ ςολ. 13, 2002


Μ. ΚΡ⇐ΓΕΡ, ϑ. Ο�ΒΟΛΤ, Η.−Ω. ΡΕΙΝΗΑΡ∆Τ<br />

τηε ρεινφορχεµεντ ισ πρεστρεσσεδ µαξιµυµ πυλλουτ στρεσσ ινχρεασεσ σλιγητλψ δυε<br />

το τηε µορε ηοµογενεουσ βονδ στρεσσ διστριβυτιον οϖερ τηε εµβεδµεντ λενγτη.<br />

Φορ διφφερεντ χασεσ ατ µαξιµυµ λοαδ αλσο σεε Φιγυρε 9. Τηισ εφφεχτ χαν αλσο βε<br />

σεεν ιν αλλ τηε χαλχυλατιον δισχυσσεδ λατερ.<br />

load, N<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

0,0 0,1 0,2 0,3 0,4 0,5 0,6<br />

MI & MII, case (a)<br />

MI & MII, case (a), prestressed<br />

MI, case (b)<br />

MI, case (b), prestressed<br />

MII, case (b)<br />

MII, case (b), prestressed<br />

slip, mm<br />

Φιγυρε 8: Χαλχυλατεδ πυλλ ουτ λοαδ ϖερσυσ σλιπ<br />

Ιφ χασε (β) ισ χονσιδερεδ ανδ τηε ινφλυενχε οφ τηε ραδιαλ στρεσσ οφ τηε χον−<br />

χρετε ισ τακεν ιντο αχχουντ, τηε χηανγε οφ βονδ ρεσπονσε βεχοµεσ οβϖιουσ. Τηε<br />

ινφλυενχε χαλχυλατεδ ιν µοδελ ΜΙΙ ισ αλµοστ ινσιγνιφιχαντ ωηερεασ ιν µοδελ ΜΙ<br />

µαξιµυµ πυλλ ουτ στρεσσ ινχρεασεσ οϖερ 30 περχεντ χαυσεδ βψ τηε δεφορµατιον οφ<br />

τηε χονχρετε ελεµεντσ. Αδδιτιοναλλψ τηε βονδ στρεσσ ισ χαλχυλατεδ ασ 1.5 τιµεσ ασ<br />

ηιγη ασ φορ χασε (α) ατ ζ = 15µµ ωηιχη χαν βε εξπλαινεδ βψ τηε βουνδαρψ χονδι−<br />

τιονσ ανδ τηε ρεσυλτινγ στρεσσ φιελδ οφ χονχρετε.<br />

Bond stress, N/mm 2<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

MI & MII, case (a)<br />

MI & MII, case (a), prestressed<br />

MI, case (b)<br />

MI, case (b), prestressed<br />

MII, case (b)<br />

MII, case (b), prestressed<br />

load<br />

8<br />

0 2 4 6 8 10 12 14 16 18 20<br />

embedment length z, mm<br />

Φιγυρε 9: Χοµπαρισον οφ χαλχυλατεδ βονδ στρεσσ ατ µαξιµυµ πυλλ ουτ λοαδ<br />

122


Α δισχρετε βονδ µοδελ φορ 3∆ αναλψσισ οφ τεξτιλε ρεινφορχεδ ανδ πρεστρεσσεδ χονχρετε ελεµεντσ<br />

Influence of the reinforcement strain on the bond performance<br />

Τηε ρεσυλτσ οφ τηε χαλχυλατιονσ οφ τηε πυλλ ουτ στρεσσ ϖερσυσ σλιπ φορ χασε (χ)<br />

αρε σηοων ιν Φιγυρε 10. Φορ τηε µοδελ ΜΙ τηε µαξιµυµ λοαδ ισ ϕυστ αβουτ 15<br />

περχεντ ηιγηερ τηαν φορ χασε (α) ανδ λοωερ τηαν φορ χασε (β). Αλσο τηε βονδ στρεσσ<br />

οϖερ τηε εµβεδµεντ δεπτη ισ λοωερ φορ χασε (χ) χοµπαρεδ το χασε (α), ασ σηοων<br />

ιν Φιγυρε 12.<br />

load, N<br />

load, N<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

MI & MII, case (a)<br />

MI, case (c)<br />

MII, case (c)<br />

0<br />

0,0 0,1 0,2 0,3 0,4 0,5 0,6<br />

slip, mm<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

Φιγυρε 10: Χαλχυλατεδ πυλλ ουτ λοαδ ϖερσυσ σλιπ<br />

MI & MII, case (a)<br />

MI, case (c), prestressed<br />

MII, case (c), prestressed<br />

0<br />

0,0 0,1 0,2 0,3 0,4 0,5 0,6<br />

slip, mm<br />

Φιγυρε 11: Χαλχυλατεδ πυλλ ουτ λοαδ ϖερσυσ σλιπ οφ πρεστρεσσεδ σπεχιµεν<br />

123<br />

Οττο−Γραφ−ϑουρναλ ςολ. 13, 2002


Μ. ΚΡ⇐ΓΕΡ, ϑ. Ο�ΒΟΛΤ, Η.−Ω. ΡΕΙΝΗΑΡ∆Τ<br />

Ιν τηε χαλχυλατεδ βονδ στρεσσ σλιπ χυρϖεσ φορ πρεστρεσσεδ ρεινφορχεµεντσ,<br />

σηοων ιν Φιγυρε 11, τηε ινφλυενχε οφ τηε στεελ στραιν ον τηε βονδ περφορµανχε ισ<br />

αλσο οβϖιουσ. ∆υε το τηε πρεστρεσσινγ οφ αδηεσιϖε τψπε, ατ ινιτιαλ στατε τηε ρειν−<br />

φορχεµεντ λατεραλ στραινσ αρε νεγατιϖε (χοµπρεσσιον). Χονσεθυεντλψ, τηε χοντραχ−<br />

τιον οφ ρεινφορχεµεντ ισ λεσσ τηαν ιν τηε χασε οφ υνπρεστρεσσεδ ρεινφορχεµεντ ανδ<br />

τηερεφορε ιτ δοεσ νοτ ρεσυλτ ιν συχη α λαργε ρεδυχτιον οφ βονδ στρεσσεσ. Φιγυρε 12<br />

σηοωσ τηε ινφλυενχε οφ ∀Χ ον τηε βονδ στρεσσ φορ υνπρεστρεσσεδ ανδ πρεστρεσσεδ<br />

ρεινφορχεµεντ.<br />

Bond stress, N/mm 2<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

MI & MII, case (a)<br />

MI & MII, case (a), prestressed<br />

MI, case (c)<br />

MI, case (c), prestressed<br />

MII, case (c)<br />

MII, case (c), prestressed<br />

load<br />

8<br />

0 2 4 6 8 10 12 14 16 18 20<br />

embedment length z, mm<br />

Φιγυρε 12: Χοµπαρισον οφ χαλχυλατεδ βονδ στρεσσ ατ µαξιµυµ πυλλ ουτ λοαδ<br />

Comparison of calculations and tests of textile reinforced elements in a<br />

bending test<br />

Ιν Φιγυρε 13 τηε ρεσυλτ οφ α φουρ−ποιντ βενδινγ τεστ ισ χοµπαρεδ ωιτη τηε ρε−<br />

συλτσ οφ τηε ΦΕ χαλχυλατιονσ. Τηε σπαν οφ τηε πλατε ωασ 250 µµ ανδ τηε λοαδ ωασ<br />

αππλιεδ ατ τηε τηιρδ ποιντσ. Τηε τεστ σπεχιµεν ωασ α εποξψ ιµπρεγνατεδ χαρβον<br />

τεξτιλε ρεινφορχεδ χονχρετε πλατε (300µµ ξ 60µµ ξ 10µµ) ωιτη α φινε γραιν<br />

χονχρετε (φχ ≈ 80ΜΠα). Τηε ινπυτ παραµετερσ φορ τηε χαλχυλατιον οφ τηε βενδινγ<br />

τεστ ωερε χαλιβρατεδ ατ δουβλε σιδεδ πυλλουτ τεστσ. Φορ δεταιλσ σεε /ΚΡ⇐ΓΕΡ,<br />

2002/. Φορ τηε χαλχυλατιον χονχρετε ισ µοδελλεδ βψ τηε µιχροπλανε µοδελ. Τηε<br />

αγρεεµεντ βετωεεν σιµυλατιον ανδ εξπεριµενταλ ρεσυλτσ ισ γοοδ. Ηοωεϖερ, χοµ−<br />

παρεδ το τηε τεστ ρεσυλτσ, τηε νυµεριχαλ ρεσυλτσ σηοω ιν τηε ποστ πεακ ρεγιον µορε<br />

δυχτιλε βεηαϖιουρ.<br />

124


Α δισχρετε βονδ µοδελ φορ 3∆ αναλψσισ οφ τεξτιλε ρεινφορχεδ ανδ πρεστρεσσεδ χονχρετε ελεµεντσ<br />

Load, N<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

Calculated, Case (a)<br />

Calculated, Case (c)<br />

test data<br />

0<br />

0 5 10 15 20 25<br />

Displacement, mm<br />

Φιγυρε 13: Λοαδ−δεφλεχτιον χυρϖε φορ α χαρβον ρεινφορχεδ ελεµεντ υνδερ µονοτονιχ λοαδινγ<br />

Ασ χαν βε σεεν φροµ Φιγυρε 14, τηε στραιν ιν ξ διρεχτιον (δαρκ ζονεσ ινδιχατε<br />

χραχκσ) σηοω α γοοδ αγρεεµεντ ωιτη τηε χραχκ διστριβυτιον οβσερϖεδ ιν τηε εξ−<br />

περιµεντ. Ιτ ηασ το βε νοτεδ τηατ τηε χραχκ διστριβυτιον ιν τηε τεστεδ σπεχιµεν ισ<br />

γρεατλψ ινφλυενχεδ βψ τηε τρανσϖερσε τεξτιλε ρεινφορχεµεντ, ωηιχη λεαδσ το λεσσ<br />

χραχκσ βυτ α ηιγηερ χραχκ ωιδτη.<br />

1<br />

Y<br />

Z<br />

X<br />

utput Set: MASA3 pbzfCEP6072<br />

eformed(20.26): Total nodal disp.<br />

χραχκσ<br />

τεξτιλε<br />

ρεινφορχεµεντ<br />

0.03<br />

0.0287<br />

0.0275<br />

0.0262<br />

0.025<br />

0.0238<br />

0.0225<br />

0.0212<br />

0.02<br />

0.0187<br />

0.0175<br />

0.0163<br />

0.015<br />

0.0138<br />

0.0125<br />

0.0113<br />

0.01<br />

0.00875<br />

0.0075<br />

0.00625<br />

Φιγυρε 14: Χοµπαρισον οφ πρινχιπλε στραινσ οφ χαλχυλατεδ µοδελ ιν ξ διρεχτιον ατ µαξιµυµ<br />

λοαδ ανδ χραχκ διστριβυτιον οφ τεστεδ σπεχιµεν.<br />

125<br />

0.005<br />

Οττο−Γραφ−ϑουρναλ ςολ. 13, 2002


Μ. ΚΡ⇐ΓΕΡ, ϑ. Ο�ΒΟΛΤ, Η.−Ω. ΡΕΙΝΗΑΡ∆Τ<br />

Ιν Φιγυρε 15 τηε στραινσ οφ τηε χονχρετε ελεµεντσ ιν ψ διρεχτιον (ηοριζονταλ<br />

χραχκσ) αρε σηοων ανδ χοµπαρεδ ωιτη σπεχιµεν. Τηε δαρκ ζονεσ ρεπρεσεντσ<br />

χραχκεδ χονχρετε. Ιν τηε εξπεριµεντ αλµοστ τηε σαµε χραχκ διστριβυτιον ανδ τηε<br />

σαµε φαιλυρε µοδε ωασ οβσερϖεδ.<br />

L1<br />

C1<br />

Y<br />

Z<br />

Output Set: MASA3 pbzfCEP6080<br />

X<br />

Deformed(22.23): Total nodal disp.<br />

Conto<br />

r A rg E stra<br />

Φιγυρε 15: Χοµπαρισον οφ τεστεδ σπεχιµεν αφτερ τεστ ανδ πρινχιπλε στραινσ οφ χονχρετε ελε−<br />

µεντσ ιν ψ διρεχτιον ατ µαξιµυµ λοαδ.<br />

CONCLUSIONS<br />

Α νεω δισχρετε βονδ µοδελ τηατ ισ βασεδ ον α βονδ στρεσσ−σλιπ ρελατιονσηιπ<br />

ηασ ρεχεντλψ βεεν ιµπλεµεντεδ ιντο α 3∆ φινιτε ελεµεντ χοδε. Τηε βονδ µοδελ<br />

αχχουντσ φορ τηε ινφλυενχε οφ ελαστιχ ανδ πλαστιχ ρεινφορχεµεντ στραινσ, τηε ινφλυ−<br />

ενχε οφ τηε ραδιαλ στρεσσ οφ τηε συρρουνδινγ χονχρετε ασ ωελλ ασ φορ τηε ινφλυενχε<br />

οφ τηε χψχλιχ λοαδ ηιστορψ ον τηε βονδ ρεσπονσε.<br />

Ασ σηοων ιν τηε νυµεριχαλ εξαµπλεσ, τηε τρανσϖερσε στρεσσ φιελδ ανδ τηε ρε−<br />

ινφορχεµεντ στραιν µαψ ηαϖε σιγνιφιχαντ ινφλυενχε ον τηε λοχαλ βονδ στρεσσ. Ιφ α<br />

ρεινφορχεµεντ ωιτη α ρουγη συρφαχε ισ υσεδ τηε λοχαλ βονδ στρεσσ ισ µαινλψ ινφλυ−<br />

ενχεδ βψ τηε ραδιαλ στρεσσ οφ τηε συρρουνδινγ χονχρετε. Ηοωεϖερ, τηε ινφλυενχε οφ<br />

τηε ρεινφορχεµεντ στραιν ινχρεασεσ ασ σµοοτηερ τηε ρεινφορχεµεντ συρφαχε ισ.<br />

Τηε παραµετερ ∀Χ ινφλυενχεσ τηε λοχαλ φαιλυρε οφ χονχρετε χλοσε το τηε βαρ<br />

νεαρβψ α χραχκ ωηερε ρελατιϖελψ ηιγη στρεσσεσ ιν ρεινφορχεµεντ αρε πρεσεντ. Τηε<br />

βονδ στρενγτη ισ ρεδυχεδ ανδ τηερεφορε χραχκ ωιδτη ανδ τηε διστριβυτιον οφ χραχκσ<br />

ισ αφφεχτεδ. Ιτ ισ ωελλ κνοων τηατ αλσο ψιελδινγ οφ στεελ ρεινφορχεµεντ ενλαργε τηισ<br />

εφφεχτ ωηιχη ισ αχχουντεδ φορ βψ ∀Σ ιν τηε βονδ µοδελ.<br />

126<br />

0.005<br />

0.00475<br />

0.0045<br />

0.00425<br />

0.004<br />

0.00375<br />

0.0035<br />

0.00325<br />

0.003<br />

0.00275<br />

0.0025<br />

0.00225<br />

0.002<br />

0.00175<br />

0.0015<br />

0.00125<br />

0.001<br />

0.00075<br />

0.0005<br />

0.00025<br />

0.


Α δισχρετε βονδ µοδελ φορ 3∆ αναλψσισ οφ τεξτιλε ρεινφορχεδ ανδ πρεστρεσσεδ χονχρετε ελεµεντσ<br />

Τηε βενεφιτ οφ τηε πρεσεντεδ βονδ µοδελ βεχοµεσ οβϖιουσ ιφ ονε χονσιδερ<br />

διφφερεντ τψπεσ οφ ρεινφορχεµεντσ, ε.γ. διφφερεντ διαµετερ, συρφαχε στρυχτυρεσ ορ<br />

στεελ λυγσ ανδ στρεσσ στραιν προπερτιεσ. Ιτ ισ ασσυµεδ τηατ τηε γενεραλ παραµετερσ<br />

οφ τηε βονδ στρεσσ σλιπ−ρελατιον σηοων ιν Φιγυρε 1 µαινλψ δεπενδ ον τηε χονχρετε<br />

παραµετερσ ανδ χαν βε σετ το χονσταντ φορ α γρουπ οφ ρεινφορχεµεντ ελεµεντσ οφ<br />

τηε σαµε τψπε. Τηισ χαν βε φορ εξαµπλε α σετ οφ στεελ βαρσ οφ διφφερεντ διαµετερ<br />

ορ τεξτιλε ρεινφορχεµεντ τψπε ωιτη διφφερεντ Ψουνγ�σ µοδυλυσ βυτ αλµοστ τηε<br />

σαµε συρφαχε ρουγηνεσσ.<br />

Νεϖερτηελεσσ τηε δισχυσσεδ µοδελ ηαϖε το βε χαλιβρατεδ βασεδ ον α σεριεσ οφ<br />

διφφερεντ εξπεριµενταλ τεστσ ιν ορδερ το φινδ ουτ τηε ρεαλ ινφλυενχε οφ τρανσϖερσε<br />

στρεσσεσ ανδ στραινσ ον τηε βονδ ρεσπονσε ανδ τηυσ ον τηε στρυχτυραλ ρεσπονσε ασ<br />

ωελλ.<br />

REFERENCES<br />

Βαλαζσ, Γ.Λ. (1991): Φατιγυε οφ βονδ. ΑΧΙ Ματεριαλσ ϑουρναλ, 88 (6), 620−629,<br />

1991.<br />

Βραµεσηυβερ, Ω.; Βανηολζερ, Β.; Βρ⎫µµερ, Γ. (2000): Ανσατζ φ⎫ρ εινε ϖερειν−<br />

φαχητε Αυσωερτυνγ ϖον Φασερ−Αυσζιεηϖερσυχηεν. Βετον− υνδ Σταηλβετονβαυ, Νο.<br />

95, Ηεφτ 12, ππ. 702−706, 2000.<br />

ΧΕΒ Βυλλετιν 230 (1996): ΡΧ ελεµεντσ υνδερ χψχλιχ λοαδινγ. Στατε οφ τηε αρτ ρε−<br />

πορτ, Εδ. Βψ Τ. Τελφορδ, Τηοµασ Τελφορδ Σερϖιχε Λτδ, Λονδον, 1996.<br />

Χυρβαχη, Μ.; Ζαστραυ, Β. (1999): Τεξτιλβεωεηρτερ Βετον � Ασπεκτε αυσ Τηεοριε<br />

υνδ Πραξισ. Βαυστατικ−Βαυπραξισ 7, Μεσκουρισ (Εδ.), Βαλκεµα, Ροττερδαµ, 1999.<br />

Ελιγεηαυσεν, Ρ.; Ποποϖ, Ε.Π.; ανδ Βερτερο, ς.ς. (1983): Λοχαλ Βονδ Στρεσσ−Σλιπ<br />

Ρελατιονσηιπσ οφ ∆εφορµεδ Βαρσ υνδερ Γενεραλιζεδ Εξχιτατιονσ. Ρεπορτ<br />

ΥΧΒ/ΕΕΡΧ−83/23. Βερκελεψ: ΕΕΡΧ, Υνιϖερσιτψ οφ Χαλιφορνια, 1983.<br />

Κρ⎫γερ, Μ. (2001α): Πρεστρεσσεδ Τεξτιλε Ρεινφορχεδ Χεµεντ Χοµποσιτεσ. ΙΩΒ−<br />

Μιττειλυνγεν, ϑαηρεσβεριχητ 2000/2001, Υνιϖερσιτψ οφ Στυττγαρτ, Ινστιτυτε οφ Χον−<br />

στρυχτιον Ματεριαλσ (ΙΩΒ), 2001.<br />

Κρ⎫γερ, Μ.; Ρεινηαρδτ, Η.−Ω.; Φιχητλσχηερερ, Μ. (2001β): Βονδ βεηαϖιουρ οφ<br />

τεξτιλε ρεινφορχεµεντ ιν ρεινφορχεδ ανδ πρεστρεσσεδ χονχρετε. Ιν: Οττο−Γραφ−<br />

ϑουρναλ. ςολ. 12 2001, ππ. 33−50.<br />

Κρ⎫γερ, Μ.; Ρεινηαρδτ, Η.−Ω. (2001χ): Πρεστρεσσεδ τεξτιλε ρεινφορχεδ χεµεντ<br />

χοµποσιτεσ. Προχ. �11. Ιντερνατιοναλε Τεχητεξτιλ−Σψµποσιυµ φ⎫ρ τεχηνισχηε Τεξ−<br />

τιλιεν, ςλιεσστοφφε υνδ τεξτιλαρµιερτε Ωερκστοφφε�, Νο. 338, Φρανκφυρτ, Απρ. 2001.<br />

127<br />

Οττο−Γραφ−ϑουρναλ ςολ. 13, 2002


Μ. ΚΡ⇐ΓΕΡ, ϑ. Ο�ΒΟΛΤ, Η.−Ω. ΡΕΙΝΗΑΡ∆Τ<br />

Κρ⎫γερ, Μ.; Ξυ, Σ.; Ρεινηαρδτ, Η.−Ω.; Ο�βολτ, ϑ. (2002): Εξπεριµενταλ ανδ νυ−<br />

µεριχαλ στυδιεσ ον βονδ προπερτιεσ βετωεεν ηιγη περφορµανχε φινε γραιν χον−<br />

χρετε ανδ χαρβον τεξτιλε υσινγ πυλλ ουτ τεστσ. Ιν: Βειτργε αυσ δερ Βεφεστιγυνγσ−<br />

τεχηνικ υνδ δεµ Σταηλβετονβαυ (Φεστσχηριφτ ζυµ 60. Γεβυρτσταγ ϖον Προφ. ∆ρ.−<br />

Ινγ. Ρ. Ελιγεηαυσεν), ππ. 151−164, Στυττγαρτ, 2002.<br />

Λοωεσ, Λ. Ν.; Μοεηλε, ϑ.Π.; Γοϖινδϕεε, Σ. (2002): Α χονχρετε−στεελ βονδ µοδελ<br />

φορ υσε ιν φινιτε ελεµεντ µοδελλινγ οφ ρεινφορχεδ χονχρετε στρυχτυρεσ. Ιν πριντ,<br />

2002.<br />

Μαλϖαρ, Λ.ϑ. (1992): Βονδ ρεινφορχεµεντ υνδερ χοντρολλεδ χονφινεµεντ. ΑΧΙ<br />

Ματεριαλσ ϑουρναλ 89 (6), 711−721, 1992.<br />

Μενεγοττο, Μ.; Πιντο, Π. (1973): Μετηοδ οφ αναλψσισ οφ χψχλιχαλλψ λοαδεδ ρειν−<br />

φορχεδ χονχρετε πλανε φραµεσ ινχλυδινγ χηανγεσ ιν γεοµετρψ ανδ νονελαστιχ βε−<br />

ηαϖιουρ οφ ελεµεντσ υνδερ χοµβινεδ νορµαλ γεοµετρψ ανδ νονελαστιχ βεηαϖιουρ<br />

οφ ελεµεντσ υνδερ χοµβινεδ νορµαλ φορχε ανδ βενδινγ. Προχεεδινγσ οφ τηε<br />

ΙΑΒΣΕ Σψµποσιυµ ον τηε ρεσιστανχε ανδ υλτιµατε δεφορµαβιλιτψ οφ στρυχτυρεσ<br />

αχτεδ ον βψ ωελλ−δεφινεδ ρεπεατεδ λοαδσ, Λισβον, 1973.<br />

Ναµµυρ, Γ.; Νααµαν, Α. (1989): Βονδ Στρεσσ Μοδελ φορ Φιβερ Ρεινφορχεδ Χον−<br />

χρετε Βασεδ ον Βονδ Στρεσσ−Σλιπ Ρελατιονσηιπ. ΑΧΙ Ματεριαλσ ϑουρναλ, Νο. 86,<br />

ππ. 45−55, ϑαν./Φεβρ. 1989.<br />

Οηνο, Σ.; Ηανναντ, ∆.ϑ. (1994): Μοδελλινγ τηε στρεσσ−στραιν Ρεσπονσε οφ Χον−<br />

τινυουσ Φιβρε Ρεινφορχεδ Χεµεντ Χοµποσιτεσ. ΑΧΙ Ματεριαλσ ϑουρναλ, Νο. 91,<br />

ππ. 306−312, Μαρ. 1994.<br />

Ο�βολτ, ϑ.; Λι Ψ.; Κο�αρ, Ι. (2001): Μιχροπλανε µοδελ φορ χονχρετε ωιτη ρελαξεδ<br />

κινεµατιχ χονστραιντ. Ιντ. ϑ. οφ Σολιδσ ανδ Στρυχτυρεσ, 38, 2683−2711, 2001.<br />

Ο�βολτ, ϑ.; Λεττοω, Σ.; Κο�αρ, Ι. (2002): ∆ισχρετε βονδ ελεµεντ φορ 3∆ ΦΕ αναλψ−<br />

σισ οφ ρεινφορχεδ χονχρετε στρυχτυρεσ. Ιν: Βειτργε αυσ δερ Βεφεστιγυνγστεχηνικ<br />

υνδ δεµ Σταηλβετονβαυ (Φεστσχηριφτ ζυµ 60. Γεβυρτσταγ ϖον Προφ. ∆ρ.−Ινγ. Ρ.<br />

Ελιγεηαυσεν), ππ. 239−258, Στυττγαρτ, 2002.<br />

Ρεινηαρδτ, Η.−Ω.; Κρ⎫γερ, Μ. (2001): ςοργεσπανντε δ⎫ννε Πλαττεν αυσ Τεξτιλβε−<br />

τον. Προχ. �Τεξτιλβετον � 1. Φαχηκολλοθυιυµ δερ Σονδερφορσχηυνγσβερειχηε 528<br />

υνδ 532�, εδιτεδ βψ ϑ. Ηεγγερ, ππ. 165−174, Ααχηεν, 2001.<br />

Ψανκελεϖσκψ, ∆.Ζ.; Ρεινηαρδτ, Η.−Ω. (1987): Ρεσπονσε οφ πλαιν χονχρετε το χψ−<br />

χλιχ τενσιον. ΑΧΙ Ματεριαλσ ϑουρναλ 84 (5), 365−373 1987.<br />

128


Experimental realisation of a pretentious testing task on the field of pioneer bridge structures<br />

EXPERIMENTAL REALISATION <strong>OF</strong> A PRETENTIOUS TESTING<br />

TASK ON THE FIELD <strong>OF</strong> PIONEER BRIDGE STRUCTURES<br />

VERSUCHSTECHNISCHE REALISIERUNG EINER NICHT<br />

ALLTÄGLICHEN PRÜFAUFGABE AUS DEM BEREICH DER<br />

PIONIERBRÜCKENKONSTRUKTIONEN<br />

REALISATION D'UN ESSAI DE CHARGEMENT COMPLEXE D'UN<br />

PONTON DU GENIE MILITAIRE<br />

Wolfgang Harre<br />

SUMMARY<br />

An extraordinary test-setup and a pretentious test procedure is described for<br />

investigation of a ponton, submitted to the very manifold and complex loading<br />

conditions of pioneer bridge structures.<br />

ZUSAMMENFASSUNG<br />

Es wird der aufwendige Versuchsaufbau und die anspruchsvolle<br />

Versuchstechnik erläutert, um im Prüflabor die komplizierten<br />

Beanspruchungsverhältnisse mit allen Randbedingungen eines in eine belastete<br />

Schwimmbrücke eingebundenen Pontons nachzufahren, mit dem Ziel, die<br />

Reaktionen (Tragverhalten, Schwingfestigkeit) derartiger geschweißter<br />

Aluminium-Leichtbau-Konstruktionen zu untersuchen.<br />

RESUME<br />

Le dispositif et la procédure d'essai complexes servant à simuler en<br />

laboratoire les conditions de chargement très compliquées d'un ponton faisant<br />

partie d'un pont flottant sont décrites.<br />

KEYWORDS: Testing of Pioneer Bridge Structures, Aluminium-Bridge-<br />

Structures<br />

129<br />

Otto-Graf-Journal Vol. 13, 2002


W. HARRE<br />

1. INTRODUCTION<br />

The development of dismountable bridges (bridge systems, military<br />

bridges, pioneer bridges) requires, besides the extensive design work and<br />

detailed theoretical analysis, also experimental investigations on materials,<br />

structural details, complete substructures (modules) and even on complete<br />

bridge structures. Since many decades, the Otto-Graf-Institute is the leading<br />

testing institution on this field of dismountable bridges.<br />

A very important branch of the dismountable bridges are wet gap military<br />

bridging systems, the so-called floating bridges representing very efficient and<br />

universal useful structures to overcome big rivers, water surfaces and obstacles<br />

(caused for instance by catastrophes, floods etc.).<br />

In the following, it will be reported of a recently finished test project<br />

concerning floating bridge systems, which was outstanding pretentious if<br />

compared with the usual test projects, carried out commonly in the department<br />

2.<br />

2. TEST PROJECT<br />

Basic elements of floating bridges are generally the welded hollow box<br />

girders in aluminium, the so-called pontons or bays, which will – dependent on<br />

the respective demand – be coupled together in appropriate number to form in<br />

composite action a complete floating and load carrying road way, see the<br />

following pictures (Fig. 1 and 2).<br />

Fig. 1: Floating bridge in service<br />

130


Experimental realisation of a pretentious testing task on the field of pioneer bridge structures<br />

Fig 2.: Cross-section of floating bridge (1 = Roadway ponton, 2 = Bow ponton)<br />

An excellent example of floating bridges, the so-called RIBBON-Bridge,<br />

was developed about 25 years ago in Germany by EWK (Eisenwerke<br />

Kaiserslautern). Meanwhile the RIBBON-Bridge is in service in 11 armies<br />

worldwide. Based on the positive experiences and the perfect performance all<br />

over the world in the past, even the US-Army was interested finally in this<br />

floating bridge.<br />

However in order to provide extensively the US-Army with the Ribbon<br />

Bridge, EWK had to satisfy some American proposals concerning a better<br />

handling and carrying capacity of the bridge system. At last, the Americans<br />

wished, that the successful demonstration of the demanded improvements<br />

should be realized by an appropriate full scale test in the Otto-Graf-Institute.<br />

So, in cooperation with EWK, a testing program was developed to prove<br />

the accomplishment of the requested improvements, quasi as a certification of<br />

the IMPROVED RIBBON BRIDGE (IRB).<br />

Essentially, the testing program included the static and dynamic loading of<br />

a complete ponton in a suitable special test set-up. Testing should be carried out<br />

in a procedure, which simulates all the load cases and load characteristics<br />

happening in practical use of the IRB.<br />

131<br />

Otto-Graf-Journal Vol. 13, 2002


W. HARRE<br />

To create that kind of most unfavourable and harmful loading situations in<br />

the ponton means concretely to apply bending moments and longitudinal as well<br />

as transverse loads in the same way and magnitude as it occurs, when a battle<br />

tank MLC 70 either stands on the floating bridge or passes the bridge, like<br />

demonstrated in the following diagram (Fig 3.).<br />

F9<br />

F10<br />

F1<br />

F2 F<br />

F3 F<br />

F4 F<br />

Ponton<br />

Fig. 3: Tank loading in reality and through laboratory simulation<br />

132<br />

F5 F<br />

F6 F<br />

F7<br />

F8


Experimental realisation of a pretentious testing task on the field of pioneer bridge structures<br />

3. EXPERIMENTAL REALIZATION<br />

3.1 Test set-up<br />

There were mainly two problems to be solved:<br />

a) Installation and program-operation of a relatively high number<br />

(13) of hydraulic jacks with different capacities (50 kN to 2 MN)<br />

b) Application of high bending moments (partly > 2 MNm by<br />

means of very high horizontal forces)<br />

Even the comparatively abundant and well assorted equipment of the<br />

Department 2 of the Otto-Graf-Institute was not able and sufficient to solve<br />

satisfactorily the two problems in a direct way. Especially the wanted number<br />

and capacity of the hydraulic jacks (at least 4 jacks with more than 2 MN)<br />

represented a considerable challenge. So, some reflection was necessary to find<br />

a way for the experimental realization, using the available equipment.<br />

The central idea of the solution was the consistent application of the leveraction<br />

(Hebelgesetze): The mainly in pairs acting high horizontal forces with<br />

opposite signs could be replaced by a lever-structure as shown basically in the<br />

following sketch.<br />

F11<br />

F12<br />

F1- 6<br />

Ponton<br />

F13<br />

Fig. 4: Forces on the ponton<br />

133<br />

Otto-Graf-Journal Vol. 13, 2002


W. HARRE<br />

F7<br />

a<br />

jack > 1MN<br />

F8<br />

Ponton jack > 1MN Ponton<br />

b c<br />

task solution<br />

Fig. 5: Solution of the testing task<br />

jack < 1MN<br />

Proceeding that way, several profitable effects could be achieved: the<br />

number of the required jacks was reduced from 13 to 5, the capacity of the used<br />

jacks could be adapted perfectly to the jacks available in the department 2 by<br />

corresponding choice of the lever-ratios b:c and last not least – this is very<br />

important with regard to the test set-up – the introduction of the lever structures<br />

opens the possibility to anchor the initially horizontal forces now vertically<br />

either in the strong floor directly or by means of test frames at hand indirectly.<br />

The anchorage of high horizontal forces is – as experience shows – on principle<br />

very difficult and expensive in a laboratory, because these forces have to be<br />

turned round sooner or later to pass and anchor them finally into the floor.<br />

After the concept of the experimental realization was found, the proceeding<br />

was evident: after checking the available and suitable jacks in the department,<br />

the different lever-ratios were calculated for the different loading points. After<br />

that, all the other details were designed. Then all parts were manufactured by<br />

EWK together with the ponton to be tested.<br />

The following pictures will try to give an impression of the complicate and<br />

complex test set-up:<br />

134


Experimental realisation of a pretentious testing task on the field of pioneer bridge structures<br />

Fig. 6. Testing arrangement on the strong floor<br />

135<br />

Otto-Graf-Journal Vol. 13, 2002


W. HARRE<br />

Fig. 7.a: Mid section of testing structure<br />

Fig. 7.b: End section of testing structure<br />

136


Experimental realisation of a pretentious testing task on the field of pioneer bridge structures<br />

Fig. 7.c: Oil supply system<br />

Fig. 7.d: Complex multi-dimensional loading arrangement<br />

137<br />

Otto-Graf-Journal Vol. 13, 2002


W. HARRE<br />

3.2 Test run<br />

The loading program required the independent, however exactly balanced,<br />

synchronous controlling of altogether 5 jacks for static as well as for dynamic<br />

running. The following systematic presentation of the loading functions<br />

illustrates the dynamic test run (Fig. 8).<br />

Tension<br />

Tension<br />

Compression<br />

Compression<br />

Tension<br />

Compression<br />

Load-time-diagram<br />

Test run<br />

Fig. 8: Loading sequence<br />

138<br />

jack 1und 5<br />

jack 2<br />

jack 3<br />

jack 4<br />

time<br />

time<br />

time<br />

time


Experimental realisation of a pretentious testing task on the field of pioneer bridge structures<br />

The implementation of this working load test procedure supposed the<br />

electronic coupling of the controlling units (S-59 Regler) of all the jacks.<br />

The exact run down of the whole test program was realized by means of a<br />

„managing“ computer, which directed the different controlling units according<br />

to the test program. In certain intervals, that is at times after reaching<br />

reconceived numbers of cycles, the test program also provided breaks in the<br />

dynamic loading. During these breaks, different static extreme load<br />

configurations were tested. All the measurements (loads, displacements, strains)<br />

happened automatically by a multipoint measuring system. The data were stored<br />

on CD for further evaluation. The described test set-up and equipment allowed a<br />

dynamic loading frequency of 0.4 Hz. The estimated lifetime of the bridge was<br />

50 000 cycles, so that the bare net time for carrying out the dynamic tests<br />

amounted to ca. 56 hours.<br />

The main result finally was, that the test specimen, will say the ponton<br />

(bay), as well as the test set-up itself passed the test procedure successfully.<br />

Apart from some insignificant cracks in the welds on uncritical structural points<br />

of the ponton, no serious damage could be observed on the test specimen. The<br />

test set-up also showed a perfect performance with regard to function and<br />

reliability.<br />

As a final statement, it can be concluded, that the experimental realization<br />

of this pretentious testing task on the field of pioneer bridge structures was an<br />

complete success for EWK and OGI.<br />

139<br />

Otto-Graf-Journal Vol. 13, 2002


W. HARRE<br />

140


Restoration of the sarcophagus of Duke Melchior von Hatzfeld<br />

RESTORATION <strong>OF</strong> THE SARCOPHAGUS <strong>OF</strong> DUKE MELCHIOR<br />

VON HATZFELD – THE ACCOMPANYING SCIENTIFIC AND<br />

TECHNICAL INVESTIGATIONS<br />

SCHADENSURSACHEN DES ZERFALLS DES HATZFELD-<br />

SARKOPHAGS UND ENTWICKLUNG EINER<br />

RESTAURIERUNGSMETHODE<br />

RESTAURATION DU SARCOPHAGE DU DUC MELCHIOR VON<br />

HATZFELD - INVESTIGATIONS SCIENTIFIQUES ET TECHNIQUES<br />

Gabriele Grassegger<br />

SUMMARY<br />

The article shows the investigations that led to the cause of decay of the<br />

alabaster sarcophagus and new methods for the restoration of the resin<br />

impregnated piece of art. The main reason was thermal decomposition of the<br />

gypsum and rapid rehydration accompanied by mismatching properties of the<br />

resin. The restoration used different formulas of cold-hardening PMMA resins<br />

combined with fillers and special coatings for 5 different steps of structural<br />

strengthening, adhesion, gluing of cracks, reshaping and retouching. The<br />

restoration has been successfully completed by a team of restorers.<br />

ZUSAMMENFASSUNG<br />

Der Alabaster-Sarkophag des Grafen von Hatzfeld (in Laudenbach) zeigte<br />

durch problematische Restaurierungen schwere Schäden, deren Ursachen<br />

festgestellt wurden. Die Hauptprobleme waren Wasserabspaltungen und Zerfall<br />

des Gipses, Spannungen durch Rückhydratisierung und andere physikalische<br />

Eigenschaften des Harzes, das zur Tränkung verwendet worden war. Es wurden<br />

dazu passende Restaurierungsmethoden entwickelt, die auf einer 5-stufigen<br />

Behandlung mit kalterhärtenden PMMA-Harzen beruhen. Die Behandlungen<br />

haben die Funktionen: strukturelle Festigung, Rißverklebung, Rißverfüllung und<br />

Antragungen, um die alte Form der Ornamente wieder herstellen zu können. Das<br />

Verfahren ist durch ein Restauratorenteam erfolgreich umgesetzt worden und<br />

der Sarkophag konnte wieder aufgestellt werden.<br />

141<br />

Otto-Graf-Journal Vol. 13, 2002


G. GRASSEGGER<br />

RESUME<br />

Suite à une restauration problématique, le sarcophage en albâtre du duc<br />

Melchior von Hatzfeld avait de sévères dégradations, dont les causes furent<br />

déterminées. Les causes principales étaient la décomposition thermique du<br />

plâtre, les tensions mécaniques dues à une réhydratation rapide, ainsi que les<br />

propriétés physiques mal adaptées de la résine utilisée. Nous avons développé<br />

une nouvelle méthode de restauration basée sur un traitement en cinq phases<br />

avec des résines PMMA durcissant à froid. Le traitement avait pour buts: le<br />

renforcement de la structure, le colmatage des fissures et le remodelage des<br />

ornements. La restauration a été accomplie avec succès par une équipe de<br />

restaurateurs, le sarcophage est à nouveau exposé.<br />

KEYWORDS: Restoration, alabaster, sarcophagus, conservation<br />

1. INTRODUCTION<br />

The sarcophagus of the late Duke Melchior von Hatzfeld was created in<br />

1659 by the famous stonemason Archilles Kern from Forchtenberg<br />

(Unterfranken). In the year 1657 Melchior von Hatzfeld had been the liberator<br />

of Krakau against the Swedish army sent by the German Emperor. The<br />

sarcophagus was finely carved out of a famous alabaster coming close by<br />

Forchtenberg. It shows the Duke in a suit of armour on the cover plate and<br />

scenes of his battles on the sides. Because of his legacy Archilles Kern created<br />

two tombs with very similar sarcophagus one in Prausnitz (Silesia) and one in<br />

Laudenbach (Hohenlohe) in a little chapel in the mountains, called Bergkirche<br />

(fig. 1).<br />

142


Restoration of the sarcophagus of Duke Melchior von Hatzfeld<br />

Figure 1: The Hatzfeld Sarcophagus after the successful restoration and reconstruction in the<br />

Bergkirche chapel in Laudenbach (picture by Georg Schmid, restorer).<br />

143<br />

Otto-Graf-Journal Vol. 13, 2002


G. GRASSEGGER<br />

Figure 2: Severe decay forms like warping, cracks and lamellar disintegration after the false<br />

restoration on one of the plates showing scenes from a battle<br />

(picture by Georg Schmid, restorer).<br />

144


Restoration of the sarcophagus of Duke Melchior von Hatzfeld<br />

Fig. 3: Stalk-like gypsum structure of very fine-grained alabaster formation impregnated and<br />

coated with PMMA. The large bubbles (vacuoles, below) are occasional places where air was<br />

trapped. Sample taken from the dog sculpture at a depth of approx. 10 cm (SEM picture).<br />

Fig. 4: Coarse gypsum crystal (left) with synthetic resin coatings. The ring-shaped objects are<br />

cavities in the crystal which are lined with a film of resin. The flaky body on the right is<br />

probably a newly developed anhydrite with a porous structure. Sample taken from a depth of<br />

approx. 10 cm (SEM picture).<br />

147<br />

Otto-Graf-Journal Vol. 13, 2002


Restoration of the sarcophagus of Duke Melchior von Hatzfeld<br />

Table 1: Composition of the restoration materials employed<br />

(Restoration expert Georg Schmid and team, Möglingen).<br />

Application Description/Recipe<br />

Adhesive mortar, fine formula for repair and<br />

shaping<br />

Injection mortar for adhesive and bridging of<br />

the cracks<br />

Structural strengthening of the damaged<br />

alabaster regions and pre-treatment of sides of<br />

cracks<br />

FM1= Acrylic resin suspension (Motema<br />

WPC) binder blended with Lenzin (natural<br />

gypsum) filler to a stiff, doughy consistency.<br />

I2= 1 part*) resin (Motema injection<br />

PMMA 220) + 1% by weight (in relation to<br />

the resin) peroxide catalyst plus 2 parts glass<br />

pellets


G. GRASSEGGER<br />

Table 2: Pressure resistance in various strengthened gypsum samples (block, dimensions<br />

approx. 5x5x2.5 cm, test following standard DIN EN 1926, test vertical to height).<br />

Sample Treatment of sample Bulk density<br />

[kg/dm³]<br />

Breaking load<br />

[N]<br />

Compressive strength<br />

[N/mm²]<br />

1 strengthened 2.26 23480.00 17.78<br />

2 strengthened 2.22 40750.00 30.57<br />

3 strengthened 2.20 34910.00 25.25<br />

4 strengthened 2.22 59850.00 46.61<br />

5 strengthened 2.21 25630.00 19.18<br />

6 strengthened 2.20 60050.00 44.96<br />

Average 2.22 40778.33 30.72<br />

A gypsum, freshly quarried 2.16 29870.00 19.41<br />

B gypsum, freshly quarried 2.24 28560.00 20.41<br />

C gypsum, freshly quarried 2.21 21120.00 17.88<br />

Average 2.21 26516.67 19.23<br />

Based on these findings, the result of strengthening could be rated very<br />

good. There was a substantial increase in resistance to pressure, from 19 to 30<br />

N/mm 2 on average, equivalent to a rise of c. 50%. An even greater improvement<br />

in strength was to be expected in the case of disintegrating gypsums like those in<br />

the sarcophagus, since a larger quantity of saturating material could be absorbed<br />

and residual strength had dropped to almost zero because of the destruction<br />

process.<br />

150


Restoration of the sarcophagus of Duke Melchior von Hatzfeld<br />

Figure 5: Before the restoration, small putto statue with most severe damage as warping,<br />

cracks and almost complete disintegration (picture by Georg Schmid).<br />

Figure 6: The same statue after restoration and treatment with 4 steps according to the<br />

methods proposed (picture by Georg Schmid).<br />

151<br />

Otto-Graf-Journal Vol. 13, 2002


G. GRASSEGGER<br />

Sealing the cracks in the alabaster<br />

Numerous cracks in the alabaster and the open joints between the sections<br />

had to be tied positively without visible changes. For this, original alabaster<br />

material was glued together with various mixtures based on Motema 220 (Table<br />

3).<br />

Table 3: Tensile strength of gluing of two pieces of gypsum with various adhesives based on<br />

Motema 220 (measured in accordance with the DIN EN 12 372 standard).<br />

Sample Breaking load,<br />

total (N)<br />

Tensile strength<br />

(N/mm 2 )<br />

K1-1 gluing with filled resin*) 1531 0.61<br />

K1-2 gluing with filled resin 1542 0.61<br />

K1-3 gluing with filled resin 2044 0.82<br />

K1-4 gluing with filled resin (premature failure due<br />

to crack in gypsum)<br />

144 0.06<br />

K2 PMMA resin + 1% hardener, unfilled 2049 0.82<br />

K3 PMMA resin + 1% hardener, unfilled 822 0.33<br />

Average 1355 0.54<br />

*) comparable to Recipe I2 with the addition of 1% Aerosil (precipitated silicic acid) as a filler.<br />

The findings showed that all tensile tests on glued samples (both filled and<br />

unfilled adhesives) have a high level of tensile strength, higher than that of the<br />

stone itself. This is shown by the path of the fracture in the stone itself, i.e. a socalled<br />

cohesion fracture occurs in the stone.<br />

UV resistance and ageing tests on the finished mixtures<br />

For the sake of certainty, to check the durability of the finished mixtures<br />

they were tested for UV resistance. The plan was to expose all recipes that might<br />

be considered for use (20 in all) so as to rule out future changes.<br />

A climate simulator of the global UV testing type, model UV 200 RB/20<br />

DU, system Weiss, construction type BAM, was used. In this case, only UV<br />

radiation in long-term climatic conditions corresponding to the room climate<br />

was used. UV exposure took place in 2 cycles for a total of 300 hours. The<br />

samples were inserted vertically and half of each was covered with opaque foil<br />

(cf Figs. 4 and 5).<br />

UV radiation was by means of fluorescent lamps that approximate the<br />

short-wave part of sunlight. In particular, radiation simulates the high-energy<br />

152


Restoration of the sarcophagus of Duke Melchior von Hatzfeld<br />

UV-A and UV-B rays (λ = 300–420 nm) that could trigger photo-oxidation. The<br />

combination of fluorescent lamps employed corresponded to the spectral<br />

distribution as per Method B of DIN 53 384 E.<br />

Results of UV ageing<br />

No kind of UV ageing or other damage was found to result from storage in<br />

the room climate conditions and UV radiation. In this respect, the restoration<br />

materials must be described as durable and stable.<br />

CONCLUDING REMARKS<br />

These extensive tests created excellent conditions for the tomb’s lasting<br />

restoration. Skilful implementation by the team of restorers led by t Mr. Georg<br />

Schmid/Stuttgart Möglingen reinstated the tomb to its former beauty (see Fig. 1<br />

and 5).<br />

By way of additional protection, the grave chapel containing the<br />

sarcophagus is to be air-conditioned with the aim of avoiding alternating strains<br />

in future. For the reasons stated at the beginning, a constant climate of approx.<br />

10°C and a maximum of 50% relative humidity is to be aimed for.<br />

ACKNOWLEDGEMENT<br />

Thanks to the whole group of people who participated for the long period<br />

of investigations and trials until the sarcophagus could be restored, especially to<br />

Mr. Otto Wölbert and Mr. Meckes from the LDA who were the driving force of<br />

the project and never gave up.<br />

The whole history of the piece of art and it’s restoration will be published<br />

in the upcoming issue of the “Nachrichtenblatt der Denkmalpflege in Baden-<br />

Württemberg”, 4/2002 by a team of authors Otto Wölbert (restoration history),<br />

Georg Schmid (restoration), Judith Breuer (art history), Robert Vix<br />

(Architecture) and Gabriele Grassegger (technical investigations).<br />

REFERENCES/INTERNAL REPORTS (SELECTION)<br />

Grassegger, G. (1987): Hatzfeld-Grabmal, Bergkirche Laudenbach -<br />

Untersuchung zur Schadensursache an einem Alabaster-Sarkophag nach einer<br />

Kunstharz-Volltränkung, Nr. D3 140 008/GR (LDA internal report dated<br />

18.9.1987)<br />

153<br />

Otto-Graf-Journal Vol. 13, 2002


G. GRASSEGGER<br />

Grassegger, G. (2001): Restaurierung des Hatzfeld-Grabmals, Mechanische<br />

Untersuchung von Festigungen und Probeklebungen auf Alabastergips“, Nr.<br />

32-804073 (internal report of the Otto Graf Institute, Research and Testing<br />

Establishment for Building and Construction [FMPA] dated 2.7.2001)<br />

Grassegger, G. (2002): Restaurierung des Hatzfeld-Grabmals – Test der UV-<br />

Alterungsbeständigkeit bei den fertigen Restaurierungsmateralien (Kittmörtel,<br />

Klebungen, Injektagen und Retouchen), Berichtsnummer: 32 804 073 000-2<br />

(FMPA internal report dated 3.5.2002).<br />

154


Geotechnical Aspects and Observations of a Quarry Reclamation<br />

GEOTECHNICAL ASPECTS AND OBSERVATIONS <strong>OF</strong> A QUARRY<br />

RECLAMATION<br />

GEOTECHNISCHE ASPEKTE BEI DER WIEDERVERFÜLLUNG<br />

EINES STEINBRUCHS<br />

ASPECTS GEOTECHNIQUES DU REMPLISSAGE D'UNE CARRIERE<br />

Hermann Schad, Geoffrey Gay<br />

SUMMARY<br />

A disused quarry was refilled with mainly cohesive soil from excavations<br />

from the local area. During the refilling slip movements took place. The<br />

stabilisation methods used and the measurement and analysis of the movements<br />

that took place during the filling are described.<br />

ZUSAMMENFASSUNG<br />

Ein ausgebeuteter Steinbruch sollte mit bindigem Material aus der<br />

Umgebung – überwiegend Löss- und Verwitterungslehmen – verfüllt werden.<br />

Bei der Verfüllung traten trotz der Stabilisierungsmaßnahmen<br />

(Sandwichbauweise und Geokunststoffbewehrung) Rutschungen und größere<br />

Bewegungen auf. Eine Ergänzung dieser Maßnahmen durch Betonscheiben und<br />

einen Schotterfuß reduzierte die Verschiebungsgeschwindigkeit auf das bei<br />

Erddeponien übliche Maß. Durch die Langzeitbeobachtungen wurde es möglich,<br />

ein Kriechgesetz für die Bewegungen anzugeben.<br />

RESUME<br />

Une carrière désaffectée a été remplie avec des excavations de la région,<br />

principalement des sols cohérents. Pendant le remplissage, des glissements ont<br />

eu lieu. Les méthodes de stabilisation employées sont décrites, ainsi que les<br />

mesures et l'analyse des déplacements qui ont eu lieu pendant le remplissage.<br />

KEYWORDS: Limestone quarry, slip movement, stabilisation, refilling,<br />

geotextiles<br />

155<br />

Otto-Graf-Journal Vol. 13, 2002


H. SCHAD, G. GAY<br />

1. INTRODUCTION<br />

In 1985 it was decided to refill and recultivate part of a limestone quarry in<br />

the south west of Germany near Neuffen in the state of Baden-Württemberg.<br />

The quarry had been used for the production of crushed limestone mainly for the<br />

use in road construction. An aerial photograph of this stage of the refilling is<br />

shown in fig. 1.<br />

Fig. 1: Aerial photograph of first stage of refilling 24.4.1988<br />

In 1989 it was decided to refill a further part of the quarry. It was soon<br />

realised that the planned slope of 1:2 was not possible using conventional earth<br />

works construction methods so an arched retaining wall was planned at the foot<br />

of the slope and the fill was to be reinforced using geotextiles. The refilling was<br />

to be carried out using mainly cohesive soil from excavations in the vicinity. A<br />

cross-section of the planned refilling is shown in fig. 2. Later the slope was<br />

flattened to 1:2.5.<br />

156


Geotechnical Aspects and Observations of a Quarry Reclamation<br />

Fig. 2: Cross-section of second stage of the refilling 1990<br />

2 SLIP MOVEMENTS AND STABILISATION<br />

In November 1997 it was noticed that relatively large slip movements must<br />

have taken place because a natural stone wall surrounding a manhole had been<br />

deformed considerably. (see fig. 3). The refilling was not complete at this time.<br />

Fig. 3: Deformed natural stone wall<br />

157<br />

Otto-Graf-Journal Vol. 13, 2002


H. SCHAD, G. GAY<br />

It was therefore decided to set up a grid of measuring points to observe the<br />

movements of the slope. The grid points are shown in fig. 4.<br />

Fig. 4: Plan of grid points used between 24.11.97 and 21.11.00<br />

The first measurement took place in November 1997. After the first two<br />

measurements with a weeks difference between them it appeared that the<br />

deformation rate was slowing down. It had reduced from 9mm/d to 5mm/d. In<br />

the third week however the speed increased to 20mm/d so it was decided to<br />

increase the factor of safety by stabilising the foot of the slope using concrete<br />

buttresses with crushed rock between them as shown in figs. 5 and 6.<br />

158


Geotechnical Aspects and Observations of a Quarry Reclamation<br />

Fig. 5: Section through concrete buttress<br />

Fig. 6: Plan of concrete buttresses with crushed rock filling<br />

159<br />

Otto-Graf-Journal Vol. 13, 2002


H. SCHAD, G. GAY<br />

The concrete buttresses were used as a supporting element and the crushed<br />

rock as a drainage. Grid point measurements on the 23.12.97 showed a further<br />

increase in the deformation rate (37mm/d). It was therefore decided to fill the<br />

volume between the concrete buttresses with a well graded crushed rock instead<br />

of the coarse crushed rock as planned. The deformation rate slowed down<br />

considerably (see Section 3). At first it was not clear whether this was due to a<br />

frost period between 21.1.98 and 4.2.98.<br />

A slope stability calculation showed that for a factor of safety of 1.0 the<br />

shear parameters in the horizontal direction have to be ϕ = 10.21° and c = 0<br />

kN/m² and in the vertical direction ϕ = 20 ° and c = 0 kN/m² (see fig. 7).<br />

Fig. 7: Elements for slope stability calculations<br />

Calculations with the Kinematical Elements Methods (Gussmann et al.<br />

2002) for the stabilised state showed that the increase in stability factor due to<br />

the concrete buttresses and the lowering of the water table by 2m was relatively<br />

small (0.04). In the long term however an increase in the shear strength due to<br />

consolidation and “age hardening” is to be reckoned with. Under the phenomena<br />

“age hardening” is understood that when a cohesive soil is placed, especially in<br />

wet weather, there is a relative large amount of water between the soil<br />

aggregates and the soil is very soft or even “liquid”. In the course of time this<br />

160


H. SCHAD, G. GAY<br />

The decisive deformation kinematics as derived from the deformation<br />

measurements between 24.11.97 and 8.2.98 are shown in fig. 4. It can be seen<br />

that the part which is reinforced with geotextiles moved horizontally as a block.<br />

The displacement rates of the points 16 and 17 (fig. 4) are characteristic for<br />

the lower part of the slope. The average deformations and the resulting<br />

deformation rates are shown in the following diagram.<br />

Fig. 9: Displacements of the lower part during the first 72 days<br />

After construction was completed a horizontal deformation of 16mm in the<br />

course of 1.5 years was measured at grid point 5 (see fig. 8). The vertical<br />

deformations of this point during the same time interval were 36mm. The<br />

maximum settlement measured on the “plateau” was 48mm. At the foot of the<br />

slope the maximum deformations at grid point 10 were horizontal 14mm and<br />

vertical 3mm. Of special note is the similarity of the settlements of the grid<br />

points 1 to 5 on the “plateau”. Inside 1.5 years (21.11.00 to 4.4.02) they were<br />

40mm, 48mm, 39mm, 36mm and 35mm as shown in fig. 10.<br />

162


Geotechnical Aspects and Observations of a Quarry Reclamation<br />

Fig. 10: Displacements of the plateau in the second phase<br />

4 INTERPRETATION <strong>OF</strong> THE MEASUREMENTS<br />

In the following diagram (fig. 11) the average time deformation curves<br />

with the time on a logarithmic scale are plotted. It can be seen that up to 68 days<br />

after the start of the measurements slipping took place. After that the creep<br />

phase started.<br />

Fig. 11: Displacements as function of time<br />

163<br />

Otto-Graf-Journal Vol. 13, 2002


H. SCHAD, G. GAY<br />

In the semi-logarithmic plot the creep phases approximate to straight lines<br />

which can be represented to a good approximation by the black lines with circles<br />

as points. Using logarithms to the base 10 the following relationships are<br />

obtained. This logarithmic creep is often observed in soil but a lot of other<br />

rheological models could be used (e. g. Schad/Breinlinger 1991).<br />

In the next 10 years horizontal deformations of 5 to 10 cm. are to be<br />

expected and that similar deformations are to be expected in the next 90 years.<br />

5 LITERATURE<br />

Gussmann, P.; Schad, H.; Smith, I. (2002): Numerical Methods in Geotechnical<br />

Engineering Handbook, Vol. 1, Ernst & Sohn Berlin, 437 - 479<br />

Schad, H.; Breinlinger, F. (1991): Numerical analysis of visco-elastoplastic soil<br />

behaviour considering large deformations. Proc. 10th European Conference<br />

on Soil Mechanics and Foundation Engineering, Florence/Italy, 255 - 260.<br />

164


Non-destructive detection of longitudinal cracks in glulam beams<br />

NON-DESTRUCTIVE DETECTION <strong>OF</strong> LONGITUDINAL CRACKS IN<br />

GLULAM BEAMS<br />

ZERSTÖRUNGSFREIE MESSUNG VON LÄNGSRISSEN IN<br />

BRETTSCHICHTHOLZ-TRÄGERN<br />

DÉTECTION NON DESTRUCTIVE DES FISSURES<br />

LONGITUDINALES DANS LES POUTRES DE BOIS LAMELLÉ<br />

COLLÉ<br />

Simon Aicher, Gerhard Dill-Langer, Thomas Ringger<br />

SUMMARY<br />

The paper reports on the detection and length characterisation of<br />

longitudinal cracks in glued laminated timber (glulam) beams by means of<br />

ultrasound (US) pulse transmission method. In the preliminary study one large<br />

glulam beam with a crack starting at one end-grain face and ending at about one<br />

third of total beam length has been evaluated. For the transmission<br />

measurements US pulses have been applied to the narrow faces of the beam,<br />

thus propagating parallel to cross-sectional depth perpendicular to fibre. The<br />

beam has been scanned by a transmitter / receiver pair of US transducers shifted<br />

along the longitudinal beam axis. The recorded full US wave signals were<br />

evaluated for three different scalar parameters being “time of flight”, “peak-topeak<br />

amplitude” and “first amplitude”. The comparison of the visual inspection<br />

with the US parameters, showing significantly different scatter ranges, yielded a<br />

satisfactory agreement with respect to the determination of crack length. The<br />

NDT crack detection based on the parameter “time of flight” was also<br />

satisfactory when the crack extended only over a part of the beam width, i. e. not<br />

being visually detectable from one of both side faces. The latter can be very<br />

important for in-situ inspection of beams in buildings with assumed or partial<br />

cracks.<br />

165<br />

Otto-Graf-Journal Vol. 13, 2002


S. AICHER, G. DILL-LANGER, T. RINGGER<br />

ZUSAMMENFASSUNG<br />

Der Aufsatz berichtet über den Nachweis und die Längenmessung von<br />

longitudinalen Rissen in Brettschichtholz (BSH) -Trägern mittels der Methode<br />

der Durchschallung mit Ultraschallpulsen. In der orientierenden Studie wurde<br />

ein großer Brettschichtholzträger mit einem Riss untersucht, wobei der Riss von<br />

einer Hirnholzfläche ausging und innerhalb des ersten Drittels der Trägerlänge<br />

endete. Für die Transmissionsmessungen wurden Ultraschallpulse auf die<br />

Schmalseiten der Träger aufgebracht, so dass diese sich parallel zur<br />

Querschnittshöhe und damit rechtwinklig zur Faserrichtung ausbreiteten. Der<br />

Träger wurde mit einem Ultraschall Geber / Empfänger-Paar in Richtung der<br />

Trägerachse abgerastert. Die aufgezeichneten vollständigen Ultraschallsignale<br />

wurden hinsichtlich dreier verschiedener skalarer Parameter ausgewertet:<br />

Signal-Laufzeit, Signalstärke und erste Amplitude. Der Vergleich der visuellen<br />

Charakterisierung mit den Ultraschallparametern, die jeweils deutlich<br />

unterschiedliche Streubreiten aufwiesen, ergab eine zufriedenstellende<br />

Übereinstimmung hinsichtlich der Bestimmung der Risslänge. Die<br />

zerstörungsfreie Risserkennung auf Grundlage des Parameters "Signal-Laufzeit"<br />

war auch dort noch zufriedenstellend, wo sich der Riss nur über einen Teil der<br />

Querschnittsbreite erstreckte, also auf einer der beiden Seitenflächen schon nicht<br />

mehr sichtbar war. Letzteres kann für die in-situ Beurteilung von Trägern in<br />

realen Bauwerken mit vermuteten oder teilweise vorhandenen Rissen sehr<br />

wichtig sein.<br />

RÉSUMÉ<br />

L’article traite de la détection et de la caractérisation des fissures<br />

longitudinales dans les poutres en bois lamellé collé, au moyen d’une méthode<br />

de transmission des impulsions ultrasons. Lors de travaux préliminaires, une<br />

poutre présentant une fissure commençant à l’une des extrémités et s’étendant<br />

jusqu’au tiers de la longueur totale a été étudiée. Les impulsions d’ultrasons sont<br />

appliquées sur les deux faces les plus étroites de la poutre et se propagent<br />

parallèlement à sa section, c’est à dire perpendiculairement aux fibres du bois.<br />

Les capteurs ultrasons (émetteur et transmetteur) balaient alors la poutre suivant<br />

son axe longitudinal. Le signal enregistré fournit trois paramètres différents: le<br />

temps de propagation du signal, son amplitude pic à pic et sa première<br />

amplitude. La comparaison entre les indications obtenues par la méthode des<br />

166


Non-destructive detection of longitudinal cracks in glulam beams<br />

ultrasons et l’évaluation visuelle sont en accord quant à la détermination de la<br />

longueur de la fissure. La détection basée sur le seul paramètre « durée de<br />

propagation » est également satisfaisante lorsque la fissure ne s’étend que sur<br />

une partie de l’épaisseur, c’est à dire lorsqu’elle ne traverse pas la poutre de part<br />

en part. Ce dernier cas est très intéressant pour l’inspection in-situ des<br />

constructions présentant des fissures ou des risques de fissure.<br />

KEYWORDS: non-destructive testing, ultrasound, pulse transmission, crack in<br />

glulam beams, scalar ultrasound parameters<br />

1. INTRODUCTION<br />

Non-destructive evaluation of the state of integrity resp. of defects or<br />

partial damages in structural building elements generally represents an important<br />

issue. The capability of NDT based reliable assessment of components enhances<br />

the acceptance of building systems or materials, may affect safety factors and<br />

enables assessment of upgrading or rehabilitation works. Timber and glulam<br />

beams despite all positive aspects are prone to longitudinal cracks generally<br />

resulting from interaction of poor constructive detailing and unaccounted<br />

climatic stresses. Longitudinal cracks primarily occur at i) support areas due to<br />

interaction of shear stresses and climate and ii) at notches, holes and in apex<br />

areas of curved / tapered beams due to tension stresses perpendicular to grain<br />

bound to undue load actions and / or often climate stresses. Finally,<br />

iii) longitudinal cracks can occur from poor glue lines generally bound to<br />

trespass of open / closed curing times of the adhesives.<br />

The reliable assessment of the extent of damage and of the result of the<br />

repair works represent the two equally important aspects of the NDT assessment<br />

of damaged or upgraded construction elements. In many cases a visual<br />

inspection of the beams is very costly or almost impossible. Today reliable NDT<br />

tools for employment in the sketched area are missing for lumber / glulam<br />

beams being contrary to constructions with some other important building<br />

materials. The reason for this NDT lag consists i.a. in the anisotropy,<br />

inhomogeneity and the high damping characteristics of the natural material<br />

wood.<br />

167<br />

Otto-Graf-Journal Vol. 13, 2002


S. AICHER, G. DILL-LANGER, T. RINGGER<br />

Timber Department of Otto-Graf-Institute being deeply involved in the<br />

assessment / expertises of damages, repair proposals and technical approval of<br />

rehabilitation works has started to focus on active NDT methods about a year<br />

ago. This paper gives some preliminary results of one of the on-going projects.<br />

It is reported on the detection and length characterisation of longitudinal cracks<br />

in glued laminated timber (glulam) by means of ultrasound (US) pulse<br />

transmission method. The US method has been chosen due to its sensitivity to<br />

impedance changes at discrete boundaries. Former literature known attempts in<br />

this field [KLINGSCH, 1991; KIMURA ET AL 1991] dealt with artificial defects,<br />

being rather thick saw cuts of defined length parallel to beam axis and over full<br />

cross-sectional width. The results and the practical relevance of the exclusive<br />

focus on such slots / cracks has been discussed controversially in the involved<br />

engineering community. In the investigation reported here a fully practice<br />

relevant crack resp. cracked beam was investigated.<br />

2. EXPERIMENTAL SET-UP<br />

The investigated specimen represented a part cut from a large beam with a<br />

round hole loaded until failure in bending, compare Fig. 1a. The beam had failed<br />

with two large cracks initiated at the hole periphery by high local stresses<br />

perpendicular to grain. The crack propagation was then driven by both, shear<br />

and tension stresses perpendicular to grain.<br />

The investigated NDT specimen (Fig. 1b) showed an open crack over full<br />

width b at end grain face Y closer to the former hole location and no visible<br />

crack at the opposite end grain face Z. Thus, despite disputable accuracy of<br />

visual inspection the crack must end within the specimen as the latter consisted<br />

of one massive piece.<br />

168


a)<br />

b)<br />

cracks at<br />

ultimate load<br />

originally<br />

tes ted beam<br />

h = 440<br />

end grain<br />

face Y<br />

33<br />

33<br />

100<br />

Y<br />

b = 120<br />

p/2 p/2<br />

L c<br />

y<br />

x<br />

T<br />

B<br />

Non-destructive detection of longitudinal cracks in glulam beams<br />

l = 2100<br />

investigated<br />

NDT specimen<br />

Z<br />

l = 2100<br />

h = 440<br />

120<br />

Top narrow face (T)<br />

visible part of the crack<br />

Fig. 1a,b: Original location and dimensions of the employed NDT specimen.<br />

a) larger cracked beam from which the NDT specimen was cut<br />

out after failure of the beam<br />

b) view and dimensions of partially cracked NDT specimen<br />

169<br />

end grain<br />

face Z<br />

900<br />

"right" wide face II<br />

Bottom narrow face (B)<br />

Otto-Graf-Journal Vol. 13, 2002


S. AICHER, G. DILL-LANGER, T. RINGGER<br />

The dimensions of the block were (width b × depth h × length l): 120 mm ×<br />

440 mm × 2100 mm. Starting at end-grain face Y and proceeding in the<br />

longitudinal (x-) beam direction, the crack is visible at both side-faces I and II<br />

for the major part of the crack length (compare chap. 4).<br />

The ultrasonic NDT evaluation / assessment of the crack (length) was<br />

throughout performed by means of a pair of piezoelectric (US) transducers.<br />

Transmitter and receiver were positioned oppositely at mid-width of the narrow<br />

faces T and B of the beam specimen and aligned parallel to depth. Starting at the<br />

end-grain face Y with the opened crack the transducer pair was moved along<br />

beam length l with increments of �x = 50 mm towards the end grain face Z. At<br />

each position an ultrasonic pulse synthesized by a generator unit was put to the<br />

specimen by the piezoelectric transmitter. Figure 2 shows a schematic<br />

representation of the experimental set-up. The fixation of the transmitter and of<br />

the receiver differed. The transmitter was throughout fixed to the surface by a<br />

hot melt adhesive also serving as coupling agent. Contrary, the receiver was not<br />

glued to but applied to the surface by hand pressure without using any kind of<br />

coupling agent.<br />

At each location x a number of 25 repetitive measurements were performed<br />

in order to enable noise reduction. As the crack was not centred in the middle of<br />

the cross-sectional depth but much closer (~70 mm) to narrow face B it was<br />

questioned whether there might be an influence if the transmitter is at a closer or<br />

more remote distance to the crack. Therefore two test series S1 and S2 were<br />

performed with the transmitter first being at narrow side T and then at narrow<br />

side B.<br />

170


a)<br />

b)<br />

end grain<br />

face Y<br />

crack<br />

x<br />

narrow<br />

face T<br />

crack at end<br />

grain face A<br />

narrow<br />

face B<br />

Non-destructive detection of longitudinal cracks in glulam beams<br />

l = 2100<br />

US-pulse<br />

generator unit<br />

ultrasound<br />

transmitter<br />

signal [V]<br />

3<br />

0<br />

-3<br />

narrow face T<br />

narrow face B<br />

0.0 time [ms] 0.5<br />

ultrasound<br />

receiver<br />

amplifier<br />

Fig. 2a,b: Schematic representation of the experimental set-up<br />

171<br />

end grain<br />

face Z<br />

Otto-Graf-Journal Vol. 13, 2002


S. AICHER, G. DILL-LANGER, T. RINGGER<br />

3. NDT EQUIPMENT<br />

The generator unit (USG 20, Geotron Electronics), originally optimised for<br />

NDT of concrete, produced high voltage pulses with main frequencies between<br />

20 kHz and 350 kHz. The duration of a single pulse was less than 1 ms.<br />

The ultrasonic transducers (UPG-D 3037, UPE-D 3038, Geotron<br />

Electronics) used in the experiments were piezoelectric converters with a<br />

coupling-surface of 3 mm in diameter. The transducers showed a multi-resonant<br />

frequency characteristic with main peak values between 20 and 100 kHz.<br />

The received ultrasonic pulses have been amplified by a broadband<br />

amplifier (AM 502, Tektronix) with an amplification factor of 100 dB. The<br />

complete signals were recorded by a PC based transient recorder with 12 bit<br />

amplitude resolution and 20 MHz time resolution.<br />

4. VISUAL CHARACTERIZATION <strong>OF</strong> THE CRACK DIMENSIONS<br />

For correlation of the ultrasound NDT parameters with the length of the<br />

crack in longitudinal beam direction and with the crack opening, the dimensions<br />

of the crack were determined by visual inspection at both wide side faces I and<br />

II of the specimen. The crack openings were measured with a feeler gauge.<br />

Figures 3 a and 3 c give a schematic illustration of shape, position and<br />

dimensions of the crack according to the visual characterization and feeler gauge<br />

measurements at the two wide faces I and II, while Fig. 3 b shows a top view<br />

indicating the projected crack area. According to the visual findings the crack<br />

can be divided into three different sections.<br />

In section A (0 ≤ x ≤ 53 cm), the crack is characterized by measurable<br />

openings of 1.2 mm (x = 0) to 0.4 mm (x = 53 cm) at side face I; at side face II<br />

the respective dimensions are: 0.4 mm (x = 0) to 0.05 mm (x = 53 cm).<br />

In section B (53 cm < x ≤ 67 cm) a crack-opening was only measurable at side<br />

face I with openings in the range of 0.35 mm to 0.25 mm. At side face II, the<br />

closed crack was visible as a small displacement edge within the surface.<br />

Finally in section C (67 cm < x < 88.4 cm), the crack was still measurable<br />

at side face I with openings from 0.25 mm to 0.05 mm. The end of the crack at<br />

x = LC =88.4 cm almost coincides for measurable (0.05 mm) crack opening and<br />

visual inspection. At side face II, the crack is not visible at all.<br />

172


Non-destructive detection of longitudinal cracks in glulam beams<br />

The true extension and shape of the crack front might well be somewhat<br />

ahead of x = LC what will be determined at the end of the ongoing experiments.<br />

5. CHARACTERIZATION <strong>OF</strong> SIGNAL-PARAMETERS<br />

Once an ultrasonic pulse is generated and applied to the narrow face of the<br />

glulam beam, it is proceeding through the specimen perpendicular to the<br />

direction of the glued lamellas, i.e. perpendicular to fibre direction and is<br />

detected by the receiver at the opposite surface.<br />

The recorded full wave signals purged from noise by multiple pulse<br />

measuring method were so far evaluated for three different scalar parameters,<br />

being:<br />

• “Peak-to-peak amplitude” (pp amplitude) of the signal, which represents<br />

the difference between the recorded absolute maximum and minimum of<br />

the complete signal. The parameter is correlated to the transmitted energy<br />

of the pulse. Figure 4 shows one exemplary wave signal, including the<br />

determination of the pp-amplitude.<br />

• “Time of flight” (T<strong>OF</strong>) of the signal is defined as the time lag between the<br />

external trigger edge given by the pulse generator and the on-set, i.e. the<br />

begin of the recorded signal. The signal-parameter T<strong>OF</strong> and also the<br />

below specified parameter |1 st<br />

a| are exemplarily depicted in Fig. 5 for the<br />

signal given in Fig. 4 now presented with a close-up at the begin of the<br />

signal.<br />

• “First amplitude” (1st a) of the signal is defined as the maximum (or<br />

minimum) amplitude of the first observable half cycle. In detail, for signal<br />

characterization, the absolute value of the first amplitude has been used.<br />

173<br />

Otto-Graf-Journal Vol. 13, 2002


S. AICHER, G. DILL-LANGER, T. RINGGER<br />

a)<br />

b)<br />

c)<br />

h [cm]<br />

40<br />

20<br />

0<br />

40<br />

face Y<br />

20<br />

0<br />

L C<br />

A B C<br />

left face I<br />

0 70 140 x [cm] 210<br />

0 70 140 x [cm] 210<br />

x<br />

h [cm]<br />

40<br />

20<br />

0<br />

A B C “left“ face I<br />

53.0 cm<br />

L C<br />

67.0 cm<br />

A B C<br />

88.4 cm<br />

exact shape of crack front unknown<br />

“right“ face II<br />

end of measurable crack<br />

(openings > 0.05 mm)<br />

end of visible crack<br />

right face II<br />

0 70 140 x [cm] 210<br />

face Z<br />

beam depth<br />

h = 440 mm<br />

beam depth<br />

h = 440 mm<br />

beam width<br />

b = 120 mm<br />

Fig. 3a-c: Schematic illustration of the appearance of the crack at different faces of the<br />

specimen. The graphs 3a) and 3c) give measured crack lengths and crack<br />

openings (100-times enlarged) at the left and right wide side faces (I and II). Fig<br />

3b shows a projection of the crack area revealing the three crack sections A-C.<br />

174


signal [V]<br />

3.0<br />

1.5<br />

0.0<br />

-1.5<br />

close up<br />

in Fig. 5<br />

Non-destructive detection of longitudinal cracks in glulam beams<br />

-3.0<br />

0.00 0.20 0.40 0.60 0.80 1.00<br />

pp amplitude<br />

time [ms]<br />

Fig. 4: Recorded signal with evaluation / definition of the “peak-to-peak amplitude”<br />

(pp amplitude)<br />

signal [V]<br />

0.4<br />

0.2<br />

0.0<br />

-0.2<br />

1 st a<br />

T<strong>OF</strong><br />

-0.4<br />

0.00 0.05 0.10 0.15 0.20 0.25<br />

time [ms]<br />

Fig. 5 Evaluation / definition of “time of flight” (T<strong>OF</strong>) and of “first amplitude” (1st a); the<br />

graph represents a close-up of the recorded ultrasound pulse given in Fig. 4<br />

175<br />

Otto-Graf-Journal Vol. 13, 2002


S. AICHER, G. DILL-LANGER, T. RINGGER<br />

6. RESULTS <strong>OF</strong> THE ULTRASOUND MEASUREMENTS<br />

The reproducibility of the signal parameters for repeated independent<br />

measurements at a specific location x (uncoupling and new coupling of the<br />

transducers for each measurement) differed considerably between parameter<br />

T<strong>OF</strong> on the one side and parameters pp and |1 st a| on the other side. In case of<br />

T<strong>OF</strong> in average an extremely small coefficient of variation (C.O.V.) of 0.3 %<br />

was obtained whereas for the parameters pp and |1 st a| the considerably higher<br />

C.O.V.’s were 21% and 24 %, respectively. For the reproducibility test a number<br />

of 10 repeated measurements have been evaluated.<br />

The major results of the performed preliminary investigations are compiled<br />

in Figs. 6 to 8, showing the signal parameters T<strong>OF</strong>, pp and |1 st a| along specimen<br />

axis x. In all graphs the results of the two test runs S1 and S2 with the alternative<br />

transmitter positions at narrow specimen sides T or B are given, and the mean<br />

value of both test runs is shown additionally. Further, the quality of the signal<br />

parameter reproducibility is indicated in all Figures by an error bar with a height<br />

of 2 times of the respective standard deviation (the error bars are not visible in<br />

Fig. 6 due to the very small C.O.V.’s). The visually determined crack length<br />

segments A, B and C are indicated in the graphs, too. Following the results are<br />

discussed in more detail.<br />

Figure 6 specifying “time of flight (T<strong>OF</strong>)” vs. beam axis x reveals almost<br />

throughout a steep decrease of parameter T<strong>OF</strong> along crack length segments A, B<br />

and C. It should be emphasized, that the T<strong>OF</strong> decrease in the investigated case is<br />

apparently not affected by the fact that the crack is not visually detectable at<br />

surface II in crack zone C. For positions x > LC a rather constant T<strong>OF</strong> value of<br />

253.2 ms is obtained. This gives a mean phase velocity in transverse direction to<br />

fibre of v90 = 0.44 / (253.2*10 -6 ) = 1738 m/s which is in good agreement with<br />

literature data [Buchur 1989] on phase velocities perpendicular to fibre of wood<br />

/ glulam made of European spruce. A comparison of test series S1 and S2<br />

indicates apart from one exception in the crack range A, that the T<strong>OF</strong> results are<br />

obviously not influenced by transmitter location closer resp. more far from the<br />

crack plane.<br />

176


T<strong>OF</strong> [µs]<br />

360<br />

330<br />

300<br />

270<br />

253.2<br />

240<br />

mean value<br />

of S1 and S2<br />

Non-destructive detection of longitudinal cracks in glulam beams<br />

S1: transmitter at face T<br />

S2: transmitter at face B<br />

visually determined crack length, wide side face I<br />

visual crack length, wide side face II<br />

L C<br />

A B C<br />

0 30 60 90 120 150 180 210<br />

specimen axis x [cm]<br />

T<strong>OF</strong> mean value of<br />

uncracked specimen<br />

Fig. 6 Results of time of flight (T<strong>OF</strong>) measurements along the beam axis x. The x-axis gives<br />

the distance x [cm] of the transducers position to the end grain face Y. The crack was<br />

supposed, according to visual inspection, to end at x = 88.4 cm.<br />

Figure 7 shows the “peak-to-peak amplitude” (pp amplitude) of the<br />

transmitted signals. Qualitatively a slow increase of pp-amplitude values from<br />

mid- length of segment A through to C and the increase continues to about 20<br />

cm beyond C; into the visually uncracked part of the beam. Quantitatively high<br />

scatter of the measured data, especially in the uncracked section is observed.<br />

Exemplarily at a distance x = 160 cm from end grain face Y, certainly well<br />

ahead of the crack front, the pp-amplitudes exhibit a local minimum with values<br />

comparable to those measured within the crack at x = 70 cm (in section C). The<br />

transition from the cracked to the undamaged section is rather smooth without a<br />

clearly marked step in the pp amplitude course.<br />

177<br />

Otto-Graf-Journal Vol. 13, 2002


S. AICHER, G. DILL-LANGER, T. RINGGER<br />

pp amplitude [V]<br />

15.0<br />

12.0<br />

9.0<br />

6.0<br />

3.0<br />

0.0<br />

vis. crack length<br />

wide side face I<br />

L C<br />

A B C<br />

vis. crack length<br />

wide side face II<br />

S1: transmitter at face T<br />

S2: transmitter at face B<br />

0 30 60 90 120 150 180 210<br />

specimen axis x [cm]<br />

mean value<br />

of S1 and S2<br />

Fig. 7 Results of peak-to-peak amplitude (pp amplitude) measurements along beam axis x.<br />

The x-axis gives the distance x [cm] of the transducers position to the end grain face<br />

Y. The crack was supposed according to visual inspection to end at x = 88.4 cm.<br />

Thus, the signal-parameter pp-amplitude does not allow a clear<br />

identification of the crack length. The relatively high uncertainty due to coupling<br />

conditions makes it even more difficult to quantitatively estimate the location of<br />

the crack tip. However, in spite of the scatter, the clearly visible trend of<br />

decreased attenuation for decreasing crack openings is not affected qualitatively.<br />

The presented results for the behaviour of the peak-to-peak amplitude in<br />

case of cracks can be compared to the observations of [KLINGSCH, 1991], where<br />

no damping of pp amplitudes has been measured in the case of saw-cuts.<br />

In Fig. 8 the results of |1 st a| along beam axis x are shown for the two<br />

performed test series S1 and S2 together with the boundaries of the different<br />

crack sections.<br />

178


| 1 st a | [V]<br />

0.80<br />

0.60<br />

0.40<br />

0.20<br />

0.00<br />

vis. crack length<br />

wide side face I<br />

L C<br />

A B C<br />

Non-destructive detection of longitudinal cracks in glulam beams<br />

vis. crack length<br />

wide side face II<br />

S1: transmitter at face T<br />

S2: transmitter at face B<br />

0 30 60 90 120 150 180 210<br />

specimen axis x [cm]<br />

mean value<br />

of S1 and S2<br />

Fig. 8 Results of measurements of absolute values of the first amplitude (|1st a|) along the<br />

beam axis x. The x-axis gives the distance x [cm] of the transducers position to the end<br />

grain face Y. The crack was supposed according. to visual inspection to end at<br />

x = 88.4 cm.<br />

The measured course of the |1 st a| values can roughly be described as a step<br />

function with quite constant low values within all three sections A to C of the<br />

crack and a sharp increase at the assumed crack tip. It is interesting to note that<br />

in section C still strong damping of |1 st a| is observed, while the crack is solely<br />

visible at one side face of the specimen.<br />

Although the scatter among |1 st a| values within the undamaged part of the<br />

beam is significant, the results between cracked and uncracked parts of the beam<br />

are clearly separated, which is especially true for the mean values of the two test<br />

series with interchanged transmitter / receiver conditions.<br />

179<br />

Otto-Graf-Journal Vol. 13, 2002


S. AICHER, G. DILL-LANGER, T. RINGGER<br />

7. CONCLUSIONS<br />

The performed preliminary study on the feasibility of crack detection in<br />

glulam beams by means of ultrasonic pulse transmission method revealed<br />

promising results.<br />

All three evaluated scalar signal parameters, being time-of-flight (T<strong>OF</strong>),<br />

peak-to-peak-amplitude (pp-amplitude) and first amplitude (⏐1 st a⏐) showed<br />

significant correlations with the occurrence of the completely or partly visually<br />

detectable crack.<br />

Both, pp-amplitude and ⏐1 st a⏐ exhibited relatively high scatter among the<br />

values within the undamaged part of the beam accompanied by a quite poor<br />

reproducibility bound to the performed non-ideal coupling conditions. The<br />

pp-amplitude values showed a smooth transition zone from cracked to the<br />

uncracked sections of the beam. Contrary hereto the ⏐1 st a⏐ values exhibited a<br />

pronounced step indicating the end of the crack clearly.<br />

The T<strong>OF</strong>-results showed best reproducibility and a clear, although smooth<br />

change at the end of the crack. The different crack sections with one-sided<br />

throughout measurable crack openings respectively one sided first measurable<br />

and then visible crack opening were best represented by the course of T<strong>OF</strong><br />

results.<br />

For all three characteristic signal parameters, no significant differences due<br />

to interchanged positions of transmitter and receiver were observed. Thus, no<br />

detection of the location of the crack with respect to depth direction could be<br />

performed, being in good accordance with the results of [KLINGSCH, 1989,<br />

1991].<br />

Although feasibility of the applied NDT methods and evaluation for crack<br />

detection could be shown by the presented study, the results from only one<br />

exemplary specimen may not be generalized. Additional tests also with<br />

investigate different beam / crack configurations have to be performed to obtain<br />

a statistically more reliable data basis.<br />

In order to improve the presented ultrasonic method for applications in real<br />

structures, the coupling problem has to be solved and the feasibility for beams<br />

with realistic heights of about 1 to 1,5 m has to be shown. Advanced signal<br />

processing techniques for the evaluation in the frequency domain (i.e. Fourier-<br />

180


Non-destructive detection of longitudinal cracks in glulam beams<br />

and Wavelet transforms) should be used for noise reduction, enhancement of<br />

resolution and defect sensitivity.<br />

ACKNOWLEDGEMENTS<br />

The authors are very much indebted to Dr. Catherine Lidin (Collano AG,<br />

Switzerland) for the utmost valuable favour translating the abstract and title of<br />

this paper into technically and linguistically correct French.<br />

The financial support of German Science Community (DFG) via grant to<br />

Sonderforschungsbereich 381 "Characterisation of damage evolution in<br />

composite materials using non-destructive test methods" and hereby to subproject<br />

A8 "Damage and NDT of the natural fibre composite material wood" is<br />

gratefully acknowledged.<br />

REFERENCES<br />

KLINGSCH, W.: Zerstörungsfreie Lokalisierung äußerlich nicht sichtbarer<br />

Holzschädigung. Bauen mit Holz 6, 1989, pp. 421-423<br />

KLINGSCH, W.: Erarbeitung anwendungstechnischer Grundlagen zur<br />

zerstörungsfreien Qualitätsüberwachung von Holzleimbauteilen mittels<br />

Ultraschall. Forschungsbericht, 1991<br />

BUCUR, V.: Acoustics of wood. Boca Raton, New York, London, Tokyo, 1995,<br />

p. 121<br />

KIMURA, M., KUSUNOKI, T., OHTA, M., HATANAKA, K., KOZUKA, H., ITO, H.:<br />

Ultrasonic pulse test on glulam glued connection. Proc. Int. Timber Eng.<br />

Conf., part 2, London, 1991, pp. 2.250 – 2.257<br />

181<br />

Otto-Graf-Journal Vol. 13, 2002


S. AICHER, G. DILL-LANGER, T. RINGGER<br />

182


Determination of local and global modulus of elasticity in wooden boards<br />

DETERMINATION <strong>OF</strong> LOCAL AND GLOBAL MODULUS <strong>OF</strong> ELAS-<br />

TICITY IN WOODEN BOARDS<br />

BESTIMMUNG DES LOKALEN UND GLOBALEN ELASTIZITÄTS-<br />

MODUL IN HOLZBRETTERN<br />

DETERMINATION DU MODULE D’ELASTICITE LOCAL ET GLO-<br />

BAL SUR DES PANNEAUX A BASE DE BOIS<br />

Simon Aicher, Lilian Höfflin, Wolfgang Behrens<br />

SUMMARY<br />

The paper reports on an efficient method for determination of the local<br />

modulus of elasticity by means of elongation/strain measurements. Further, the<br />

effect of local weak sections on the global modulus of elasticity determined by<br />

deflection measurement is revealed. The global modulus of elasticity computed<br />

on the basis of the partly extremely varying locally measured moduli of elasticity<br />

complies well with the globally measured MOE.<br />

The experimental investigations were performed with edgewise bent beech<br />

boards. First, the elongation /strain measurement method was verified exemplary<br />

with a board which was inflicted successively with artificial defects<br />

(holes). For each defect state the local and global moduli of elasticity were<br />

measured and the differences are discussed. Second, the variation of local<br />

modulus of elasticity and its high spatial correlation with the location of bending<br />

failure is shown exemplarily by means of four beech boards of a larger test series.<br />

ZUSAMMENFASSUNG<br />

Es wird über eine effiziente Methode zur Bestimmung des lokalen Elastizitätsmoduls<br />

mittels Längsverschiebungs-/Dehnungsmessungen berichtet. Desweiteren<br />

wird die Auswirkung lokaler Schwachstellen auf den mittels Durchbiegungsmessung<br />

bestimmten globalen Elastizitätsmodul gezeigt. Der aus den teilweise<br />

extrem variierenden lokal gemessenen Elastizitätsmoduln berechnete globale<br />

Elastizitätsmodul stimmt sehr gut mit dem gemessenen globalen Elastizitätsmodul<br />

überein.<br />

183<br />

Otto-Graf-Journal Vol. 13, 2002


S. AICHER, L. HÖFFLIN, W. BEHRENS<br />

Die experimentellen Untersuchungen wurden mit hochkant biegebeanspruchten<br />

Buchebrettern durchgeführt. Zuerst wurde die Längsverschiebungs-<br />

/Dehnungsmeßmethode exemplarisch an einem Brett verifiziert, welches stufenweise<br />

mit künstlichen Defekten (Löchern) versehen wurde. Für jeden Defektzustand<br />

wurden die lokalen und globalen Elastizitätsmoduln gemessen. In<br />

einem zweiten Schritt wird die Änderung des lokalen Elastizitätsmoduls und<br />

dessen hohe Korrelation mit dem Ort des Biegeversagens exemplarisch an vier<br />

Brettern einer größeren Versuchsreihe aufgezeigt.<br />

RESUME<br />

Cet article présente une méthode efficace permettant de déterminer le module<br />

d’élasticité local par une mesure couplée déplacement/déformation. D’autre<br />

part, on fait apparaître l’effet des sections localement faibles sur le module<br />

d’élasticité global déterminé par la flèche. Le module d’élasticité global obtenu<br />

par intégration des modules locaux mesurés, extrêmement variables, est en bon<br />

accord avec le module global mesuré.<br />

L’étude expérimentale a porté sur des panneaux fléchis à chant. La méthode<br />

couplée déplacement/déformation a été préalablement vérifiée sur un panneau<br />

présentant des défauts artificiels (trous). Pour chaque défaut, on détermine<br />

les modules local et global, et les différences sont discutées. Par la suite, la variation<br />

du module local et sa forte corrélation spatiale avec la résistance en<br />

flexion est mise en évidence sur 4 panneaux de hêtre extraits d’une campagne<br />

expérimentale plus importante<br />

KEYWORDS: local modulus of elasticity, global modulus of elasticity, stiffness<br />

variation, artificial defects, weak sections<br />

1 INTRODUCTION<br />

It is reported on a method for determination of the local modulus of elasticity<br />

(MOE) in bending tests with timber beams and respective results. In heterogeneous<br />

materials such as wood the modulus of elasticity can vary strongly<br />

along the length of the boards. Based on a positive stiffness - bending strength<br />

correlation, the footprints of locally low MOE values determine the strength<br />

class (or grade) of boards in grading machines based on the bending principle.<br />

Local MOE obviously depends strongly on the length of the board segment used<br />

184


Determination of local and global modulus of elasticity in wooden boards<br />

for the MOE determination which in most cases is larger than a local weak area,<br />

mostly created by a knot or by sloping grain.<br />

A local MOE determined over a board segment length of 5 times the crosssectional<br />

depth as specified in EN 408 still represents an integral (constant)<br />

value over a considerable length and there may be strong local MOE deviations<br />

within that length. The stated averaging effect of concentrated zones of low<br />

MOE areas occurs in all bending type grading machines which bend at consecutive<br />

locations, as there are practical limits for the length of the span. This is the<br />

major reason for the moderate coefficient of correlation between bending<br />

strength and MOE. Interesting approaches on how to reconstruct the variation of<br />

the true MOE function from MOE data collected from a consecutively bent<br />

board in order to derive the true local MOEs based on Fourier transforms were<br />

proposed by Bechtel (1985) and Foschi (1987).<br />

Apart from strength grading the knowledge of the actual local MOE and of<br />

the associated local strength variation along the length of boards is very important<br />

for (stochastic) modelling of boards and glulam subdivided in unit cells of<br />

small length, i.a. Foschi and Barrett (1980), Ehlbeck et al. (1985), Isaksson<br />

(1999) and Serrano (2001). Hereby the length of the unit cell has a considerable<br />

modelling influence on load sharing in adjacent glulam lamellas.<br />

For modelling and calibrating the MOE variation along board length several<br />

approaches are known (i.a. Foschi and Barrett (1981), Ehlbeck et al. (1985),<br />

Kline at al. (1986) and Taylor (1991)). All models are based on a calibration vs.<br />

global (and partly local) modulus of elasticity necessitating extensive empiric<br />

data and leaving model dependent considerable uncertainties.<br />

The experimental determination of local MOEs which at first view seems<br />

to be a very simple task is demanding in case a bending method is applied and<br />

has limits concerning the smallness of the segment length. Reliable results below<br />

span to depth ratios of about 3 are questionable; limits were revealed by<br />

Kaas (1975) employing the so-termed “middle ordinate method”. The method is<br />

based on the assumption that short segments of a bent board approximate arcs of<br />

circles with varying radii.<br />

The work reported here was conducted in the frame of establishing a realistic<br />

empirical data basis for the variation of bending MOE and bending strength<br />

values along the length of beech wood boards bent about the major axis. It was<br />

185<br />

Otto-Graf-Journal Vol. 13, 2002


S. AICHER, L. HÖFFLIN, W. BEHRENS<br />

Table 1: Compilation of local compression and tension strains of test set A<br />

test<br />

A1<br />

A2<br />

A3<br />

compression<br />

and tension<br />

strain per 1kNm<br />

ε c<br />

ε t<br />

ε c<br />

ε t<br />

ε c<br />

ε t<br />

10 -5<br />

10 -5<br />

10 -5<br />

10 -5<br />

10 -5<br />

10 -5<br />

local strains in segments 1 to 6<br />

1 2 3 4 5 6<br />

-62.4 -60.4 -58.7 -64.9 -61.3 -60.2<br />

71.2 66.8 66.7 70.2 67.5 64.9<br />

-63.3 -59.5 -57.8 -66.7 -79.4 -62.9<br />

70.3 66.8 66.6 70.2 68.4 64.9<br />

-61.5 -57.7 -61.4 -66.7 -74.0 -61.1<br />

70.3 66.8 82.8 72.0 68.4 64.9<br />

Table 2: Compilation of results for local and global MOEs of test set A<br />

modulus of elasticity [N/mm 2 ]<br />

test measured local MOEs in segments 1 to 6<br />

-<br />

global<br />

measured<br />

MOE<br />

calculated MOE based<br />

on the measured local<br />

MOEs<br />

Eseg1 Eseg2 Eseg3 Eseg4 Eseg5 Eseg6 Eglob Eglob, calc<br />

N/mm 2<br />

N/mm 2<br />

N/mm 2<br />

N/mm 2<br />

N/mm 2<br />

N/mm 2<br />

N/mm 2<br />

N/mm 2<br />

A1 13495 14172 14381 13347 13989 14415 13919 13932<br />

A2 13494 14272 14493 13171 12197 14110 13340 13576<br />

A3 13686 14479 12502 13000 12660 14311 12879 13141<br />

15000<br />

14500<br />

14000<br />

13500<br />

13000<br />

12500<br />

12000<br />

1 2 3 4 5 6<br />

segment<br />

Eseg Eglob |εc| εt Fig. 3: Local strains, local and global MOEs of test A1 with board No. 1; no artificial<br />

defects<br />

192<br />

85<br />

80<br />

75<br />

70<br />

65<br />

60<br />

55<br />

strain [10 -5 /kNm]


modulus of elasticity [N/mm 2 ]<br />

15000<br />

14500<br />

14000<br />

13500<br />

13000<br />

12500<br />

12000<br />

Determination of local and global modulus of elasticity in wooden boards<br />

1 2 3 4 5 6<br />

segment<br />

E seg E glob |ε c| ε t<br />

Fig. 4: Local strains, local and global MOEs of test A2 with board No. 1; artificial<br />

defects in the bending compression part of segment 5<br />

modulus of elasticity [N/mm 2 ]<br />

15000<br />

14500<br />

14000<br />

13500<br />

13000<br />

12500<br />

12000<br />

1 2 3 4 5 6<br />

segment<br />

E seg E glob |ε c| ε t<br />

Fig. 5: Local strains, local and global MOEs of test A3 with board No. 1; additional artificial<br />

defects in the bending tension part of segment 3<br />

193<br />

85<br />

80<br />

75<br />

70<br />

65<br />

60<br />

55<br />

85<br />

80<br />

75<br />

70<br />

65<br />

60<br />

55<br />

strain [10 -5 /kNm]<br />

strain [10 -5 /kNm]<br />

Otto-Graf-Journal Vol. 13, 2002


S. AICHER, L. HÖFFLIN, W. BEHRENS<br />

5 RESULTS <strong>OF</strong> TEST SET B<br />

Table 3 specifies the measured local and global MOEs, the computed<br />

global MOEs and the location of the failure of four beech boards. The chosen<br />

examples are exemplary for 30 tests performed so far. Figures 6 to 9 give<br />

graphical representations of the results including the local strain variations.<br />

Figure 6 reveals the case of a nearly homogeneous board with no knots and<br />

no apparent grain deviation. Local and global MOEs show very little differences.<br />

Despite the small stiffness variations, the bending tension failure occurred<br />

in segment 3 with the lowest local MOE and with highest tension strain. The<br />

minimum local MOE differed only by 3% from the global MOE and only by<br />

1.3% from the next weakest segment 1.<br />

Figure 7 also depicts the strains and local MOE variations of a board without<br />

knots, but nevertheless with pronounced differences (maximally 18%) of<br />

local MOEs ranging from 12600 to 15400 N/mm 2 . The extreme deviations of<br />

the local MOEs vs. the global MOE are + 7.7% and – 11.8%. The strains of segments<br />

2 and 3 with lowest local MOEs show an interesting feature being that<br />

maximum tension and compression strain occur successively in segments 2 and<br />

3, indicating sloping grain. The specimen failed in bending tension at the transition<br />

of segments 2 and 3.<br />

Figure 8 relates to a board with a knot of 22 mm diameter and associated<br />

strong fibre deviations around the knot located in the upper bending compression<br />

part of segment 3. The very pronounced difference between the extreme<br />

local MOEs of 10360 and 14200 N/mm 2 was 27%; the extreme deviations of the<br />

local MOEs vs. Eglob were –17% and 13.6%.<br />

Table 3: Compilation of local and global MOEs of test set B<br />

test measured local MOEs in segments 1 to 6<br />

global<br />

measured<br />

MOE<br />

calculated MOE<br />

based on the<br />

measured local<br />

MOEs<br />

location of<br />

failure<br />

E seg1 E seg2 E seg3 E seg4 E seg5 E seg6 E glob E glob,calc segment 1)<br />

B1 13555 14140 13375 13746 13746 14138 13779 13713 3<br />

B2 15395 13687 12597 14032 14586 14212 14288 13703 2 - 3<br />

B3 13808 11696 10356 13435 14203 12911 12508 12222 2 - 3<br />

B4 17844 17843 16270 15825 15842 15366 16830 16333 4<br />

1) x - y means the intersection betw een tw o segments<br />

194


modulus of elasticity [N/mm 2 ]<br />

17000<br />

16000<br />

15000<br />

14000<br />

13000<br />

12000<br />

Determination of local and global modulus of elasticity in wooden boards<br />

area of failure initiation<br />

1 2 3 4 5 6<br />

segment<br />

E seg E glob |ε c| ε t<br />

Fig. 6: Local strains, local and global MOEs of test B1 (board No. 416)<br />

modulus of elasticity [N/mm 2 ]<br />

16000<br />

15000<br />

14000<br />

13000<br />

12000<br />

11000<br />

area of failure initiation<br />

1 2 3 4 5 6<br />

segment<br />

E seg E glob |ε c| ε t<br />

Fig. 7: Local strains, local and global MOEs of test B2 (board No. 258)<br />

The specimen failed as sole specimen in the tests so far in bending compression<br />

at the transition of segments 2 and 3 with highest compression strains and lowest<br />

local MOE, respectively.<br />

195<br />

65<br />

60<br />

55<br />

50<br />

45<br />

40<br />

70<br />

65<br />

60<br />

55<br />

50<br />

45<br />

strain [10 -5 /kNm]<br />

strain [10 -5 /kNm]<br />

Otto-Graf-Journal Vol. 13, 2002


S. AICHER, L. HÖFFLIN, W. BEHRENS<br />

modulus of elasticity [N/mm 2 ]<br />

15000<br />

14000<br />

13000<br />

12000<br />

11000<br />

10000<br />

area of failure initiation<br />

1 2 3 4 5 6<br />

segment<br />

E seg E glob |ε c| ε t<br />

Fig. 8: Local strains, local and global MOEs of test B3 (board No. 281)<br />

modulus of elasticity [N/mm 2 ]<br />

19000<br />

18000<br />

17000<br />

16000<br />

15000<br />

14000<br />

area of failure initiation<br />

1 2 3 4 5 6<br />

segment<br />

E seg E glob |ε c| ε t<br />

Fig. 9: Local strains, local and global MOEs of test B4 (board No. 213)<br />

Figure 9 shows strains and MOEs of a board without knots and absolutely<br />

very “high” MOEs with a global MOE of 16830 N/mm 2 . Bending compression<br />

and tension strains are very similar. The specimen failed in bending tension in<br />

segment 4 with the second lowest MOE. However, local MOEs in segments 4, 5<br />

and 6 are very similar and deviate maximally by 2% from their respective mean.<br />

196<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

65<br />

60<br />

55<br />

50<br />

45<br />

40<br />

strain [10 -5 /kNm]<br />

strain [10 -5 /kNm]


Determination of local and global modulus of elasticity in wooden boards<br />

Again, as in test set A, a very good agreement between the experimentally<br />

and computationally obtained global MOEs was observed. The deviation was in<br />

average 2.4% and maximally 3.7%.<br />

6 DISCUSSION<br />

The results show that the employed method is able to deliver local MOEs<br />

and therefore to reveal the MOE variation within a board. However, the measured<br />

local MOEs still do not represent the true MOEs of the zones with or without<br />

defects within the board. The measured MOE depends to a great extent on<br />

the gauge (segment) length, L, the length of the weak area and also on the relative<br />

differences of the stiffness within the gauge length. The smaller the chosen<br />

segment length, the smaller the difference between the measured and the “true”<br />

MOE. The employed gauge length of about 1.5 times the board depth seems to<br />

be in the size range of typical defect zones of the regarded wood species as the<br />

results show a good correlation between the minimum localized MOE value and<br />

location of bending failure. However, some improvement should still be obtained<br />

by a further reduction of gauge length L.<br />

7 CONCLUSIONS<br />

The presented results show that determination of the local modulus of elasticity<br />

in (edgewise) bending can be well performed by elongation/strain measurement<br />

at the bending tension and compression edges.<br />

The measured local MOEs and the experimental global MOE obtained from deflection<br />

measurement, are consistent. This results from the fact that the global<br />

MOE can be predicted by beam theory or FE analysis with an average error of<br />

about 2% on the basis of the local MOE of the segments, here chosen with a<br />

length of 200 mm.<br />

It was revealed that the locations of failure comply well with the locations of<br />

minimum MOE along beam length (the study so far comprised 30 beech<br />

boards). The presented method seems to enable the prediction of the type of<br />

bending failure either at the tension or compression edge.<br />

The data of the on-going study serve as a calibration basis for modelling of the<br />

variation of modulus of elasticity and bending strength along beech wood boards<br />

as input data for glued compound elements with edgewise bent lamellas.<br />

197<br />

Otto-Graf-Journal Vol. 13, 2002


S. AICHER, L. HÖFFLIN, W. BEHRENS<br />

ACKNOWLEDGEMENTS<br />

The authors want to express sincere thanks to Patrick Castera, head of Laboratoire<br />

du Bois de Bordeaux (LRBB), for his repeated favour in performing<br />

the translation of the French abstract.<br />

REFERENCES<br />

BECHTEL, F.K. (1985): Beam stiffness as a function of point wise E, with application<br />

to machine stress rating. Proceedings International Symposium on<br />

Forest Products Research, CSIR, Pretoria, South Africa<br />

CORDER, S.E. (1965): Localized deflection related to bending strength of lumber.<br />

Second Symposium on the Non-destructive Testing of Wood, Washington<br />

State University, Pullman, WA, pp. 461 – 473<br />

EHLBECK, J., COLLING, F., GÖRLACHER, R. (1985): Einfluß keilgezinkter Lamellen<br />

auf die Biegefestigkeit von Brettschichtholzträgern. Entwicklung eines Rechenmodells.<br />

Holz Roh- Werkstoff, 43, pp. 333 – 337<br />

FOSCHI, R.O., BARRETT, D. (1980): Glued-laminated beam strength: A model. J.<br />

of the Structural Div., Vol. 106, No. ST8, pp. 1735 – 1754<br />

FOSCHI, R.O. (1987): A procedure for the determination of localized modulus of<br />

elasticity. Holz Roh- Werkstoff, 45, pp. 257 – 260<br />

ISAKSSON, T. (1999): Modeling the variability of bending strength in structural<br />

timber; length and load configuration effects. Report MBK-1015, Div. of<br />

Structural Eng., Institute of Technology, Lund, Sweden<br />

KASS, A.J. (1975): Middle ordinate method measures stiffness variation within<br />

pieces of lumber. Forest Products J., 25 (3), pp. 33 – 41<br />

KLINE, D.E., WOESTE, F.E., BENDTSEN, B.A. (1986): Stochastic model for modulus<br />

of elasticity of lumber. Wood and Fibre Science, 18 (2), pp. 228 - 238<br />

SERRANO, E. (2001): Mechanical performance and modeling of glulam. Manuscript<br />

for „Timber Engineering“, Edts. S. Thelandersson and H.J. Larsen,<br />

Wiley & Sons, in press<br />

TAYLOR, S.E., BENDER, D.A. (1991): Stochastic model for localized tensile<br />

strength and modulus of elasticity in lumber. Wood and Fibre Science,<br />

23(4), pp. 501 - 519<br />

198


Transient temperature evolution in glulam with hidden and non-hidden glued-in steel rods<br />

TRANSIENT TEMPERATURE EVOLUTION IN GLULAM WITH<br />

HIDDEN AND NON-HIDDEN GLUED-IN <strong>STEEL</strong> RODS<br />

TRANSIENTE TEMPERATURENTWICKLUNG IN BRETTSCHICHT-<br />

HOLZ MIT VERDECKT UND NICHT VERDECKT EINGEKLEBTEN<br />

STAHLSTANGEN<br />

EVOLUTION TRANSITOIRE DE LA TEMPERATURE DANS DU<br />

LAMELLE COLLE COMPORTANT DES GOUJONS COLLES EN<br />

ACIER, APPARENTS OU NON<br />

Simon Aicher, Dirk Kalka, Ralf Scherer<br />

SUMMARY<br />

A recently terminated European research project on glued-in steel rods in<br />

timber structures (GIROD) – with participation of Timber Department of Otto-<br />

Graf-Institute – revealed a strong strength reducing influence of elevated temperatures,<br />

not expected to that extent. This affects especially the duration of load<br />

behavior of the connections. The maximum temperature level acting in service<br />

on the glued-in rod connections thus sets performance requirements on the shear<br />

modulus-temperature relationship and on the glass transition temperature of appropriate<br />

adhesives.<br />

Today’s prevailing intuitive conviction of practitioners is, that rods bonded<br />

hidden in the interior of glulam cross-sections experience, due to the low thermal<br />

conductivity and specific heat of wood, considerable lower temperatures<br />

compared to ambient climate. The paper gives some experimental and computational<br />

results proving, depending on cross-sectional width, only a moderate reduction<br />

of peak temperatures combined with a pronounced phase shift vs. ambient<br />

temperature varying roughly sinusoidally during a day.<br />

ZUSAMMENFASSUNG<br />

Ein kürzlich abgeschlossenes Europäisches Forschungsvorhaben betreffend<br />

in Holz eingeklebter Stahlstangen (GIROD) – mit Beteiligung des Fachbereichs<br />

Holz des Otto-Graf-Instituts – zeigte einen in dieser Ausprägung nicht erwarteten<br />

großen festigkeitsmindernden Einfluss erhöhter Temperaturen. Dies beeinflusst<br />

insbesondere auch das Zeitstandverhalten der Verbindungen. Das maxi-<br />

199<br />

Otto-Graf-Journal Vol. 13, 2002


S. AICHER, D. KALKA, R. SCHERER<br />

male Temperaturniveau, das im Gebrauchszustand auf Verbindungen mit eingeklebten<br />

Stangen einwirkt, definiert somit Leistungsanforderungen an die<br />

Schubmodul-Temperaturbeziehung und an die Glasübergangstemperatur geeigneter<br />

Klebstoffe.<br />

Die heute in der Praxis vorherrschende Meinung ist, dass verdeckt in das<br />

Innere eines Brettschichtholzquerschnitts eingeklebte Stangen infolge der niedrigen<br />

Wärmeleitfähigkeit und Wärmekapazität von Holz beträchtlich niedrigeren<br />

Temperaturen im Vergleich zum einwirkenden Umgebungsklima ausgesetzt<br />

sind. Der Aufsatz berichtet über einige experimentelle und rechnerische Ergebnisse,<br />

die belegen, dass abhängig von der Querschnittsdicke lediglich eine<br />

schwache Reduzierung der Spitzentemperaturen verbunden mit einer ausgeprägten<br />

Phasenverschiebung gegenüber den Außentemperaturen, die näherungsweise<br />

sinusförmig über den Tag variieren, vorliegt.<br />

RESUME<br />

Un projet de recherche Européen portant sur les goujons collés en acier<br />

dans les structures en bois (GIROD) récemment achevé – auquel participait le<br />

département bois de l’Otto-Graf Institute – a mis en évidence un effet négatif<br />

marqué de températures élevées sur la résistance, qui affecte principalement la<br />

durée de vie des joints. La température maximale agissant sur les joints en service<br />

impose donc des exigences de performance sur la relation température –<br />

module de cisaillement et la température de transition vitreuse des adhésifs appropriés.<br />

La conviction intuitive des praticiens aujourd’hui est de penser que les goujons<br />

collés cachés à l’intérieur des sections de lamellé collé sont soumis, du fait<br />

de la faible conductivité thermique et chaleur spécifique du bois, à des températures<br />

considérablement plus faibles que celles du climat ambiant. Cet article présente<br />

des résultats expérimentaux et numériques montrant, selon la largeur de la<br />

section, une faible réduction seulement des températures de pic combinée à une<br />

transition de phase prononcée, par rapport à la température ambiante qui varie<br />

grossièrement de manière sinusoïdale au cours d’une journée.<br />

KEYWORDS: glued-in rods, glulam, elevated temperatures, transient temperature<br />

evolution<br />

200


1. INTRODUCTION<br />

Transient temperature evolution in glulam with hidden and non-hidden glued-in steel rods<br />

Today’s prevailing conviction of practitioners is, that steel rods bonded<br />

hidden in the interior of glulam cross-sections experience, due to the low thermal<br />

conductivity and specific heat of wood, considerable lower temperatures<br />

compared to ambient climate. A European research project on glued-in rods in<br />

timber structures (GIROD) revealed an unexpected strong strength reducing influence<br />

of elevated temperatures in duration of load tests with connections<br />

bonded by epoxy and polyurethane adhesives [BENGTSSON, JOHANSSON, 2002;<br />

AICHER, 2002].<br />

In the performed tests the temperature increase was applied after mechanical<br />

loading thus suppressing positive post-curing effects. The experiments revealed<br />

clearly the crucial importance of a sufficiently high glass transition temperature.<br />

Performance requirements on temperature stability – especially shear<br />

modulus-temperature relationships and/or glass transition temperature – have to<br />

be set in view of realistic temperature loading scenarios. Eventually the temperature<br />

loading should also be considered in probabilistic manner, in case a specific<br />

adhesive shows high post-curing potential.<br />

The reported experimental investigations were performed in first instance<br />

to substantiate the GIROD results. In addition thereto a major point of interest<br />

was the transient temperature evolution in the timber-bond line interface.<br />

2. TEST PROGRAM<br />

In order to verify the different temperature-strength behavior of glued-in<br />

steel rods either protruding or fully hidden in the wood, two types of specimens<br />

shown in Fig. 1 were investigated. The performed experiments concerned the<br />

strength verification at variable temperature and static long term loads and furthermore<br />

the temperature evolution in the bond lines. This paper reports on the<br />

temperature evolution.<br />

The temperatures in the bond line were measured with thermo-elements<br />

consisting of copper/constantan (Cu/Cu-Ni) wires. In order to measure the temperatures<br />

in the bond line with little interfering influences of leakages to ambient<br />

climate, the application of the thermo-element wires to the bond line was performed<br />

as following: first an oversized specimen was sawn up lengthwise with a<br />

saw blade thickness of 2 mm. Then the two parts were clamped together and a<br />

hole with a diameter of 13 mm for the glued-in rod was drilled. The thermo-<br />

201<br />

Otto-Graf-Journal Vol. 13, 2002


S. AICHER, D. KALKA, R. SCHERER<br />

wires were glued into small notches as shown in Fig. 2a. The end or actual<br />

measuring point of the thermo-wire was flush with the surface of the drilled<br />

hole. Then the two parts of the specimen were glued together again. In a second<br />

step the steel rod (Ø 12 mm) was glued into the wooden piece (see Fig. 2b). All<br />

gluing were performed with a special epoxy adhesive.<br />

thermoelements<br />

40<br />

40<br />

40<br />

40<br />

15<br />

5<br />

T1<br />

T2<br />

T3<br />

T4<br />

T5<br />

180<br />

240<br />

180<br />

glued-in test<br />

steel rod<br />

M12<br />

600<br />

115<br />

115<br />

specimen<br />

part B<br />

thermoelements<br />

40<br />

40<br />

40<br />

40<br />

specimen<br />

part A<br />

support rod<br />

M24<br />

a) b)<br />

T1<br />

T2<br />

T3<br />

T4<br />

T5<br />

Fig. 1a,b: Geometry and schematic test set-up of<br />

a) specimen No. I with protruding steel rod and<br />

b) specimen No. II with hidden steel rod<br />

15<br />

5<br />

support rod<br />

M24<br />

180<br />

240<br />

180<br />

600<br />

support rod<br />

M24<br />

glued-in test<br />

steel rod<br />

M12<br />

600<br />

115<br />

115<br />

insulation<br />

tape<br />

In order to obtain a specimen with a fully hidden rod which could be subjected<br />

to temperature and mechanical loads, specimen No. II, shown in Fig. 1b,<br />

202


Transient temperature evolution in glulam with hidden and non-hidden glued-in steel rods<br />

was used. First, specimen part A was manufactured as specified above and after<br />

curing of the adhesive, part A incorporating the protruding test rod was glued<br />

into the rod hole of specimen part B. In order to enforce exclusively load transfer<br />

between the specimen parts A and B via the glued-in rods, a Teflon sheet<br />

with a thickness of 0.5 mm was inserted between the two parts of the specimen<br />

(see Fig. 2c) . The surrounding edge of 10 mm width and 2 mm depth of the two<br />

specimen parts was sealed with an elastic insulation tape compressed to 0.5 mm<br />

(see Fig. 1b and 2d).<br />

a) b)<br />

c) d)<br />

Fig. 2a-d: Views of the specimens No. I (a,b) and No. II (c,d)<br />

203<br />

Otto-Graf-Journal Vol. 13, 2002


S. AICHER, D. KALKA, R. SCHERER<br />

3. TEMPERATURE LOADING<br />

As in the GIROD project a cyclic sinusoidal variation of warm and dry<br />

climate was applied [AICHER ET AL., 2002]. Contrary to GIROD, where a full<br />

temperature cycle consisted of 8 hours, now a practically relevant cycle length<br />

of 24 hours was chosen. A sinusoidal variation of temperature within a time<br />

span of 24 hours represents a very good approximation of daily temperature<br />

courses. This is shown exemplarily in Fig. 3 with recorded temperature data<br />

(sheltered outdoor, well ventilated shed in Stuttgart) for a period of three successive<br />

days.<br />

temperature T [°C]<br />

30<br />

28<br />

26<br />

24<br />

22<br />

20<br />

18<br />

16<br />

sinusoidal approx.<br />

measured<br />

14<br />

28.7.02 29.7.02 30.7.02 31.7.02<br />

Fig. 3: Course of temperature (sheltered outdoor conditions) of typical summer days and<br />

sinusoidal approximation of the temperature<br />

As in the GIROD project the minimum and maximum set temperatures<br />

were chosen as 25°C and 55°C, resulting in a peak-to-peak temperature amplitude<br />

of 30 K. These temperature boundaries might be regarded as an upper, yet<br />

realistic temperature range, which can occur under a dark, little ventilated roof<br />

in very warm summers in the Southern part of Europe. The course of the applied<br />

temperature and of the relative humidity is given in Fig. 4. The controlling of the<br />

relative humidity was limited, due to technical restrictions of the climate chamber,<br />

to 45% RH during a time of 6.5 h of a full cycle of 24 h, as shown in Fig. 4.<br />

204<br />

time


Transient temperature evolution in glulam with hidden and non-hidden glued-in steel rods<br />

The actual temperatures obtained in the climate chamber showed a minimum<br />

and maximum of 24.9°C and 54.7°C, respectively, with a peak-to-peak<br />

temperature amplitude of 29.8 K. The relative humidity roughly ranged from 5<br />

to 50 %, exceptionally temporary up to 67 % for about 0.5 hours.<br />

temperature T [°C] /<br />

relative humidity RH [%]<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

T<br />

RH<br />

0 12 24 36 48 60 72 84 96 108 120<br />

time t [h]<br />

Fig. 4: Course of the applied ambient temperature and relative humidity variation in the<br />

climate chamber<br />

4. NUMERICAL INVESTIGATIONS<br />

In an early paper the evolution of temperature in a specimen with a gluedin<br />

rod protruding into ambient air was investigated numerically and experimentally<br />

[AICHER ET AL, 1998], taking into account the timber, the adhesive layer<br />

and the steel. An additional fourth layer, representing a steel/adhesive interface,<br />

was introduced in order to account for the problem that the used FE-code does<br />

not enable the specification of contact conductance of inner surfaces. By means<br />

of the interface layer a good agreement of measured and calculated transient<br />

temperatures was obtained.<br />

205<br />

Otto-Graf-Journal Vol. 13, 2002


S. AICHER, D. KALKA, R. SCHERER<br />

In this paper the preliminary numerical study is exclusively related to<br />

specimen No. II with the hidden rod. In a first crude approximation the inner<br />

steel rod was omitted, so only the heat transfer through a quadratic block of timber<br />

was regarded in a 2 dimensional analysis. The cross-sectional dimensions of<br />

the timber, a = 115 mm, were reduced by the hole diameter of 13 mm (rod<br />

diameter + 1 mm) to 102 mm.<br />

D<br />

In the calculations a constant thermal diffusivity perpendicular to grain of<br />

k mm²<br />

700<br />

C<br />

h<br />

P ρ<br />

was employed. Hereby k , CP and ρ were assumed as<br />

k<br />

0.<br />

13<br />

W<br />

m K<br />

thermal conductivity perpendicular to fiber<br />

acc. to DIN 4108, part 4<br />

kJ<br />

C P 1.<br />

6<br />

specific heat [BATZER, 1985]<br />

kg K<br />

ρ<br />

kg<br />

420<br />

m³<br />

mass density of glulam at dry status of about<br />

u = 7 %<br />

The convection heat transfer coefficient h was chosen as a fitting parameter<br />

in the range of 10 to 20 W/(m²·K). Literature data for forced convection of gas<br />

media vary roughly between 10 and 100 W/(m²·K); a value of 25 W/(m²·K) is<br />

assumed for convection at exterior walls in DIN 4108, part 4.<br />

5. TEMPERATURE EVOLUTION IN CYCLIC CLIMATE<br />

Figs. 5a,b show the temperature evolution of both specimen types I and II<br />

at different thermo-element positions. The evolution of the ambient temperature<br />

in the climate chamber is given, too. For a better visualization of phase shift and<br />

differences in amplitudes Figs. 6a and b show the temperature evolution at a cycle<br />

length of 24 hours; additionally finite element computed temperature evolutions<br />

based on the revealed approach are specified in case of specimen type II<br />

with a hidden rod.<br />

206


temperature T [°C]<br />

a)<br />

[°C]<br />

temperature T<br />

b)<br />

60<br />

55<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

60<br />

55<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

Transient temperature evolution in glulam with hidden and non-hidden glued-in steel rods<br />

ambient climate (climate chamber)<br />

0 6 12 18 24 30 36 42 48 54 60 66 72<br />

T1 - T5<br />

measured<br />

temperatures<br />

time t [h]<br />

T1<br />

T2<br />

T3 - T5<br />

ambient climate (climate chamber) finite element calc.<br />

0 6 12 18 24 30 36 42 48 54 60 66 72<br />

time t [h]<br />

calc_1<br />

calc_2<br />

calc_3<br />

Fig. 5a,b: Temperature evolution over 3 days at the positions of the thermo-elements<br />

a) specimen No. I with protruding steel rod<br />

b) specimen No. II with hidden steel rod<br />

207<br />

T1 T0<br />

T2 T1<br />

T3 T2<br />

T4 T3<br />

T4<br />

T5<br />

part A<br />

T5 T<br />

T4 T<br />

T3<br />

T2<br />

T1<br />

T<br />

T<br />

T<br />

part B<br />

Otto-Graf-Journal Vol. 13, 2002


S. AICHER, D. KALKA, R. SCHERER<br />

temperature T [°C]<br />

a)<br />

[°C]<br />

ure T<br />

temperat<br />

b)<br />

60<br />

55<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

ambient climate<br />

(climate chamber)<br />

T1<br />

T2<br />

T3 - T5<br />

20<br />

24 27 30 33 36 39 42 45 48<br />

60<br />

55<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

ambient climate<br />

(climate chamber)<br />

time t [h]<br />

measured<br />

temperatures<br />

20<br />

24 27 30 33 36 39 42 45 48<br />

time t [h]<br />

T1 - T5<br />

finite element calc.<br />

calc_1<br />

calc_2<br />

calc_3<br />

Fig. 6a,b: Temperature evolution over 1 day at a cycle length of 24 hours<br />

a) specimen No. I with protruding steel rod<br />

b) specimen No. II with hidden steel rod<br />

208<br />

T1 T0<br />

T2 T1<br />

T3 T2<br />

T4 T3<br />

T4<br />

T5<br />

part A<br />

T5<br />

T4<br />

T3<br />

T2<br />

T1<br />

part B


Transient temperature evolution in glulam with hidden and non-hidden glued-in steel rods<br />

The differences between the two specimen types are rather small. Purely<br />

qualitatively the temperature in the wood-bond line interface of specimen No. II<br />

shows slightly decreased amplitudes and a slightly more pronounced phase shift<br />

vs. ambient climate when compared to specimen No. I with the protruding rod.<br />

Quantitatively the results are specified in Tab. 1.<br />

Tab. 1: Temperature evolution in the wood-adhesive interface of specimens No. I and<br />

No. II at thermo-element positions T1 and T5<br />

ambient<br />

climate<br />

maximum<br />

temperature<br />

Tmax<br />

experimental results:<br />

specimen<br />

No. I<br />

(protruding<br />

rod)<br />

specimen<br />

No. II<br />

(hidden<br />

rod)<br />

thermo-element T1<br />

(“protruding” end of steel rod)<br />

minimum<br />

temperature<br />

Tmin<br />

peak-topeak<br />

amplitude<br />

∆T<br />

phase<br />

shift<br />

∆t<br />

maximum<br />

temperature<br />

Tmax<br />

thermo-element T5<br />

(embedded end of steel rod)<br />

minimum<br />

temperature<br />

Tmin<br />

peak-topeak<br />

amplitude<br />

∆T<br />

phase<br />

shift<br />

[°C] [°C] [K] [h] [°C] [°C] [K] [h]<br />

54.7 24.9 29.8 - 54.7 24.9 29.8 -<br />

53.4 28.1 25.3 1.7 52.6 28.2 24.4 2.4<br />

51.2 28.7 22.5 3.3 51.6 28.8 22.8 3.2<br />

It can be seen that the maximum temperatures at the embedded ends of the<br />

rods (thermo-element T5 for specimens No. I and No. II) differ only very little<br />

by about 1°C. The reduction of maximum temperature vs. ambient climate in<br />

case of specimen No. II (hidden rod) was only 3 K. The phase shift between the<br />

maximum temperature of the ambient climate and the maximum of recorded<br />

temperatures was 2.4 and 3.2 hours in case of specimens No. I and No. II, respectively.<br />

In case of specimen No. II no difference of temperature amplitudes, peak<br />

temperatures and phase shifts between thermo-element T1 close to the sealed<br />

joint of both specimen parts A and B as compared to the embedded end (thermoelement<br />

T5) was observed. In case of leakages at the sealing of the joint of the<br />

209<br />

∆t<br />

Otto-Graf-Journal Vol. 13, 2002


S. AICHER, D. KALKA, R. SCHERER<br />

parts A and B a different result should be obtained. This is substantiated by the<br />

calculations.<br />

Table 2 represents the results of the rough finite element calculation compared<br />

to the experimental results of specimen type II and the applied ambient<br />

climate. It can be seen that either the maximum and minimum temperatures Tmax<br />

and Tmin (result calc_1) or the phase shift ∆t (result calc_3) of the measured experimental<br />

results can be fitted by tuning of the convection heat transfer coefficient<br />

h. A roughly acceptable approximation of both , the temperatures and the<br />

phase shift, is obtained with a convection heat transfer coefficient of h = 15<br />

W/(m²·K). This number is within the plausible range.<br />

Tab. 2: Maximum temperatures and phase shift for specimen No. II according to experimental<br />

test results and finite element calculation<br />

ambient<br />

climate<br />

experimental<br />

results<br />

2D finite<br />

element<br />

calculation<br />

calculation<br />

result<br />

convection<br />

heat transfer<br />

coefficient<br />

h<br />

[W/(m²·K)]<br />

maximum<br />

temperature<br />

Tmax<br />

[°C]<br />

minimum<br />

temperature<br />

Tmin<br />

[°C]<br />

peak-to-peak<br />

amplitude<br />

∆T =<br />

Tmin-Tmax<br />

[K]<br />

- - 54.7 24.9 29.8 -<br />

phase<br />

shift<br />

- - 51.2 28.7 22.5 3.3<br />

calc_1 10 51.4 28.6 22.8 4.2<br />

calc_2 15 52.6 27.4 25.2 3.6<br />

calc_3 20 53.2 26.8 26.4 3.3<br />

6. INFLUENCE <strong>OF</strong> TIMBER THICKNESS<br />

The presented test results and hereby the small damping of the temperature<br />

maxima is obviously related to the cross-sectional dimensions of the specimens<br />

(quadratic cross-section of 115 mm · 115 mm). In order to verify the influence<br />

of an increased timber thickness some more calculations similar to those outlined<br />

in chapter 4 were performed. The convection heat transfer coefficient was<br />

chosen as h = 15 W/(m²·K) being the value which forwarded a reasonable good<br />

agreement of the simplified analysis with the hidden rod specimen No. II. The<br />

imposed temperature varies again sinusoidally between 25 and 55°C with a<br />

phase length of 24 hours.<br />

210<br />

∆t<br />

[h]


Transient temperature evolution in glulam with hidden and non-hidden glued-in steel rods<br />

Fig. 7 gives the temperature courses for square cross-sectional dimensions<br />

with thicknesses of a = 50, 102, 150 and 200 mm. The value a = 102 mm relates<br />

to the discussed results of specimen No. II, whereby the reduction of the real<br />

thickness of 115 mm to 102 mm is bound to the simplified approach of omitted<br />

rod cross-section. The graph shows the qualitatively somewhat trivial result of a<br />

decreasing temperature amplitude and an increasing phase shift with growing<br />

cross-sectional dimensions.<br />

temperature T [°C]<br />

60<br />

55<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

ambient climate<br />

(climate chamber)<br />

measured<br />

temperatures<br />

T1 - T5<br />

finite element calc.<br />

a = 50, 102, 150, 200 mm<br />

20<br />

24 27 30 33 36 39 42 45 48<br />

time t [h]<br />

Fig. 7: Temperature evolution at a cycle length of 24 hours for finite element calculations<br />

with varying timber thicknesses compared to experimental results (specimen No. II<br />

with hidden rod)<br />

A quantitative summary of the results is given in Tab. 3. In detail the<br />

changes of minimum and maximum temperature, the peak-to-peak amplitude<br />

∆T = Tmax-Tmin and the phase shift ∆t are specified. It can be seen that the reduction<br />

of the maximum temperature in the regarded range of cross-sectional dimensions<br />

is rather moderate. For a medium sized glulam thickness of 150 mm<br />

the maximum value is still rather close to 50°C, which marks the limit of type I<br />

adhesives acc. to EN 301.<br />

The quantitative results of the very rough approximation of the problem<br />

shall be regarded with a more refined modeling considering the true build-ups.<br />

211<br />

a<br />

T5<br />

T4<br />

T3<br />

T2<br />

T1<br />

Otto-Graf-Journal Vol. 13, 2002


S. AICHER, D. KALKA, R. SCHERER<br />

Tab. 3: Extreme temperatures, temperature differences and shifts of phase depending on<br />

timber thickness according to a simplified calculation<br />

ambient<br />

climate<br />

experimental<br />

results<br />

2D finite<br />

element<br />

calculation<br />

calculation<br />

result<br />

7. CONCLUSIONS<br />

crosssectional<br />

thickness<br />

a<br />

[mm]<br />

maximum<br />

temperature<br />

Tmax<br />

[°C]<br />

minimum<br />

temperature<br />

Tmin<br />

[°C]<br />

peak-to-peak<br />

amplitude<br />

∆T = Tmin-Tmax<br />

[K]<br />

phase shift<br />

- - 54.7 24.9 29.8 -<br />

- - 51.2 28.7 22.5 3.3<br />

calc_1 50 54.0 26.0 28.0 2.5<br />

calc_2 102 52.6 27.4 25.2 3.6<br />

calc_3 150 48.7 31.3 17.4 5.7<br />

calc_4 200 46.3 33.6 12.7 7.2<br />

The performed experiments on transient temperatures in glue-line/wood<br />

interfaces of steel rods bonded into glulam and subjected to cyclically varying<br />

ambient climate revealed<br />

• relatively low damping of maximum temperatures for a cross-sectional<br />

thickness of 115 mm,<br />

• pronounced phase shifts and<br />

• only minor differences between the cases of protruding or hidden rods.<br />

The results were extrapolated to different cross-sectional thicknesses by<br />

means of numerical calculations with a simplified model. The calculation results<br />

yielded rather moderate damping within the typical range of glulam thicknesses<br />

up to 200 mm. Roughly it can be concluded that the maximum ambient temperature<br />

level acting in service on the glued-in rod connections sets the performance<br />

requirements on the shear modulus/temperature relationship resp. on the glass<br />

transition temperature of appropriate adhesives.<br />

ACKNOWLEDGEMENTS<br />

The authors are cordially indebted to Dr. Patrick Castera, Head of Laboratoire<br />

du Rheologie du Bois Bordeaux (LRBB), for performing the french translation.<br />

212<br />

∆t<br />

[h]


REFERENCES<br />

Transient temperature evolution in glulam with hidden and non-hidden glued-in steel rods<br />

AICHER, S. (2002): Duration of load tests on full-sized glued-in rod specimens.<br />

GIROD_WP5: Technical Report for work package 5, Research Report,<br />

Otto-Graf-Institute, University of Stuttgart.<br />

AICHER, S.; KALKA, D.; HÖFFLIN, L. (2001): Duration of load tests on fullsized<br />

glued-in rod specimens. GIROD_WP5: Technical Report for work<br />

package 5, workpart by FMPA. Research Report, Otto-Graf-Institute,<br />

University of Stuttgart.<br />

AICHER, S.; WOLF, M.; DILL-LANGER, G. (1998): Heat flow in a glulam joist<br />

with a glued-in steel rod subjected to variable ambient temperature.<br />

Otto-Graf-Journal Vol. 9, pp. 185-204 , Otto-Graf-Institute, University of<br />

Stuttgart.<br />

BATZER, H. (1985): Polymere Werkstoffe. Volume I, Georg Thieme Verlag<br />

Stuttgart. New York.<br />

BENGTSSON, C.; JOHANSSON, C.-J. (2002): GIROD – Glued in rods for timber<br />

structures. SP Report 2002:26. SP Swedish National Testing and Research<br />

Institute.<br />

213<br />

Otto-Graf-Journal Vol. 13, 2002


S. AICHER, D. KALKA, R. SCHERER<br />

214


MODELLING <strong>OF</strong> CONCRETE HYDRATION<br />

MODELLIERUNG DER BETON HYDRATATION<br />

MODELISATION DE L'HYDRATATION DU BETON<br />

Sven Mönnig<br />

SUMMARY<br />

Modelling of concrete hydration<br />

DuCOM is a finite element program which can show the hydration of<br />

concrete with any concrete mixtures, to any given time step and different<br />

environmental conditions. Comparing calculated temperature distribution,<br />

hydration and heat growth rates with measurements a high accuracy was proven.<br />

ZUSAMMENFASSUNG<br />

DuCOM ist ein FEM-Programm, welches die Hydratation von Beton mit<br />

beliebigen Betonmischungen, zu beliebigen Zeitschritten und verschiedenen<br />

Umgebungsbedingungen darstellen kann. Bei dem Vergleich von errechneten<br />

Temperaturverläufen, Hydratationskurven und Wärmezuwachsraten mit<br />

gemessenen Laborwerten, zeigt sich eine hohe Genauigkeit von DuCOM.<br />

RÉSUMÉ<br />

DuCOM est un programme d'éléments finis capable de décrire l'hydratation<br />

de bétons de compositions arbitraires, à des intervalles arbitraires et pour<br />

différentes conditions d'environnement. La comparaison des gradients de<br />

température, des courbes d'hydratation et des taux de chaleur calculés avec les<br />

valeurs mesurées en laboratoire indiquent une précision élevée de DuCOM.<br />

KEYWORDS: DuCOM, heat growth rate, concrete hydration<br />

1. INTRODUCTION<br />

DuCOM [1] is a program working with concrete finite elements. It is able<br />

to deliver a linear description of the hydration of concrete. It provides solutions<br />

for pore pressure and temperature at each node of each element for given time<br />

steps and environmental condition, i.e. relative humidity and temperature.<br />

215<br />

Otto-Graf-Journal Vol. 13, 2002


S. MÖNNIG<br />

Results of porosity, the degree of hydration for every clinker, shrinkage and<br />

strength are obtained, too. By implementing DuCOM, a program developed by<br />

the University of Tokyo, into MASA [2] the simulation of the influence of<br />

hydration on the bearing capacity is possible. To estimate the computational<br />

accuracy of DuCOM extended calculations were compared with publications of<br />

test results.<br />

2. THEORETICAL PRINCIPALS <strong>OF</strong> DUCOM<br />

Physical processes like humidity and vapour transport, the hydration of<br />

concrete and the development of pore structure are integrated over the volume of<br />

a standard reference element. The transport behaviour is simulated on a macro<br />

scale. Hydration is simulated by a multi component system which includes the<br />

heat development and the amount of available water. The heat development is<br />

dependent on the amount of free water. Size and structure of the pores are<br />

dependent on the degree of hydration. The pore structure influences the transport<br />

behaviour inside the concrete. All the single processes are dynamically linked<br />

and dependent on each other as figure 1 should point up.<br />

FEMAP<br />

Visual Basic program<br />

DuCOM<br />

model for hydration<br />

pore structure<br />

pore pressure<br />

convergence<br />

T > T soll<br />

output of data<br />

VB program<br />

provides input data:<br />

nodes and elements; geometry of model<br />

addional input data:<br />

mixture; environmental conditions<br />

Program rewrites DuCOM output<br />

format into neutral ASCII files<br />

FEMAP display of results<br />

DuCOM developed by University of Tokyo<br />

output data:<br />

temperature; hydration degree<br />

dispersal of porosity<br />

relative humidity; dispersal of<br />

moisture; pore pressure<br />

Figure 1: application flow<br />

216


Modelling of concrete hydration<br />

For further information it is recommended to read “Modelling of concrete<br />

performance” [1].<br />

3. LIMITATIONS <strong>OF</strong> DUCOM<br />

There are some constrictions of DuCOM that should be mentioned. The<br />

pore structure is simulated by a consistent distribution of average sized grains.<br />

The size is dependent on the amount of cement, fly ash and blast furnace slag.<br />

The distance between the grains is based on Blaine values and the size of the<br />

grains. Pores are considered to be cylindrically shaped. For the calculation of the<br />

hydration the gel and capillary pores are treated as one type.<br />

The assumptions for the moisture transport are non deformable and<br />

isothermal material behaviour. Furthermore it is assumed that the total mass of<br />

vapour can be neglected compared to the total amount of water. Gas pressure<br />

within the material is constant and equals the air pressure. Liquid transport is<br />

performed with constant velocity. Thermal effects are negligibly small. These<br />

assumptions are based on a representative volumetrically element. All<br />

calculations refer to this element.<br />

4. IMPLEMENTATION <strong>OF</strong> DUCOM<br />

With FEMAP as input and output program it is possible to use a common<br />

used program for the visualization of the models. The output file from FEMAP<br />

is written in an ASCII format which is translated into the input file for DuCOM.<br />

For this transformation a Visual Basic (VB) program was developed by the<br />

IWB. While translating the file, the program asks for additional input data.<br />

Necessary input information are the time period of the analysis, mixture, Blaine<br />

values, temperature of the concrete mixture, temperature and relative humidity<br />

of the environment. After the end of the calculation another VB program will<br />

translate the result files of DuCOM into an ASCII format which can be read by<br />

FEMAP. The results can be graphically presented and furthermore they can be<br />

read from MASA and used for continuous analysis of the structure.<br />

5. RESULTS <strong>OF</strong> SIMULATIONS AND COMPARISON WITH TEST<br />

RESULTS<br />

All calculations were based on a 20×20×20 cm 3 cube. The resulting values<br />

of the curves were taken at nodes arranged along a line by the centre of a cube.<br />

217<br />

Otto-Graf-Journal Vol. 13, 2002


S. MÖNNIG<br />

OPC was simulated with these fractions of clinker:<br />

C3S 47,2 %<br />

C2S 27,0 %<br />

C3A 10,4 %<br />

C4(A,F) 9,4 %<br />

The model of the concrete cube has been scaled by the input program to the<br />

size desired by the user. Figure 2 shows the cube before scaling.<br />

Y<br />

10.<br />

9.<br />

element 27<br />

Element 27<br />

node Knoten 121<br />

X<br />

10.<br />

9.<br />

8.<br />

7.<br />

6.<br />

5.<br />

4.<br />

3.<br />

2.<br />

8.<br />

7.<br />

6.<br />

1.<br />

5.<br />

4.<br />

3.<br />

2. 0.<br />

1.<br />

0.<br />

Temperature distribution in a cube<br />

Knoten node 96 96<br />

Knoten 71 node 71<br />

node Knoten 46<br />

Knoten node 21 21<br />

Figure 2: Model of a 20×20×20 cm 3 cube<br />

Of interest was the influence of the environment on the development of<br />

heat inside the cube. Simulations with an adiabatic system have been performed<br />

as well as calculations with one, two, three, four and five sides opened to the<br />

environment. The mix temperature was 20°C. The environmental conditions<br />

have been assumed constant with 15°C and 100% relative humidity. The<br />

concrete mix contained 375 kg/m 3 cement and 1885 kg/m 3 aggregates.<br />

218


0.00 0.01 0.10 1.00 10.00 100.00<br />

Figure 3: Temperature distribution inside a cube<br />

Degree of Hydration in dependence on the water/cement ratio<br />

Modelling of concrete hydration<br />

The proportion has been changed to a mixture with very high cement<br />

content. It contained 836.3 kg/m 3 cement and 1032 kg/m 3 aggregates. These<br />

fractions have been chosen to minimize the influence of the aggregates on the<br />

water diffusion and the hydration. The reference mixture had a water/cement<br />

ratio of 0.4 but the same cement and aggregate content as the others. This<br />

mixture has been calculated with five sides open to the environment which had a<br />

constant temperature of 15°C and a relative humidity of 100 %.<br />

W/C 0.4 Five Open<br />

Sides<br />

W/C 0.20 Adiabatic<br />

W/C 0.40 Adiabatic<br />

W/C 0.60 Adiabatic<br />

Hydration Degree [%]<br />

Progress of hydration<br />

0,0 0.0<br />

0 4 8 12 16 20 24<br />

Hours [h]<br />

Figure 4: Degree of hydration in dependence on the water/cement ratio<br />

219<br />

1,0 1.0<br />

0,9 0.9<br />

0,8 0.8<br />

0,7 0.7<br />

0,6 0.6<br />

0,5 0.5<br />

0,4 0.4<br />

0,3 0.3<br />

0,2 0.2<br />

0,1 0.1<br />

Otto-Graf-Journal Vol. 13, 2002


S. MÖNNIG<br />

Heat growth rate of clinker<br />

DuCOM provides the overall generated heat for each clinker at each time<br />

step. By subtracting the accumulated heat at one time step from the previous one<br />

it was possible to calculate the heat growth rate. The curves presented in figure 5<br />

have been interpolated with Excel to abrade them. DuCOM calculated 2500 time<br />

steps to reach 24 hours.<br />

Heat Growth Rate [kcal/kg]<br />

0,30 0.30<br />

0,25 0.25<br />

0,20 0.20<br />

0,15 0.15<br />

0,10 0.10<br />

0,05 0.05<br />

0.00 0,00<br />

0 4 8 12 16 20 24<br />

6. DISCUSSION<br />

Time [h]<br />

Figure 5: Heat growth rate of clinker<br />

C3A<br />

C3S<br />

C4AF<br />

C2S<br />

Total Heat<br />

The maximum temperature of the hydration as shown in figure 3 does<br />

reach the extent as expected. Different methods of gaining an approximated<br />

value do provide similar results, e.g. the approximation formula for adiabatic<br />

heat growth as given in [3] provides likewise results. The results presented in<br />

figure 5 follow the expected curves. The influence of the low temperature of the<br />

environment on the rate of hydration is reasonable, too. The curves in figure 5<br />

show the same behaviour of the clinker as it was expected due to the specific<br />

enthalpy of each clinker.<br />

7. SUMMARY <strong>OF</strong> RESULTS<br />

DuCOM proved to be very reliable being used for the simulation of<br />

hydration of ordinary Portland cements and their mixtures. Temperature<br />

development and hydration degree are corresponding with measured values<br />

given in the literature. More calculations and experiments should be performed<br />

to estimate the accuracy of calculated strength and shrinkage.<br />

220


REFERENCES<br />

Modelling of concrete hydration<br />

[1] Maekawa, K.; Chaube R., Kishi, T.: Modelling of concrete performance,<br />

E&FN Spon, London, 1999<br />

[2] Ožbolt, J.: MASA – Macroscopic Space Analysis. Internal Report, Institut<br />

für Werkstoffe im Bauwesen, Universität Stuttgart, 1998<br />

[3] Zement Taschenbuch 2000, Verlag Bau+Technik, Düsseldorf, 2000<br />

221<br />

Otto-Graf-Journal Vol. 13, 2002

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!