15.12.2012 Views

DTE Energy DER Technology AdoptionDEW Analysis of ... - EERE

DTE Energy DER Technology AdoptionDEW Analysis of ... - EERE

DTE Energy DER Technology AdoptionDEW Analysis of ... - EERE

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Utility/Lab Workshop on PV <strong>Technology</strong> and Systems<br />

November 8-9, 2010<br />

Tempe, Arizona<br />

<strong>DTE</strong> <strong>Energy</strong> <strong>DER</strong> <strong>Technology</strong> Adoption<br />

DEW <strong>Analysis</strong> <strong>of</strong> Renewable, PEV & Storage<br />

Hawk Asgeirsson, P.E.<br />

asgeirssonh@dteenergy.com<br />

This presentation does not contain any proprietary, confidential, or otherwise restricted information.


Agenda<br />

• <strong>DTE</strong> <strong>Energy</strong> background<br />

• What do we have done to date<br />

– Mobile DG adoption<br />

– Plug-in Electric Vehicle (PEV) adoption<br />

– Solar & wind adoption<br />

– Storage adoption<br />

• What is in the works<br />

– All <strong>of</strong> the above blended together<br />

– Steady State (Planning)<br />

• Short and long term forecasting (solar & wind)<br />

– Dynamic (Operation & Planning)<br />

– Modeling and Coordinated Control


<strong>DTE</strong> <strong>Energy</strong> –<br />

Electric & Gas Regulated Businesses<br />

Detroit Edison (Electric)<br />

• Tenth largest US electric utility<br />

• 7,600 square mile service territory<br />

• 2.2 million customers<br />

• 2.63 million meters<br />

• $4.9 billion in revenue<br />

• $13 billion in assets<br />

• Generating capacity: 11,080 MW<br />

• Annual Sales: 50,000 GWH<br />

Michcon (Gas)<br />

• Eleventh largest US natural gas utility<br />

with 1.3 million customers<br />

• 1.35 million meters<br />

• 14,700 square mile service territory<br />

throughout Michigan<br />

• 679 bcf <strong>of</strong> gas sales<br />

• Significant gas storage capacity benefits<br />

customers (11% <strong>of</strong> total Midwest and<br />

Northeast capacity)<br />

• $1.8 billion in revenue<br />

• $3.3 billion in assets


<strong>DTE</strong> <strong>Energy</strong> – Non-utility Businesses<br />

• Coal Related Services<br />

– <strong>DTE</strong> Coal services<br />

– <strong>DTE</strong> Rail Services<br />

• Gas Storage & Pipeline<br />

– <strong>DTE</strong> Pipeline<br />

– <strong>DTE</strong> Gas Storage<br />

• Power/Industrial Projects<br />

– <strong>DTE</strong> Biomass <strong>Energy</strong><br />

– <strong>DTE</strong> Methane Resources<br />

– <strong>DTE</strong> <strong>Energy</strong> Services<br />

– <strong>DTE</strong> Pet Coke<br />

• Unconventional Gas<br />

Production<br />

– <strong>DTE</strong> Gas Resources<br />

• <strong>DTE</strong> <strong>Energy</strong> Trading<br />

• <strong>DTE</strong> <strong>Energy</strong> Ventures Woodland Biomass


Distributed<br />

Generation<br />

at <strong>DTE</strong> <strong>Energy</strong><br />

<strong>Technology</strong> Testing<br />

Substation Applications<br />

Temporary &<br />

Maintenance<br />

Distribution<br />

Solutions<br />

Circuit Applications<br />

Emergency &<br />

Temporary<br />

Premium<br />

Power<br />

Customer Partnership<br />

Virtual Power Plant<br />

Applications<br />

Southfield Solar &<br />

Future H Power Park<br />

Adair ENI1000 1MW NG<br />

Emergency ENR2000<br />

2MW Diesel<br />

ZBB Flow Battery<br />

Union Lk ENR2000 2MW Diesel<br />

Grosse Ile High School<br />

ENI1000 1MW NG<br />

Substation Battery<br />

Replacement Project<br />

Substation Islanding<br />

ENR2000 2MW Diesel<br />

Assumption Church<br />

ENI1000 1MW NG<br />

Wayne State Univ ENI 75 Dialysis Center ENI 150 Service Center ENI 150 & 75


Automatic Load Following<br />

Circuit Emergency Rating<br />

Circuit Normal Rating<br />

Generator<br />

Output<br />

Distribution<br />

Circuit Load


<strong>DER</strong> <strong>Technology</strong> adoption<br />

• DG Applications<br />

• Plug-in Electric Vehicle (PEV)<br />

• Solar<br />

• Solar & Storage<br />

• Wind<br />

• Wind & Storage<br />

• Storage<br />

• All <strong>of</strong> the above in various combinations


Distributed <strong>Energy</strong> Resource (<strong>DER</strong>)<br />

Adoption <strong>Analysis</strong><br />

• Monte Carlo simulation is used to randomly place <strong>DER</strong><br />

generation units at locations throughout a distribution<br />

circuit<br />

• The PEV simulation provides customer arrival home and<br />

plug-in time models<br />

• <strong>Technology</strong> adoption is modeled as a function <strong>of</strong><br />

customer billing class<br />

• Solar Output is added to the model via interface to NREL<br />

PV Watts<br />

• Wind Output is added as an average


Secondary Customer Representation


Residential Customer Class Load Pr<strong>of</strong>ile<br />

<strong>DTE</strong> Load Research Stats (16 Customers)


PEV Assumptions<br />

• The PEVs are only charged at residential homes<br />

• The battery is fully discharged when PEV charging<br />

occurs once a day. (This assumption provides the worse<br />

case scenario)<br />

• There are two likely voltages at residential locations,<br />

120V and 240V


PEV Charge Pr<strong>of</strong>iles


Distribution <strong>of</strong> Arrival Times at Home<br />

from Work (SE Michigan Census Data)


PEV Impact on the Electric Distribution System<br />

Worst Case Scenario, Heavily Load Circuit – Level 2, 3.3 kW<br />

# <strong>of</strong> Predicted Disturbances<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

PEV Impacts on the Distribution System<br />

On-Peak vs. Off-Peak Charging<br />

5% 10% 15% 20% 25% 30%<br />

PEV Adoption Rate (%)<br />

*There are a total <strong>of</strong>125 distribution transformers on the distribution circuit<br />

Trf. Overloads (On)<br />

Trf. Overloads (Off)<br />

Low Voltage (On)<br />

Low Voltage (Off)<br />

• Red – Percent overloaded transformers with uncontrolled charging<br />

• Green – Percent overloaded transformer with controlled charging<br />

starting at midnight<br />

• Blue – Low voltage uncontrolled<br />

Studying PEV Charging<br />

on a 4.8 kV Distribution Circuit


Uncontrolled PEV Charging<br />

• Circuits in early adopter areas<br />

• Number <strong>of</strong> circuits studied = 93<br />

• 4.8 kV circuit have more<br />

overloaded transformers than<br />

13.2 kV circuits<br />

• 4.8 kV circuits are dominated<br />

by 25 kVA transformers<br />

25%<br />

20%<br />

15%<br />

10%<br />

5%<br />

0%<br />

Overloaded Transformers<br />

4.34%<br />

1.46%<br />

0.73% 1.48% 2.16%<br />

2.91% 3.55%<br />

2.92%<br />

9.59%<br />

8.20%<br />

6.29%<br />

4.66%<br />

5% 10% 15% 20% 25% 30%<br />

PEV Adoption Rate<br />

Level 1 Level 2<br />

% <strong>of</strong> Total DXfmrs<br />

14%<br />

12%<br />

10%<br />

8%<br />

6%<br />

4%<br />

2%<br />

0%<br />

Level 2 – 3.3 kW<br />

Uncontrolled Charging:<br />

4.8 kV vs. 13.2 kV<br />

5% 10% 15% 20% 25% 30%<br />

PEV Adoption Rate<br />

4.8kV Overloads 4.8kV L. Voltages<br />

13.2kV Overloads 13.2kV L. Voltages


DEW Solar Generation<br />

• National Renewable <strong>Energy</strong> Lab PV Watts data<br />

• For each solar generation location, the NREL interface<br />

provides hourly generation data for 8760 hours<br />

• Years worth <strong>of</strong> hourly generation can be automatically<br />

placed on the customer metering point for:<br />

– historical minimum<br />

– average hourly<br />

– maximum hourly or<br />

– actual hourly for the pervious year<br />

• This enables integration <strong>of</strong> solar and load at:<br />

– customer meters<br />

– aggregation at the distribution transformer<br />

– aggregation at the circuit level


DEW’s Solar Model<br />

Downloads Solar Generation from NREL


DEW’s Solar Model<br />

Measurements Added to the Load Bus


Solar <strong>DER</strong><br />

Customer Class Solar Plot


Wind Generation<br />

• Wind speed data is U.S Local Climatological Data from the National<br />

Climatic Data Center (NCDC)<br />

• The wind power produced is calculated by the wind turbine power<br />

equation<br />

1<br />

P = ⋅ρ⋅Av ⋅ ⋅c<br />

2<br />

3<br />

wind p


Wind <strong>DER</strong><br />

Customer Class Wind Plot


DEW’s <strong>DER</strong> Adoption<br />

Ann Arbor Area Circuit<br />

3.5 MVA Looped (4-3 phase loops) 4.8kV Delta<br />

125 Dist Trf with 1500 Customer or 12 cust/trf<br />

30 Small commercial customers<br />

Drag & Drop <strong>DER</strong>


DEW’s <strong>DER</strong> Adoption <strong>Analysis</strong>


DEW’s <strong>DER</strong> Adoption <strong>Analysis</strong><br />

<strong>Analysis</strong> Setup<br />

10year study ending in:<br />

10% PEV, 30% Solar, 30% Wind


Dew’s <strong>DER</strong> Adoption <strong>Analysis</strong><br />

Study Criteria<br />

Stop on Primary Overload<br />

and/or OL on 5% <strong>of</strong> Dist Trt


<strong>DER</strong> Adoption <strong>Analysis</strong> Scenarios<br />

PHEV<br />

Solar Gen.<br />

Storage<br />

(Solar)<br />

Wind Gen.<br />

Storage<br />

(Wind)<br />

Base × × × × ×<br />

Case 1 10 % × × × ×<br />

Case 2 10 % 30 % × × ×<br />

Case 3 10 % × 30 % × ×<br />

Case 4 10 % × × 30 % ×<br />

Case 5 10 % × × × 30 %<br />

Case 6 10 % 10 % × 10 % ×


DEW <strong>DER</strong> Adoption Feeder <strong>Analysis</strong><br />

Results Base Case


DEW <strong>DER</strong> Adoption <strong>Analysis</strong> Results


DEW <strong>DER</strong> Adoption <strong>Analysis</strong> Results


DOE FOA-36 Community <strong>Energy</strong> Storage<br />

(CES)<br />

(Distributed Resource<br />

System Operation Center)


CES Modes <strong>of</strong> Operation<br />

Smart Grid Infrastructure Enabling Multi-mode Operation<br />

Demonstration Items:<br />

1. Frequency Regulation: (DR-SOC dispatch, Retransmit AGC from MISO)<br />

2.a VAR Support : (Local control, PF management)<br />

2.b Voltage support: (Local control, Meet utility v-schedule)<br />

3.a PV output shifting: (Local control, Time <strong>of</strong> day)<br />

3.b PV output leveling: (Local control ,Ramp management)<br />

4. Demand response<br />

4.a Grid support: (DR-SOC dispatch, ‘N-1’)<br />

4.b Distribution circuit peak shaving: (DR-SOC dispatch or schedule)<br />

4.c Customer peak shaving: (Local control, demand charge mgmt)<br />

5. Islanding: Control scheme development for intentional islanding


Modeling and Power Flow <strong>Analysis</strong><br />

DEW Circuit Model<br />

Google Earth overlay<br />

HAGER DC 9420<br />

Google maps transformer<br />

locations


Preliminary CES Features<br />

• 25 kW, 2-hour run-time, single-phase, pad-mounted<br />

• Battery life targeted for at least 1000 full-power discharges<br />

• Aggregated at <strong>DTE</strong>’s DR SOC<br />

• Peak shaving programmable or dispatched<br />

• Contactor to separate customers from utility source in the event <strong>of</strong> a<br />

disturbance<br />

– Improves SAIDI<br />

– Seamless return to normal utility source<br />

• Local voltage regulation by controlling inverter VARs<br />

– Flatten feeder voltage to reduce losses<br />

• No maintenance – “set it and forget it”<br />

– No fans, no air filters<br />

• Below-ground battery vault<br />

– Smaller exposed system footprint for easier siting<br />

– Cool & near constant temperature for passive cooling<br />

33


Community <strong>Energy</strong> Storage Concept<br />

• Leverage the independent work done by S&C<br />

• Split packaging solution<br />

– Bi-directional inverter with communications and control to Utility (<strong>DTE</strong> DR SOC)<br />

– Battery system with communications and control to inverter system<br />

• Above ground inverter / Below ground battery system<br />

Inverter<br />

System<br />

(Above grade)<br />

Fiberglass<br />

Box Pad<br />

(Below grade)<br />

Battery System<br />

34


DEW Future Work: PV and PV/Storage<br />

• Determine modeling and simulation tools needed for high<br />

penetration scenarios<br />

• Model advanced PV system operations<br />

– voltage/VAr control<br />

– intentional islanding<br />

– fault contributions<br />

– ride-through capability<br />

• Model distribution system impacts<br />

– voltage regulation<br />

– unintentional islanding<br />

– protection and coordination<br />

– effects <strong>of</strong> clouds<br />

• Develop Model-Based Coordinated Control Algorithms<br />

– Efficiency both sides <strong>of</strong> the meter<br />

– Demand Management both side<br />

– Economic operations using DEW Revenue <strong>Analysis</strong> (uses Rates)<br />

– Feeder Performance using DEW Feeder Performance (uses LMP)<br />

• Develop CES Algorithm for operations (simultaneous control<br />

operation including standby)<br />

• Short and long term solar/wind forecasting (local & wide area)


2011 IEEE Power & <strong>Energy</strong> Society Meeting<br />

http://www.pes-gm.org/2011/

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!