15.12.2012 Views

Catalytic Asymmetric Chlorination & Bromination

Catalytic Asymmetric Chlorination & Bromination

Catalytic Asymmetric Chlorination & Bromination

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Strategies for <strong>Catalytic</strong> <strong>Asymmetric</strong> Electrophilic<br />

a Halogenation of Carbonyl Compounds<br />

R 1<br />

R 2<br />

O<br />

Y<br />

Catalyst<br />

[X + ]<br />

Hintermann, L. ; Togni, A. Angew. Chem. Int. Ed. 2000, 39, 4359 – 4362<br />

Hamashima, Y.; Sodeoka, M. et al J. Am. Chem. Soc. 2002, 124, 14530 –14531<br />

France, S.; Lectka, T. et al J. Am. Chem. Soc. 2004, 126, 4245 – 4255<br />

Brochu, M. P.; Brown, S. P. ; MacMillan, D. W. C. J. Am. Chem. Soc. 2004, 126, 4108 – 4109<br />

Halland, N. ; Jørgensen, K. A. et al J. Am.Chem. Soc. 2004, 126, 4790 – 4791<br />

Marigo, M. ; Jørgensen, K. A. et al Angew. Chem. Int. Ed. 2004, 43, 5507 – 5510<br />

Zhang, Y. ; Shibatomi, K.; Yamamoto, H. J. Am. Chem. Soc. 2004, 126, 15038 –15039<br />

Marigo, M. ; Jørgensen, K. A. et al Angew. Chem. Int. Ed. 2005, 44, 2 – 5 (early view)<br />

Ali Z. Ding<br />

Advisor: Prof. W. D. Wulff<br />

May 12 2005<br />

R 1<br />

X<br />

!<br />

R 2<br />

O<br />

Y


Introduction<br />

a-Halogenated Carbonyl Compounds<br />

Linchpins for further stereospecific manipulations<br />

Halogen substituents can sometimes dramatically alter its physical, chemical<br />

and biological properties<br />

Increasingly important structural motifs in medicinal chemistry and material<br />

sciences.<br />

F 3C<br />

MeO<br />

F<br />

Currently being assessed worldwide in phase III clinical trials<br />

for treatment of acute ischemic stoke<br />

Oestreich, M. Angew. Chem. Int. Ed., 2005, 44, 2324-2327<br />

Ibrahim, H.; Togni, A. Chem. Commun. 2004, 1147 – 1155<br />

N<br />

H<br />

O<br />

BMS-204352<br />

MaxiPost<br />

Cl


Introduction<br />

Approaches to the Chiral a-Halogenated Carbonyl Compounds<br />

(1) Reagent-controlled halogenation: asymmetric halogenation of enolates using chiral<br />

electrophilic halogenating agents<br />

R 1<br />

(2) Substrate-controlled halogenation: diastereoselective electrophilic halogenation of<br />

chiral enolates or enol ethers<br />

R 1<br />

(3) <strong>Catalytic</strong> asymmetric halogenation of carbonyl compounds<br />

R 1<br />

R 2<br />

R 2<br />

O<br />

R 2<br />

O<br />

O<br />

Y<br />

Y*<br />

Y<br />

!<br />

R<br />

[X + ]<br />

[X + ]<br />

Catalyst<br />

[X + ]<br />

Oestreich, M. Angew. Chem. Int. Ed., 2005, 44, 2324-2327<br />

Taylor, S. D.; Kotoris, C. C. and Hum, G. Tetrahedron, 1999, 55,12431-12477<br />

R 1<br />

R 1<br />

R 1<br />

X<br />

X<br />

!<br />

R 2<br />

!<br />

R 2<br />

X<br />

O<br />

!<br />

R 2<br />

O<br />

O<br />

Y<br />

Y*<br />

Y


Noncatalytic Halogenation<br />

Substrate-controlled Halogenation: Use of Chiral Auxiliaries<br />

Oestreich, M. Angew. Chem. Int. Ed., 2005, 44, 2324-2327<br />

Taylor, S. D.; Kotoris, C. C. and Hum, G. Tetrahedron, 1999, 55,12431-12477


Noncatalytic Halogenation<br />

Reagent-controlled Halogenation: Chiral Fluorinating Reagents<br />

Pioneering work: Differding, E. and Lang, R. W. Tetrahehron Lett. 1988, 29, 6087-6090<br />

• Moderate yields and low to moderate enantioselectivities<br />

• Syntheses of these reagents require several steps<br />

Wong, C.-H., Angew. Chem. Int. Ed., 2005, 44, 192<br />

Taylor, S. D.; Kotoris, C. C. and Hum, G. Tetrahedron, 1999, 55,12431-12477


Noncatalytic Halogenation<br />

Reagent-controlled Halogenation: Cinchona Alkaloids Fluorinating Reagents<br />

N<br />

OH<br />

[F + ]<br />

N<br />

F<br />

X -<br />

OH<br />

[F + ] =<br />

Cl<br />

PhSO2 N<br />

2BF - N F<br />

4<br />

N<br />

F<br />

PhSO2 N<br />

N<br />

Selectfluor,<br />

or F-TEDA<br />

N-fluorobenzenesulfonimide<br />

or NFSI<br />

10 11 12 13<br />

Cinchona alkaloids (CA) are readily available in both pseudo-enantiomeric forms<br />

Easily prepare, more reactive<br />

Can be generated and used in situ<br />

Can be “reloaded” by F-TEDA or NFSI and reused without loss in selectivity<br />

Can such CA be used catalytically in these reactions?<br />

Ibrahim, H.; Togni, A. Chem. Commun. 2004, 1147 – 1155


<strong>Catalytic</strong> <strong>Asymmetric</strong> Fluorination<br />

Organo-<strong>Catalytic</strong> Enantioselective Fluorination by Phase-Transfer Catalysts<br />

Kim, D. Y. and Park, E. J. Org. Lett., 2002, 4, 545–547.


<strong>Catalytic</strong> <strong>Asymmetric</strong> Fluorination<br />

Organo-<strong>Catalytic</strong> Enantioselective Fluorination by L-Proline Derevatives<br />

R<br />

O<br />

Challenges:<br />

H<br />

+ F + Source<br />

• N-fluorination of catatlyst<br />

• Fluorination of substrate should be faster<br />

• Racemization and difluorination<br />

• Both SM and product can form enamine species<br />

• a-proton of product is more acidic<br />

• F atom is not big enough to contribute to an added steric shielding<br />

• Products are not stable to survive silica gel<br />

N<br />

H<br />

F !<br />

• Screen catalysts and solvents<br />

• Lower the catalyst loading<br />

• Screen fluorinating reagents<br />

Marigo, M. ; Jørgensen, K. A. et al Angew. Chem. Int. Ed. 2005, 44, 2 – 5<br />

R*<br />

R<br />

O<br />

H<br />

NaBH 4 F !<br />

R<br />

OH


<strong>Catalytic</strong> <strong>Asymmetric</strong> Fluorination<br />

Organo-<strong>Catalytic</strong> Enantioselective Fluorination by L-Proline Derevatives<br />

O<br />

N<br />

H X<br />

14a, X= OH<br />

14b, X= NH2 R<br />

O<br />

H<br />

Ph<br />

N<br />

H<br />

Ph<br />

15 16,<br />

NFSI, 16(1mol%)<br />

MTBE, RT<br />

• In the solvents other than MTBE, catalyst 16 decomposes<br />

• Products were reduced to alcohol in situ<br />

Dr. MacMillan’s Work:<br />

OTMS<br />

N Ar<br />

H Ar<br />

Enantioselective Organocatalytic Direct a-Fluorination:<br />

F<br />

R<br />

Beeson, T. D. and MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, in press<br />

True nucleophiles toward electrophilic fluorine: enols, enolates or enamines<br />

CF 3<br />

CF 3<br />

Marigo, M. ; Jørgensen, K. A. et al Angew. Chem. Int. Ed. 2005, 44, 2 – 5<br />

O<br />

H<br />

Ar=<br />

NaBH 4<br />

MeOH, RT<br />

R= Pr (96%ee), Bu(91%ee), Hex (96%ee), BnO(CH 2) 3(91%ee),<br />

Bn (93%ee), Cy (96%ee), tBu(97%ee), 1-Ad (96%ee)<br />

F<br />

!<br />

R<br />

OH<br />

MTBE=<br />

Yield: 55-95%<br />

O<br />

PhSO2 N<br />

PhSO2 NFSI<br />

F


<strong>Catalytic</strong> <strong>Asymmetric</strong> Fluorination<br />

Chiral Lewis Acid Catalyzed <strong>Asymmetric</strong> Fluorination<br />

• Addition of sub-stoichiometric amount of Lewis acid significantly<br />

accelerates formation of fluorination product<br />

12 17 18<br />

Ti-based Lewis acids are the most potent catalysts<br />

Umemoto, T et al J. Am. Chem. Soc., 1990, 112, 8563–8575<br />

Hintermann, L. ; Togni, A. Angew. Chem. Int. Ed. 2000, 39, 4359 – 4362


<strong>Catalytic</strong> <strong>Asymmetric</strong> Fluorination<br />

TiCl 2 [R,R-(TADDOLLato)] Catalyzed <strong>Asymmetric</strong> Fluorination<br />

12<br />

Hintermann, L. ; Togni, A. Angew. Chem. Int. Ed. 2000, 39, 4359 – 4362<br />

Ibrahim, H.; Togni, A. Chem. Commun. 2004, 1147 – 1155


<strong>Catalytic</strong> <strong>Asymmetric</strong> Fluorination<br />

Mechanism of Ti Catalyzed <strong>Asymmetric</strong> Fluorination<br />

Piana, S.; Togni, A. et al Angew. Chem., Int. Ed., 2002, 41, 979–982<br />

Ibrahim, H.; Togni, A. Chem. Commun. 2004, 1147 – 1155<br />

12<br />

The bidentate nature of substrates is beneficial for high facial selectivity


<strong>Catalytic</strong> <strong>Asymmetric</strong> Fluorination<br />

<strong>Asymmetric</strong> Fluorination Catalyzed by Other Lewis Acids<br />

13<br />

Alcoholic solvents can work well<br />

Not sensitive to water<br />

Catalyst can be recycled and re-used without loss of any slectivity<br />

Hamashima, Y.; Sodeoka, M. et al J. Am. Chem. Soc., 2002, 124, 14530–14531.


<strong>Catalytic</strong> <strong>Asymmetric</strong> Fluorination<br />

O<br />

N N<br />

Ph<br />

M<br />

Ph<br />

<strong>Asymmetric</strong> Fluorination Catalyzed by Other Lewis Acids<br />

O<br />

62 M= Cu, X - = OTf<br />

63 M= Ni, X - = ClO 4<br />

X -<br />

13<br />

Ibrahim, H.; Togni, A. Chem. Commun. 2004, 1147 – 1155<br />

Ma, J.-A. and Cahard, D. Tetrahedron: Asymmetry, 2004, 15, 1007<br />

HFIP=<br />

F 3C CF 3<br />

Shibata, N.; Ishimaru, T.; Nagai, T., Kohno, J. and T. Toru Synlett 2004, 1703 –1706<br />

OH


<strong>Catalytic</strong> <strong>Asymmetric</strong> <strong>Chlorination</strong> & <strong>Bromination</strong><br />

R 1<br />

O O<br />

Me<br />

Chiral Lewis Acid Catalyzed <strong>Asymmetric</strong> <strong>Chlorination</strong> & <strong>Bromination</strong><br />

OR 2<br />

Me OBn<br />

Me<br />

R 1<br />

O O<br />

O<br />

+ N<br />

O<br />

Cl<br />

+<br />

I Cl<br />

64 65<br />

O O<br />

R 2<br />

R 3<br />

O<br />

+ N<br />

O<br />

X<br />

X<br />

5mol%<br />

38 or 39<br />

MeCN, rt<br />

5mol% 38<br />

1.2eq py<br />

toluene, 50 o C<br />

10mol% 67<br />

R 1<br />

O O<br />

X Me<br />

O O<br />

OR 2<br />

Hintermann, L. and Togni, A. Helv, Chim. Acta, 2000, 83, 2425–2435<br />

X= Cl, up to 88%ee<br />

X= Br, up to 23%ee<br />

Me OBn<br />

Cl Me<br />

(S)-66, 67%, 71%ee<br />

With Cl2, (S)-66, 62%, 30%ee<br />

Hintermann, L. and Togni, A. Helv, Chim. Acta, 2004, 87, 605–610<br />

Et 2O<br />

R 1<br />

O O<br />

R 2 X<br />

OR 2<br />

X= Cl, up to 77%ee<br />

X= Br, up to 82%ee<br />

Marigo, M.; Kumaragurubaran, N.; Jørgensen, K. A. Chem. Eur. J. 2004,10, 2133 – 2137<br />

Oestreich, M. Angew. Chem. Int. Ed., 2005, 44, 2324-2327<br />

O<br />

O<br />

N N<br />

t-Bu<br />

Cu<br />

(S, S)-67<br />

t-Bu<br />

2 OTf -


<strong>Catalytic</strong> <strong>Asymmetric</strong> <strong>Chlorination</strong> & <strong>Bromination</strong><br />

Cl<br />

O<br />

67<br />

R<br />

Organo-Catalyzed <strong>Asymmetric</strong> <strong>Chlorination</strong> & <strong>Bromination</strong> Acyl Halides<br />

Tadem halogenation/esterification process of acyl halides<br />

Cl<br />

Cl<br />

MeO<br />

Cl<br />

Cl<br />

Base<br />

THF<br />

-78oC Cl<br />

Cl<br />

O<br />

N<br />

69<br />

N<br />

O<br />

Br<br />

Br<br />

C<br />

R<br />

68 (2.0eq)<br />

O Ph<br />

O<br />

Br<br />

70 71<br />

Br<br />

O<br />

69(10mol%)<br />

70 or 71 (1.0eq)<br />

THF, -78 o C<br />

Nu<br />

LG X<br />

ArO<br />

O<br />

R<br />

X 72<br />

+ Nu<br />

O<br />

74<br />

LG -<br />

X<br />

LG<br />

R<br />

O<br />

LG -<br />

X<br />

R<br />

72<br />

Nu<br />

69<br />

LG X<br />

+ Nu<br />

70 or 71<br />

The choice of chlorinating agents is pivotal for the reaction to turn over<br />

France, S.; Lectka, T. et al J. Am. Chem. Soc. 2004, 126, 4245 – 4255<br />

O<br />

O -<br />

C<br />

68<br />

R<br />

R<br />

73<br />

Base<br />

Cl<br />

O<br />

67<br />

R


Organo-<strong>Catalytic</strong> <strong>Asymmetric</strong> <strong>Chlorination</strong> & <strong>Bromination</strong><br />

Optimization of Reaction Conditions<br />

The choice of chlorinating agents: the window is very narrow<br />

The choice of base: reactive, cheap, easy to handle<br />

Me 2N NMe 2<br />

R<br />

O<br />

X<br />

N O<br />

O Cl<br />

Unreactive: Too reactive: ,<br />

Me 2N NMe 2<br />

67 68<br />

70<br />

C6Cl5O H<br />

Me2N NMe2 69<br />

70 71<br />

O<br />

C<br />

R<br />

75<br />

76<br />

Cl 5C 6O<br />

France, S.; Lectka, T. et al J. Am. Chem. Soc. 2004, 126, 4245 – 4255<br />

Cl 2<br />

O<br />

R


Organo-<strong>Catalytic</strong> <strong>Asymmetric</strong> <strong>Chlorination</strong> & <strong>Bromination</strong><br />

Choice of Base and Summary<br />

O<br />

Cl<br />

67<br />

R<br />

NaH, 15-crown-5<br />

69(10mol%), 70(1.0eq)<br />

THF, -78oC to rt, 4h<br />

O<br />

R<br />

Cl5C6O Cl<br />

75<br />

R= Ph, PhOCH2, 1-Np, p-NO2Ph, Et, o-ClPh Yield: 43-79%, ee: 90-99%<br />

Cl<br />

O<br />

67<br />

R<br />

NaHCO3, 15-crown-5<br />

69(10mol%), 70(1.0eq)<br />

ClPh, -35oC to rt, 5h<br />

R= Ph, PhOCH2, 1-Np, p-MeOPh<br />

Moderate yields, high enantioselectivity<br />

Inexpensive reagents<br />

Can be scaled up<br />

O<br />

R<br />

Cl5C6O Cl<br />

75<br />

Yield: 56-68%, ee: 88-91%<br />

Ketenes from other sources (Wolff rearrangement) can be used as well<br />

France, S.; Lectka, T. et al J. Am. Chem. Soc. 2004, 126, 4245 – 4255


Organo-<strong>Catalytic</strong> <strong>Asymmetric</strong> <strong>Chlorination</strong><br />

<strong>Asymmetric</strong> <strong>Chlorination</strong> of Aldehydes Catalyzed by Chiral Amines<br />

76 77<br />

78<br />

70<br />

8 examples<br />

Yield: 60-88%<br />

ee: 97-99%<br />

Such cyclic transition state might enforce activation of 70 in the asymmetric environment<br />

of an e-rich enamine mediated by proton<br />

Brochu, M. P.; Brown, S. P. ; MacMillan, D. W. C. J. Am. Chem. Soc. 2004, 126, 4108 – 4109<br />

70<br />

79<br />

80


Organo-<strong>Catalytic</strong> <strong>Asymmetric</strong> <strong>Chlorination</strong> of Aldehydes<br />

<strong>Asymmetric</strong> <strong>Chlorination</strong> of Aldehydes: Catalysts and Chlorinating Reagents<br />

82<br />

83<br />

82<br />

83<br />

70<br />

70<br />

70<br />

70<br />

81 82 83<br />

L-Proline doesn’t work well<br />

NCS doesn’t work well<br />

Brochu, M. P.; Brown, S. P. ; MacMillan, D. W. C. J. Am. Chem. Soc. 2004, 126, 4108 – 4109<br />

Cl<br />

Cl<br />

Cl<br />

N<br />

O O<br />

NCS<br />

Cl<br />

Cl<br />

70<br />

Cl<br />

Cl<br />

O


Organo-<strong>Catalytic</strong> <strong>Asymmetric</strong> <strong>Chlorination</strong> of Aldehydes<br />

<strong>Asymmetric</strong> <strong>Chlorination</strong> of Aldehydes: the Solvent Effects<br />

Inert to halogenation reagent<br />

Optimal selectivity, reaction rate, and chemical yield<br />

82<br />

Product epimerization, formation of R,R-dichlorooctanal, or octanal aldol<br />

dimerization were comprehensively suppressed using these conditions<br />

Brochu, M. P.; Brown, S. P. ; MacMillan, D. W. C. J. Am. Chem. Soc. 2004, 126, 4108 – 4109<br />

82


Organo-<strong>Catalytic</strong> <strong>Asymmetric</strong> <strong>Chlorination</strong> of Aldehydes<br />

<strong>Asymmetric</strong> <strong>Chlorination</strong> of Aldehydes: The Scope<br />

Brochu, M. P.; Brown, S. P. ; MacMillan, D. W. C. J. Am. Chem. Soc. 2004, 126, 4108 – 4109


Organo-<strong>Catalytic</strong> <strong>Asymmetric</strong> <strong>Chlorination</strong> of Aldehydes<br />

70<br />

<strong>Asymmetric</strong> <strong>Chlorination</strong> of Aldehydes: b-Chiral Aldehydes<br />

Internal asymmetric induction is almost completely over-compensated<br />

Selectivity is sterically and chemically good<br />

Substrate scope is broad<br />

All the reagents (70, 82 and - 82) are bench stable and commercially available<br />

Products are stable<br />

- 82<br />

82<br />

Brochu, M. P.; Brown, S. P. ; MacMillan, D. W. C. J. Am. Chem. Soc. 2004, 126, 4108 – 4109


Organo-<strong>Catalytic</strong> <strong>Asymmetric</strong> <strong>Chlorination</strong> of Aldehydes<br />

<strong>Asymmetric</strong> <strong>Chlorination</strong> of Aldehydes: Jørgensen’s Work<br />

H<br />

O<br />

iPr<br />

Catalyst<br />

NCS<br />

Halland, N. ; Jørgensen, K. A. et al J. Am.Chem. Soc. 2004, 126, 4790 – 4791<br />

H<br />

O<br />

!<br />

Cl<br />

iPr<br />

Ph<br />

Cl<br />

N<br />

O O<br />

NCS<br />

O<br />

N<br />

H NH2 3c<br />

N<br />

H<br />

3i<br />

Ph


Organo-<strong>Catalytic</strong> <strong>Asymmetric</strong> <strong>Chlorination</strong> of Aldehydes<br />

<strong>Asymmetric</strong> <strong>Chlorination</strong> of Aldehydes: The Scope<br />

H<br />

O<br />

NCS (1.3eq) O<br />

1<br />

R<br />

3c or 3i (10mol%)<br />

CH2Cl2, rt, 1-10h<br />

H<br />

! R<br />

Cl<br />

2<br />

<strong>Asymmetric</strong> <strong>Bromination</strong> & Iodination of Aldehydes<br />

H<br />

H<br />

O<br />

O<br />

1d<br />

1a<br />

NBS<br />

3i (10mol%)<br />

CH 2Cl 2, rt<br />

NIS<br />

3i (10mol%)<br />

CH 2Cl 2, rt<br />

Halland, N. ; Jørgensen, K. A. et al J. Am.Chem. Soc. 2004, 126, 4790 – 4791<br />

H<br />

H<br />

O<br />

O<br />

!<br />

I<br />

!<br />

Br<br />

80%ee<br />

24%ee<br />

Ph<br />

Cl<br />

N<br />

O O<br />

NCS<br />

O<br />

N<br />

H NH2 3c<br />

N<br />

H<br />

3i<br />

Ph


Organo-<strong>Catalytic</strong> <strong>Asymmetric</strong> <strong>Chlorination</strong> of Ketones<br />

Organo-Catalyzed <strong>Asymmetric</strong> <strong>Chlorination</strong> of Ketones<br />

Marigo, M. ; Jørgensen, K. A. et al Angew. Chem. Int. Ed. 2004, 43, 5507 – 5510<br />

Cl<br />

N<br />

O O<br />

NCS


Organo-<strong>Catalytic</strong> <strong>Asymmetric</strong> <strong>Chlorination</strong> of Ketones<br />

<strong>Asymmetric</strong> <strong>Chlorination</strong> of Ketones: Effects of Additives & Solvent<br />

CH 3 CN is the best solvent<br />

Significant improvement by adding acids:<br />

• Promotion of enamine formation<br />

• Suppression of catalyst chlorination<br />

Marigo, M. ; Jørgensen, K. A. et al Angew. Chem. Int. Ed. 2004, 43, 5507 – 5510<br />

Ph<br />

Ph<br />

Cl<br />

N<br />

O O<br />

NCS<br />

H<br />

N<br />

N<br />

H<br />

3i


Organo-<strong>Catalytic</strong> <strong>Asymmetric</strong> <strong>Chlorination</strong> of Ketones<br />

R<br />

O<br />

1<br />

R<br />

<strong>Asymmetric</strong> <strong>Chlorination</strong> of Ketones: The Scope<br />

3i (20mol%)<br />

2-NO 2-PhCO 2H (50mol%)<br />

NCS (2eq), MeCN, 20h<br />

R<br />

O<br />

2<br />

!<br />

Cl<br />

R<br />

Ph<br />

Ph<br />

High e.e.<br />

H<br />

N<br />

N<br />

H<br />

3i<br />

Moderate yields: poly-chlorination occurs<br />

Broad substrate scope<br />

Marigo, M. ; Jørgensen, K. A. et al Angew. Chem. Int. Ed. 2004, 43, 5507 – 5510<br />

Cl<br />

N<br />

O O<br />

NCS


<strong>Asymmetric</strong> <strong>Chlorination</strong> of Ketones<br />

Back to Reagent Controlled <strong>Asymmetric</strong> <strong>Chlorination</strong> of Ketones<br />

Reagent-controlled process can sometimes be competitive alternative!<br />

R 1<br />

OSi<br />

R 2<br />

R 3<br />

+<br />

X<br />

O<br />

X<br />

Cl Cl 1<br />

Zhang, Y. ; Shibatomi, K.; Yamamoto, H. J. Am. Chem. Soc. 2004, 126, 15038 –15039<br />

O<br />

Lewis acid<br />

X=R or OR R 1<br />

O<br />

!<br />

R 3<br />

Cl R 2<br />

Chirality of auxiliary (X) could be transferred to silicon enolates<br />

Lewis acids are necessary to activate 1<br />

Chlorinating reagents 1 can be prepared easily


<strong>Asymmetric</strong> <strong>Chlorination</strong> of Ketones<br />

<strong>Asymmetric</strong> <strong>Chlorination</strong> of Ketones: Effects of X group & Si Group<br />

ZrCl 4 is uniquely reactive<br />

The size of X group<br />

The size of si group<br />

Yields are high (>90%)<br />

Zhang, Y. ; Shibatomi, K.; Yamamoto, H. J. Am. Chem. Soc. 2004, 126, 15038 –15039


<strong>Asymmetric</strong> <strong>Chlorination</strong> of Ketones<br />

<strong>Asymmetric</strong> <strong>Chlorination</strong> of Ketones: Scope


<strong>Asymmetric</strong> <strong>Chlorination</strong> of Ketones<br />

<strong>Asymmetric</strong> <strong>Chlorination</strong> of Ketones: Potential to be <strong>Catalytic</strong><br />

O<br />

O<br />

OSi<br />

( ) n<br />

O O<br />

1-Np Cl Cl 1-Np<br />

1c<br />

CF 3SO 2H<br />

ZrCl 4<br />

O<br />

( ) n<br />

O<br />

Cl<br />

O<br />

O O<br />

1-Np H Cl<br />

2c<br />

1-Np<br />

CF 3SO 2Cl<br />

2c can be easily recovered and chlorinated back to 1c<br />

Recovered 1c can be re-used for the reaction<br />

This novel process might be extended to catalytic asymmetric variants!<br />

Zhang, Y. ; Shibatomi, K.; Yamamoto, H. J. Am. Chem. Soc. 2004, 126, 15038 –15039


<strong>Catalytic</strong> <strong>Asymmetric</strong> Halogenation of Carbonyl Compounds<br />

Conclusions<br />

• Enantioselective electrophilic a-halogenation of carbonyl compounds: a topical<br />

area of current asymmetric catalysis<br />

• A new tool has presented itself to synthetic organic chemistry<br />

• More applications are expected


Dr. Togni<br />

ETH<br />

Dr. MacMillan<br />

Caltech<br />

Cl<br />

Cl<br />

Cl<br />

N<br />

N<br />

F<br />

O<br />

PhSO 2<br />

2BF -<br />

4 N F<br />

PhSO 2<br />

Selectfluor,<br />

or F-TEDA N-fluorobenzenesulfonimide<br />

or NFSI<br />

12 13<br />

Cl<br />

Cl<br />

Cl<br />

Br<br />

Br<br />

Br<br />

O<br />

X<br />

N O<br />

Cl<br />

To What They Should Thank?<br />

Br<br />

70 71<br />

Wong, C.-H., Angew. Chem. Int. Ed., 2005, 44, 192<br />

O<br />

Dr. Jørgensen<br />

Aarhus U.<br />

X= Cl, NCS<br />

X= Br, NBS<br />

X= I , NIS<br />

Taylor, S. D.; Kotoris, C. C. and Hum, G. Tetrahedron, 1999, 55,12431-12477<br />

Dr. Lectka<br />

Johns Hopkins U.<br />

Dr. Yamamoto<br />

U. of Chicago

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!