16.12.2012 Views

Properties of X-Ray Beam Position Monitor at

Properties of X-Ray Beam Position Monitor at

Properties of X-Ray Beam Position Monitor at

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Properties</strong> <strong>of</strong> XX-ray<br />

ray <strong>Beam</strong><br />

<strong>Position</strong> ii <strong>Monitor</strong>s i <strong>at</strong> the h<br />

S Swiss i Light Li ht S Source<br />

Thomas Wehrli, Paul Scherrer Institut


Abstract<br />

• XBPM types and their applic<strong>at</strong>ion applic<strong>at</strong>ion.<br />

• XBPM performance.<br />

p<br />

• Use <strong>of</strong> single blades to judge the<br />

quality li <strong>of</strong> f an XBPM reading.<br />

di


Undul<strong>at</strong>or and Bending XBPMs<br />

Undul<strong>at</strong>or XBPM:<br />

4 blades arranged b1 b2<br />

like an X,<br />

TTungsten t blades bl d b3 b4<br />

Bending XBPM:<br />

4 parallel blades blades,<br />

staggered by ±Δ<br />

b1 b2<br />

Copper blades } 2Δ<br />

b3<br />

b4


Undul<strong>at</strong>or XBPMs<br />

• Determin<strong>at</strong>ion <strong>of</strong> horizontal and vertical<br />

bbeam position. i i<br />

• <strong>Beam</strong> position is estim<strong>at</strong>ed with<br />

asymmetries: ti<br />

– horizontal position<br />

– vertical position<br />

b1 b2<br />

b3<br />

b4<br />

: calibr<strong>at</strong>ion<br />

factor<br />

: calibr<strong>at</strong>ion<br />

factor


Use <strong>of</strong> undul<strong>at</strong>or XBPMs <strong>at</strong> the SLS<br />

• One XBPM is used per beamline assuming<br />

only angular beam motion.<br />

– Feed forward tables: Correction <strong>of</strong> the gap g p<br />

dependence <strong>of</strong> the XBPM reading.<br />

– Only used to determine rel<strong>at</strong>ive position<br />

changes, h which hi h are used d iin a XBPM ffeedback. db k<br />

• Approved performance: μrad.<br />

– According to the C. Schulze (PX beamline) 25<br />

μm shift is accepted in 25 m distance from the<br />

source point point, 100 μm is not not.


Bending XBPMs<br />

• The monitors are constructed to detect vertical<br />

beam positions only.<br />

• The staggering <strong>of</strong> the blades results in selfcalibr<strong>at</strong>ed<br />

readings under the assumption <strong>of</strong>:<br />

P ≈ P = c⋅ a +Δ = c⋅a −Δ<br />

asym<br />

with P the real position,<br />

13 24<br />

a13 =<br />

b −b b + b , a24<br />

b −b<br />

= b + b<br />

a + a<br />

⇒ P = 13 24 ⋅Δ<br />

asym y<br />

a −<br />

a<br />

13 24<br />

1 3 2 4<br />

1 3 2 4


Bending XBPMs <strong>at</strong> the SLS<br />

• Two XBPMs are used to determine angle<br />

and position <strong>of</strong> the beam.<br />

� Higher demands on accuracy.<br />

XBPM1 XBPM2<br />

source point real beam error bars<br />

error bars<br />

error bbars direction for XBPM1<br />

for XBPM2<br />

source<br />

point Source point errors are enhanced due to the<br />

lever arm from XBPM1 to the source point.


Source<br />

Point<br />

Schem<strong>at</strong>ic beamline design<br />

Photon <strong>Beam</strong><br />

Electron<br />

Obit Orbit<br />

Ring<br />

Absorber Absorber XBPM1 XBPM2<br />

<strong>Beam</strong><br />

Mask<br />

Absorber<br />

Block<br />

0 m 1.3 m 3.2 m 3.4 m 4.1 m 6.1 m 6.5 m<br />

2 m


Calibr<strong>at</strong>ion factors and Sum signal<br />

slope k<br />

flection<br />

def<br />

1/k<br />

sym.<br />

Δ s


Symmetrical and asymmetrical<br />

calibr<strong>at</strong>ion lib i ffactors are diff different<br />

bump angle [mrad] symmetrical deflection [mm]


Single blade signals<br />

Blade1 Blade2<br />

Blade3 Blade4<br />

�No obvious shadowing. Almost linear dependence<br />

�<strong>of</strong> the blade signals on orbit bumps.<br />

Increasing<br />

symmetrical<br />

deflection<br />

Decreasing<br />

symmetrical<br />

deflection


Single g blade signals g<br />

Blade1 Blade2<br />

Blade3 Blade4<br />

�No obvious shadowing. Almost linear dependence<br />

�<strong>of</strong> the blade signals on orbit bumps.<br />

Increasing<br />

bump angle<br />

Decreasing<br />

bump angle


sym<br />

P as<br />

Horizontal Bumps have an influence<br />

Blade1 Blade2<br />

Blade3 Blade4<br />

� The blades react as if we had driven a vertical bump!


Results <strong>of</strong> the calibr<strong>at</strong>ion tests<br />

• Auto-calibr<strong>at</strong>ion Auto calibr<strong>at</strong>ion <strong>of</strong> bending XBPMs<br />

doesn’t work.<br />

• The absolute reading <strong>of</strong> an XBPM is<br />

doubtable. At a given working point, small<br />

position changes still can be determined<br />

and used in a feedback.<br />

• Si Single l bl blades d can bbe used d iindividually. di id ll


One XBPM = four blades = four<br />

monitors<br />

• Correct known system<strong>at</strong>ic effects effects.<br />

– In our case: normalize the blade signals bi with the<br />

storage g ring g current I sr : bni= n,i b i / I sr where i = 1,...,4 , ,<br />

• Identify a certain blade signal with an<br />

according beam position position.<br />

– The bigger the signal the closer the beam.<br />

• CCalibr<strong>at</strong>e lib t th the single i l bl blades: d<br />

k b = P i n,i i


Wh<strong>at</strong> can we do with four results?<br />

• Ignore those blades th<strong>at</strong> make problems problems.<br />

Only use the „good blades“ to estim<strong>at</strong>e the<br />

beam position, p , for example: p<br />

1<br />

P ∑ P<br />

13<br />

i<br />

2<br />

= ∑<br />

i=<br />

1<br />

ii=<br />

3<br />

Remark: If all blades are good we get the arithmetic mean:<br />

4 1<br />

Parith = ∑<br />

Pi<br />

4<br />

i=<br />

1


Wecandoevenmore<br />

We can do even more<br />

• Calcul<strong>at</strong>e standard devi<strong>at</strong>ions!<br />

4<br />

using i all ll 2<br />

blades σ<br />

σ<br />

4 1<br />

≈ ∑(<br />

P −P<br />

)<br />

3<br />

tot i arith<br />

i=<br />

1<br />

≈ ∑ ( P − P P13<br />

)<br />

2<br />

2<br />

using i bl blade1 d 1 tot i<br />

and blade3<br />

i=<br />

1<br />

i=<br />

3<br />

2


Why we look <strong>at</strong> single blade signals<br />

blade1 blade2<br />

Decay not due to<br />

beam motion<br />

blade3 blade4<br />

� The single blades behave differently.


Bending XBPM feedback run (I)<br />

blade1 blade2<br />

blade3 top-up<br />

blade4<br />

injection<br />

� <strong>Beam</strong> was shifted towards blade3, blade4 by ~40 μm<br />

� through the XBPM feedback. P asym was kept constant.<br />

!


The use <strong>of</strong> standard devi<strong>at</strong>ions<br />

time [h]<br />

� Correl<strong>at</strong>ion between vacuum pressure and standard<br />

� Correl<strong>at</strong>ion between vacuum pressure and standard<br />

� devi<strong>at</strong>ion <strong>of</strong> the XBPM reading.<br />

� XBPM design was not UHV comp<strong>at</strong>ible. (Problem fixed now.)


Advantages using single blades<br />

• One gets four results instead <strong>of</strong> one one.<br />

• Signal quality can be taken into account.<br />

– “B “Bad” d” bl blades d can bbe excluded. l d d<br />

• Standard devi<strong>at</strong>ions can be calcul<strong>at</strong>ed.<br />

– One can judge if the accuracy <strong>of</strong> the XBPM<br />

readings is sufficient to improve beam<br />

stability. t bilit<br />

• No need for bias voltage:


Blade behavior on different bias<br />

neg<strong>at</strong>ive g<br />

signals<br />

!<br />

� Changing <strong>of</strong> the blade signals on orbit bumps doesn’t<br />

� Changing <strong>of</strong> the blade signals on orbit bumps doesn t<br />

� depend on the bias voltage. (But the use <strong>of</strong> P asym (Δ/Σ)<br />

� would be critical due to a potential division by zero.)


Bending XBPM feedback run (II)<br />

P1-P3 [μm]<br />

• Machine in thermal<br />

equilibrium<br />

– Run time before<br />

feedback start > 40 h<br />

• Total correction by<br />

the XBPM feedback<br />

~ 5 μm<br />

�Possibly y mainy y<br />

artificial correction<br />

time [h]<br />

time [h]<br />

� In case <strong>of</strong> thermal equilibrium, residual drifts <strong>of</strong> the beam<br />

position and remaining XBPM artifacts are ± equal <strong>at</strong> the SLS.


Bending XBPM feedback run (III)<br />

Correcttion<br />

[μraad]<br />

Angle<br />

correction <strong>of</strong> an electronic artifact <strong>of</strong> the RF-BPMs<br />

time [h]<br />

�Additional beam motion in the marked range expected<br />

g p<br />

�and corrected.


Conclusion<br />

• Use <strong>of</strong> single blades as individual monitors<br />

can reveal l diff different effects. ff<br />

– Vacuum pressure dependence <strong>of</strong> the readings.<br />

• P Problem bl is i fi fixed d now. S Stabilizing bili i pl<strong>at</strong>e l on the h b backside k id<br />

<strong>of</strong> the XBPMs has avoided ventil<strong>at</strong>ion.<br />

–Performance Performance e o a ce <strong>of</strong> o clean c ea bending be d g XBPMs Ms in the t e<br />

order <strong>of</strong> some micron over 11-2<br />

2 day(s).<br />

• Undul<strong>at</strong>or XBPMs are in use for a long g time<br />

yet.<br />

– Detailed investig<strong>at</strong>ion <strong>of</strong> technical properties <strong>of</strong><br />

undul<strong>at</strong>or d l XBPM P i is more diffi difficult l d due to gap<br />

dependence and two two-dimensional dimensional position<br />

estim<strong>at</strong>ion.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!