18.11.2018 Views

Article - Energy and environmental potential of solid waste in Brazil, Năng lượng và môi trường tiềm năng của chất thải rắn ở Brazil (Vietsub)

https://app.box.com/s/bnhgqo1t268amfvp2vwq88693u0kubw9

https://app.box.com/s/bnhgqo1t268amfvp2vwq88693u0kubw9

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Energy</strong> Policy 39 (2011) 3496–3502<br />

Contents lists available at ScienceDirect<br />

<strong>Energy</strong> Policy<br />

journal homepage: www.elsevier.com/locate/enpol<br />

<strong>Energy</strong> <strong>and</strong> <strong>environmental</strong> <strong>potential</strong> <strong>of</strong> <strong>solid</strong> <strong>waste</strong> <strong>in</strong> <strong>Brazil</strong><br />

F.A.M. L<strong>in</strong>o, K.A.R. Ismail n<br />

Faculty <strong>of</strong> Mechanical Eng<strong>in</strong>eer<strong>in</strong>g, the State University <strong>of</strong> Camp<strong>in</strong>as, Bar~ao Geraldo, POB 6122, Camp<strong>in</strong>as Postal Code 13083-860, S.P. <strong>Brazil</strong><br />

article <strong>in</strong>fo<br />

<strong>Article</strong> history:<br />

Received 5 October 2010<br />

Accepted 18 March 2011<br />

Available onl<strong>in</strong>e 8 April 2011<br />

Keywords:<br />

<strong>Energy</strong><br />

CO 2 emissions<br />

Solid <strong>waste</strong><br />

abstract<br />

The economic progress <strong>and</strong> susta<strong>in</strong>able developments are l<strong>in</strong>ked to the optimization <strong>and</strong> energy<br />

conservation. Conventional methods <strong>of</strong> production <strong>and</strong> energy utilization usually embed harmful <strong>environmental</strong><br />

impacts, <strong>and</strong> hence the challenge to scientists to seek for mechanisms <strong>of</strong> energy production <strong>and</strong> use<br />

which are less harmful or better still free <strong>of</strong> unfavorable <strong>environmental</strong> impacts. Studies po<strong>in</strong>t out that<br />

municipal <strong>solid</strong> <strong>waste</strong> has great energy <strong>potential</strong> <strong>and</strong> its reuse, specifically the production <strong>of</strong> biogas from<br />

l<strong>and</strong>fills <strong>and</strong> the recycl<strong>in</strong>g <strong>of</strong> <strong>solid</strong> <strong>waste</strong> presents a favorable mechanism to optimize energy use <strong>and</strong><br />

preserve it. The present <strong>in</strong>vestigation <strong>in</strong>cludes the energy sav<strong>in</strong>gs <strong>and</strong> the avoided emissions <strong>of</strong> CO 2 to the<br />

atmosphere as a result <strong>of</strong> recycl<strong>in</strong>g <strong>and</strong> production <strong>of</strong> biogas from l<strong>and</strong>fills <strong>in</strong> one metropolitan with more<br />

than one million <strong>in</strong>habitants <strong>and</strong> <strong>in</strong> <strong>Brazil</strong>. The results show that the rate <strong>of</strong> CH 4 production from the<br />

<strong>Brazil</strong>ian <strong>waste</strong> l<strong>and</strong>fills can avail for <strong>Brazil</strong> about 41.7 MW <strong>and</strong> the reuse <strong>of</strong> recyclables can avail to the<br />

energy system an additional quantity <strong>of</strong> 286 GJ/month enough for the consumption <strong>of</strong> 318,000 families.<br />

& 2011 Elsevier Ltd. All rights reserved.<br />

1. Introduction<br />

The energy development <strong>in</strong> the twentieth century raised the<br />

average energy consumption per capita <strong>in</strong> the world to more<br />

than ten times the consumption <strong>of</strong> primitive man. In the period<br />

1973–2006, the world’s energy supply <strong>in</strong>creased from 6115 Mtoe<br />

(where toe is the equivalent tons <strong>of</strong> oil) to 11,741 Mtoe, that is <strong>in</strong><br />

a period <strong>of</strong> 33 years the recorded <strong>in</strong>crease was 92% (MME<br />

(M<strong>in</strong>istério de M<strong>in</strong>as e Energia), 2009). This <strong>in</strong>dicates that energy<br />

has become an essential commodity for the man’s comfort <strong>and</strong><br />

welfare (Mart<strong>in</strong>ez <strong>and</strong> Ebenhack, 2008; Gómez <strong>and</strong> Silveira,<br />

2010). On one h<strong>and</strong> it is difficult to imag<strong>in</strong>e life without power,<br />

on the other h<strong>and</strong> the <strong>environmental</strong> impacts <strong>of</strong> energy production<br />

<strong>and</strong> use has been an <strong>in</strong>cognita. The emission <strong>of</strong> greenhouse<br />

gases, Carbon dioxide (CO 2 ) <strong>and</strong> Methane (CH 4 ) released by the<br />

action <strong>of</strong> man himself, is br<strong>in</strong>g<strong>in</strong>g irreversible effects for humanity<br />

as reported <strong>in</strong> the subsequent documents from the Intergovernmental<br />

Panel on Climate Change (IPCC) s<strong>in</strong>ce 1990 (IPCC,<br />

2007).<br />

The cont<strong>in</strong>uous <strong>in</strong>crease <strong>of</strong> energy production <strong>and</strong> consumption<br />

<strong>and</strong> the consequent impacts <strong>of</strong> these accelerated dem<strong>and</strong>s<br />

have required a change <strong>of</strong> behavior <strong>of</strong> the society <strong>and</strong> also drove<br />

research to alternative means <strong>of</strong> use <strong>and</strong> reuse <strong>of</strong> new energy<br />

sources. The <strong>solid</strong> <strong>waste</strong>, for example, constitutes one <strong>of</strong> such new<br />

sources <strong>of</strong> energy (L<strong>in</strong>o et al., 2010).<br />

n Correspond<strong>in</strong>g author. Tel.: þ55 19 35213376; fax: þ55 19 32893722.<br />

E-mail address: kamal@fem.unicamp.br (K.A.R. Ismail).<br />

Solid <strong>waste</strong> is a by-product from human activities, <strong>and</strong> is<br />

characterized by the negative impacts that may cause to the man<br />

<strong>and</strong> the environment when disposed <strong>in</strong> an <strong>in</strong>appropriate way<br />

without treatment. Due to the cont<strong>in</strong>uously <strong>in</strong>creas<strong>in</strong>g amount <strong>of</strong><br />

<strong>solid</strong> <strong>waste</strong> generated, particularly <strong>in</strong> capitals <strong>and</strong> major urban<br />

centers, the challenge for governments is to reduce the <strong>waste</strong><br />

harmful impacts to both health <strong>and</strong> the environment (Unstat<br />

(United Nations Statistic Division), 2007).<br />

Mechanisms <strong>of</strong> reduc<strong>in</strong>g these impacts <strong>in</strong>clude systems <strong>of</strong><br />

organic <strong>solid</strong> <strong>waste</strong> compost<strong>in</strong>g produc<strong>in</strong>g organic fertilizers for<br />

agriculture purposes; recycl<strong>in</strong>g <strong>solid</strong> <strong>waste</strong> such as paper, cardboard,<br />

glass <strong>and</strong> metals back to the productive sector to replace<br />

raw material partially or fully, <strong>and</strong> f<strong>in</strong>ally the <strong>waste</strong>-to-energy<br />

mechanism whereby anaerobic digestion converts organic matter<br />

deposited <strong>in</strong> l<strong>and</strong>fills to CH 4 for energy production (Cetesb<br />

(Companhia Ambiental do Estado de S~ao Paulo), 2001; IPCC,<br />

2007; Lennox <strong>and</strong> Neuwkoop, 2010).<br />

The l<strong>and</strong>fill gas or the biogas, composed pr<strong>in</strong>cipally <strong>of</strong> CH 4 <strong>and</strong><br />

CO 2 proved to have many attractive applications as <strong>in</strong> power<br />

generation for isolated communities, fuel<strong>in</strong>g public service such<br />

as buses <strong>and</strong> trucks <strong>and</strong> other many applications <strong>of</strong> <strong>in</strong>terest. Many<br />

examples <strong>of</strong> this type can be verified <strong>in</strong> Europe, USA <strong>and</strong> Canada<br />

(IPCC, 2007).<br />

In 1994, the United States Environmental Protection Agency<br />

(USEPA) established the L<strong>and</strong>fill Methane Outreach Program to<br />

encourage the implementation <strong>of</strong> projects for recovery <strong>of</strong> l<strong>and</strong>fill<br />

gas as energy source <strong>in</strong> the United States. The program identifies<br />

l<strong>and</strong>fills with the <strong>potential</strong> to generate energy at competitive<br />

costs <strong>and</strong> without unnecessary barriers to use that source <strong>in</strong><br />

various spheres <strong>of</strong> government. This <strong>in</strong>itiative is part <strong>of</strong> the<br />

0301-4215/$ - see front matter & 2011 Elsevier Ltd. All rights reserved.<br />

doi:10.1016/j.enpol.2011.03.048


F.A.M. L<strong>in</strong>o, K.A.R. Ismail / <strong>Energy</strong> Policy 39 (2011) 3496–3502 3497<br />

Climate Change Plan. In 2001, biogas was utilized <strong>in</strong> approximately<br />

950 l<strong>and</strong>fills (EPA, 2005).<br />

In <strong>Brazil</strong>, the biogas from the l<strong>and</strong>fill is marg<strong>in</strong>ally used. In the<br />

1970s, two projects were implemented. One for the Gas Company<br />

<strong>of</strong> S~ao Paulo (Comgas) <strong>and</strong> the other two companies <strong>in</strong> Rio de<br />

Janeiro, State Gas Company <strong>and</strong> Municipal Urban Clean<strong>in</strong>g Company<br />

(GEC/Comlurb). The first company distributed gas from<br />

l<strong>and</strong>fill to a residential complex nearby. In case <strong>of</strong> the second<br />

company the biogas was collected, purified <strong>and</strong> <strong>in</strong>jected <strong>in</strong> the gas<br />

distribution network supply<strong>in</strong>g gas for the city <strong>of</strong> Rio de Janeiro.<br />

About 1000 m 3 /day was placed <strong>in</strong> the network. In 1985, gas<br />

became the fuel for the fleet <strong>of</strong> 150 municipal trucks <strong>and</strong> also<br />

for a fleet <strong>of</strong> taxis. This project lasted 10 years (Cetesb, 2001).<br />

Besides the l<strong>and</strong>fill biogas, recycl<strong>in</strong>g <strong>of</strong> <strong>solid</strong> <strong>waste</strong> is another<br />

mechanism that permits energy <strong>and</strong> raw materials sav<strong>in</strong>gs.<br />

Studies on the subject <strong>in</strong>dicate that (L<strong>in</strong>o, 2009; L<strong>in</strong>o et al.,<br />

2010), recycl<strong>in</strong>g is the process that when applied, consider<strong>in</strong>g<br />

the technical <strong>and</strong> scientific aspects could have substantial energy<br />

<strong>and</strong> <strong>environmental</strong> benefits.<br />

In the recycl<strong>in</strong>g <strong>in</strong>dustry, the recyclables such as paper <strong>and</strong><br />

cardboard, plastics, glass <strong>and</strong> metals are sorted, adequately<br />

processed, prepared <strong>and</strong> sent back to the production cha<strong>in</strong> as<br />

recycled matter. This leads to the use <strong>of</strong> less quantities <strong>of</strong> raw<br />

material <strong>in</strong> the <strong>in</strong>dustrial sector, reduction <strong>of</strong> water <strong>and</strong> energy<br />

<strong>and</strong> consequently avoid<strong>in</strong>g CO 2 emissions to the atmosphere,<br />

creation <strong>of</strong> new job posts, <strong>in</strong>creas<strong>in</strong>g the useful life <strong>of</strong> l<strong>and</strong>fills,<br />

reduction <strong>of</strong> public expenditure for <strong>waste</strong> treatment <strong>in</strong> the<br />

deposition areas <strong>and</strong> f<strong>in</strong>ally the social <strong>in</strong>clusion <strong>of</strong> less qualified<br />

citizens <strong>in</strong> the active society work<strong>in</strong>g mass (L<strong>in</strong>o, 2009; L<strong>in</strong>o et al.,<br />

2010).<br />

This paper presents the evaluation <strong>of</strong> the energy saved by<br />

recycl<strong>in</strong>g, the correspond<strong>in</strong>g CO 2 that is not emitted to the<br />

atmosphere as well as the amount <strong>of</strong> CH 4 <strong>and</strong> CO 2 generated by<br />

the decomposition <strong>of</strong> organic <strong>waste</strong> deposited <strong>in</strong> l<strong>and</strong>fills <strong>in</strong> <strong>Brazil</strong><br />

<strong>and</strong> one <strong>of</strong> the largest cities <strong>of</strong> the State <strong>of</strong> Sao Paulo, that is, the<br />

municipality <strong>of</strong> Camp<strong>in</strong>as (SP). The calculations were extended<br />

also to the socioeconomic aspects <strong>of</strong> recycl<strong>in</strong>g.<br />

2. Solid <strong>waste</strong><br />

The <strong>solid</strong> <strong>waste</strong> result<strong>in</strong>g from activities such as the <strong>in</strong>dustrial,<br />

residential, commercial, hospitable, agriculture <strong>and</strong> similars<br />

(ABNT (Associac- ~ao Brasileira de Normas Técnicas), 2004), is<br />

generally composed <strong>of</strong> organic degradable matter (leftovers,<br />

paper <strong>and</strong> others); <strong>of</strong> non-degradable organic material (plastics)<br />

<strong>and</strong> <strong>of</strong> non-degradable <strong>in</strong>organic matter (glass, metal <strong>and</strong> others).<br />

These latter materials if disposed <strong>in</strong> the ambient, can take<br />

hundreds <strong>of</strong> years to decompose <strong>and</strong> its accumulation leads to<br />

reduc<strong>in</strong>g the useful life <strong>of</strong> l<strong>and</strong>fills.<br />

In some developed countries such as Japan, Sweden, Belgium<br />

<strong>and</strong> Denmark, the <strong>in</strong>dex <strong>of</strong> reuse <strong>of</strong> <strong>solid</strong> <strong>waste</strong> is over 90%. In<br />

countries <strong>in</strong> Asia <strong>and</strong> Lat<strong>in</strong> America, not all the <strong>solid</strong> <strong>waste</strong> is<br />

collected <strong>and</strong> <strong>in</strong> highly populated countries such as Ch<strong>in</strong>a <strong>and</strong><br />

India <strong>and</strong> others such as Turkey, Mexico <strong>and</strong> <strong>Brazil</strong> almost 90% <strong>of</strong><br />

the <strong>solid</strong> <strong>waste</strong> (whose major part is organic) considered as the<br />

pr<strong>in</strong>cipal source for produc<strong>in</strong>g CH 4 is usually dest<strong>in</strong>ed to l<strong>and</strong>fills<br />

<strong>and</strong> dumps freely liberat<strong>in</strong>g huge quantities <strong>of</strong> CO 2 <strong>and</strong> CH 4 to the<br />

atmosphere (Unstat, 2007; IBGE (Fundac- ~ao Instituto Brasileiro de<br />

Geografia e Estatística), 2002).<br />

2.1. Solid <strong>waste</strong> <strong>in</strong> <strong>Brazil</strong><br />

<strong>Brazil</strong> is the biggest country <strong>in</strong> Lat<strong>in</strong> America occupies about<br />

50% <strong>of</strong> the territorial area <strong>of</strong> the cont<strong>in</strong>ent with a population <strong>of</strong><br />

194 millions <strong>in</strong> 2010, <strong>of</strong> which 84% are concentrated <strong>in</strong> the urban<br />

areas (IBGE (Fundac- ~ao Instituto Brasileiro de Geografia e<br />

Estatística), 2009). Accord<strong>in</strong>g to the data <strong>of</strong> <strong>Brazil</strong>ian Institute <strong>of</strong><br />

Geography <strong>and</strong> Statistics, IBGE (2002), the country collects about<br />

228.5 10 3 t/day <strong>of</strong> <strong>solid</strong> <strong>waste</strong> <strong>of</strong> the residential <strong>and</strong> commercial<br />

<strong>in</strong>dustrial types. This collection refers to 95.3% <strong>of</strong> the <strong>solid</strong> <strong>waste</strong><br />

collected <strong>in</strong> the country <strong>of</strong> which 95% is disposed <strong>in</strong> dumps <strong>and</strong><br />

l<strong>and</strong>fills, etc (IBGE, 2002).<br />

In 2000, the exist<strong>in</strong>g 5.993 dumps received per day about<br />

48,600 t/day, about 84,600 t/day were disposed <strong>in</strong> 1868 controlled<br />

l<strong>and</strong>fills, about 83,000 t/day <strong>in</strong> 1452 sanitary l<strong>and</strong>fills,<br />

<strong>and</strong> 2000 <strong>in</strong> places not fixed, 1600 t/day at unspecified sites,<br />

1000 t/day were delivered to 325 <strong>in</strong>c<strong>in</strong>erators, 6500 t/day were<br />

dest<strong>in</strong>ed to 260 compost<strong>in</strong>g plants <strong>and</strong> 2300 were sent to 596<br />

recycl<strong>in</strong>g plants (IBGE, 2002).<br />

The quantity <strong>of</strong> residential <strong>solid</strong> <strong>waste</strong> collected <strong>in</strong> <strong>Brazil</strong><br />

represents 55% <strong>of</strong> the total collected <strong>in</strong> the country or<br />

125 10 3 t/day or an average value <strong>of</strong> 0.74 kg/<strong>in</strong>habitant day.<br />

Almost 77% <strong>of</strong> this residential <strong>solid</strong> <strong>waste</strong> is organic matter <strong>and</strong><br />

the rest, 23% is <strong>in</strong>organic. This <strong>in</strong>formation is obta<strong>in</strong>ed from IBGE<br />

(2002) relative to 2000 when the <strong>Brazil</strong>ian population was 169<br />

millions <strong>in</strong>habitants.<br />

2.2. Solid <strong>waste</strong>: biogas production <strong>and</strong> recycl<strong>in</strong>g<br />

The l<strong>and</strong>fill gas is generated <strong>in</strong> the bio-digestion <strong>of</strong> organic<br />

<strong>waste</strong> <strong>in</strong> l<strong>and</strong>fills by the anaerobic digestion process (without the<br />

presence <strong>of</strong> oxygen). It is estimated that each ton <strong>of</strong> municipal<br />

<strong>solid</strong> <strong>waste</strong> deposited generates between 160 <strong>and</strong> 250 m 3 <strong>of</strong><br />

biogas (IPCC, 2007), <strong>in</strong> the proportion <strong>of</strong> approximately 55%<br />

CH 4 , 44% CO 2 <strong>and</strong> 1% other gases. Hence, one ton <strong>of</strong> municipal<br />

<strong>solid</strong> <strong>waste</strong> produces approximately 88–138 m 3 <strong>of</strong> CH 4 . Thus, it is<br />

estimated that from 40 million to 60 million tons <strong>of</strong> CH 4 are<br />

generated yearly <strong>in</strong> l<strong>and</strong>fills (Humer <strong>and</strong> Lechner, 1999).<br />

Accord<strong>in</strong>g to Humer’s <strong>and</strong> Lechner estimates (1999), an urban<br />

l<strong>and</strong>fill <strong>in</strong> operation with 20 m thickness has an emission factor <strong>of</strong><br />

about 340 l CH 4 /m 2 day. Re<strong>in</strong>hart <strong>and</strong> Cooper (1992) estimate<br />

that the production <strong>of</strong> CH 4 <strong>in</strong> l<strong>and</strong>fills is about 10.5 million t/year.<br />

Another estimate shows that global emissions <strong>of</strong> CH 4 <strong>in</strong> l<strong>and</strong>fills<br />

are 60 million t/year, <strong>of</strong> which 15% are due to the Ch<strong>in</strong>ese<br />

l<strong>and</strong>fills. L<strong>and</strong>fills can produce about 125 m 3 <strong>of</strong> CH 4 per ton<br />

<strong>of</strong> <strong>waste</strong> <strong>in</strong> a period <strong>of</strong> 10–40 years. Accord<strong>in</strong>g to the<br />

Company <strong>of</strong> Environmental Sanitation Technology, Cetesb (2001),<br />

this generation <strong>in</strong> <strong>Brazil</strong> is 677 t/year <strong>and</strong> represents about<br />

945 million m 3 /year.<br />

Studies show that the use <strong>of</strong> biogas produced <strong>in</strong> l<strong>and</strong>fills can<br />

generate energy, <strong>environmental</strong> <strong>and</strong> economic benefits to governments<br />

<strong>and</strong> local societies. The estimated electric power generation<br />

is 300–500 MW from municipal <strong>solid</strong> <strong>waste</strong> <strong>in</strong> <strong>Brazil</strong>, which<br />

corresponds to 650,000 t <strong>of</strong> CH 4 per year. By the anaerobic<br />

digestion <strong>of</strong> the organic <strong>solid</strong> <strong>waste</strong> deposited <strong>in</strong> l<strong>and</strong>fills, the<br />

produced CH 4 (which is a very harmful greenhouse gas, 21 times<br />

greater than CO 2 ) will not be emitted to the atmosphere <strong>and</strong> can<br />

be converted <strong>in</strong>to Carbon Credit. Also it is possible to reduce<br />

substantially or even avoid the risk <strong>of</strong> fires <strong>and</strong> explosions <strong>in</strong><br />

l<strong>and</strong>fills due to the high concentration <strong>of</strong> CH 4 <strong>in</strong> biogas (Brito<br />

Filho, 2005; IPCC, 2007).<br />

Recycl<strong>in</strong>g can be used as an alternative way to reuse material<br />

<strong>and</strong> energy associated with the recyclable <strong>waste</strong> (paper, cardboard,<br />

plastics, glass <strong>and</strong> ferrous metals). A brief description <strong>of</strong><br />

some <strong>of</strong> the most common technologies used <strong>in</strong> the recycl<strong>in</strong>g<br />

processes as <strong>in</strong> McDougall et al. (2001).<br />

2.2.1. Paper <strong>and</strong> cardboard<br />

Paper manufactur<strong>in</strong>g relies on the fact that wet cellulose fiber<br />

b<strong>in</strong>d together with hydrogen bonds when dried under pressure.


3498<br />

F.A.M. L<strong>in</strong>o, K.A.R. Ismail / <strong>Energy</strong> Policy 39 (2011) 3496–3502<br />

Basically paper recycl<strong>in</strong>g reverses this process by wett<strong>in</strong>g, agitat<strong>in</strong>g<br />

<strong>and</strong> then separat<strong>in</strong>g the cellulose fiber. Paper <strong>and</strong> cardboard<br />

recycl<strong>in</strong>g can be repeated as much as four times, which means<br />

virg<strong>in</strong> fiber is always needed. The efficiency <strong>of</strong> recycl<strong>in</strong>g is about<br />

85%. The details <strong>of</strong> the recuperation process <strong>of</strong> the fibers will vary<br />

accord<strong>in</strong>g to the conditions <strong>of</strong> the pulp substitute. The rejects,<br />

effluent <strong>and</strong> sludge generated by the recycl<strong>in</strong>g process are treated<br />

<strong>and</strong> discarded.<br />

2.2.2. Glass<br />

Most glass is fabricated by a process <strong>in</strong> which raw materials<br />

are converted at high temperature (1420–1600 1C) to a homogeneous<br />

melt, which is then formed <strong>in</strong>to products. The broken<br />

glass is usually used as a batch material to enhance glass melt<strong>in</strong>g<br />

<strong>and</strong> lower the temperature needed to melt the raw material.<br />

Usually the recyclables can amount to 70–80% <strong>of</strong> the mix, the<br />

recycled glass passes by a manual sort<strong>in</strong>g process, followed by<br />

clean<strong>in</strong>g <strong>and</strong> removal <strong>of</strong> metallic <strong>waste</strong>, then crushed <strong>and</strong> fed to<br />

the production l<strong>in</strong>e to form the mix to be melted.<br />

2.2.3. Ferrous metal<br />

Steel is essentially an alloy <strong>of</strong> iron <strong>and</strong> carbon, less than 2%<br />

carbon. There are three ma<strong>in</strong> type <strong>of</strong> furnace used <strong>in</strong> the production<br />

<strong>of</strong> steel. The basic oxygen furnace for sheet steel <strong>and</strong> uses 25%<br />

scrap steels. The electric arc furnace uses almost 100% scrap steel<br />

<strong>and</strong> the traditional open hearth.<br />

<strong>Energy</strong> requirements for the three steel mak<strong>in</strong>g processes are<br />

as below:<br />

Open hearth¼14.24 MJ/tons <strong>of</strong> raw material.<br />

Basic oxygen process¼14.42 MJ/t <strong>of</strong> raw material.<br />

Electric process¼5.99 MJ/t <strong>of</strong> raw material.<br />

The use <strong>of</strong> scrap for steel mak<strong>in</strong>g results <strong>in</strong> large reductions <strong>in</strong><br />

air pollution, water use (40% sav<strong>in</strong>gs), <strong>and</strong> m<strong>in</strong><strong>in</strong>g <strong>waste</strong>s <strong>and</strong> <strong>in</strong><br />

the total energy consumption (virg<strong>in</strong> steel requires 36 GJ/t while<br />

recycled steel requires only 18 GJ/t).<br />

2.2.4. Plastics<br />

Plastics are made from oil, natural gas, coal <strong>and</strong> salt, where<br />

major feedstock is oil <strong>and</strong> they are produced by polymerization.<br />

There are a variety <strong>of</strong> process<strong>in</strong>g <strong>and</strong> shap<strong>in</strong>g methods, <strong>of</strong> these<br />

processes extrusion <strong>and</strong> <strong>in</strong>jection mold<strong>in</strong>g are the most common.<br />

After separation, plastics can be mechanical or chemically<br />

recycled (very expensive). The recycled material is subjected to<br />

heat<strong>in</strong>g under pressure <strong>and</strong> <strong>in</strong>jected <strong>in</strong> the molds.<br />

In developed countries as Japan, USA <strong>and</strong> Germany the<br />

recyclables are separated <strong>and</strong> predom<strong>in</strong>antly delivered by the<br />

population to specific localities or placed on the curb for collection<br />

(Sakata, 2007; Louis, 2004; González-Torre et al., 2003; Read,<br />

1999). In develop<strong>in</strong>g countries as <strong>Brazil</strong>, this process is predom<strong>in</strong>ated<br />

by selective <strong>waste</strong> collection from residences (L<strong>in</strong>o, 2009).<br />

Reports about different experiences <strong>in</strong> recycl<strong>in</strong>g are available<br />

<strong>in</strong> the literature. For example, <strong>in</strong> the UK, the recycl<strong>in</strong>g program is<br />

one <strong>of</strong> the priorities <strong>of</strong> the government (Read, 1999). Initiative<br />

such mass disclosures <strong>and</strong> cont<strong>in</strong>uous propag<strong>and</strong>a programs<br />

together with the cont<strong>in</strong>uous evaluation <strong>of</strong> the recycl<strong>in</strong>g system<br />

are some <strong>of</strong> the strategies adopted to stimulate the public<br />

adhesion. As a result, <strong>in</strong> four years <strong>of</strong> operation the recycl<strong>in</strong>g<br />

<strong>in</strong>creased from 9% to 13% (Read, 1999). Other experiences related<br />

to selective collection <strong>and</strong> recycl<strong>in</strong>g <strong>in</strong> developed countries are<br />

reported by Themelis <strong>and</strong> Todd (2004) <strong>in</strong> USA; Okuda <strong>and</strong><br />

Thomson (2007) <strong>in</strong> Japan, Tayibi et al. (2007) <strong>in</strong> Spa<strong>in</strong> <strong>and</strong><br />

Magr<strong>in</strong>ho et al. (2006) <strong>in</strong> Portugal.<br />

In <strong>Brazil</strong>, the selective collection is implemented <strong>in</strong> capitals<br />

<strong>and</strong> big urban centers, where the collection is realized by the<br />

public service, <strong>waste</strong> collectors organized <strong>in</strong> cooperatives units<br />

<strong>and</strong> by <strong>in</strong>formal <strong>waste</strong> collectors. The recyclables are separated<br />

accord<strong>in</strong>g to the type <strong>of</strong> material, compacted, packed <strong>and</strong> commercialized<br />

(L<strong>in</strong>o, 2009).<br />

To <strong>in</strong>vestigate the impacts <strong>of</strong> the <strong>solid</strong> <strong>waste</strong> activities, the city<br />

<strong>of</strong> Camp<strong>in</strong>as was chosen as an example for the present analysis.<br />

2.3. Solid <strong>waste</strong> <strong>in</strong> Camp<strong>in</strong>as<br />

Camp<strong>in</strong>as is the third municipality <strong>of</strong> the State <strong>of</strong> S~ao Paulo<br />

both <strong>in</strong> population <strong>and</strong> also <strong>in</strong> generat<strong>in</strong>g household <strong>solid</strong> <strong>waste</strong>.<br />

Each <strong>in</strong>habitant produces about 0.7 kg/day <strong>of</strong> <strong>solid</strong> <strong>waste</strong>. The<br />

public collection system covers 100% <strong>of</strong> the urban areas with<br />

adhesion <strong>in</strong>dex <strong>of</strong> 98% <strong>of</strong> the residences accord<strong>in</strong>g to the recent<br />

statistics <strong>of</strong> the municipality government (L<strong>in</strong>o, 2009).<br />

Accord<strong>in</strong>g to the characterization process realized by the<br />

municipality organ responsible for this service, the composition<br />

<strong>of</strong> the household <strong>solid</strong> <strong>waste</strong> is 66% organic matter <strong>and</strong> 34%<br />

<strong>in</strong>organic matter. From this, one can f<strong>in</strong>d that the recyclables<br />

amounts to 41% (PMC (Prefeitura Municipal de Camp<strong>in</strong>as), 1996).<br />

The selective collection program was <strong>in</strong>itiated <strong>in</strong> 1991 <strong>and</strong> <strong>in</strong><br />

2005 the recyclables collection was realized by two systems.<br />

In the first system dom<strong>in</strong>ated here as the residential collection,<br />

the mixed recyclable is deposited by the population outside their<br />

homes which is then collected by the compact<strong>in</strong>g trucks. In<br />

the second system, dom<strong>in</strong>ated here as the centralized collection,<br />

the select<strong>in</strong>g collection is realized <strong>in</strong> big public <strong>and</strong> private <strong>waste</strong><br />

generators such as schools, shopp<strong>in</strong>g, residential parks, etc. The<br />

residential collection service is realized by a contracted private<br />

company, which also realizes the common mixed <strong>solid</strong> <strong>waste</strong><br />

collection. In the centralized system, the collection is done by the<br />

department <strong>of</strong> urban services attend<strong>in</strong>g these big <strong>solid</strong> <strong>waste</strong><br />

generators (L<strong>in</strong>o, 2009).<br />

The population <strong>of</strong> Camp<strong>in</strong>as <strong>of</strong> 1039.237 <strong>in</strong>habitants, the<br />

estimated recyclables per day per <strong>in</strong>habitant is about 0.26 kg/<br />

day. In 2005, the sum <strong>of</strong> the common <strong>and</strong> selective collection <strong>of</strong><br />

<strong>solid</strong> <strong>waste</strong> is 655 t/day (L<strong>in</strong>o, 2009).<br />

3. Method <strong>of</strong> analysis<br />

In order to evaluate the energy, <strong>environmental</strong> <strong>and</strong> socioeconomic<br />

benefits which could be obta<strong>in</strong>ed from the <strong>Brazil</strong>ian<br />

<strong>solid</strong> <strong>waste</strong>, the analysis was conducted as follows:<br />

1. <strong>Energy</strong> <strong>and</strong> <strong>environmental</strong> evaluation <strong>of</strong> the organic <strong>waste</strong><br />

deposited <strong>in</strong> the <strong>Brazil</strong>ian l<strong>and</strong>fills <strong>in</strong> Camp<strong>in</strong>as <strong>and</strong> <strong>Brazil</strong>.<br />

2. <strong>Energy</strong> <strong>and</strong> <strong>environmental</strong> evaluation <strong>of</strong> recycl<strong>in</strong>g <strong>in</strong> Camp<strong>in</strong>as<br />

<strong>and</strong> <strong>Brazil</strong>.<br />

3. Social <strong>and</strong> economic evaluation <strong>of</strong> the recyclables <strong>potential</strong> <strong>in</strong><br />

Camp<strong>in</strong>as <strong>and</strong> <strong>Brazil</strong>.<br />

To estimate the quantity <strong>of</strong> gas which could be produced from<br />

the <strong>Brazil</strong>ian <strong>solid</strong> <strong>waste</strong> l<strong>and</strong>fills one considered that 46% <strong>and</strong><br />

52% <strong>of</strong> the total <strong>solid</strong> <strong>waste</strong> deposited is <strong>solid</strong> organic <strong>waste</strong> from<br />

Camp<strong>in</strong>as <strong>and</strong> <strong>Brazil</strong>, respectively. Based upon these values it was<br />

possible to calculate the rate <strong>of</strong> gas production adopt<strong>in</strong>g values<br />

for CH 4 production available <strong>in</strong> the literature. By know<strong>in</strong>g the<br />

calorific value <strong>of</strong> the CH 4 <strong>and</strong> the composition <strong>of</strong> the gas, it was<br />

possible to calculate the total power that can be generated <strong>and</strong><br />

the amount <strong>of</strong> CO 2 equivalent not emitted to the atmosphere.<br />

To evaluate the energy <strong>and</strong> emissions benefits <strong>of</strong> recycl<strong>in</strong>g use<br />

was made <strong>of</strong> the data relative to the selective collection <strong>in</strong><br />

Camp<strong>in</strong>as realized by the public service <strong>and</strong> cooperative units <strong>of</strong>


F.A.M. L<strong>in</strong>o, K.A.R. Ismail / <strong>Energy</strong> Policy 39 (2011) 3496–3502 3499<br />

<strong>waste</strong> collectors. Accord<strong>in</strong>g to the gravimetric characterization<br />

realized by the PMC (1996), the amount <strong>of</strong> recyclable conta<strong>in</strong>ed <strong>in</strong><br />

the collected <strong>solid</strong> <strong>waste</strong> amounts to 41%.<br />

The selective collection <strong>in</strong>cludes together with the recyclables<br />

other materials which are not recyclables or contam<strong>in</strong>ated even<br />

after the sort<strong>in</strong>g process <strong>and</strong> must be elim<strong>in</strong>ated. This results <strong>in</strong><br />

what is called the rejection. The lack <strong>of</strong> <strong>of</strong>ficial awareness<br />

programs address<strong>in</strong>g recycl<strong>in</strong>g, recyclables separation process<br />

<strong>and</strong> what could be recycled are among the factors which <strong>in</strong>fluence<br />

possible variation <strong>of</strong> the rejection <strong>in</strong>dex. The population usually<br />

while sort<strong>in</strong>g recyclables <strong>in</strong>cludes food leftovers, dirty cans,<br />

bottles <strong>and</strong> other materials which contam<strong>in</strong>ate the recyclables.<br />

Variation <strong>of</strong> this <strong>in</strong>dex could also be due to culture, habits <strong>and</strong><br />

ambient awareness, etc.<br />

The rejection <strong>in</strong>dex was calculated as 21.7% based upon the<br />

Camp<strong>in</strong>as data. The useful collected <strong>solid</strong> <strong>waste</strong> was used to<br />

calculate the energy <strong>and</strong> the correspond<strong>in</strong>g emission us<strong>in</strong>g the<br />

energy saved values from Hekkert et al. (2000a, b) <strong>and</strong> McDougall<br />

et al. (2001). In our calculations we used their energy saved<br />

values reduced by the energy used <strong>in</strong> the transport <strong>of</strong> the<br />

collected recyclable <strong>waste</strong>.<br />

In the calculations relative to <strong>Brazil</strong>, the residential urban <strong>solid</strong><br />

<strong>waste</strong> actually collected based upon the last census <strong>of</strong> 2000, was<br />

used. Then by us<strong>in</strong>g the rejection <strong>in</strong>dex calculated before it was<br />

possible to calculate the useful <strong>solid</strong> <strong>waste</strong> actually collected.<br />

The amount <strong>of</strong> recyclables conta<strong>in</strong>ed <strong>in</strong> the collected residential<br />

<strong>solid</strong> <strong>waste</strong> amounts to 31% accord<strong>in</strong>g to the <strong>Brazil</strong>ian <strong>of</strong>ficial<br />

census 2000.<br />

The <strong>waste</strong> recyclables after be<strong>in</strong>g collected are sorted <strong>in</strong><br />

separation center accord<strong>in</strong>g to the type. It is then prepared by<br />

special methods <strong>and</strong> techniques (mechanical <strong>and</strong> chemical)<br />

which vary <strong>in</strong> efficiency <strong>and</strong> capacity accord<strong>in</strong>g to the necessity,<br />

<strong>and</strong> the available technology at the time <strong>and</strong> locality. By these<br />

processes the recyclable material is adequate <strong>and</strong> prepared to be<br />

<strong>in</strong>troduced <strong>in</strong> the production cha<strong>in</strong> as a substitute or as a mix.<br />

For the present study, the calculation <strong>of</strong> energy sav<strong>in</strong>gs for<br />

each recyclable was based upon the data from McDougall et al.<br />

(2001) <strong>and</strong> Hekkert et al. (2000a, b). As a modification, we<br />

subtracted the energy used for the selective collection transport<br />

from their energy values. Another modification is <strong>in</strong> relation to<br />

the real energy saved due to each recyclable type. The energy<br />

saved due to a recyclable type is the difference between the<br />

energy consumed when us<strong>in</strong>g raw material <strong>and</strong> when us<strong>in</strong>g<br />

recyclable material.<br />

The energy saved value is calculated consider<strong>in</strong>g the composition<br />

<strong>of</strong> the recyclable mix <strong>and</strong> the energy saved value for each<br />

recyclable type. In this way it was possible to calculate the<br />

average energy saved value for the mix as the weighted average<br />

value used <strong>in</strong> the present analysis.<br />

From the calculated results <strong>and</strong> the non-utilized <strong>solid</strong> <strong>waste</strong> it<br />

was possible to calculate the energy <strong>and</strong> the avoided emission <strong>of</strong><br />

CO 2 <strong>potential</strong>s for Camp<strong>in</strong>as <strong>and</strong> <strong>Brazil</strong>.<br />

To estimate the socioeconomic benefits <strong>of</strong> recycl<strong>in</strong>g the above<br />

data <strong>of</strong> recyclables <strong>in</strong> Camp<strong>in</strong>as <strong>and</strong> <strong>Brazil</strong> was used to calculate<br />

the f<strong>in</strong>ancial ga<strong>in</strong>s us<strong>in</strong>g the current market price value. The<br />

numbers <strong>of</strong> <strong>waste</strong> collector <strong>in</strong>cluded <strong>in</strong> the work market or social<br />

<strong>in</strong>clusion was evaluated based upon the <strong>Brazil</strong>ian m<strong>in</strong>imum<br />

salary <strong>and</strong> the number <strong>of</strong> Family Grants that could be created<br />

was based upon the <strong>of</strong>ficial value <strong>of</strong> the grant.<br />

The collected data <strong>in</strong>cluded among other <strong>in</strong>formation the<br />

follow<strong>in</strong>g:<br />

quantity <strong>of</strong> collected recyclables (t);<br />

quantity <strong>of</strong> rejected matter <strong>in</strong> the selective collection (t);<br />

total fuel consumed by the collect<strong>in</strong>g trucks (l); <strong>and</strong><br />

commercial price <strong>of</strong> a ton <strong>of</strong> recyclables (R$/t).<br />

These <strong>in</strong>formation were used to calculate the follow<strong>in</strong>g<br />

parameters:<br />

quantity <strong>of</strong> collected recyclables per km run (kg/km);<br />

rejection <strong>in</strong>dex <strong>of</strong> the collected recyclables (%);<br />

primary energy economized due to reuse <strong>of</strong> recyclables <strong>in</strong> the<br />

<strong>in</strong>dustry (GJ/t);<br />

CO 2 emissions avoided due to the economized energy (tCO 2 );<br />

<strong>and</strong><br />

f<strong>in</strong>ancial ga<strong>in</strong> due to commercializ<strong>in</strong>g the collected recyclables<br />

(R$).<br />

4. Results <strong>and</strong> discussion<br />

As stated above the organic matter deposited <strong>in</strong> the <strong>Brazil</strong>ian<br />

l<strong>and</strong>fills was evaluated from the energy <strong>and</strong> <strong>environmental</strong> po<strong>in</strong>ts<br />

<strong>of</strong> views.<br />

4.1. Waste-to energy <strong>of</strong> l<strong>and</strong>fills<br />

As mentioned before more than 95% <strong>of</strong> the collected <strong>waste</strong> is<br />

dest<strong>in</strong>ated to l<strong>and</strong>fills. This practice leads to reduc<strong>in</strong>g the l<strong>and</strong>fill<br />

useful life <strong>and</strong> emitt<strong>in</strong>g CO 2 <strong>and</strong> CH 4 to the environment. One<br />

must remember that each ton <strong>of</strong> <strong>waste</strong> dumped <strong>in</strong> l<strong>and</strong>fills<br />

without treatment or recuperation emits 1.3 t <strong>of</strong> CO 2 (Cetesb,<br />

2001). In the present <strong>in</strong>vestigation some attention is devoted to<br />

this problem. It is known from the available <strong>in</strong>formation <strong>of</strong><br />

Camp<strong>in</strong>as that 46% <strong>of</strong> the dumped <strong>waste</strong> is organic <strong>and</strong> <strong>in</strong> the<br />

case <strong>of</strong> <strong>Brazil</strong> this amounts to 52%. Assum<strong>in</strong>g that this organic<br />

<strong>waste</strong> can be converted <strong>in</strong>to biogas, mostly CH 4 the results can be<br />

seen <strong>in</strong> Table 1.<br />

Thus one can conclude that by adopt<strong>in</strong>g adequate public<br />

policies <strong>and</strong> creat<strong>in</strong>g municipal <strong>in</strong>centives it is possible to generate<br />

substantial amounts <strong>of</strong> energy, achieve <strong>environmental</strong><br />

benefits <strong>in</strong> addition to <strong>in</strong>crease the l<strong>and</strong>fills useful life <strong>and</strong> reduce<br />

health hazards caused by <strong>in</strong>adequate <strong>waste</strong> disposal.<br />

4.2. Solid <strong>waste</strong> recycl<strong>in</strong>g<br />

From the gravimetric characterization <strong>of</strong> the <strong>solid</strong> <strong>waste</strong> the<br />

composition <strong>of</strong> the recyclables generated <strong>in</strong> Camp<strong>in</strong>as <strong>and</strong> <strong>Brazil</strong><br />

is 41% <strong>and</strong> 31%, respectively, as shown <strong>in</strong> Figs. 1 <strong>and</strong> 2. The<br />

fraction <strong>of</strong> collected recyclables varies accord<strong>in</strong>g to the region,<br />

season, economic class <strong>and</strong> other aspects which affect the<br />

consumption.<br />

However, not all the collected <strong>waste</strong> <strong>in</strong> the selective collection<br />

is adequate for reuse. Solid <strong>waste</strong> not suitable for recycl<strong>in</strong>g <strong>and</strong><br />

contam<strong>in</strong>ated recyclable <strong>waste</strong>s are usually discarded <strong>and</strong><br />

<strong>in</strong>cluded with the rejected <strong>waste</strong>. Thus the useful recyclables is<br />

the difference between the total collected <strong>and</strong> the rejected mass.<br />

Table 1<br />

Estimates <strong>of</strong> biogas from l<strong>and</strong>fills.<br />

Description Camp<strong>in</strong>as <strong>Brazil</strong><br />

Collected <strong>solid</strong> <strong>waste</strong> (t/day) 655 228 10 3<br />

Organic <strong>solid</strong> fraction (%) 46 52<br />

Total organic matter (t/day) 301 118 10 3<br />

Total organic matter (m 3 /h) 7500 2.95 10 6<br />

Estimated electric power generated (eff. 30%) 8.3 3300<br />

(MW)<br />

CH 4 produced (m 3 /day) 180.8 10 3 70.8 10 6<br />

CH 4 produced (kg/day) 121.1 10 3 42.4 10 6<br />

Correspond<strong>in</strong>g CO 2e (tCO 2e /day) 2543.7 891.2 10 3<br />

Correspond<strong>in</strong>g CO 2e (tCO 2e /month) 76.312 2673.7 10 4<br />

Obs. CH 4 density¼0.67 kg/m 3 .


3500<br />

F.A.M. L<strong>in</strong>o, K.A.R. Ismail / <strong>Energy</strong> Policy 39 (2011) 3496–3502<br />

4%<br />

2%<br />

15%<br />

13%<br />

Camp<strong>in</strong>as - 1996<br />

46%<br />

Organic matter<br />

Paper <strong>and</strong> cardboard<br />

Plastics<br />

Glass<br />

Metal<br />

Others<br />

Table 2<br />

Recycl<strong>in</strong>g <strong>and</strong> its impacts <strong>in</strong> Camp<strong>in</strong>as <strong>and</strong> <strong>Brazil</strong>.<br />

Discription Camp<strong>in</strong>as <strong>Brazil</strong><br />

Useful collected recyclables (t/month) 279.0 101,673<br />

Avoided energy (GJ/month) a 9905 3,609,392<br />

Avoided CO 2 (tCO 2 /month) b 633 230.798<br />

a Assum<strong>in</strong>g that recycl<strong>in</strong>g economize 35.5 GJ/t <strong>of</strong> recyclables.<br />

b Consider<strong>in</strong>g an average <strong>of</strong> 2.27 tCO 2 /t <strong>of</strong> reused recyclables.<br />

20%<br />

2%<br />

2%<br />

3%<br />

25%<br />

16%<br />

Fig. 1. Solid <strong>waste</strong> composition <strong>in</strong> Camp<strong>in</strong>as.<br />

<strong>Brazil</strong> - 1990<br />

52%<br />

The rejection <strong>in</strong>dex for Camp<strong>in</strong>as was calculated us<strong>in</strong>g the<br />

primary data <strong>of</strong> the selective collection provided by the municipality<br />

public power. The <strong>in</strong>dex is found to be 21.7% <strong>and</strong> is adopted<br />

for <strong>Brazil</strong>. The total residential <strong>solid</strong> <strong>waste</strong> collected <strong>in</strong> Camp<strong>in</strong>as<br />

is 655 t/day. From this total the selective collection represents<br />

0.8%. The household <strong>solid</strong> <strong>waste</strong> collected <strong>in</strong> <strong>Brazil</strong> is about<br />

125,000 t/day <strong>and</strong> when apply<strong>in</strong>g the above rejection <strong>in</strong>dex, the<br />

selective collection becomes 2.7%.<br />

4.3. Recycl<strong>in</strong>g: energy <strong>and</strong> CO 2 emissions<br />

Organic matter<br />

Paper <strong>and</strong> cardboard<br />

Plastics<br />

Glass<br />

Metal<br />

Others<br />

Fig. 2. Solid <strong>waste</strong> composition <strong>in</strong> <strong>Brazil</strong>.<br />

The substitution <strong>of</strong> raw material by recycled one <strong>in</strong> the<br />

production processes leads to energy economy <strong>and</strong> reduce possible<br />

emissions <strong>of</strong> gases to the atmosphere. Based upon McDougall<br />

et al. (2001) <strong>and</strong> Hekkert et al. (2000a, b), the energy economy<br />

due recycl<strong>in</strong>g paper <strong>and</strong> cardboard is 32.9 GJ/t, plastic results <strong>in</strong><br />

87 GJ/t, while recycled glass leads to energy economy <strong>of</strong> 3.5 GJ/t<br />

<strong>and</strong> recycled ferrous metal results <strong>in</strong> energy economy <strong>of</strong> 18.6 GJ/t.<br />

It is important to mention that other recyclables such alum<strong>in</strong>um,<br />

copper, styr<strong>of</strong>oam were not <strong>in</strong>cluded <strong>in</strong> the present analysis.<br />

The term energy economy refers to difference between energy<br />

consumption <strong>in</strong> the production process when us<strong>in</strong>g raw material<br />

<strong>and</strong> the energy consumption when us<strong>in</strong>g recyclable material. The<br />

calculations <strong>in</strong>clude also the <strong>in</strong>herent energy content <strong>of</strong> the<br />

material substance. In case <strong>of</strong> plastics it is the energy content <strong>of</strong><br />

petroleum <strong>and</strong> <strong>in</strong> case <strong>of</strong> paper <strong>and</strong> cardboard it is considered as<br />

wood energy content. Table 2 shows the estimates <strong>of</strong> energy<br />

economy <strong>and</strong> the quantity <strong>of</strong> CO 2 not emitted to the atmosphere<br />

due to recycl<strong>in</strong>g <strong>in</strong> Camp<strong>in</strong>as <strong>and</strong> <strong>Brazil</strong>.<br />

In the case <strong>of</strong> Camp<strong>in</strong>as, the energy consumption for transport<strong>in</strong>g<br />

the recyclables was measured <strong>and</strong> subtracted from the<br />

energy economized by recycl<strong>in</strong>g to determ<strong>in</strong>e the <strong>potential</strong><br />

effectively economized. The energy consumed <strong>in</strong> the transport<br />

<strong>of</strong> the selective collection <strong>in</strong> Camp<strong>in</strong>as corresponds to about 3% <strong>of</strong><br />

the energy economized by recycl<strong>in</strong>g (L<strong>in</strong>o et al., 2010).<br />

Hence the energy effectively economized due to recycl<strong>in</strong>g is<br />

about 9607 GJ/month. The energy sav<strong>in</strong>gs due to recycl<strong>in</strong>g <strong>in</strong> the<br />

city <strong>of</strong> Camp<strong>in</strong>as represents per month the equivalent electric<br />

energy consumption <strong>of</strong> 3200 average class residences or 11.700<br />

Table 3<br />

Recycl<strong>in</strong>g <strong>potential</strong> <strong>and</strong> its impacts.<br />

Description Camp<strong>in</strong>as <strong>Brazil</strong><br />

Estimated <strong>potential</strong> <strong>of</strong> collected recyclables 8057 1,173,750<br />

(t/month)<br />

Estimated <strong>potential</strong> <strong>of</strong> economized energy<br />

286,006 41,668,125<br />

(GJ/month)<br />

Estimated <strong>potential</strong> <strong>of</strong> avoided CO 2 (tCO 2 /month) 18,288 230.798<br />

Quantity <strong>of</strong> CER 4983 62,888<br />

<strong>in</strong>habitants consider<strong>in</strong>g 3.7 persons/household an average class<br />

residence consumption <strong>of</strong> about 0.9 GJ/month <strong>and</strong> a thermal to<br />

electric energy conversion efficiency <strong>of</strong> 30%.<br />

It is worth mention<strong>in</strong>g that the data presented <strong>in</strong> Table 2<br />

corresponds to the energy economized from recycl<strong>in</strong>g only 8.6% <strong>of</strong><br />

the recyclables <strong>potential</strong>ly collected <strong>in</strong> <strong>Brazil</strong> as <strong>in</strong> Table 3.<br />

In the <strong>environmental</strong> aspect, the quantity <strong>of</strong> economized<br />

energy due to recycl<strong>in</strong>g <strong>in</strong> <strong>Brazil</strong> can avail to the carbon market<br />

a big number <strong>of</strong> CER as <strong>in</strong> Table 3. These CERs can be converted to<br />

funds to be used for f<strong>in</strong>anc<strong>in</strong>g pro ambient projects <strong>and</strong> for<br />

<strong>in</strong>tensify selective collection <strong>and</strong> recycl<strong>in</strong>g activities.<br />

In order to demonstrate to the Public Adm<strong>in</strong>istrator the<br />

implicit <strong>potential</strong> <strong>and</strong> capacity <strong>of</strong> recycl<strong>in</strong>g as an effective tool<br />

for ambient susta<strong>in</strong>ability <strong>and</strong> the necessity to create <strong>in</strong>centives<br />

<strong>and</strong> adequate public policies, calculations were realized to estimate<br />

the <strong>potential</strong> <strong>of</strong> CO 2e avoided due to recycl<strong>in</strong>g all the<br />

<strong>potential</strong>ly available recyclables <strong>in</strong> <strong>Brazil</strong>, as <strong>in</strong> Table 3.<br />

If all the <strong>potential</strong> <strong>of</strong> generated recyclables is used, this<br />

quantity <strong>of</strong> energy corresponds to more than half the <strong>in</strong>stalled<br />

capacity <strong>of</strong> the biggest hydroelectric power station <strong>in</strong> <strong>Brazil</strong>, that<br />

is, Itaipu. The same quantity <strong>of</strong> energy corresponds to the electric<br />

energy consumption <strong>of</strong> 12,963,420 residences or 47,575,740<br />

<strong>in</strong>habitants.<br />

To achieve this <strong>Brazil</strong> has to establish policies which permit<br />

the optimization <strong>of</strong> energy use, <strong>in</strong>crease the recycl<strong>in</strong>g <strong>in</strong>dex,<br />

objectives which can only be achieved by the society <strong>and</strong> the<br />

government comb<strong>in</strong>ed efforts <strong>and</strong> by the adoption <strong>of</strong> highly<br />

objective public policies.<br />

Issues associated with the climate changes are widely discussed<br />

<strong>and</strong> cont<strong>in</strong>uously <strong>in</strong>vestigated s<strong>in</strong>ce 1990 when the first<br />

report <strong>of</strong> the Intergovernmental Panel for Climatic Changes, IPCC.<br />

In a sequence <strong>of</strong> four successive reports, the last <strong>of</strong> which<br />

published <strong>in</strong> 2007, shows that man aggressive <strong>in</strong>terference <strong>in</strong><br />

the ambient contributed <strong>and</strong> still contribut<strong>in</strong>g to the <strong>in</strong>crease <strong>of</strong><br />

the planet average temperature, estimated for the next hundred<br />

years to raise from 1.4 to 5.8 1C. Both heat<strong>in</strong>g <strong>and</strong> cool<strong>in</strong>g <strong>of</strong> the<br />

global climate are related with the concentration <strong>of</strong> the greenhouse<br />

effects which are the CO 2 ,CH 4 <strong>and</strong> NO x (IPCC, 2007).<br />

The climate changes are observed all over the planet <strong>in</strong> the<br />

cont<strong>in</strong>ents <strong>and</strong> the oceans together with ambient temperature<br />

changes, ice <strong>in</strong> Artics, changes <strong>in</strong> precipitation everywhere,<br />

changes <strong>in</strong> the ocean sal<strong>in</strong>ity, w<strong>in</strong>d patterns, <strong>and</strong> extreme<br />

ambient aspects such strong precipitation, extreme heat <strong>and</strong><br />

coolness <strong>and</strong> strong tropical cyclones (IPCC, 2007).


F.A.M. L<strong>in</strong>o, K.A.R. Ismail / <strong>Energy</strong> Policy 39 (2011) 3496–3502 3501<br />

<strong>Brazil</strong> is occupy<strong>in</strong>g the third position between countries with<br />

the largest annual reductions <strong>of</strong> the emissions <strong>of</strong> greenhouse<br />

effect gases. Also <strong>Brazil</strong> occupies the third world wide position<br />

with a reduction <strong>of</strong> 6% <strong>of</strong> the total world reduction amount<strong>in</strong>g to<br />

46,800 t CO 2e /year. The first position is for Ch<strong>in</strong>a with 52% or<br />

395,820 t CO 2e /year while India occupies the second position with<br />

a reduction <strong>of</strong> 19% amount<strong>in</strong>g to 141,984 t CO 2e /year (MCT<br />

(M<strong>in</strong>istério de Ciência e Tecnologia), 2009).<br />

As far as the Clean Development Mechanism (CDM), <strong>Brazil</strong> is<br />

the third country <strong>in</strong> terms <strong>of</strong> the number <strong>of</strong> registered projects<br />

after Ch<strong>in</strong>a <strong>and</strong> India. Until 2012, it is expected that <strong>Brazil</strong> can<br />

contribute with a reduction <strong>of</strong> 322 million t <strong>of</strong> CO 2 . In this<br />

context, <strong>Brazil</strong> can <strong>of</strong>fer an important contribution <strong>in</strong> mitigation<br />

<strong>of</strong> gases <strong>of</strong> the greenhouse effect. With the negotiation for the<br />

second period, the called ‘‘after 2012’’, apparently the CDM will<br />

cont<strong>in</strong>ue to occupy an important role <strong>in</strong> the <strong>in</strong>ternational effort to<br />

m<strong>in</strong>imize the global heat<strong>in</strong>g <strong>of</strong> the planet (MCT, 2009).<br />

<strong>Brazil</strong> has both the climate conditions <strong>and</strong> the technologies<br />

necessary to occupy a lead<strong>in</strong>g position <strong>in</strong> emission reduction <strong>and</strong><br />

carbon capture. To achieve this, it is necessary to avoid large scale<br />

forest devastation <strong>and</strong> burn<strong>in</strong>g, promote reforest<strong>in</strong>g <strong>and</strong> optimize<br />

the energy consumption.<br />

4.4. Socioeconomic aspects <strong>of</strong> recycl<strong>in</strong>g <strong>in</strong> <strong>Brazil</strong><br />

Generally the <strong>waste</strong> separation is done accord<strong>in</strong>g to the type <strong>of</strong><br />

recyclable <strong>and</strong> then submitted to some amelioration processes to<br />

<strong>in</strong>crease its sell<strong>in</strong>g value such as press<strong>in</strong>g <strong>and</strong> bal<strong>in</strong>g <strong>and</strong> pack<strong>in</strong>g<br />

to facilitate h<strong>and</strong>l<strong>in</strong>g, stor<strong>in</strong>g <strong>and</strong> transport. The prices are mostly<br />

dictated by the buyers or by the <strong>in</strong>terested companies. To<br />

calculate the f<strong>in</strong>ancial ga<strong>in</strong>s from sell<strong>in</strong>g the recyclables, the<br />

authors had to use the prices practiced <strong>in</strong> 2005, s<strong>in</strong>ce these prices<br />

suffered marg<strong>in</strong>al variations. In 2005 the average price per ton <strong>of</strong><br />

recyclables mix <strong>in</strong> Camp<strong>in</strong>as is estimated as R$ 312.5 or (US$<br />

177.40). This value was the result <strong>of</strong> price <strong>in</strong>vestigation among<br />

the cooperative units operat<strong>in</strong>g <strong>in</strong> Camp<strong>in</strong>as. In a recent contact<br />

with these cooperative units they confirmed the same price/t <strong>of</strong><br />

mix with<strong>in</strong> a marg<strong>in</strong> <strong>of</strong> 10%. The estimated f<strong>in</strong>ancial ga<strong>in</strong> is only<br />

from 1.96% <strong>of</strong> the <strong>potential</strong> <strong>of</strong> recyclables generated <strong>in</strong> Camp<strong>in</strong>as.<br />

Consider<strong>in</strong>g that the commercial value per ton <strong>of</strong> recyclables<br />

mix <strong>in</strong> February 2010 did not change much from its value <strong>in</strong> 2005,<br />

<strong>and</strong> correct<strong>in</strong>g the <strong>waste</strong> collector salary to the reference value <strong>of</strong><br />

the m<strong>in</strong>imum national salary <strong>of</strong> R$ 500 or (US$ 283.85) the<br />

quantity <strong>of</strong> useful recyclables necessary to guarantee the new<br />

adjusted salary, must not be less than 1.6 t/month.<br />

The cooperative <strong>waste</strong> collectors received a salary for their<br />

work which amounts to R$ 500 corrected accord<strong>in</strong>g to the <strong>of</strong>ficial<br />

<strong>in</strong>dex. Consider<strong>in</strong>g the <strong>potential</strong> <strong>of</strong> all available recyclables <strong>in</strong><br />

Camp<strong>in</strong>as, the funds generated from its sell<strong>in</strong>g are divided by<br />

R$ 500 to determ<strong>in</strong>e the number <strong>of</strong> <strong>waste</strong> collectors who can be<br />

benefitted. A similar calculation is done for the case <strong>of</strong> <strong>Brazil</strong>.<br />

The <strong>Brazil</strong>ian government <strong>in</strong>stituted a program with socioeconomic<br />

objectives to try to alleviate the misery <strong>and</strong> poverty <strong>of</strong><br />

the population <strong>and</strong> <strong>in</strong>clude them <strong>in</strong> an emergency way <strong>in</strong>to the<br />

society. This program is called ‘‘Family Grant’’ <strong>and</strong> is dedicated for<br />

the poor families with kids matriculated <strong>in</strong> public schools, with<br />

the explicit objective <strong>of</strong> elim<strong>in</strong>at<strong>in</strong>g the <strong>in</strong>fantile labor (used by<br />

poor families as an <strong>in</strong>strument to <strong>in</strong>crease the family <strong>in</strong>come).<br />

The value <strong>of</strong> the government ‘‘Family Grant’’ is R$ 200. The<br />

authors tried to illustrate the <strong>potential</strong> <strong>of</strong> us<strong>in</strong>g the funds from<br />

sell<strong>in</strong>g the recyclables to generate additional Family Grants <strong>and</strong><br />

attend more poor families. The funds from sell<strong>in</strong>g the recyclables<br />

<strong>in</strong> Camp<strong>in</strong>as are divided by R$ 200 to determ<strong>in</strong>e the number <strong>of</strong><br />

additional Family Grants. The same is done <strong>in</strong> the case <strong>of</strong> <strong>Brazil</strong>.<br />

In the present work, the authors addressed this po<strong>in</strong>t to show<br />

that selective collection <strong>and</strong> recycl<strong>in</strong>g can be used to <strong>in</strong>crease the<br />

Table 4<br />

Evaluation <strong>of</strong> the socioeconomic <strong>potential</strong> <strong>of</strong> recycl<strong>in</strong>g.<br />

Description Camp<strong>in</strong>as <strong>Brazil</strong><br />

F<strong>in</strong>ancial ga<strong>in</strong> from sell<strong>in</strong>g recyclables 87,188 31,772,813<br />

(R$/month) a<br />

Number <strong>of</strong> <strong>in</strong>cluded workers with a salary 174 64,000<br />

<strong>of</strong> R$ 500 b<br />

F<strong>in</strong>ancial ga<strong>in</strong> <strong>potential</strong>ly available from 2,517,656 366,796,875<br />

sell<strong>in</strong>g recyclables (R$/month)<br />

Maximum number <strong>of</strong> socially <strong>in</strong>cluded 5035 733,594<br />

<strong>waste</strong> collectors<br />

Maximum number <strong>of</strong> equivalent PTC,<br />

(R$ 200)<br />

12,588 1,833,984<br />

a Consider<strong>in</strong>g an average value <strong>of</strong> R$ 312.50/t <strong>of</strong> commercialized recyclables.<br />

b M<strong>in</strong>imum national salary.<br />

number <strong>of</strong> Family Grants <strong>and</strong> hence the number <strong>of</strong> families<br />

benefitted, as <strong>in</strong> Table 4.<br />

If all the <strong>potential</strong> <strong>of</strong> the recyclables <strong>in</strong> Camp<strong>in</strong>as <strong>and</strong> <strong>in</strong> <strong>Brazil</strong><br />

is reutilized, the estimated revenue obta<strong>in</strong>ed from sell<strong>in</strong>g the<br />

recyclables, could be used to benefit about 1.3% <strong>of</strong> the population<br />

<strong>in</strong> Camp<strong>in</strong>as <strong>and</strong> <strong>in</strong> the case <strong>of</strong> <strong>Brazil</strong> the <strong>potential</strong> could benefit<br />

0.95% <strong>of</strong> the population <strong>in</strong> <strong>Brazil</strong> each receiv<strong>in</strong>g a salary equivalent<br />

to a ‘‘Family Grant’’ or US$ 113.54/month.<br />

In <strong>Brazil</strong>, <strong>in</strong> 2010, about 15.7 millions families were <strong>in</strong>scribed<br />

<strong>in</strong> program ‘‘Family Grant’’, <strong>of</strong> this total about 12.4 millions<br />

families were benefitted (Brasil, 2010).<br />

5. Conclusions<br />

From the discussion <strong>and</strong> analysis <strong>of</strong> the results <strong>and</strong> <strong>in</strong>formation<br />

presented <strong>in</strong> this study, it is possible to make some comments<br />

<strong>and</strong> recommendations:<br />

1. It is found that the l<strong>and</strong>fill gas or biogas produced by<br />

anaerobic digestion <strong>of</strong> organic municipal <strong>solid</strong> <strong>waste</strong> collected<br />

from the households <strong>of</strong> the nearly 160 million <strong>Brazil</strong>ians<br />

liv<strong>in</strong>g <strong>in</strong> urban areas can constitute a power supply <strong>of</strong><br />

the order <strong>of</strong> 42 MW.<br />

2. Compar<strong>in</strong>g the generated power from the l<strong>and</strong>fill gas to the<br />

energy consumed by a <strong>Brazil</strong>ian middle class family, one can<br />

f<strong>in</strong>d that the 42 MW corresponds to the consumption <strong>of</strong><br />

120,000 households or about 480,000 <strong>in</strong>habitants.<br />

3. It is important to mention that the <strong>solid</strong> <strong>waste</strong> deposited <strong>in</strong><br />

l<strong>and</strong>fills without treatment Impacts on the public health due<br />

to the proliferation <strong>of</strong> disease vectors, generation <strong>of</strong> bad<br />

odors, contam<strong>in</strong>ation <strong>of</strong> soil, surface water <strong>and</strong> groundwater.<br />

4. The anaerobic degradation <strong>of</strong> the organic matter to produce<br />

biogas alleviate the ambient from the CO 2 <strong>and</strong> CH 4 (the major<br />

contributors to the greenhouse effect) emissions otherwise<br />

liberated to the atmosphere.<br />

5. Additionally another important contribution to reduce the<br />

emissions is the recycl<strong>in</strong>g <strong>of</strong> the urban <strong>solid</strong> <strong>waste</strong> which is<br />

the focus <strong>of</strong> the present study. Consider<strong>in</strong>g the fact that fossil<br />

based energy utilization produces CO 2 emissions, the return<br />

<strong>of</strong> the recyclable <strong>solid</strong> <strong>waste</strong> (paper, cardboard, plastic, glass<br />

<strong>and</strong> metal) to the production sector as a substitute <strong>of</strong> raw<br />

material reduces the energy <strong>and</strong> raw material consumption<br />

<strong>and</strong> hence alleviates CO 2 emission problem.<br />

6. The quantity <strong>of</strong> economized energy due to recycl<strong>in</strong>g <strong>in</strong> <strong>Brazil</strong><br />

can avail to the carbon market about 62,887.66 CER which<br />

can be converted to funds for f<strong>in</strong>anc<strong>in</strong>g pro ambient projects<br />

<strong>and</strong> for <strong>in</strong>tensification <strong>of</strong> selective collection <strong>and</strong> recycl<strong>in</strong>g<br />

activities.


3502<br />

F.A.M. L<strong>in</strong>o, K.A.R. Ismail / <strong>Energy</strong> Policy 39 (2011) 3496–3502<br />

7. With reference to the energy aspect <strong>of</strong> recycl<strong>in</strong>g, the amount<br />

<strong>of</strong> recyclables collected <strong>and</strong> deposited <strong>in</strong> l<strong>and</strong>fills <strong>in</strong> <strong>Brazil</strong><br />

amounts to 286 GJ/month enough for the consumption <strong>of</strong><br />

318,000 families or 1.2 million <strong>in</strong>habitants.<br />

8. If all the <strong>potential</strong> <strong>of</strong> generated recyclables is used, the<br />

quantity <strong>of</strong> energy generated corresponds to more than half<br />

the <strong>in</strong>stalled capacity <strong>of</strong> Itaipu, the biggest hydroelectric<br />

power plant <strong>in</strong> <strong>Brazil</strong>, or the equivalent <strong>of</strong> energy consumption<br />

<strong>of</strong> 12,963,416 residences or 47,575,739 <strong>in</strong>habitants.<br />

9. If all the <strong>potential</strong> <strong>of</strong> the recyclables <strong>in</strong> <strong>Brazil</strong> is reutilized, the<br />

estimated revenue obta<strong>in</strong>ed from sell<strong>in</strong>g the recyclables<br />

could be converted to 1.833 million ‘‘Family Grants’’ <strong>of</strong> US$<br />

113.54/month.<br />

10. Actually the amount <strong>of</strong> recyclables reused is relatively small,<br />

<strong>and</strong> hence an <strong>in</strong>tensive campaign directed to the population,<br />

together with a small tax reduction as an <strong>in</strong>centive for<br />

selective collection adherence can contribute to possible<br />

massive adhesion which eventually benefits the state, the<br />

population <strong>and</strong> the environment.<br />

11. This paper is based upon <strong>of</strong>ficial data from IBGE, Municipality<br />

reports, well accepted data from the literature, Hekkert et al.<br />

(2000a, b) <strong>and</strong> McDougall et al. (2001) <strong>and</strong> collected data<br />

from the cooperative units.<br />

The analysis shows the dimensions <strong>of</strong> the energy, ambient <strong>and</strong><br />

socioeconomic <strong>potential</strong> <strong>of</strong> the residential <strong>waste</strong>. <strong>Brazil</strong> faces two<br />

major problems, poverty <strong>and</strong> generated <strong>solid</strong> <strong>waste</strong>. Hence, the<br />

major contribution <strong>of</strong> this study is the demonstration <strong>of</strong> how to<br />

create alternative mechanisms <strong>and</strong> present possible solutions to<br />

these two problems by creat<strong>in</strong>g funds to allow for more social<br />

<strong>in</strong>clusion on one h<strong>and</strong> <strong>and</strong> alleviate the <strong>solid</strong> <strong>waste</strong> problem by<br />

generat<strong>in</strong>g <strong>and</strong> economiz<strong>in</strong>g energy, reduce ambient <strong>and</strong> health<br />

impacts on the other h<strong>and</strong>.<br />

Acknowledgments<br />

The authors wish to thank the CNPQ for the doctorate scholarship<br />

for the first author <strong>and</strong> the PQ Research Grant for the second<br />

author.<br />

References<br />

ABNT, Associac- ~ao Brasileira de Normas Técnicas, 2004. NBR-1004. Resíduos<br />

Sólidos: Coletânea de Normas. Rio de Janeiro. Brasil.<br />

Brasil, 2010. M<strong>in</strong>istério do Desenvolvimento Social e Combate a Fome. Programa<br />

Bolsa Família. Relatórios e Estatísticas. Available <strong>in</strong> /http://www.mds.gov.br/<br />

programabolsafamiliaS.<br />

Brito Filho, L.F., 2005. Estudo de Gases em Aterros. Casos: Nova Iguac-u eTerraBrava<br />

Universidade Federal do Rio de Janeiro, Dissertac- ~ao de Mestrado. Brasil, RJ.<br />

Cetesb,CompanhiaAmbientaldoEstadodeS~ao Paulo, 2001. Inventário Brasileiro de<br />

Gás Metano gerado por Resíduos. Available <strong>in</strong> /http://www.cetesb.sp.gov.brS.<br />

EPA, 2005. L<strong>and</strong>fill Gas Emissions Model (L<strong>and</strong>GEM). Research Triangle Park. U.S.<br />

Environmental Protection Agency. Available <strong>in</strong> /http://www.epa.gov/<br />

l<strong>and</strong>fillsS.<br />

Gómez, M.F., Silveira, S., 2010. Rural electrification <strong>of</strong> the <strong>Brazil</strong>ian<br />

amazon—achievements <strong>and</strong> lessons. <strong>Energy</strong> Policy 38, 6251–6260.<br />

González-Torre, P.L., Adenso-Díaz, B., Ruiz-Torres, A., 2003. Some comparative<br />

factors regard<strong>in</strong>g recycl<strong>in</strong>g collection systems <strong>in</strong> regions <strong>of</strong> the USA <strong>and</strong><br />

Europe. Journal <strong>of</strong> Environmental Management 69, 129–138.<br />

Hekkert, M.P., et al., 2000a. Reduction <strong>of</strong> CO 2 emissions by improved management<br />

<strong>of</strong> material <strong>and</strong> product use: the case <strong>of</strong> primary packag<strong>in</strong>g. Resources,<br />

Conservation <strong>and</strong> Recycl<strong>in</strong>g 29, 33–64.<br />

Hekkert, M.P., Joosten, L.A.J., Worrell, E., 2000b. Reduction <strong>of</strong> CO 2 emissions by<br />

improved management <strong>of</strong> material <strong>and</strong> product use: the case <strong>of</strong> transport<br />

packag<strong>in</strong>g. Resources, Conservation <strong>and</strong> Recycl<strong>in</strong>g 30, 1–27.<br />

Humer, M., Lechner, P., 1999. Alternative approach to the elim<strong>in</strong>ation <strong>of</strong> greenhouse<br />

gases from old l<strong>and</strong>fills. Waste Management <strong>and</strong> Research 17, 443–452.<br />

IBGE, Fundac- ~ao Instituto Brasileiro de Geografia e Estatística, 2002. Programa<br />

Nacional de Saneamento Básico. Available <strong>in</strong> /http://www.ibge.gov.br/psbS.<br />

IBGE, Fundac- ~ao Instituto Brasileiro de Geografia e Estatística, 2009. Cidades:<br />

Populac- ~ao do município de Camp<strong>in</strong>as. Brasil. Available <strong>in</strong> /http://www.ibge.<br />

org.br/cidadeS.<br />

IPCC, Intergovernmental Panel on Climate Change, 2007. Climate Change: The<br />

Physical Science Basis. Contribution <strong>of</strong> Work<strong>in</strong>g Group I to the Fourth<br />

Assessment Report <strong>of</strong> the Intergovernmental Panel on Climate Change.<br />

Available <strong>in</strong> /http://www.ipcc.ch/S.<br />

Lennox, A.J., Neuwkoop, R.V., 2010. Output-based allocations <strong>and</strong> revenue recycl<strong>in</strong>g:<br />

implications for the New Zeal<strong>and</strong> Emissions Trad<strong>in</strong>g Scheme. <strong>Energy</strong><br />

Policy 38, 7861–7872.<br />

L<strong>in</strong>o, F.A.M., Bizzo, W.A., Da Silva, E.P., Ismail, K.A.R., 2010. <strong>Energy</strong> impact <strong>of</strong> <strong>waste</strong><br />

recyclable <strong>in</strong> a <strong>Brazil</strong>ian metropolitan. Resources, Conservation <strong>and</strong> Recycl<strong>in</strong>g<br />

54, 916–922.<br />

L<strong>in</strong>o, F.A.M., 2009. Consumo de Energia no Transporte da Coleta Seletiva de<br />

Resíduo Sólido Domiciliar no Município de Camp<strong>in</strong>as (SP). Universidade<br />

Estadual de Camp<strong>in</strong>as. FEM/UNICAMP. Camp<strong>in</strong>as, Brasil.<br />

Louis, G.E., 2004. A historical context <strong>of</strong> municipal <strong>solid</strong> <strong>waste</strong> management <strong>in</strong> the<br />

United States. Waste Management <strong>and</strong> Research 22, 306–322.<br />

Mart<strong>in</strong>ez, M.D., Ebenhack, B.W., 2008. Underst<strong>and</strong><strong>in</strong>g the role <strong>of</strong> energy consumption<br />

<strong>in</strong> human consumption <strong>in</strong> human development through use <strong>of</strong> saturation<br />

phenomena. <strong>Energy</strong> Policy 36, 1430–1435.<br />

McDougall, F., et al., 2001. Integrated Solid Waste Management: A Life Cycle<br />

Inventory second ed. Blackwell, USA Science published.<br />

Magr<strong>in</strong>ho, A., Didelet, F., Semi~ao, V., 2006. Municipal <strong>solid</strong> <strong>waste</strong> disposal <strong>in</strong><br />

Portugal. Waste Management 27, 1477–1489.<br />

MCT, M<strong>in</strong>istério de Ciência e Tecnologia, 2009. Status Atual das Atividades de<br />

Projeto no Âmbito do Mecanismo de Desenvolvimento Limpo (CDM) no Brasil<br />

e no mundo. Available <strong>in</strong> /http://www.mct.gov.brS.<br />

MME, M<strong>in</strong>istério de M<strong>in</strong>as e Energia, 2009. Balanc-o Energético Nacional 2007.<br />

Available <strong>in</strong> /http://www.mme.gov.br/ben/pdfS.<br />

Okuda, I., Thomson, V.E., 2007. Regionalization <strong>of</strong> municipal <strong>solid</strong> <strong>waste</strong> management<br />

<strong>in</strong> Japan: balanc<strong>in</strong>g the proximity pr<strong>in</strong>ciple with economic efficiency.<br />

Environment Management 40, 12–19.<br />

PMC, Prefeitura Municipal de Camp<strong>in</strong>as, 1996. Gest~ao dos Resíduos Sólidos<br />

Urbanos. Camp<strong>in</strong>as, Brasil.<br />

Read, A.D., 1999. A weekly doorstep recycl<strong>in</strong>g collection. I had no idea we could.<br />

Resources, Conservation <strong>and</strong> Recycl<strong>in</strong>g 26, 217–249.<br />

Re<strong>in</strong>hart, D.R., Cooper, D.C., 1992. Flux chamber design <strong>and</strong> operation for the<br />

measurement <strong>of</strong> municipal <strong>solid</strong> <strong>waste</strong> l<strong>and</strong>fill gas emission rates. Air Waste<br />

Management Association, 1067–1070.<br />

Sakata, Y., 2007. A choice experiment <strong>of</strong> the residential preference <strong>of</strong> <strong>waste</strong><br />

management services: the example <strong>of</strong> Kagoshima city. Japan. Waste Management<br />

27, 639–644.<br />

Tayibi, H., Peña, C., López, F.A., López-Delgado, A., 2007. Management <strong>of</strong> msw <strong>in</strong><br />

Spa<strong>in</strong> <strong>and</strong> recovery <strong>of</strong> packag<strong>in</strong>g steel scrap. Waste Management 27,<br />

1655–1665.<br />

Themelis, N.J., Todd, C.E., 2004. Recycl<strong>in</strong>g <strong>in</strong> a megacity. Journal <strong>of</strong> the Air <strong>and</strong><br />

Waste Management Association 54, 389–395.<br />

Unstat, United Nations Statistic Division, 2007. Environmental Indicators.<br />

Municipal Waste Treatment. Available <strong>in</strong> /http://www.unstats.un.org.unsd/<br />

<strong>environmental</strong>/<strong>waste</strong>treatment.htmS.


Topic 1: <strong>Năng</strong> <strong>lượng</strong> <strong>và</strong><br />

<strong>môi</strong> <strong>trường</strong> <strong>tiềm</strong> <strong>năng</strong> <strong>của</strong><br />

<strong>chất</strong> <strong>thải</strong> <strong>rắn</strong> <strong>ở</strong> <strong>Brazil</strong><br />

GVHD: Tô Thị Hiền<br />

Nhóm 21: Ngô Thị Ngọc Bích<br />

Phùng Thị Lý<br />

Nguyễn Thị Tường Vi


Nội dung<br />

Từ mới<br />

Giới thiệu<br />

Chất <strong>thải</strong> <strong>rắn</strong><br />

Thực trạng tại Việt Nam<br />

Phương pháp phân tích<br />

Kết quả <strong>và</strong> thảo luận<br />

Kết luận


Từ mới<br />

L<strong>and</strong>fill: bãi chôn lấp<br />

Injection mold<strong>in</strong>g: đúc ép phun<br />

Gravimetric: phân tích trọng lực<br />

Bio-digestion: phân hủy s<strong>in</strong>h học<br />

Selective collection: thu gom chọn lọc<br />

Agitat<strong>in</strong>g: khuấy động<br />

Polymerization: phương pháp trùng hợp<br />

Homogeneous: đồng nhất


Giới thiệu<br />

Phát triển <strong>năng</strong> <strong>lượng</strong> trong thế kỉ<br />

XX dẫn đến tăng nhu cầu tiêu thụ<br />

<strong>năng</strong> <strong>lượng</strong><br />

1973 – 2006 tăng từ 6115 Mtoe<br />

đến 11741 Mtoe ( tăng 92% trong<br />

33 năm)<br />

Khí <strong>thải</strong> nhà kính, CO2, CH4 được<br />

phát <strong>thải</strong> b<strong>ở</strong>i chính hoạt động <strong>của</strong><br />

con người.<br />

Nguồn <strong>năng</strong> <strong>lượng</strong> mới


Ở các thủ đô <strong>và</strong><br />

trung tâm đô thị<br />

lớn số <strong>lượng</strong> phát<br />

s<strong>in</strong>h CTR liên tục<br />

gia tăng<br />

Thách thức: giảm<br />

<strong>lượng</strong> <strong>chất</strong> <strong>thải</strong><br />

có hại cho sức<br />

khỏe con người<br />

<strong>và</strong> <strong>môi</strong> <strong>trường</strong>


Các cơ chế được đặt ra<br />

Hệ thống ủ<br />

<strong>chất</strong> <strong>thải</strong> <strong>rắn</strong><br />

hữu cơ để<br />

sản xuất<br />

phân bón<br />

nhằm mục<br />

đích nông<br />

nghiệp.<br />

Tái chế <strong>chất</strong><br />

<strong>thải</strong> <strong>rắn</strong> như<br />

giấy, bìa các<br />

tông, thủy<br />

t<strong>in</strong>h <strong>và</strong> kim<br />

loại màu...<br />

Chuyển hóa<br />

<strong>chất</strong> <strong>thải</strong><br />

thành <strong>năng</strong><br />

<strong>lượng</strong> theo<br />

cơ chế phân<br />

hủy yếm khí.


Khí bãi rác hoặc khí s<strong>in</strong>h học bao gồm<br />

chủ yếu CH4, CO2 có thể ứng dụng<br />

trong sản xuất điện .<br />

1994, Cơ quan Bảo vệ Môi <strong>trường</strong> Hoa Kỳ<br />

(USEPA) đã thành lập Chương trình tiếp<br />

cận cộng đồng mê-tan bãi rác.<br />

2001, khí s<strong>in</strong>h học đã được sử dụng<br />

trong khoảng 950 bãi rác.<br />

Ở <strong>Brazil</strong>, khí bãi rác đang được sử dụng với<br />

qui mô nhỏ.


1<br />

Tái chế <strong>chất</strong><br />

<strong>thải</strong> <strong>rắn</strong> cũng là<br />

một cơ chế tạo<br />

ra <strong>năng</strong> <strong>lượng</strong><br />

<strong>và</strong> tiết kiệm<br />

nguyên vật liệu<br />

2<br />

Trong ngành công nghiệp<br />

tái chế, như tái chế giấy <strong>và</strong><br />

các tông, nhựa, thủy t<strong>in</strong>h<br />

<strong>và</strong> kim loại được sắp xếp,<br />

xử lí, chuẩn bị <strong>và</strong> gửi lại<br />

cho các dây chuyền sản<br />

xuất


Lợi ích<br />

Sử dụng ít số <strong>lượng</strong> nguyên liệu<br />

Giảm nước <strong>và</strong> <strong>năng</strong> <strong>lượng</strong><br />

Tạo ra các công việc mới<br />

Tăng tuổi thọ hữu ích cho các BCL<br />

Giảm công chi tiêu cho xử lý <strong>chất</strong> <strong>thải</strong><br />

Hòa nhập xã hội cho công dân chưa đủ<br />

điều kiện làm việc


Chất <strong>thải</strong> <strong>rắn</strong><br />

CTR phát s<strong>in</strong>h từ các hoạt<br />

động công nghiệp, khu dân<br />

cư, thương mại, khách sạn,<br />

nông nghiệp <strong>và</strong> các ngành<br />

khác…<br />

Cấu<br />

tạo<br />

Chất hữu cơ<br />

không phân hủy<br />

Chất hữu cơ phân hủy<br />

Chất vô cơ không phân hủy


Chất <strong>thải</strong> <strong>rắn</strong> <strong>ở</strong> <strong>Brazil</strong><br />

<strong>Brazil</strong> là quốc gia lớn nhất <strong>ở</strong> châu Mỹ Lat<strong>in</strong>h<br />

chiếm khoảng 50 % diện tích lãnh thổ <strong>của</strong> châu<br />

lục, dân số 194 triệu (2010) , 84% tập trung <strong>ở</strong><br />

các khu vực đô thị<br />

Cả nước thu thập về khoảng 228,5 x 10 3 tấn / ngày<br />

<strong>chất</strong> <strong>thải</strong> <strong>rắn</strong> <strong>của</strong> các khu dân cư <strong>và</strong> công nghiệp<br />

Số <strong>lượng</strong> <strong>chất</strong> <strong>thải</strong> <strong>rắn</strong> được thu gom từ khu dân cư <strong>ở</strong><br />

<strong>Brazil</strong> đại diện cho 55 % tổng số thu trong nước<br />

hoặc125x 10 3 tấn / ngày hoặc giá trị trung bình 0,74<br />

kg /ngày/ người .


Thực trạng CTR <strong>ở</strong> Việt Nam<br />

Chất <strong>thải</strong> <strong>rắn</strong> gây nguy<br />

hại cho <strong>môi</strong> <strong>trường</strong> phát<br />

s<strong>in</strong>h tới 28 triệu tấn/năm,<br />

tăng trung bình gần<br />

10%/năm.<br />

Xử lý <strong>chất</strong> <strong>thải</strong> <strong>rắn</strong> gặp khó<br />

khăn do không quy hoạch<br />

được các bãi rác tập trung,<br />

không có bãi rác công cộng.<br />

Việc xử lý <strong>chất</strong> <strong>thải</strong> <strong>rắn</strong> chủ<br />

yếu vẫn bằng cách chôn lấp<br />

nhưng cũng chỉ khoảng 50%<br />

được chôn lấp hợp vệ s<strong>in</strong>h<br />

Phân loại rác tại nguồn<br />

gặp khó khăn<br />

Công nghệ đốt <strong>chất</strong> <strong>thải</strong><br />

<strong>rắn</strong> tái tạo <strong>năng</strong> <strong>lượng</strong><br />

(viết tắt WtE)


CTR: Sản xuất <strong>và</strong> tái chế khí s<strong>in</strong>h học<br />

Khí bãi rác được tạo ra từ<br />

<strong>chất</strong> <strong>thải</strong> hữu cơ trong các<br />

bãi chôn lấp b<strong>ở</strong>i quá trình<br />

phân hủy yếm khí.<br />

Mỗi tấn <strong>chất</strong> <strong>thải</strong> <strong>rắn</strong> tạo ra<br />

khoảng 160 - 250 m3 khí<br />

s<strong>in</strong>h học, trong tỷ lệ<br />

khoảng 55 % CH4, 44 %<br />

CO2 <strong>và</strong> 1 % các khí khác.<br />

Uớc tính rằng<br />

40.000.000-60.000.000<br />

tấn CH4 được tạo ra<br />

hàng năm từ các bãi<br />

chôn lấp.<br />

Lượng điện được ước tính là<br />

300-500 MW từ <strong>chất</strong> <strong>thải</strong> <strong>rắn</strong><br />

đô thị <strong>ở</strong> <strong>Brazil</strong> , mà tương ứng<br />

với 650.000 tấn CH4 mỗi năm.<br />

CH 4 sẽ không phát tán <strong>và</strong>o<br />

không khí <strong>và</strong> làm giảm<br />

đáng kể nguy cơ cháy nổ<br />

trong các BCL.


Giấy <strong>và</strong> các tông<br />

Sản xuất giấy trên thực tế là<br />

sợi cellulose ướt <strong>và</strong> các liên<br />

kết hydro kết hợp với nhau<br />

dưới tác dụng <strong>của</strong> sấy áp lực<br />

Giấy <strong>và</strong> các tông tái chế có<br />

thể được lặp đi lặp lại nhiều<br />

khoảng bốn lần<br />

Hiệu quả <strong>của</strong> tái chế là khoảng<br />

85%.


Thủy t<strong>in</strong>h<br />

Kính được chế tạo bằng quá<br />

trình chuyển đổi nguyên liệu <strong>ở</strong><br />

nhiệt độ cao (142 -1600 độ C)<br />

để tan chảy đồng nhất, sau đó<br />

hình thành nên sản phẩm.<br />

Kính bị phá vỡ được sử dụng<br />

như một loại vật liệu để tăng<br />

cường độ tan chảy thủy t<strong>in</strong>h <strong>và</strong><br />

hạ thấp nhiệt độ cần thiết để làm<br />

tan chảy các nguyên liệu<br />

Các vật liệu tái chế có thể pha<br />

trộn lên tới 70-80%.


Kim loại màu<br />

Thép là một hợp kim <strong>của</strong> sắt<br />

<strong>và</strong> cacbon, ít hơn 2% carbon<br />

Có ba loại lò chính sử dụng<br />

trong sản xuất thép.<br />

Các lò thổi ôxy sử dụng 25%<br />

thép phế liệu (14,24 MJ/<br />

tấn NL)<br />

Các lò hồ quang điện (14,42<br />

MJ/ tấnNL)<br />

lò sư<strong>ở</strong>i truyền thống (5,99<br />

MJ/tấn NL)


Được chế tạo từ dầu, khí thiên nhiên, than<br />

đá <strong>và</strong> muối<br />

Nhựa<br />

Được sản xuất bằng phương pháp trùng<br />

hợp<br />

Có nhiều cách chế biến đa dạng <strong>và</strong> các<br />

phương pháp tạo hình, nhưng phổ biến là<br />

các quá trình ép trồi <strong>và</strong> ép phun


Chất <strong>thải</strong> <strong>rắn</strong> <strong>ở</strong> Camp<strong>in</strong>as<br />

Camp<strong>in</strong>as là đô thị thứ 3 <strong>của</strong> bang Sao Paulo (<strong>Brazil</strong>), cả<br />

trong khu dân cư <strong>và</strong> hộ gia đình đều phát s<strong>in</strong>h <strong>chất</strong> <strong>thải</strong><br />

<strong>rắn</strong>.<br />

Các hệ thống thu gom công cộng bao gồm 100% các<br />

khu vực đô thị với sự ủng hộ <strong>của</strong> 98% hộ gia đình theo<br />

thống kê <strong>của</strong> chính quyền đô thị (L<strong>in</strong>o, 2009).<br />

Thành phần <strong>chất</strong> <strong>thải</strong> <strong>rắn</strong> <strong>ở</strong> hộ gia đình là 66% <strong>chất</strong> hữu<br />

cơ <strong>và</strong> 34% <strong>chất</strong> vô cơ. Từ đó người ta có thể tìm thấy<br />

các vật liệu có thể tái chế lên tới 41%.


Chương trình thu gom chọn<br />

lọc <strong>ở</strong> Camp<strong>in</strong>as<br />

Chương trình thu gom chọn lọc được kh<strong>ở</strong>i xướng<br />

<strong>và</strong>o năm 1991 <strong>và</strong> năm 2005<br />

Thu gom vật liệu tái chế đã được thực hiện b<strong>ở</strong>i 2 hệ<br />

thống: hệ thống thu gom tại nhà <strong>ở</strong> <strong>và</strong> hệ thống thu<br />

gom chọn lọc<br />

Với dân số là 1.039237 dân, ước tính các <strong>chất</strong> tái<br />

chế mỗi ngày trên đầu người là khoảng 0,26<br />

kg/ngày.<br />

Trong năm 2005, tổng số các thu gom thông<br />

thường <strong>và</strong> chọn lọc <strong>chất</strong> <strong>thải</strong> <strong>rắn</strong> là 655tấn/ngày.


Phương pháp phân tích<br />

1. <strong>Năng</strong> <strong>lượng</strong> <strong>và</strong> đánh giá <strong>môi</strong> <strong>trường</strong> <strong>của</strong> các<br />

<strong>chất</strong> <strong>thải</strong> hữu cơ được đưa đến các bãi rác <strong>ở</strong><br />

Camp<strong>in</strong>as <strong>và</strong> <strong>Brazil</strong>.<br />

2. <strong>Năng</strong> <strong>lượng</strong> <strong>và</strong> đánh giá <strong>môi</strong> <strong>trường</strong> tái chế<br />

tại Camp<strong>in</strong>as <strong>và</strong> <strong>Brazil</strong>.<br />

3. Tính <strong>chất</strong> xã hội <strong>và</strong> đánh giá <strong>tiềm</strong> <strong>năng</strong> k<strong>in</strong>h<br />

tế <strong>của</strong> việc tái chế <strong>ở</strong> Camp<strong>in</strong>as <strong>và</strong> <strong>Brazil</strong>.


Các dữ liệu thu thập<br />

Lượng tái chế thu được<br />

Lượng vật <strong>chất</strong> bị loại bỏ trong quá<br />

trình thu gom chọn lọc<br />

Tổng số nhiên liệu tiêu thụ <strong>của</strong> xe tải thu<br />

gom <strong>và</strong> giá trị thương mại <strong>của</strong> 1 tấn vật liệu<br />

tái chế.


Những thông t<strong>in</strong> được sử dụng để<br />

tính toán các thông số<br />

Lượng tái chế thu gom trong mỗi km.<br />

Chỉ số loại bỏ <strong>của</strong> tái chế thu gom<br />

<strong>Năng</strong> <strong>lượng</strong> sơ cấp tiết kiệm đc do việc sử<br />

dụng vật liệu tái chế trong các ngành công<br />

nghiệp<br />

Lượng khí <strong>thải</strong> CO 2 tránh được do tiết kiệm<br />

<strong>năng</strong> <strong>lượng</strong> (CO 2 ) <strong>và</strong> lợi ích tài chính do<br />

thương mại hóa các vật liệu tái chế thu gom<br />

được.


Chuyển hóa <strong>chất</strong> <strong>thải</strong> thành <strong>năng</strong><br />

<strong>lượng</strong> <strong>ở</strong> bãi chôn lấp<br />

• 1 tấn <strong>chất</strong> <strong>thải</strong> đổ <strong>và</strong>o các bãi rác chôn lấp<br />

không xử lý hoặc phục hồi trạng thái phát <strong>thải</strong> 1<br />

đến 3 tấn CO 2 .<br />

• Được biết từ những thông t<strong>in</strong> có sẵn <strong>của</strong><br />

Camp<strong>in</strong>as 46% <strong>chất</strong> <strong>thải</strong> là hữu cơ <strong>và</strong> trong các<br />

<strong>trường</strong> hợp <strong>ở</strong> <strong>Brazil</strong> đã lên đến 52%.


Bảng đánh giá khí s<strong>in</strong>h học từ các bãi chôn lấp<br />

Mô tả Camp<strong>in</strong>as <strong>Brazil</strong><br />

Chất <strong>thải</strong> <strong>rắn</strong> đã thu gom (t/ngày) 655 288 × 10 3<br />

Chất <strong>rắn</strong> hữa cơ (%) 46 52<br />

Tổng vật <strong>chất</strong> hữu cơ (t/ngày) 301 118 × 10 3<br />

Tổng vật <strong>chất</strong> hữu cơ (m 3 /h) 7500 2.95 × 10 6<br />

<strong>Năng</strong> <strong>lượng</strong> điện tạo ra (MW) 8.3 3300<br />

CH 4 (m 3 /ngày) 180.8 × 10 3 70.8 × 10 6<br />

CH 4 (kg/ngày) 121.1 × 10 3 42.4 × 10 6<br />

Đồng vị CO 2e (tCO 2e /ngày) 2543.7 891.2 × 10 3<br />

Đồng vị CO 2e (tCO 2e /tháng) 76.312 2673.7 × 10 4


Tái chế <strong>chất</strong> <strong>thải</strong> <strong>rắn</strong><br />

• Các bộ phận <strong>của</strong> thu gom tái chế thay đổi theo<br />

khu vực, mùa <strong>và</strong> các khía cạnh khác có ảnh<br />

hư<strong>ở</strong>ng đến tiêu thụ.<br />

• Tổng số <strong>chất</strong> <strong>thải</strong> <strong>rắn</strong> dân cư thu gom <strong>ở</strong><br />

Camp<strong>in</strong>as là 655 tấn/ngày, tổng số này đại diện<br />

cho 0.8% thu gom chọn lọc.<br />

• CTR các hộ gia đình được thu gom <strong>ở</strong> <strong>Brazil</strong> là<br />

125000 tấn/ngày.


Thành phần <strong>chất</strong> <strong>thải</strong> <strong>rắn</strong> <strong>ở</strong><br />

Camp<strong>in</strong>as<br />

Camp<strong>in</strong>as 1996<br />

13%<br />

vật <strong>chất</strong> hữu cơ<br />

4%<br />

2%<br />

15%<br />

46%<br />

giấy <strong>và</strong> các tông<br />

nhựa<br />

thủy t<strong>in</strong>h<br />

kim loại<br />

khác<br />

20%


Thành phần <strong>chất</strong> <strong>thải</strong> <strong>rắn</strong> <strong>ở</strong> <strong>Brazil</strong><br />

Brazl 1990<br />

16%<br />

2% 2%<br />

3%<br />

25%<br />

52%<br />

Vật <strong>chất</strong> hữu cơ<br />

Giấy <strong>và</strong> các tông<br />

Nhựa<br />

Thủy t<strong>in</strong>h<br />

Kim loại<br />

khác


Tái chế <strong>năng</strong> <strong>lượng</strong> <strong>và</strong> <strong>lượng</strong> khí <strong>thải</strong> CO2<br />

• Thay nguyên liệu tái chế <strong>và</strong>o quy trình sản<br />

xuất<br />

Kim loại màu: 18.6 GJ/tấn<br />

Giấy <strong>và</strong> bìa các tông: 32.9<br />

GJ/tấn<br />

K<strong>in</strong>h tế <strong>năng</strong><br />

<strong>lượng</strong> do tái<br />

chế<br />

Thủy t<strong>in</strong>h: 3.5 GJ/tấn<br />

Nhựa: 87 GJ/tấn


<strong>Năng</strong> <strong>lượng</strong> tiêu thụ trong việc vận<br />

chuyển <strong>của</strong> thu gom chọn lọc tương ứng<br />

với khoảng 3% <strong>năng</strong> <strong>lượng</strong> tiết kiệm<br />

Ở<br />

Camp<strong>in</strong>as<br />

bằng cách tái chế ( L<strong>in</strong>o cộng sự, 2010).<br />

<strong>Năng</strong> <strong>lượng</strong> tiết kiệm hiệu quả do tái<br />

chế khoảng 9607 GJ/tháng


Phải thiết lập các chính sách<br />

cho phép tối ưu hóa sử dụng<br />

<strong>năng</strong> <strong>lượng</strong>, tăng chỉ số tái chế.<br />

Ở <strong>Brazil</strong><br />

Chiếm vị trí thứ 3 giữa các quốc<br />

gia với mức giảm lớn nhất <strong>lượng</strong><br />

khí <strong>thải</strong> hàng năm gây hiệu ứng<br />

nhà kính<br />

Chiếm vị trí thứ ba trên toàn thế<br />

giới với mức giảm 6% trong<br />

tổng số <strong>lượng</strong> tái chế trên thế<br />

giới lên tới 46.800 t CO2/ năm


Bảng 2. Tái chế <strong>và</strong> tác động <strong>của</strong> nó <strong>ở</strong> Camp<strong>in</strong>as <strong>và</strong><br />

<strong>Brazil</strong><br />

Mô tả Camp<strong>in</strong>as <strong>Brazil</strong><br />

Thu gom tái chế hữu ích<br />

(tấn/tháng)<br />

279.0 101,673<br />

<strong>Năng</strong> <strong>lượng</strong> tiết kiệm<br />

( GJ/tháng) a 9905 3,609,392<br />

Không phát <strong>thải</strong> CO2<br />

633 230.798<br />

( GJ/tháng) b


Bảng 3. Tiềm <strong>năng</strong> tái chế <strong>và</strong> tác động <strong>của</strong> nó<br />

Mô tả Camp<strong>in</strong>as <strong>Brazil</strong><br />

Tiềm <strong>năng</strong> ướt tính <strong>của</strong> thu 8057 1,173,750<br />

gom tái chế (t/tháng)<br />

Tiềm <strong>năng</strong> ướt tính <strong>năng</strong><br />

<strong>lượng</strong> tiết kiệm ( GJ/tháng)<br />

286,006 41,668,125<br />

Tiềm <strong>năng</strong> ướt tính không<br />

phát <strong>thải</strong> CO2 ( tCO2/tháng)<br />

18,288 230.798<br />

Lượng CER 4983 62,888


Các khía cạnh k<strong>in</strong>h tế xã hội <strong>của</strong> việc<br />

tái chế <strong>ở</strong> <strong>Brazil</strong><br />

• Phân loại rác <strong>thải</strong> được thực hiện theo các loại<br />

tái chế.<br />

• Giá trị thương mại cho mỗi tấn vật liệu hỗn hợp<br />

tái chế trong tháng 2 năm 2010 không thay đổi<br />

nhiều so với năm 2005.<br />

• Chính phủ <strong>Brazil</strong> đã thiết lập một chương trình<br />

với các mục tiêu k<strong>in</strong>h tế xã hội, chương trình<br />

này được gọi là “ Trợ cấp Gia đình” .


Bảng 4. Đánh giá <strong>tiềm</strong> <strong>năng</strong> k<strong>in</strong>h tế- xã hội <strong>của</strong><br />

việc tái chế<br />

Mô tả Camp<strong>in</strong>as <strong>Brazil</strong><br />

Lợi ích từ việc bán các vật liệu tái chế<br />

87,188 31,772,813<br />

( R$/tháng)<br />

Bao gồm số ngưới lao động với mức 174 64,000<br />

lương R$ 500 b<br />

Tiềm <strong>năng</strong> lợi ích tài chính có sẵn từ bán<br />

vật liệu tái chế ( R$/tháng)<br />

2,517,656 366,796,875<br />

Số <strong>lượng</strong> tối đa thu gom <strong>chất</strong> <strong>thải</strong> 5035 733,594<br />

Số <strong>lượng</strong> tối đa tương đương PTC,<br />

12,588 1,833,984<br />

( R$ 200)


Kết luận<br />

✓ Khí s<strong>in</strong>h học được thu gom từ các hộ gia đình <strong>ở</strong><br />

<strong>Brazil</strong> có thể tạo thành một nguồn cung cấp <strong>năng</strong><br />

<strong>lượng</strong> là 42 MW.<br />

✓ Với nguồn <strong>năng</strong> <strong>lượng</strong> là 42 MW tương ứng với<br />

mức tiêu thụ <strong>của</strong> 120.000 hộ gia đình,khoảng<br />

480.000 cư dân.<br />

✓ Chất <strong>thải</strong> <strong>rắn</strong> lắng đọng trong các bãi chôn lấp<br />

không được xử lý gây ảnh hư<strong>ở</strong>ng nghiêm trọng


✓ Sự phân hủy kỵ khí các <strong>chất</strong> hữu cơ để sản xuất khí<br />

s<strong>in</strong>h học làm giảm bớt <strong>lượng</strong> phát <strong>thải</strong> CO2 <strong>và</strong> CH4<br />

<strong>và</strong>o <strong>môi</strong> <strong>trường</strong> xung quanh.<br />

✓ Tái chế <strong>chất</strong> <strong>thải</strong> <strong>rắn</strong> đô thị làm giảm <strong>lượng</strong> khí <strong>thải</strong><br />

✓ Lượng <strong>năng</strong> <strong>lượng</strong> tiết kiệm do tái chế <strong>ở</strong> <strong>Brazil</strong> có<br />

thể tận dụng để tiêu thụ carbon 62,887.66 CER<br />

✓ Trên thực tế số <strong>lượng</strong> tái chế tái sử dụng là tương<br />

đối nhỏ.


✓ <strong>Năng</strong> <strong>lượng</strong> từ vật liệu tái chế được thu gom <strong>và</strong> đưa <strong>và</strong>o các<br />

bãi chôn lấp <strong>ở</strong> <strong>Brazil</strong> là 286 GJ / tháng đủ cho việc tiêu thụ<br />

318.000 gia đình hoặc 1,2 triệu cư dân.<br />

✓ Nếu tất cả các <strong>tiềm</strong> <strong>năng</strong> <strong>của</strong> vật liệu tái chế tạo ra được sử<br />

dụng, <strong>năng</strong> <strong>lượng</strong> được tạo ra tương ứng với hơn một nửa<br />

công suất lắp đặt <strong>ở</strong> Itaipu, nhà máy thủy điện lớn nhất <strong>Brazil</strong>.<br />

✓ Nếu tất cả các <strong>tiềm</strong> <strong>năng</strong> <strong>của</strong> các vật liệu tái chế <strong>ở</strong> <strong>Brazil</strong><br />

được tái sử dụng, doanh thu ước tính thu được từ việc bán<br />

các vật liệu tái chế có thể trợ cấp cho 1.833.000 gia đình với<br />

113.54 USD/tháng


Cảm ơn cô <strong>và</strong> các bạn đã<br />

chú ý lắng nghe !!!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!