21.11.2018 Views

20762_Problem_solving_Year_5_Number_and_place_value_2

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

FOREWORD<br />

Each teacher page concludes with two further aspects<br />

critical to successful teaching of problem-<strong>solving</strong>. A<br />

section on likely difficulties points to reasoning <strong>and</strong><br />

content inadequacies that experience has shown may<br />

well impede students’ success. In this way, teachers<br />

can be on the look out for difficulties <strong>and</strong> be prepared<br />

to guide students past these potential pitfalls. The<br />

final section suggests extensions to the problems to<br />

enable teachers to provide several related experiences<br />

with problems of these kinds in order to build a rich<br />

array of experiences with particular solution methods;<br />

for example, the numbers, shapes or measurements<br />

in the original problems might change but leave the<br />

means to a solution essentially the same, or the<br />

context may change while the numbers, shapes or<br />

measurements remain the same. Then numbers,<br />

shapes or measurements <strong>and</strong> the context could be<br />

changed to see how the students h<strong>and</strong>le situations<br />

that appear different but are essentially the same<br />

as those already met <strong>and</strong> solved. Other suggestions<br />

ask students to make <strong>and</strong> pose their own problems,<br />

investigate <strong>and</strong> present background to the problems<br />

or topics to the class, or consider solutions at a more<br />

general level (possibly involving verbal descriptions<br />

<strong>and</strong> eventually pictorial or symbolic arguments).<br />

In this way, not only are students’ ways of thinking<br />

extended but the problems written on one page are<br />

used to produce several more problems that utilise<br />

the same approach.<br />

Mathematics <strong>and</strong> language<br />

The difficulty of the mathematics gradually increases<br />

over the series, largely in line with what is taught<br />

at the various year levels, although problem-<strong>solving</strong><br />

both challenges at the point of the mathematics<br />

that is being learned as well as provides insights<br />

<strong>and</strong> motivation for what might be learned next. For<br />

example, the computation required gradually builds<br />

from additive thinking, using addition <strong>and</strong> subtraction<br />

separately <strong>and</strong> together, to multiplicative thinking,<br />

where multiplication <strong>and</strong> division are connected<br />

conceptions. More complex interactions of these<br />

operations build up over the series as the operations<br />

are used to both come to terms with problems’<br />

meanings <strong>and</strong> to achieve solutions. Similarly, twodimensional<br />

geometry is used at first but extended<br />

to more complex uses over the range of problems,<br />

then joined by interaction with three-dimensional<br />

ideas. Measurement, including chance <strong>and</strong> data, also<br />

extends over the series from length to perimeter, <strong>and</strong><br />

from area to surface area <strong>and</strong> volume, drawing on<br />

the relationships among these concepts to organise<br />

solutions as well as giving an underst<strong>and</strong>ing of the<br />

metric system. Time concepts range from interpreting<br />

timetables using 12-hour <strong>and</strong> 24-hour clocks while<br />

investigations related to mass rely on both the concept<br />

itself <strong>and</strong> practical measurements.<br />

The language in which the problems are expressed is<br />

relatively straightforward, although this too increases<br />

in complexity <strong>and</strong> length of expression across the books<br />

in terms of both the context in which the problems<br />

are set <strong>and</strong> the mathematical content that is required.<br />

It will always be a challenge for some students<br />

to ‘unpack’ the meaning from a worded problem,<br />

particularly as problems’ context, information <strong>and</strong><br />

meanings exp<strong>and</strong>. This ability is fundamental to the<br />

nature of mathematical problem-<strong>solving</strong> <strong>and</strong> needs to<br />

be built up with time <strong>and</strong> experiences rather than be<br />

iv<br />

<strong>Problem</strong>-<strong>solving</strong> in mathematics www.ricpublications.com.au R.I.C. Publications ®

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!