30.06.2019 Views

is127-overview-and-comparison-board-chargers-topologies-semiconductors-choices-and-synchronous-recti

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

An Overview <strong>and</strong> Comparison of On<br />

Board Chargers Topologies,<br />

<strong>semiconductors</strong> <strong>choices</strong> <strong>and</strong> <strong>synchronous</strong><br />

<strong>recti</strong>fication advantages in Automotive<br />

Applications<br />

Davide GIACOMINI<br />

Principal, Automotive HVICs<br />

Infineon Italy s.r.l.<br />

ATV group


Electrical Vehicle Charger Classification<br />

Level 1: OnBoard Charger<br />

Charge Time for 25kWh battery<br />

1.5kW < Power < 3.5kW<br />

16h < Charge Time < 7h<br />

Level 2:<br />

External Charger<br />

Level 3:<br />

Charger Station<br />

3.5kW < Power < 10kW<br />

7h < Charge Time < 2.5h<br />

10kW < Power < 25kW<br />

2.5h < Charge Time < 1h<br />

http://avt.inl.gov/pdf/phev/phevInfrastructureReport08.pdf<br />

2017-05-11 Copyright © Infineon Technologies AG 2017. All rights reserved.<br />

2


Level 1 AC/DC On<strong>board</strong> Charger<br />

Each Electrical Vehicle has an On<strong>board</strong> charger :<br />

• The output power is between 1.5kW <strong>and</strong> 3.5kW<br />

• AC input : 16A @ 110V/240V → 2.2kW/3.8kW<br />

• DC Output: 200 - 450V<br />

110V - 240V<br />

AC SOURCE<br />

ONBOARD CHARGER<br />

+<br />

-<br />

200V - 450V<br />

High Voltage<br />

Battery<br />

AC/DC PFC<br />

DC/DC<br />

http://avt.inl.gov/pdf/phev/phevInfrastructureReport08.pdf<br />

2017-05-11 Copyright © Infineon Technologies AG 2017. All rights reserved.<br />

3


+<br />

On Board Charger (AC/DC)<br />

Application<br />

• PFC + DC-DC<br />

• Output voltage<br />

250-450V<br />

• Output power from<br />

1,5 kWh to 4 kWh<br />

Double<br />

Isolation<br />

HVD<br />

400V<br />

HV batt.<br />

µP<br />

Output<br />

diodes<br />

Out Filter<br />

HV Semiconductor<br />

chipset<br />

2ph<br />

110V/220V<br />

AC input<br />

HVD<br />

In Filter<br />

PFC<br />

Input<br />

diodes<br />

• HV MOSFET or ultra<br />

Fast IGBT<br />

• EASY modules<br />

• Fast gate driver IC<br />

• HV Diodes<br />

• SiC Mosfets<br />

2017-05-11 Copyright © Infineon Technologies AG 2017. All rights reserved.<br />

4


On <strong>board</strong> <strong>chargers</strong>: simplified schematic<br />

CV/CC<br />

charge<br />

SiC or<br />

FRED<br />

diode<br />

SiC or FRED<br />

diodes<br />

CoolMos<br />

CFDA<br />

CoolMos<br />

CFDA<br />

Isolated from GND<br />

LIN/CAN<br />

Double<br />

Isolation<br />

Low Side<br />

Driver<br />

Half Bridge<br />

Driver<br />

I/V Battery<br />

Monitoring<br />

BMS<br />

Isolation<br />

uP controller<br />

Isolated from GND<br />

2017-05-11 Copyright © Infineon Technologies AG 2017. All rights reserved.<br />

5


PFC stage:<br />

Conventional Boost PFC<br />

› SB: typically superjunction<br />

› DB: Ultrafast Diode or SiC Schottky for lowest loss<br />

› Can achieve >96% efficiency<br />

Typical operating frequency


PFC stage:<br />

Interleaved Boost PFC<br />

› QBx: typically superjunction<br />

› DBx: Ultrafast Diode or SiC Schottky for lowest loss<br />

› Operation 180° out of phase<br />

› Reduces input/output ripple <strong>and</strong> achieves >96% efficiency<br />

Doubles the effective switching<br />

frequency<br />

• Reduces EMI <strong>and</strong> input filter<br />

size<br />

• Reduces output ripple<br />

Can work in Discontinuous or<br />

Critical mode on each section<br />

since current ripple add on input<br />

bridge<br />

Dominant loss is input bridge<br />

<strong>recti</strong>fier<br />

• 1-2% total efficiency loss due<br />

to input bridge<br />

REF: “An Automotive On-Board 3.3 kW Battery Charger for PHEV Application”, Deepak Gautam, Fariborz Musavi,<br />

Murray Edington, Wilson Eberle, William G. Dunford; VEHICLE POWER AND PROPULSION CONFERENCE (VPPC),<br />

2011 IEEE<br />

2017-05-11 Copyright © Infineon Technologies AG 2017. All rights reserved.<br />

7


PFC stage:<br />

Dual Boost Bridgeless PFC<br />

› Dual boost configuration, no ripple cancellation<br />

› Saves 2 diodes vs. interleaved boost PFC<br />

› S1, S2: typically superjunction<br />

› D1, D2: Ultrafast Diode or SiC Schottky for lowest loss<br />

VPFC<br />

D1<br />

D2<br />

S1, D1 <strong>and</strong> S2, D2 work on semi<br />

sinusoids<br />

Cb<br />

RL<br />

Only one input diode in conduction<br />

at all times<br />

• 50% losses on input diodes vs.<br />

bridge configuration<br />

• Achieves 98% efficiency<br />

Da<br />

Db<br />

S1<br />

S2<br />

Switch losses are dominated by:<br />

• Conduction (especially severe<br />

for high ripple CrCM <strong>and</strong> DCM)<br />

• Turn-on speed<br />

• Eoss (energy in Coss) only for<br />

CCM)<br />

• Turn-off speed<br />

Compared to Conventional boost PFC, eliminates 1 diode drop <strong>and</strong> adds an entire boost stage<br />

REF: «Performance Evaluation of Bridgeless PFC Boost Rectifiers», Laszlo Huber, Yungtaek Jang <strong>and</strong> Milan M. Jovanovic;<br />

IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 23, NO. 3, MAY 2008<br />

2017-05-11 Copyright © Infineon Technologies AG 2017. All rights reserved.<br />

8


PFC stage:<br />

Totem Pole PFC<br />

› Requires HV switches with good body diode<br />

› Uses only 2 diodes <strong>and</strong> 2 switches<br />

› S1, S2: cannot be Superjunction, use SiC or GaN<br />

› D1, D2: slow speed low Fwd diodes => eliminates SiC need<br />

S2<br />

D2<br />

Cb<br />

VPFC<br />

RL<br />

Can achieve > 98% efficiency<br />

D1 <strong>and</strong> D2 work on semi<br />

sinusoids, can be replaced by SJ<br />

Mosfets<br />

Only one input diode in conduction<br />

at all times<br />

• 50% losses on input diodes vs.<br />

bridge configuration<br />

CCM mode of operation<br />

S1<br />

D1<br />

Switch losses are dominated by:<br />

• Conduction<br />

• Turn-on speed<br />

• Eoss (energy in Coss)<br />

• Turn-off speed<br />

REF: «Design of GaN-Based MHz Totem-Pole PFC Rectifier», Zhengyang Liu, Fred C. Lee, Qiang Li;<br />

IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS, VOL. 4, NO. 3, SEPTEMBER 2016<br />

2017-05-11 Copyright © Infineon Technologies AG 2017. All rights reserved.<br />

9


PFC stage:<br />

Full Bridge Totem Pole PFC<br />

› Requires HV switches with good body diode => topology is GaN or SiC enabled<br />

› Uses only 4 switches, all work in PWM mode<br />

› No diodes involved, reduces crossover distortion<br />

› Switches cannot be Superjunction, need fast body diode<br />

VPFC<br />

Can achieve > 98% efficiency<br />

Most complex solution.<br />

S2<br />

S4<br />

No diodes in conduction, except<br />

during dead times<br />

• Reduced cross over distortion<br />

Cb<br />

RL<br />

CCM mode of operation<br />

Switch losses are dominated by:<br />

• Turn-on speed<br />

• Eoss (energy in Coss)<br />

• Turn-off speed<br />

S1<br />

S3<br />

REF: «Evaluation of a non-isolated charger», Robert Nystrom, Yuxuan He; Department of Energy <strong>and</strong> Environment<br />

Division of Electric Power Engineering, CHALMERS UNIVERSITY OF TECHNOLOGY, GOTHENBURG, SWEDEN 2012<br />

2017-05-11 Copyright © Infineon Technologies AG 2017. All rights reserved.<br />

10


Integrated motor drive <strong>and</strong> battery charger<br />

› Uses existing inverter for double function: traction <strong>and</strong> charger<br />

› Inverter uses IGBTs, not optimal switches for a charger, efficiency not at top.<br />

› Not isolated from mains => need large EMI filter, more complex monitoring<br />

› Saves BOM <strong>and</strong> costs but adds complexity Needs a split-winding motor<br />

configuration to avoid torque<br />

during charging<br />

Power<br />

IGBT antiparallel diodes have to<br />

be chosen accordingly<br />

Efficiency not at the top<br />

Switch losses are dominated<br />

by:<br />

• IGBT fwd dropout<br />

Power<br />

Boost Inductor<br />

Boost Inductor<br />

REF: «Grid-Connected Integrated Battery Chargers in Vehicle Applications: Review <strong>and</strong> New Solution», Saeid Haghbin, Sonja<br />

Lundmark, Mats Alaküla, <strong>and</strong> Ola Carlson; IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 60, NO. 2, FEB. 2013<br />

«Review of Battery Charger Topologies, Charging Power Levels, <strong>and</strong> Infrastructure for Plug-In Electric <strong>and</strong> Hybrid Vehicles»,<br />

Murat Yilmaz <strong>and</strong> Philip T. Krein; IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 28, NO. 5, MAY 2013<br />

2017-05-11 Copyright © Infineon Technologies AG 2017. All rights reserved.<br />

11


Conventional PFC losses in OBC<br />

PFC stage power loss breakdown<br />

› Total losses: 96,5W<br />

32,5%<br />

Output<br />

Source: Design of High Efficiency High Power Density 10,5kW<br />

3ph PBC for (H)Evs, G. Yang <strong>and</strong> all, PCIM Europe 2016<br />

› In a st<strong>and</strong>ard boost PFC the input stage is still today using diodes since:<br />

› No need for control signal;<br />

› HV mosfets so far didn’t have a low enough Rds-on vs price to become competitive<br />

versus diodes. Now the use of new generation technologies or new material allows<br />

this.<br />

Power dissipated in the input bridge is high compared to the global balance;<br />

2017-05-11 Copyright © Infineon Technologies AG 2017. All rights reserved.<br />

12


DC/DC stage:<br />

ZVS phase shift (ZVS-PS)<br />

› Usually Full Bridge configuration for higher energy density<br />

› S1-S4: HV mosfets or SiC with fast body diode<br />

› D1-D4: Ultrafast Diode or SiC Schottky<br />

› Frequency around 100kHz typically<br />

Vbus<br />

Lo<br />

Vbatt<br />

PWM control needs dead time<br />

adjustment with load <strong>and</strong> Vbus<br />

changes<br />

S1<br />

S2<br />

Lr<br />

D1<br />

D2<br />

Co<br />

HV<br />

batt.<br />

Voltage Mode control uses 50%<br />

duty cycle <strong>and</strong> needs large value<br />

DC decoupling capacitor at primary<br />

Leading edge switches are more<br />

difficult to achieve ZVS at light load<br />

D3<br />

D4<br />

Synchronous <strong>recti</strong>fication at<br />

secondary would require<br />

recontruction signal from primary<br />

diagonals controls.<br />

S3<br />

S4<br />

Relevant losses on output<br />

bridge <strong>recti</strong>fier<br />

2017-05-11 Copyright © Infineon Technologies AG 2017. All rights reserved.<br />

13


DC/DC stage:<br />

LLC resonant<br />

› Usually Full Bridge configuration for higher energy density<br />

› Most popular working above resonance (ZVS mode)<br />

› S1-S4: Typically Superjunction or SiC<br />

› D1-D4: Ultrafast Diode or SiC Schottky<br />

› Frequency range < 200kHz typically<br />

Vbus<br />

S1<br />

S2<br />

Lr<br />

Cr<br />

D1<br />

D3<br />

D2<br />

D4<br />

Lo<br />

Co<br />

Vbatt<br />

HV<br />

batt.<br />

Input <strong>and</strong> Output sinusoidal current =><br />

easier filtering <strong>and</strong> lower EMI<br />

50% duty cycle control<br />

Small or no output inductor => lower<br />

overvoltage on secondary diodes May<br />

allow 600V mosfet <strong>synchronous</strong><br />

<strong>recti</strong>fication<br />

Needs low value high voltage capacitor<br />

for resonance, also providing DC<br />

decoupling<br />

Simpler control strategy than ZVS-PS<br />

(frequency variation)<br />

Synchronous <strong>recti</strong>fication at secondary<br />

would require extra current or voltage<br />

sensing, since phase shift with input<br />

changes with load <strong>and</strong> Vbus<br />

S3<br />

S4<br />

Relevant losses on output bridge<br />

<strong>recti</strong>fier<br />

2017-05-11 Copyright © Infineon Technologies AG 2017. All rights reserved.<br />

14


DC/DC stage:<br />

LLC resonant below resonance<br />

› Full Bridge configuration for higher energy density<br />

› S1-S4: HV mosfets or SiC, need ultrafast body diode<br />

› Not popular since cannot use Superjunction (ZCS mode)<br />

› D1-D4: Ultrafast Diode or SiC Schottky<br />

› Frequency range < 200kHz typically<br />

Vbus<br />

Input <strong>and</strong> Output sinusoidal current<br />

=> easier filtering <strong>and</strong> lower EMI<br />

Small or no output inductor => lower<br />

overvoltage on secondary diodes<br />

May allow 600V mosfet <strong>synchronous</strong><br />

<strong>recti</strong>fication<br />

S1<br />

S2<br />

Lr<br />

Cr<br />

D1<br />

D3<br />

D2<br />

D4<br />

Co<br />

Vbatt<br />

HV<br />

batt.<br />

Frequency reduces at light load<br />

where converter operates most of<br />

the time => lower switching losses<br />

Simpler control strategy than ZVS-<br />

PS (frequency variation)<br />

Synchronous <strong>recti</strong>fication at<br />

secondary would require extra<br />

current or voltage sensing, since<br />

phase shift with input changes with<br />

load <strong>and</strong> Vbus<br />

S3<br />

S4<br />

Relevant losses on output bridge<br />

<strong>recti</strong>fier<br />

2017-05-11 Copyright © Infineon Technologies AG 2017. All rights reserved.<br />

15


HV DC/DC –LLC converter in OBC<br />

› LLC stage power loss breakdown<br />

Total losses: 105.1W<br />

Output<br />

50,1%<br />

Source: Design of High Efficiency High Power Density 10,5kW<br />

3ph PBC for (H)Evs, G. Yang <strong>and</strong> all, PCIM Europe 2016<br />

› In a OBC the output stage is still today using diodes since:<br />

› No need for control signal, however not easily available in a LLC topology, mostly<br />

used in OBCs for its sinusoidal current waveform;<br />

› HV mosfets so far didn’t have a low enough Rds-on vs price, to become competitive<br />

versus diodes. Now the use of new generation technologies or new material allows<br />

this.<br />

Power dissipated in the output bridge is very high compared to the global balance;<br />

many designers are looking for a viable solution<br />

2017-05-11 Copyright © Infineon Technologies AG 2017. All rights reserved.<br />

16


Primary gate drivers<br />

SR Gate Signal<br />

Synchonous Rectification easily implemented<br />

Primary Side<br />

Secondary Side<br />

uP<br />

controller<br />

SR PWM<br />

generation<br />

Optoisolation<br />

Gate Driver<br />

Signal Conditioning<br />

Gate Driver<br />

AUIRS1170S replaces:<br />

› 1 current sensing IC<br />

› Some SW development in uP<br />

› 1 opto<br />

› 1 Gate driver<br />

REF: «3 kW dual-phase LLC demo <strong>board</strong> Using 600 V CoolMOS P7 <strong>and</strong> digital control by XMC4400» AN_201703, INFINEON, MARCH 2017<br />

2017-05-11 Copyright © Infineon Technologies AG 2017. All rights reserved.<br />

17


Self controlled, 600V active bridge scheme<br />

Vout<br />

Iout =><br />

Iin =><br />

Vinm<br />

Vinp<br />

Output<br />

Vd1<br />

Vd2<br />

› 1x AUIRS1170S + 4 SMD components replace each large diode of the bridge<br />

› As shown this will save around 50% of the losses in the HV-DC/DC converter<br />

output stage <strong>and</strong> 33% in the input bridge<br />

› This will also greatly reduce the size of heat sinks <strong>and</strong> save money on<br />

mechanics, to compensate higher cost of Mosfet + SR_IC<br />

2017-05-11 Copyright © Infineon Technologies AG 2017. All rights reserved.<br />

18


600V active bridge simulation, sinusoidal<br />

current input<br />

Vout<br />

Vd1<br />

Vd2<br />

Vinp-Vinm<br />

Vg2 &<br />

Vg4-Vs4<br />

Vg1 &<br />

Vg3-Vs3<br />

Iout<br />

Iin<br />

Iin= sin. current gen. 4Apeak @ 85kHz, Vout = 500V, Rload = 200W, Cout=100ouF, Pout= 1250W<br />

Gate voltages accurately track the input current, a slight delay (600ns) is visible at turn-on<br />

2017-05-11 Copyright © Infineon Technologies AG 2017. All rights reserved.<br />

19


600V active bridge<br />

hardware <strong>and</strong> test<br />

• No heatsink needed!<br />

• At 8A – 380V output (3kW), Tcase = 45C<br />

(only 20C above Ta)<br />

• Saves about 16W power => diodes would<br />

need at least a


600V active bridge in a 4kW DC/DC stage<br />

Waveforms <strong>comparison</strong><br />

400V<br />

Active bridge<br />

Vg1<br />

Vg2<br />

Body Diodes<br />

Iout<br />

Iout<br />

Vprim<br />

Vprim<br />

Iout<br />

Ultrafast Diodes<br />

Vd2<br />

Low Iout<br />

Vg2<br />

Vprim<br />

Vout<br />

Iout<br />

Vprim<br />

2017-05-11 Copyright © Infineon Technologies AG 2017. All rights reserved.<br />

21


Conclusions<br />

› Several solutions are existing in the market for On Board Chargers, PFC <strong>and</strong><br />

DC/DC stages use many different <strong>topologies</strong>;<br />

› New <strong>topologies</strong> are enabled <strong>and</strong> give a significant benefit by using Wide B<strong>and</strong>gap<br />

switches, SiC <strong>and</strong> GaN;<br />

› Input <strong>and</strong> output diodes represent a large portion of total losses, due to their<br />

high forward dropout, in both PFC <strong>and</strong> DC/DC stages:<br />

– In a st<strong>and</strong>ard boost PFC, around 33% of total power losses are in the input<br />

bridge diodes;<br />

– In a HV-DC/DC converter, around 45-50% power losses are in the output<br />

Ultrafast Diodes <strong>recti</strong>fication;<br />

› Synchronous <strong>recti</strong>fication may allow good reduction of diodes’ losses in both<br />

stages <strong>and</strong> boost efficiency of st<strong>and</strong>ard <strong>topologies</strong>:<br />

– This will also greatly reduce the size of heat sinks <strong>and</strong> save money on<br />

hardware, to compensate higher cost of Mosfet+SR_IC;<br />

› Slow body diodes of most very low RDS-on MOSFETs may reduce the Synch-<br />

Rect advantage, use of SiC or GaN switches can avoid this drawback.<br />

› For input bridges the advantage of using <strong>synchronous</strong> <strong>recti</strong>fication is much more<br />

evident since the lower operating frequency.<br />

2017-05-11 Copyright © Infineon Technologies AG 2017. All rights reserved.<br />

22

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!