20.12.2012 Views

MBI Annual Report 2003 - Max-Born-Institut Berlin (MBI)

MBI Annual Report 2003 - Max-Born-Institut Berlin (MBI)

MBI Annual Report 2003 - Max-Born-Institut Berlin (MBI)

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Annual</strong> <strong>Report</strong> <strong>2003</strong><br />

<strong>Max</strong> <strong>Born</strong> <strong>Institut</strong>e<br />

for Nonlinear Optics and<br />

Short Pulse Spectroscopy<br />

Forschungsverbund <strong>Berlin</strong> e.V.


<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong><br />

für Nichtlineare Optik<br />

und Kurzzeitspektroskopie<br />

im Forschungsverbund <strong>Berlin</strong> e. V.<br />

<strong>Annual</strong> <strong>Report</strong><br />

Jahresbericht<br />

<strong>2003</strong><br />

1


2<br />

Impressum<br />

Jahresbericht <strong>2003</strong><br />

Herausgegeben vom<br />

<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong> (<strong>MBI</strong>)<br />

für Nichtlineare Optik<br />

und Kurzzeitspektroskopie<br />

im Forschungsverbund <strong>Berlin</strong> e.V.<br />

<strong>Max</strong>-<strong>Born</strong>-Straße 2 A<br />

12489 <strong>Berlin</strong><br />

Tel.: (++49 30) 63 92 - 15 05<br />

Fax: (++49 30) 63 92 - 15 19<br />

e-mail: mbi@mbi-berlin.de<br />

http://www.mbi-berlin.de


Preface Vorwort 5<br />

Members of the Scientific Advisory Board Mitglieder des Wissenschaftlichen Beirats 6<br />

Schematic of the <strong>MBI</strong> Research Program Schema des <strong>MBI</strong> Forschungsprogramms 7<br />

Research focus 1:<br />

Laser Research 9<br />

1-01: Ultrafast nonlinear optics and few cycle pulses 11<br />

1-02: Short pulse laser systems 14<br />

Research focus 2:<br />

Ultrafast and Nonlinear Phenomena in Atoms, Molecules, Clusters and Plasmas 17<br />

2-01: Laser Plasma Dynamics 19<br />

2-02: Ionization dynamics in intense laser fields 22<br />

2-03: Free clusters and molecules 25<br />

2-04: Molecular Vibrational and Reaction Dynamics in the Condensed Phase 27<br />

Research focus 3:<br />

Ultrafast and Nonlinear Phenomena in Solids and at Surfaces 31<br />

3-01: Dynamics at surfaces and structuring 33<br />

3-02: Ultrafast and nonlinear processes in solid state and nanostructures 37<br />

3-03: Optoelectronic Devices 40<br />

3-04: Ultrafast x-ray research 42<br />

Focus 4:<br />

Scientific Infrastrucure: Application laboratories and special laser development 45<br />

4-01: Femtosecond Application labs 47<br />

4-02: High-Field-Laser Application Laboratory (HFL) 48<br />

4-03: <strong>MBI</strong>-BESSY Beamline 50<br />

4-04: Special laser development for applications 52<br />

3


4<br />

57<br />

68<br />

75<br />

77<br />

80<br />

93<br />

94<br />

95<br />

96<br />

102<br />

Appendices<br />

Appendix 1: Publications<br />

Appendix 2: External talks, teaching<br />

Appendix 3: Ongoing Diploma- and PhD theses, Habilitations<br />

Appendix 4: Guest lectures at the <strong>MBI</strong><br />

Appendix 5: Staff, extended research visits of <strong>MBI</strong> staff at external institutions, visiting<br />

scientists at the <strong>MBI</strong> and users of the application laboratories<br />

Appendix 6: Grants and contracts <strong>2003</strong><br />

Appendix 7: Activities in scientific organizations<br />

Appendix 8: Honours and awards<br />

Appendix 9: Cooperations<br />

Appendix 10: Current patents and pending applications


Preface<br />

The <strong>Max</strong> <strong>Born</strong> <strong>Institut</strong>e (<strong>MBI</strong>) reports<br />

annually about its scientific work, alternating<br />

from odd to even years in the extent of the<br />

report. Although in this sequence the year <strong>2003</strong><br />

would have been covered by a short review<br />

we have chosen to give a somewhat more<br />

extended report as a consequence to a major<br />

restructuring process of our research<br />

programme.<br />

During the past months the scientists of<br />

the <strong>MBI</strong> have scrutinized in a joint, discursive<br />

effort the research programme of the institute<br />

as it has developed over the past years, aiming<br />

at an even more focussed and concentrated<br />

strategy for our future research. Two key<br />

aspects have guided the discussion: what are<br />

currently the worldwide most important and<br />

promising directions of research in ultrafast<br />

dynamics and nonlinear optics and what are<br />

the particular strengths of the <strong>MBI</strong> and its<br />

scientists? The result of this intense internal<br />

reviewing and restructuring process is a<br />

significantly reduced number of research<br />

projects with a corresponding concentration<br />

of resources. We are convinced that the new<br />

program is focussed on some of the most<br />

promising areas of research in our field and at<br />

the same time enables us to make most<br />

efficient use of the scientific potential of the<br />

institute.<br />

The main part of this annual report thus<br />

describes the three new focal areas of<br />

research, each with a relatively detailed<br />

description of the 10 newly formed research<br />

projects and the 4 projects which constitute<br />

the scientific infrastructure of the institute. The<br />

Appendices give – as usual – a complete<br />

documentation of publications, invited talks<br />

and academic teaching, Diploma and PhD<br />

theses, guests scientists and guest lectures at<br />

the <strong>MBI</strong>, research co-operations, grants, patents<br />

and other activities in research together with<br />

a statistics on the <strong>MBI</strong> staff and their visits to<br />

other institutions. Further information about the<br />

ongoing work is available at the World Wide<br />

Web-Site of the <strong>MBI</strong> (http://www.mbi-berlin.de).<br />

This site has also been redesigned by the end<br />

of <strong>2003</strong>. We hope the web visitor finds it more<br />

transparent, easy to access and providing up<br />

to date information.<br />

Research of the <strong>MBI</strong> continues to be<br />

productive and successful as this report and<br />

in particular the Appendices clearly document.<br />

We refrain from commenting on particular new<br />

results but mention just one highlight among<br />

our successful efforts to acquire external<br />

funding: Laserlab-Europe, coordinated by the<br />

<strong>MBI</strong> (W. Sandner) is now funded by the EU<br />

within the 6 th framework programme as an<br />

Integrated Infrastructure Initiative. It provides<br />

an excellent basis for intense European<br />

collaboration using facilities provided by a<br />

consortium of 17 laser infrastructures from 9<br />

European countries. This success supports the<br />

declared strategy of co-operation with guest<br />

Vorwort<br />

Das <strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong> (<strong>MBI</strong>) berichtet<br />

jährlich über seine wissenschaftliche Arbeit,<br />

wobei die Berichte sich alternierend zwischen<br />

geraden und ungeraden Jahren im Umfang<br />

unterscheiden. So wäre über das Jahr <strong>2003</strong><br />

wieder in Kurzfassung zu berichten. Wir haben<br />

uns jedoch entschlossen, eine etwas ausführlichere<br />

Darstellung zu wählen, um die<br />

inzwischen erfolgte, umfassende Umstellung<br />

unseres Forschungsprogramms vorstellen zu<br />

können.<br />

In den vergangenen Monaten haben die<br />

Wissenschaftler des <strong>MBI</strong> in gemeinsamer, intensiver<br />

Diskussion das Forschungsprogramm<br />

des <strong>MBI</strong>, wie es sich in den letzten Jahren<br />

entwickelt hatte, im Detail analysiert und neu<br />

strukturiert, mit dem Ziel einer künftig noch<br />

stärkeren Fokussierung und Konzentration.<br />

Zwei Schlüsselfragen haben dabei die<br />

Diskussion geleitet: was sind gegenwärtig die<br />

weltweit wichtigsten und vielversprechendsten<br />

Forschungsthemen im Bereich der Ultrakurzzeitdynamik<br />

und Nichtlinearen Optik und was<br />

sind die spezifischen Stärken des <strong>MBI</strong> und<br />

seiner Wissenschaftler? Das Ergebnis dieses<br />

intensiven internen Evaluierungs- und Restrukturierungsprozesses<br />

ist eine signifikante<br />

Reduktion der Anzahl von Forschungsprojekten<br />

mit einer entsprechenden Konzentration der<br />

Ressourcen. Wir sind überzeugt, dass das<br />

Programm auf einige der vielversprechendsten<br />

Themen unseres Forschungsgebietes<br />

fokussiert ist und uns gleichzeitig erlaubt, das<br />

vorhandene wissenschaftliche Potenzial des<br />

<strong>Institut</strong>s besonders effizient zu nutzen.<br />

Der Hauptteil dieses Jahresberichts <strong>2003</strong><br />

beschreibt daher die drei neuen Forschungsschwerpunkte<br />

und gibt eine relativ detaillierte<br />

Beschreibung der 10 neu formierten Forschungsprojekte<br />

und der 4 Vorhaben, welche<br />

die wissenschaftliche Infrastruktur des <strong>MBI</strong><br />

definieren. Die Anhänge geben wieder eine<br />

vollständige Dokumentation über Publikationen,<br />

eingeladene Vorträge und akademische<br />

Lehrveranstaltungen, Gastwissenschaftler<br />

und Gastvorträge am <strong>MBI</strong>, Kooperationen,<br />

Drittmitteleinwerbung, Patente und andere<br />

Aktivitäten sowie eine Statistik der Mitarbeiter<br />

und deren auswärtige Gastaufenthalte. Weitere<br />

Einzelheiten sind unter http://www.mbiberlin.de<br />

abrufbar. Die <strong>MBI</strong> Website zeigt sich<br />

seit Ende <strong>2003</strong> in neuem, und wie wir hoffen<br />

besonders übersichtlichem, aktuellen und<br />

informativen Design.<br />

Die Forschung am <strong>MBI</strong> ist auch weiterhin<br />

produktiv und erfolgreich, wie dies der vorliegende<br />

Bericht und insbesondere die<br />

Anhänge dokumentieren. Wir verzichten hier<br />

darauf, einzelne neue Ergebnisse zu<br />

kommentieren und erwähnen lediglich ein<br />

besonderes Glanzlicht unserer erfolgreichen<br />

Drittmitteleinwerbung: das Laserlab-Europe,<br />

koordiniert vom <strong>MBI</strong> (W. Sandner) wird ab<br />

Ende <strong>2003</strong> von der EU im 6. Rahmenprogramm<br />

gefördert. Es bietet eine exzellente<br />

5


6<br />

scientists which the <strong>MBI</strong> continues to pursue.<br />

More than 80 guest scientists worked at the<br />

institute in <strong>2003</strong> in the research projects or<br />

made use of the application laboratories.<br />

We are confident that this creative exchange<br />

of scientific potential will continue to be productive.<br />

We trust that the present annual report<br />

will again provide a good first orientation not<br />

only for future collaborators and guests of the<br />

<strong>MBI</strong> but for all those who are interested in the<br />

progress of our work.<br />

We wish you an enjoyable and informative<br />

reading.<br />

<strong>Berlin</strong>, March 2004<br />

Basis für eine intensive Europäische Zusammenarbeit<br />

durch Nutzung der Ressourcen<br />

von 17 Laser-Infrastruktureinrichtungen aus<br />

9 Europäischen Ländern. Dieser Erfolg unterstützt<br />

die erklärte Strategie der Kooperation,<br />

welche das <strong>MBI</strong> seit Jahren konsequent<br />

verfolgt. Über 80 Gastwissenschaftler haben<br />

im Jahr <strong>2003</strong> am <strong>Institut</strong> gearbeitet und waren<br />

dabei in den Forschungsprojekten integriert<br />

oder haben die Möglichkeiten der Applikationslabore<br />

genutzt.<br />

Wir sind zuversichtlich, dass dieser kreative<br />

Austausch von wissenschaftlichem Potenzial<br />

sich auch weiterhin fruchtbar entwickeln wird.<br />

Der hier vorgelegte Jahresbericht möge aber<br />

nicht nur als gute erste Orientierung für<br />

potenzielle künftige Kooperationspartner und<br />

Gäste des <strong>MBI</strong> dienen, sondern allen, die sich<br />

für den Forschritt unserer Arbeit interessieren<br />

nützlich sein.<br />

Wir wünschen Ihnen eine erfreuliche und<br />

informative Lektüre.<br />

<strong>Berlin</strong>, im März 2004<br />

Ingolf Hertel Wolfgang Sandner Thomas Elsaesser<br />

Members of the Scientific Advisory Board / Mitglieder des Wissenschaftlichen Beirats<br />

Prof. Dr. Wolfgang. Domcke (Vice Chairman)<br />

<strong>Institut</strong> für Theoretische Chemie, Technische Universität München<br />

Prof. Dr. Theodor W. Hänsch<br />

<strong>Max</strong>-Planck-<strong>Institut</strong> für Quantenoptik, Garching<br />

Prof. Dr. Ferenc Krausz (Chairman)<br />

<strong>Max</strong>-Planck-<strong>Institut</strong> für Quantenoptik, Garching<br />

Prof. Dr. Karl Leo<br />

<strong>Institut</strong> für angewandte Photophysik, Technische Universität Dresden<br />

Prof. Dr. Stephen R. Leone<br />

Department of Chemistry, University of California, Berkeley, USA<br />

Frau Prof. Dr. Irène Nenner<br />

C.E.A. - Centre d'Etudes de Saclay, Frankreich<br />

Prof. Dr. Sune Svanberg<br />

Division of Atomic Physics, Lund <strong>Institut</strong>e of Technology, Schweden<br />

Prof. Dr. Ian A. Walmsley<br />

Department of Physics, University of Oxford, UK<br />

Representatives of the cooperating universities / Vertreter der kooperierenden Universitäten<br />

Prof. Dr. Jürgen Rabe<br />

<strong>Institut</strong> für Physik, Humboldt-Universität zu <strong>Berlin</strong><br />

Prof. Dr. Dietmar Stehlik<br />

Fachbereich Physik, Freie Universität <strong>Berlin</strong><br />

Prof. Dr. Christian Thomsen<br />

<strong>Institut</strong> für Festkörperphysik, Technische Universität <strong>Berlin</strong><br />

Representatives of the Federal Republic and the State of <strong>Berlin</strong> /<br />

Vertreter der Zuwendungsgeber aus Bund und Land<br />

Prof. Dr. Jürgen Richter<br />

Bundesministerium für Bildung und Forschung, Ref. 411, Bonn<br />

Dr. Rainer Schuchardt<br />

Senatsverwaltung für Wissenschaft, Forschung und Kultur, Referat III C 3, <strong>Berlin</strong><br />

Honorary member:<br />

Prof. Sir Harry Kroto<br />

The School of Chemistry and Molecular Science, University of Sussex Falmer, Brighton, UK


Schematic of the <strong>MBI</strong> Research Program<br />

The new research program of the <strong>MBI</strong> is concentrated on three major focal areas of research<br />

which are supported by the scientific infrastructure. The research in each focus is organized in<br />

several projects. This is illustrated schematically in the following diagram. The diagram displays<br />

the project titles and the names of the project coordinators (underlined are the present speakers).<br />

Schema des <strong>MBI</strong> Forschungsprogramms<br />

Das neue Forschungsprogramm des <strong>MBI</strong> konzentriert sich auf drei große Schwerpunkte der<br />

Forschung und wird durch die wissenschaftliche Infrastruktur unterstützt. Die Forschung in jedem<br />

Schwerpunkt ist wiederum gegliedert in mehrere, in der Regel interdisziplinäre Forschungsprojekte.<br />

Das wird im nachstehenden Diagramm schematisch illustriert. Das Diagramm zeigt die Themen<br />

der Forschungsprojekte und die Namen der Projektkoordinatoren (unterstrichen sind die derzeitigen,<br />

jeweiligen Sprecher).<br />

7


Research focus 1<br />

Laser Research<br />

The generation of extremely short laser<br />

pulses with cutting edge parameters has<br />

always attracted significant attention,<br />

extending far beyond laser physics. For the<br />

<strong>MBI</strong> as a research institute devoted to short<br />

pulse spectroscopy and nonlinear optics the<br />

development of novel laser sources is of paramount<br />

importance. Laser sources developed<br />

in-house can offer parameters that are<br />

unavailable from commercial lasers. It is this<br />

availability of unique sources that enables<br />

unique experiments.<br />

Consequently, one of the focal points of<br />

the research strategy of the <strong>MBI</strong> is the<br />

generation of extremely short pulses in a<br />

broad wavelength region. Often, applications<br />

in spectroscopy demand a specific wavelength<br />

range, and it is far from trivial to produce fewcycle<br />

pulses outside the visible/near-infrared<br />

range accessible by Ti:sapphire lasers. Therefore,<br />

we pursue Raman pulse compression<br />

as one favorable method to generate pulses<br />

outside this range, in particular in the vacuum<br />

ultraviolet range. Further efforts concentrate<br />

on the identification of novel materials and<br />

methods, both for building mode-locked laser<br />

oscillators and for frequency conversion by<br />

harmonic and parametric nonlinear processes.<br />

One of the key missions of the <strong>MBI</strong> is the<br />

amplification of ultra-short pulses to extremely<br />

high intensities of the order of 10 20 W/cm 2 , or<br />

to high average powers for dedicated<br />

applications. The synchronisation of two<br />

separate ultra-high intensity lasers with pulse<br />

energies in the Joule (Ti:Sa) and 10 Joule<br />

range (Nd:Glass) at <strong>MBI</strong> opens a new and<br />

exclusive route towards particle acceleration<br />

and proton imaging experiments in plasma<br />

physics. The development of novel highaverage-power<br />

ps-lasers over the last<br />

decade has made <strong>MBI</strong> an indispensible<br />

partner for cooperation with the national and<br />

international high-energy physics and Free-<br />

Electron-Laser community.<br />

The overall goal of the laser research at<br />

<strong>MBI</strong> is to generate of light pulses with recordbreaking<br />

parameters over a wide range of<br />

wavelengths and energies, and to directly<br />

enable their use for applications in<br />

spectroscopy and related studies of ultrafast<br />

and nonlinear phenomena in the key<br />

fields of interest at the <strong>MBI</strong> (see research<br />

focus 2 and 3). Laser research at <strong>MBI</strong> is<br />

strongly interconnected, both, among the<br />

different research themes within the laser<br />

research as well as to direct applications in<br />

the other research areas. Many of these<br />

activities are embedded into international<br />

collaborations and are made accessible to<br />

external users, most notably through the<br />

Transnational Access Activity within the EU<br />

laser infrastructure network “LASERLAB-<br />

EUROPE”.<br />

9


10<br />

Ultrafast nonlinear optics and fewcycle<br />

pulses:<br />

The efforts in generating few-cycle pulses<br />

encompass the relatively widespread method<br />

of pulse compression in hollow gas-filled fibers<br />

where pulses with as few as 1.6 optical cycles<br />

have already been generated – corresponding<br />

to a duration of 4.3 fs. Similarly, we explore<br />

white-light continuum generation processes<br />

in microstructured fibers. Our efforts include<br />

generation of very short pulses in the vacuum<br />

ultraviolet, where Raman based compression<br />

methods, also in a hollow-fiber geometry, are<br />

investigated for pulses of a few femtoseconds<br />

pulse duration. These activities are backed up<br />

by theoretical work, paving the way for novel<br />

methods for the generation of extremely short<br />

pulses over the entire laser-accessible wavelength<br />

region, ranging from the deep ultraviolet,<br />

the visible and near-infrared up to midinfrared<br />

pulse generation.<br />

As a prerequisite for further pulse<br />

shortening in most of these spectral ranges,<br />

the ultrashort pulses have to be up- or downconverted<br />

from the near infrared, where the<br />

majority of the femtosecond laser systems<br />

operate. To improve such nonlinear optical<br />

conversion with respect to efficiency and<br />

control the bandwidth of the pulses novel<br />

materials and conversion schemes are<br />

examined.<br />

It is very challenging to characterize and<br />

actively shape such extremely short laser<br />

pulses. The efforts of generating short pulses<br />

therefore have to be augmented by means to<br />

measure their complex spatio-temporal<br />

structure and, one step further, also to control<br />

spatial or temporal parameters of the few-cycle<br />

wave packets.<br />

Short pulse laser systems:<br />

Different concepts for advanced shortpulse<br />

lasers based on Ti:sapphire, rare-earth<br />

doped crystals and microstructure fibers for<br />

femtosecond and picosecond oscillator and<br />

amplifier systems are under investigation.<br />

The potential of novel ytterbium and<br />

neodymium doped active materials are<br />

studied in the 1-µm spectral range. In particular,<br />

Yb-doped laser crystals are well-suited for<br />

building conceptually simple and highly<br />

efficient diode-pumped femtosecond lasers<br />

with high output power. Among those<br />

materials, the monoclinic double tungstates<br />

Yb:KY(WO 4 ) 2 and Yb:KGd(WO 4 ) 2 stand out<br />

because of their large absorption and emission<br />

cross sections, which was demonstrated using<br />

diode-pumped oscillators with 100 fs pulse<br />

duration. The isotropic sesquioxides Sc 2 O 3 ,<br />

Y 2 O 3 and Lu 2 O 3 are, however, more attractive<br />

for high-power applications because of their<br />

excellent thermo-mechanical properties. We<br />

have proven the excellent potential of these<br />

materials by demonstrating a 54% efficiency<br />

for Yb:Sc 2 O 3 in mode-locked operation, which<br />

is the highest optical efficiency ever reported<br />

from a mode-locked laser.<br />

Compared to conventional fiber designs,<br />

microstructure fibers have considerably enhanced<br />

the possibilities of tailoring linear and<br />

nonlinear fiber properties. For mode-locked fiber<br />

lasers, dispersion engineering is of particular<br />

interest, as it enables intrinsic dispersion compensation<br />

or soliton propagation at virtually<br />

arbitrary wavelengths. Recently, we<br />

demonstrated mode-locking of Nd-doped<br />

microstructure fiber laser, which is the first<br />

demonstration of mode-locked microstructure<br />

fiber lasers in the 1-μm region.<br />

Besides these conceptual investigations<br />

this project also contains two main research<br />

efforts aiming at oscillator-amplifier systems<br />

with either high peak power or high average<br />

power. The <strong>MBI</strong> ultra-high intensity Ti:Sa laser,<br />

providing intensities in excess of 10 19 W/cm 2 ,<br />

is with 35fs pulse duration among the shortestpulse<br />

multi-10-TW systems world-wide. New<br />

research developments focus on contrast and<br />

beam quality improvement within the European<br />

SHARP collaboration. A series of novel<br />

concepts for high-average-power lasers has<br />

rendered <strong>MBI</strong> as one of the leading<br />

laboratories for burst-mode (with up to 5kW<br />

average power during ms-bursts) and quasicw<br />

ps-lasers. The most recent developments<br />

employ fully diode-pumped and OPCPA<br />

systems, but also high-average power Ti:Sa<br />

fs-lasers. Applications include driver lasers for<br />

incoherent x-ray sources and, to a large extent,<br />

unique photocathode drivers and pump-probe<br />

user endstations for newly established Free<br />

Electron Lasers at collaborating laboratories.<br />

All these activities are bundled in project<br />

1-02.


1-01: Ultrafast nonlinear optics and few cycle pulses<br />

J. Herrmann, F. Noack, G. Steinmeyer (Project coordinators)<br />

and P. Glas, R. Grunwald, V. Petrov, O. Steinkellner, P. Tzankov, N. Zhavoronkov<br />

1. Overview<br />

The generation of ultrashort laser pulses<br />

down to few optical cycles in a very broad<br />

spectral region (from 100 nm up to the THz<br />

range) by nonlinear optical processes is the<br />

common goal of all ongoing activities within<br />

the framework of this project. Besides the<br />

further improvement of known techniques for<br />

pulse shortening we also pursue new<br />

strategies such as nonlinear processes in<br />

holey fibers. In order to either generate new<br />

wavelengths or enhance the conversion<br />

efficiency, stability, spectral and spatial quality,<br />

and to simplify already existing concepts we<br />

investigate new solid-state nonlinear optical<br />

materials with 2-nd and 3-rd order nonlinear<br />

susceptibility and apply them in novel<br />

interaction schemes for frequency conversion<br />

of femtosecond pulses, e.g. chirped pulse<br />

optical parametric amplification (CPOPA). For<br />

tunable and efficient generation of sub-100 fs<br />

pulses in the wavelength range 100-160 nm<br />

we investigate, both experimentally and<br />

theoretically, four-wave-mixing in special<br />

hollow waveguides as one of the most<br />

promising techniques and compression of<br />

vacuum UV pulses by Raman-active molecular<br />

modulation (see Fig. 1). Simultaneously to these<br />

activities devoted to the generation of ultrashort<br />

pulses with one or more extreme parameters<br />

we concentrate on the characterization of their<br />

temporal and spatial structure as well as on<br />

active control by shaping mechanisms.<br />

2. Subprojects and Collaborations<br />

At present the project is organized in three<br />

subprojects, with research activities focused<br />

on the following topics:<br />

UP1: Few-cycle pulse generation and<br />

nonlinear optical processes in hollow<br />

waveguides, photonic crystal fibers and<br />

microstructured materials<br />

• generation of few-cycle pulses by pulse<br />

compression employing the nonlinearity of<br />

noble gases and the Raman-polarizability<br />

of molecules in hollow fibers, their diagnostics,<br />

and their application for spectroscopy<br />

• supercontinuum generation in microstructured<br />

(holey) and gas-filled hollow fibers<br />

• spatio-temporal shaping of localized wavepackets<br />

in the sub-10-fs range with advanced<br />

types of thin-film microoptics.<br />

UP2: high energy vacuum UV femtosecond<br />

pulses (100-160 nm) at 1-kHz repetition rate<br />

• efficient generation of ultrashort vacuum UV<br />

pulses by four wave mixing in hollow waveguides<br />

(theory and experiment)<br />

• investigation of deep UV pumped parametric<br />

processes and continuum generation<br />

• Raman compression of vacuum UV pulses.<br />

UP3: novel nonlinear materials and interaction<br />

schemes for frequency conversion<br />

of ultrashort laser pulses<br />

• femtosecond pulse generation below 200 nm<br />

by nonlinear crystals with bandgaps up to<br />

10 eV<br />

• wide band semiconductors like some Licontaining<br />

ternary compounds with transparency<br />

extending from the UV up to the<br />

deep mid-IR<br />

• mid-IR crystals for the 3-15 µm spectral<br />

range including such with engineerable<br />

material properties, like the so called solid<br />

solutions where the transparency, effective<br />

nonlinearity, phase- and group-matching<br />

can be tailored by composition.<br />

Collaboration Partners: M. Piché (University<br />

Quebec), U. Keller and F. W. Helbing (ETH<br />

Zürich), R. Iliev and Ch. Etrich (FSU Jena),<br />

G. Sansone and M. Nisoli (Milano), Laserlabor<br />

Göttingen, BIAS (Bremen), L. Isaenko (DTIM<br />

Novosibirsk), J.-J. Zondy (Observatoire Paris),<br />

F. Rotermund (Ajou University), R. Komatsu<br />

(Yamaguchi University), V. Pasiskevicius (KTH<br />

Stockholm), V. Badikov (HTL Krasnodar),<br />

D. Shen (Tsinghua University), Quarterwave<br />

and Fibertec (<strong>Berlin</strong>).<br />

Fig. 1:<br />

Evolution of temporal<br />

shape (a)<br />

and spectrum (b)<br />

of 100-fs input-probe<br />

pulse at 175 nm for<br />

pumping by four 20-fs<br />

pulses, each of intensity<br />

50 TW/cm 2 at 790 nm.<br />

11


12<br />

Fig. 2:<br />

Computed penetration<br />

of the electric field into<br />

an octave-spanning<br />

chirped-mirror. This<br />

mirror provides<br />

dispersion compensation<br />

from about<br />

500 to 1000 nm. Several<br />

of these mirrors were<br />

used for compression<br />

of white-light continuum<br />

pulses from a hollow<br />

fiber to a measured<br />

pulse duration of 4.3 fs<br />

(inset).<br />

Fig. 3:<br />

AC-trace at 250 nm with<br />

a temporal resolution of<br />

10 fs. The inset shows<br />

the spectrum of the<br />

femtosecond pulses at<br />

125 nm produced by<br />

noncollinear SHG.<br />

Experimental points<br />

(squares) and<br />

Gaussian fits (lines).<br />

The full control over all parameters of ultrashort<br />

and few cycle light pulses (wavelength,<br />

temporal shape, phase, energy, etc.) is a long<br />

term objective for the whole project.<br />

3. Results in <strong>2003</strong><br />

We developed new concepts for<br />

compression of short pulses with chirped<br />

mirrors [Ste03a, Ste03d, SSV, Stec] which<br />

permit an extension of the chirped mirror<br />

technique to above one octave (see Fig. 2).<br />

First experiments with a mirror-only dispersion<br />

compensation of hollow-fiber continua already<br />

yielded a pulse duration of 4.3 fs, currently the<br />

shortest pulse generated from such a source<br />

without adaptive compression. A new idea for<br />

the compression of mid-IR pulses to singleand<br />

sub-cycles using high-order stimulated<br />

Raman scattering in hollow waveguides in the<br />

pump-probe regime was proposed and<br />

theoretically studied [KHe03b, KHe03c], the<br />

experimental realization is planned for the<br />

near future.<br />

Using a non-standard holey fiber a three<br />

octave broad supercontinuum (200 nm-<br />

1600 nm) was generated with a pump<br />

wavelength in the normal dispersion region.<br />

This is the broadest spectrum observed in<br />

holey fibers. A careful analysis indicates a<br />

significant deviation from the already<br />

established soliton fission model. Supercontinuum<br />

generation in holey fibers made of<br />

highly nonlinear glasses as SF57 was studied<br />

theoretically [HHe03b]. It has been shown that,<br />

in contrast to holey fibers made of fused silica,<br />

non-solitonic radiation is emitted both in the<br />

IR and UV, as determined by the specific<br />

phase-matching curves. In addition, we<br />

demonstrated that a frequency comb in the<br />

telecommunication region around 1550 nm<br />

can be generated by four-wave mixing in a<br />

doped multi-core photonic fiber made of a<br />

highly nonlinear glass, which could be used<br />

as a wavelength-division multiplexing source<br />

[HHe03b].<br />

We extended in <strong>2003</strong> our CPOPA scheme<br />

(see annual report 2002) based on periodically<br />

poled KTiOPO 4 (PPKTP) with a second stage<br />

which resulted in a 4-fold increase of the output<br />

energy: femtosecond pulses at 1570 nm are<br />

amplified now to energies as high as 85 µJ at<br />

1 kHz with this all-diode pumped and compact<br />

system providing a total gain of 1.4x10 6<br />

(>60 dB) [PNR03]. The further progress is<br />

related to the up-grading the pump source to<br />

1.5 mJ, the use of novel nonlinear materials<br />

and compression and characterization of the<br />

idler pulse at 3.3 µJ.<br />

The progress in the study of the Licontaining<br />

chalcogenides, LiInS(e) 2 and<br />

LiGaS(e) 2 , [IYL03] allowed us to achieve<br />

down-conversion of amplified femtosecond<br />

pulses near 800 nm to the mid-IR up to 12 µm<br />

in a single step [PYI]. The same could be<br />

realized for the first time by the solid solution<br />

Cd x Hg 1-x Ga 2 S 4 [PBP] in which case the<br />

bandgap was modified by the Cd-content. We<br />

also initiated the study of a new class of<br />

quaternary semiconductors Ag x Ga x Ge 1-x S(e) 2<br />

where substantial increase of the birefringence<br />

can be achieved by the composition [PBS].<br />

Using SrB 4 O 7 , a highly nonlinear borate crystal<br />

with the largest known band-gap, we<br />

demonstrated that femtosecond pulses can be<br />

generated by SHG down to wavelengths of<br />

125 nm which turned out to be very useful for<br />

diagnostic purposes [Fig. 3 and PNS04]. This<br />

is the shortest wavelength ever achieved by a<br />

nonlinear crystal with conversion efficiency<br />

much higher than in surface SHG.<br />

By using improved ZnO nanolayers for<br />

SHG [NGG, NGG03], second order autocorrelation<br />

traces were recorded with high<br />

spatial and temporal resolution. Layer<br />

structures with nanocrystallites of different<br />

orientation and size were compared with<br />

respect to the conversion efficiency.<br />

Spatio-temporal shaping and characterization<br />

of lasers exhibiting unique features<br />

(ultrashort pulse duration, ultrabroad spectra,<br />

vacuum ultraviolet) with novel types of optical<br />

multichannel processors based on thin-film<br />

microstructures was performed [GNGa,<br />

GNGb, GKN, 1]. In particular, the propagation<br />

of sub-10-fs nondiffractive beams (Bessel-like


eams, Mathieu-like beams) [GKG03c] was<br />

investigated. Direct experimental evidence for<br />

optical Bessel-X-pulses was found [GKe]. Selfreconstruction<br />

properties of Bessel-X-pulses<br />

were analyzed. We also proposed applications<br />

in ultrafast information processing.<br />

By extending the method of the Shack-<br />

Hartmann wavefront sensing to a wavefront<br />

autocorrelation [GNG03, GNGa], a more<br />

complete diagnostics of a propagating complex<br />

wavepacket in space and time including its<br />

angular spectrum was demonstrated for the<br />

first time (see fig. 4). With hybrid refractivereflective<br />

array components, beam shapers<br />

of record-low dispersion could be realized in<br />

a quasi-reflective setup.<br />

Other references<br />

[1] V. Kebbel, Doctoral thesis, submitted to University<br />

Bremen, <strong>2003</strong>.<br />

Own publications <strong>2003</strong> ff<br />

(for full titles and list of authors see appendix 1)<br />

GGN03: R. Grunwald et al.; in Ultrafast Phenomena<br />

XIII (<strong>2003</strong>) 247-9<br />

GKG03b: R. Grunwald et al.; SPIE Proc. 4833 (<strong>2003</strong>)<br />

354-61<br />

GKG03c: R. Grunwald et al.; Phys. Rev. A 67 (<strong>2003</strong>)<br />

063820/1-5<br />

GKN03: R. Grunwald et al.; SPIE Proc. 5181 (<strong>2003</strong>)<br />

1-11<br />

GNG03: R. Grunwald et al.; Opt. Lett. 28 (<strong>2003</strong>)<br />

2399-401<br />

HHe03a: A. V. Husakou and J. Herrmann; Appl. Phys.<br />

Lett. 83 (<strong>2003</strong>) 3867-9<br />

HHe03b: A. V. Husakou and J. Herrmann; Appl. Phys.<br />

B 77 (<strong>2003</strong>) 227-34<br />

HPH03: A. Husakou et al.; in Optical Solitons.<br />

Theoretical and Experimental Challenges (<strong>2003</strong>)<br />

299-325<br />

HSK03: F.W. Helbing et al.; IEEE J. Sel. Top. Quant.<br />

Electron. 9 (<strong>2003</strong>) 1030-40<br />

HSt03: F.W. Helbing et al.; Laser Phys. 13 (<strong>2003</strong>)<br />

644-51<br />

IYL03: L. Isaenko et al.; Cryst. Res. Technol. 38<br />

(<strong>2003</strong>) 379-87<br />

KHe03a: V. P. Kalosha and J. Herrmann; Phys. Rev.<br />

A 67 (<strong>2003</strong>) 031801/1-4<br />

KHe03b: V. P. Kalosha and J. Herrmann; Opt. Lett. 28<br />

(<strong>2003</strong>) 950-2<br />

KHe03c: V. P. Kalosha and J. Herrmann; Phys. Rev.<br />

A 68 (<strong>2003</strong>) 023812/1-24<br />

KOK03: R. Komatsu et al.; J. Cryst. Growth 257<br />

(<strong>2003</strong>) 165-8<br />

KSH03: V. Kalosha et al.; in Recent Advances in<br />

Ultrafast Spectroscopy, Proceedings of the "XII<br />

VPS Conference" (<strong>2003</strong>) 231-7<br />

NGG03: U. Neumann et al.; SPIE Proc. 4972 (<strong>2003</strong>)<br />

112-21<br />

PNR03: V. Petrov et al.; Jpn. J. Appl. Phys. 42 (<strong>2003</strong>)<br />

L1327-L9<br />

SGr03: G. Seewald and R. Grunwald; SPIE Proc.<br />

4833 (<strong>2003</strong>) 900-5<br />

SIK03: M. Spanner et al.; Opt. Lett. 28 (<strong>2003</strong>) 749-51<br />

SMG03: Yu. S. Skibina et al.; SPIE Proc. 5067 (<strong>2003</strong>)<br />

190-3<br />

Ste03a: G. Steinmeyer; Optics Express 11 (<strong>2003</strong>)<br />

2385-96<br />

Ste03b: G. Steinmeyer; IEEE LEOS Newsletter 17<br />

(<strong>2003</strong>) 8-9<br />

Ste03c: G. Steinmeyer; J. Opt. A: Pure Appl. Opt. 5<br />

(<strong>2003</strong>) R1-R15<br />

Ste03d: G. Steinmeyer; IEEE J. Quantum Elect. 39<br />

(<strong>2003</strong>) 1027-34<br />

NGG04: U. Neumann et al.; Appl. Phys. Lett. 84<br />

(2004) 170-2<br />

PNS04: V. Petrov et al.; Opt. Lett. 29 (2004) 373-5<br />

in press (as of Jan. 2004)<br />

GNe: R. Grunwald and U. Neumann; Opt. Lett.<br />

GNGa: R. Grunwald et al.; SPIE Proc.<br />

GNGb: R. Grunwald et al.; SPIE Proc.<br />

PBP: V. Petrov et al.; Opt. Commun.<br />

PBS: V. Petrov et al.; Opt. Mat.<br />

PYI: V. Petrov et al.; Appl. Phys. B<br />

SKe: G. Steinmeyer and U. Keller; in Femto-second<br />

Optical Frequency Comb: Principle, Operation,<br />

and Applications<br />

SSV: G. Sansone et al.; Appl. Phys. B<br />

Stea: G. Steinmeyer; in Handbook of Optoelectronics<br />

Steb: G. Steinmeyer; in Handbook of Optoelectronics<br />

Stec: G. Steinmeyer; Appl. Phys. A<br />

submitted (as of 21st Febr. 2004)<br />

FSM: S. Fossier et al.; J. Opt. Soc. Am. B<br />

GKe: R. Grunwald and V. Kebbel; in Springer Series<br />

in Optical Sciences, Vol. 'Microoptics - From<br />

Technology to Applications'<br />

GKN: R. Grunwald et al.; Opt. Eng.<br />

PNB: V. Petrov et al.; Appl. Opt.<br />

YTI: A. P. Yelisseyev et al.; J. Appl. Phys.<br />

Fig. 4:<br />

Wavefront autocorrelation<br />

as combination of<br />

Shack-Hartmann sensor<br />

and collinear autocorrelation:<br />

diagnostics of an<br />

amplified Ti:sapphire<br />

laser pulse without (a)<br />

and with (b) additional<br />

curvature introduced by<br />

a plano-convex lens<br />

(temporal resolution<br />

0.34 fs, nondiffracting<br />

sub-beams shaped by<br />

refractive-reflective thinfilm<br />

microaxicons, SHG),<br />

(c) cuts through the<br />

beamlets from (a)<br />

representing spatially<br />

resolved 2 nd order<br />

autocorrelation<br />

[GNG03, GNGa].<br />

13


14<br />

Fig. 1a:<br />

Scanning electron<br />

micrograph of the<br />

microstructure fiber.<br />

The Nd-doped core<br />

is surrounded by a<br />

lattice of air holes.<br />

Fig. 1b:<br />

Setup of the modelocked<br />

Nd-doped<br />

microstructure fiber<br />

laser.<br />

1-02: Short pulse laser systems<br />

U. Griebner, V. Petrov, I. Will (Project coordinators)<br />

and P. Glas, M. Kalashnikov, H. Redlin, E. Risse, H. Schönnagel, R. Schumann, N. Zhavoronkov<br />

1. Overview<br />

The general goal of this project is the<br />

development of sophisticated short pulse laser<br />

sources. Laser concepts based on Ti:sapphire,<br />

rare-earth- and Cr 4+ -doped crystals, semiconductors<br />

and microstructure fibers for femtosecond<br />

and picosecond oscillator and<br />

amplifier systems are under investigation.<br />

One focus of this project is the progress of<br />

compact diode-pumped femtosecond laser<br />

systems. The potential of novel ytterbium and<br />

neodymium doped active materials and semiconductor<br />

structures are studied in the 1-µm<br />

spectral range. In particular, Yb-doped laser<br />

crystals are well-suited for building<br />

conceptually simple and highly efficient diodepumped<br />

femtosecond lasers with high output<br />

power. Comparative studies based on the<br />

spectroscopic characteristics predicted that<br />

some Yb-doped tungstate and sesquioxide<br />

crystals are the most promising representatives<br />

of this class of materials. Among<br />

those materials, the monoclinic double<br />

tungstates Yb:KY(WO 4 ) 2 and Yb:KGd(WO 4 ) 2<br />

stand out because of their larger absorption<br />

and emission cross sections. The isotropic<br />

sesquioxides Sc 2 O 3 , Y 2 O 3 and Lu 2 O 3 are,<br />

however, more attractive for high-power<br />

applications because of their excellent thermomechanical<br />

properties. Compared to conventional<br />

fiber designs, microstructure fibers<br />

have considerably enhanced the possibilities<br />

of tailoring linear and nonlinear fiber properties.<br />

For mode-locked fiber lasers, dispersion<br />

engineering is of particular interest, as it permits<br />

intrinsic dispersion compensation or soliton<br />

propagation at virtually arbitrary wavelengths.<br />

This project further contains research<br />

activities to continuously upgrade the multiterawatt<br />

Ti:sapphire laser operated in the<br />

frame of High Field Laser (HFL) Application<br />

laboratory in order to keep the laser system in<br />

an internationally competitive condition. At<br />

present the HFL is one of a few laser systems<br />

regularly running at a repetition rate of 10 Hz<br />

and delivering peak powers in excess of<br />

20 TW at pulse durations of 35 fs. Generally,<br />

the modern high power Ti:sapphire laser<br />

systems suffer from a relatively low amplified<br />

spontaneous emission (ASE) contrast of the<br />

laser pulse, which typically lies in the range of<br />

10 -5 -10 -7 . For the <strong>MBI</strong>-HFL the actual ASE<br />

contrast value is 10 -7 . Improvement of the ASE<br />

contrast ratio to the value of ~10 -10 , which is<br />

necessary for pre-pulse free laser-matter<br />

interaction (at peak intensity I>10 20 W/cm 2 ), is<br />

one of the most important roots of current international<br />

activities; at <strong>MBI</strong> it is being performed<br />

within the framework of the European SHARP<br />

collaboration.<br />

A major part of the project is dedicated to<br />

the development of new schemes for<br />

generation of trains of pico- and femtosecond<br />

pulses. <strong>MBI</strong> is among the leading laboratories<br />

in the development of short-pulse, highaverage<br />

power burst-mode lasers, which gives<br />

the institute a key-role in collaborations with<br />

the high-energy accelerator and Free-Electron-<br />

Laser community. Present research activities<br />

focus on tunable fs-burst-lasers with high<br />

average power using OPCPA, the combination<br />

of Optical-Parametric amplification and<br />

Chirped Pulse Amplification. The main<br />

advantages of this scheme are a negligible<br />

thermal lensing, a broad amplification bandwidth<br />

and large tuneability in wavelength. The<br />

work finds an application in the development<br />

of an optical pump/probe laser for the international<br />

user community at the TESLA Free<br />

Electron Laser (FEL) in the framework of a<br />

EU-supported project.<br />

Another important activity is devoted to the<br />

development of laser systems based on<br />

Ti:sapphire operated at the repetition rates<br />

1 kHz and higher. This new generation of the<br />

presently most used laser system will open<br />

new possibilities for the application, which<br />

either benefit or will only be possible with high<br />

average power or multi-kHz repetition rate.


2. Subprojects and Collaborations<br />

At present the project is organized in two<br />

subprojects:<br />

UP1: Compact, diode pumped laser systems<br />

and new active materials<br />

• short pulse lasers based on new double<br />

tungstate and sesquioxide crystals / composite<br />

crystal structures doped with ytterbium<br />

and thulium as the active laser ion<br />

• femtosecond microstructure fiber lasers in<br />

the 1-µm spectral range (joint activity with<br />

project 1-01). Partially supported by the<br />

BMBF-project no. 13N8337<br />

• compact all semiconductor-based femtosecond<br />

lasers (joint activity with project<br />

3-03)<br />

UP2: Short pulse amplification, high peak<br />

and average power<br />

• development of diagnostics for the laser<br />

beam characterization, especially temporal<br />

contrast, focusability, intensity<br />

• development of low amplified spontaneous<br />

emission temporal contrast (>10 9 ) Ti: sapphire<br />

laser system,<br />

• development of methods to improve focusable<br />

intensity of the HFL Ti:sapphire laser to<br />

I >10 20 W/cm 2<br />

• development of the optical pump/probe<br />

laser for the TTF FEL in OPCPA technology:<br />

improvement of the stability and the power,<br />

increase of the conversion efficiency from<br />

pump to signal beam<br />

• Investigation of the physical principles for<br />

the development and stable operation of<br />

laser systems with high average output<br />

power (repetition rate > 1 kHz at several mJ<br />

pulse energy).<br />

Collaboration with the European SHARP<br />

consortium, EU contract no. HPRI-CT-2001-<br />

50037. This work is partially carried out in<br />

cooperation with HASYLAB/DESY in the<br />

framework of an EU supported project, contract<br />

no. HPRI-CT-1999-50009/Pump-Probe.<br />

Further collaboration partners: F. Diaz (University<br />

Tarragona), K. Petermann (University<br />

Hamburg), A. Tünnermann (University Jena),<br />

G. Erbert (FBH <strong>Berlin</strong>), Fibertec (<strong>Berlin</strong>),<br />

HASYLAB / DESY (Hamburg)<br />

3. Results in <strong>2003</strong><br />

A highly-efficient femtosecond sesquioxide<br />

laser applying a semiconductor saturable<br />

absorber mirror (SESAM) for passive modelocking<br />

was demonstrated. Using an Yb:Sc 2 O 3<br />

crystal in a diode-pumped oscillator, pulses<br />

as short as 255 fs at 1042.5 nm were<br />

generated with a 85 MHz repetition rate. The<br />

time-bandwidth product amounted to 0.35, i.e.<br />

close to the Fourier limit [KPG04]. The smallest<br />

quantum defect for an optically pumped laser<br />

crystal could be demonstrated at room<br />

temperature, using a 125 µm-thin platelet of<br />

KYb(WO 4 ) 2 , a stoichiometric Yb-containing<br />

crystal belonging to the class of the monoclinic<br />

double tungstates. While pumping at 1025 nm,<br />

lasing occurred at 1042 nm which<br />

corresponds to a quantum defect of only 1.6%<br />

[KPG03b]. We demonstrated first modelocking<br />

of a Nd 3+ -doped microstructure fiber<br />

laser using a SESAM (Fig. 1a, b). A pulse width<br />

of 25 ps and a peak power of 4 W could be<br />

achieved. Despite the huge potential, only<br />

isolated reports of such mode-locked<br />

microstructure fiber lasers can be found in the<br />

literature [1].<br />

A high dynamic range third-order crosscorrelator<br />

was developed for ASE temporal<br />

contrast characterization of the HFL<br />

Ti:sapphire laser. The correlator supports<br />

scanning range of ± 250 ps with duration of a<br />

single step of 20 fs. and dynamic range of<br />

measurement >5 10 9 . The whole dynamic<br />

range can be realized with input pulses of 40 fs<br />

duration, energy of 1 mJ at 5 mm diameter<br />

(Fig. 2a). The ASE temporal contrast of the HFL<br />

Ti:sapphire laser was characterized with the<br />

third-order cross-correlator (Fig. 2b). The ASE<br />

level was found to be ~10 -7 . Substantial<br />

development has been done in the framework<br />

of the European SHARP collaboration to<br />

investigate pulse-cleaning methods using the<br />

double-CPA-scheme; this project will be<br />

concluded in 2004.<br />

Fig. 2a:<br />

Dynamic range of the<br />

third-order crosscorrelator<br />

by blocking<br />

the fundamental and<br />

frequency doubled<br />

arms.<br />

Fig. 2b:<br />

Third-order crosscorrelation<br />

trace of the<br />

HFL Ti:sapphire laser.<br />

The ASE temporal<br />

contrast level is ~10 -7 .<br />

15


16<br />

Fig. 3a:<br />

Scheme of the tunable<br />

femtosecond light source<br />

to be applied as a pump/<br />

probe laser for the<br />

TESLA FEL.<br />

Fig. 3b:<br />

Output pulse train of the<br />

tunable femtosecond<br />

pump/probe laser<br />

By controlling the optical phase distortion<br />

originating from a non-parabolic temperature<br />

gradient an average power as high as 27 W<br />

has been achieved in the gain-switched<br />

regime. Pulses with up to 0.8 mJ and 65 fs<br />

pulse duration at 10 kHz repetition rate have<br />

been obtained in a single stage laser system.<br />

The tunable pump/probe laser for the<br />

TESLA FEL is designed for production of<br />

trains of femtosecond pulses (Fig. 3a,b). This<br />

time structure is demanded by the TTF FEL<br />

which is under development at DESY. In <strong>2003</strong>,<br />

Other references<br />

[1] K. Furusawa, T. M. Monro, P. Petropoulos, and D.<br />

J. Richardson, Electron. Lett. 37, (2001) 560.<br />

Own publications <strong>2003</strong><br />

(for full titles and list of authors see appendix 1)<br />

BHJ03: R. Bakker et al.; Nucl. Instr. Meth. Phys.<br />

Res. A 507 (<strong>2003</strong>) 210-4<br />

GFH03: Ch. Gerth et al.; Nucl. Instr. Meth. Phys.<br />

Res. A 507 (<strong>2003</strong>) 335-9<br />

JBE03: D. Janssen et al.; Nucl. Instr. Meth. Phys.<br />

Res. A 507 (<strong>2003</strong>) 314-7<br />

KPG03a: P. Klopp et al.; Opt. Lett. 28 (<strong>2003</strong>) 322-4<br />

KPG03b: P. Klopp et al.; Jpn. J. Appl. Phys. 42 (<strong>2003</strong>)<br />

246-8<br />

KPGc03: P. Klopp et al.; SPIE Proc. 4968 (<strong>2003</strong>)<br />

46-53<br />

in press (as of Jan. 2004)<br />

BKK: I. A. Begishev et al.; Journal of the Optical<br />

Society of America<br />

KPG04: P. Klopp et al.; Opt. Lett.<br />

ZKo: N. Zhavoronkov and G. Korn; Opt. Lett.<br />

submitted (until 21st Feb. 2004)<br />

ASA: A. Aznar et al.; Appl. Phys. Lett.<br />

GKGa: U. Griebner et al.; Appl. Phys. Lett.<br />

MPA: X. Mateos et al.; IEEE J. Quantum Elect.<br />

ZTo: N. Zhavoronkov and K. Tominaga; Opt. Lett.<br />

a new pump laser for the OPCPA system has<br />

been developed and installed. The pump laser<br />

contains a precisely synchronized oscillator<br />

and a chain of diode-pumped preamplifiers.<br />

The installation of this new pump laser has<br />

significantly improved the stability and the<br />

output power of the OPCPA process.<br />

The output energy of the Optical Parametric<br />

Amplifier (OPA), which is the major part of the<br />

pump/probe laser, has been increased to 70 µJ<br />

per single pulse and to a total energy of 12 mJ<br />

per pulse train. In addition to the installation of<br />

the new pump laser, this has been reached by<br />

extending the former two crystal OPA with a<br />

third OPA stage which operates near saturation<br />

(G~10). The third OPA amplifier stage has been<br />

optimized to obtain a reasonably conversion<br />

efficiency from pump to signal beam (presently:<br />

20%).


Research focus 2<br />

Ultrafast and Nonlinear Phenomena in Atoms, Molecules,<br />

Clusters and Plasmas<br />

Research focus 2 is devoted to ultrafast<br />

and nonlinear processes in atoms, molecules,<br />

clusters and plasma induced by short laser<br />

pulses. It is based on four projects, which jointly<br />

work on two main topics:<br />

The first topic, matter in ultrastrong laser<br />

fields, aims at the investigation of fundamental<br />

processes in laser interaction with gas phase<br />

and condensed matter targets, whereby field<br />

strength (intensity) and energy of the short laser<br />

pulse play the decisive role. Three main<br />

research topics are in the focus of the <strong>MBI</strong><br />

interest: First, differential studies on multiple<br />

ionization dynamics in atoms, molecules and<br />

clusters using elaborate experimental<br />

detection techniques are performed at high<br />

and ultra-high laser intensities including those<br />

in the relativistic regime. Second, ion/proton<br />

generation from laser produced plasmas, in<br />

particular fast collimated proton beams, are<br />

investigated as a basic research topic and will<br />

be used as novel diagnostic imaging tool for<br />

relativistic plasma dynamics, utilizing the<br />

unique possibility of synchronizing two<br />

separate high-power lasers. Third, the development<br />

of a compact coherent x-ray laser source<br />

(x-ray laser) from a laser-driven plasma is<br />

being pursued, utilizing recent <strong>MBI</strong> breakthrough<br />

results in low-power pumping<br />

schemes. Experimental activities are comprehensively<br />

supported by theoretical work.<br />

The second topic, studies of ultrafast<br />

structural changes, is concerned with the<br />

investigation of nuclear and electronic<br />

dynamics in biologically relevant molecules<br />

in the gas phase and in biomolecules in the<br />

condensed phase. It relies on ultrafast pump<br />

probe techniques to elucidate reaction<br />

dynamics in real time.<br />

Both topics apply the whole range of laser<br />

technologies currently available at the <strong>MBI</strong>.<br />

Moreover, the projects are designed to respond<br />

fast to new laser technologies as they are<br />

developed at the <strong>MBI</strong>, partly within the projects,<br />

and partly in collaboration with other leading<br />

laser facilities worldwide. The latter fact is<br />

supported already by ongoing collaborations<br />

with leading laser groups, for example, on<br />

ionisation dynamics with the nowadays shortest<br />

available few cycle laser pulses. We specifically<br />

mention the laser research at the <strong>MBI</strong> on short<br />

VUV and x-ray pulses and on mid infrared<br />

pulses, which extends the range of possible<br />

investigations substantially.<br />

Matter in ultrastrong laser fields<br />

(2-01, 2-02, 2-03):<br />

A joint effort of projects 2-02 and 2-03<br />

explores the different facets of fundamental<br />

ionization mechanisms of gas phase targets<br />

at non-relativistic and relativistic laser<br />

intensities. Multiple ionization of atoms and<br />

ions is studied with special emphasis on the<br />

role of electron dynamics (mainly project 2-02)<br />

and yield a detailed understanding of the<br />

fundamental ionisation process. Recent breakthrough<br />

results have been achieved as a result<br />

of interdisciplinary collaborations with external<br />

groups by novel combinations of detector and<br />

laser equipment, and through close collaboration<br />

with theory. Those results are the basis<br />

for tackling laser matter interaction studies in<br />

more complicated systems such as molecules<br />

and clusters, performed both in projects 2-02<br />

and 2-03 with emphasis on non-perturbative<br />

strong-field effects and multi-photon effects,<br />

respectively. Experimentally the projects are<br />

closely inter-linked through sharing of<br />

technology and knowledge on the “reaction<br />

microscope” and on molecule and cluster<br />

sources.<br />

In project 2-01 highest laser fields are<br />

applied to produce highly charged relativistic<br />

plasmas, which will be investigated with<br />

emphasis on ion/proton acceleration and the<br />

formation of a collimated charged particle<br />

beam. This beam, in turn, shall be used as a<br />

plasma diagnostic tool, also known as<br />

"proton imaging", to monitor processes in<br />

laser produced relativistic plasmas. With the<br />

synchronisation of the two <strong>MBI</strong> high field lasers<br />

an internationally almost unique possibility is<br />

available – to perform such investigations. The<br />

verification of predicted phenomena on field<br />

structures like solitons and electron currents<br />

in the plasma is the first near-term goal. The<br />

plasma studies will be complemented by the<br />

development of a collisional x-ray laser based<br />

on a transition in silver like nickel ions. Stable<br />

lasing was already observed at yet unrivaled<br />

low driver energies, a result of combining<br />

several recent <strong>MBI</strong> research results in this<br />

area. The work aims at the development of<br />

a compact x-ray laser with high repetition<br />

rate for applications, which require close<br />

collaboration with project area 1 (laser<br />

research) regarding the development of a<br />

high-power, high-repetition rate driver laser.<br />

17


18<br />

Studies of ultrafast structural<br />

changes (2-03, 2-04):<br />

Projects 2-03 and 2-04 perform<br />

complementary studies to gain insight into<br />

ultrafast structural changes in molecules and<br />

biomolecules.<br />

The corresponding work in project 2-03 is<br />

focussed on the investigation of photochemical<br />

reactions of biologically relevant<br />

systems in the gas phase, induced and probed<br />

with low intensity short laser pulses. A particular<br />

research focus are the excited states dynamics<br />

of chromophore molecules embedded in small<br />

clusters or solvent molecules. This allows the<br />

detailed study of solvation effects in vacuo,<br />

with particular emphasis on the key processes<br />

of hydrogen, proton and electron transfer,<br />

internal conversion, isomerisation and fragmentation.<br />

The experimental methods are<br />

based on pump-probe ionization spectroscopy<br />

with time-resolved detection of photoelectrons<br />

and photoions separately or in coincidence.<br />

Recent developments also allow the direct<br />

detection of atomic hydrogen formed by<br />

molecular fragmentation.<br />

The target of project 2-04 is the real time<br />

observation of ultrafast structural changes in<br />

molecular and biomolecular systems in the<br />

condensed phase. Investigations focus on<br />

structural changes due to dynamical interaction<br />

with the surroundings such as liquid<br />

solvents or the protein backbone and on<br />

observations of geometrical rearrangements<br />

due to optically triggered chemical reactions.<br />

The main underlying experimental technique<br />

is the ultrafast vibrational spectroscopy.<br />

New exciting fields of structural dynamics<br />

might be adressed, if techniques applied in<br />

these projects are combined with near-field<br />

microscopy or ultrafast X-ray diffraction; the<br />

corresponding new methods are developed<br />

in the third research focus area at the <strong>MBI</strong>.


2-01: Laser Plasma Dynamics<br />

K. A. Janulewicz, P. V. Nickles, M. Schnuerer (Project Coordinators)<br />

and S. Busch, P. Priebe, S. Ter-Avetisyan, J. Tümmler<br />

1. Overview<br />

Highly ionized plasmas by short intense<br />

laser pulse irradiation are investigated in two<br />

directions:<br />

First, with ultra-intense laser pulses relativistic<br />

plasma dynamics is studied. Here, we focus<br />

on the investigation of ion /proton acceleration<br />

from structured foil and microdroplet targets.<br />

In detail, mechanisms leading to ion acceleration<br />

and generation of ion beams with well<br />

characterized parameters will be studied.<br />

Using such a proton beam generated by one<br />

laser we want to study plasma dynamic effects<br />

in a second plasma. This radiographic method,<br />

also called proton imaging, allows to gain<br />

knowledge about the acceleration process<br />

itself. Additionally, we want to investigate by<br />

this new method field structures (solitons,<br />

electron currents a.o.) appearing in a relativistic<br />

plasma. Results of these basic physics investigations<br />

open for the first time a view into such<br />

an extreme hot, dense and well localized<br />

plasma and are necessary as input data for<br />

relevant simulations.<br />

Ultra-intense laser pulse accelerated ion/<br />

proton generation is a rapidly emerging field;<br />

international activities started two years ago<br />

and first results on proton imaging have been<br />

demonstrated very recently. The progress in<br />

this field will be determined by the access to<br />

ultraintense lasers, sophisticated targets as<br />

well as complex diagnostic tools. <strong>MBI</strong> is part<br />

of a national consortium of university<br />

laboratories and research institutions (Munich,<br />

Düsseldorf, Jena) where this topic will be<br />

studied over a wide range of laser parameters,<br />

with applications in plasma physics,<br />

astrophysics, and nuclear physics. <strong>MBI</strong>’s<br />

contributions arise from the unique possibility<br />

of synchronized operation of two separate<br />

high-field lasers, each of which has internationally<br />

competitive pulse characteristics,<br />

and from the ongoing research and results on<br />

the plasma dynamics of laser irradiated lowdensity<br />

targets.<br />

We have started our research by<br />

investigating the ion/proton acceleration in<br />

isolated microdroplets. Using newly developed<br />

high resolution diagnostic on the base of<br />

Thomson spectrometers we could demonstrate<br />

some unexpected emission characteristics of<br />

the ions/protons. This studies will be continued<br />

and the results compared with PIC<br />

simulations.<br />

Two <strong>MBI</strong> high field lasers (a 1ps, >5J CPA<br />

glass laser and the 35 fs, ~1 J Ti:Sa laser) are<br />

to be synchronized with 1 ps accuracy during<br />

the next year and the same are basis the<br />

experiments in the near future. This setup is<br />

unique world-wide.<br />

The second sub-project is concerned with<br />

research on optimum plasma conditions for<br />

compact (table-top) so called “X-ray lasers”,<br />

working in the EUV-region around 10-13nm.<br />

The main long-term goal of the project is an Xray<br />

laser with a practically useful average<br />

power of ~1 mW .<br />

A nickel-like silver X-ray laser operating<br />

on the 4d-4p transition at the wavelength of<br />

13.9 nm has been chosen as the main research<br />

object and as a scheme for future development.<br />

This wavelength is very close to the future<br />

industrially important EUV-lithography wavelength<br />

at 13.4 nm. Hence, a mutual benefit<br />

between the planned x-ray laser and EUV<br />

lithography in the area of diagnostics (optical<br />

component quality control, interferometry etc.)<br />

and availability of optical components for new<br />

applications is expected.<br />

Using previous <strong>MBI</strong> results and expertise<br />

in x-ray laser research, together with recent<br />

2002/<strong>2003</strong> results on the characterization of<br />

the single shot XRL output, a repetitive<br />

operation mode at 10 Hz applying the <strong>MBI</strong><br />

Ti:Sa laser will be the first stage on the way<br />

towards the long-term project goal. Realization<br />

of a kHz repetitive silver X-ray laser will require<br />

parallel development of a driving laser replacing<br />

the current multi-Joule glass-laser by a modern,<br />

diode pumped system with pulse energies at<br />

the Joule-level, but high repetition rate.<br />

The X-ray laser realised on this way is<br />

foreseen for applications taking advantage of<br />

its narrow spectral bandwidth and good spatial<br />

coherence of its emission. Plasma interferometry<br />

is especially promising and important<br />

application. On the other hand, narrow spectral<br />

bandwidth and high photon number together<br />

with high photon energy makes this source<br />

also very attractive for specific spectroscopic<br />

applications. Using such a source for<br />

spectroscopy of highly charged heavy ions is<br />

matter of a joint project with the GSI Darmstadt.<br />

Such a compact soft x-ray source with high<br />

repetition rate will be a valuable tool<br />

complementary in many aspects to future<br />

large-scale short-wavelength FELs (Free<br />

Electron Lasers).<br />

19


20<br />

Fig.1:<br />

Proton emission from a<br />

single droplet and microdroplets<br />

in a spray. The<br />

emission is recorded<br />

with a MCP-Thomson-<br />

Spectrometer using a<br />

single laser pulse with<br />

about 40 fs and<br />

10 19 W/cm 2 .<br />

Fig. 2:<br />

Near-field image of the<br />

X-ray laser beam. The<br />

output energy of ~5 µJ<br />

corresponds to 10 11<br />

photons in a single pulse.<br />

The beam has a diameter<br />

of about 50 µm.<br />

The intense central part<br />

is here splitted by the<br />

wires of the filter support,<br />

which are visiblle<br />

only in diagnostics.<br />

Many groups worldwide focus their activity<br />

on this topic. Presence at the forefront requires<br />

permanent access to suitable pump lasers.<br />

Therefore, a part of the group activity is devoted<br />

to active development of such a driving laser.<br />

2. Subprojects<br />

Research in this project is structured in two<br />

major subprojects:<br />

UP1: Investigation of relativistic laser plasmas<br />

with MeV-proton beam imaging<br />

Collaborations: Univ. Düsseldorf, Univ. Jena,<br />

LMU München, MPQ Garching: Joint project<br />

proposals for ion acceleration and proton<br />

imaging, including applications in plasma<br />

diagnostics, astrophysics and nuclear physics.<br />

UP2: Coherent XUV-radiation from laser<br />

plasmas (X-ray lasers) and its optimization<br />

for applications<br />

Collaborations: T. Kühl, GSI Darmstadt,<br />

Development of an x-ray laser for heavy-ion<br />

spectroscopy at the GSI;<br />

Prof. H Fiedorowicz, Warsaw, Development of<br />

gas targets for x-ray lasers;<br />

Prof. A Zigler, Jerusalem; Guiding in capillary<br />

targets for x-ray lasers;<br />

Prof. G.J. Pert, York, Numerical modelling of Xray<br />

lasers;<br />

UK XRL Consortium, LIXAM Paris, PALS<br />

Prague, Univ. Bern: Joint European Project<br />

proposal for table-top X-ray lasers.<br />

3. Results in <strong>2003</strong><br />

In the project part related to the relativistic<br />

plasma physics we have obtained two<br />

important results which are relevant to the<br />

physics of proton acceleration with ultraintense<br />

laser fields. In contrast to the previously<br />

reported in the literature smooth proton (and<br />

ion) energy distribution, we observed with our<br />

high-resolution single-shot diagnostic specific<br />

breaks or dips in proton spectra extending to<br />

energies of 1.4 MeV. Such an effect can be<br />

explained by an self-similar plasma expansion<br />

model assuming two components of the electron<br />

temperature. At present we are investigating<br />

validity of this model for our experimental<br />

parameters and developing a new model<br />

scenario, including also the influence of<br />

different ion species. First PIC simulation<br />

regarding this topic have been started.<br />

This new observation was registered for<br />

different target systems such as single water<br />

droplets [BTS03,TSB] with a diameter of 20<br />

micron and a spray of an ensemble of microspheres<br />

(droplets) having a diameter of 150 nm<br />

each. In Fig.1 we depict two proton spectra of<br />

these target systems. Well pronounced dips<br />

are seen. We could also demonstrate for the<br />

first time proton emission with energy above<br />

1 MeV from isolated micro-targets having an<br />

extension several times below the laser wavelength<br />

[BTS03,TSB]. This was possible with a<br />

newly developed spray source [STB]. These<br />

data is especially interesting concerning recent<br />

predictions on the laser energy conversion to<br />

protons of high kinetic energy while very tiny<br />

solid objects are exposed to extreme intense<br />

laser light.<br />

All these experiments are very sensitive to<br />

the laser pulse parameters and especially the<br />

laser pulse contrast is a crucial parameter in<br />

relativistic-laser-intensity matter interaction<br />

(see relevant activities in projects 4.02, 1.02<br />

and SHARP (EU)). The obtained proton<br />

emission from the spray target indicates that<br />

during propagation of the high intensity laser<br />

pulse the temporal contrast of the leading<br />

pulse front changes. The pulse contrast of<br />

about 10 -7 prevents high-intensity laser interaction<br />

with a small object at high density. The<br />

investigation of the processes involved will<br />

help to find suitable laser-target concepts<br />

supporting need of low laser energy for the<br />

envisioned proton imaging studies in the MeV<br />

range.


Within the sub-project “X-ray laser” the<br />

output parameters of a Ni-like Ag soft X-ray<br />

laser has been measured and estimated. The<br />

beam parameters such as divergence, intensity<br />

distribution (Fig.2) spatial coherence and output<br />

energy have been quantitatively defined.<br />

It was found that at the divergence of 3 mrad<br />

and the output energy of 3-5 µJ conservatively<br />

estimated contribution of highly coherent<br />

photons was between 1 and 10 % [LJK]. The<br />

total number of photons in a single shot was<br />

about 10 11 .<br />

The output characteristics determined as<br />

a function of the pump parameters have shown<br />

that the pump energy lower than 1 J is sufficient<br />

to obtain the emission spectrum dominated<br />

by the lasing line [JLP03].<br />

On the other hand, investigation on the<br />

capillary confined plasmas delivered<br />

additional information on physics of interaction<br />

of a strong-field radiation with an underdense<br />

plasma [JBL03]. A qualitative condition [JBL03]<br />

for the length of the confined plasma as an<br />

active medium has been formulated.<br />

Own Publications <strong>2003</strong> ff<br />

(for full titles and list of authors see appendix 1)<br />

BTS03: S. Busch et al.; Appl. Phys. Lett. 82 (<strong>2003</strong>)<br />

3354-6<br />

GRR: R. A. Ganeev et al.; Opt. Commun. 225 (<strong>2003</strong>)<br />

131-9<br />

JBL03: K. A. Janulewicz et al.; J. Opt. Soc. Am. B 20<br />

(<strong>2003</strong>) 215-20<br />

JLP03: K. A. Janulewicz et al.; Phys. Rev. A 68 (<strong>2003</strong>)<br />

051802-5<br />

JLS03: K. A: Janulewicz et al.; Laser Technology VII:<br />

Progress in Lasers, SPIE Proceedings 5230<br />

(<strong>2003</strong>) 189-94<br />

RGR03: A. I. Ryasnyanskiy et al.; Fullerenes,<br />

Nanotubes, and Carbon Nanostructures 12<br />

(<strong>2003</strong>) 333-9<br />

TSS03: S. Ter-Avetisyan et al.; J. Phys. D: Appl. Phys.<br />

36 (<strong>2003</strong>) 2421-6<br />

in press (as of Jan. 2004)<br />

BST: S. Busch et al.; Appl. Phys. B<br />

JLP: K. A. Janulewicz et al.; X-ray Spectrometry<br />

JPL: K. A. Janulewicz et al.; SPIE Proc.<br />

LJK: A. Lucianetti et al.; Opt. Lett.<br />

NJP: P. V. Nickles et al.; SPIE Proc.<br />

NJS: P. V. Nickles et al.; in Strong laser field physics<br />

STB: M. Schnürer et al.; Appl. Phys. B<br />

submitted (until 21st Febr. 2004)<br />

Jan: K. A. Janulewicz; X-ray Spectrometry<br />

JNK: K. A. Janulewicz et al.; Phys. Rev. A<br />

RCF: H. Ruhl et al.; Phys. Rev. Lett.<br />

RCG: H. Ruhl et al.; Phys. Rev. Lett.<br />

Ruha: H. Ruhl; Phys. Rev. Lett.<br />

Ruhb: H. Ruhl; Phys. Rev. Lett.<br />

TSB: S. Ter-Avetisyan et al.; Phys. Rev. Lett.<br />

21


22<br />

2-02: Ionization dynamics in intense laser fields<br />

W. Becker, U. Eichmann, H. Rottke (Project coordinators)<br />

and D. Bauer, E. Eremina , S. Gerlach, E. Gubbini, H. Hetzheim, R. Jung, Th. Kwapien, X. Liu, M. Piantek<br />

1. Overview<br />

The project aims at the comprehensive<br />

analysis of basic interaction mechanisms of<br />

isolated atoms/ions, molecules and clusters<br />

with intense laser fields.<br />

Experimental work concentrates on the<br />

investigation of ionization processes at light<br />

intensities between 10 14 W/cm 2 and 10 20 W/cm 2 .<br />

It focuses on the significance and the<br />

manifestations of electron-electron correlation,<br />

the influence of relativistic effects on multiple<br />

ionization and on the manipulation of multiple<br />

ionization processes via laser pulse<br />

characteristics. In particular, few-cycle pulses<br />

with stabilized carrier-envelope phase and<br />

defined state of polarization will be applied as<br />

well as two-color pulses, which typically consist<br />

of an (intense) infrared laser pulse with an<br />

ultrashort high-order harmonic superimposed.<br />

The latter can be timed with respect to the<br />

former. The physics is dominated by the interplay<br />

between tunneling processes, free electron<br />

motion and electron-ion collisions in the presence<br />

of time-dependent external fields. Furthermore,<br />

research is focused on the interaction<br />

between correlated electron dynamics in tightly<br />

bound inner shells and relativistic laser fields.<br />

The investigations will be extended to ionic<br />

targets. In particular, a setup to create lasercooled<br />

ionic targets in a linear Paul trap is under<br />

construction, where single ions will be ionized<br />

by ultra-high intensity fields form the <strong>MBI</strong> Ti:Sa<br />

laser in order to study multiple ionization in<br />

highly charged ions. The target ion will remain<br />

cooled through sympathetic cooling from the<br />

neighboring singly-ionized ions in the trap.<br />

Theoretical work concentrates on the<br />

description of intense-laser atom processes in<br />

terms of the “S-matrix” together with the "strongfield<br />

approximation". As applications, single and<br />

multiple ionization of atoms and molecules are<br />

considered, at intensities reaching up into the<br />

relativistic regime. For the interaction of lasers<br />

with clusters a wide range of methods is utilized:<br />

simple models, classical-trajectory calculations<br />

and time-dependent density-functional<br />

methods.<br />

The long term perspective of this project,<br />

which relies on a strong interplay between<br />

theoretical and experimental investigations,<br />

is a detailed and complete understanding of<br />

strong field multiple ionization processes.<br />

2. Subprojects and Collaborations<br />

UP1: Dynamics of strong field multiple<br />

ionization<br />

Collaborations with H. Walther (<strong>Max</strong>-Planck<br />

<strong>Institut</strong> für Quantenoptik) and G. G. Paulus<br />

(MPQ, now College Station, TX), F. Krausz (TU<br />

Vienna and MPQ), P.Agostini (Humboldtresearch<br />

award), T. F. Gallagher (University of<br />

Virginia), G.von Oppen (TU <strong>Berlin</strong>);<br />

Joint DFG funded project with R. Moshammer<br />

and J. Ullrich (<strong>Max</strong>-Planck <strong>Institut</strong> für Kernphysik);<br />

DFG funded project within the DFG Schwerpunkt<br />

“Wechselwirkung intensiver Laserfelder<br />

mit Materie”;<br />

Joint DFG funded project with G. von Oppen<br />

(TU <strong>Berlin</strong>) on laser cooling of metastable<br />

helium, which uses the laser infrastructure<br />

(cw-cooling lasers) of the ion trapping activity.<br />

Collaborations on theory projects with D. B.<br />

Milosevic (University of Sarajevo) (Volkswagen-<br />

Stiftung-supported project), H. Schomerus<br />

(MPIPKS), C.Faria (Univ. Hannover).<br />

In-house collaboration with M. Zhavoronkov<br />

and project 2.03, project 2.01 and with the HFL<br />

application laboratory.<br />

UP2: High intensity laser-cluster interaction<br />

Collaboration with D.F. Zaretsky, S.V. Fomichev<br />

(Kurchatov <strong>Institut</strong>, Moskau), S.V. Popruzhenko<br />

(Moscow Engineering Physics <strong>Institut</strong>e (State<br />

University)) (DFG-supported project), A. Macchi,<br />

F. Ceccherini (Pisa University).<br />

In house with project 2-03 on cluster in strong<br />

laser fields (A. Stalmashonak, M. Zvavarankau,<br />

M. Boyle, C. P. Schulz).<br />

3. Results in <strong>2003</strong><br />

UP1: Dynamics of strong field multiple<br />

ionization<br />

Molecular structure and e - correlation in<br />

strong field double ionization: The influence<br />

of the structure of simple diatomic molecules<br />

on the final state electron momentum<br />

correlation after non-sequential double<br />

ionization [ELR03] has been investigated. The<br />

experiment used the <strong>MBI</strong> reaction microscope,<br />

developed in cooperation with the MPI<br />

Heidelberg group, and a short-pulse (35 fs)<br />

Ti:sapphire laser system with 100 kHz<br />

repetition rate developed at the MPQ [1]. It<br />

allowed us to reach light intensities of up to<br />

2.5 x 10 14 W/cm 2 . The high repetition rate of


this laser system is optimally suited for the<br />

highly differential coincident electron-ion<br />

momentum spectroscopy studies possible<br />

with the reaction microscope.<br />

In summary, the momentum correlation of<br />

the two photoelectrons from non-sequential<br />

double ionization of O 2 and N 2 shows a<br />

completely different structure (Fig. 1). On the<br />

assumption that double ionization of both<br />

molecules is initiated by the electron recollision<br />

mechanism we were able to trace<br />

the difference back to the symmetry<br />

characteristics of the initial state single particle<br />

orbitals (O 2 ungerade and N 2 gerade) from<br />

where the two electrons are removed [ELR03].<br />

This was achieved by a classical model<br />

developed at <strong>MBI</strong>. It is based on a classical<br />

analog of the corresponding quantum<br />

mechanical S-matrix [FLB]. The main features<br />

of the experimental correlation are reproduced<br />

by this model for both molecules. The<br />

differences found are due to differing scattering<br />

interference induced by the initial state orbital.<br />

In the context of S-matrix calculations of<br />

the momentum correlation the Coulomb<br />

repulsion between the two electrons in the final<br />

state was incorporated into the theory. In<br />

general it does not improve agreement<br />

between theory and experiment. Agreement<br />

is best, at least for neon, for the very simplest<br />

model, which describes the electron-electron<br />

interaction, by which the returning electron<br />

dislodges the bound electron, by a three-body<br />

contact interaction disregarding the subsequent<br />

Coulomb repulsion [FLB,FLS].<br />

Classical cutoff laws that govern NSDI have<br />

been established [MBeb].<br />

Atoms in relativistic laser fields: The<br />

generation of high harmonics in relativistic<br />

laser fields has been theoretically investigated<br />

[MBe03a] . As expected, emission of ultrahighorder<br />

harmonics is strongly suppressed<br />

compared with the nonrelativistic calculation,<br />

since the rescattering mechanism becomes<br />

inefficient owing to the E x B drift. In parallel,<br />

only one orbit starts to dominate so that<br />

interference effects no longer play a role.<br />

Laser intensity dependent ion yields in rare<br />

gases have been measured to obtain<br />

information on the ionization process for laser<br />

intensities, where the transition from the non<br />

relativistic to the relativistic regime takes place.<br />

It has been observed in Ne and Kr, that the<br />

rescattering mechanism is already substantially<br />

suppressed in the intensity range between<br />

10 17 W/cm 2 and 10 18 W/cm 2 .<br />

Atoms in resonant laser fields: As a side<br />

result we mention that for new spectroscopic<br />

data of a highly excited two electron system in<br />

weak resonant laser fields the commonly<br />

accepted Fano theory [2] on configuration<br />

interaction has been found to be incomplete<br />

to describe the spectra and has been reformulated<br />

accordingly [EGK03].<br />

Few Cycle pulses: Highly nonlinear processes<br />

in laser-irradiated atoms, such as<br />

above-threshold ionization (ATI), high-order<br />

harmonic generation, and nonsequential<br />

double ionization are being reinvestigated with<br />

the help of laser pulses that consist of just a<br />

few cycles. Besides their carrier frequency,<br />

peak intensity, and length, such pulses depend<br />

on one additional parameter: the relative<br />

phase between the maximum of the pulse<br />

envelope and the nearest maximum of the<br />

carrier wave. The value of this phase crucially<br />

determines the shape of the few-cycle pulse<br />

and the effects it causes in a highly nonlinear<br />

interaction. For example, the plateau in the<br />

angle-resolved energy spectrum of high-order<br />

ATI dramatically depends on this "absolute<br />

phase".<br />

We have carried out calculations of the<br />

high-order ATI spectrum that, by comparison<br />

with an experimental spectrum, allow one to<br />

determine the actual value of the absolute<br />

phase. High-order above-threshold ionization<br />

spectra have been calculated in the context of<br />

the strong-field approximation for few-cycle<br />

pulses with specified carrier-envelope phase<br />

as a function of the latter. Comparison with the<br />

experimental data allows the determination<br />

of the carrier-envelope phase in a given<br />

experimental run. Characteristic interference<br />

effects can be traced to particular classical<br />

orbits [MPB03b,MPB03,MPB c].<br />

Fig. 1:<br />

Final state electron<br />

momentum correlation<br />

after strong field nonsequential<br />

double<br />

ionisation of O 2 and N 2<br />

at light intensities of<br />

1.7 x 10 14 W/cm 2 (O 2 )<br />

and 1.5 x 10 14 W/cm 2<br />

(N 2 ). Shown is the<br />

momentum component<br />

parallel to the light<br />

polarization axis.<br />

23


24<br />

Fig. 2:<br />

Probability of abovethreshold<br />

ionization of<br />

krypton by a Ti:Sa 4cycle<br />

sine-square pulse<br />

with intensity 10 14 W/cm 2<br />

as a function of the<br />

electron energy. The<br />

absolute phase is f=0°,<br />

and the spectra are for<br />

the two detector position<br />

theta=0° circle (dashed<br />

curve) and theta=180°<br />

(solid curve) opposite to<br />

each other along the<br />

polarization axis of the<br />

laser field.<br />

UP2: High intensity laser-cluster interaction<br />

Our theoretical work focuses on the<br />

ionization dynamics of rare gas clusters in<br />

strong laser fields, especially the complex<br />

interplay between inner and outer ionization,<br />

and on the mechanisms of laser energy<br />

absorption in such systems.<br />

Mie surface plasmon resonance: In the year<br />

<strong>2003</strong> particular attention was payed to the nonlinear<br />

excitation of the Mie surface plasmonresonance<br />

via the third harmonic of the driving<br />

laser field, to the collective electron dynamics<br />

inside clusters, and to a self-consistent treatment<br />

of the inneratomic dynamics in molecular<br />

dynamics simulations of laser-cluster interaction.<br />

Under typical conditions the Mie frequency<br />

is around 5 eV, about three times the Ti:Sa laser<br />

frequency, which suggests that three-photon<br />

excitation of the Mie resonance plays a role. This<br />

surmise is supported by a model that treats the<br />

electron cloud inside the cluster as an incompressible<br />

fluid [FZP03a,FZP03b] as well as<br />

by classical-trajectory calculations. The models<br />

predict a strong presence of the third harmonic<br />

in the electric field inside the cluster, which should<br />

be visible in the scattered radiation and might<br />

enhance the generation of high charge states.<br />

Dynamical ionization ignition: A dynamical<br />

version of the well-known ionization ignition<br />

mechanism in clusters was revealed by timedependent<br />

density functional theory simulations<br />

of a one-dimensional model cluster [BMa03]. A<br />

bouncing wave packet was found to build up<br />

inside the cluster that is driven into resonance<br />

with respect to the laser field and thus leads to<br />

both efficient absorption of laser energy and<br />

increased ionization. This "dynamical ionization<br />

ignition" scenario is supported by threedimensional,<br />

semi-classical molecular dynamics<br />

calculations where the inner atomic dynamics<br />

of many-electron atoms is treated explicitly<br />

[Baua].<br />

Other references<br />

[1] F. Lindner, G. G. Paulus, F. Grasbon, A. Dreischuh,<br />

and H. Walther, IEEE J. Quant. Electron. 38, 1465<br />

(2002)<br />

[2] U. Fano, Phys. Rev. 124, 1866 (1961)<br />

Own publications <strong>2003</strong> ff<br />

(for full titles and list of authors see appendix 1)<br />

AFF03: O. A. Castro Alvaredo et al.; Phys. Rev. B 67<br />

(<strong>2003</strong>) 125405-14<br />

BCe03: D. Bauer and F. Ceccherini; Laser Phys. 13<br />

(<strong>2003</strong>) 475-83<br />

BGK03: W. Becker et al.; in Many-particle quantum<br />

dynamics in atomic and molecular fragmentation<br />

(<strong>2003</strong>) Vol. 35, 185-204<br />

BMa03: D. Bauer and A. Macchi; Phys. Rev. A 68<br />

(<strong>2003</strong>) 033201/1-10<br />

CBC03: F. Ceccherini et al.; Phys. Rev. A 68 (<strong>2003</strong>)<br />

053402/1-9<br />

EGK03: U. Eichmann et al.; Phys. Rev. Lett. 90 (<strong>2003</strong>)<br />

233004-1/1-4<br />

ELR03: E. Eremina et al.; Journal of Physics B-Atomic<br />

Molecular and Optical Physics 36 (<strong>2003</strong>) 3269-80<br />

FBe03: C. Figueira de Morisson Faria and W.<br />

Becker; Laser Phys. 13 (<strong>2003</strong>) 1196-204<br />

FZP03a: S. V. Fomichev et al.; Optics Express 11<br />

(<strong>2003</strong>) 2433-9<br />

FZP03b: S. V. Fomichev et al.; J. Phys. B: At. Mol.<br />

Opt. Phys. 36 (<strong>2003</strong>) 3817-34<br />

GKP03: S. P. Goreslavski et al.; J. Mod. Opt. 50<br />

(<strong>2003</strong>) 423-40<br />

JGO03: R. Jung et al.; in Interactions in ultracold<br />

gases: from atoms to molecules (<strong>2003</strong>) 394-8<br />

JGS03: R. Jung et al.; Eur. Phys. J. D 23 (<strong>2003</strong>)<br />

415-9<br />

KBM03: R. Kopold et al.; Phys. Scr. 68 (<strong>2003</strong>) C76-81<br />

MBe03a: D. B. Milosevic and W. Becker; J. Mod. Opt.<br />

50 (<strong>2003</strong>) 375-86<br />

MGB03a: D. B. Milosevic et al.; Phys. Rev. A 68<br />

(<strong>2003</strong>) 050702-5<br />

MPB03: D. B. Milosevic et al.; Optics Express 11<br />

(<strong>2003</strong>) 1418-29<br />

MPB03b: D. B. Milosevic et al.; Laser Phys. 13 (<strong>2003</strong>)<br />

948-58<br />

MUF03a: R. Moshammer et al.; J. Phys. B: At. Mol.<br />

Opt. Phys. 36 (<strong>2003</strong>) L113-9<br />

MUF03b: R. Moshammer et al.; Phys. Rev. Lett. 91<br />

(<strong>2003</strong>) 113002/1-4<br />

Rot03: H. Rottke; in Many-particle quantum<br />

dynamics in atomic and molecular fragmentation<br />

(<strong>2003</strong>) Vol. 35, 317-38<br />

in press (as of Jan. 2004)<br />

Bau: D. Bauer; Laser Part. Beams<br />

Baua: D. Bauer; Appl. Phys. B<br />

FRo: C. Figueira de Morisson Faria and I. Rotter;<br />

Laser Phys.<br />

MBe b: D. B. Milosevic and W. Becker; Phys. Rev. A<br />

SBe: M. B. Smirnov and W. Becker; Phys. Rev. A<br />

submitted (until 21st Febr. 2004)<br />

ELR: E. Eremina et al.; Phys. Rev. Lett.<br />

FLB: C. Figueira de Morisson Faria et al.; Phys. Rev.<br />

Lett.<br />

FLS: C. Figueira de Morisson Faria et al.; Phys. Rev. A<br />

LFa: X. Liu and C. Figueira de Morisson Faria; Phys.<br />

Rev. Lett.<br />

MPBc: D. B. Milosevic et al.; Laser Physics Letters


2-03: Free clusters and molecules<br />

W. Radloff, T. Schultz (since <strong>2003</strong>/06/01), C. P. Schulz (Project coordinators)<br />

and H.-H. Ritze, V. Stert (until 30.7.03), M. Boyle, H. Lippert, I. Shchatsinin (since 15.9.03)<br />

1. Overview<br />

The general goal of this project is to understand<br />

ultrafast, laser induced processes in<br />

isolated molecules and molecular clusters in<br />

the gas phase and – as far as possible – to<br />

control these dynamics using laser methods.<br />

The following themes are presently in the<br />

focus of the research activities: With low<br />

intensity laser fields elementary photochemical<br />

reactions [1] in prototypes of biologically<br />

relevant systems are initiated and probed in<br />

the time domain. Research focuses here on<br />

the photo induced, excited state dynamics of<br />

chromophore molecules such as amino acids<br />

or DNA bases embedded in small clusters of<br />

solvent molecules (e.g. water or ammonia).<br />

Hydrogen, proton and electron transfer, internal<br />

conversion, isomerisation and fragmentation<br />

are the key processes studied.<br />

At larger laser intensities (up to 10 16 W/cm 2 )<br />

finite systems [2] such as C 60 and clusters of<br />

water or ammonia molecules are the model<br />

objects of interest. The complex nonadiabatic<br />

multielectron dynamics (NMED) induced in<br />

such fields leads to multielectron excitation,<br />

(multiple) ionization, fragmentation and rearrangement.<br />

Understanding the energy<br />

relaxation and redistribution between the<br />

electronic and nuclear system is crucial for<br />

modelling and manipulating the subsequent<br />

formation of highly excited neutral Rydberg<br />

states, multiply ionized states and fragmentation.<br />

Finally, Coulomb explosion and hydrodynamic<br />

cluster expansion are expected as a<br />

final stage at very high intensities.<br />

As a long term perspective optimal control<br />

of specific physical and chemical reactions<br />

in large finite systems – both in the linear<br />

and highly nonlinear intensity regime – is<br />

envisaged.<br />

2. Subprojects and Collaborations<br />

UP1: Photochemical elementary reactions<br />

in biologically relevant systems: solvation,<br />

hydrogen-, proton- and electron-transfer.<br />

Partially the project is complementary to <strong>MBI</strong><br />

project 2-04 (Dynamics of biomolecules in<br />

condensed phase). Part of this work is a project<br />

(TP A4) of the DFG Collaborative Research<br />

Center “Analysis and Control of ultrafast,<br />

photoinduced reactions” (SFB 450).<br />

UP2: Finite systems in moderately strong<br />

laser fields (up to 10 16 W/cm 2 ): nonadiabatic<br />

electron dynamics and nuclear motion.<br />

Close collaboration with project 2-02 (experimental<br />

expertise in dynamical imaging,<br />

processes, theoretical exchange on strong<br />

field ionization). This work is a project (TP A2)<br />

of the DFG Collaborative Research Center<br />

“Analysis and Control of ultrafast, photoinduced<br />

reactions” (SFB 450).<br />

3. Results in <strong>2003</strong><br />

In <strong>2003</strong> we have finished our studies concerning<br />

the control of the intracluster harpooning<br />

reaction in Ba...FCH 3 by vibrationally<br />

selective excitation of the cluster in the electronic<br />

ground state. In the experiment a fs laser pulse<br />

at 3.4 μm (for excitation of the C-H vibrational<br />

mode) was irradiated 1ps prior to the pump pulse<br />

at 745 nm or 618 nm. The BaF product formation<br />

rate has been considerably increased for<br />

irradiation of Ba…FCH 3 whereas for Ba…FCD 3<br />

no effect is measurable. By comparing the experimental<br />

results with corresponding<br />

theoretical estimations the potentials and<br />

limitations of this method have been elucidated.<br />

Further efforts were directed to the H(D) atom<br />

transfer reaction in the biologically relevant<br />

system of the indole chromophore embedded<br />

in clusters of polar molecules like ammonia and<br />

Fig. 1:<br />

Photoelectron spectra at<br />

different delay times τ<br />

between pump (263 nm)<br />

and probe (400 nm)<br />

+<br />

pulses for indole(NH ) 3 1<br />

(a) and indole(NH 3 ) 4<br />

+ (b).<br />

The arrows denote the<br />

maximum electron<br />

energies for one or two<br />

probe photon ionization.<br />

25


26<br />

Fig. 2:<br />

Time-dependent C +<br />

signal formed by irradiation<br />

of C 60 at 400 nm<br />

(pump) and ionization at<br />

800 nm (probe). Pump<br />

and probe pulse<br />

intensities are nearly<br />

equal (5*10 12 W/cm 2 ).<br />

For positive delay times,<br />

the blue pulse is leading<br />

the read pulse.<br />

water. For the different isotopomers the dynamics<br />

and energetics have been analysed for the first<br />

time on the fs/ps time scale. For indole(NH ) 3 n<br />

clusters the different process steps were assigned<br />

by applying the time-resolved photoelectron<br />

spectroscopy [LSH03b]. In Fig. 1a the first very<br />

fast step – the internal conversion from the ππ*<br />

into the dark πσ* state – is demonstrated by the<br />

+ decay of the indole(NH ) signal between τ = 0<br />

3 1<br />

and τ = 250 fs. The change of the cluster geometry<br />

+ is reflected for indole(NH ) by the rise of the<br />

3 4<br />

electron spectra on the ps-time scale. (Fig. 1b)<br />

For the indole(H 2 O) n clusters no H-transfer<br />

reaction could be detected, probably due to<br />

the endothermic character of the reaction<br />

[LSH03d]. The drastic difference between the<br />

indole-ammonia and indole-water cluster<br />

systems has been confirmed by ab initio<br />

based calculations of the heterodimers [RLS].<br />

According to the general theoretical models<br />

which describe the crucial role of the πσ* state<br />

also for the photoinduced dynamics of larger<br />

biologically relevant systems (e.g. DNA bases),<br />

the results obtained for the indole chromophore<br />

can be treated as decisive for the whole class<br />

of aromatic biological molecules with the azin(NH)<br />

group and, thus, will be a basis of our further<br />

studies.<br />

In <strong>2003</strong> we have performed two-color pumpprobe<br />

experiments to get further insight into<br />

the ionisation and fragmentation dynamics of<br />

C after multi photon absorption of fs light<br />

60<br />

pulses. In these experiments the pump pulse at<br />

400 nm mainly excites one or more electrons.<br />

The thus initiated multielectron dynamics<br />

is probed by an 800 nm pulse which further<br />

excites and ionises the C parent and resulting<br />

60<br />

fragments by a multi photon process. Figure 2<br />

shows as one example the formation of a C +<br />

fragment. Two different time scales can clearly<br />

be identified: a “fast” component (620 fs), which<br />

can be attributed to the electron phonon coupling<br />

time, and a much slower component with a time<br />

constant of 5 to 10 ps. This observation also seen<br />

+ for other small fragments (C , n=2,3) points<br />

n<br />

towards very interesting dynamics happening<br />

on short time scales, which is in contrast to the<br />

commonly observed evaporation of C 2 -units with<br />

a time constant of nano- to microseconds.<br />

Two-color pump-probe spectroscopy has<br />

also been used to investigate the population<br />

dynamics of C 60 Rydberg states, which were<br />

discovered recently [3]. In agreement with<br />

theoretical work [1, 2], multielectron excitation<br />

of a “doorway” state coupled to vibrational<br />

modes of the molecule plays a key role in the<br />

response of C 60 to short-pulse laser radiation<br />

[BHS]. Recently, correlated angular- and timeresolved<br />

photoelectron and photoion detection<br />

has been started. The results promise to give<br />

more detailed information on the energetics and<br />

ultrafast dynamics involved in the excitation cascade.<br />

The control of specific energy relaxation<br />

pathways by using shaped pulses and pulse<br />

sequences is currently and in future of special<br />

interest.<br />

Other references<br />

[1] W. S. Zhu et al., J. Chem. Phys. 118 (<strong>2003</strong>) 6751<br />

[2] G. P. Zhang et al., Phys. Rev. B 68 (<strong>2003</strong>) 15<strong>2003</strong><br />

[3] M. Boyle et al., Phys. Rev. Lett. 87 (2001) 273401<br />

Own publications <strong>2003</strong> ff<br />

(for full titles and list of authors see appendix 1)<br />

HHC03: K. Hansen et al.; J. Chem. Phys. 119 (<strong>2003</strong>)<br />

2513-22<br />

LSH03a: H. Lippert et al.; in Ultrafast Phenomena<br />

(<strong>2003</strong>) 110-2<br />

LSH03b: H. Lippert et al.; J. Phys. Chem. A 107<br />

(<strong>2003</strong>) 8239-50<br />

LSH03c: H. Lippert et al.; Chem. Phys. Lett. 371<br />

(<strong>2003</strong>) 208-16<br />

LSH03d: H. Lippert et al.; Chem. Phys. Lett. 376<br />

(<strong>2003</strong>) 40-8<br />

SBS03: C. P. Schulz et al.; J. Chem. Phys. 119 (<strong>2003</strong>)<br />

11620-9<br />

in press (as of Jan. 2004)<br />

LSSa: H. Lippert et al.; in Femtochemistry VI;<br />

Femtochemistry and Femtobiology: Ultrafast<br />

Events in Molecular Science<br />

RLS: H.-H. Ritze et al.; J. Chem. Phys.<br />

SSH: C. P. Schulz et al.; Isr. J. Chem.<br />

SCS04: C. P. Schulz et al.; Phys. Rev. Lett.<br />

USZ: S. Ullrich et al.; J Am. Chem. Soc.<br />

submitted (until 21st Febr. 2004)<br />

BHS: M. Boyle et al.; Phys. Rev. Lett.<br />

LSSb: H. Lippert et al.; Phys .Chem. Chem. Phys.<br />

SES: C. Stanciu et al.; SPIE Proc.<br />

SLR: V. Stert et al.; Chem. Phys. Lett.<br />

SUQ: T. Schultz et al.; in Femtochemistry IV, Ultrafast<br />

Molecular Events in Chemistry and Biology


2-04: Molecular Vibrational and Reaction Dynamics in the Condensed Phase<br />

E.T.J. Nibbering (Project coordinator)<br />

and D. Leupold, B. Voigt, W. Werncke, J. Dreyer, K. Heyne, V. Kozich, A. Usman, N. Huse,<br />

O. F. Mohammed, M. Rini<br />

1. Overview<br />

The aim of the project is the real-time<br />

determination of the ultrafast structural<br />

dynamics of molecular and biomolecular<br />

systems. The first main target is the<br />

determination of the structures while they<br />

explore the energy landscapes. These energy<br />

landscapes are not static but fluctuating due<br />

to the dynamical interactions of these<br />

structures with the surroundings (such as liquid<br />

solvent shells, or the protein backbone). The<br />

ultrafast nature of these fluctuations necessitate<br />

femtosecond time resolution for the<br />

structure-resolving spectroscopic techniques.<br />

The second main target is the determination<br />

of biomolecular structures that undergo<br />

substantial geometric rearrangements induced<br />

by optically triggered chemical reactions<br />

(photochemistry). Chemical reactions studied<br />

include hydrogen and proton transfer, electron<br />

transfer, bond fission, ring-opening/closure<br />

and cis/trans isomerizations.<br />

2. Subprojects and Cooperations<br />

Research in this project is structured into<br />

three major subprojects:<br />

UP1: Coherent vibrational response of<br />

hydrogen bonds,<br />

UP2: Ultrafast chemical reaction dynamics,<br />

UP3: Vibrational energy flow.<br />

Connections can be made with the following<br />

<strong>MBI</strong>-projects:<br />

UP2 & UP3: project 2.03 (Radloff et al.) for<br />

comparison with chemical reaction dynamics<br />

of model systems in gas/cluster phase.<br />

External collaborations exist with:<br />

UP1: J. Manz/O. Kühn (Freie Universität <strong>Berlin</strong>)<br />

through SFB 450;<br />

S. Mukamel (University of Rochester/University<br />

of California at Irvine, USA).<br />

UP2: E. Pines (Ben Gurion University of the<br />

Negev, Chemistry, Israel) through GIF 722/01;<br />

H. Fidder (Uppsala Universitet, Sweden);<br />

Tomasz Zemojtel (University of Wuerzburg);<br />

P. Kozlowski (University of Louisville, Kentucky,<br />

USA);<br />

J. Korppi-Tommola (University of Jyväskylä,<br />

Finland).<br />

UP3: V. Orlovich (Academy of Sciences<br />

Belarus, Minsk) through DFG WE 1489 and<br />

WTZ.<br />

3. Results in <strong>2003</strong><br />

UP1: Coherent response in hydrogen bonds<br />

(SFB 450-B2)<br />

The purpose of this project is to understand<br />

the coherent dynamics of O-H/O-D stretching<br />

modes in hydrogen bonds, with which one can<br />

explore the potential of optically steering<br />

proton transfer. Coherent nuclear motions as<br />

well as processes of phase and population<br />

relaxation in intramolecular hydrogen bonds<br />

are studied experimentally by ultrafast infrared<br />

pump-probe and photon echo spectroscopy<br />

[SMH03, NE04]. Within the collaborative<br />

research centre SFB450 a collaboration exists<br />

with the quantum chemistry group at the Freie<br />

Universität <strong>Berlin</strong> to elucidate the mechanisms<br />

that underlie these hydrogen bonded O-H/O-<br />

D stretching band line shapes.<br />

Hydrogen bonded carboxylic groups are<br />

structural motifs that often stabilize protein<br />

conformations, and play a fundamental role<br />

in proton pumps through membranes. We use<br />

the cyclic acetic acid dimer as a model system<br />

to investigate the coherence properties of O-<br />

H/O-D stretching vibrations in intermolecular<br />

hydrogen bonds. The steady-state infrared line<br />

shape of acetic acid dimer is determined by<br />

the following interactions of the O-H/O-D<br />

stretching modes: a) anharmonic coupling with<br />

low-frequency modes that modulate the<br />

hydrogen bond distance; b) Davydov or<br />

excitonic coupling between the O-H stretching<br />

oscillators; c) Fermi resonances with overtones<br />

or combination bands; d) homogeneous or<br />

inhomogeneous broadening due to coupling<br />

with a fluctuating bath.<br />

The different coupling mechanisms can be<br />

grasped with nonlinear infrared spectroscopy<br />

[EHH04]. We have demonstrated for the first<br />

time coherent nuclear motions of intermolecular<br />

hydrogen bonds [HHN03a, HHN03b]. For<br />

cyclic acetic acid dimers consisting of identical<br />

or different isotopomers, we have found that<br />

that two hydrogen bond low-frequency modes<br />

underlie pronounced oscillations in the pumpprobe<br />

transients, the 145 cm -1 in-plane bending<br />

mode, and the 170 cm -1 in-plane stretching<br />

mode. A weaker contribution of 50 cm -1 is<br />

caused by a methyl torsion mode. Oscillatory<br />

signals due to the Davydov (excitonic)<br />

coupling between the two O-H or O-D<br />

stretching oscillators are completely absent<br />

in the pump-probe signals, as has<br />

experimentally been confirmed by comparing<br />

27


28<br />

Fig. 1:<br />

Two-pulse infrared<br />

photon-echo results for<br />

the cyclic dimer<br />

(CH 3 COOH) 2 (solid line)<br />

and the mixed dimer<br />

CD 3 COOH - CD 3 COOD<br />

(dash-dotted line). These<br />

signals demonstrate the<br />

rapid coherence decay<br />

caused by the lowfrequency<br />

mode quantum<br />

beats. The signal in the<br />

pure solvent CCl 4<br />

(dashed line) indicates<br />

the temporal resolution.<br />

The inset shows the<br />

three pulse stimulated<br />

echo peak shift recorded<br />

on (CH 3 COOH) 2 showing<br />

the dominant homogeneous<br />

broadening.<br />

Fig. 2:<br />

Three-stage mechanism<br />

for a general acid-base<br />

reaction. The rate<br />

constants have been<br />

derived from fitting the<br />

femtosecond infrared<br />

measurements by use<br />

of the Debye-von<br />

Smoluchowski model<br />

with Collins-Kimball<br />

radiative boundary<br />

condition.<br />

the response of (CD 3 COOH) 2 with that of<br />

CD 3 COOH-CD 3 COOD. In addition, selection<br />

rule analysis has shown that quantum beats<br />

by the two Davydov-shifted progressions do<br />

not contribute to pump-probe signals.<br />

Due to the intrinsic complex Franck-<br />

Condon progression pattern in the absorption<br />

line shape, a multitude of coherences are<br />

generated by femtosecond excitation. In 2-pulse<br />

photon echo experiments we demonstrate that<br />

quantum beats due to anharmonic coupling<br />

with the two low-frequency modes lead to a<br />

rapid coherence decay of the O-H stretching<br />

vibration, thereby masking the dephasing of<br />

to the individual transitions (Fig. 1). The line<br />

broadening of an individual transition is predominantly<br />

due to homogeneous dephasing<br />

(T 2 ~ 200 fs) [HHD03].<br />

With two-colour pump-probe spectroscopy<br />

we have been able to study the anharmonic<br />

coupling of the O-H stretching mode with the<br />

C-O and C=O stretching and O-H bending<br />

modes and relaxation pathways that are<br />

expected to take place through the overtone<br />

and combination bands of these fingerprint<br />

vibrations that couple with the O-H stretching<br />

mode through Fermi resonances [HHN03].<br />

Anharmonic coupling causes pronounced<br />

absorption changes of the bending mode upon<br />

excitation of the O-H stretching mode, without<br />

involving relaxation induced excess populations<br />

of the infrared active bending mode.<br />

UP2: Ultrafast chemical reaction dynamics<br />

(GIF 722/01 and EU User Facility funds)<br />

Photoinduced chemical transformations<br />

are studied by measuring transient vibrational<br />

spectra after electronic excitation. Site-specific<br />

molecular geometries and processes such as<br />

intramolecular vibrational redistribution and<br />

vibrational cooling are revealed.<br />

We have studied excited state intramolecular<br />

hydrogen transfer [RKD03,RDN03]<br />

and intermolecular proton transfer [RMP03,<br />

RMM04]. For the latter case, a joint effort<br />

between the <strong>MBI</strong> and the Ben Gurion<br />

University of the Negev (Beer-Sheva, Israel),<br />

we have observed bimodal reaction dynamics<br />

in the neutralization reaction between the<br />

photoacid pyranine and the base acetate in<br />

water. In hydrogen-bonded acid-base<br />

complexes, the proton transfer proceeds<br />

extremely fast (within 150 femtoseconds). In<br />

encounter pairs formed by diffusion of<br />

uncomplexed photoacid and base molecules,<br />

the reaction upon contact was an order of<br />

magnitude slower. These results call for a<br />

refinement of the traditional Eigen-Weller<br />

picture of acid-base reactions: a three stage<br />

model has been proposed to account for all<br />

observed dynamics (Fig. 2).<br />

In a joint effort between the <strong>MBI</strong> and the<br />

University of Uppsala (Sweden), in which the<br />

ultrafast ring-opening dynamics of the photochromic<br />

switch pair spiropyran-merocyanine<br />

has been studied, we have demonstrated that<br />

femtosecond infrared spectroscopy enables<br />

the determination of the solvent-dependent<br />

quantum yield of the fraction of photoexcited<br />

spiropyran molecules that by internal<br />

conversion return to the initial ground state<br />

[RHN03]. We have shown that large<br />

conformational changes upon electronic<br />

excitation can be the cause for the observed<br />

ultrafast time scale and energy gap<br />

dependence of the internal conversion process<br />

[RFN04]. We have found solvent-dependent<br />

formation times of merocyanine product<br />

species [HRN03].<br />

In a project by the <strong>MBI</strong>, the University of<br />

Würzburg, the European Molecular Biology<br />

Laboratory in Heidelberg (all Germany) and<br />

the University of Louisville (Kentucky, USA) we<br />

have used femtosecond infrared polarization<br />

spectroscopy and density functional theory in<br />

a study on the key signaling molecule nitric<br />

oxide (NO) bound to myoglobin [ZRH04]. Our<br />

results show that after photolysis a substantial<br />

fraction of NO recombines within the first few<br />

picoseconds. The diatomic ligand is severely


tilted in the protein and the Fe-NO moiety is<br />

able to sample a wide range of off-axis tilting<br />

and bending conformations.<br />

In a femtosecond study of the light-induced<br />

CO-ligand dissociation from Ru(dcbpy)(CO) 2 I 2<br />

(a collaboration between the <strong>MBI</strong> and the<br />

University of Jyväskylä, Finland) we have<br />

observed that besides the formation of<br />

photoproduct on a picosecond time scale a<br />

significant fraction follows the efficient<br />

recombination pathway to the electronic<br />

ground state [LAM04].<br />

UP3: Vibrational energy flow (DFG WE 1489/<br />

5 and WTZ- BLR 02/003)<br />

The aim is to identify and determine the<br />

temporal characteristics of vibrational modes<br />

that accept the electronic excitation energy after<br />

internal conversion in organic chromophores.<br />

We have used picosecond resonance<br />

Raman spectroscopy to observe the vibrational<br />

kinetics of p-nitroaniline after electron backtransfer.<br />

Our results indicate primary excitation<br />

of out-of-plane vibrations by internal conversion<br />

and secondary excitation of strongly Raman<br />

active vibrations by redistribution of vibrational<br />

energy [KWV03].<br />

In a collaboration with the Stepanov<br />

<strong>Institut</strong>e of Physics (Minsk, Belorussia) we<br />

developed a generator/amplifier set-up for<br />

frequency conversion of picosecond laser<br />

pulses by stimulated Raman scattering (SRS)<br />

in compressed gases. Frequency shifted pulses<br />

were amplified in methane with up to 56 %<br />

quantum efficiency, considerably exceeding<br />

typical efficiencies of a standard SRS<br />

generator.<br />

Ab initio simulation of multidimensional<br />

nonlinear vibrational spectra:<br />

In a collaborative effort between the <strong>MBI</strong><br />

and the University of Rochester/University of<br />

California at Irvine (USA) we have developed<br />

a new approach that – for the first time – allows<br />

to simulate multidimensional vibrational spectra<br />

from first principles by combining quantum<br />

chemistry with the calculation of third-order<br />

nonlinear response functions [MDM03a,<br />

DMM03a]. After evaluating the approach for<br />

dicarbonylacetyl-acetonato rhodium(I)<br />

[MDM03a], we have analyzed the complete<br />

set of one- and two-color signals generated at<br />

all four possible wavevectors for a model<br />

bicyclic dipeptide [DMM03a, DMM03b]. The<br />

2D IR spectra show distinct signatures of<br />

anharmonicities, mode couplings, Fermi<br />

resonances and relative transition dipole<br />

orientations. We have investigated specific<br />

signatures of local α- and 3 10 -helical conformations<br />

of poly-alanines in linear and<br />

coherent nonlinear spectra [MDM03b]. We<br />

could show that ab initio calculations of small<br />

model systems can be used to parametrize<br />

high-quality spectroscopic Hamiltonians.<br />

Ultrafast energy transfer of photosynthetic<br />

light harvesting complexes (SFB429-A2):<br />

Concerning the long-standing problem of<br />

extent and role of excitonic coupling in the<br />

ultrafast energy transfer within the photosynthetic<br />

„light harvesting” complexes of<br />

higher plants we have characterized strongly<br />

interacting chlorophyll a/b pairs and clusters<br />

in LHCII and CP29. To achieve this, we used<br />

nonlinear polarization spectroscopy in the<br />

frequency domain as well as excitation spectra<br />

of stepwise two-photon fs-pulse excited<br />

fluorescence from higher excited chlorophyll<br />

states. For bacterial antennas, we have<br />

demonstrated for the first time energy back<br />

transfer from bacteriochlorophyll to an<br />

optically dark excited state of a carotenoid. In<br />

the same context we have determined the<br />

energetic position of the optically dark first<br />

excited states of carotenoids in the xanthophyllcycle<br />

by XANES, and have characterized their<br />

role in excess energy dissipation [LLS04].<br />

Mobile femtosecond fluorometer for early<br />

black cancer diagnosis (TSB ME 0259-02<br />

and SenWiArbFrau II D 13):<br />

We have demonstrated the feasibility of<br />

detection of ultraweak signals of cutaneous<br />

malignant melanoma using femtosecond twophoton<br />

excited fluorescence. The spectral<br />

shape as well as the lifetime of this fluorescence<br />

is unique for this cancer. We have shown<br />

that it reflects an increased contribution of<br />

pheomelanin as compared to normal<br />

pigmented skin tissue. Therefore the signal is<br />

a safe basis for a new, non-invasive method<br />

of early detection of black skin cancer [TMF03].<br />

To introduce this in medical practice, the <strong>MBI</strong><br />

cooperates with dermatologists from the Ruhr<br />

University Bochum and LTB Lasertechnik<br />

<strong>Berlin</strong>.<br />

Own Publications <strong>2003</strong> ff<br />

(for full titles and list of authors see appendix 1)<br />

DMM03a: J. Dreyer et al.; J. Phys. Chem. B 107<br />

(<strong>2003</strong>) 5967-85<br />

DMM03b: J. Dreyer et al.; Bull. Korean Chem. Soc.<br />

24 (<strong>2003</strong>) 1091-6<br />

FTD03: H. Fidder et al.; in Recent advances in<br />

ultrafast spectroscopy; Proceedings of the 'XII<br />

UPS Conference' (<strong>2003</strong>) 105-10<br />

HHD03: N. Huse et al.; Phys. Rev. Lett. 91 (<strong>2003</strong>)<br />

197401/1-4<br />

HHN03a: K. Heyne et al.; Chem. Phys. Lett. 369<br />

(<strong>2003</strong>) 591-6<br />

HHN03b: K. Heyne et al.; J. Phys.: Condens. Matter<br />

15 (<strong>2003</strong>) S129-S36<br />

29


30<br />

HHN03c: K. Heyne et al.; Chem. Phys. Lett. 382<br />

(<strong>2003</strong>) 19-25<br />

HRN03: A.-K. Holm et al.; Chem. Phys. Lett. 376<br />

(<strong>2003</strong>) 214-9<br />

KWV03: V. Kozich et al.; J. Chem. Phys. 118 (<strong>2003</strong>)<br />

1808-14<br />

MDM03a: A.A. Moran et al.; J. Chem. Phys. 118<br />

(<strong>2003</strong>) 1347-55<br />

MDM03b: A.A. Moran et al.; J. Chem. Phys. 118<br />

(<strong>2003</strong>) 3651-9<br />

RDN03: M. Rini et al.; Chem. Phys. Lett. 374 (<strong>2003</strong>)<br />

13-9<br />

RHN03: M. Rini et al.; J. Am. Chem. Soc. 125 (<strong>2003</strong>)<br />

3028-34<br />

RKD03: M. Rini et al.; in Ultrafast Phenomena XIII<br />

(<strong>2003</strong>) 465-7<br />

RMP03: M. Rini et al.; Science 301 (<strong>2003</strong>) 349-52<br />

SMH03: J. Stenger et al.; in Ultrafast Phenomena<br />

XIII (<strong>2003</strong>) 577-9<br />

SMT03: C. Steglich et al.; FEBS Lett. 553 (<strong>2003</strong>) 79-84<br />

TMF03: K. Teuchner et al.; SPIE Proc. 4797 (<strong>2003</strong>)<br />

211-9<br />

WKD03: W. Werncke et al.; in Recent advances in<br />

ultrafast spectroscopy; Proceedings of the 'XII<br />

UPS Conference' (<strong>2003</strong>) 397-403<br />

in press (as of Jan. 2004)<br />

EHH: T. Elsaesser et al.; in Time-Resolved Vibrational<br />

Spectroscopy XI<br />

Elsa: T. Elsaesser et al.; in Ultrafast molecular events<br />

in chemistry and biology<br />

FRN: H. Fidder et al.; J. Am. Chem. Soc.<br />

LAM: V. Lehtovuori et al.; J. Phys. Chem. A<br />

LLS: D. Leupold et al.; in Biochemistry and Biophysics<br />

of Chlorophylls<br />

NEl: E.T.J. Nibbering and T. Elsaesser; Chem. Rev.<br />

RMM: M. Rini et al.; in Ultrafast molecular events in<br />

chemistry and biology<br />

RMPa: M. Rini et al.; in Time-Resolved Vibrational<br />

Spectroscopy XI<br />

RMPb: M. Rini et al.; in Time-Resolved Vibrational<br />

Spectroscopy XI<br />

WKV: W. Werncke et al.; in Time-Resolved Vibrational<br />

Spectroscopy XI<br />

ZRH: T. Zemojtel et al.; J. Am. Chem. Soc.<br />

submitted (until 21st Febr. 2004)<br />

HHD: K. Heyne et al.; J. Chem. Phys<br />

LKL: D. Leupold et al.; Photochem. Photobiol.<br />

Nib: E.T.J. Nibbering; in Encyclopedia of Modern<br />

Optics<br />

STL: M. Schneider et al.; Der Ophthalmologe


Research focus 3<br />

Ultrafast and Nonlinear Phenomena in Solids and<br />

at Surfaces<br />

A prominent part of research at the <strong>MBI</strong> is<br />

dedicated to the time-resolved investigation<br />

of ultrafast and nonlinear phenomena in solids<br />

and at surfaces. The new research strategy of<br />

the <strong>MBI</strong> concentrates these efforts in four<br />

research projects within the research focus 3:<br />

Ultrafast and nonlinear phenomena: solids<br />

and surfaces.<br />

These four research projects interact and<br />

cooperate with each other in many aspects<br />

even though they differ significantly in the<br />

experimental methods used and the systems<br />

under investigation. The new research strategy<br />

emphasises novel experimental techniques<br />

of ultrafast spectroscopy, most prominently the<br />

following:<br />

Time-resolved photoelectron<br />

spectroscopy with femtosecond<br />

laser and synchrotron radiation:<br />

Project 3-01 focuses on the ultrafast<br />

dynamics of the geometrical and the electronic<br />

structure of matter at surfaces. Typically, laser<br />

pulses (synchronized to single or multi bunch<br />

synchrotron pulses; ca. 30 ps temporal<br />

resolution) are used to electronically excite<br />

the system, and time-delayed synchrotron<br />

pulses are used for probing. By this technique<br />

the complete valence band structure and<br />

chemical bonding of adsorbates and thin films<br />

on single-crystal surfaces, at liquid water<br />

surfaces or on surfaces of levitated clusters<br />

can be addressed. This project joins success-<br />

fully the expertises of BESSY on soft x-ray<br />

synchrotron radiation and the <strong>MBI</strong> on ultrafast<br />

laser systems.<br />

Combination of optical near-field<br />

techniques with ultra high time<br />

resolution and apertureless nearfield<br />

spectroscopy:<br />

These novel techniques are an essential<br />

part of project 3-02. Recently, a combined<br />

spatial resolution of 100 nm and a time<br />

resolution of 100 fs has been achieved in<br />

spectroscopic experiments on coupled semiconductor<br />

nanostructures, polymer nanostructures<br />

and surface plasmons in photonic<br />

bandgap materials. Recent experiments using<br />

apertureless nearfield probes promise an<br />

extension of the spatial resolution down to the<br />

10 nm length scale.<br />

Nonlinear terahertz spectroscopy:<br />

In project 3-02 a new light source was<br />

recently developed providing ultrashort<br />

electric field transients in the mid- to far-infrared<br />

spectral range with very high electric-field<br />

amplitudes of several MV/cm which can be<br />

sampled directly in the time domain using<br />

ultrafast electro-optic sampling. Applying such<br />

techniques, the first phase-resolved study of<br />

Rabi flopping has been performed with semiconductor<br />

quantum wells. Currently, this novel<br />

light source is successfully applied in<br />

31


32<br />

nonlinear terahertz experiments on twodimensional<br />

semiconductor nanostructures.<br />

This technique opens a completely new field<br />

of femtosecond spectroscopy in which ultrafast<br />

processes in matter are directly triggered or<br />

driven by an electric field transient rather than<br />

by the resonant interaction of light pulses with<br />

a carrier frequency with a certain quantum<br />

mechanical transition.<br />

Time-resolved measurements on<br />

opto-electronic devices:<br />

These activities are concentrated mainly<br />

in project 3-03, in close collaboration with<br />

project 3-02. Project 3-03 has close connections<br />

to industrial partners, such as OSRAM<br />

Opto Semiconductors, THALES, Jenoptik<br />

Laserdiode und DILAS. Project 3-03 is<br />

dedicated to the application of spectroscopic<br />

techniques developed or improved at the <strong>MBI</strong><br />

to analytical purposes in optoelectronic<br />

devices. A primary objective is to improve<br />

insight into the microscopic nature of the<br />

mechanisms defining the limits of laser diode<br />

operation. Recently, first time-resolved<br />

measurements were performed on coherent<br />

quantum transport in an electrically driven<br />

quantum cascade laser structure. The degree<br />

of coherence in the quantum transport was<br />

directly measured, an information which cannot<br />

be obtained by other experimental means.<br />

Time-resolved experiments on<br />

highly correlated condensed-matter<br />

systems:<br />

An important trend of all projects within<br />

reasearch area 3 is a shift of focus from the<br />

well established physics in the single particle<br />

picture to the physics of highly correlated<br />

condensed-matter systems. The latter is a<br />

thriving field of research because of a broad<br />

range of unusual phenomena which are of<br />

interest from the point of view of both fundamental<br />

research and practical applications.<br />

An essential focus of project 3-02 will be<br />

antiferromagnetic systems since many highcorrelation<br />

phenomena like high-temperature<br />

superconductivity, colossal magnetoresistance,<br />

or exchange bias are closely related to the<br />

antiferromagnetic state. In nonlinear magnetooptics<br />

we highlight the spin dynamics of<br />

antiferromagnetic systems. This includes the<br />

dynamics of sublattice correlations in<br />

compounds with multiple magnetic or electric<br />

ordering and should lead to methods for<br />

magnetic or magnetoelectric phase control.<br />

Femtosecond x-ray diffraction:<br />

An exciting development within research<br />

area 3 happens currently in project 3-04. In<br />

this project scientists from all three division A,<br />

B, and C work together in the novel field of<br />

time-resolved x-ray techniques. The direct<br />

measurement of the position of nuclei by<br />

ultrafast x-ray diffraction complements the<br />

information on the rapid response of a solid,<br />

obtained by monitoring the dynamics of the<br />

electronic system by optical spectroscopies.<br />

A laser-driven table-top x-ray source provides<br />

an important method to investigate fundamental<br />

microscopic mechanisms which<br />

underlie ultrafast structural changes e.g. of<br />

crystalline solids. First femtosecond x-ray<br />

diffraction experiments on a semiconductor<br />

nanostructure were successful and timeresolved<br />

x-ray absorption studies are on the<br />

brink of their first realization.


3-01: Dynamics at surfaces and structuring<br />

T. Gießel, B. Winter, A. Rosenfeld (Project coordinators)<br />

in cooperation with W. Widdra, University of Halle<br />

and D. Bröcker, C. Heiner, B. Langer, H. Prima-Garcia, P. Schmidt, R. Stoian, R. Weber<br />

1. Overview<br />

This project focuses on the investigation<br />

of the geometrical and the electronic structure<br />

of various surfaces, as well as on laser<br />

excitation and the dynamics of these surfaces.<br />

The central technique used in this project is<br />

photoelectron spectroscopy with laser and<br />

synchrotron radiation. Typically, laser pulses<br />

(synchronized to single or multi bunch<br />

synchrotron pulses; ca. 30 ps temporal<br />

resolution) are used to electronically excite the<br />

system, and time-delayed synchrotron pulses<br />

are used for probing (see 4.03). By this<br />

technique – using the soft x-ray synchrotron<br />

radiation at the <strong>MBI</strong> user facility at BESSY<br />

together with pulsed laser systems – the<br />

complete valence band structure and chemical<br />

bonding of adsorbates and thin films on singlecrystal<br />

surfaces, at liquid water surfaces, or on<br />

surfaces of levitated clusters can be addressed.<br />

The photovoltaic effect is of central importance<br />

for many semiconductor devices which convert<br />

light to electricity, including photodetectors, and<br />

solar and photoelectrochemical cells. Whereas<br />

this effect is theoretically and experimentally<br />

well investigated, the related surface photovoltaic<br />

effect is less understood.<br />

Several vanadium oxides undergo metalto-semiconductor<br />

phase transitions (MSPT) as<br />

a function of temperature and doping. These<br />

transitions, which are believed to arise from<br />

the change in strong electronic correlation<br />

mechanisms associated with crystallographic<br />

distortions are still much debated in order to<br />

ascertain the relative importance of the<br />

electronic and structural changes in the opening<br />

of the semiconductive gap at the MSPT.<br />

Organic thin film studies are aimed at the<br />

detailed understanding of the excited-state<br />

dynamics in technologically relevant molecular<br />

systems. This particularly involves carrier<br />

dynamics, charge transfer processes,<br />

isomerization, and the identification of the<br />

specific elementary excitations. The orientation<br />

of the molecules within the films has crucial<br />

consequences on these properties, and hence<br />

studies will be performed on various single<br />

crystal substrates (metals, semiconductors,<br />

oxides), as well as for different thickness.<br />

Photoemission from liquid water and<br />

aqueous solutions allows the access of<br />

electron binding energies of solvated ions,<br />

and to infer details on the solvation (shell)<br />

structure. This is a field presently attracting<br />

much interest due to the emergence of new<br />

techniques suited for studying highly volatile<br />

systems. Paralleled by theory (P. Jungwirth,<br />

Prague) we are going to further explore the<br />

effect of counter ions (through size and hence<br />

polarizability) on the solution interface (e.g.<br />

ion depletion). This naturally opens up the<br />

entire field of optically excited solvated ions.<br />

Another goal of this project represents an<br />

endeavor intended to outline the potential of<br />

femtosecond laser technology for high quality<br />

material processing. The investigations include<br />

fundamental studies of the physical mechanisms<br />

for material removal irradiated by ultra-short<br />

laser pulses as well as concrete steps to<br />

transfer the results achieved into the application<br />

area. The information over the specific<br />

response times for the energy flow in irradiated<br />

solids indicates the criteria for using temporally<br />

tailored pulses in order to optimize and achieve<br />

high degree of control in laser micromachining.<br />

2. Subprojects and Collaborations<br />

The following themes are presently in the<br />

focus of the research activities:<br />

UP1: Dynamics at Single Crystal Surfaces<br />

and Adsorbates Studied by Laser-Pump-<br />

Synchrotron Radiation-Probe Experiments.<br />

This work is linked to project C7 of the DFG<br />

collaborative research center “Structure,<br />

dynamics and reactivity of transition metal<br />

oxide aggregates” (SFB 546). It is carried out<br />

in collaboration with the group of B.K.Meyer<br />

(University Giessen).<br />

UP2: Dynamics at Liquid Water Surfaces<br />

Studied by Laser-Pump- Synchrotron<br />

Radiation-Probe Experiments.<br />

Collaborations with M. Faubel (<strong>Max</strong>-Planck-<br />

<strong>Institut</strong> für Strömungsforschung, Göttingen), C.<br />

Pettenkofer (HMI, <strong>Berlin</strong>), P. Jungwirth (<strong>Institut</strong>e<br />

of Organic Chemistry and Biochemistry, Prague).<br />

UP3: Material Structuring with Femtosecond<br />

Technology. Supported by DFG, <strong>Berlin</strong>er<br />

Senatsverwaltung für Wirtschaft, Arbeit und<br />

Frauen, International Office of the DFG (WTZ<br />

program with the <strong>Institut</strong>e of Thermophysics,<br />

Novosibirsk, Russia).<br />

UP4: Levitated Nanoparticle.<br />

Collaboration with Uni Würzburg, Uni Chemnitz,<br />

Uni Halle, Fritz-Haber-<strong>Institut</strong> der MPG.<br />

33


34<br />

Fig. 3:<br />

Photoemission spectra of<br />

ca. 2000 Å film of 6T/<br />

Au(110), obtained in normal<br />

emission for 50 eV<br />

photon energy. Electron<br />

binding energies are with<br />

respect to Fermi energy.<br />

The incoming light's<br />

polarization vector was<br />

positioned either along<br />

(Ex) or across (Ey) the<br />

6T long molecular axis.<br />

The lines at the bottom of<br />

the figure display the calculated<br />

(HF/6-31G(d,p))<br />

binding energies of the<br />

π-molecular orbitals. The<br />

first and second highest<br />

occupied molecular<br />

orbitals (HOMO and<br />

HOMO-1) are labeled.<br />

Fig. 1:<br />

Temperature<br />

dependence of<br />

SPV-decay.<br />

Fig. 2:<br />

V 3d Photoelectron<br />

spectra taken from a<br />

200nm thick VO 2 film at<br />

60 eV photon energy for<br />

different temperatures<br />

from 280 K – 375 K.<br />

3. Results in <strong>2003</strong><br />

UP1:<br />

Charge Carrier Dynamics: We have studied<br />

the surface photovoltage decay on SiO 2 /<br />

Si(100) as a function of sample temperature<br />

and laser intensity (Nd:YVO 4 see 4.03) using<br />

the pump-multiple probe setup developed for<br />

experiments with combined laser and synchrotron<br />

radiation under multi-bunch conditions.<br />

Fig. 1 shows the decay curves of the SPV on<br />

thin layers of SiO 2 on Si(100) for three different<br />

temperatures: 305 K, 358 K and 389 K. All three<br />

curves show the characteristic nonexponential<br />

decay as discussed in [WBG03, BGW].<br />

At time-zero, directly after the laser<br />

excitation, the SPV is 300 meV at room<br />

temperature and decreases to 240 meV at<br />

389 K. Additionally, a faster decay is observed<br />

at higher temperatures. The smaller starting<br />

value at higher temperature can be explained<br />

by the reduction of the Debye length as well<br />

as by the higher charge carrier density in the<br />

bulk, which aggravates the saturation. The<br />

faster decay at higher temperatures was<br />

expected from an quasi-equilibrium model<br />

based on thermionic emission.<br />

In our first experiments on the metal-tosemiconductor<br />

phase transition (MSPT) in VO 2<br />

we have characterized the phase transition in<br />

approximately 200 nm thick VO 2 films. The<br />

upper part of Figure 2 shows photoelectron<br />

spectra in the region of the V 3d level taken at<br />

60 eV photon energy for different temperatures<br />

from 280 – 375 K. The spectra for highest and<br />

lowest temperature are marked red and blue,<br />

respectively. The 2D plot in the lower part of<br />

figure 2 shows the spectra from above as a<br />

function of temperature. The sudden increase<br />

of the photoemission intensity near Fermi at<br />

around 320 K marks the MSPT.<br />

Angle-resolved photoemission spectra<br />

(ARUPS) from Sexithiophene (6T) wellordered<br />

thin films, grown on Au(110), exhibit<br />

a strong intensity dependence on the<br />

experimental geometry. Compensation for film<br />

charging was achieved by simultaneous<br />

(pulsed) laser irradiation, resulting in the sharp<br />

spectral π-emission features as in Figure 3.<br />

The observed anisotropy can be attributed to<br />

the molecules’ relative orientation, as interpreted<br />

through symmetry selection rules.<br />

Comparison with our Hatree-Fock calculations<br />

(see figure caption) firmly suggests the need<br />

for alternative molecular symmetries from the<br />

reported C 2h symmetry for 6T’s bulk-crystalline<br />

structure. Specifically at the surface,<br />

contributions from a combination of 6T's with<br />

a C 2v and a reduced C 2 symmetry are likely.<br />

UP2:<br />

Our liquid jet studies were aimed at the<br />

characterization of the molecular structure of<br />

salt solution interfaces. A central question is<br />

whether or not aqueous salt ions have a<br />

propensity for the surface; this is closely related<br />

to the ions’ surfactant activity. One of the<br />

solutions studied is tetrabutyl-ammonium<br />

iodide (TBAI), a classical prototype for hydrophobic<br />

solvation, which makes this salt one of<br />

the most intensively investigated phase<br />

catalyst. The other solution is simply aqueous<br />

NaI. Figure 4 presents the intensities for both<br />

anions and cations, I - (4d) and Na + (2p), as a<br />

function of concentration.<br />

The observed saturation behavior near 2m<br />

NaI is indicative of ion depletion in the subsurface<br />

region, which is attributed to the large<br />

polarizability of the iodide anion, leading to


negative surface excess. Also, the fact that<br />

electron binding energies of Na + and I - are<br />

independent of the salt concentration is<br />

argued to arise from a balance of the reduced<br />

binding of surface-solvated iodide and the gain<br />

in polarizability of asymmetrically solvated<br />

iodide (see [WWSa]).<br />

Analogous results for aqueous TBAI<br />

solutions are displayed in Figure 5. Concentrations<br />

are considerably lower than for NaI<br />

due the large surfactant activity of the TBAI<br />

salt at the solution surface. The steep linear<br />

iodide signal rise at lower concentrations is<br />

identified as the regime of sub-monolayer<br />

coverage. The much slower intensity increase<br />

beyond 0.024 m would then reflect the<br />

completed segregation monolayer. Identical<br />

electron binding energies of iodide are<br />

observed in TBAI and NaI aqueous solutions,<br />

independent of the salt concentration. No<br />

spectral shifts due to changes in the work<br />

function are observed, hence we conclude that<br />

the salt ions do not form an electric doublelayer<br />

at the surface, consistent with the surface<br />

activity of both ions as mentioned above. The<br />

experimental observations are strongly supported<br />

by molecular dynamics simulations for<br />

TBAI in aqueous slabs using a polarizable<br />

force field (see [WWSb]).<br />

UP3:<br />

The developments in the field of dynamic<br />

pulse temporal tailoring and adaptive optimization<br />

introduce the possibility to regulate and<br />

manipulate excitation and energy transfer, to<br />

exploit dynamic processes, and optimize<br />

structuring, unfolding new perspectives for<br />

"intelligent", feedback-assisted processing of<br />

materials. The sequential energy delivery<br />

induces a stepwise preparation of the surface<br />

in terms of electronic population and energy,<br />

improves the energy coupling, influences the<br />

balance between the induced non-thermal<br />

and thermal mechanisms for particle ejection,<br />

and provides a material dependent optimization<br />

process.<br />

This study emphasizes the benefit of using<br />

temporally designed pulses to optimize the<br />

quality of the structures induced by laser<br />

ablation and is suitable to generate controllable<br />

ion beams by ultrafast laser ablation. [SKT03].<br />

Employing THz repetition rates (~sub-ps time<br />

scales) enables controlled processing based<br />

on the synchronization between the excitation<br />

sequence and the individual ps response of<br />

the material [SBT03a].<br />

We performed investigations of the critical<br />

laser parameters needed for laser fine<br />

polishing, with femtosecond laser pulses, on<br />

materials with a very low coefficient of thermal<br />

expansion. To avoid thermal heating at the<br />

polishing process it is necessary to work in<br />

the pre-ablation regime near the ablation<br />

threshold. This describes the possibility of<br />

modifying the surface in the nanometer scale<br />

by ultra short laser pulses and may have the<br />

potential to replace common ion polishing<br />

technology. Theoretically study on the role of<br />

rapid electronic transport in defining the<br />

characteristics of material removal with ultrashort<br />

laser pulses. The developed models are<br />

general and can be used to describe charge<br />

transport dynamics in different materials on<br />

ultrafast timescales.<br />

UP4:<br />

We have stored SiO 2 particles (r = 250 nm)<br />

in the centre of an electro dynamical trap and<br />

measured their charge state when they were<br />

illuminated with synchrotron radiation [GLS].<br />

By scanning the photon energy in the regime<br />

of the O 1s-edge the charging current of the<br />

particle was determined from the temporal<br />

evolution of the charge state in this spectral<br />

regime. Fig. 7 shows the first derivative of three<br />

charging curves for different average charge<br />

states. In the O 1s-continuum charging occurs<br />

primarily via the normal or double Auger decay.<br />

Assuming that the charges are located on the<br />

particle surface, the local electrical field<br />

increases with increasing charge state. As a<br />

result, only those electrons with sufficient kinetic<br />

Fig. 4:<br />

The I - (4d) and Na + (2p)<br />

signal obtained from<br />

photoemission<br />

measurements of NaI<br />

aqueous solutions, at<br />

different salt<br />

concentrations.<br />

Fig. 6:<br />

Velocity distributions<br />

extracted from massresolved<br />

TOF traces of<br />

ions emitted from silicon<br />

samples irradiated with<br />

single- and double-pulse<br />

sequences. The separation<br />

for the double pulse is 7 ps<br />

and the incident fluence<br />

0.9 J/cm 2 . The results are<br />

derived from a spot preirradiated<br />

with three<br />

sequences per site.<br />

Fig. 5:<br />

Evolution of the I - (4d)<br />

photoelectron signal as a<br />

function of the TBAI<br />

concentration. The curve<br />

is a fit ~ [1-exp(-c/co)].<br />

The straight lines indicate<br />

a linear growth of a single<br />

monolayer.<br />

35


36<br />

Fig. 7:<br />

O 1s charging spectra of<br />

a single stored SiO 2<br />

nanoparticle at different<br />

charge states.<br />

energy can contribute to photoionization of the<br />

particle, corresponding to an increase in<br />

charge state. The other electrons will be<br />

retained by the field of the charged particle.<br />

The fraction of electrons that contribute to<br />

charging decreases with increasing charge<br />

state, so that the intensity of the differentiated<br />

charging curves decreases. The fastest<br />

electrons that can be emitted after resonant<br />

core level excitation with considerable flux<br />

come from resonant Auger processes. These<br />

processes occur mostly in the near-edge<br />

regime, i. e. between 535 eV and 540 eV.<br />

Own publications <strong>2003</strong> ff<br />

(full titles and list of authors see appendix 1)<br />

AMR03: D. Ashkenasi et al.; Appl. Phys. A 77 (<strong>2003</strong>)<br />

223-8<br />

GBS03: T. Gießel et al.; Rev. Sci. Instrum. 74 (<strong>2003</strong>)<br />

4620-4<br />

HJG03: K. Heister et al.; Surf. Science 529 (<strong>2003</strong>)<br />

36-46<br />

LLS03: B. Lohmann et al.; in AIP Conference<br />

Proceedings, Atomic, Molecular and Chemical<br />

Physics (<strong>2003</strong>) Vol. 697, 133-41<br />

PWF03: D. Pop et al.; J. Phys. Chem. B 107 (<strong>2003</strong>)<br />

11543-647<br />

SBT03a: R. Stoian et al.; Appl. Phys. A 77 (<strong>2003</strong>)<br />

265-9<br />

SBT03b: R. Stoian et al.; RIKEN Review 50 (<strong>2003</strong>)<br />

71-6<br />

SBT03c: R. Stoian et al.; in SPIE Proc. (<strong>2003</strong>) Vol.<br />

4830, 435-42<br />

SKT03: M. Spyridaki et al.; Appl. Phys. Lett. 83 (<strong>2003</strong>)<br />

1474-6<br />

TSL03: G. Turri et al.; in AIP Conference<br />

Proceedings, Atomic, Molecular and Chemical<br />

Physics (<strong>2003</strong>) Vol. 697, 48-54<br />

WBG03: W. Widdra et al.; Surf. Science 543 (<strong>2003</strong>)<br />

87-94<br />

WWH03: R. Weber et al.; J. Phys. Chem. B 107<br />

(<strong>2003</strong>) 7768-75<br />

in press (as of Jan. 2004)<br />

BSR: N. M. Bulgakova et al.; Phys. Rev. B<br />

BGW: D. Bröcker et al.; J. Chem. Phys.<br />

FMT: W. Freyer et al.; J. Photoch. Photobio. A: Chem.<br />

GLS: M. Grimm et al.; in AIP Conference Proceedings,<br />

Atomic, Molecular and Chemical Physics<br />

HFU: K. Heister et al.; Langmuir<br />

HGP: O. Henneberg et al.; Appl. Phys. Lett.<br />

RAs: A. Rosenfeld and D. Ashkenasi; SPIE Proc.<br />

SEH: C. Stanciu et al.; Appl. Phys. A<br />

TSL: G. Turri et al.; Phys. Rev. Lett.<br />

VCL: J. Viefhaus et al.; Phys. Rev. Lett.<br />

WWSa: R. L. Weber et al.; J. Phys. Chem. B<br />

WWW: B. Winter et al.; J. Phys. Chem. A<br />

submitted (until 21st Febr. 2004)<br />

BSRb: N. M. Bulgakova et al.; Appl. Phys. A<br />

Fre: W. Freyer; Organic Letters<br />

KSS: E. Koudoumas et al.; Thin Solid Films<br />

MWM: T. Moritz et al.; Phys. Rev. Lett.<br />

PWF: D. Pop et al.; J. Phys. Chem. B<br />

SKN: G. Y. Slepyan et al.; Phys. Rev. A<br />

SRH: R. Stoian et al.; Appl. Phys. Lett.<br />

WWSb: B. Winter et al.; J. Phys. Chem. B


3-02: Ultrafast and nonlinear processes in solid state and nanostructures<br />

M. Fiebig, C. Lienau, M. Wörner (Project coordinators)<br />

and N.P. Duong, T. Lottermoser, C.W. Luo, V. Malyarchuk, L. Molina, K. Müller, R. Müller, V. Malyarchuk,<br />

C. Neacsu, M.B. Raschke, K. Reimann, C. Ropers, T. Satoh, T. Shih, T. Unold, Z. Wang<br />

1. Overview<br />

In this new project, the former projects<br />

II.6 (Ultrafast dynamics in solids) and II.7<br />

(Optical near-field microscopy) have been<br />

merged in order to establish new experimental<br />

approaches to the physics of highly correlated<br />

condensed matter-systems. In these systems,<br />

electron-electron correlations lead to a broad<br />

range of novel and unusual phenomena which<br />

are interesting from the point of view of both<br />

fundamental research and practical application.<br />

We believe that by uniting our expertise in<br />

ultrafast charge dynamics, nonlinear optics of<br />

long-range ordered systems, and nano-scale<br />

optics new insight into fundamental phenomena<br />

in this thriving field of research will be gained.<br />

2. Subprojects and Collaborations<br />

UP1: Ultrafast electron dynamics in individual<br />

electronically coupled nanostructures,<br />

UP2: Optical antennas for spectroscopy: field<br />

confinement, energy transfer, molecular<br />

switches,<br />

UP3: Coherence and dynamics of electrons,<br />

phonons and quantum transport in 2D nanostructures,<br />

UP4: Ultrafast spin and lattice dynamics of<br />

antiferromagnetic and electronic phase<br />

transitions.<br />

There are possible future connections of<br />

UP1, UP3, UP4 to project 3.04.<br />

3. Results in <strong>2003</strong><br />

UP1 (1): Ultrafast optical nonlinearities of<br />

single quantum dots. Considerable progress<br />

has been made in probing and manipulating<br />

coherent polarizations of a single and two<br />

dipole-coupled quantum dots with ultrafast<br />

light pulses. The femtosecond near-field pumpprobe<br />

spectrometer developed last year<br />

[GLE02,GLE03,GML03,Lie] allowed us to<br />

study for the first time the optical Stark effect<br />

on a single interface quantum dot (QD) on a<br />

femtosecond time scale. We show that the line<br />

shape of nonlinear QD spectra depends<br />

sensitively on the intensity of a nonresonant<br />

pump laser field. Transient spectral oscillations<br />

are understood as pump-induced rotations of<br />

the QD polarization phase with negligible<br />

population change. This phase shift is<br />

quantitatively measured and polarization<br />

control is demonstrated [UMLa,UMLb].<br />

Control of the exciton population of a single<br />

QD on the other hand is demonstrated by<br />

observing Rabi oscillations on the biexciton<br />

resonance of this QD for resonant exciton<br />

excitation [Fig. 1]. Together, this demonstrates<br />

full control over amplitude and phase of the<br />

coherent QD polarization.<br />

Similar Rabi oscillations are also observed<br />

on the excitonic nonlinearity of one QD after<br />

resonant excitation of a neighbouring QD. This<br />

establishes dipole-dipole coupling between<br />

two individual quantum dots. The transient nonlinear<br />

optical response of two dipole-coupled<br />

QDs is studied in detail and a coupling strength<br />

of about 50 µeV is inferred. This is relevant for<br />

implementing semiconductor-based quantum<br />

logic gates if one succeeds in increasing the<br />

magnitude of the coupling via external electric<br />

fields and in controlling the interdot separation.<br />

Experimental studies along these directions are<br />

currently underway.<br />

UP1 (2): Optical properties of metallic nanostructures.<br />

The unusual linear optical properties<br />

of periodic nanohole arrays in metal films have<br />

been studied both experimentally [KHM03,YHK03]<br />

and theoretically [MML03,MML]. Specifically,<br />

surface plasmon polariton (SPP) eigenmodes<br />

of these plasmonic crystals are directly imaged<br />

using nano-optical techniques and the damping<br />

of these modes is studied experimentally both<br />

in the temporal and in the spatial domain. We<br />

demonstrate experimentally that a Rayleighlike<br />

scattering of SPP at the nanoholes is the<br />

microscopic origin of this damping and that the<br />

asymmetric spectral line shape of the extaordinarily<br />

enhanced transmission resonances<br />

can be understood as a Fano-type interference<br />

between light tunneling through the holes and<br />

SPP radiation. These results and their thorough<br />

theoretical understanding are the basis for<br />

exploring optical nonlinearities of plasmonic<br />

crystals and exciton-plasmon interactions in<br />

hybrid metal-/semiconductor nanostructures.<br />

Fig. 1:<br />

Rabi oscillations in single<br />

quantum dots detected<br />

by resonantly exciting<br />

the QD exciton transition<br />

with a 1 ps laser pulse<br />

and probing the transient<br />

biexcitonic nonlinear<br />

optical response of this<br />

dot.<br />

37


38<br />

Fig. 2:<br />

Topographic image (a)<br />

and scattering near-field<br />

microscopy image (b) of<br />

a gold nano-island on<br />

glass. The optical<br />

coupling of the PtIrprobe<br />

tip to the Au leads<br />

to dielectric contrast with<br />

resolution determined by<br />

the tip radius.<br />

Fig. 4:<br />

Time dependent change<br />

of second and third<br />

harmonic and of<br />

reflection in NiO after<br />

photoexcitation.<br />

Black: SH intensity,<br />

blue: third harmonic<br />

intensity,<br />

red: linear reflection at ω,<br />

green: linear reflection<br />

at 2ω.<br />

Fig. 3:<br />

Black lines: Input field<br />

E ref (t) measured by<br />

ultrafast electro-optic<br />

sampling. Red lines:<br />

Transients of the emitted<br />

electric field E diff (t).<br />

Insets: Direction of the<br />

Bloch vector σ during<br />

the Rabi flop of the IS<br />

polarization.<br />

UP2: Apertureless scanning near-field<br />

microscopy. Scattering-type near-field microscopy<br />

based on metal wire tips to transfer,<br />

detect and concentrate light to highly confined<br />

regions has been established for the purpose<br />

of spectroscopic imaging down to sub-10 nm<br />

spatial resolution. In experiments performed<br />

in eschange with subproject (B) we have<br />

studied the correlations between tip radius of<br />

the probe, signal strength, spatial resolution,<br />

and sample material [Rli03]. In linear light<br />

scattering the contrast was found to depend<br />

sensitively on vertical composition of the<br />

sample.<br />

A general scheme for optimal illumination<br />

and detection was developed. The understanding<br />

of various aspects concerning the<br />

imaging mechanism laid the ground for the work<br />

in progress on spectroscopic aspects of surface<br />

nanostructures and nonlinear light scattering.<br />

UP3: Rabi oscillations of intersubband<br />

transitions. Low-dimensional semiconductors<br />

are important model systems for coherent<br />

control of excitations on ultrafast time scales.<br />

We consider here intersubband (IS) transitions<br />

between consecutive conduction subbands in<br />

quantum wells (QWs). So far, a nonlinear<br />

coherent manipulation of IS transitions in QWs<br />

was only possible in a very limited way, since<br />

the electric field amplitude of THz transients<br />

was too low. We developed a new scheme for<br />

the full characterization of THz transients with<br />

MV/cm amplitude [RSW03]. These pulses are<br />

used for the study of Rabi oscillations in a<br />

GaAs/AlGaAs multiple quantum well structure.<br />

The center frequency of the THz transients is<br />

resonant to the IS transition between the two<br />

lowest electron subbands. After transmission<br />

through the sample the electric field of the<br />

transient is time-resolved by electro-optic<br />

sampling.<br />

In Fig. 3 we show for two different intensities<br />

the transients without the sample E ref (t) (black<br />

lines) and the transients of the electric field<br />

emitted by the sample E diff (t) (red lines). In the<br />

linear case [Fig. 3(a)] E diff (t) has a phase<br />

opposite to the input field. A THz transient of<br />

large amplitude [Fig. 3(b)], however, results in<br />

a strongly modified signal giving direct evidence<br />

for a Rabi flop of the Bloch vector σ. In particular<br />

we observe a phase shift of π after the complete<br />

inversion of the IS transition at t = 80 fs. Thus,<br />

our experiments directly show for the first time<br />

coherent Rabi flopping of IS transitions [LRWa,<br />

LRWb,LRWc].<br />

UP4 (1): Spin dynamics of antiferromagnetic<br />

NiO. For the first time temporal<br />

evolution of an antiferromagnetic magnetization<br />

after excitation with an intense 100 fs light<br />

pulse has been observed. Experiments were<br />

performed on NiO, the perhaps most promising<br />

exchange-bias compound. Magnetically<br />

induced second harmonic (SH) generation<br />

was used as a probe for the antiferromagnetic<br />

order parameter [DSL].<br />

Reflection experiments at low temperature<br />

show an instantaneous (


UP4 (2): Magnetic phase control by an<br />

electric field. Ferromagnetic Ho 3+ ordering in<br />

the ferroelectric antiferromagnet HoMnO 3 was<br />

switched on or off by application of a static<br />

electric field [FLL]. The origin of this novel type<br />

of phase control are "giant" magnetoelectric<br />

effects which are based on imbalances in the<br />

Ho 3+ -Mn 3+ superexchange induced by the<br />

ferroelectric distortion. Investigation of the<br />

dynamical properties of this phenomenon are<br />

underway.<br />

Own publications <strong>2003</strong> ff<br />

(full titles and list of authors see appendix 1)<br />

EEK03: T. Elsaesser et al.; in Proceedings of the<br />

International School of Physics 'Enrico Fermi':<br />

Electron and Photon Confinement in Semiconductor<br />

Nanostructures (<strong>2003</strong>) 249-63<br />

EKE03: T. Elsaesser et al.; SPIE Proc. 4992 (<strong>2003</strong>)<br />

154-64<br />

ERW03: F. Eickemeyer et al.; in Ultrafast Phenomena<br />

XIII (<strong>2003</strong>) 356-8<br />

FFL03: M. Fiebig et al.; Journal of Magnetism and<br />

Magnetic Materials 258-259 (<strong>2003</strong>) 110-3<br />

FLP03a: M. Fiebig et al.; J. Appl. Phys. 93 (<strong>2003</strong>)<br />

8194-6<br />

FLP03b: M. Fiebig et al.; J. Appl. Phys. 93 (<strong>2003</strong>)<br />

6900-2<br />

FPi03: M. Fiebig and R.V. Pisarev; Physica status<br />

solidi (c) 0 (<strong>2003</strong>) 1449-52<br />

FSP03: M. Fiebig et al.; J. Appl. Phys. 93 (<strong>2003</strong>)<br />

6960-2<br />

GLE03: T. Guenther et al.; Phys. Rev. Lett. 90 (<strong>2003</strong>)<br />

139702<br />

GML03: T. Guenther et al.; in Ultrafast Phenomena<br />

XIII (<strong>2003</strong>) 345-9<br />

GPL03: A.V. Goltsev et al.; Phys. Rev. Lett. 90 (<strong>2003</strong>)<br />

177204/1-4<br />

KHM03: D.S. Kim et al.; Phys. Rev. Lett. 91 (<strong>2003</strong>)<br />

143901/1-4<br />

MML03: R. Müller et al.; Phys. Rev. B 68 (<strong>2003</strong>)<br />

205415/1-9<br />

RLi03: M.B. Raschke and C. Lienau; Appl. Phys.<br />

Lett. 83 (<strong>2003</strong>) 5089-91<br />

RSW03: K. Reimann et al.; Opt. Lett. 28 (<strong>2003</strong>) 471-3<br />

STM03: M.P. Semtsiv et al.; Appl. Phys. Lett. 82 (<strong>2003</strong>)<br />

3418-20<br />

WWF03: I. Waldmüller et al.; Phys. status solidi B<br />

238 (<strong>2003</strong>) 474-7<br />

in press (as of Jan. 2004)<br />

AKE: T. Altebäumer et al.; tm Technisches Messen<br />

FFL: M. Fiebig et al.; Opt. Lett.<br />

LIG: C. Lienau et al.; Phys. Rev. B<br />

LRu: C. Lienau and E. Runge; Physik Journal<br />

LRWa: C.W. Luo et al.; Phys. Rev. Lett.<br />

LRWb: C.W. Luo et al.; Appl. Phys. A<br />

WRE: M. Woerner et al.; J. Phys.: Condens. Matter<br />

Elsb: T. Elsaesser; Appl. Phys. A<br />

FEC: M. Fiebig et al., Magnetoelectric interaction<br />

phenomena in crystals (Kluwer, Dordrecht, the<br />

Netherlands, in press)<br />

Fie: M. Fiebig; in Magnetoelectric interaction<br />

phenomena in crystals<br />

FLG: M. Fiebig et al.; Journal of Magnetism and<br />

Magnetic Materials<br />

FPi: M. Fiebig and R.V. Pisarev; Journal of Magnetism<br />

and Magnetic Materials<br />

Liea: C. Lienau; Philos. Trans. R. Soc. Lond. Ser. A-<br />

Math. Phys. Eng. Sci.<br />

Lieb: C. Lienau; in SPIE Proc.<br />

LRWc: C.W. Luo et al.; Semicond. Sci. Technol.<br />

UML: T. Unold et al.; Semicond. Sci. Technol.<br />

WRW: Z. Wang et al.; Semicond. Sci. Technol.<br />

submitted (until 21st Febr. 2004)<br />

MML: R. Müller et al.; Optics Express<br />

SFR: C. Schweitzer et al.; Phys. Rev. B<br />

UML: T. Unold et al.; Phys. Rev. Lett.<br />

WFL: I. Waldmüller et al.; Phys. Rev. B<br />

39


40<br />

3-03: Optoelectronic Devices<br />

J. W. Tomm (Project coordinator) and F. Weik, V. Talalaev, T. Q. Tran<br />

1. Overview<br />

The group performs research on the<br />

application of spectroscopic techniques<br />

developed or improved at the <strong>MBI</strong> to analytical<br />

purposes in optoelectronic devices. A primary<br />

objective is to improve insight into the<br />

microscopic nature of the mechanisms defining<br />

the limits of semiconductor device operation.<br />

The following themes are presently in the<br />

focus of the research activities:<br />

• defect creation and accumulation within the<br />

active region,<br />

• mechanical stress as well as<br />

• device and - particularly - facet heating<br />

are quantitatively analyzed in very different<br />

device structures.<br />

Together with our industrial partners, such<br />

as OSRAM Opto Semiconductors, THALES,<br />

Jenoptik Laserdiode and DILAS, new<br />

generations of optoelectronic devices with<br />

increased brightness and reliability are created,<br />

taking into account the analytical results of <strong>MBI</strong>.<br />

Investigations of transient recombination<br />

processes (5 ps-10 ns) in optoelectronic<br />

materials and epitaxial structures such as<br />

quantum-well or quantum-dot structures<br />

complete these device-related analytical activities.<br />

Carrier transfer kinetics in self assembled<br />

or structured nanostructures such as stressors<br />

will be addressed (optical measurement of<br />

transport kinetics).<br />

Furthermore, the group is involved into joint<br />

activities for the creation of novel classes of<br />

optoelectronic light sources such as midinfrared<br />

light-emitting diodes or compact<br />

femtosecond emitters. Demonstrators will be<br />

assembled and tested.<br />

As a long term perspective we will achieve<br />

an own contribution to novel, particularly ultrafast<br />

optoelectronic devices. Our contribution<br />

as workpackage coordinator in the FW6 IP<br />

WWW.BRIGHT.EU will be a milestone towards<br />

this goal.<br />

2. Subprojects and Collaborations<br />

UP1: Reliability and thermal analysis of highpower<br />

diode lasers, e.g. POWERPACK<br />

"Screening and packaging techniques for highly<br />

reliable laser-bars for telecommunication and<br />

industrial applications” (EU- IST-2000-29447).<br />

UP2: MIRCO “Material research for low-cost<br />

mid-infrared converters for the λ=4-5 µm<br />

wavelength range” (BMBF 03N1084C).<br />

UP3: “Transient recombination kinetics in semiconductors<br />

and optoelectronic structures”.<br />

There is long time established in-house<br />

cooperation with Project 3-02. Outside <strong>MBI</strong><br />

there is extensive cooperation with numerous<br />

partners in academia, institutes and companies<br />

among them also SMEs on the WISTA campus<br />

Adlershof. The activities are, among others,<br />

organized in the framework of EU- or BMBFfunded<br />

projects. Recently a new joint activity<br />

with Project 1-02 and the FBH-<strong>Berlin</strong> was<br />

started, which addresses compact semiconductor<br />

femtosecond emitters.<br />

3. Results in <strong>2003</strong><br />

Quantitative strain analysis in AlGaAsbased<br />

devices (achieved in UP1). We present<br />

a novel strategy for quantitative spectroscopic<br />

analysis of packaging-induced strain using<br />

both finite element analysis and bandstructure<br />

calculations [TGM03b]. This approach holds<br />

for a wide class of semiconductor devices,<br />

among them high-power diode lasers. The<br />

influence on the results of particular device<br />

structure properties, such as intrinsic strain<br />

and quantum-well geometry, is analyzed. We<br />

compare theoretical results based on an<br />

unaxial stress model with experimental data<br />

obtained from externally strained devices and<br />

obtain better agreement than from alternative<br />

strain models. The general approach is also<br />

applicable to the analysis of all data that refer<br />

to changes of the electronic bandstructure in<br />

semiconductor devices such as absorption,<br />

reflection and photoluminescence.<br />

Properties of As + -implanted and annealed<br />

GaAs and InGaAs quantum-wells: structural<br />

and band-structure modifications (achieved<br />

in UP3). Implanted quantum-wells are still the<br />

material of choice for fabricating semiconductor<br />

saturable absorber mirrors<br />

(SESAMS), which serve for amplitude<br />

modulation in ultrafast laser systems. Both<br />

crystal structure and energy band structure<br />

changes caused by As + -implantation and<br />

subsequent annealing in GaAs and in an<br />

In 0.253 Ga 0.747 As quantum-well are studied [TSG].<br />

We demonstrate that the main implantation<br />

impact to the crystal structure is the creation of<br />

a large number of point defects and strong


compressive strain of up to -0.1%. Raman- and<br />

X-ray-data demonstrate almost complete<br />

structural recovery for rapid thermal annealing<br />

temperatures T > 600°C. While the lattice<br />

expansion gets relaxed by annealing, the<br />

implantation-induced ionized point defects are<br />

still present up to the highest annealing<br />

temperatures applied. Under these<br />

circumstances a 22 meV blue-shift of the 1hh-<br />

1e-transition within the quantum-well and a<br />

substantial reduction of the non-equilibrium<br />

carrier lifetime remain as consequence of<br />

implantation. The substantial non-equilibrium<br />

carrier lifetime reduction, which is caused by<br />

the implantation process and which is the<br />

desired effect is demonstrated in Fig. 1.<br />

Furthermore, we investigate alternative<br />

SESAM concepts that abandon the defectcreating<br />

implantation technology.<br />

Facet temperature reduction a current<br />

blocking layer at the front facets of highpower<br />

InGaAs/AlGaAs lasers (achieved in<br />

UP1). The overheating of the facets, compared<br />

to the waveguide temperature, of singlequantum<br />

well InGaAs/AlGaAs broad-area<br />

(2 mm × 200 µm) high-power laser-diodes is<br />

reduced by a factor of 3-4 [RRK03]. This<br />

substantial improvement is achieved by the<br />

introduction of a 30 µm long, cost-neutral SiN<br />

current blocking layer located at the front facet<br />

of the laser. The improvement is explained by<br />

the reduction of the carrier density close to the<br />

facet due to the removed pumping current. This<br />

reduces the surface recombination current,<br />

which is considered a main source of facet<br />

heating. Since the optical load for the facets of<br />

both lasers is almost similar, it is clear that the<br />

increased carrier density at the facets for this<br />

type of lasers is not caused by re-absorption<br />

of laser light but rather by surface currents.<br />

Own publications <strong>2003</strong> ff.<br />

(full titles and list of authors see appendix 1)<br />

HMS03: F. Hatami et al.; Phys. Rev. B 67 (<strong>2003</strong>)<br />

085306/1-8<br />

MDP03: G. Mussler et al.; Appl. Phys. Lett. 83 (<strong>2003</strong>)<br />

1343-5<br />

RRK03: F. Rinner et al.; J. Appl. Phys. 93 (<strong>2003</strong>)<br />

1848-50<br />

TGM03a: J.W. Tomm et al.; J. Appl. Phys. 93 (<strong>2003</strong>)<br />

1354-62<br />

TGM03b: J. W. Tomm et al.; Appl. Phys. Lett. 82<br />

(<strong>2003</strong>) 4193-5<br />

TMT03: J.W. Tomm et al.; Phys. Rev. B 67 (<strong>2003</strong>)<br />

045326/1-8<br />

TRT03: J.W. Tomm et al.; SPIE Proc. 4993 (<strong>2003</strong>)<br />

91-9<br />

in press (as of Jan. 2004)<br />

GTO: A. Gerhard et al.; The European Physical<br />

Journal - Applied Physics<br />

TGB: J. W. Tomm et al.; The European Physical<br />

Journal - Applied Physics<br />

TSG: J. W. Tomm et al.; J. Appl. Phys.<br />

submitted (until 21st Febr. 2004)<br />

ZLZ: Z.Ya. Zhuchenko et al.; J. Appl. Phys.<br />

Fig. 2:<br />

(a) Facet (squares) and<br />

averaged waveguide<br />

temperatures (circles)<br />

versus operation current<br />

for a standard highpower<br />

laser device.<br />

(b) Facet and averaged<br />

waveguide temperatures<br />

for a device with current<br />

blocking layers. Note,<br />

that the laser power for a<br />

given operation current is<br />

similar for both devices.<br />

Substantial reduction of<br />

the facet heating is<br />

demonstrated.<br />

Fig. 1:<br />

Transient photoluminescence<br />

(T=10 K)<br />

after impulsive fsexcitation,<br />

detected at<br />

the spectral position of<br />

the edge emission<br />

(1.221 eV) for the asgrown<br />

(a) and the<br />

implanted sample that<br />

experienced rapid<br />

thermal annealing at<br />

650°C (b).<br />

41


42<br />

Fig. 1:<br />

Spectrum of<br />

x-ray pulses.<br />

3-04: Ultrafast x-ray research<br />

H. Stiel, M. Wörner, N. Zhavoronkov (Project coordinators)<br />

and M. Bargheer, Y. Gritsai, H. Legall, D. Leupold, M. Schnürer, J. Tümmler<br />

1. Overview<br />

This project aims at the development and<br />

the application of coherent and incoherent<br />

laser-based X-ray sources emitting light in the<br />

range between 0.1 and 20 nm.<br />

The following themes are presently in the<br />

focus of the research activities: The current<br />

applications focus on time-resolved X-ray<br />

diffraction experiments on crystalline solids (in<br />

the framework of SPP 1134 and in close<br />

collaboration with Project 3-02) using a high<br />

repetition rate laser produced plasma (LPP)<br />

source and on X-ray absorption studies concerning<br />

the role of carotenoids in energy transfer<br />

processes (in the framework of SFB 429).<br />

The goals of this interdisciplinary project are:<br />

• Development and optimization of laser based<br />

X-ray sources for time-resolved spectroscopy<br />

and diffractometry, EUV-lithography,<br />

metrology and interferometry. Understanding<br />

basic physics of these sources.<br />

• Application of these sources to study<br />

structural dynamics in clusters, semiconductor<br />

structures, superconductors and<br />

organic molecules on a sub-ps time scale.<br />

As a long term perspective an extension to<br />

even higher repetition rates is planned [ZKo04]<br />

and special emphasis will be directed to<br />

application experiments using the possibilities<br />

of <strong>MBI</strong> X-ray laser developed in project 2-01.<br />

2. Subprojects and Collaborations<br />

UP1: Hard x-ray generation using high<br />

repetition rate laser systems,<br />

UP2: Generation and application of soft xrays<br />

from laser-based sources,<br />

UP3: Investigation of phase transitions and<br />

structural dynamics in solids: DFG-fundung<br />

through SPP 1134, collaboration with PDI,<br />

FUB, Seoul National University.<br />

3. Results in <strong>2003</strong><br />

UP1: Hard x-ray generation using high<br />

repetition rate laser systems: The existing<br />

1 kHz Ti:Sapphire laser system for the<br />

production of hard x-rays [TRK03] has been<br />

upgraded to pulses having now 45 fs duration<br />

and energies up to 10 mJ [ZGM03]. The spatial<br />

beam profile observed in the focus of a lens<br />

with 8.8 cm focal length is Gaussian with a<br />

beam diameter less than 1.3 times of the<br />

diffraction limit. The RMS of the intensity<br />

fluctuations is less than 1%. As a target we<br />

use a vertically streaming Ga-jet. The spectrum<br />

of the x-ray emission is shown on Fig. 1. It<br />

consists of a broad continuum and two narrow<br />

features at 9.2 keV and 10.3 keV corresponding<br />

to the characteristic K α and K β lines<br />

of Ga. The total emission flux of X-ray's is of<br />

~8,1x10 10 photons/sec, the K α -line lines<br />

contain ~5x10 10 photons/sec. The efficiency of<br />

laser energy to X-ray photon energy<br />

conversion is estimated to be 1.3x10 -5 . An<br />

extension to even higher repetition rates is<br />

planned for the future [ZKo04].<br />

UP2 (1): Generation and application of soft<br />

x-rays from laser-based sources: Application<br />

of soft x-ray spectroscopy and metrology in<br />

chemical, biological and material sciences has<br />

attracted a lot of attention in recent time.<br />

Correspondingly, the development of compact<br />

soft x-ray radiation sources [TVS03] for the<br />

operation of laboratory test facilities which can<br />

also be operated close to the production line<br />

is one of the most important challenges at this<br />

time. The operational requirements on such a<br />

radiation source are high if nearly the same<br />

level of measurement uncertainty should be<br />

reached as presently only achieved using<br />

synchrotron radiation at dedicated laboratories.<br />

A highly reliable laser-based source [SST03]<br />

for use in extreme ultraviolet (EUV) metrology<br />

was constructed and integrated into a reflectometer<br />

system [VBB03] for high-accuracy atwavelength<br />

charaterization of multi-layer EUVmirrors<br />

at Carl Zeiss Oberkochen. Our EUVsource<br />

operates with a high power laser<br />

(650 mJ, 10 ns), which is focused on a rotating<br />

Au target cylinder. We obtained a source size<br />

of 30 μm by 50 μm and a spectral radiant power<br />

of > 10 14 ph /s*sr in 0.1 nm bw at 13.4 nm. The<br />

shot-to-shot stability of the source is about 5%<br />

(1σ) for laser pulse energies above 200 mJ.


UP2 (2): For soft x-ray absorption studies a<br />

table-top spectrometer including a wet<br />

chamber for biological samples has been<br />

developed. Our investigations were focused<br />

in particular on the carotenoid pigments<br />

involved in the so-called xanthophyll cycle in<br />

light harvesting complexes (LHC) of higher<br />

plants. The energies of the optically forbidden<br />

transition S 0 -S 1 of violaxanthin and zeaxanthin,<br />

the main pigments of the xanthophyll cycle,<br />

determined by different optical techniques<br />

differ significantly. Therefore we focused our<br />

work on elucidation of the energy levels of<br />

both violaxanthin and zeaxanthin in the<br />

conformations all-trans, 9-cis and 13-cis by<br />

Near-Edge X-ray Absorption Fine Structure<br />

Spectroscopy (NEXAFS). Based on our<br />

measurements the energies of the optically<br />

forbidden S 0 -S 1 transitions for both carotenoids<br />

were estimated. Because this result implies<br />

consequences for the pathways of energy<br />

transfer process in LHC our measurements<br />

have been extended to chlorophyll pigments<br />

as well as to peridinin-chlorophyll a-protein<br />

representing a model system for LHC.<br />

UP3: Femtosecond x-ray diffraction: The<br />

direct measurement of the position of nuclei<br />

by ultrafast x-ray diffraction complements the<br />

information on the rapid response of a solid,<br />

obtained by monitoring the dynamics of the<br />

electronic system by optical spectroscopies.<br />

The laser-driven table-top x-ray source<br />

described above provides an important method<br />

to investigate fundamental microscopic<br />

mechanisms which underlie ultrafast structural<br />

changes e.g. of crystalline solids.<br />

Our setup, depicted in Fig. 2a, allows for<br />

the detection of sub-picometer changes in the<br />

crystalline structure with an unprecedented<br />

sensitivity, as described in the following. Most<br />

previous femtosecond x-ray experiments<br />

(10Hz repetition rate) looked at large changes<br />

which lead to a permanent structural transformation<br />

of the sample. As a first application<br />

we discuss impulsive excitation of a dense<br />

electron-hole plasma in a semiconductor<br />

nano-structure. Fig. 3 presents the stationary<br />

rocking curve of the quasi-forbidden (002)<br />

reflex of a GaAs/AlGaAs superlattice (SL) with<br />

2000 periods of 8 nm wells and 8 nm barriers.<br />

The S/N ratio of our plasma source (solid line)<br />

is excellent and approaches that of conventional<br />

stationary x-ray spectrographs<br />

(dashed line).<br />

In the time-resolved experiments an 800 nm<br />

pump pulse (50 fs duration) excites electronhole<br />

pairs within a penetration depth of<br />

approximately 1 µm. This spatially modulated<br />

excitation of a dense electron-hole plasma<br />

leads to a significant impulsive excitation of<br />

various lattice vibrations in the phononic bandstructure<br />

of the semiconductor superlattice.<br />

The corresponding acoustic strain propagation<br />

leads to time-dependent diffraction signals for<br />

all three observed satellite peaks. In Fig. 4 we<br />

show time-resolved diffraction data measured<br />

in three different scans (different symbols) at<br />

the 1st order SL peak. The impulsively excited<br />

strain in the superlattice crystal cause both a<br />

step-like reduction of the diffraction efficiency<br />

and pronounced oscillations with a period of<br />

7 ps. A more detailed analysis of the phononic<br />

Fig. 3:<br />

Stationary rocking curve.<br />

Fig. 2:<br />

Experimental Setup.<br />

43


44<br />

Fig. 4:<br />

Time-resolved x-ray<br />

diffraction.<br />

bandstructure of the semiconductor nanostructure<br />

shows that the observed oscillations<br />

correspond to the zone boundary phonon in<br />

the miniband Brillouin zone of the superlattice.<br />

The zone boundary phonon is preferably<br />

observed due to the large density of phonon<br />

states. Optical reflection experiments in the<br />

weak excitation limit probed phonons near<br />

k = 0, with a period of 3 ps. The question, if this<br />

depends on the excitation density of the<br />

electron-hole plasma, will be addressed in<br />

experiments with varying intensity. The fastest<br />

rise-time of the transient changes measured<br />

with our plasma source was approximately<br />

1 ps, as expected from a phonon propagating<br />

at the sound-velocity through the 8 nm quantum<br />

well.<br />

Own publications <strong>2003</strong> ff<br />

(full titles and list of authors see appendix 1)<br />

SST03: F. Scholze et al., SPIE Proc. 5037 (<strong>2003</strong>)<br />

670-81<br />

TRK03: A. Thoss et al., J. Opt. Soc. Am. B 20 (<strong>2003</strong>)<br />

224-8<br />

TVS03: S. Ter-Avetisyan et al., J. Appl. Phys. 94<br />

(<strong>2003</strong>) 5489-96<br />

VBB03: L. v. Loyen et al., SPIE Proc. 5038 (<strong>2003</strong>)<br />

12-21<br />

ZGM03: N. Zhavoronkov et al., UFO IV (Springer<br />

Verlag, <strong>2003</strong>) 323-7


Focus 4<br />

Scientific Infrastrucure: Application laboratories<br />

and special laser development<br />

In the application laboratories the <strong>MBI</strong><br />

concentrates its specific experimental<br />

resources, providing a flexible, versatile and<br />

cost efficient use of expensive, state-of-theart<br />

equipment by internal researchers as well<br />

as by external partners from science and<br />

industry. Special laser development, reacting<br />

to demands from internal and external users,<br />

complements the scientific infrastructure<br />

activities which form an essential basis of<br />

scientific research at the <strong>MBI</strong>.<br />

<strong>MBI</strong>’s scientific research is embedded into<br />

a large number of cooperations with<br />

universities, research institutions, industry and<br />

guest researchers from various programmes,<br />

including the EU Access Programme since<br />

1996. Embedded into successive Laser<br />

Infrastructure Networks within the various EU<br />

Framework Programmes <strong>MBI</strong> is providing<br />

access to its laboratories together with<br />

adequate scientific, technical and logistic<br />

support for European guest researchers who<br />

require such major research infrastructures for<br />

their work. <strong>MBI</strong>, however, is not a pure service<br />

facility which is reflected in the record of its EU<br />

Access Contracts. The <strong>MBI</strong> users clearly prefer<br />

the combined offer of state-of-the-art laser<br />

systems together with extraordinarily broad<br />

scientific expertise, competence and<br />

equipment in <strong>MBI</strong>’s core research areas. This<br />

has frequently led to highly successful<br />

collaborations, even influencing <strong>MBI</strong>’s own<br />

research programme. In contrast, there is little<br />

demand for short-term visits serving the<br />

exclusive purpose of the user’s own research.<br />

Initially, <strong>MBI</strong> was part of the LIMANS Cluster<br />

of Large Scale Laser Facilities, which was<br />

organised and funded within the 4th Frame-<br />

work Programme of the European Community<br />

as an association of laser infrastructures with<br />

the aim of developing and implementing good<br />

practices in EU funded transnational access.<br />

Within the 5th Framework Programme the<br />

LIMANS Cluster formed an informal sub-group<br />

of LASERNET, a Thematic Network of Laser<br />

Infrastructures which pursued specific tasks<br />

to improve the quality of access to external<br />

users by transnational and interdisciplinary<br />

cooperation. Within the 6th Framework<br />

Programme of the European Union, <strong>MBI</strong> is<br />

part of LASERLAB-EUROPE, an "Integrated<br />

Infrastructure Initiative" of 17 European laser<br />

infrastructures from 9 European countries,<br />

which have appointed <strong>MBI</strong> as Co-ordinator of<br />

the project. In view of the increasing<br />

importance of lasers and their applications in<br />

all areas of sciences, life sciences and technologies<br />

the main objectives of this project are:<br />

• To combine most of the largest European<br />

national laboratories in laser-based interdisciplinary<br />

research, complemented by<br />

laboratories with special expertise and<br />

equipment<br />

• To facilitate integration through a novel webbased<br />

"virtual infrastructure" approach, with<br />

the expert support from a research<br />

laboratory specialised in internet services<br />

and communications<br />

• To strengthen the European leading role in<br />

laser research and to improve the quality of<br />

the participating Infrastructures through Joint<br />

Research Activities (JRA) aiming at the<br />

ultimate control of intense, short-pulse laser<br />

light and overcoming technological barriers<br />

towards high power and high intensity<br />

• To engage in the Transnational Access<br />

Programme in a co-ordinated fashion,<br />

providing nearly 4000 days of access.<br />

The goal is to establish a lasting link among<br />

laser research infrastructures for the effective<br />

and competitive exploitation and development<br />

of European resources.<br />

Within LASERLAB-EUROPE, <strong>MBI</strong> will offer<br />

a total of 340 days of access in an estimated<br />

number of 18 research projects to European<br />

users during a period of four years (2004-<br />

2007). Under Framework Programmes 4 and<br />

5 <strong>MBI</strong> has provided 505 and 494 days in 26<br />

and 23 projects respectively during the<br />

corresponding four year terms. This reduction<br />

of opportunities for European users is due to<br />

the very limited funds available for research<br />

infrastructures within the 6th Framework<br />

45


46<br />

Programme, a fact which has already been<br />

taken into consideration by the EC for future<br />

Framework Programmes.<br />

Under FP5, <strong>MBI</strong>’s European users came<br />

from 15 different countries (see graph below).<br />

Apart from these EU-funded Access<br />

activities which are restricted to visitors from<br />

foreign EU and associated countries, <strong>MBI</strong> also<br />

offers its facilities to collaborations with<br />

researchers from Germany or non-EU<br />

countries. These visits are funded from other<br />

sources, either national or international, and<br />

considerably contribute to <strong>MBI</strong>’s dense<br />

network of research collaborations.<br />

Particular attention is paid to collaborations<br />

with universities. <strong>MBI</strong> participates in several<br />

Special Research Grants (SFB) with <strong>Berlin</strong>’s<br />

universities, funded by the Deutsche Forschungsgemeinschaft,<br />

and in various nationwide<br />

Topical Research Programmes. In most<br />

cases it is the availability of special equipment,<br />

concentrated in the <strong>MBI</strong> Application<br />

Laboratories together with the expertise from<br />

<strong>MBI</strong>’s own research programme which makes<br />

the institute a collaboration partner in high<br />

demand. This is complemented by bi-lateral<br />

collaborations with university groups, where<br />

in single cases the <strong>MBI</strong> laboratories even<br />

serve as long-term host laboratories for university<br />

research (c.f. project 2-02, collaboration<br />

with TU <strong>Berlin</strong>).<br />

The Scientific Infrastructure at <strong>MBI</strong> is<br />

organized in four ‘projects’ (4-01 to 4-04):<br />

• in the Femtosecond Application Laboratory<br />

(4-01) several solid-state laser systems are<br />

available for the generation of femtosecond<br />

light pulses in the spectral range from 100 nm<br />

to 20 µm including setups for pulse shaping<br />

and characterization<br />

• the High Field Laser Application Laboratory<br />

(4-02) gives access to two high-field lasers<br />

with peak intensities around 10 19 W/cm 2<br />

• at the <strong>MBI</strong>-BESSY Beamline facility (4-03),<br />

located at the <strong>Berlin</strong>-Electron-Storage Ring<br />

for Synchrotron Radiation BESSY II (a third<br />

generation synchrotron source in <strong>Berlin</strong>-<br />

Adlershof), experiments with combined<br />

laser and synchrotron radiation experiments<br />

can be performed<br />

• special laser development (4-04) presently<br />

concentrates on 1) making high repetition<br />

rate ( > 1kHz) high average power short<br />

pulse laser systems available for the users<br />

at the <strong>MBI</strong> and 2) developing unique laser<br />

systems for accelerators. With this work the<br />

<strong>MBI</strong> has become an indispensable partner<br />

for the national and international accelerator<br />

and FEL community, in particular for the<br />

development of the DESY projects TESLA<br />

collider, VUV-FEL and the European X-FEL.<br />

The <strong>MBI</strong> also participates in the design and<br />

construction of laser facilities needed for<br />

femtosecond beam slicing at BESSY and<br />

contributes to the planning phase of the<br />

future FEL design at BESSY.


4-01: Femtosecond Application labs<br />

F. Noack, M. Wörner (Project Coordinators)<br />

1. Overview<br />

The <strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>e (<strong>MBI</strong>) develops,<br />

operates and provides femtosecond laser<br />

systems in a broad spectral range. A variety<br />

of sources for coherent, ultrashort light<br />

pulses are currently being explored, typically<br />

based on commercial and home built<br />

Ti:Sapphire lasers, but also on new laser<br />

materials. The use of nonlinear optical<br />

techniques such as harmonic generation,<br />

four wave mixing and parametric processes<br />

ensures access to wavelengths ranging from<br />

the VUV (~100nm) up to the IR (~10µm) with<br />

pulse durations ranging from 500 fs down<br />

to about 20 fs. Among the experimental<br />

techniques used with these laser systems<br />

are pump-(delayed)-probe methods,<br />

transient spectroscopy, impulsive Raman<br />

spectroscopy, molecular and cluster beams,<br />

UHV-surface analysis etc.<br />

It belongs to the mission of the <strong>MBI</strong> to offer<br />

these facilities to external users who are<br />

interested in research collaborations with<br />

employees of the <strong>MBI</strong>. A broad field of<br />

disciplinary and interdisciplinary studies is<br />

addressed, ranging from atomic, molecular<br />

and chemical physics to biology, materials<br />

science, liquids, polymers and semiconductors.<br />

2. User statistics <strong>2003</strong><br />

Presently access to seven femtosecond<br />

systems for time resolved spectroscopy is<br />

granted (see also the <strong>MBI</strong> homepage).<br />

Furthermore, temporally limited access to<br />

systems still under development or to<br />

additional systems which are extremely<br />

complex for user operation is also offered,<br />

please contact directly the department heads<br />

working closest to your field of interest.<br />

The overall use of the fs-application labs is<br />

about 75%. Taking into account the time for<br />

service and repairs of the systems the total load<br />

exceeds 90%. About 20% of the access time is<br />

used by visiting scientists mainly supported by<br />

the LIMANS programme of the European<br />

Community. In addition one system especially<br />

designed for investigation of material structuring<br />

is used for about 2 month per year by a<br />

local company based on a cooperation contract.<br />

The guests come from Italy, Greece, Netherlands,<br />

Spain, Russia, Korea, Sweden, France,<br />

Japan and Austria and of course from Germany,<br />

for a complete list please see appendix 5.<br />

Publications<br />

All publications which have emerged from<br />

work in this facility are listed under the relevant<br />

research projects.<br />

Fig. 1:<br />

Reflections on a<br />

chirped mirror<br />

spanning an octave<br />

of frequencies.<br />

This mirror is used<br />

for the generation of<br />

4.3-fs pulses.<br />

47


48<br />

Fig. 1:<br />

Setup of target-system<br />

and diagnostics at an<br />

interaction-chamber<br />

for studying high-field<br />

laser driven ion<br />

acceleration.<br />

4-02: High-Field-Laser Application Laboratory (HFL)<br />

M. Kalashnikov, P. V. Nickles (Project Coordinators)<br />

1. Overview<br />

The <strong>MBI</strong> high-field laser application<br />

laboratory develops, applies and provides<br />

femto- and picosecond laser systems<br />

operating in a broad intensity range up to<br />

10 19 W/cm 2 and beyond, complemented by<br />

short-pulse, high-average-power lasers for<br />

special applications. Apart from the research<br />

towards highest possible intensities at high<br />

pulse contrast, part of the activities is focussed<br />

on diagnostics development for the on-line<br />

characterisation of the laser parameters.<br />

The HFL is located in a separate building<br />

with restricted access due to radiation safety<br />

and cleanliness considerations. Its structure<br />

and equipment allows to perform laser-matter<br />

interaction experiments such as single atom<br />

ionisation as well as complex laser-plasma<br />

interaction studies. The latter include incoherent<br />

and coherent x-ray emission (collisional x-ray<br />

laser) as well as generation and acceleration<br />

of charged particles, with focussing on protons<br />

and highly charged ions and their applications.<br />

A diversity of diagnostic equipment with high<br />

energetic (spectral), spatial and temporal<br />

resolution, consisting of optical and x-ray streak<br />

cameras, CCD cameras, x-ray and EUVspectrometers,<br />

and Thomson spectrometers<br />

is available.<br />

According to the general mission of the<br />

<strong>MBI</strong> these facilities are not only used for the<br />

in-house research (mainly projects 1-02, 2-01<br />

and 2-02), but also offered to external users<br />

who are interested in research collaborations<br />

with <strong>MBI</strong> groups. A broad field of disciplinary<br />

and interdisciplinary studies is addressed,<br />

ranging from atomic, laser and plasma physics<br />

to material science, metrology up to industrial<br />

relevant applications. The laboratory is also<br />

open to external users in within the Trans-<br />

national Access Activity of the 5 th and 6 th<br />

Framework Programs of the EU (Integrated<br />

Laser Infrastructure Network LASERLAB-<br />

EUROPE). The following systems are in<br />

operation:<br />

• Two high-peak power lasers, capable of<br />

delivering intensities between 10 18 and more<br />

than 10 19 W/cm 2 , in particular, a 10 Hz CPA<br />

20 TW (35 fs, 700 mJ) Ti:Sapphire laser and<br />

a single shot ~10 TW (0.8 ps, ~8 J) glass<br />

laser. Presently, synchronization of the two<br />

system for unique proton imaging<br />

experiments in laser-based plasma physics<br />

is under development.<br />

• One YLF burst mode laser (5 kW average<br />

burst power, up to 1MHz repetition rate,<br />

flexible pulse duration >3ps ) covering a<br />

wide range of beam parameters like energy,<br />

duration, repetition rate and intensity. This<br />

system is typically used as unique driver<br />

laser for research on or with incoherent<br />

laser-plasma VUV-, EUV- and x-ray sources.<br />

• Additionally, a prototype of a collisionally<br />

excited nickel-like Ag X-ray laser at 13.9 nm<br />

with output energy of several µJ in 30 ps,<br />

using a shaped 3J picoscond pump pulse,<br />

has been successfully demonstrated. While<br />

this laser is, in principle, available for<br />

applications, it is still subject to intensive<br />

research efforts with the medium-term goal<br />

of developing a novel table-top, highrepetition<br />

rate and high average power EUV<br />

laser.<br />

The following supporting systems and<br />

infrastructure are available in the high field<br />

laser application laboratory:<br />

• SPIDER for a quasi-on-line control of the<br />

duration of the Ti:Sa laser pulse at full energy<br />

(10 fs resolution)<br />

• Implementation of an adaptive mirror- feedback<br />

with wavefront controlling Hartmann<br />

sensor, that resulted in a improvement of<br />

the focus intensity, leading to an intensity of<br />

about 10 19 W/cm 2<br />

• Auto-correlator for on-line pulse duration<br />

measurement of CPA-glass laser pulse<br />

• Update of the beam propagation system for<br />

five interaction chambers in separate laboratories,<br />

surrounding the central laser hall<br />

• Implementation of radiation protection system<br />

for highly energetic charged particles and<br />

x-rays (dosemeters)<br />

• Peak intensity determination by single atom<br />

ionisation measurement in inert gases (Xe,<br />

Kr) 4 channel Thomson parabola for ion<br />

spectra measurments and 4 channel neutron<br />

TOF developed.


Additionally, during <strong>2003</strong> the following new<br />

equipment has been developed and installed:<br />

• 3 rd order correlator for the Ti:Sapphire laser<br />

with high dynamics range as well as a sigle<br />

shor 3 rd order correlator for the glass laser<br />

system. Both for monitoring of shape and<br />

contrast of the compressed highly energetic<br />

pulses.<br />

• System for on-line monitoring of the spectral<br />

content of the glass laser pulses<br />

• Experimental arrangement for guiding<br />

experiments at relativistic intensities (see<br />

also access experiments).<br />

Furthermore the HFL-laboratory is equipped<br />

with a variety of commercial diagnostics<br />

enabling measurements with high spectral,<br />

spatial and temporal resolution (optical and<br />

x-ray streak and CCD cameras, different<br />

spectrometers from optical down to x-ray<br />

range).<br />

2. User statistics <strong>2003</strong><br />

Access to all four systems for laser matter<br />

interaction studies is currently granted (see<br />

above or the <strong>MBI</strong> homepage). Additionally,<br />

temporally limited access to systems being<br />

developed (for example incoherent x-ray<br />

sources) were also offered for users.<br />

The overall use (access time) of the HFLlasers<br />

was about 55%. The time for<br />

maintenance, repair and upgrading of the<br />

systems amounted to 45% in <strong>2003</strong>. About 18%<br />

of the total access time goes to visiting<br />

scientists mainly supported by the Transnational<br />

Access program of the European<br />

Community (FP5). Following access<br />

experiments have been performed (see also<br />

appendix 5):<br />

Prof. H. Fiedorowicz, <strong>Institut</strong>e of Optoelectronics<br />

Warsaw, Investigation of an Axicon<br />

arrangement for longitudinal pumping of Xray<br />

lasers, January <strong>2003</strong> (EU);<br />

Prof. A. Zigler, University of Jerusalem, Lasing<br />

studies in plasmas of BN-micro-capillaries.<br />

Pre-requisit for future high-repetetitive compact<br />

X-ray lasers, Oct.<strong>2003</strong> (GIF-project);<br />

Prof. G. Tallents, University of York, Spectroscopic<br />

investigations of the active medium of a nickellike<br />

Ag-X-ray laser using a KAP crystal<br />

spectrometer, Nov. <strong>2003</strong> (EU).<br />

Publications<br />

All publications which have emerged from<br />

experiments in HFL laboratory are listed under<br />

the relevant research projects.<br />

49


50<br />

Fig. 1:<br />

Ultra high vacuum<br />

apparatus for surfaces<br />

studies at the <strong>MBI</strong>-<br />

BESSY beamline<br />

(U125/1-SGM)<br />

at BESSY in <strong>Berlin</strong><br />

Adlershof.<br />

4-03: <strong>MBI</strong>-BESSY Beamline<br />

B. Winter (Project coordinator)<br />

1. Overview<br />

<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong> (<strong>MBI</strong>) operates a user<br />

facility at BESSY - the German 3 rd generation<br />

high-brilliance synchrotron radiation source<br />

located in <strong>Berlin</strong>. This special laboratory is<br />

dedicated to experiments with combined<br />

laser- (LR) and synchrotron radiation (SR)<br />

aimed at studying the dynamics of photo<br />

induced processes at surfaces and in<br />

particular molecules at surfaces, including<br />

surfaces of liquids and solutions (specific<br />

examples of this work are described in project<br />

3-01). Several laser systems with different<br />

wavelengths and repetition rates are available<br />

to meet the requirements for different experimental<br />

applications.<br />

Typically, excitation is done by LR pulses<br />

(synchronized to either single or multi bunch<br />

SR pulses), and probing is performed by timedelayed<br />

SR pulses (ca. 30 ps SR pulse width).<br />

By this technique various processes may be<br />

studied, including charge carrier dynamics,<br />

photoisomerization, phase transitions, photodissociation,<br />

and others. Yet, our ultimate goal<br />

is time-resolved two-color two-photon photoemission<br />

(2C-2PPE) addressing transiently<br />

excited electronic molecular states. The new<br />

PGM beamline (available in the second<br />

quarter of 2004) will provide a considerably<br />

small focal size, ca. 50 µm, and high brilliance,<br />

which is ideally combined with the required<br />

high-pulse energies of the LR pump pulse for<br />

the latter experiment. This pump pulse will be<br />

realized by an amplified Ti:sapphire laser<br />

system (partially developed at <strong>MBI</strong>; operational<br />

in 2004), operating at 208 kHz. The system<br />

delivers about 3 µJ pulse energy. Although<br />

the repetition rate is best suited for the SR<br />

single bunch (1.25 MHz rep. rate), a special<br />

single-pump multiple-probe technique allows<br />

for its use in multi bunch (500 MHz) operation.<br />

For those experiments not requiring high pulse<br />

energies, e.g. surface photovoltage dynamics<br />

or simply film-charge compensation (see<br />

3.01), either the (synchronized) Ti:sapphire<br />

oscillator or an alternate laser system,<br />

Nd:YVO 4 , effectively operating at 1.25 MHz (ca.<br />

250 nJ/pulse) can be used.<br />

The <strong>MBI</strong>-BESSY beamline (PGM U125) is<br />

optimized for the lower photon energy range,<br />

ca. 20-600 eV, thus giving access to the full<br />

electronic valence band as well as to inner<br />

shells, e.g. C1s and O1s being particularly<br />

important for our experiments on organic thin<br />

films and aqueous solutions (see 3.01). It is<br />

then natural to explore resonant processes or<br />

chemical shifts in the presence of LR<br />

excitation, for the systems mentioned.<br />

Presently, the <strong>MBI</strong>-BESSY beamline is a<br />

so called CRG (cooperating research group)<br />

implying that for about 50% of the available<br />

SR beam time at the U125 undulator the<br />

experiment is operated by <strong>MBI</strong> staff members<br />

and 50% by BESSY. This includes guest<br />

experiments with users from outside who are<br />

assisted by <strong>MBI</strong> staff members. It is planned to<br />

change this mode of operation by the end of<br />

2005 when the <strong>MBI</strong>-BESSY beam line will


ecome available to a broader public and the<br />

<strong>MBI</strong> team will then act as a ‘normal’ user group<br />

at BESSY. Several developments at BESSY<br />

are currently focused on making shorter SR<br />

pulses available: the low-alpha mode (< 5 ps<br />

pulse width), the fs beam slicing and last but<br />

not least the plans for an FEL installation for<br />

the EUV region. These plans will strongly<br />

influence future <strong>MBI</strong> activities at BESSY in<br />

general. The BESSY laser groups are strongly<br />

involved in the present construction and<br />

planning phases as far as laser know-how is<br />

required.<br />

2. Subprojects<br />

Presently the following experimental<br />

directions are most actively followed:<br />

Operation of U125 PGM beamline<br />

In March 2004 <strong>MBI</strong> experiments will be<br />

relocated to the PGM U125 beamline (planned<br />

to be ready June 2004). This includes<br />

modifications of both experimental end stations<br />

(see below) and a redesign of the present<br />

refocusing chamber, including an optimal laser<br />

light path. The construction and setup period<br />

will be followed by a commissioning period,<br />

before experiments can be continued. The new<br />

setup will allow for accessing photon energies<br />

up to 500 eV and provide a micro focus needed<br />

for efficient detection of molecular excited states<br />

in two photon pump probe experiments.<br />

Experimental end stations: UHV surface<br />

apparatus and liquid jet apparatus<br />

The two experimental end stations are<br />

being rebuilt in order to match the<br />

requirements at the new PGM beamline. The<br />

UHV surface apparatus contains various<br />

standard surface-science tools necessary for<br />

sample preparations (also sample transfer)<br />

and characterization. A hemispherical electron<br />

energy analyzer, rotatable (± 90°) around the<br />

synchrotron light axis, is used for angleresolved<br />

photo electron spectroscopy. Multichannel<br />

detection for time-resolved photoemission<br />

is available, which is crucial to avoid<br />

being confined to single bunch operation only.<br />

The modifications of the liquid jet apparatus<br />

are largely concerned with making this<br />

chamber more practical for combined LR and<br />

SR pulse experiments, and also to allow for<br />

measurements at the magic angle.<br />

Laser systems and synchronization<br />

The planning, installation and development<br />

of suitable laser systems is done in close<br />

collaboration with the laser groups at the <strong>MBI</strong><br />

(see also project 4-04). The following laser<br />

systems are presently available for combined<br />

LR and SR experiments (although all of them<br />

are based on commercially available products<br />

they had to be specifically adapted to the<br />

needs of such experiments):<br />

• (1) Ti:sapphire laser: 83 MHz rep. rate, 200<br />

fs or 4 ps pulse width, ca. 2 W @ 760-950<br />

nm, ca. 500 mW SH; synchronized to BESSY<br />

multi bunch; accuracy better 5 ps<br />

• (2) Nd:YVO 4 laser: 1.25 MHz rep. rate (pulsepicked<br />

from 25 MHz oscillator), 14 ps pulse<br />

width, ca. 200 mW @ 1064 nm, 100 nJ pulse<br />

energy @ 532 nm; 1:1 synchronized with<br />

BESSY single bunch (1.25 MHz); accuracy<br />

better 5 ps<br />

• (3) Amplified Ti:sapphire (REGA, Coherent),<br />

with the oscillator currently designed at <strong>MBI</strong><br />

to achieve optimum synchronization<br />

performance, will be available for our first<br />

experiments at the PGM beamline.<br />

Parameters: 208 kHz (possibly higher) rep.<br />

rate, < 80 fs pulse width, > 3 µJ pulse energy<br />

@ 800 nm; synchronization better 2 ps.<br />

In particular the laser system (3) will be of<br />

specific benefit for 2PPE experiments in single<br />

bunch operation. A reconstructed design will<br />

be available at the new PGM beamline (work<br />

in progress). Notice that each laser is dedicated<br />

to given experimental requirements.<br />

3. Results<br />

The technical and experimental achievements<br />

at the <strong>MBI</strong>-BESSY Facility have been<br />

documented for the project evaluation, as one<br />

of BESSY’s CRGs, by an international board<br />

in June <strong>2003</strong>. The full report is documented<br />

on the <strong>MBI</strong> home page (http://www.mbiberlin.de/de/research/projects/4-03/).<br />

The<br />

evaluation board concluded that “… the<br />

collaboration BESSY and <strong>MBI</strong> has been<br />

highly successful in establishing a worldclass<br />

facility for experiments combining<br />

modern laser techniques with synchrotron<br />

radiation.”<br />

Publications<br />

All publications of <strong>MBI</strong> members of staff<br />

which have emerged from work at the <strong>MBI</strong>-<br />

BEAM line are listed under the respective<br />

research projects.<br />

51


52<br />

Fig. 1:<br />

Shape of a 4 mm<br />

diameter He-Ne laser<br />

beam after passing<br />

through the Ti:sapphire<br />

laser rod at different<br />

pump powers of<br />

0 W; 10 W; 20 W;<br />

25 W; 30 W; 35 W.<br />

The crystal temperature<br />

is 20°C (left)<br />

and –60°C (right).<br />

4-04: Special laser development for applications<br />

I. Will, N. Zhavaronkov<br />

1. Overview<br />

A new generation of diode pumped solidstate<br />

lasers, such as "Corona" or "Evolution",<br />

have opened a new possibilities for multi-kHz<br />

femtosecond systems design with high<br />

average and high peak powers, suitable as<br />

drivers for noncoherent X-ray production and<br />

high harmonics generation. Also special<br />

applications at synchrotron radiation facilities<br />

(e.g. BESSY in <strong>Berlin</strong>) such as femtosecond<br />

beam-slicing for short-pulse hard X-ray<br />

generation will strongly benefit from this<br />

development. Another important application<br />

will be in material processing with femtosecond<br />

technology where up to now repetition rate<br />

and average power were limiting factors for<br />

broader applications. One main goal of the<br />

project is the development of new ideas and<br />

new technological know-how for a solid state<br />

femtosecond laser system operated at high<br />

average output power.<br />

Another major effort of the project is<br />

devoted to the development of picosecond<br />

lasers systems at very high average powers,<br />

both in the burst-mode and the quasi-cw<br />

operation mode. <strong>MBI</strong> burst-mode lasers<br />

operate with average powers up to 5kW during<br />

bursts, making these laser systems unique for<br />

research on high-power laser plasma sources,<br />

e.g. for the EUV lithography. The main<br />

applications, however, arise from various<br />

collaborations with national and international<br />

high-energy accelerator and Free Electron<br />

Laser projects. <strong>MBI</strong> as an early member of the<br />

international TESLA Collaboration has been<br />

instrumental since 1994 in providing photocathode<br />

lasers for the TESLA Test Facilities<br />

TTFI and TTFII at DESY Hamburg, the PITZ<br />

facility at Zeuthen, and the DESY VUV-FEL<br />

and the future European X-FEL. In addition,<br />

<strong>MBI</strong> provides an EU-funded OPCPA fs-laser<br />

as a user station at the VUV-FEL, and the quasicw<br />

photocathode laser for the superconducting<br />

gun at the ELBE FEL in Rossendorf,<br />

and participates in several research projects<br />

for the planned VUV-FEL at BESSY. Since late<br />

<strong>2003</strong> <strong>MBI</strong> is embedded in international<br />

consortia from several European FEL projects<br />

to participate in EU-funded Design Studies on<br />

future FEL’s.<br />

2. Subprojects and Collaborations<br />

UP1: High average power ultrafast laser<br />

systems.<br />

UP2: Unique laser systems for accelerators.<br />

In collaboration with DESY Hamburg and<br />

DESY Zeuthen). This project has been<br />

supported by the BMBF, contract no 1SF9982.<br />

3. Results in <strong>2003</strong><br />

UP1:<br />

In longitudinally pumped laser crystals the<br />

origin of thermal effects is the Stokes shift<br />

between the pump and the emission wavelengths.<br />

For Ti:sapphire pumped at 532 nm<br />

approximately 30 % of pump power will be<br />

dissipated as a heat, even if the quantum<br />

efficiency is close to unity. Pumping the


Ti:sapphire rod at a high pump power will<br />

induce strong thermal lensing. One of the<br />

methods to decrease very efficiently the<br />

thermal lensing is to cool the Ti:sapphire crystal<br />

to a lower temperature.<br />

To this aim a special evacuated chamber<br />

was designed on the basis of two-stage<br />

thermo-electrical elements with a cooling<br />

power of 100 W. The cooling power was<br />

sufficient to cool the Ti:sapphire rod down to<br />

the temperature of 210 K. Observation of the<br />

wave front of the He-Ne laser beam after a<br />

single pass through the Ti:sapphire crystal<br />

pumped with varying pump power, shows a<br />

significant reduction of the thermally induced<br />

phase aberration for lower rod temperatures<br />

as shown in Fig. 1.<br />

The aberrative thermal lensing which<br />

manifests itself as a high order transfer ring<br />

structure will be insignificant in our rod for<br />

the amplified beams which will be directed<br />

with a proper mode-matching through strongly<br />

pumped Ti:sapphire rod.<br />

Using this amplification stage 1.5 mJ laser<br />

pulses were further amplified to an energy of<br />

9.2 mJ, leading to 45 fs pulses with 6 mJ<br />

energy after compression. The spatial profile<br />

of the laser beam was Gaussian with M 2<br />

measured to be as less than 1.6. Due to the<br />

good spatial distribution an almost diffraction<br />

limited waist size is obtained with a peak<br />

intensity of about 10 16 W/cm 2 . The technology<br />

thus developed was used in project 3-04<br />

“Ultrafast X-ray research”.<br />

UP2:<br />

In <strong>2003</strong> the second subproject mainly<br />

deals with the development of photocathode<br />

lasers for the TESLA Test Facility (TTF) and<br />

DESY VUV-FEL, respectively, and for the<br />

Photoinjector Test Facility at Zeuthen (PITZ).<br />

The most important result is the development<br />

of a novel diode-pumped front-end for<br />

burst-mode photocathode lasers. It consists<br />

of a diode-pumped oscillator with < 0.5 ps<br />

synchronisation accuracy and two (optionally<br />

three) stages of diode-pumped amplifiers. This<br />

front end has been installed at the photocathode<br />

lasers of the TESLA Test Facility (TTF)<br />

in Hamburg, the Photoinjector Test Facility at<br />

Zeuthen (PITZ), as well as at the optical pump/<br />

probe laser system for the TTF FEL. The<br />

development of this front end is a major step<br />

towards a completely diode-pumped photocathode<br />

laser for TESLA and PITZ. Fig. 2<br />

illustrates the time structure of the laser pulses.<br />

Significant improvements regarding the<br />

technology of burst-mode photocathode lasers<br />

have been achieved at PITZ. A novel spectral<br />

pulse shaper allows for generation of trains of<br />

flat-top pulses. An appropriate wavelength<br />

conversion system has been set up which<br />

Fig. 2:<br />

Train of picosecond<br />

pulses (upper trace)<br />

required by the time<br />

structure of the TESLA<br />

linac.<br />

Fig. 3:<br />

Scheme of the PITZ<br />

photocathode laser.<br />

53


54<br />

Fig. 4:<br />

The pulse shape<br />

experiences only<br />

small distortion when<br />

converted to the UV.<br />

transfers the infrared flat-top pulses to the<br />

forth harmonics (UV) with only negligible<br />

deformation of the pulse shape. In addition, a<br />

computer-controlled system stabilizing the<br />

wavelength of the oscillator has been developed<br />

and installed. This system compensates for<br />

very small drifts of the center wavelength of<br />

the laser in the order of 0.01 nm which would<br />

otherwise severely distort the pulse shape.<br />

Operating the laser at PITZ during <strong>2003</strong> was<br />

a prerequisite for optimization and improvement<br />

of the complete acceleration system.<br />

The application of the flat-top laser pulses<br />

for illumination of the photocathode of the<br />

photoinjector at PITZ allowed to improve the<br />

emittance of the generated electron beam.<br />

Now the photoinjector reaches the emittance<br />

of < 2 mm⋅mrad required by the TTF FEL.<br />

Consequently, a similar laser will be installed<br />

at the linac of the TESLA FEL in Hamburg.<br />

Publications<br />

All publications which have emerged in<br />

connection with this project are listed under<br />

project 1-02.


Appendices<br />

55


Appendix 1<br />

Publications<br />

Publications which have appeared in <strong>2003</strong> are listed<br />

alphabetically by labels (first letter(s) of authors names,<br />

year 03 and a,b,c where necessary). At the end of this<br />

list publications in press and submitted are listed<br />

separately without year in the label.<br />

AFF03: O. A. C. Alvaredo, A. Fring and C. Figueira de<br />

Morisson Faria; Relativistic treatment of harmonics from<br />

impurity systems in quantum wires; Phys. Rev. B 67<br />

(<strong>2003</strong>) 125405-14<br />

AMR03: D. Ashkenasi, G. Müller, A. Rosenfeld, R.<br />

Stoian, I. V. Hertel, N. M. Bulgakova and E. E. B. Campbell;<br />

Fundamentals and advantages of ultrafast micro<br />

structuring of transparent materials; Appl. Phys. A 77<br />

(<strong>2003</strong>) 223-8<br />

BCe03: D. Bauer and F. Ceccherini; Dynamic two-color<br />

stabilization of hydrogen; Laser Phys. 13 (<strong>2003</strong>) 475-83<br />

BGK03: W. Becker, S. P. Goreslavskii, R. Kopold and<br />

S. V. Popruzhenko; Quantum orbits and laser-induced<br />

nonsequential double ionization; in Many-particle<br />

quantum dynamics in atomic and molecular<br />

fragmentation, V. P. Shevelko, and J. Ullrich eds.<br />

(Springer, <strong>Berlin</strong>, <strong>2003</strong>) Vol. 35, 185-204<br />

BHJ03: R. Bakker, M. v. Hartrott, E. Jaeschke, D. Krämer,<br />

J. P. Carneiro, K. Flöttmann, P. Piot, J. Roßbach, S.<br />

Schreiber, K. Abrahamyan, J. Bähr, I. Bohnet, V.<br />

Djordjadze, U. Gensch, H. J. Graboschi, Z. Li, D. Lipka,<br />

A. Oppelt, B. Petrossyan, F. Stephan, P. Michelato, C.<br />

Pagani, D. Sertore, V. Miltchev, I. Tsakov, A. Liero, H.<br />

Redlin, W. Sandner, R. Schumann, I. Will, R. Cee, M.<br />

Krassilnikov, S. Setzer and T. Weiland; First beam<br />

measurements at the photo injector test facility at DESY<br />

Zeuthen; Nucl. Instrum. Methods Phys. Res. Sect. A-<br />

Accel. Spectrom. Dect. Assoc. Equip. 507 (<strong>2003</strong>) 210-4<br />

BMa03: D. Bauer and A. Macchi; Dynamical ionization<br />

ignition of clusters in intense short laser pulses; Phys.<br />

Rev. A 68 (<strong>2003</strong>) 033201/1-10<br />

BTS03: S. Busch, S. Ter-Avetisyan, M. Schnürer, M. P.<br />

Kalachnikov, V. Karpov, H. Schönnagel, H. Stiel, U. Vogt,<br />

P. V. Nickles and W. Sandner; Ion acceleration with<br />

ultrafast lasers; Appl. Phys. Lett. 82 (<strong>2003</strong>) 3354-6<br />

CBC03: F. Ceccherini, D. Bauer and F. Cornolti; Harmonic<br />

generation by atoms in circularly polarized two-color<br />

laser fields with coplanar polarizations and<br />

commensurate frequencies; Phys. Rev. A 68 (<strong>2003</strong>)<br />

053402/1-9<br />

DMM03a: J. Dreyer, A. M. Moran and S. Mukamel;<br />

Coherent three-pulse spectroscopy of coupled<br />

vibrations in a rigid dipeptide: Density functional theory<br />

simulations; J. Phys. Chem. B 107 (<strong>2003</strong>) 5967-85<br />

DMM03b: J. Dreyer, A. M. Moran and S. Mukamel; Tensor<br />

components in three pulse vibrational echoes of a rigid<br />

dipeptide; Bull. Korean Chem. Soc. 24 (<strong>2003</strong>) 1091-6<br />

EEK03: T. Elsaesser, F. Eickemeyer, R. A. Kaindl, K.<br />

Reimann and M. Woerner; Ultrafast intersubband<br />

dynamics in quantum wells and quantum cascade<br />

structures; in Proceedings of the International School<br />

of Physics 'Enrico Fermi': Electron and Photon<br />

Confinement in Semiconductor Nanostructures, B.<br />

Deveaud, A. Quattropani, and P. Schwendimann eds.<br />

(IOS Press, Amsterdam, <strong>2003</strong>) 249-63<br />

EGK03: U. Eichmann, T. F. Gallagher and R. M. Konik;<br />

Fano Line Shapes Reconsidered: Symmetric<br />

Photoionization Peaks from Pure Continuum Excitation;<br />

Phys. Rev. Lett. 90 (<strong>2003</strong>) 233004/1-4<br />

EKE03: T. Elsaesser, R. A. Kaindl, F. Eickemeyer, K.<br />

Reimann, M. Woerner, R. Hey, C. Miesner, K. Brunner<br />

and G. Abstreiter; Ultrafast coherent and incoherent<br />

dynamics of intersubband excitations in semiconductor<br />

quantum wells; SPIE Proc. 4992 (<strong>2003</strong>) 154-64<br />

ELR03: E. Eremina, X. Liu, H. Rottke, W. Sandner, A.<br />

Dreischuh, F. Lindner, F. Grasborn, G. G. Paulus, H.<br />

Walther, R. Moshammer, B. Feuerstein and J. Ullrich;<br />

Laser-induced non-sequential double ionization investigated<br />

below threshold for electron impact ionization;<br />

Journal of Physics B-Atomic Molecular and Optical<br />

Physics 36 (<strong>2003</strong>) 3269-80<br />

ERW03: F. Eickemeyer, K. Reimann, M. Woerner, T.<br />

Elsaesser, S. Barbieri, C. Sirtori, G. Strasser, T. Müller,<br />

R. Bratschitsch and K. Unterrainer; Ultrafast coherent<br />

electron transport in quantum cascade structures; in<br />

Ultrafast Phenomena XIII, R. J. D. Miller, M. M. Murnane,<br />

N. F. Scherer, and A. M. Weiner eds. (Springer Verlag,<br />

<strong>Berlin</strong>, <strong>2003</strong>) 356-8<br />

FBe03: C. Figueira de Morisson Faria and W. Becker;<br />

Quantum-orbit analysis of nonsequential double<br />

ionization; Laser Phys. 13 (<strong>2003</strong>) 1196-204<br />

FFL03: M. Fiebig, D. Fröhlich, T. Lottermoser, V. V. Pavlov,<br />

R. V. Pisarev and H.-J. Weber; Second harmonic<br />

generation of magnetic-dipole type in centrosymmetric<br />

antiferromagnets NiO and KNiF 3 ; Journal of Magnetism<br />

and Magnetic Materials 258-259 (<strong>2003</strong>) 110-3<br />

FLP03a: M. Fiebig, T. Lottermoser and R. V. Pisarev; Spinrotation<br />

phenomena and magnetic phase diagrams of<br />

hexagonal RMnO 3 ; J. Appl. Phys. 93 (<strong>2003</strong>) 8194-6<br />

FLP03b: M. Fiebig, T. Lottermoser, V. V. Pavlov and R. V.<br />

Pisarev; Magnetic second harmonic generation in<br />

centrosymmetric CoO, NiO, and KNiF 3 ; J. Appl. Phys.<br />

93 (<strong>2003</strong>) 6900-2<br />

57


58<br />

FPi03: M. Fiebig and R. V. Pisarev; Nonlinear optical<br />

spectroscopy and spin effects in magnetic compounds;<br />

Physica status solidi (c) 0 (<strong>2003</strong>) 1449-52<br />

FSP03: M. Fiebig, I. Sänger and R. V. Pisarev; Magnetic<br />

phase diagram of CuB 2 O 4 ; J. Appl. Phys. 93 (<strong>2003</strong>)<br />

6960-2<br />

FTD03: H. Fidder, F. Tschirschwitz, O. Dühr and E. T. J.<br />

Nibbering; Reaction dynamics of OCIO in solution; in<br />

Recent advances in ultrafast spectroscopy;<br />

Proceedings of the 'XII UPS Conference', S. Califano,<br />

P. Foggi, and R. Righini eds. (Leo S. Olschki, Florence,<br />

Italy, <strong>2003</strong>) 105-10<br />

FZP03a: S. V. Fomichev, D. F. Zaretsky, S. V. Popruzhenko<br />

and W. Becker; Nonlinear excitation of the Mie<br />

resonance in laser-irradiated cluster; Optics Express<br />

11 (<strong>2003</strong>) 2433-9<br />

FZP03b: S. V. Fomichev, D. F. Zaretsky, S. V. Popruzhenko<br />

and W. Becker; Laser-induced nonlinear excitation of<br />

collective electron motion; J. Phys. B: At. Mol. Opt. Phys.<br />

36 (<strong>2003</strong>) 3817-34<br />

GBS03: T. Gießel, D. Bröcker, P. Schmidt and W. Widdra;<br />

Time-resolving and energy-dispersive photoelectron<br />

detector for combined laser and synchrotron radiation<br />

experiments; Rev. Sci. Instrum. 74 (<strong>2003</strong>) 4620-4<br />

GFH03: C. Gerth, J. Feldhaus, K. Honkavaara, K. D.<br />

Kavanagh, P. Piot, L. Plucinski, S. Schreiber and I. Will;<br />

Bunch length and phase stability measurements at the<br />

TESLA test facility; Nuclear Instruments and Methods<br />

in Physics Research Section A: Accelerators, Spectrometers,<br />

Detectors and Associated Equipment 507<br />

(<strong>2003</strong>) 335-9<br />

GGN03: R. Grunwald, U. Griebner, U. Neumann, A.<br />

Kummrow, E. T. J. Nibbering, M. Rini, M. Piché, G.<br />

Rousseau, M. Fortin, N. McCarthy and V. Kebbel;<br />

Generation of ultrashort-pulse nondiffracting beams<br />

and x-waves with thin-film axicons; in Ultrafast<br />

Phenomena XIII, R. J. D. Miller, M. M. Murnane, N. F.<br />

Scherer, and A. M. Weiner eds. (Springer Verlag, <strong>Berlin</strong>,<br />

<strong>2003</strong>) 247-9<br />

GKG03b: R. Grunwald, V. Kebbel, U. Griebner, U.<br />

Neumann, A. Kummrow, E. T. J. Nibbering, M. Rini, M.<br />

Piché, G. Rousseau and M. Fortin; Femtosecond laser<br />

beam shaping with structured thin-film elements; SPIE<br />

Proc. 4833 (<strong>2003</strong>) 354-61<br />

GKG03c: R. Grunwald, V. Kebbel, U. Griebner, U.<br />

Neumann, A. Kummrow, M. Rini, E. T. J. Nibbering, M.<br />

Piché, G. Rousseau and M. Fortin; Generation and<br />

characterization of spatially and temporally localized<br />

few-cycle optical wave packets; Phys. Rev. A 67 (<strong>2003</strong>)<br />

063820/1-5<br />

GKN03: R. Grunwald, V. Kebbel, U. Neumann, U.<br />

Griebner and M. Piché; Spatio-temporal processing of<br />

femtosecond laser pulses with thin-film microoptics;<br />

SPIE Proc. 5181 (<strong>2003</strong>) 1-11<br />

GKP03: S. P. Goreslavski, A. Korneev, S. V. Popruzhenko,<br />

R. Kopold and W. Becker; A closer look at electronelectron<br />

correlation in laser-induced nonsequential<br />

double ionization; J. Mod. Opt. 50 (<strong>2003</strong>) 423-40<br />

GLE03: T. Guenther, C. Lienau, T. Elsaesser, M.<br />

Glanemann, V. M. Axt and T. Kuhn; Coherent nonlinear<br />

optical response of single quantum dots studied by<br />

ultrafast near-field spectroscopy: reply to comment;<br />

Phys. Rev. Lett. 90 (<strong>2003</strong>) 139702<br />

GML03: T. Guenther, K. Mueller, C. Lienau, T. Elsaesser,<br />

S. Eshlagyi and A. D. Wieck; Ultrafast near-field pumpprobe<br />

spectroscopy of quasi-one-dimensional transport<br />

in a single quantum wire; in Ultrafast Phenomena XIII,<br />

R. J. D. Miller, M. M. Murnane, N. F. Scherer, and A. M.<br />

Weiner eds. (Springer Verlag, <strong>Berlin</strong>, <strong>2003</strong>) 345-9<br />

GNG03: R. Grunwald, U. Neumann, U. Griebner, K.<br />

Reimann, G. Steinmeyer and V. Kebbel; Ultrashort-pulse<br />

wavefront autocorrelation; Opt. Lett. 28 (<strong>2003</strong>) 2399-<br />

401<br />

GPL03: A. V. Goltsev, R. V. Pisarev, T. Lottermoser and M.<br />

Fiebig; Structure and interaction of antiferromagnetic<br />

domain walls in hexagonal YMnO 3 ; Phys. Rev. Lett. 90<br />

(<strong>2003</strong>) 177204/1-4<br />

GRR: R. A. Ganeev, A. I. Ryasnyansky, V. I. Redkorechev,<br />

K. Fostiropulos, G. Priebe and T. Usmanov; Variations<br />

of nonlinear optical characteristics of C 60 thin films at<br />

532 nm; Opt. Commun. 225 (<strong>2003</strong>) 131-9<br />

HHC03: K. Hansen, K. Hoffmann and E. E. B. Campbell;<br />

Thermal electron emission from the hot electronic<br />

subsystem of vibrationally cold C 60 ; J. Chem. Phys. 119<br />

(<strong>2003</strong>) 2513-22<br />

HHD03: N. Huse, K. Heyne, J. Dreyer, E. T. J. Nibbering<br />

and T. Elsaesser; Vibrational multilevel quantum<br />

coherence due to anharmonic couplings in intermolecular<br />

hydrogen bonds; Phys. Rev. Lett. 91 (<strong>2003</strong>)<br />

197401/1-4<br />

HHe03a: A. V. Husakou and J. Herrmann; Frequency<br />

comb generation by Four-wave mixing in photonic<br />

crystal fibers; Appl. Phys. Lett. 83 (<strong>2003</strong>) 3867-9<br />

HHe03b: A. V. Husakou and J. Herrmann; Supercontinuum<br />

generation in photonic crystal fibers made<br />

from highly nonlinear glasses; Appl. Phys. B 77 (<strong>2003</strong>)<br />

227-34<br />

HHN03a: K. Heyne, N. Huse, E. T. J. Nibbering and T.<br />

Elsaesser; Ultrafast coherent nuclear motions of<br />

hydrogen bonded carboxylic acid dimers; Chem. Phys.<br />

Lett. 369 (<strong>2003</strong>) 591-6<br />

HHN03b: K. Heyne, N. Huse, E. T. J. Nibbering and T.<br />

Elsaesser; Coherent vibrational dynamics of intermolecular<br />

hydrogen bonds in acetic acid dimers<br />

studied by ultrafast mid-infrared spectroscopy; J. Phys.:<br />

Condens. Matter 15 (<strong>2003</strong>) S129-S136


HHN03c: K. Heyne, N. Huse, E. T. J. Nibbering and T.<br />

Elsaesser; Ultrafast relaxation and anharmonic<br />

coupling of O-H stretching and bending excitations in<br />

cyclic acetic acid dimers; Chem. Phys. Lett. 382 (<strong>2003</strong>)<br />

19-25<br />

HJG03: K. Heister, L. S. O. Johansson, M. Grunze and<br />

M. Zharnikov; A detailed analysis of the C 1s photoemission<br />

of n-alkanethiolate films on noble metal<br />

substrates; Surf. Science 529 (<strong>2003</strong>) 36-46<br />

HMS03: F. Hatami, W. T. Masselink, L. Schrottke, J. W.<br />

Tomm, V. Talalaev, C. Kristukat and A. R. Goni; InP<br />

quantum dots embedded in GaP: Optical properties<br />

and carrier dynamics; Phys. Rev. B 67 (<strong>2003</strong>) 085306/<br />

1-8<br />

HPH03: A. Husakou, V. P. Kalosha and J. Herrmann;<br />

Nonlinear phenomena of ultra-broadband radiation in<br />

photonic crystal fibers and hollow waveguides; in<br />

Optical Solitons. Theoretical and Experimental<br />

Challenges, K. Porsezian, and V. C. Kuriakose eds.<br />

(Springer-Verlag, <strong>Berlin</strong> Heidelberg, <strong>2003</strong>) 299-325<br />

HRN03: A.-K. Holm, M. Rini, E. T. J. Nibbering and H.<br />

Fidder; Femtosecond UV/mid-IR study of photochromism<br />

of the spiropyran 1' ,3' -dihydro-1' ,3' ,3' -<br />

trimethyl-6-nitrospiro[2H-1-benzopyran-2,2'-(2H)-indole]<br />

in solution; Chem. Phys. Lett. 376 (<strong>2003</strong>) 214-9<br />

HSK03: F. W. Helbing, G. Steinmeyer and U. Keller;<br />

Carrier-envelope offset phase-locking with attosecond<br />

timing jitter; IEEE J. Sel. Top. Quant. Electron. 9 (<strong>2003</strong>)<br />

1030-40<br />

HSt03: F. W. Helbing, G. Steinmeyer and U. Keller;<br />

Carrier-envelope control of femtosecond lasers with<br />

attosecond timing jitter; Laser Phys. 13 (<strong>2003</strong>) 644-51<br />

IYL03: L. Isaenko, A. Yelisseyev, S. Lobanov, A. Titov, V.<br />

Petrov, J.-J. Zondy, P. Krinitsin, A. Merkulov, V. Vedenyapin<br />

and J. Smirnova; Growth and properties of LiGaX 2 (X=S,<br />

Se, Te) single crystals for nonlinear optical applications<br />

in the mid-IR; Cryst. Res. Technol. 38 (<strong>2003</strong>) 379-87<br />

JBE03: D. Janssen, H. Büttig, P. Evtushenko, M. Freitag,<br />

F. Gabriel, B. Hartmann, U. Lehnert, P. Michel, K. Möller,<br />

T. Quast, B. Reppe, A. Schamlott, C. Schneider, R.<br />

Schurig, J. Teichert, S. Konstantinov, S. Kruchkov, A.<br />

Kudryavtsev, O. Myskin, V. Petrov, A. Tribendis, V. Volkov,<br />

W. Sandner, I. Will, A. Matheisen, W. Moeller, M. Pekeler,<br />

P. v. Stein and C. Haberstroh; First operation of a<br />

superconducting RF-gun; Nuclear Instruments and<br />

Methods in Physics Research Section A: Accelerators,<br />

Spectrometers, Detectors and Associated Equipment<br />

507 (<strong>2003</strong>) 314-7<br />

JBL03: K. A. Janulewicz, F. Bortolotto, A. Lucianetti, W.<br />

Sandner, P. V. Nickles, J. J. Rocca, N. Bobrova and P. V.<br />

Sasorov; Fast capillary discharge plasma as a<br />

preformed medium for longitudinally pumped<br />

collisional x-ray lasers; J. Opt. Soc. Am. B 20 (<strong>2003</strong>)<br />

215-20<br />

JGO03: R. Jung, S. Gerlach, G. v. Oppen and U.<br />

Eichmann; Photoexcitation and ionization of cold metastable<br />

helium atoms; in Interactions in ultracold gases:<br />

from atoms to molecules, C. Z. M. Waidemüller ed. (Wiley,<br />

<strong>2003</strong>) 394-8<br />

JGS03: R. Jung, S. Gerlach, R. Schumann, G. v. Oppen<br />

and U. Eichmann; Magneto-optical trapping of Starkslowed<br />

metastable He atoms; Eur. Phys. J. D 23 (<strong>2003</strong>)<br />

415-9<br />

JLP03: K. A. Janulewicz, A. Lucianetti, G. Priebe, W.<br />

Sandner and P. V. Nickles; Saturated Ni-like Ag X-ray<br />

laser at 13.9 nm pumped by a single picosecond laser<br />

pulse; Phys. Rev. A 68 (<strong>2003</strong>) 051802-5<br />

JLS03: K. A. Janulewicz, A. Lucianetti, W. Sandner and<br />

P. V. Nickles; X-ray lasers at <strong>MBI</strong>; Laser Technology VII:<br />

Progress in Lasers, SPIE Proceedings 5230 (<strong>2003</strong>)<br />

189-94<br />

KBM03: R. Kopold, W. Becker and D. Milosevic; Quantum<br />

orbits: a space-time picture of intense-laser-induced<br />

processes in atoms; Phys. Scr. 68 (<strong>2003</strong>) C76-C81<br />

KHe03a: V. P. Kalosha and J. Herrmann; Ultrabroadband<br />

phase-amplitude modulation and compression of<br />

extremely short UV and VUV pulses by Raman-active molecular<br />

modulators; Phys. Rev. A 67 (<strong>2003</strong>) 031801/1-4<br />

KHe03b: V. P. Kalosha and J. Herrmann; Compression<br />

of single cycle MIR pulses by Raman active molecular<br />

modulators; Opt. Lett. 28 (<strong>2003</strong>) 950-2<br />

KHe03c: V. P. Kalosha and J. Herrmann; Ultrawide<br />

spectral broadening and compression of single<br />

extremely short pulses in the visible, UV/VUV, and<br />

middle infrared by high-order stimulated Raman<br />

scattering; Phys. Rev. A 68 (<strong>2003</strong>) 023812/1-24<br />

KHM03: D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C.<br />

Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park<br />

and C. Lienau; Microscopic origin of surface plasmon<br />

radiation in plasmonic band gap nanostructures; Phys.<br />

Rev. Lett. 91 (<strong>2003</strong>) 143901/1-4<br />

KOK03: R. Komatsu, Y. Ono, T. Kajitani, F. Rotermund<br />

and V. Petrov; Optical properties of a new nonlinear<br />

borate crystal LiRbB 4 O 7 ; J. Cryst. Growth 257 (<strong>2003</strong>)<br />

165-8<br />

KPG03a: P. Klopp, V. Petrov, U. Griebner, V. Nesterenko,<br />

V. Nikolov, M. Marinov, M. A. Bursukova and M. Galan;<br />

Continuous-wave lasing of a stoichiometric Yb laser<br />

material: KYb(WO 4 ) 2 ; Opt. Lett. 28 (<strong>2003</strong>) 322-4<br />

KPG03b: P. Klopp, V. Petrov and U. Griebner; Potassium<br />

ytterbium tungstate provides the smallest laser<br />

quantum defect; Jpn. J. Appl. Phys. 42 (<strong>2003</strong>) 246-8<br />

KPGc03: P. Klopp, V. Petrov, U. Griebner, V. Nikolov, V.<br />

Nesterenko and T. Kirilov; Continuous wave lasing of<br />

Yb 3+ in a stoichiometric double tungstate; SPIE Proc.<br />

4968 (<strong>2003</strong>) 46-53<br />

59


60<br />

KSH03: V. Kalosha, M. Spanner, J. Herrmann and M.<br />

Ivanov; Generation of single dispersion precompensated<br />

1-fs pulses by shaped pulse optimized<br />

high-order stimulated raman scattering; in Recent<br />

Advances in Ultrafast Spectroscopy, Proceedings of<br />

the "XII VPS Conference", S. Califano, P. Foggi, and R.<br />

Righini eds. (Leo S. Olschki Editore MMIII, Firenze,<br />

<strong>2003</strong>) 231-7<br />

KWV03: V. Kozich, W. Werncke, A. I. Vodchits and J.<br />

Dreyer; Ultrafast excitation of out-of-plane vibrations<br />

and vibrational energy redistribution after internal<br />

conversion of 4-nitroaniline; J. Chem. Phys 118 (<strong>2003</strong>)<br />

1808-14<br />

LLS03: B. Lohmann, B. Langer, G. Snell, U. Kleiman, S.<br />

Canton, M. Martins, U. Becker and N. Berrah; Angle<br />

and spin resolved analysis of the resonantly excited<br />

Ar*(2p4s1/2)J=1 auger decay; in AIP Conference<br />

Proceedings, Atomic, Molecular and Chemical Physics,<br />

G. F. Hanne, L. Malegat, and H. Schmidt-Böcking eds.<br />

(AIP Publishing Center, Melville, NY, <strong>2003</strong>) Vol. 697,<br />

133-44<br />

LSH03a: H. Lippert, V. Stert, L. Hesse, C. P. Schulz, I. V.<br />

Hertel and W. Radloff; Indole(NH 3 ) n clusters: Hydrogen<br />

atom transfer initiated by femtosecond laser pulses; in<br />

Ultrafast Phenomena XIII, R. D. Miller, M. M. Murmane,<br />

N. F. Scherer, and A. M. Weiner eds. (Springer Verlag,<br />

<strong>Berlin</strong>, <strong>2003</strong>) 110-2<br />

LSH03b: H. Lippert, V. Stert, L. Hesse, C. P. Schulz, I. V.<br />

Hertel and W. Radloff; Analysis of hydrogen atom<br />

transfer in photoexcited indole(NH 3 ) n clusters by<br />

femtosecond time-resolved photoelectron spectroscopy;<br />

J. Phys. Chem. A 107 (<strong>2003</strong>) 8239-50<br />

LSH03c: H. Lippert, V. Stert, L. Hesse, C. P. Schulz, I. V.<br />

Hertel and W. Radloff; Isotope effect of the photoinduced<br />

H(D)-transfer reaction in indole-ammonia clusters;<br />

Chem. Phys. Lett. 371 (<strong>2003</strong>) 208-16<br />

LSH03d: H. Lippert, V. Stert, L. Hesse, C. P. Schulz, I. V.<br />

Hertel and W. Radloff; Ultrafast photoinduced processes<br />

in indole-water clusters; Chem. Phys. Lett. 376 (<strong>2003</strong>)<br />

40-8<br />

MBe03a: D. B. Milosevic and W. Becker; Relativistic highorder<br />

harmonic generation; J. Mod. Opt. 50 (<strong>2003</strong>) 375-86<br />

MDM03a: A. A. Moran, J. Dreyer and S. Mukamel; Ab<br />

initio simulation of the two-dimensional vibrational<br />

spectrum of dicarbonylacetylacetonato rhodium(I); J.<br />

Chem. Phys 118 (<strong>2003</strong>) 1347-55<br />

MDM03b: A. A. Moran, S.-M. Park, J. Dreyer and S.<br />

Mukamel; Linear and nonlinear infrared signatures of<br />

local α- and 3 10 -helical structures in alanine polypeptides;<br />

J. Chem. Phys 118 (<strong>2003</strong>) 3651-9<br />

MDP03: G. Mussler, L. Däweritz, K. H. Ploog, J. W. Tomm<br />

and V. Talalaev; Optimized annealing conditions<br />

identified by analysis of radiative recombination in<br />

dilute Ga(As,N); Appl. Phys. Lett. 83 (<strong>2003</strong>) 1343-5<br />

MGB03a: D. B. Milosevic, A. Gazibegovic-Busuladvic<br />

and W. Becker; Direct and rescattered electrons in<br />

above-threshold detachment from negative ions; Phys.<br />

Rev. A 68 (<strong>2003</strong>) 050702(R)/1-4<br />

MML03: R. Müller, V. Malyarchuk and C. Lienau; Threedimensional<br />

theory on light-induced near-field dynamics<br />

in a metal film with a periodic array of nanoholes; Phys.<br />

Rev. B 68 (<strong>2003</strong>) 205415/1-9<br />

MPB03: D. B. Milosevic, G. G. Paulus and W. Becker;<br />

High-order above-threshold ionization with few-cycle<br />

pulse: a meter of the absolute phase; Optics Express<br />

11 (<strong>2003</strong>) 1418-29<br />

MPB03b: D. B. Milosevic, G. G. Paulus and W. Becker;<br />

Above-threshold ionization with few-cycle pulses and<br />

the relevance of the absolute phase; Laser Phys. 13<br />

(<strong>2003</strong>) 948-58<br />

MUF03a: R. Moshammer, J. Ullrich, B. Feuerstein, D.<br />

Fischer, A. Dorn, C. D. Schröter, J. R. C. Lopez-Urrutia,<br />

C. Höhr, H. Rottke, C. Trump, M. Wittmann, G. Korn, K.<br />

Hoffmann and W. Sandner; Strongly directed electron<br />

emission in non-sequential double ionization of Ne by<br />

intense laser pulses; J. Phys. B: At. Mol. Opt. Phys. 36<br />

(<strong>2003</strong>) L113-L119<br />

MUF03b: R. Moshammer, J. Ullrich, B. Feuerstein, D.<br />

Fischer, A. Dorn, C. D. Schröter, J. R. C. López-Urrutia,<br />

C. Höhr, H. Rottke, C. Trump, M. Wittmann, G. Korn and<br />

W. Sandner; Rescattering of ultra-low energy electrons<br />

for single ionization of Ne in the tunnelling regime; Phys.<br />

Rev. Lett. 91 (<strong>2003</strong>) 113002/1-4<br />

NGG03: U. Neumann, R. Grunwald, U. Griebner, G.<br />

Steinmeyer, M. Woerner and W. Seeber; Second<br />

harmonic characteristics of photonic composite glass<br />

layers with ZnO nanocrystallites for ultrafast<br />

applications; SPIE Proc. 4972 (<strong>2003</strong>) 112-21<br />

PNR03: V. Petrov, F. Noack, F. Rotermund, V.<br />

Pasiskevicius, A. Fragemann, F. Laurell, H. Hundertmark,<br />

P. Adel and C. Fallnich; Efficient all-diode-pumped<br />

double stage femtosecond optical parametric chirped<br />

pulse amplification at 1-kHz with periodically poled<br />

KTiOPO 4 ; Jpn. J. Appl. Phys. 42 (<strong>2003</strong>) L1327-L1329<br />

PWF03: D. Pop, B. Winter, W. Freyer, I. V. Hertel and W.<br />

Widdra; Electronic structure of metal-free porphyrazine<br />

in thin films; J. Phys. Chem. B 107 (<strong>2003</strong>) 11543-647<br />

RDN03: M. Rini, J. Dreyer, E. T. J. Nibbering and T.<br />

Elsaesser; Ultrafast vibrational relaxation processes<br />

induced by intramolecular excited state hydrogen<br />

transfer; Chem. Phys. Lett. 374 (<strong>2003</strong>) 13-9<br />

RGR03: A. I. Ryasnyanskiy, R. A. Ganeev, V. I.<br />

Redkorechev, K. Fostiropoulos, G. Priebe and T.<br />

Usmanov; Nonlinear optical characteristics of C 60 thin<br />

films; Fullerenes, Nanotubes, and Carbon Nanostructures<br />

12 (<strong>2003</strong>) 333-9


RHN03: M. Rini, A.-K. Holm, E. T. J. Nibbering and H.<br />

Fidder; Ultrafast UV-mid IR investigation of the ring<br />

opening reaction of a photochromic spiropyran; J. Am.<br />

Chem. Soc. 125 (<strong>2003</strong>) 3028-34<br />

RKD03: M. Rini, A. Kummrow, J. Dreyer, E. T. J. Nibbering<br />

and T. Elsaesser; Ultrafast site-specific mid-infrared<br />

spectroscopy of excited-state intramolecular proton<br />

transfer; in Ultrafast Phenomena XIII, R. J. D. Miller, M.<br />

M. Murnane, N. F. Scherer, and A. M. Weiner eds.<br />

(Springer Verlag, <strong>Berlin</strong>, <strong>2003</strong>) 465-7<br />

RLi03: M. B. Raschke and C. Lienau; Apertureless nearfield<br />

optical microscopy: Tip-sample coupling in elastic<br />

light scattering; Appl. Phys. Lett. 83 (<strong>2003</strong>) 5089-91<br />

RMP03: M. Rini, B.-Z. Magnes, E. Pines and E. T. J.<br />

Nibbering; Real-time observation of bimodal proton<br />

transfer in acid-base pairs in water; Science 301 (<strong>2003</strong>)<br />

349-52<br />

Rot03: H. Rottke; Non-sequential multiple ionization in<br />

strong laser pulses; in Many-particle quantum dynamics<br />

in atomic and molecular fragmentation, V. P. Shevelko,<br />

and J. Ullrich eds. (Springer Verlag, <strong>2003</strong>) Vol. 35, 317-<br />

38<br />

RRK03: F. Rinner, J. Rogg, M. T. Kelemen, M. Mikulla, G.<br />

Weimann, J. W. Tomm, E. Thamm and R. Poprawe; Facet<br />

temperature reduction by a current blocking layer at<br />

the front facets of high-power InGaAs/AlGaAs lasers; J.<br />

Appl. Phys. 93 (<strong>2003</strong>) 1848-50<br />

RSW03: K. Reimann, R. P. Smith, A. M. Weiner, T.<br />

Elsaesser and M. Woerner; Direct field-resolved<br />

detection of terahertz transients with amplitudes of<br />

megavolts per centimeter; Opt. Lett. 28 (<strong>2003</strong>) 471-3<br />

SBS03: C. P. Schulz, C. Bobbert, T. Shimosato, K.<br />

Daigoku, N. Miura and K. Hashimoto; Electronically<br />

excited states of sodium-water-clusters; J. Chem. Phys.<br />

119 (<strong>2003</strong>) 11620-9<br />

SBT03a: R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G.<br />

Korn and I. V. Hertel; Dynamic temporal pulse shaping<br />

in advanced ultrafast laser material processing; Appl.<br />

Phys. A 77 (<strong>2003</strong>) 265-9<br />

SBT03b: R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G.<br />

Korn and I. V. Hertel; Ultrafast laser material processing<br />

using dynamic temporal pulse shaping; RIKEN Review<br />

50 (<strong>2003</strong>) 71-6<br />

SBT03c: R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G.<br />

Korn and I. V. Hertel; Advanced ultrafast laser material<br />

processing using temporal pulse shaping; in SPIE Proc.,<br />

I. Miyamoto, K. F. Kobayashi, K. Sugioka, R. Poprawe,<br />

and H. Helvajian eds. (<strong>2003</strong>) Vol. 4830, 435-42<br />

SGr03: G. Seewald and R. Grunwald; Spatially resolved<br />

measurement of slow-axis pseudo near-field of diode<br />

laser arrays; SPIE Proc. 4833 (<strong>2003</strong>) 900-5<br />

SIK03: M. Spanner, M. Ivanov, V. Kalosha, J. Herrmann,<br />

D. A. Wiersma and M. Pshenichnikov; Tunable optimal<br />

compression of ultrabroadbandpulses by cross-phase<br />

modulation; Opt. Lett. 28 (<strong>2003</strong>) 749-51<br />

SKT03: M. Spyridaki, E. Koudoumas, P. Tzanetakis, C.<br />

Fotakis, R. Stoian, A. Rosenfeld and I. V. Hertel; Temporal<br />

pulse manipulation and ion generation in ultrafast laser<br />

ablation of silicon; Appl. Phys. Lett. 83 (<strong>2003</strong>) 1474-6<br />

SMG03: Y. S. Skibina, L. A. Melnikov, P. Glas, D. Fischer<br />

and R. Wedell; Loss measurements in perfect-structure<br />

glass holey fibers; SPIE Proc. 5067 (<strong>2003</strong>) 190-3<br />

SMH03: J. Stenger, D. Madsen, P. Hamm, E. T. J.<br />

Nibbering and T. Elsaesser; A mid-infrared photon echo<br />

study of liquid water; in Ultrafast Phenomena XIII, R. J.<br />

D. Miller, M. M. Murnane, N. F. Scherer, and A. M. Weiner<br />

eds. (Springer Verlag, <strong>Berlin</strong>, <strong>2003</strong>) 577-9<br />

SMT03: C. Steglich, C. W. Mullineux, K. Teuchner, W. R.<br />

Hess and H. Lokstein; Photophysical properties of<br />

Prochlorococcus marinus SS120 divinyl chlorophylls<br />

and phycoerythrin in vitro and in vivo; FEBS Lett. 553<br />

(<strong>2003</strong>) 79-84<br />

SST03: F. Scholze, F. Scholz, J. Tuemmler, G. Ulm, H.<br />

Legall, P. V. Nickles, W. Sandner, H. Stiel and L. v. Loyen;<br />

Characterization of a laser-produced plasma source<br />

for a laboratory EUV reflectometer; SPIE Proc. 5037<br />

(<strong>2003</strong>) 670-81<br />

Ste03a: G. Steinmeyer; Brewster-angled chirped mirrors<br />

for high-fidelity dispersion compensation and bandwidths<br />

exceeding one optical octave; Optics Express<br />

11 (<strong>2003</strong>) 2385-96<br />

Ste03b: G. Steinmeyer; Carrier-envelope dynamics and<br />

stabilization of few-cycle laser sources; IEEE LEOS<br />

Newsletter 17 (<strong>2003</strong>) 8-9<br />

Ste03c: G. Steinmeyer; A review of ultrafast optics and<br />

optoelectronics; J. Opt. A: Pure Appl. Opt. 5 (<strong>2003</strong>) R1-R15<br />

Ste03d: G. Steinmeyer; Dispersion oscillations in ultrafast<br />

phase-correction devices; IEEE J. Quantum Elect.<br />

39 (<strong>2003</strong>) 1027-34<br />

STM03: M. P. Semtsiv, G. G. Tarasov, W. T. Masselink, H.<br />

Kissel and M. Woerner; Midinfrared intersubband<br />

absorption in strain-compensated InGaP/InGaAs<br />

superlattices on (001) GaAs; Appl. Phys. Lett. 82 (<strong>2003</strong>)<br />

3418-20<br />

TGM03a: J. W. Tomm, A. Gerhardt, R. Müller, V.<br />

Malyarchuk, Y. Sainte-Marie, P. Galtier, J. Nagle and J.-<br />

P. Landesman; Spatially-resolved spectroscopic strain<br />

measurements on high-power laser diode bars; J. Appl.<br />

Phys. 93 (<strong>2003</strong>) 1354-62<br />

TGM03b: J. W. Tomm, A. Gerhardt, R. Müller, M. L.<br />

Biermann, J. P. Holland, D. Lorenzen and E. Kaulfersch;<br />

Quantitative strain analysis in AlGaAs-based devices;<br />

Appl. Phys. Lett. 82 (<strong>2003</strong>) 4193-5<br />

61


62<br />

TMF03: K. Teuchner, S. Mueller, W. Freyer, D. Leupold, P.<br />

Altmeyer, M. Stuecker and K. Hoffmann; Femtosecond<br />

two-photon excited fluorescence of melanin; SPIE Proc.<br />

4797 (<strong>2003</strong>) 211-9<br />

TMT03: J. W. Tomm, T. Elsaesser, Y. I. Mazur, H. Kissel, G.<br />

G. Tarasov, Z. Y. Zhuchenko and W. T. Masselink; Transient<br />

luminescence of dense InAs/GaAs quantum dot arrays;<br />

Phys. Rev. B 67 (<strong>2003</strong>) 045326/1-8<br />

TRK03: A. Thoss, M. Richardson, G. Korn, M. Faubel, H.<br />

Stiel, U. Vogt and T. Elsaesser; kHz sources of hard xray<br />

and fast ions with femtosecond laser-plasmas; J.<br />

Opt. Soc. Am. B 20 (<strong>2003</strong>) 224-8<br />

TRT03: J. W. Tomm, F. Rinner, E. Thamm, C. Ribbat, R.<br />

Sellin and D. Bimberg; Analysis of heat flows and their<br />

impact on the reliability of high-power diode lasers;<br />

SPIE Proc. 4993 (<strong>2003</strong>) 91-9<br />

TSL03: G. Turri, G. Snell, B. Langer, M. Martins, E. Kukk,<br />

S. E. Canton, R. C. Bilodeau, N. Cherepkov, J. D. Bozek<br />

and N. Berrah; Probing the molecular environment<br />

using spin-resolved photoelectron spectroscopy; in AIP<br />

Conference Proceedings, Atomic, Molecular and<br />

Chemical Physics, G. F. Hanne, L. Malegat, and H.<br />

Schmidt-Böcking eds. (AIP Publishing Center, Melville,<br />

NY, <strong>2003</strong>) Vol. 697, 48-54<br />

TSS03: S. Ter-Avetisyan, M. Schnürer, H. Stiel and P. V.<br />

Nickles; A high-density sub-micron liquid spray for laser<br />

driven radiation sources; J. Phys. D: Appl. Phys. 36<br />

(<strong>2003</strong>) 2421-6<br />

TVS03: S. Ter-Avetisyan, U. Vogt, H. Stiel, M. Schnürer,<br />

I. Will and P. V. Nickles; Efficient extreme ultraviolet<br />

emission from xenon-cluster jet targets at high repetition<br />

rate laser illumination; J. Appl. Phys. 94 (<strong>2003</strong>) 5489-96<br />

VBB03: L. v. Loyen, T. Boettger, S. Braun, H. Mai, A.<br />

Leson, F. Scholze, J.Tuemmler, G. Ulm, H. Legall, P. V.<br />

Nickles, W. Sandner, H. Stiel, C. E. Rempel, M. Schulze,<br />

J. Brutscher, F. Macco and S. Muellender; New<br />

laboratory EUV reflectometer for large optics using a<br />

laser plasma source; SPIE Proc. 5038 (<strong>2003</strong>) 12-21<br />

WBG03: W. Widdra, D. Bröcker, T. Gießel, I. V. Hertel, W.<br />

Krüger, A. Liero, F. Noack, V. Petrov, D. Pop, P. M. Schmidt,<br />

R. L. Weber, I. Will and B. Winter; Time-resolved core level<br />

photoemission: Surface photovoltage dynamics of the<br />

SiO 2 /Si(100) interface; Surf. Science 543 (<strong>2003</strong>) 87-94<br />

WKD03: W. Werncke, V. Kozich, J. Dreyer, M. Rini, A.<br />

Kummrow and T. Elsaesser; Vibrational excitation and<br />

energy redistribution due to back-electron transfer<br />

in para-nitroaniline; in Recent advances in ultrafast<br />

spectroscopy; Proceedings of the 'XII UPS Conference',<br />

S. Califano, P. Foggi, and R. Righini eds. (Leo S. Olschki,<br />

Florence, Italy, <strong>2003</strong>) 397-403<br />

WWF03: I. Waldmüller, M. Woerner, J. Förstner and A.<br />

Knorr; Theory of the lineshape of quantum well intersubband<br />

transitions: optical dephasing and light propagation<br />

effects; Phys. status solidi B 238 (<strong>2003</strong>) 474-7<br />

WWH03: R. Weber, B. Winter, I. V. Hertel, B. Stiller, S.<br />

Schrader, L. Brehmer and N. Koch; Photoemission from<br />

azobene alkanethiol self-assembled monolayers; J.<br />

Phys. Chem. B 107 (<strong>2003</strong>) 7768-75<br />

ZGM03: N. Zhavoronkov, Y. Gritsai, P. Micheev, A.<br />

Savelev, G. Korn and T. Elsaesser; High repetition rate<br />

femtosecond laser driven hard X-ray source and its<br />

application for diffraction experiments; in UFO IV<br />

(Springer Verlag, <strong>2003</strong>) 323-7<br />

in press<br />

Bau: D. Bauer; Plasma formation through field ionization<br />

in intense Laser-Matter Interaction; Laser Part. Beams<br />

BGW: D. Bröcker, T. Gießel and W. Widdra; Charge carrier<br />

dynamics at the Si=2/Si(100) surface: A time -resolved<br />

photoemission study with combined laser and synchrotron<br />

radiation; J. Chem. Phys.<br />

BKK: I. A. Begishev, M. P. Kalachnikov, V. Karpov, I. A.<br />

Kulagin, P. V. Nickles, H. Schönnagel and T. Usmanov;<br />

Limitation of second harmonic generation of<br />

femtosecond Ti:Sapphire laser pulses; Journal of the<br />

Optical Society of America<br />

BSRa: N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V.<br />

Hertel and E. E. B. Campbell; Electronic transport and<br />

consequences for material removal in ultrafast pulsed<br />

laser ablation of material; Phys. Rev. B<br />

EHH: T. Elsaesser, K. Heyne, N. Huse and E. T. J.<br />

Nibbering; Ultrafast vibrational dynamics of hydrogen<br />

bonded dimers in solution; in Time-Resolved<br />

Vibrational Spectroscopy XI<br />

Elsa: T. Elsaesser, K. Heyne, N. Huse and E. T. J.<br />

Nibbering; Ultrafast vibrational dynamics of hydrogenbonded<br />

dimers in solution; in Ultrafast molecular events<br />

in chemistry and biology, J. T. Hynes, and M. M. Martin<br />

eds. (Elsevier, Amsterdam)<br />

Elsb: T. Elsaesser; Femtosecond mid-infrared spectroscopy<br />

of low-energy excitations in solids; Appl. Phys. A<br />

FEC: M. Fiebig, V. Eremenko and I. Chupis (eds.),<br />

Magnetoelectric interaction phenomena in crystals,<br />

(Kluwer, Dordrecht, the Netherlands)<br />

FFL: M. Fiebig, D. Fröhlich, T. Lottermoser and S.<br />

Kallenbach; Phase-resolved second-harmonic imaging<br />

with non-ideal laser sources; Opt. Lett.<br />

Fie: M. Fiebig; Magnetoelectric interaction in crystals<br />

observed by nonlinear magneto-optics; in Magnetoelectric<br />

interaction phenomena in crystals, V. Eremenko,<br />

and I. Chupis eds. (Kluwer, Dordrecht, the Netherlands)<br />

FLG: M. Fiebig, T. Lottermoser, A. V. Goltsev and R. V.<br />

Pisarev; Structure and interaction of domain walls in<br />

YMnO 3 ; Journal of Magnetism and Magnetic Materials


FMT: W. Freyer, S. Müller and K. Teuchner; Photophysical<br />

properties of benzo-annelated metal-free; J. Photoch.<br />

Photobio. A: Chem.<br />

FPi: M. Fiebig and R. V. Pisarev; Nonlinear optics – a<br />

powerful tool for the investigation of magnetic structures;<br />

Journal of Magnetism and Magnetic Materials<br />

FRN: H. Fidder, M. Rini and E. T. J. Nibbering; The role of<br />

large conformational changes in efficient ultrafast<br />

internal conversation: Deviations from the energy gap<br />

law.; J. Am. Chem. Soc.<br />

FRo: C. Figueira de Morisson Faria and I. Rotter; Highorder<br />

harmonic generation in a driven two-level atom:<br />

an analogy with the three step model; Laser Phys.<br />

GLS: M. Grimm, B. Langer, S. Schlemmer, T. Lischke, W.<br />

Widdra, D. Gerlich, U. Becker and E. Rühle; New setup<br />

to study trapped nano-particles using synchrotron<br />

radiation; in AIP Conference Proceedings, Atomic,<br />

Molecular and Chemical Physics<br />

GNe: R. Grunwald and U. Neumann; VUV beam array<br />

generation by flat microoptical structures; Opt. Lett.<br />

GNGa: R. Grunwald, U. Neumann, U. Griebner, V. Kebbel<br />

and H.-J. Kuehn; Spatio-temporal control of laser<br />

beams with thin-film shapers; SPIE Proc.<br />

GNGb: R. Grunwald, U. Neumann, U. Griebner, K.<br />

Reimann, G. Steinmeyer and V. Kebbel; Wavefront<br />

autocorrelation of femtosecond laser beams; SPIE Proc.<br />

GTO: A. Gerhard, J. W. Tomm, M. Oudart, Y. Sainte-Marie<br />

and J. Nagle; Simultaneous quantitative determination<br />

of strain and defect profiles within the active region<br />

along high-power diode laser bars by micro-photocurrent<br />

mapping; The European Physical Journal -<br />

Applied Physics<br />

HFU: K. Heister, S. Frey, A. Ulman, M. Grunze and M.<br />

Zharnikov; Irradiation sensitivity of self-assembled<br />

monolayers with an introduced "Weak Link"; Langmuir<br />

HGP: O. Henneberg, T. Geue, U. Pietsch, M. Saphiannikova<br />

and B. Winter; Investigation of azobenzene side group<br />

orientation in polymer surface relief gratings by means<br />

of photoelectron spectroscopy; Appl. Phys. Lett.<br />

JLP: K. A. Janulewicz, A. Lucianetti, G. Priebe and P. V.<br />

Nickles; Review of state-of-the-art and about<br />

characteristics table-top sof X-ray lasers; X-ray<br />

Spectrometry<br />

JPL: K. A. Janulewicz, G. Priebe, A. Lucianetti, R. Krömer,<br />

W. Sandner, R. E. King, G. J. Pert and P. V. Nickles; Output<br />

characteristics of a transient Ni-like Ag soft X-ray laser<br />

pumped by a single picosecond laser probe; SPIE Proc.<br />

KPG: P. Klopp, V. Petrov, U. Griebner, K. Petermann, V.<br />

Peters and G. Erbert; Highly-efficient mode-locked<br />

Yb:Sc 2 O 3 laser; Opt. Lett.<br />

KSS: E. Koudoumas, M. Spyridaki, R. Stoian, A.<br />

Rosenfeld, P. Tzanetakis, I. V. Hertel and C. Fotakis;<br />

Influence of pulse temporal manipulation on the<br />

properties of Si ion beams; Thin Solid Films<br />

LAM: V. Lehtovuori, J. Aumanen, P. Myllyperkiö, M. Rini,<br />

E. T. J. Nibbering and J. Korppi-Tommola; Transient mid-<br />

IR study of light induced dissociation reaction of Ru<br />

(dcbpy)(CO) 2 I 2 in solution; J. Phys. Chem. A<br />

Liea: C. Lienau; Ultrafast near-field spectroscopy of<br />

single semiconductor quantum dots; Philos. Trans. R.<br />

Soc. Lond. Ser. A-Math. Phys. Eng. Sci.<br />

Lieb: C. Lienau; Femtosecond near-field spectroscopy<br />

of single quantum dots; in SPIE Proc.<br />

LIG: C. Lienau, F. Intonti, T. Guenther, T. Elsaesser, V.<br />

Savona, R. Zimmermann and E. Runge; Near-field<br />

autocorrelation spectroscopy of disordered semiconductor<br />

quantum wells; Phys. Rev. B<br />

LJK: A. Lucianetti, K. A. Janulewicz, R. Kroemer, G.<br />

Priebe, J. Tümmler, W. Sandner, P. V. Nickles and V. I.<br />

Redkorechev; Transient spatial coherence of a transient<br />

Ni-like Ag soft X-ray laser pumped by a single<br />

picosecond laser pulse; Opt. Lett.<br />

LLS: D. Leupold, H. Lokstein and H. Scheer; Excitation<br />

energy transfer between (bacterio)chlorophylls - the role<br />

of excitonic coupling; in Biochemistry and Biophysics of<br />

Chlorophylls, B. Grimm, R. Porra, W. Rüdiger, and H.<br />

Scheer eds. (Kluwer)<br />

LRWa: C. W. Luo, K. Reimann, M. Woerner, T. Elsaesser,<br />

R. Hey and K. H. Ploog; Phase-resolved nonlinear<br />

response of a two-dimensional electron gas under<br />

femtosecond intersubband excitation; Phys. Rev. Lett.<br />

LRWb: C. W. Luo, K. Reimann, M. Woerner and T.<br />

Elsaesser; Nonlinear terahertz spectroscopy of semiconductor<br />

nanostructures; Appl. Phys. A<br />

LRWc: C. W. Luo, K. Reimann, M. Woerner, T. Elsaesser,<br />

R. Hey and K. H. Ploog; Rabi oscillations of intersubband<br />

transitions in GaAs/AlGaAs MQWs; Semicond. Sci.<br />

Technol.<br />

LSSa: H. Lippert, V. Stert, C. P. Schulz, I. V. Hertel and<br />

W. Radloff; Comparison of ultrafast photoinduced<br />

processes in indole(NH 3 ) n and indole(H 2 O) 4 clusters;<br />

in Femtochemistry VI; Femtochemistry and Femtobiology:<br />

Ultrafast Events in Molecular Science<br />

(Proceedings (World Scientific))<br />

MBe b: D. B. Milosevic and W. Becker; Classical cutoffs<br />

for laser-induced nonsequential double ionization;<br />

Phys. Rev. A<br />

NEl: E. T. J. Nibbering and T. Elsaesser; Ultrafast<br />

vibrational dynamics of hydrogen bonds in the<br />

condensed phase; Chem. Rev.<br />

63


64<br />

NGG: U. Neumann, R. Grunwald, U. Griebner, G.<br />

Steinmeyer and W. Seeber; Second harmonic efficiency<br />

of ZnO nanolayers; Appl. Phys. Lett.<br />

NJP: P. V. Nickles, K. A. Janulewicz, G. Priebe, A.<br />

Lucianetti, R. Krömer, A. K. Gerlitzke and W. Sandner;<br />

Status of <strong>MBI</strong> activities – Will transient collisional X-ray<br />

laser with high repetition rate came soon?; SPIE Proc.<br />

NJS: P. V. Nickles, K. A. Janulewicz and W. Sandner;<br />

Table top X-ray lasers in short laser pulse and<br />

discharge driven plasmas; in Strong laser field physics,<br />

H. K. T. Brabec ed.<br />

PBP: V. Petrov, V. Badikov, V. Panyutin, G. Shevyrdaeva,<br />

S. Sheina and F. Rotermund; Mid-IR optical parametric<br />

amplification with femtosecond pumping near 800 nm<br />

using Cd x Hg 1-x Ga 2 S 4 ; Opt. Commun.<br />

PBS: V. Petrov, V. Badikov, G. Shevyrdyaeva, V. Panyutin<br />

and V. Chizhikov; Phase-matching properties and<br />

optical parametric amplification in single crystals of<br />

AgGaGeS 4 ; Opt. Mat.<br />

PNS: V. Petrov, F. Noack, D. Shen, F. Pan, G. Shen, X.<br />

Wang, R. Komatsu and V. Alex; Application of the<br />

nonlinear crystal SrB 4 O 7 for ultrafast diagnostics converting<br />

to wavelengths as short as 125 nm; Opt. Lett.<br />

PYI: V. Petrov, A. Yelisseyev, L. Isaenko, S. Lobanov, A.<br />

Titov and J.-J. Zondy; Second harmonic generation and<br />

optical parametric amplification in the mid-IR with<br />

orthorhombic biaxial crystals LiGaS 2 and LiGaSe 2 ; Appl.<br />

Phys. B<br />

RAs: A. Rosenfeld and D. Ashkenasi; Ultra short laser<br />

pulse modification of waveguides; SPIE Proc.<br />

RLS: H.-H. Ritze, H. Lippert, V. Stert, W. Radloff and I. V.<br />

Hertel; Theoretical study of the hydrogen atom transfer<br />

in the heterodimer indole-ammonia and comparison<br />

with experimental results; J. Chem. Phys.<br />

RMM: M. Rini, O. F. Mohammed, B.-Z. Magnes, E. Pines<br />

and E. T. J. Nibbering; Bimodal intermolecular proton<br />

transfer in water: photoacid-base pairs studied with<br />

ultrafast infrared spectroscopy; in Ultrafast molecular<br />

events in chemistry and biology, J. T. Hynes, and M. M.<br />

Martin eds. (Elsevier, Amsterdam)<br />

SBe: M. B. Smirnov and W. Becker; X-ray radiation in<br />

clusters in a strong electromagnetic field; Phys. Rev. A<br />

SCS: C. P. Schulz, P. Claas, D. Schumacher and F.<br />

Stienkemeier; Formation and stability of high-spin alkali<br />

clusters; Phys. Rev. Lett.<br />

SEH: C. Stanciu, R. Ehlich and I. V. Hertel;<br />

Photopolymerization of C 60 and Li@C 60 studied by<br />

second harmonic generation and infrared<br />

spectroscopy; Appl. Phys. A<br />

SKe: G. Steinmeyer and U. Keller; Optical comb<br />

dynamics and stabilization; in Femtosecond Optical<br />

Frequency Comb: Principle, Operation, and<br />

Applications, J. Ye, and S. Cundiff eds. (Kluwer<br />

Academic Publishing, Norwell, MA)<br />

SSH: C. P. Schulz, A. Scholz and I. V. Hertel; Ultrafast<br />

energy redistiribution in photoexcited sodium-ammonia<br />

clusters; Isr. J. Chem.<br />

SSV: G. Sansone, G. Steinmeyer, C. Vozzi, S. Stagira,<br />

M. Nisoli, S. D. Silvestri, K. Starke, D. Ristau, B. Schenkel,<br />

J. Biegert, A. Gosteva and U. Keller; Mirror dispersion<br />

control of a hollow fiber supercontinuum; Appl. Phys. B<br />

Stea: G. Steinmeyer; Ultrafast Optoelectronics; in<br />

Handbook of Optoelectronics, J. Dakin, and R. Brown<br />

eds. (IOP Publishing, Bristol, UK)<br />

Steb: G. Steinmeyer; Nonlinear and short pulse effects;<br />

in Handbook of Optoelectronics<br />

TGB: J. W. Tomm, A. Gerhard, M. L. Biermann and J. P.<br />

Holland; Quantitative spectroscopic strain analysis of<br />

AlGaAs-based high-power diode laser devices; The<br />

European Physical Journal - Applied Physics<br />

TSG: J. W. Tomm, V. Strelchuk, A. Gerhard, U. Zeimer, M.<br />

Zorn, H. Kissel, M. Weyers and J. Jiménez; Properties<br />

of As + implanted and annealed GaAs and InGaAs<br />

quantum-wells: structural and band-structure modifications;<br />

J. Appl. Phys.<br />

TSL: G. Turri, G. Snell, B. Langer, M. Martins, E. Kukk,<br />

S. E. Canton, R. C. Bilodeau, N. Cherepkov, J. D. Bozek,<br />

A. L. Kilcoyne and N. Berrah; Probing the molecular<br />

environment using spin-resolved photoelectron<br />

spectroscopy; Phys. Rev. Lett.<br />

UML: T. Unold, K. Müller, C. Lienau and T. Elsaesser;<br />

Space and time resolved coherent optical<br />

spectroscopy of single quantum dots; Semicond. Sci.<br />

Technol.<br />

USZ: S. Ullrich, T. Schultz, M. Z. Zgieski and A. Stolow;<br />

Direct observation of electronic relaxation dynamics in<br />

Adenine via time-resolved photoelecton spectroscopy;<br />

J Am. Chem. Soc.<br />

VCL: J. Viefhaus, S. Cvejanovic, B. Langer, T. Lischke,<br />

G. Prümper, D. Rolles, A. V. Golovin, A. N. Grum-<br />

Grzhimailo, N. M. Kabachnik and U. Becker; Energy<br />

and angular distributions of electrons emitted by direct<br />

double Auger decay; Phys. Rev. Lett.<br />

WKV: W. Werncke, V. Kozich, A. I. Vodchits and J. Dreyer;<br />

Ultrafast excitation of out-of-plane vibrations and<br />

vibrational energy redistribution after internal conversion<br />

of 4-nitroaniline; in Time-Resolved Vibrational<br />

Spectroscopy XI<br />

WRE: M. Woerner, K. Reimann and T. Elsaesser;<br />

Coherent charge transport in semiconductor quantum<br />

cascade structures; J. Phys.: Condens. Matter


WRW: Z. Wang, K. Reimann, M. Woerner, T. Elsaesser,<br />

D. Hofstetter, J. Hwang, W. J. Schaff and L. F. Eastman;<br />

Femtosecond intersubband dynamics of electrons in<br />

AlGaN/GaN-based high-electron-mobility transistors;<br />

Semicond. Sci. Technol.<br />

WWW: B. Winter, R. Weber, W. Widdra, M. Dittmar, M.<br />

Faubel and I. V. Hertel; Full valence band photoemission<br />

from liquid water using EUV synchrotron radiation; J.<br />

Phys. Chem. B<br />

ZKo: N. Zhavoronkov and G. Korn; Regenerative<br />

amplification of femtosecond laser pulses in Ti:sapphire<br />

at multi-kHz repetition rates; Opt. Lett.<br />

ZRH: T. Zemojtel, M. Rini, K. Heyne, T. Dandekar and E. T.<br />

J. Nibbering; NO bound myoglobin: Structural diversity<br />

and dynamics of the NO ligand; J. Am. Chem. Soc.<br />

submitted<br />

ASA: A. Aznar, R. Solé, M. Aguiló, F. Diaz, U. Griebner,<br />

R. Grunwald and V. Petrov; Growth, optical<br />

characterization and laser operation of epitaxial<br />

Yb:KY(WO 4 ) 2 /KY(WO 4 ) 2 composites with monoclinic<br />

structure; Appl. Phys. Lett.<br />

BSRb: N. M. Bulgakova, R. Stoian, A. Rosenfeld, E. E. B.<br />

Campbell and I. V. Hertel; Model description of surface<br />

charging during ultrafast laser ablation of materials;<br />

Appl. Phys. A<br />

BST: S. Busch, O. Shirjaev, S. Ter-Avetisyan, M. Schnürer,<br />

P. V. Nickles and W. Sandner; Ion energy modulations in<br />

ultrashort and intense laser matter interaction -<br />

simulation versus experiment; Appl. Phys. B<br />

ELR: E. Eremina, X. Liu, H. Rottke, W. Sandner, M. G.<br />

Schätzel, A. Dreischuh, G. G. Paulus, H. Walther, R.<br />

Moshammer and J. Ullrich; Influence of molecular<br />

structure on double ionization of N 2 and O 2 by high<br />

intensity ultra-short laser pulses; Phys. Rev. Lett.<br />

FLB: C. Figueira de Morisson Faria, X. Liu, W. Becker<br />

and H. Schomerus; Coulomb repulsion and quantumclassical<br />

correspondence in laser-induced nonsequential<br />

double ionization; Phys. Rev. Lett.<br />

FLS: C. Figueira de Morisson Faria, X. Liu, H. Schomerus<br />

and W. Becker; Electron-electron dynamics in laserinduced<br />

nonsequential double ionization; Phys. Rev. A<br />

Fre: W. Freyer; Novel phthalocyanines undergo retrodiels-alder<br />

reaction; Organic Letters<br />

FSM: S. Fossier, S. Salaün, J. Mangin, O. Bidault, I.<br />

Thenot, J.-J. Zondy, W. Chen, F. Rotermund, V. Petrov, P.<br />

Petrov, J. Henningsen, A. Yelisseyev, L. Isaenko, S.<br />

Lobanov, O. Balachninaite, G. Slekys and V. Sirutkaitis;<br />

Optical, vibrational, thermal, electrical, damage and<br />

phase-matching properties of lithium thioindate; J. Opt.<br />

Soc. Am. B.<br />

GKe: R. Grunwald and V. Kebbel; Micro-optical beam<br />

shaping of supershort-pulse lasers; in Springer Series<br />

in Optical Sciences, Vol. 'Microoptics - From Technology<br />

to Applications', J. Jahns ed. (Springer-Verlag, <strong>Berlin</strong>,<br />

Germany)<br />

GKGa: U. Griebner, P. Klopp, R. Grunwald, H. Schönnagel<br />

and E. Erbert; Laser applying cladding pump<br />

scheme for short planar waveguides; Appl. Phys. Lett.<br />

GKN: R. Grunwald, V. Kebbel, U. Neumann, U. Griebner,<br />

M. Piché, Y. Sheng and P. Ambs; Ultrafast spatiotemporal<br />

processing with thin-film microoptics; Opt. Eng.<br />

Jan: K. A. Janulewicz; State-of-the-art and output<br />

characteristics of table-top lasers; X-ray Spectrometry<br />

JNK: K. A. Janulewicz, P. V. Nickles, R. E. King and G. J.<br />

Pert; Influence of pump pulse structure on transient<br />

collisionally pumped nikellike X-ray laser; Phys. Rev. A<br />

LFa: X. Liu and C. Figueira de Morisson Faria;<br />

Nonsequential double ionization with few-cycle laser<br />

pulses; Phys. Rev. Lett.<br />

LKL: D. Leupold, M. Krikunova, H. Lokstein, K. Teuchner,<br />

H. Scheer, A. Moskalenko and A. Razjivin; Excitation<br />

energy transfer from a bacteriochlorophyll higher<br />

excited state to carotenoids in LH2 of Chromatium;<br />

Photochem. Photobiol.<br />

LSSb: H. Lippert, V. Stert, C. P. Schulz, I. V. Hertel and<br />

W. Radloff; Photoinduced hydrogen transfer dynamics<br />

in indole-ammonia clusters at different excitation<br />

energies; Phys .Chem. Chem. Phys.<br />

MML: R. Müller, V. Malyarchuk and C. Lienau; A<br />

theoretical study on the optical near field in a metal film<br />

with a periodic nanohole array excited by ultrashort<br />

light pulses; Optics Express<br />

MPA: X. Matios, V. Petrov, M. Aguiló, R. Solé, J. Gavaldà,<br />

J. Massons, F. Diaz and U. Griebner; Continuous wave<br />

laser oscillation of Yb 3+ in monoclinic KLu(WO 4 ) 2 ; IEEE<br />

J. Quantum Elect.<br />

MPB c: D. B. Milosevic, G. G. Paulus and W. Becker;<br />

Metering the absolute phase of a few-cycle pulse via<br />

its high-order above-threshold ionization spectrum;<br />

Laser Physics Letters<br />

MWM: T. Moritz, W. Widdra, D. Menzel, K.-B. Bohnen<br />

and R. Heid; Adsorbate-induced surface stiffening: Surface<br />

lattice dynamics of Ru(001)-(1x1)-O; Phys. Rev. Lett.<br />

Nib: E. T. J. Nibbering; Femtosecond condensed phase<br />

spectroscopy: Structural dynamics; in Encyclopedia of<br />

Modern Optics, B. Guenther, L. Bayvel, and D. Steel<br />

eds. (Elsevier)<br />

PNB: V. Petrov, F. Noack, V. Badikov, G. Shevyrdyaeva, V.<br />

Panyutin and V. Chizhikov; Phase-matching and femtosecond<br />

difference-frequency generation in the<br />

quaternary semiconductor AgGaGe 5 Se 12 ; Appl. Opt.<br />

65


66<br />

PWF: D. Pop, B. Winter, W. Freyer, R. Weber, W. Widdra<br />

and I. V. Hertel; Photoelectron spectroscopy on thin films<br />

of extended copper porphyrazines; J. Phys. Chem. B<br />

RCF: H. Ruhl, T. Cowan and J. Fuchs; The physics of the<br />

generation of images of surface structures by laseraccelerated<br />

protons; Phys. Rev. Lett.<br />

RCG: H. Ruhl, T. Cowan, M. Geisel, E. Brambrink, M.<br />

Hegelich, R. Johnson, J. Fernandez, J. Cobble and J.<br />

Fuchs; The physics of the generation of rings in RFCstacks<br />

by laser-accelerated proton flow; Phys. Rev. Lett.<br />

RMP: M. Rini, B.-Z. Magnes, E. Pines and E. T. J.<br />

Nibbering; Direct observation of bimodal intermolecular<br />

proton transfer in photoacid-base pairs in water; in<br />

Time-Resolved Vibrational Spectroscopy XI<br />

Ruha: H. Ruhl; Probing of electromagnetic fields with<br />

laser generated proton beams; Phys. Rev. Lett.<br />

Ruhb: H. Ruhl; Transport in a laser irradiated foil; Phys.<br />

Rev. Lett.<br />

SES: C. Stanciu, R. Ehlich, G. Y. Slepyan, A. A.<br />

Khrutchinski, S. A. Maksimenko, F. Rotermund, V. Petrov,<br />

O. Steinkellner, F. Rohmund, E. E. B. Campbell, J.<br />

Herrmann and I. V. Hertel; Third-harmonic generation<br />

in carbon nanotubes: theory and experiment; SPIE<br />

Proc.<br />

SFR: C. Schweitzer, D. Fröhlich, K. Reimann, T. Böttcher,<br />

S. Einfeldt, D. Hommel, P. Prystawko, M. Leszczynski<br />

and T. Suski; Nonlinear optical spectroscopy of exciton<br />

polaritons in GaN; Phys. Rev. B<br />

SKN: G. Y. Slepyan, V. P. A. A. Krutchinski, A. N.<br />

Nemilentsau, S. A. Maksimenko and J. Herrmann;<br />

Nonlinear optical properties of carbon nanotubes:<br />

quantum-mechanical approach; Phys. Rev. A<br />

SLR: V. Stert, H. Lippert, H.-H. Ritze and W. Radloff;<br />

Femtosecond time-resolved dynamics of the electronically<br />

excited ethylene molecule; Chem. Phys. Lett.<br />

SRH: R. Stoian, A. Rosenfeld, I. V. Hertel, N. M. Bulgakova<br />

and E. E. B. Campbell; Comments on the "Coloumb<br />

explosion in femtosecond laser ablation of Si(111)”;<br />

Appl. Phys. Lett.<br />

STB: M. Schnürer, S. Ter-Avetisyan, S. Busch, W. Sandner<br />

and P. V. Nickles; MeV-proton emission from ultrafast<br />

laser driven microparticles; Appl. Phys. B<br />

Stec: G. Steinmeyer; Dispersion compensation by<br />

microstructured optical devices in ultrafast optics; Appl.<br />

Phys. A<br />

SUQ: T. Schultz, S. Ullrich, J. Quenneville, T. J. Martinez,<br />

M. Z. Zgierski and A. Stolow; Azobene photoisomerization:<br />

Two states and two relaxation pathways<br />

explain the violation of Kasha's rule; in Femtochemistry<br />

IV, Ultrafast Molecular Events in Chemistry and Biology<br />

TSB: S. Ter-Avetisyan, M. Schnürer, S. Busch, P. V. Nickles<br />

and W. Sandner; Modulation in ion emission spectra<br />

from intense femtosecond laser driven multi electrontemperature<br />

plasmas; Phys. Rev. Lett.<br />

UML: T. Unold, K. Mueller, C. Lienau, T. Elsaesser and<br />

A. D. Wieck; Optical stark effect: Ultrafast control of single<br />

exciton polarizations; Phys. Rev. Lett.<br />

WFL: I. Waldmüller, J. Förstner, S. C. Lee, A. Knorr, M.<br />

Woerner, K. Reimann, R. A. Kaindl, T. Elsaesser, R. Hey<br />

and K. H. Ploog; Optical dephasing of coherent<br />

intersubband transitions in a quasi-two-dimensional<br />

electron gas; Phys. Rev. B<br />

WWSa: R. L. Weber, B. Winter, P. M. Schmidt, W. Widdra,<br />

I. V. Hertel, M. Dittmar and M. Faubel; Photoemission<br />

from aqueous alkali-halide using EUV synchrotron<br />

radiation; J. Phys. Chem.<br />

ZLZ: Z. Y. Zhuchenko, M. P. Lisitsa, G. G. Tarasov, Y. I.<br />

Mazur, G. J. Salamo, M. Xiao, J. W. Tomm, H. Kissel and<br />

W. T. Masselink; Correlation of Raman scattering and<br />

strain distribution during 2D - 3D growth transition in<br />

InAs/GaAs systems; J. Appl. Phys.<br />

ZTo: N. Zhavoronkov and K. Tominaga; All-solid-state<br />

compact laser system based on a new cavity-dumped<br />

oscillator design; Opt. Lett.<br />

Diploma- and PhD theses, Habilitations<br />

Diploma theses<br />

Hen03: P.- A. Henry; Femtosecond pulse shaping<br />

(Supervisor: I. V. Hertel, E. Audouard, and C. P. Schulz),<br />

Freie Universität <strong>Berlin</strong>, Diplomarbeit <strong>2003</strong>-08-15<br />

Mer03: A. Mermillod-Blondin; Optimized ion generation<br />

in ultrafast laser ablation of silicon via adaptive temporal<br />

pulse shaping (Supervisor: I. V. Hertel, E. Audouard,<br />

and R. Stoian), Physikalisches <strong>Institut</strong>, Freie Universität<br />

<strong>Berlin</strong>, Diplomarbeit <strong>2003</strong>-08<br />

Pia03: M. Piantek; Aufbau einer Falle zur Speicherung<br />

von Ionen aus einem lasererzeugten Ablationsplasma<br />

(Supervisor: U. Eichmann, and G. v. Oppen), Technische<br />

Universität <strong>Berlin</strong>, Diplomarbeit <strong>2003</strong>-11<br />

Win03: S. Winkler; Anregungskanäle von Elektronen<br />

in transparenten Dielektrika durch ultrakurze Laserpulse<br />

(Supervisor: R. Stoian), Technische Universität<br />

<strong>Berlin</strong>, Diplomarbeit <strong>2003</strong>-07


PhD theses<br />

Bee03: W. Beenken; Theory of nonlinear polarization<br />

spectroscopy in the frequency domain (NLPF) with<br />

applications to photosynthetic antennae (Supervisor:<br />

R. Zimmermann), Humboldt-Universität <strong>Berlin</strong>, Dissertation<br />

<strong>2003</strong><br />

Gue03: T. Günther; Femtosekunden-Nahfeldspektroskopie<br />

an einzelnen Halbleiterpunkten (Supervisor: T.<br />

Elsaesser), Humboldt-Universität <strong>Berlin</strong>, Dissertation<br />

<strong>2003</strong><br />

Mal03: V. Malyarchuk; Near-field spectroscopy of semiconductor<br />

devise structures and plasmonic crystals<br />

(Supervisor: T. Elsaesser), Humboldt-Universität <strong>Berlin</strong>,<br />

Dissertation <strong>2003</strong><br />

Pop03: D. Pop; Photoemission studies on porphyrazine<br />

compounds (Supervisor: I. V. Hertel, and B. Winter), Freie<br />

Universität <strong>Berlin</strong>, Dissertation <strong>2003</strong>-02<br />

Rin03: M. Rini; Femtosecond mid-infrared spectroscopy<br />

of elementary photoinduced reactions (Supervisor: T.<br />

Elsaesser), Humboldt-Universität <strong>Berlin</strong>, Dissertation<br />

<strong>2003</strong><br />

Ste03: O. Steinkellner; Ultraschnelle Vibrationsanregung<br />

und zeitaufgelöste Untersuchungen zur Dissoziation<br />

von Wasser in der Gasphase (Supervisor: I. V. Hertel),<br />

Freie Universität <strong>Berlin</strong>, Dissertation <strong>2003</strong>-12<br />

Tho03: A. Thoss; X-Ray emission and particle acceleration<br />

from a liquid jet target using a 1-kHz ultrafast<br />

laser system (Supervisor: I. V. Hertel, and G. Korn), Freie<br />

Universität <strong>Berlin</strong>, Dissertation <strong>2003</strong>-05<br />

Web03: R. Weber; Photoelectron spectroscopy of liquid<br />

water and aqueons solutions in free microjets using<br />

synchrotron radiation (Supervisor: I. V. Hertel, and B.<br />

Winter), Freie Universität <strong>Berlin</strong>, Dissertation <strong>2003</strong>-06-04<br />

Sch03: R. Schneider; Aufbau eines Laserverstärkersystems<br />

und Anwendung bei Photoionisationsexperimenten<br />

(Supervisor: W. Sandner), Technische<br />

Universität <strong>Berlin</strong>, Dissertation <strong>2003</strong>-08<br />

Habilitations<br />

Lie03: C. Lienau; Optische Nahfeldspektroskopie von<br />

Halbleiter-Nanostrukturen, Fachbereich Physik,<br />

Humboldt-Universität <strong>Berlin</strong>, Habilitation <strong>2003</strong>-06<br />

67


68<br />

Appendix 2<br />

External talks, teaching<br />

Invited lectures at conferences<br />

D. Bauer, F. Ceccherini and F. Cornolti; OSA Topical<br />

Meeting "Applications of High Field and Short<br />

Wavelength Sources X" (Biarritz, France, <strong>2003</strong>-10-14):<br />

Enhanced harmonic generation by atoms in a two-color<br />

laser field scheme<br />

W. Becker; 33rd Winter Colloquium on the Physics of<br />

Quantum Electronics (Snowbird, Utah, USA, <strong>2003</strong>-09-<br />

01): Quantum-path survey of the relativistic laser-atom<br />

interaction<br />

W. Becker; 12. International Laser Physics Workshop<br />

(Hamburg, <strong>2003</strong>): Compilation of experimental data<br />

and theoretical approaches and results on nonsequential<br />

double ionization<br />

W. Becker, D. B. Milosevic and G. G. Paulus; International<br />

Symposium on Ultrafast Intense Laser Science 2:<br />

Propagation and Interaction (Lac Delage, Quebec,<br />

Canada, <strong>2003</strong>): Above-threshold ionization with fewcycle<br />

pulses<br />

W. Becker, D. B. Milosevic and G. G. Paulus; Workshop<br />

"Atomic Physics" (Dresden, <strong>2003</strong>): Few-cycle pulses<br />

with specified "absolute phase"<br />

E. E. B. Campbell together with C. P. Schulz; Symposium<br />

R6, "Energetics and structures", 203rd Meeting of The<br />

Electrochemical Society (Paris, France, <strong>2003</strong>-04-27):<br />

Photoionisation dynamics of C 60<br />

U. Eichmann, T. Gallagher and R. Konik; DAMOP <strong>2003</strong><br />

(Boulder, USA, <strong>2003</strong>): Fano Lineshapes Revisited<br />

T. Elsaesser; Photonics West <strong>2003</strong> (San José, USA,<br />

<strong>2003</strong>-01): Ultrafast coherent and incoherent dynamics<br />

of intersubband excitations in semiconductor quantum<br />

wells<br />

T. Elsaesser; 5th Int. Topical Conference on Optical<br />

Probes of Conjugated Polymers and Organic and Inorganic<br />

Nanostructures (OP <strong>2003</strong>) (Venice, Italy, <strong>2003</strong>-<br />

02): Femtosecond infrared spectroscopy<br />

T. Elsaesser; Frühjahrstagung der Deutschen<br />

Physikalischen Gesellschaft <strong>2003</strong>, Fachausschüsse<br />

Plasma- und Kurzzeitphysik (Aachen, Germany, <strong>2003</strong>-<br />

03): Ultrafast coherent and incoherent dynamics of<br />

electron plasmas in semiconductors (plenary talk)<br />

T. Elsaesser together with N. Huse, K. Heyne, J. Dreyer,<br />

and E. T. J. Nibbering; Femtochemistry VI-Conference<br />

(Paris, France, <strong>2003</strong>-07): Coherent vibrational excitations<br />

of intermolecular hydrogen bonds studied by ultrafast<br />

infrared spectroscopy<br />

T. Elsaesser; 11th Int. Conference on Time-Resolved<br />

Vibrational Spectroscopy (TRVS <strong>2003</strong>) (Florence, Italy,<br />

<strong>2003</strong>-05): Ultrafast coherent vibrational dynamics of<br />

hydrogen bonds<br />

T. Elsaesser; Conference on Lasers and Electrooptics<br />

(CLEO) (Baltimore, USA, <strong>2003</strong>-06): Femtosecond<br />

pulses in the mid-infrared - generation and applications<br />

in condensed matter research (tutorial)<br />

T. Elsaesser; ULTRA School on Ultrafast Processes in<br />

Photochemistry and Pholobiology (European Science<br />

Foundation) (Torun, Poland, <strong>2003</strong>-08): Photoinduced<br />

electron transfer processes in large molecules<br />

T. Elsaesser; ULTRA School on Ultrafast Processes in<br />

Photochemistry and Photobiology (European Science<br />

Foundation) (Torun, Poland, <strong>2003</strong>-08): Ultrafast<br />

dynamics of hydrogen bonds and hydrogen transfer<br />

reactions<br />

T. Elsaesser; Swiss Graduate Schools in Chemistry,<br />

Convention intercantonale romande (Universities of<br />

Geneva, Basel, and Lausanne, Switzerland, <strong>2003</strong>-09):<br />

5 lectures on: Ultrafast molecular dynamics in the<br />

condensed phase<br />

T. Elsaesser; Colloque Paris-Biophotonique (Paris,<br />

France, <strong>2003</strong>-10): Ultrafast spectroscopy and its<br />

application to biomolecular analysis<br />

T. Elsaesser; Korean-German Seminar on Applied<br />

Mathematics and Physics (Pyongyang, Korea, <strong>2003</strong>-<br />

11): Ultrafast processes in solids - physics and<br />

applications<br />

T. Elsaessser; March-Meeting of the American Physical<br />

Society (Austin, USA, <strong>2003</strong>-03): Femtosecond coherent<br />

carrier dynamics in quantum cascade lasers<br />

E. Eremina; XVIII International Seminar on Ion-Atom<br />

Collisions (ISIAC) (Stockholm-Helsinki, <strong>2003</strong>): Subthreshold<br />

non-sequential double ionization<br />

M. Faubel together with B. Winter; ACS 225th National<br />

Meeting; VUV Symposium (New Orleans, USA, <strong>2003</strong>-<br />

03-27): Photoelectron spectroscopy of solvate ions in<br />

aqueous solutions, using EUV, VUV radiation<br />

M. Faubel together with B. Winter; ACS Fall National<br />

Meeting (New York, USA, <strong>2003</strong>-09-11): The conduction<br />

band in liquids and disordered solids<br />

M. Fiebig; CERC-ERATO International Workshop on<br />

Phase Control of Correlated Electron Systems (Maui,<br />

USA, <strong>2003</strong>-10): Nonlinear optical probing of magnetic<br />

structures - novel developments


M. Fiebig; Magnetoelectric interaction phenomena in<br />

crystals (MEIPIC-5) (Sudak, Ukraine, <strong>2003</strong>-09):<br />

Magnetoelectric interaction in crystals observed by<br />

nonlinear magneto-optics<br />

M. Fiebig; Quantum Complexities in Condensed Matter<br />

(Int. Workshop and Conference) (Bukhara, Usbekistan,<br />

<strong>2003</strong>-08): Nonlinear optics for the investigation of<br />

magnetic structures<br />

M. Fiebig; International Conference on Magnetism<br />

(Rome, Italy, <strong>2003</strong>-07): Nonlinear optics - a powerful<br />

tool for the investigation fo magnetic structures<br />

M. Fiebig; Workshop on Ultrafast Magnetization<br />

Processes (Bad Honnef, Germany, <strong>2003</strong>-04): Spin<br />

dynamics of antiferromagnets - what can nonlinear<br />

optics contribute?<br />

P. Glas; 2nd International Symposium on High-Power<br />

Fiber Lasers and Their Applications (St.Petersburg,<br />

Russia, <strong>2003</strong>-07): Experiments with microstructure<br />

optical (holey) fibers<br />

U. Griebner together with P. Klopp, and V. Petrov; 12th<br />

International Laser Physics Workshop (LPHYS'03)<br />

(Hamburg, Germany, <strong>2003</strong>-08): Lasing properties of<br />

Yb 3+ in a stoichiometric double tungstate published in<br />

Book of abstracts p.220<br />

R. Grunwald together with V. Kebbel, U. Neumann, U.<br />

Griebner, and M. Piché; SPIE's 48th <strong>Annual</strong> Meeting,<br />

Wave Optics and Photonic Devices for Optical Information<br />

Processing (AM201) (San Diego, CA, <strong>2003</strong>-08):<br />

Spatio-temporal processing of femtosecond laser<br />

pulses with thin-film micro-optics<br />

C. Heiner; EUROFET - TMR Meeting (Varenna, Italy,<br />

<strong>2003</strong>-09-30): Photoemission using combined laser/<br />

synchrotron pulses: Sexithiophene on gold(110)<br />

J. Herrmann together with A. Husakou; Conference on<br />

Lasers and Electro-Optics (CLEO), QELS <strong>2003</strong><br />

(Baltimore, Maryland, USA, <strong>2003</strong>-06-01): Nonlinear<br />

optical processes in photonic crystal fibers<br />

J. Herrmann; Workshop: Nanoscience and Photonics,<br />

PhD Graduate School (Fuglsocentret, Ebeltoft, Dänemark,<br />

<strong>2003</strong>-10-10): Photonic crystal fibers<br />

I. V. Hertel; 34th Meeting of the Division of Atomic,<br />

Molecular and Optical Physics (DAMOP03) (Boulder,<br />

Colorado, USA, <strong>2003</strong>-05-20): Ultrafast Dynamics and<br />

Rydberg States in C 60<br />

I. V. Hertel together with M. Boyle, C. P. Schulz, M. Héden,<br />

and E. E. B. Campbell; International Symposium on Ultrafast<br />

Intense Laser Science 2 (Quebec, Canada, <strong>2003</strong>-<br />

09-28): Multielectron excitation and Rydberg states in C 60<br />

I. V. Hertel, Abschlußworkshop Sfb 276 (Universität<br />

Freiburg, Fakultät für Physik, Germany, <strong>2003</strong>-10-06):<br />

Anregungs- und Ionisationsdynamik von C 60 in mittelstarken<br />

Laserfeldern<br />

I. V. Hertel, Abschlussworkshop SFB 276 (Universität<br />

Freiburg, Fakultät für Physik, <strong>2003</strong>-10-06): Historischer<br />

Überblick über die Entwicklung und Geschichte des<br />

Sfb<br />

K. A. Janulewicz, A. Lucianetti, R. Kroemer, G. Priebe,<br />

W. Sandner and P. V. Nickles; OSA Topical Meeting<br />

"Applications of High Field and Short Wavelength<br />

Sources X" (Biarritz, France, <strong>2003</strong>-10-13): Achievement<br />

of high tranverse spatial coherence in a transient Nilike<br />

Ag X-ray laser<br />

M. P. Kalachnikov; Workshop on Technological Bottlenecks<br />

in Compact High-Intensity Short-Pulse Lasers<br />

(Paris, France, <strong>2003</strong>-04): <strong>MBI</strong> activities for high peak<br />

power Ti:Sa lasers<br />

D. Leupold; 2nd German-Belarus Symposium 'Development<br />

and Function of the Photosynthetic Apparatus'<br />

(Egsdorf, Germany, <strong>2003</strong>-10): Bx fluorescence of<br />

(bacterio)chlorophylls in photosynthetic antenna<br />

complexes<br />

C. Lienau; HCIS 13, 13th International Conference on<br />

Nonequilibrium Carrier Dynamics in Semiconductors<br />

(Modena, Italy, <strong>2003</strong>-07): Space and time-resolved<br />

optical spectroscopy of semiconductor nanostructures<br />

C. Lienau; Gordon Research Conference "Nonlinear<br />

Optics and Lasers" (New London, New Hampshire,<br />

USA, <strong>2003</strong>-08): Ultrafast spectroscopy of single<br />

nanostructures<br />

C. Lienau; Euro Workshop on Quantum Computers:<br />

Nanoscopic implementation; perspectives and open<br />

problems (Turino, Italy, <strong>2003</strong>-02): Ultrafast nano-optics:<br />

Probing and manipulating excitonic quantum bits on<br />

ultrafast time scales<br />

C. Lienau; Euro Workshop on Quantum Computers:<br />

Nanoscopic implementation; perspectives and open<br />

problems (Turino, Italy, <strong>2003</strong>-02): Ultrafast space and<br />

time-resolved spectroscopy<br />

C. Lienau; International Workshop on Innovative Laser<br />

Technologies for Materials Diagnostic (Florence, Italy,<br />

<strong>2003</strong>-02): Coherent spectroscopy of single quantum<br />

dots<br />

C. Lienau; Growth, electronic and optical properties of<br />

low-dimensional semiconductor quantum structures,<br />

Workshop (Schloss Ringberg, Germany, <strong>2003</strong>-02):<br />

Ultrafast nano-optics: Coherent spectroscopy of single<br />

quantum dots<br />

E. T. J. Nibbering together with N. Huse, K. Heyne, and<br />

T. Elsaesser; Conference on Lasers and Electro-Optics<br />

(CLEO), QELS <strong>2003</strong> (Baltimore, USA, <strong>2003</strong>-06): Ultrafast<br />

coherent vibrational response of intermolecular<br />

hydrogen bonded molecular complexes in solution<br />

P. V. Nickles, K. Janulewicz, G. Priebe, A. Lunianetti, W.<br />

Sandner and G. Pert; CLEO Europe (München, <strong>2003</strong>-<br />

06-23): What does make hope for X-ray lasers<br />

69


70<br />

P. V. Nickles, K. A. Janulewicz, A. Lucianetti, G. Priebe, J.<br />

Tümmler, W. Sandner and G. Pert; SPIE <strong>Annual</strong> Meeting<br />

(San Diego, California USA, <strong>2003</strong>-08-03): Status of <strong>MBI</strong><br />

activities will transient collisional X-ray lasers with high<br />

repetition rate come soon?<br />

K. Reimann; 7th International Conference on Intersubband<br />

Transitions in Quantum Wells (Evolène, Switzerland,<br />

<strong>2003</strong>-09): Rabi oscillations of intersubband<br />

transitions in a quasi-two-dimensional electron gas<br />

F. Rotermund and V. Petrov together with V.<br />

Pasiskevicius; Optical Society Korea <strong>Annual</strong> Meeting<br />

<strong>2003</strong> (Inha Univ. Incheon, Korea, <strong>2003</strong>-02-13): PPKTP<br />

based optical parametric chirped pulse amplification<br />

at the optical communication range about 1.57 mm<br />

F. Rotermund and V. Petrov together with V.<br />

Pasiskevicius; <strong>Annual</strong> Meeting <strong>2003</strong> of The Korean<br />

Physical Society (Kyungpook University, Daegu, Korea,<br />

<strong>2003</strong>-10-24): Application of PPKTP for efficient<br />

femtosecond IR pulse generation<br />

H. Rottke; LPHYS ‘03 (Hamburg, <strong>2003</strong>-8-29): Strong<br />

field non-sequential atomic and molecular double<br />

ionization investigated close to and below the threshold<br />

for electron impact ionization<br />

W. Sandner; European Strategic Forum on Research<br />

Infrastructures Workshop on: "FELs up to the UV and<br />

soft X-rays" (Daresbury, UK, <strong>2003</strong>-02): Lasers for<br />

photoinjectors and pump-probe user experiments:<br />

architecture, pulse shaping and synchronization<br />

W. Sandner; First Canadian Workshop on Ultrafast<br />

Dynamic Imaging (Sherbrooke, Kanada, <strong>2003</strong>-10-02):<br />

FEL and application to imaging biological systems<br />

W. Sandner; ESFRI XFEL Workshop (DESY, Hamburg,<br />

<strong>2003</strong>-10): Advanced laser technology - Challenges and<br />

solutions<br />

W. Sandner; IUPAP Council Meeting <strong>2003</strong> (Trieste,<br />

Italien, <strong>2003</strong>-10-25): Ultrahigh Intensity Lasers<br />

W. Sandner; International School of Quantum<br />

Electronics, 37. course, Atoms and Plasmas in Super-<br />

Intense Laser Fields (Erice, Sizilien, Italien, <strong>2003</strong>-07-<br />

12): Atomic physics in strong laser fields<br />

W. Sandner; International School of Quantum<br />

Electronics, 37. course, Atoms and Plasmas in Super-<br />

Intense Laser Fields (Erice, Sizilien, Italien, <strong>2003</strong>-07-<br />

12): Strong field double ionization<br />

W. Sandner; Trends in Ultrafast Intense Laser Science<br />

and Technology (Lac Delage, Quebec, Kanada, <strong>2003</strong>-<br />

09-25): Ultra-high Intensity laser development within<br />

the EU-Network LASERLAB-EUROPE<br />

W. Sandner; Trends in Ultrafast Intense Laser Science<br />

and Technology (Lac Delage, Quebec, Kanada, <strong>2003</strong>-<br />

09-26): Ultra-high intensity laser research in Germany<br />

M. Schnürer, S. Ter-Avetisyan, S. Busch, W. Sandner<br />

and P. V. Nickles; OSA Topical Meeting "Applications of<br />

High Field and Short Wavelength Sources X" (Biarritz,<br />

France, <strong>2003</strong>-10-13): MeV – proton emission from<br />

ultrafast laser driven micro-particles<br />

C. P. Schulz together with H. Lippert, V. Stert, L. Hesse,<br />

I. V. Hertel, and W. Radloff; XX International Symposium<br />

on Molecular Beams (Lisbon, Portugal, <strong>2003</strong>-06-08):<br />

Time resolved photoelectron spectra of indoleammonia<br />

complexes published in Book of Abstracts<br />

pp.64-5<br />

G. Steinmeyer; BIPM Workshop on Comb Technology<br />

(Sèvres, France, <strong>2003</strong>-03): Pulse generation and<br />

dispersion compensation<br />

G. Steinmeyer; <strong>2003</strong> LEOS Summer Topical Meeting<br />

on Photonic Time/Frequency Measurement and Control<br />

(Vancouver, BC, Canada, <strong>2003</strong>-07): Physics and<br />

stabilization of the carrier-envelope phase of few-cycle<br />

lasers<br />

H. Stiel; PRORA <strong>2003</strong> (<strong>Berlin</strong>, <strong>2003</strong>): Quellen für<br />

zeitaufgelöste Röntgentechniken in der Grundlagenforschung<br />

H. Stiel, (TU <strong>Berlin</strong>, <strong>2003</strong>): Laserbasierte Röntgenquellen<br />

für zeitaufgelöste Absorptionsuntersuchungen<br />

F. Stienkemeier together with G. Droppelmann, and C.<br />

P. Schulz; XX International Symposium on Molecular<br />

Beams (Lisbon, Portugal, <strong>2003</strong>-06-08): Stability<br />

properties of mixed alkali clusters on helium nanodroplets<br />

R. Stoian together with A. Rosenfeld, M. Boyle, and I. V.<br />

Hertel; Symposium F1 "Science and Technology of<br />

Dielectrics in Emerging Fields", 203rd Meeting of The<br />

Electrochemical Society (Paris, France, <strong>2003</strong>-04-27):<br />

Temporal pulse shaping and optimization in ultrafast<br />

laser ablation of materials<br />

R. Stoian; 53rd Meeting of the Austrian Physical Society<br />

(Salzburg, Austria, <strong>2003</strong>-01-10): Optimized laser<br />

material processing using temporally tailored ultrafast<br />

laser pulses<br />

R. Stoian; MRS <strong>2003</strong> Spring Meeting of the Material<br />

Research Society (San Francisco, USA, <strong>2003</strong>-04-21):<br />

Temporal pulse shaping and optimization in ultrafast<br />

laser ablation of materials<br />

S. Ter-Avetisyan, P. V. Nickles, M. Schnürer, H. Stiel, S.<br />

Busch, W. Sandner, D. Hilscher and U. Jahnke; International<br />

Workshop on the Physics of High Energy<br />

Density in Matter (Hirschegg, Austria, <strong>2003</strong>): Ion acceleration<br />

dynamics of short pulse laser heated water droplets<br />

I. Will, H. Redlin, R. Schumann and M. Kalachnikov;<br />

Sub-Picosecond X-ray Experiments Development<br />

Workshop (Lisbon, Portugal, <strong>2003</strong>-09): Development<br />

of an optical, wavelength-tuneable laser for pumpprobe<br />

experiments at the TASLA FEL


B. Winter; EUROFET - TMR Meeting (Thurnau, <strong>2003</strong>-<br />

03-12): Time-resolved laser/synchrotron photoemission:<br />

Perspectives.<br />

M. Woerner together with K. Reimann, C. W. Luo, T.<br />

Elsaesser, R. Hey, and K. H. Ploog; 11th International<br />

Conference on Terahertz Electronics (Sendai, Japan,<br />

<strong>2003</strong>-09): Ultrashort THz transients with MV/cm field<br />

amplitudes: Rabi oscillations of intersubband transitions<br />

in a quasi-2D electron gas<br />

Invited external talks at seminars and colloquia<br />

D. Bauer, together with A. Macchi; Applications of High<br />

Field and Short Wavelength Sources X (Biarritz, France,<br />

<strong>2003</strong>-10-12): Dynamical ionization ignition of clusters<br />

D. Bauer, together with A. Macchi; Conference on Super<br />

Intense Laser Atom Physics SILAP03 (Southfork<br />

Ranch, Dallas, USA, <strong>2003</strong>-11): Ionization dynamics of<br />

clusters at long and short wavelengths<br />

W. Becker; Laser Seminar (ETH Zürich, <strong>2003</strong>): Quantum<br />

orbits in intense-laser atom physics<br />

W. Becker; Theoriekolloquium (TU Darmstadt, <strong>2003</strong>):<br />

Atome in starken elektrischen Feldern<br />

D. Bröcker; Seminar über Methoden der Oberflächenphysik<br />

(Halle, <strong>2003</strong>-01-16): Time- and angle-resolved<br />

electron detectors for experiments with combined laser<br />

and synchrotron radiation<br />

D. Bröcker; Universität Zürich, FK-Seminar (Zürich,<br />

<strong>2003</strong>-10-29): Charge carrier dynamics at the SiO 2 /<br />

Si(100) surface probed with combined laser and<br />

synchrotron radiation<br />

J. Dreyer; Seminar, <strong>Institut</strong> für Physikalische und Theoretische<br />

Chemie, Johann Wolfgang Goethe-Universität,<br />

Group: Prof. G. Stock (Frankfurt / Main, Germany, <strong>2003</strong>-<br />

05): Ab initio simulation of two-dimensional IR spectra<br />

E. Eichmann; Vortrag (University of Charlottesville,<br />

<strong>2003</strong>): Excitation routes and ionization dynamics of<br />

atoms in laserfields<br />

T. Elsaesser; Kolloquium Weierstraß-<strong>Institut</strong> für Angewandte<br />

Analysis und Stochastik (<strong>Berlin</strong>, Germany,<br />

<strong>2003</strong>-03): Nichtlineare Dynamik optischer Anregungen<br />

und Impulspropagation auf ultrakurzen Zeitskalen<br />

T. Elsaesser; Forum "Forschung und Entwicklung - ein<br />

Beitrag zum nachhaltigen Wirtschaften" (Umwelt-<br />

Technologie-Zentrum (UTZ), <strong>Berlin</strong>, <strong>2003</strong>-05): Optoelektronik:<br />

Neue Trends in Forschung und Anwendung<br />

E. Eremina; Seminar Atomphysik: Dynamik & Struktur<br />

(MPI-K, Heidelberg, <strong>2003</strong>): Sub-Threshold Double<br />

Ionisation in Strong Laser Fields<br />

M. Fiebig; Kolloquium bei Prof. Dr. B. Hillebrands,<br />

Universität (Kaiserslautern, Germany, <strong>2003</strong>-01):<br />

Sublattice interaction and spin dynamics in antiferromagnets<br />

M. Fiebig; Kolloquium bei Prof. Dr. W. Hanke, Universität<br />

(Würzburg, Germany, <strong>2003</strong>-01): Nichtlineare Optik als<br />

neue Methode zur Bestimmung magnetischer<br />

Strukturen und Wechselwirkungen<br />

M. Fiebig; Kolloquium bei Prof. Dr. J. Schoenes,<br />

Universität (Braunschweig, Germany, <strong>2003</strong>-07):<br />

Nichtlineare Optik als neue Methode zur Bestimmung<br />

magnetischer Strukturen und Wechselwirkungen<br />

M. Fiebig; Kolloquium bei Prof. Dr. J. Wosnitza, Universität<br />

(Dresden, Germany, <strong>2003</strong>-07): Nonlinear optics<br />

as method for the determination of magnetic structures<br />

and interactions<br />

M. Fiebig; Kolloquium bei Prof. Dr. W. Kleemann, Universität<br />

(Duisburg, Germany, <strong>2003</strong>-06): Magnetoelectric<br />

interaction in crystals observed by nonlinear optics<br />

M. Fiebig; Kolloquium bei Prof. Dr. J. Ihringer, Universität<br />

(Tübingen, Germany, <strong>2003</strong>-05): Nonlinear optics as<br />

method for the determination of magnetic structures<br />

and interactions<br />

M. Fiebig; Kolloquium bei Priv.-Doz. Dr. R. Valenti,<br />

Universität (Saarbrücken, Germany, <strong>2003</strong>-02):<br />

Magnetic structure two-sublattice compounds RMnO 3<br />

and CuB 2 O 4 investigated by nonlinear magneto-optics<br />

U. Griebner; JENOPTIK GmbH (Jena, <strong>2003</strong>-05): Diodepumped<br />

femtosecond laser operation of Yb 3+ -doped<br />

tungstate and sesquioxide crystals<br />

U. Griebner; COPL, Université Laval (Québec, Canada,<br />

<strong>2003</strong>-12): Unique laser properties and femtosecond<br />

laser operation of Yb 3+ -doped tungstate and sesquioxide<br />

crystals<br />

R. Grunwald; Seminar, Department of Electrical and<br />

Computer Engineering, University of California (San<br />

Diego, La Jolla, CA, <strong>2003</strong>-08): Ultrashort-pulse<br />

microoptics<br />

R. Grunwald; <strong>Institut</strong>skolloquium Prof. Michel Piché,<br />

Centre d'optique, photonique et laser (COPL) (Université<br />

Laval, Quebec, Canada, <strong>2003</strong>-10): Recent developments<br />

in thin-film microoptics<br />

R. Grunwald; Vortrag, Department of Electrical and<br />

Computer Engineering, Photonics Group (University<br />

of Toronto, Canada, <strong>2003</strong>-10): Microoptical array<br />

components for UV-laser beam shaping and<br />

characterization<br />

C. Heiner, together with B. Winter, W. Widdra, I. V. Hertel,<br />

J. Dreyer, and N. Koch; Seminar (Universität Halle, <strong>2003</strong>-<br />

10-16): Photoemission using combined synchrotron and<br />

laser pulses: sexithiophene on Au(110)<br />

71


72<br />

I. V. Hertel; Kolloquium (Universität Dortmund, <strong>2003</strong>-<br />

01-30): Ultrakurze Lichtimpulse: Femtosekunden<br />

Dynamik von Molekülen und Clustern und potentielle<br />

technische Anwendung<br />

I. V. Hertel; Kolloquium (MPI für Physik komplexer<br />

Systeme, Dresden, <strong>2003</strong>-02-03): Ultrafast dynamics<br />

and H-transfer in clusters and biologically relevant<br />

molecules<br />

I. V. Hertel; Festkolloquium anl. 80. Geburtstag von Prof.<br />

Süptitz (Technische Universität Dresden, <strong>2003</strong>-06-03):<br />

Femtochemie und Femtophysik<br />

I. V. Hertel; Kolloquium (Steacie <strong>Institut</strong>e for Molecular<br />

Sciences, Ottawa, Canada, <strong>2003</strong>-09-24): Femtoseconds<br />

at the <strong>MBI</strong> and ultrafast dynamics in molecular<br />

cluster<br />

K. Heyne; Graduiertenkolleg H-Brücken, Freie Universität<br />

(<strong>Berlin</strong>, Germany, <strong>2003</strong>-02): Introduction to<br />

infrared spectroscopy and its application to hydrogen<br />

bonded systems<br />

K. Heyne; SFB 450 Workshop, Freie Universität (<strong>Berlin</strong>,<br />

Germany, <strong>2003</strong>-03): Coherent vibrational dynamics of<br />

intermolecular hydrogen bonds: acetic acid dimers in<br />

solution<br />

K. Heyne; Seminar, Prof. Manz, Freie Universität (<strong>Berlin</strong>,<br />

Germany, <strong>2003</strong>-05): Coherent vibrational dynamics of<br />

coupled hydrogen bonds in carboxylic acid dimers in<br />

the liquid phase<br />

K. Heyne; SFB 450 Workshop, Freie Universität (<strong>Berlin</strong>,<br />

Germany, <strong>2003</strong>-06): Ultrafast processes in proteins and<br />

model systems<br />

M. P. Kalachnikov; SHARP-project meeting (Marseille,<br />

France, <strong>2003</strong>-06): <strong>MBI</strong> activities for the SHARP-project<br />

D. Leupold; PSI Workshop, SFB 498, Fachbereich Physik<br />

(FU <strong>Berlin</strong>, <strong>2003</strong>-05): Pigment-pigment interaction and<br />

energy transfer in light harvesting complexes<br />

C. Lienau; Center for Nanoscience, Oberseminar<br />

(München, Germany, <strong>2003</strong>-12): Ultrafast nano-optics:<br />

Novel directions towards quantum information<br />

processing with semiconductor nanostructures<br />

C. Lienau; COBRA-Colloquium, Technische Universität<br />

(Eindhoven, the Netherlands, <strong>2003</strong>-10): Ultrafast nanooptics:<br />

Towards quantum information processing with<br />

semiconductor nanostructures<br />

C. Lienau; Seminar, <strong>Institut</strong> für Angewandte Physik,<br />

Technische Universität (Darmstadt, Germany, <strong>2003</strong>-07):<br />

Ultraschnelle Nano-Optik: Neue Wege zur Quanteninformationsverarbeitung<br />

mit Halbleiter Nanostrukturen<br />

C. Lienau; Habilitationsvortrag, <strong>Institut</strong> für Physik der<br />

Humboldt-Universität (<strong>Berlin</strong>, Germany, <strong>2003</strong>-06):<br />

Quanten-Informationsverarbeitung<br />

C. Lienau; Physikalisches Kolloquium, Universität<br />

(Regensburg, Germany, <strong>2003</strong>-05): Ultraschnelle Raster-<br />

Nahfeldspektroskopie an einzelnen Quantenpunkten<br />

C. Lienau; Kolloquium, Humboldt Graduate School on<br />

Structure, Function and Application of New Materials<br />

(<strong>Berlin</strong>, Germany, <strong>2003</strong>-02): Ultrafast nanooptics<br />

C. Lienau; Seminar, IV. Physikalisches <strong>Institut</strong>, Universität<br />

(Göttingen, Germany, <strong>2003</strong>-01): Ultraschnelle Nanooptik:<br />

Neue Wege zur Quanteninformationsverarbeitung in<br />

Halbleiter-Nanostrukturen<br />

H. Lippert; Seminar (LMU München, <strong>2003</strong>-12-11): Die<br />

Bedeutung des ps* Zustandes in Indol-Ammoniak und<br />

Indol-Wasser Clustern<br />

E. T. J. Nibbering; Seminar (J. Troe / K.A. Zachariasse),<br />

<strong>Max</strong>-Planck-<strong>Institut</strong> für biophysikalische Chemie (Karl-<br />

Friedrich-Bonhoeffer-<strong>Institut</strong>) (Göttingen, Germany,<br />

<strong>2003</strong>-01): Excited state intra- and intermolecular proton<br />

transfer: Site-specific observation with ultrafast midinfrared<br />

spectroscopy<br />

E. T. J. Nibbering; Sfb 450 'Analyse und Steuerung<br />

ultraschneller photoinduzierter Reaktionen': Seminarreihe<br />

Wintersemester 2002/<strong>2003</strong>, Freie Universität<br />

(<strong>Berlin</strong>, Germany, <strong>2003</strong>-02): Essentials of photon echo<br />

experiments<br />

P. V. Nickles; <strong>Institut</strong>skolloquium (MPI, IPP Garching,<br />

<strong>2003</strong>-06): Particle generation in short pulse laser driven<br />

hot dense plasmas<br />

V. Petrov; NLO-Seminar (Wolfersdorf, <strong>2003</strong>-10-25): 10<br />

Jahre Femtosekunden OPA<br />

W. Radloff; Seminar (Centre d' Etudes de Saclay, France,<br />

<strong>2003</strong>-11-27): Femtosecond time-resolved photoelectron<br />

spectroscopy of photoexcited ethylene molecules and<br />

indole-ammonia(water) clusters<br />

M. B. Raschke; Seminar bei Prof. Y.R. Shen, Department<br />

of Physics, University of California at Berkeley, (CA,<br />

USA, <strong>2003</strong>-03): Apertureless near-field optical<br />

spectroscopy<br />

M. B. Raschke; Seminar bei Prof. Niehus, <strong>Institut</strong> für<br />

Physik, Humboldt-Universität zu <strong>Berlin</strong> (Germany,<br />

<strong>2003</strong>-05): Tip-sample coupling in elastic light scattering<br />

M. Rini together with J. Dreyer, A. Kummrow, B. Magnes,<br />

E. Pines, and E. T. J. Nibbering; Seminar, Addis Ababa<br />

University, Department of Physics, Group: Prof. Araya<br />

(Addis Ababa, Ethiopia, <strong>2003</strong>-12): Ultrafast mid-IR<br />

spectroscopy of inter- and intra-molecular proton<br />

transfer<br />

M. Rini together with J. Dreyer, A. Kummrow, B. Magnes,<br />

E. Pines, and E. T. J. Nibbering; Seminar, <strong>Institut</strong> für<br />

Experimentalphysik, Freie Universität <strong>Berlin</strong>, Group:<br />

Prof. Schwentner (<strong>Berlin</strong>, Germany, <strong>2003</strong>-10): Ultrafast<br />

spectroscopy of photoinduced proton transfer reactions


M. Rini together with J. Dreyer, A. Kummrow, B. Magnes,<br />

E. Pines, and E. T. J. Nibbering; Seminar, Lawrence<br />

Berkeley National Laboratory, Department of Energy,<br />

Group: Dr. Schoenlein (Berkeley, CA, USA, <strong>2003</strong>-04):<br />

Ultrafast mid-IR spectroscopy of inter- and intramolecular<br />

proton transfer<br />

M. Rini together with J. Dreyer, A. Kummrow, B. Magnes,<br />

E. Pines, and E. T. J. Nibbering; Seminar, MIT, Department<br />

of Chemistry, Group: Prof. A. Tokmakoff (Cambridge,<br />

MA, USA, <strong>2003</strong>-04): Ultrafast mid-IR spectroscopy of<br />

inter- and intra-molecular proton transfer<br />

M. Rini together with J. Dreyer, A. Kummrow, B. Magnes,<br />

E. Pines, and E. T. J. Nibbering; Seminar, Columbia<br />

University, Department of Physics, Group: Prof. T. F. Heinz<br />

(New York, USA, <strong>2003</strong>-04): Ultrafast mid-IR spectroscopy<br />

of inter- and intra-molecular proton transfer<br />

A. Rosenfeld; Workshop Laserverbund <strong>Berlin</strong>-Brandenburg<br />

(<strong>Berlin</strong>, <strong>2003</strong>-09-12): Abtragen mit Photonen<br />

M. Schnürer; Tag der Naturwissenschaften an der<br />

Robert-Havemann Oberschule (<strong>Berlin</strong>, <strong>2003</strong>): Sternenfeuer<br />

im Labor<br />

T. Schultz; Seminar (MPI für Biophysikalische Chemie,<br />

Göttingen, <strong>2003</strong>-11): Investigating excited state<br />

dynamics by time-resolved photoelectron spectroscopy<br />

R. Stoian; Seminar (Air Force Laboratory and University<br />

of Sayton, Dayton, USA, <strong>2003</strong>-12-01): Temporal pulse<br />

manipulation and adaptive optimization in ultrafast<br />

laser processing of materials<br />

R. Stoian; Seminar (<strong>Institut</strong>e of Applied Physics,<br />

Johannes-Keppler-University, Linz, Austria, <strong>2003</strong>-09-<br />

29): Optimized laser material processing using<br />

temporally tailored ultrafast laser pulses<br />

R. Stoian; Seminar (TSI (Traitement du Signal et<br />

Instrumentation) Laboratory, Jean Monnet University,<br />

St. Etienne, France, <strong>2003</strong>-05-16): Controle temporal<br />

d'impulsions ultra brèves pour les procédés laser<br />

R. Stoian; Seminar (<strong>Institut</strong>e of Applied Physics, Bern,<br />

Switzerland, <strong>2003</strong>-01-23): Temporal pulse tailoring and<br />

optimization in ultrafst laser abaltion of materials<br />

S. Ter-Avetisyan, P. V. Nickles, M. Schnürer, H. Stiel, S.<br />

Busch, W. Sandner, D. Hilscher and U. Jahnke; Seminar<br />

zur Physik dichter Plasmen mit Schwerionen- und<br />

Laserstrahlen (GSI Darmstadt, <strong>2003</strong>): Ion dynamics of<br />

35 fs laser pulse heated water droplets<br />

S. Ter-Avetisyan, P. V. Nickles, M. Schnürer, H. Stiel, S.<br />

Busch, W. Sandner, D. Hilscher and U. Jahnke, Seminar<br />

(<strong>Institut</strong>e for Physical Research, Ashtarak, Armenien,<br />

<strong>2003</strong>): Ion acceleration with ultrafast lasers<br />

S. Ter-Avetisyan, M. Schnürer, S. Busch, W. Sandner<br />

and P. V. Nickles; Workshop (Schloss Ringberg, <strong>2003</strong>):<br />

Modulations of ion spectra from plasma driven by<br />

intense fs-laser pulses<br />

J. W. Tomm; Seminar am Walter-Schottky-<strong>Institut</strong><br />

(Technische Universität, München, Germany, <strong>2003</strong>-05):<br />

Spektroskopische Analytik an Diodenlaserfacetten<br />

J. W. Tomm; Seminar am <strong>Max</strong>-Planck-<strong>Institut</strong>e of<br />

Microstructure Physics (Halle, Germany, <strong>2003</strong>-11):<br />

Recombination kinetics in semiconductor nanostructures<br />

P. Tzankov, together with A. Ogrodnik; Seminar (Freie<br />

Universität <strong>Berlin</strong>, <strong>2003</strong>-07-08): Mechanisms of charge<br />

separation and protein relaxation in photosynthetic<br />

reaction centers<br />

F. Weik together with J. W. Tomm; Seminar bei DILAS<br />

Diodenlaser GmbH (Mainz, Germany, <strong>2003</strong>-05):<br />

Spektroskopische Untersuchungen an cm-Barren im<br />

Pulsbetrieb<br />

M. Woerner; Seminar, Universität (Innsbruck, Austria,<br />

<strong>2003</strong>-01): Ultrafast coherent electron transport in GaAs/<br />

AlGaAs quantum cascade laser structures<br />

M. Woerner; Seminar, Universität (Jena, Germany,<br />

<strong>2003</strong>-10): Femtosekunden Röntgenbeugung<br />

M. Woerner; Seminar, Universität (Hamburg, Germany,<br />

<strong>2003</strong>-11): Femtosekunden Röntgenbeugung<br />

M. Woerner; Seminar, <strong>Max</strong>-Planck-<strong>Institut</strong> für Biochemie,<br />

Abt. Molekulare Strukturbiologie, Martinsried (München,<br />

Germany, <strong>2003</strong>-12): Ultrashort THz transients with MV/<br />

cm field amplitudes: Rabi oscillations of intersubband<br />

transitions in a quasi-2D electron gas<br />

M. Zhavoronkov; Seminar (National <strong>Institut</strong> for Solid-<br />

State Physic, Minsk, Belarus, <strong>2003</strong>-10-24): Timeresolved<br />

diffraction<br />

Academic teaching<br />

U. Eichmann; Vorlesung, 4 Semester-Wochenstunden<br />

(Technische Universität <strong>Berlin</strong>, <strong>2003</strong>-WS): Seminar zur<br />

Atom- und Molekülphysik I<br />

T. Elsaesser; Vorlesung, 2 Semesterwochenstunden<br />

(Humboldt Universität <strong>Berlin</strong>, <strong>2003</strong>-Sommersemester):<br />

Kurzzeitspektroskopie I<br />

T. Elsaesser; Vorlesung, 2 Semesterwochenstunden<br />

(Humboldt Universität <strong>Berlin</strong>, <strong>2003</strong>-Wintersemester<br />

<strong>2003</strong>/04): Kurzzeitspektroskopie II<br />

M. Fiebig; Vorlesung, 1 Semesterwochenstunde (Universität<br />

Dortmund, <strong>2003</strong>-Sommersemester): Nichtlineare<br />

Magnetooptik in Theorie und Experiment<br />

U. Griebner; Course on Material Science, University<br />

Roira i. Virgili (URV) (Tarragona, Spain, <strong>2003</strong>-07): Laser<br />

Physics (6 lectures)<br />

73


74<br />

U. Griebner; Photonics Master Course, Technische<br />

Fachhochschule (Wildau, Germany, <strong>2003</strong>-11): Erzeugung<br />

kurzer optischer Impulse<br />

U. Griebner; Course on laser physics for undergrades<br />

students, COPL, Université Laval (Québec, Canada,<br />

<strong>2003</strong>-12): Generation of short laser pulses<br />

R. Grunwald; Photonics Master Course, Technische<br />

Fachhochschule (Wildau, Germany, <strong>2003</strong>-11): Design,<br />

Charakterisierung und Anwendung von Dünnschicht-<br />

Mikrooptiken<br />

I. V. Hertel together with W. Radloff, F. Noack, and R. Stoian;<br />

Lehrseminar B, 2 Semesterwochenstunden (FU <strong>Berlin</strong>,<br />

<strong>2003</strong>-WS 03/04): Kurzpulslaser und Anwendungen<br />

W. Sandner; Vorlesung, 3 (Technische Universität<br />

<strong>Berlin</strong>, <strong>2003</strong>-WS <strong>2003</strong>/04): Angewandte Optik und<br />

Photonik: Höhere Experimentalphysik III<br />

W. Sandner; Vorlesung, 2 +Übungen (Technische<br />

Universität <strong>Berlin</strong>, -SS <strong>2003</strong>): Angewandte Optik und<br />

Photonik: Höhere Experimentalphysik III<br />

J. W. Tomm; 5 two-hour lectures at the DAAD-International<br />

Summer School Vernadskiy Tavricheskiy National<br />

University of Simferopol, 2 Semesterwochenstunden<br />

(Alushta, Ukraine, <strong>2003</strong>-August 25th - September 19th):<br />

Physics of optoelectronic structures and devices<br />

General talks (popular science, science politics etc.)<br />

I. V. Hertel; <strong>Berlin</strong>er Wirtschaftsgespräche e.V. und TSB<br />

Technologiestiftung <strong>Berlin</strong>, 1. Veranstaltung der Reihe<br />

"Zukunft Neue Technologien" (BBAW, <strong>2003</strong>-02-10):<br />

Optische Technologien / OptecBB-Plattform für die<br />

Entwicklung von Zukunftstechnologien<br />

I. V. Hertel; Besuch Bundesministerium für Forschung<br />

und Technologie, Wissenschaftsattacheés der dt.<br />

Auslandsvertretungen und Vertretern des BMBF und<br />

Fachreferenten der Bundestagsfraktion (WISTA, <strong>Berlin</strong>,<br />

<strong>2003</strong>-04-10): Vorstellung <strong>Berlin</strong> Adlershof – Entwicklung,<br />

Perspektiven, Status<br />

I.V. Hertel; Besuch von Wissenschaftlicher Delegation<br />

aus Lettland (<strong>Berlin</strong>-Adlershof, BESSY, <strong>2003</strong>-03-17):<br />

Präsentation der Forschung in Adlershof<br />

I. V. Hertel; Studiogespräch zum Wissenschaftsmagazin<br />

"Projekt Zukunft" (Deutsche Welle, Voltastraße 6, 13355<br />

<strong>Berlin</strong>, <strong>2003</strong>-06-27): Fortschritte, Perspektiven der<br />

Laserforschung speziell auf medizinischem Gebiet<br />

W. Sandner; <strong>Berlin</strong>er Wirtschaftsgespräche e.V. und TSB<br />

Technologiestiftung <strong>Berlin</strong>, 1. Veranstaltung der Reihe<br />

"Zukunft Neue Technologien" (BBAW, <strong>2003</strong>-02-10):<br />

BMBF Programm "Optische Technologien für das 21.<br />

Jahrhundert<br />

W. Sandner; Inauguration meeting of the EU integrated<br />

Infrastructure Initiative LASERLAB-EUROPE (Prag,<br />

Czech Republic, <strong>2003</strong>-11-21): Getting LASERLAB-<br />

EUROPE started<br />

W. Sandner; 4th meeting of the OECD Global Science<br />

Forum Committee on Ulta-High Intensity Lasers<br />

(Quebec, Kanada, <strong>2003</strong>-09-26): Ultrahigh-Intensity<br />

lasers in Europe


Appendix 3<br />

Ongoing Diploma- and PhD theses, Habilitations<br />

Diploma theses<br />

L. Ehrentraut; Polieren von Oberflächen dielektrischer<br />

Materialien mit fs-Lasern (Supervisor: A. Rosenfeld),<br />

Technische Fachhochschule Wildau, Diplomarbeit<br />

PhD theses<br />

O. Berndt; Laserspektroskopie hochangeregter molekularer<br />

Elektronenzustände (Supervisor: W. Sandner),<br />

Technische Universität <strong>Berlin</strong>, Dissertation<br />

F. Bortolotto; Hybridly pumped soft X-ray lasers (Supervisor:<br />

W. Sandner), Technische Universität <strong>Berlin</strong>,<br />

Dissertation<br />

M. Boyle; Femtosecond pulseshaping and its application<br />

to fullerenes (Supervisor: I. V. Hertel), Freie<br />

Universität <strong>Berlin</strong>, Dissertation<br />

D. Bröcker; Photoelektronenspektroskopische Untersuchungen<br />

an organischen Adsorbaten auf Halbleiteroberflächen<br />

(Supervisor: W. Widdra), Martin-Luther-<br />

Universität Halle-Wittenberg <strong>Berlin</strong>, Dissertation<br />

S. Busch; Wechselwirkung intensiver Laserstrahlung mit<br />

Materie (Supervisor: W. Sandner), TU <strong>Berlin</strong>, Dissertation<br />

E. Eremina; Korrelation in atomarer und molekularer<br />

Vielfachionisation (Supervisor: W. Sandner), Technische<br />

Universität <strong>Berlin</strong>, Dissertation<br />

S. Gerlach; Speicherung von metastabilen Heliumatomen<br />

in elektrischen Feldern zur Untersuchung von<br />

kalten Stößen (Supervisor: U. Eichmann, and W.<br />

Sandner), Technische Universität <strong>Berlin</strong>, Dissertation<br />

R. Glatthaar; Züchtung und Charakterisierung von<br />

Bleisalzschichten für optoelektronische Bauelemente<br />

(Supervisor: T. Elsaesser), Humboldt-Universität <strong>Berlin</strong>,<br />

Dissertation<br />

E. Gubbini; Ionisationsdynamik bei relativistischen<br />

Laserintensitäten (Supervisor: W. Sandner), Technische<br />

Universität <strong>Berlin</strong>, Dissertation<br />

C. Heiner; Order and symmetries of sexithiophene<br />

within thin films studied by angle-resolved photoemission<br />

(Supervisor: W. Widdra, and B. Winter), Freie<br />

Universität <strong>Berlin</strong>, Dissertation<br />

N. Huse; Femtosekunden-Schwingungsspektroskopie<br />

von Wasserstoffbrücken in kondensierter Phase (Supervisor:<br />

T. Elsaesser), International Humboldt Graduate<br />

School, Humboldt-Universität <strong>Berlin</strong>, Dissertation<br />

R. Jung; Experimente mit ultralangsamen metastabilen<br />

Heliumatomen (Supervisor: G. v. Oppen, and U.<br />

Eichmann), Technische Universität, Dissertation<br />

P. Klopp; Neue Yb-dotierte Lasermaterialien und ihre<br />

Anwendungen in modensynchronisierten Lasern<br />

(Supervisor: T. Elsaesser), Humboldt-Universität <strong>Berlin</strong>,<br />

Dissertation<br />

T. Kwapien; Ionisationsdynamik höher geladener Ionen<br />

(Supervisor: U. Eichmann, and W. Sandner), Technische<br />

Universität <strong>Berlin</strong>, Dissertation<br />

H. Lippert; Ultrakurzzeitspektroskopie von Chromophoren<br />

in einer Solvathülle (Supervisor: I. V. Hertel, and<br />

W. Radloff), Freie Universität <strong>Berlin</strong>, Dissertation<br />

O. F. Mohammed; Femtosecond ir spectroscopy of<br />

photochromic molecules in solution (Supervisor: N.<br />

Ernsting), Humboldt-Universität <strong>Berlin</strong>, Dissertation<br />

L. Molina-Luna; Räumliche höchstauflösende optische<br />

Spektroskopie an Nanosystemen (Supervisor: T.<br />

Elsaesser), Humboldt-Universität <strong>Berlin</strong>, Dissertation<br />

M. Mönster; Erregung ultrakurzer Lichtimpulse in<br />

photonischen Strukturen (Supervisor: T. Elsaesser),<br />

Humboldt-Universität <strong>Berlin</strong>, Dissertation<br />

K. Müller; Femtosekundennahfeldspektroskopie an<br />

Halbleitern und Nanostrukturen (Supervisor: T.<br />

Elsaesser), Humboldt-Universität <strong>Berlin</strong>, Dissertation<br />

C.-C. Neacsu; Apertulose Nahfeldsondenmikroskopie<br />

an Festkörpern (Supervisor: T. Elsaesser), Humboldt-<br />

Universität <strong>Berlin</strong>, Dissertation<br />

H. Prima Garcia; Adsorption und Dynamik ungesättigter<br />

Kohlenwasserstoffe auf Vanadiumoxidoberflächen<br />

(Supervisor: W. Widdra, and I. V. Hertel), Freie Universität<br />

<strong>Berlin</strong>, Dissertation<br />

I. Sänger; Magnetische Wechselwirkungen mehrfach<br />

geordneter Systeme (Supervisor: M. Fiebig), Universität<br />

Dortmund, Dissertation<br />

T. Satoh; Resonance enhanced sum frequency generation<br />

in centrosymmeric magnetic oxides (Supervisor:<br />

M. F. K. Miyano), Universität Tokyo, Dissertation<br />

I. Shchatsinin; Free clusters in strong shaped laser fields:<br />

multielectron dynamics and forced nuclear motion (Supervisor:<br />

I. V. Hertel), Freie Universität <strong>Berlin</strong>, Dissertation<br />

P. M. Schmidt; The triiodide equilibrium in water investigated<br />

by photoemission (Supervisor: I. V. Hertel,<br />

and B. Winter), Freie Universität <strong>Berlin</strong>, Dissertation<br />

75


76<br />

R. Schumann; Laserkühlung metastabiler He-Atome<br />

(Supervisor: G. v. Oppen), Technische Universität <strong>Berlin</strong>,<br />

Dissertation<br />

A. Stalmashonak; Linear and nonlinear processes in<br />

molecular systems induced by shaped, ultrashort laser<br />

pulses in hollow wave guides (Supervisor: I. V. Hertel),<br />

Freie Universität <strong>Berlin</strong>, Dissertation<br />

G. Stibenz; Entwicklung und Anwendung eines Hohlfaserkompressors<br />

zur Erzeugung kurzer Lichtpulse<br />

(Supervisor: T. Elsaesser), Humboldt-Universität <strong>Berlin</strong>,<br />

Dissertation


Appendix 4<br />

Guest Lectures at the <strong>MBI</strong><br />

B. Abel, <strong>Institut</strong> für Physikalische Chemie der Universität<br />

Göttingen; Seminar Kurzzeitspektroskopie an Molekülen,<br />

Clustern und Oberflächen (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2003</strong>-10-<br />

15): Laserinduzierte Flüssigstrahldesorption von großen<br />

Biomolekülen und ihren Komplexen: Mechanismen<br />

und Anwendungen<br />

L. Abtin, Royal <strong>Institut</strong>e of Technology, Kista, Stockholm;<br />

Seminar Nichtlineare Prozesse in kondensierter<br />

Materie (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2003</strong>-02-07): Scanning<br />

spreading resistance measurement of Al-implanted<br />

4H-SiC<br />

M. Achermann, Los Alamos National Laboratory, USA;<br />

Seminar Nichtlineare Prozesse in kondensierter<br />

Materie (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2003</strong>-09-01): Multiexcitons<br />

and optical gain in semiconductor nanocrystals<br />

N. E. Andreev, Russian Academy of Science; Seminar<br />

Höchstfeldlaserphysik (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2003</strong>-05-30):<br />

Extreme states of matter and particle acceleration with<br />

short intense laser pulses<br />

C. Ascheron, Springer-Verlag, Heidelberg; Seminar<br />

Nichtlineare Prozesse in kondensierter Materie (<strong>Max</strong>-<br />

<strong>Born</strong>-<strong>Institut</strong>, <strong>2003</strong>-06-23): Elektronisches Publizieren<br />

A. Assion, Universität Kassel; Sonderkolloquium des<br />

SFB 450 (FU) und des <strong>MBI</strong> (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2003</strong>-<br />

11-11): Wechselwirkung ultrakurzer Laserpulse mit<br />

Materie: Vom Atom bis zur Sonnenblume<br />

M. Bauer, Fachbereich Physik, Universität Kaiserslautern;<br />

Sonderkolloquium des SFB 450 (FU) und des<br />

<strong>MBI</strong> (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2003</strong>-11-18): New approaches<br />

to the investigation and manipulation of ultrafast<br />

processes at surfaces<br />

G. Birkl, Universität Hannover; Kolloquium (<strong>Max</strong>-<strong>Born</strong>-<br />

<strong>Institut</strong>, <strong>2003</strong>-07-09): ATOMICS - Mikrostrukturphysik<br />

mit atomaren Quantensystemen<br />

M. Bonn, Universität Leiden, Niederlande; Seminar<br />

Nichtlineare Prozesse in kondensierter Materie (<strong>Max</strong>-<br />

<strong>Born</strong>-<strong>Institut</strong>, <strong>2003</strong>-08-06): THz probing of excitations<br />

and polarons in semiconducting polymers<br />

M. Bonn, <strong>Institut</strong>e of Chemistry, University of Leiden,<br />

Netherlands; Sonderkolloquium des SFB 450 (FU) und<br />

des <strong>MBI</strong> (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2003</strong>-11-11): Novel phase<br />

transition in a biomimetic lipid monolayer and electron<br />

dynamics in nanoparticle systems<br />

N. Bulgakova, Universität Novosibirsk; Seminar Kurzzeitspektroskopie<br />

an Molekülen, Clustern und Oberflächen<br />

(<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2003</strong>-07-02): Modeling of<br />

electron dynamics under ultrashort laser irradiation of<br />

materials<br />

J. H. Eberly, University of Rochester; Kolloquium (<strong>Max</strong>-<br />

<strong>Born</strong>-<strong>Institut</strong>, <strong>2003</strong>-09-02): Possible approaches to high<br />

quantum entanglement, and the EPR limit<br />

W. Elsäßer, TU Darmstadt; Kolloquium (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>,<br />

<strong>2003</strong>-12-10): Dem Schrotrauschen ein Schnippchen<br />

schlagen - Quantenoptik an und mit Halbleiter-Emittern<br />

B. Fainberg, Holon Academic <strong>Institut</strong>e of Technology,<br />

Department of Exact Sciences (Physics), Holon, Israel;<br />

Seminar Nichtlineare Prozesse in kondensierter Materie<br />

(<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2003</strong>-03-14): Coherent population<br />

transfer in dissipative systems: molecules in solution<br />

and semiconductors<br />

A. Föhlisch, <strong>Institut</strong> für Experimentalphysik, Universität<br />

Hamburg; Sonderkolloquium des SFB 450 (FU) und des<br />

<strong>MBI</strong> (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2003</strong>-11-18): Probing ultrafast<br />

dynamic processes on surfaces: Resonant spectroscopy<br />

with soft X-rays and stroboscopic experiments with<br />

accelerator based short pulse facilities<br />

T. Frauenheim, Universität Paderborn; Seminar Kurzzeitspektroskopie<br />

an Oberflächen und dünnen Filmen<br />

(<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2003</strong>-01-15): A densitiy-functionbased<br />

minimal basis approach to complex materials<br />

properties, functions and biomolecular processes<br />

S. Haacke, <strong>Institut</strong> de Physique, Universität Lausanne;<br />

Sonderkolloquium des SFB 450 (FU) und des <strong>MBI</strong><br />

(<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2003</strong>-11-11): Ultrafast chromophore -<br />

protein interactions and the physics of biological<br />

photosensors<br />

D. C. Hanna, University of Southampton, UK; Seminar<br />

Nichtlineare Prozesse in kondensierter Materie (<strong>Max</strong>-<br />

<strong>Born</strong>-<strong>Institut</strong>, <strong>2003</strong>-09-25): Synchronously pumped<br />

parametric oscillators in the near- and mid-infrared<br />

A. Hartschuh, Universität GH Siegen; Seminar Nichtlineare<br />

Prozesse in kondensierter Materie (<strong>Max</strong>-<strong>Born</strong>-<br />

<strong>Institut</strong>, <strong>2003</strong>-07-24): Near-field Raman spectroscopy<br />

of single-walled carbon nanotubes<br />

T. Hertel, Fritz-Haber-<strong>Institut</strong> der MPG; Kolloquium<br />

(<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2003</strong>-11-05): Ultrafast spectroscopy<br />

of carbon Nanotubes<br />

P. Hobza, <strong>Institut</strong>e of Physical Chemistry, Prague;<br />

Kolloquium (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2003</strong>-11-26): Structure,<br />

dynamics and energetics of DNA bases and DNA base<br />

pairs: Calculations and experiment<br />

R. A. Kaindl, E. O. Lawrence Berkeley Nat. Lab. and Univ.<br />

of California, Berkeley, USA; Seminar Nichtlineare Prozesse<br />

in kondensierter Materie (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2003</strong>-<br />

04-02): Quasiparticle correlations and dynamics probed<br />

with ultrashort THz pulses<br />

77


78<br />

K. Karrai, LMU München; Kolloquium (<strong>Max</strong>-<strong>Born</strong>-<br />

<strong>Institut</strong>, <strong>2003</strong>-04-30): Optics of quantum dots: Beyond<br />

the artificial atom model<br />

V. Kebbel, BIAS, Universität Bremen; Seminar Nichtlineare<br />

Prozesse in kondensierter Materie (<strong>Max</strong>-<strong>Born</strong>-<br />

<strong>Institut</strong>, <strong>2003</strong>-06-12): Spatially resolved autocorrelation<br />

of ultrashort pulses<br />

F. Kronast, BESSY GmbH; Seminar Kurzzeitspektroskopie<br />

an Oberflächen und dünnen Filmen<br />

(<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2003</strong>-04-10): Optically induced<br />

magnetization dynamics in the ferromagnetic semiconductor<br />

(GaMn)As: Combined laser and synchrotron<br />

radiation<br />

A. Lagendijk, Universität Twente; <strong>Institut</strong>skolloquium<br />

(<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2003</strong>-05-14): Trapping light in<br />

photonic structures<br />

S. Lochbrunner, Ludwig-<strong>Max</strong>imilians-Universität<br />

München, LS BioMolekulare Optik, Sektion Physik;<br />

Seminar Nichtlineare Prozesse in kondensierter<br />

Materie (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2003</strong>-09-18): Controllling<br />

the spectral phase of tunable light pulses for the<br />

spectroscopy of ultrafast reactions<br />

R. J. D. Miller, Dept.of Physics, University of Toronto,<br />

Canada; Seminar Nichtlineare Prozesse in kondensierter<br />

Materie (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2003</strong>-02-24):<br />

Ultrafast wavepacket propagation and diffraction:<br />

Towards making the "Molecular Movie"<br />

K. Morgenstern, Freie Universität <strong>Berlin</strong>; Seminar<br />

Nichtlineare Prozesse in kondensierter Materie<br />

(<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2003</strong>-04-10): STM investigation of<br />

electronic and structural properties of molecule metal<br />

systems<br />

M. Motzkus, <strong>Max</strong>-Planck-<strong>Institut</strong> für Quantenoptik,<br />

Garching; Seminar Nichtlineare Prozesse in<br />

kondensierter Materie (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2003</strong>-02-21):<br />

Kohärente Steuerung molekularer Dynamik mittels<br />

modulierten Femtosekundenimpulsen<br />

G. Mussler, Paul-Drude-<strong>Institut</strong>, <strong>Berlin</strong>; Seminar<br />

Nichtlineare Prozesse in kondensierter Materie (<strong>Max</strong>-<br />

<strong>Born</strong>-<strong>Institut</strong>, <strong>2003</strong>-06-19): Ga(As,N): grown and<br />

properties<br />

A. Nazarkin, FSU Physik - IOQ, Universität Jena;<br />

Seminar Nichtlineare Prozesse in kondensierter<br />

Materie (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2003</strong>-05-08): Time-resolved<br />

selective control of multilevel systems using optical<br />

interference<br />

H. Nishimura, <strong>Institut</strong>e of Laser Engineering (ILE),<br />

Osaka, Japan; Seminar Höchstfeldlaserphysik (<strong>Max</strong>-<br />

<strong>Born</strong>-<strong>Institut</strong>, <strong>2003</strong>-10-02): Recent laser-matter interaction<br />

research at ILE<br />

K. Osvay, University of Szeged, Hungary; Seminar<br />

Höchstfeldlaserphysik (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2003</strong>-09-19):<br />

Temporal contrast of ultrashort laser pulses<br />

M. Quack, ETH Zürich, Schweiz; Kolloquium (<strong>Max</strong>-<strong>Born</strong>-<br />

<strong>Institut</strong>, <strong>2003</strong>-06-25): Intramolekulare Kinetik aus hochauflösender<br />

Spektroskopie: Primärprozesse zwischen<br />

Attosekunden und Sekunden<br />

H. R. Reiss, Physics Dept. American University,<br />

Washington, D.C. and Dept. de Fisica aplicada, Univ.<br />

Salamanca; Seminar Höchstfeldlaserphysik (<strong>Max</strong>-<br />

<strong>Born</strong>-<strong>Institut</strong>, <strong>2003</strong>-10-28): Three-dimensional Dirac<br />

relativistic above-threshold ionization rates, spectra,<br />

and angular distribution by analytical means<br />

M. Romanovsky, General Physics <strong>Institut</strong>e, Moscow;<br />

Seminar Höchstfeldlaserphysik (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>,<br />

<strong>2003</strong>-12-03): Corrections of electron impact ionization<br />

rates by plasmas electric microfield<br />

B. Schmidt, RheinAhrCampus Remagen; Seminar<br />

Höchstfeldlaserphysik (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2003</strong>-09-01):<br />

Konzept zur Kohärenzmessung im EUV-Bereich<br />

H. Schmidt-Böcking, Universität Frankfurt/M.; Kolloquium<br />

(<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2003</strong>-10-22): Geheimnisse<br />

tunnelnder Elektronen - Visualisierung der korrelierten<br />

Bewegung von Elektronen in Atomen und Molekülen<br />

T. Schultz, National Council Canada, Ottawa, Canada;<br />

Sonderseminar (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2003</strong>-02-12):<br />

Observing reactions with time-resolved photoelectron<br />

spectroscopy: Proton, electron transfer and isomerization<br />

B. Scremin, University of Venice, Italy; Seminar Nichtlineare<br />

Prozesse in kondensierter Materie (<strong>Max</strong>-<strong>Born</strong>-<br />

<strong>Institut</strong>, <strong>2003</strong>-05-20): Charge transfer molecular<br />

aggregates: An insight into optical properties<br />

T. Seideman, Northwestern University; Kolloquium<br />

(<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2003</strong>-07-16): Current-driven<br />

dynamics in molecular-scale devices<br />

R. Shimano, University of Tokyo, Japan; Seminar Nichtlineare<br />

Prozesse in kondensierter Materie (<strong>Max</strong>-<strong>Born</strong>-<br />

<strong>Institut</strong>, <strong>2003</strong>-03-03): Ultrafast mid- and far-infrared<br />

spectroscopy of photo-induced phenomena in solids<br />

Y. Silberberg, Weizmann <strong>Institut</strong>e, Israel; Seminar<br />

Kurzzeitspektroskopie an Molekülen, Clustern und<br />

Oberflächen (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2003</strong>-10-10): Coherent<br />

control with femtosecond pulses<br />

S. de Silvestri, Physics Dept., Politecnico di Milano,<br />

Italy; Kolloquium (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2003</strong>-04-16): Few<br />

optical cycle pulses in strong field ionization and<br />

nonlinear optics<br />

B. M. Smirnov, <strong>Institut</strong>e of High Temperatures, Moscow;<br />

Seminar Höchstfeldlaserphysik (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>,<br />

<strong>2003</strong>-08-08): Nucleation processes and generation of<br />

clusters<br />

C. Stöckl, Laboratory for Laser Energetics, University<br />

of Rochester, USA; Seminar Höchstfeldlaserphysik<br />

(<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2003</strong>-12-18): Fast ignitor research<br />

at laboratory for laser energetics (LLE)


A. Stolow, National Research Council, Ottawa, Kanada;<br />

Sonderkolloquium (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2003</strong>-03-19):<br />

Molecules in non-pertubative laser fields: Dynamic and<br />

control<br />

A. Tokmakoff, Dept. of Chemistry Massachusetts <strong>Institut</strong>e<br />

of Technology, Cambridge, USA; Seminar Nichtlineare<br />

Prozesse in kondensierter Materie (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>,<br />

<strong>2003</strong>-05-21): Two dimensional infrared spectroscopy<br />

of small molecules and beta sheets<br />

L. Tolbert, School of Chemistry and Biochemistry, Georgia<br />

<strong>Institut</strong>e of Technology, Atlanta, GA. USA; Seminar<br />

Nichtlineare Prozesse in kondensierter Materie (<strong>Max</strong>-<br />

<strong>Born</strong>-<strong>Institut</strong>, <strong>2003</strong>-11-07): Proton transfer with super<br />

photoacids<br />

M. H. Vos, Laboratoire d'Optique et Biosciences, Ecole<br />

Polytechnique-ENSTA, France; Seminar Nichtlineare<br />

Prozesse in kondensierter Materie (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>,<br />

<strong>2003</strong>-04-15): Ultrafast studies of functional dynamics<br />

in heme proteins<br />

D. V. Vysotskii, State Research Center of Russia, Troitsk<br />

<strong>Institut</strong>e for Innovation and Fusion Research; Seminar<br />

Nichtlineare Prozesse in kondensierter Materie (<strong>Max</strong>-<br />

<strong>Born</strong>-<strong>Institut</strong>, <strong>2003</strong>-02-20): Phase locking of multicore<br />

fiber lasers<br />

M. Weinelt, <strong>Institut</strong> für Angewandte Physik, Universität<br />

Erlangen-Nürnberg; Sonderkolloquium des SFB 450<br />

(FU) und des <strong>MBI</strong> (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2003</strong>-11-18):<br />

Electron dynamics at metal and seminconcutor surfaces<br />

P. Wernet, BESSY, <strong>Berlin</strong>; Seminar Kurzzeitspektroskopie<br />

an Molekülen, Clustern und Oberflächen (<strong>Max</strong>-<br />

<strong>Born</strong>-<strong>Institut</strong>, <strong>2003</strong>-06-25): The local structure of water<br />

from ambient to supercritical conditions: New insight<br />

from X-ray spectroscopy<br />

D. F. Zaretsky, Kurchatov <strong>Institut</strong>e Moscow, <strong>Institut</strong>e of<br />

Molecular Physics; Seminar Höchstfeldlaserphysik<br />

(<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2003</strong>-11-12): Coulomb explosion of<br />

a laser-irradiated cluster in a magnetic trap<br />

79


80<br />

Appendix 5<br />

Staff, extended research visits of <strong>MBI</strong> staff at external institutions, visiting scientists at the<br />

<strong>MBI</strong> and users of the application laboratories<br />

A. Staff<br />

M M B<br />

B<br />

I<br />

I<br />

F F u<br />

u n<br />

n d<br />

d i<br />

i n<br />

n g<br />

g<br />

i i n<br />

n<br />

s<br />

s<br />

t<br />

t<br />

i<br />

i<br />

t<br />

t<br />

u<br />

u<br />

t<br />

t<br />

i<br />

i<br />

o<br />

o<br />

n<br />

n<br />

a<br />

a<br />

l<br />

l<br />

p prrr r o<br />

o j<br />

jeee<br />

e eccc<br />

c t<br />

t s<br />

s<br />

e e<br />

x<br />

x<br />

t<br />

t<br />

e<br />

e<br />

r<br />

r<br />

n<br />

n<br />

a<br />

a<br />

l<br />

l<br />

p p e<br />

e r<br />

r m<br />

m a<br />

a n<br />

n e<br />

e n<br />

n t<br />

t n n o<br />

o n<br />

n -<br />

- p<br />

p e<br />

e r<br />

r m<br />

m a<br />

a n<br />

n e<br />

e n<br />

n t<br />

t p p e<br />

e r<br />

r m<br />

m a<br />

a n<br />

n e<br />

e n<br />

n t<br />

t n n<br />

o<br />

o<br />

n<br />

n<br />

-<br />

-<br />

p<br />

p<br />

e<br />

e<br />

r<br />

r<br />

m<br />

m<br />

a<br />

a<br />

n<br />

n<br />

e<br />

e<br />

n<br />

n<br />

t<br />

t<br />

Scientists 32 15 - 20 - 67 67<br />

67<br />

Graduatestudents- 8 - 11 1 20 20<br />

20<br />

1 Guest scientists<br />

- 1 - 1 5 7<br />

Nonscientific staff<br />

64 132 - 6 33 86 86<br />

86<br />

t t o<br />

o t<br />

t a<br />

a l ll<br />

l<br />

96 96<br />

96 37 37<br />

37 - 38 38<br />

38 9 1 1<br />

8<br />

8<br />

0<br />

0<br />

1 longer<br />

than<br />

one<br />

( typically<br />

6 to<br />

12)<br />

month<br />

at<br />

the<br />

<strong>MBI</strong><br />

including<br />

fellowship<br />

holders;<br />

2 3 including apprentices<br />

and<br />

temporary<br />

student<br />

helpers;<br />

diploma<br />

students<br />

t t o<br />

o t<br />

t a<br />

a l<br />

l


<strong>Max</strong> <strong>Born</strong> <strong>Institut</strong>e<br />

for Nonlinear Optics and Short Pulse Spectroscopy<br />

in the Forschungsverbund <strong>Berlin</strong> e. V.<br />

(Member of the Leibniz Association)<br />

81


82<br />

B. Extended research visits of <strong>MBI</strong> staff at external institutions<br />

t<br />

n<br />

e<br />

m<br />

t<br />

r<br />

a<br />

p<br />

e<br />

D t<br />

n<br />

e<br />

m<br />

t<br />

r<br />

a<br />

p<br />

e<br />

D t<br />

n<br />

e<br />

m<br />

t<br />

r<br />

a<br />

p<br />

e<br />

D t<br />

n<br />

e<br />

m<br />

t<br />

r<br />

a<br />

p<br />

e<br />

D t<br />

n<br />

e<br />

m<br />

t<br />

r<br />

a<br />

p<br />

e<br />

D e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N t<br />

s<br />

o<br />

H t<br />

s<br />

o<br />

H t<br />

s<br />

o<br />

H t<br />

s<br />

o<br />

H t<br />

s<br />

o<br />

H n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T d<br />

o<br />

i<br />

r<br />

e<br />

P d<br />

o<br />

i<br />

r<br />

e<br />

P d<br />

o<br />

i<br />

r<br />

e<br />

P d<br />

o<br />

i<br />

r<br />

e<br />

P d<br />

o<br />

i<br />

r<br />

e<br />

P<br />

2<br />

B n<br />

n<br />

a<br />

m<br />

h<br />

c<br />

i<br />

E<br />

h<br />

c<br />

i<br />

r<br />

l<br />

U A<br />

S<br />

U<br />

,<br />

e<br />

l<br />

l<br />

i<br />

v<br />

s<br />

e<br />

t<br />

t<br />

o<br />

l<br />

r<br />

a<br />

h<br />

C<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U s<br />

d<br />

l<br />

e<br />

i<br />

f<br />

r<br />

e<br />

s<br />

a<br />

l<br />

n<br />

i<br />

s<br />

c<br />

i<br />

m<br />

a<br />

n<br />

y<br />

d<br />

n<br />

o<br />

r<br />

t<br />

c<br />

e<br />

l<br />

e<br />

o<br />

w<br />

T<br />

)<br />

n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

e<br />

p<br />

o<br />

o<br />

c<br />

h<br />

c<br />

r<br />

a<br />

e<br />

s<br />

e<br />

r<br />

(<br />

o<br />

t<br />

3<br />

1<br />

-<br />

0<br />

1<br />

-<br />

3<br />

0<br />

0<br />

2<br />

7<br />

1<br />

-<br />

0<br />

1<br />

-<br />

3<br />

0<br />

0<br />

2<br />

2<br />

C r<br />

e<br />

n<br />

b<br />

e<br />

i<br />

r<br />

G<br />

e<br />

w<br />

U ,<br />

c<br />

e<br />

b<br />

e<br />

u<br />

Q<br />

,<br />

l<br />

a<br />

v<br />

a<br />

L<br />

é<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U<br />

,<br />

é<br />

h<br />

c<br />

i<br />

P<br />

.<br />

M<br />

a<br />

d<br />

a<br />

n<br />

a<br />

C<br />

s<br />

r<br />

e<br />

s<br />

a<br />

l<br />

-<br />

s<br />

f<br />

f<br />

o<br />

g<br />

n<br />

i<br />

p<br />

a<br />

h<br />

s<br />

m<br />

a<br />

e<br />

b<br />

l<br />

a<br />

r<br />

o<br />

p<br />

m<br />

e<br />

t<br />

-<br />

o<br />

i<br />

t<br />

a<br />

p<br />

S<br />

n<br />

a<br />

i<br />

d<br />

a<br />

n<br />

a<br />

C<br />

-<br />

n<br />

a<br />

m<br />

r<br />

e<br />

G<br />

,<br />

n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

e<br />

p<br />

o<br />

o<br />

c<br />

h<br />

c<br />

r<br />

a<br />

e<br />

s<br />

e<br />

r<br />

(<br />

)<br />

6<br />

1<br />

0<br />

/<br />

0<br />

0<br />

N<br />

A<br />

C<br />

.<br />

r<br />

N<br />

-<br />

t<br />

c<br />

e<br />

j<br />

o<br />

r<br />

P<br />

,<br />

m<br />

a<br />

r<br />

g<br />

o<br />

r<br />

P<br />

n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

C<br />

o<br />

t<br />

4<br />

2<br />

-<br />

1<br />

1<br />

-<br />

3<br />

0<br />

0<br />

2<br />

8<br />

0<br />

-<br />

2<br />

1<br />

-<br />

3<br />

0<br />

0<br />

2<br />

2<br />

C d<br />

l<br />

a<br />

w<br />

n<br />

u<br />

r<br />

G<br />

r<br />

e<br />

g<br />

i<br />

d<br />

ü<br />

R ,<br />

c<br />

e<br />

b<br />

e<br />

u<br />

Q<br />

,<br />

l<br />

a<br />

v<br />

a<br />

L<br />

é<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U<br />

,<br />

é<br />

h<br />

c<br />

i<br />

P<br />

.<br />

M<br />

a<br />

d<br />

a<br />

n<br />

a<br />

C<br />

s<br />

r<br />

e<br />

s<br />

a<br />

l<br />

-<br />

s<br />

f<br />

f<br />

o<br />

g<br />

n<br />

i<br />

p<br />

a<br />

h<br />

s<br />

m<br />

a<br />

e<br />

b<br />

l<br />

a<br />

r<br />

o<br />

p<br />

m<br />

e<br />

t<br />

-<br />

o<br />

i<br />

t<br />

a<br />

p<br />

S<br />

n<br />

a<br />

i<br />

d<br />

a<br />

n<br />

a<br />

C<br />

-<br />

n<br />

a<br />

m<br />

r<br />

e<br />

G<br />

,<br />

n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

e<br />

p<br />

o<br />

o<br />

c<br />

h<br />

c<br />

r<br />

a<br />

e<br />

s<br />

e<br />

r<br />

(<br />

)<br />

6<br />

1<br />

0<br />

/<br />

0<br />

0<br />

N<br />

A<br />

C<br />

.<br />

r<br />

N<br />

-<br />

t<br />

c<br />

e<br />

j<br />

o<br />

r<br />

P<br />

,<br />

m<br />

a<br />

r<br />

g<br />

o<br />

r<br />

P<br />

n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

C<br />

o<br />

t<br />

7<br />

2<br />

-<br />

9<br />

0<br />

-<br />

3<br />

0<br />

0<br />

2<br />

2<br />

1<br />

-<br />

0<br />

1<br />

-<br />

3<br />

0<br />

0<br />

2<br />

A l<br />

e<br />

t<br />

r<br />

e<br />

H<br />

.<br />

V<br />

f<br />

l<br />

o<br />

g<br />

n<br />

I r<br />

o<br />

f<br />

e<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

I<br />

e<br />

i<br />

c<br />

a<br />

e<br />

t<br />

S<br />

,<br />

w<br />

o<br />

l<br />

o<br />

t<br />

S<br />

.<br />

A<br />

a<br />

d<br />

a<br />

n<br />

a<br />

C<br />

,<br />

a<br />

w<br />

a<br />

t<br />

t<br />

O<br />

,<br />

e<br />

c<br />

n<br />

e<br />

i<br />

c<br />

S<br />

r<br />

a<br />

l<br />

u<br />

c<br />

e<br />

l<br />

o<br />

M<br />

s<br />

e<br />

s<br />

l<br />

u<br />

p<br />

d<br />

n<br />

o<br />

c<br />

e<br />

s<br />

o<br />

t<br />

m<br />

e<br />

f<br />

h<br />

t<br />

i<br />

w<br />

n<br />

o<br />

i<br />

t<br />

a<br />

c<br />

i<br />

f<br />

i<br />

d<br />

o<br />

m<br />

l<br />

a<br />

i<br />

r<br />

e<br />

t<br />

a<br />

M<br />

n<br />

a<br />

i<br />

d<br />

a<br />

n<br />

a<br />

C<br />

-<br />

n<br />

a<br />

m<br />

r<br />

e<br />

G<br />

,<br />

n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

e<br />

p<br />

o<br />

o<br />

c<br />

h<br />

c<br />

r<br />

a<br />

e<br />

s<br />

e<br />

r<br />

(<br />

)<br />

5<br />

1<br />

0<br />

-<br />

2<br />

0<br />

N<br />

A<br />

C<br />

.<br />

r<br />

N<br />

-<br />

t<br />

c<br />

e<br />

j<br />

o<br />

r<br />

P<br />

,<br />

m<br />

a<br />

r<br />

g<br />

o<br />

r<br />

P<br />

n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

C<br />

o<br />

t<br />

1<br />

2<br />

-<br />

9<br />

0<br />

-<br />

3<br />

0<br />

0<br />

2<br />

3<br />

0<br />

-<br />

0<br />

1<br />

-<br />

3<br />

0<br />

0<br />

2<br />

2<br />

B n<br />

e<br />

i<br />

p<br />

a<br />

w<br />

K<br />

z<br />

s<br />

a<br />

m<br />

o<br />

T f<br />

o<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U<br />

,<br />

a<br />

k<br />

s<br />

w<br />

o<br />

h<br />

c<br />

a<br />

t<br />

S<br />

.<br />

E<br />

l<br />

a<br />

c<br />

i<br />

n<br />

h<br />

c<br />

e<br />

T<br />

f<br />

o<br />

y<br />

t<br />

l<br />

u<br />

c<br />

a<br />

F<br />

,<br />

y<br />

g<br />

o<br />

l<br />

o<br />

n<br />

h<br />

c<br />

e<br />

T<br />

n<br />

e<br />

l<br />

o<br />

P<br />

,<br />

n<br />

a<br />

n<br />

z<br />

o<br />

P<br />

,<br />

s<br />

c<br />

i<br />

s<br />

y<br />

h<br />

P<br />

d<br />

n<br />

a<br />

p<br />

a<br />

r<br />

t<br />

l<br />

u<br />

a<br />

P<br />

r<br />

a<br />

e<br />

n<br />

i<br />

l<br />

a<br />

g<br />

n<br />

i<br />

d<br />

l<br />

i<br />

u<br />

b<br />

r<br />

o<br />

f<br />

r<br />

e<br />

f<br />

s<br />

n<br />

a<br />

r<br />

t<br />

w<br />

o<br />

h<br />

-<br />

w<br />

o<br />

n<br />

K<br />

s<br />

n<br />

o<br />

i<br />

m<br />

u<br />

i<br />

c<br />

l<br />

a<br />

C<br />

f<br />

o<br />

g<br />

n<br />

i<br />

l<br />

o<br />

o<br />

c<br />

r<br />

e<br />

s<br />

a<br />

l<br />

)<br />

t<br />

s<br />

i<br />

t<br />

n<br />

e<br />

i<br />

c<br />

s<br />

g<br />

n<br />

i<br />

t<br />

i<br />

s<br />

i<br />

v<br />

(<br />

o<br />

t<br />

5<br />

1<br />

-<br />

0<br />

1<br />

-<br />

3<br />

0<br />

0<br />

2<br />

9<br />

1<br />

-<br />

0<br />

1<br />

-<br />

3<br />

0<br />

0<br />

2<br />

1<br />

A r<br />

e<br />

g<br />

n<br />

a<br />

L<br />

d<br />

r<br />

a<br />

h<br />

k<br />

r<br />

u<br />

B g<br />

r<br />

u<br />

b<br />

m<br />

a<br />

H<br />

,<br />

B<br />

A<br />

L<br />

Y<br />

S<br />

A<br />

H ,<br />

s<br />

m<br />

o<br />

t<br />

a<br />

f<br />

o<br />

y<br />

p<br />

o<br />

c<br />

s<br />

o<br />

r<br />

t<br />

c<br />

e<br />

p<br />

s<br />

e<br />

c<br />

n<br />

e<br />

d<br />

i<br />

c<br />

n<br />

i<br />

o<br />

c<br />

n<br />

o<br />

i<br />

d<br />

n<br />

a<br />

n<br />

o<br />

r<br />

t<br />

c<br />

e<br />

l<br />

E<br />

)<br />

t<br />

c<br />

e<br />

j<br />

o<br />

r<br />

p<br />

h<br />

c<br />

r<br />

a<br />

e<br />

s<br />

e<br />

r<br />

(<br />

s<br />

e<br />

n<br />

e<br />

r<br />

e<br />

l<br />

l<br />

u<br />

f<br />

d<br />

n<br />

a<br />

,<br />

s<br />

e<br />

l<br />

u<br />

c<br />

e<br />

l<br />

o<br />

m<br />

n<br />

i<br />

l<br />

r<br />

e<br />

B<br />

I<br />

H<br />

F<br />

,<br />

r<br />

e<br />

k<br />

c<br />

e<br />

B<br />

.<br />

U<br />

h<br />

t<br />

i<br />

w<br />

n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

e<br />

p<br />

o<br />

o<br />

c<br />

o<br />

t<br />

1<br />

1<br />

-<br />

2<br />

0<br />

-<br />

3<br />

0<br />

0<br />

2<br />

7<br />

1<br />

-<br />

2<br />

0<br />

-<br />

3<br />

0<br />

0<br />

2<br />

2<br />

B u<br />

i<br />

L<br />

n<br />

u<br />

j<br />

o<br />

a<br />

i<br />

X z<br />

s<br />

u<br />

a<br />

r<br />

K<br />

.<br />

F<br />

.<br />

r<br />

D<br />

.<br />

f<br />

o<br />

r<br />

P<br />

/<br />

s<br />

u<br />

i<br />

z<br />

e<br />

L<br />

.<br />

M<br />

.<br />

r<br />

D<br />

n<br />

e<br />

i<br />

W<br />

t<br />

ä<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U<br />

e<br />

h<br />

c<br />

s<br />

i<br />

n<br />

h<br />

c<br />

e<br />

T<br />

g<br />

n<br />

o<br />

r<br />

t<br />

s<br />

n<br />

o<br />

e<br />

s<br />

a<br />

h<br />

p<br />

e<br />

p<br />

o<br />

l<br />

e<br />

v<br />

n<br />

e<br />

-<br />

r<br />

e<br />

i<br />

r<br />

r<br />

a<br />

c<br />

e<br />

h<br />

t<br />

f<br />

o<br />

e<br />

c<br />

n<br />

e<br />

u<br />

l<br />

f<br />

n<br />

I<br />

n<br />

o<br />

i<br />

t<br />

a<br />

z<br />

i<br />

n<br />

o<br />

i<br />

e<br />

l<br />

b<br />

u<br />

o<br />

d<br />

c<br />

i<br />

m<br />

o<br />

t<br />

a<br />

d<br />

l<br />

e<br />

i<br />

f<br />

)<br />

n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

e<br />

p<br />

o<br />

o<br />

c<br />

h<br />

c<br />

r<br />

a<br />

e<br />

s<br />

e<br />

r<br />

(<br />

o<br />

t<br />

6<br />

0<br />

-<br />

1<br />

1<br />

-<br />

3<br />

0<br />

0<br />

2<br />

4<br />

1<br />

-<br />

1<br />

1<br />

-<br />

3<br />

0<br />

0<br />

2<br />

o<br />

t<br />

8<br />

1<br />

-<br />

1<br />

1<br />

-<br />

3<br />

0<br />

0<br />

2<br />

8<br />

2<br />

-<br />

1<br />

1<br />

-<br />

3<br />

0<br />

0<br />

2<br />

o<br />

t<br />

3<br />

0<br />

-<br />

2<br />

1<br />

-<br />

3<br />

0<br />

0<br />

2<br />

6<br />

0<br />

-<br />

2<br />

1<br />

-<br />

3<br />

0<br />

0<br />

2<br />

2<br />

B e<br />

k<br />

t<br />

t<br />

o<br />

R<br />

t<br />

s<br />

r<br />

o<br />

H z<br />

s<br />

u<br />

a<br />

r<br />

K<br />

.<br />

F<br />

.<br />

r<br />

D<br />

.<br />

f<br />

o<br />

r<br />

P<br />

/<br />

s<br />

u<br />

i<br />

z<br />

e<br />

L<br />

.<br />

M<br />

.<br />

r<br />

D<br />

n<br />

e<br />

i<br />

W<br />

t<br />

ä<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U<br />

e<br />

h<br />

c<br />

s<br />

i<br />

n<br />

h<br />

c<br />

e<br />

T<br />

g<br />

n<br />

o<br />

r<br />

t<br />

s<br />

n<br />

o<br />

e<br />

s<br />

a<br />

h<br />

p<br />

e<br />

p<br />

o<br />

l<br />

e<br />

v<br />

n<br />

e<br />

-<br />

r<br />

e<br />

i<br />

r<br />

r<br />

a<br />

c<br />

e<br />

h<br />

t<br />

f<br />

o<br />

e<br />

c<br />

n<br />

e<br />

u<br />

l<br />

f<br />

n<br />

I<br />

n<br />

o<br />

i<br />

t<br />

a<br />

z<br />

i<br />

n<br />

o<br />

i<br />

e<br />

l<br />

b<br />

u<br />

o<br />

d<br />

c<br />

i<br />

m<br />

o<br />

t<br />

a<br />

d<br />

l<br />

e<br />

i<br />

f<br />

)<br />

n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

e<br />

p<br />

o<br />

o<br />

c<br />

h<br />

c<br />

r<br />

a<br />

e<br />

s<br />

e<br />

r<br />

(<br />

o<br />

t<br />

6<br />

0<br />

-<br />

1<br />

1<br />

-<br />

3<br />

0<br />

0<br />

2<br />

4<br />

1<br />

-<br />

1<br />

1<br />

-<br />

3<br />

0<br />

0<br />

2<br />

o<br />

t<br />

8<br />

1<br />

-<br />

1<br />

1<br />

-<br />

3<br />

0<br />

0<br />

2<br />

8<br />

2<br />

-<br />

1<br />

1<br />

-<br />

3<br />

0<br />

0<br />

2<br />

2<br />

A z<br />

l<br />

u<br />

h<br />

c<br />

S<br />

r<br />

e<br />

t<br />

e<br />

P<br />

-<br />

s<br />

u<br />

a<br />

l<br />

C f<br />

o<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U<br />

,<br />

A<br />

L<br />

I<br />

J<br />

,<br />

r<br />

e<br />

g<br />

r<br />

e<br />

b<br />

e<br />

n<br />

i<br />

L<br />

.<br />

C<br />

A<br />

S<br />

U<br />

,<br />

.<br />

l<br />

o<br />

C<br />

r<br />

e<br />

d<br />

l<br />

u<br />

o<br />

B<br />

s<br />

c<br />

i<br />

m<br />

a<br />

n<br />

y<br />

d<br />

r<br />

e<br />

t<br />

s<br />

u<br />

l<br />

c<br />

t<br />

s<br />

a<br />

f<br />

a<br />

r<br />

t<br />

l<br />

u<br />

n<br />

o<br />

h<br />

c<br />

r<br />

a<br />

e<br />

s<br />

e<br />

R<br />

)<br />

r<br />

o<br />

s<br />

s<br />

e<br />

f<br />

o<br />

r<br />

p<br />

g<br />

n<br />

i<br />

t<br />

i<br />

s<br />

i<br />

v<br />

(<br />

o<br />

t<br />

1<br />

0<br />

-<br />

9<br />

0<br />

-<br />

3<br />

0<br />

0<br />

2<br />

1<br />

3<br />

-<br />

2<br />

1<br />

-<br />

3<br />

0<br />

0<br />

2


83<br />

C. Visiting Scientists<br />

n<br />

i<br />

h<br />

t<br />

i<br />

w<br />

t<br />

s<br />

o<br />

H n<br />

i<br />

h<br />

t<br />

i<br />

w<br />

t<br />

s<br />

o<br />

H n<br />

i<br />

h<br />

t<br />

i<br />

w<br />

t<br />

s<br />

o<br />

H n<br />

i<br />

h<br />

t<br />

i<br />

w<br />

t<br />

s<br />

o<br />

H n<br />

i<br />

h<br />

t<br />

i<br />

w<br />

t<br />

s<br />

o<br />

H<br />

I<br />

B<br />

M<br />

e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N n<br />

o<br />

i<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

i<br />

e<br />

m<br />

o<br />

H n<br />

o<br />

i<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

i<br />

e<br />

m<br />

o<br />

H n<br />

o<br />

i<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

i<br />

e<br />

m<br />

o<br />

H n<br />

o<br />

i<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

i<br />

e<br />

m<br />

o<br />

H n<br />

o<br />

i<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

i<br />

e<br />

m<br />

o<br />

H n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T d<br />

o<br />

i<br />

r<br />

e<br />

P d<br />

o<br />

i<br />

r<br />

e<br />

P d<br />

o<br />

i<br />

r<br />

e<br />

P d<br />

o<br />

i<br />

r<br />

e<br />

P d<br />

o<br />

i<br />

r<br />

e<br />

P<br />

1<br />

A<br />

.<br />

t<br />

p<br />

e<br />

D n<br />

a<br />

h<br />

p<br />

e<br />

t<br />

S<br />

.<br />

r<br />

D<br />

.<br />

r<br />

D<br />

r<br />

e<br />

m<br />

m<br />

e<br />

l<br />

h<br />

c<br />

S<br />

s<br />

c<br />

i<br />

s<br />

y<br />

h<br />

P<br />

r<br />

o<br />

f<br />

e<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

I<br />

,<br />

z<br />

t<br />

i<br />

n<br />

m<br />

e<br />

h<br />

C<br />

U<br />

T I<br />

I<br />

Y<br />

S<br />

S<br />

E<br />

B<br />

t<br />

a<br />

s<br />

t<br />

n<br />

e<br />

m<br />

i<br />

r<br />

e<br />

p<br />

x<br />

e<br />

l<br />

e<br />

c<br />

i<br />

t<br />

r<br />

a<br />

p<br />

o<br />

n<br />

a<br />

N 4<br />

0<br />

/<br />

4<br />

0<br />

–<br />

2<br />

0<br />

/<br />

5<br />

0<br />

1<br />

A<br />

.<br />

t<br />

p<br />

e<br />

D m<br />

m<br />

i<br />

r<br />

G<br />

l<br />

e<br />

a<br />

h<br />

c<br />

i<br />

M s<br />

c<br />

i<br />

s<br />

y<br />

h<br />

P<br />

r<br />

o<br />

f<br />

e<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

I<br />

,<br />

z<br />

t<br />

i<br />

n<br />

m<br />

e<br />

h<br />

C<br />

U<br />

T I<br />

I<br />

Y<br />

S<br />

S<br />

E<br />

B<br />

t<br />

a<br />

s<br />

t<br />

n<br />

e<br />

m<br />

i<br />

r<br />

e<br />

p<br />

x<br />

e<br />

l<br />

e<br />

c<br />

i<br />

t<br />

r<br />

a<br />

p<br />

o<br />

n<br />

a<br />

N 4<br />

0<br />

/<br />

4<br />

0<br />

–<br />

2<br />

0<br />

/<br />

5<br />

0<br />

1<br />

A<br />

.<br />

t<br />

p<br />

e<br />

D a<br />

r<br />

d<br />

d<br />

i<br />

W<br />

f<br />

l<br />

o<br />

W<br />

.<br />

r<br />

D<br />

.<br />

f<br />

o<br />

r<br />

P e<br />

l<br />

l<br />

a<br />

H<br />

,<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U<br />

-<br />

r<br />

e<br />

h<br />

t<br />

u<br />

L<br />

-<br />

n<br />

i<br />

t<br />

r<br />

a<br />

M e<br />

n<br />

i<br />

l<br />

m<br />

a<br />

e<br />

b<br />

Y<br />

S<br />

S<br />

E<br />

B<br />

-<br />

I<br />

B<br />

M 4<br />

0<br />

/<br />

3<br />

0<br />

–<br />

3<br />

0<br />

/<br />

4<br />

0<br />

1<br />

A<br />

.<br />

t<br />

p<br />

e<br />

D n<br />

o<br />

s<br />

s<br />

a<br />

e<br />

r<br />

d<br />

n<br />

A<br />

s<br />

n<br />

a<br />

M ,<br />

g<br />

r<br />

o<br />

b<br />

e<br />

t<br />

ö<br />

G<br />

,<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U<br />

s<br />

r<br />

e<br />

m<br />

l<br />

a<br />

h<br />

C<br />

n<br />

e<br />

d<br />

e<br />

w<br />

S<br />

,<br />

)<br />

1<br />

0<br />

0<br />

(<br />

i<br />

S<br />

n<br />

o<br />

s<br />

r<br />

e<br />

y<br />

a<br />

l<br />

A<br />

D<br />

C<br />

T<br />

P<br />

f<br />

o<br />

s<br />

e<br />

i<br />

d<br />

u<br />

t<br />

s<br />

s<br />

c<br />

i<br />

m<br />

a<br />

n<br />

y<br />

d<br />

n<br />

o<br />

r<br />

t<br />

c<br />

e<br />

l<br />

E<br />

s<br />

t<br />

n<br />

e<br />

m<br />

i<br />

r<br />

e<br />

p<br />

x<br />

e<br />

n<br />

o<br />

i<br />

t<br />

a<br />

i<br />

d<br />

a<br />

r<br />

n<br />

o<br />

r<br />

t<br />

o<br />

r<br />

h<br />

c<br />

n<br />

y<br />

s<br />

r<br />

e<br />

s<br />

a<br />

L<br />

d<br />

e<br />

n<br />

i<br />

b<br />

m<br />

o<br />

c<br />

3<br />

0<br />

/<br />

0<br />

1<br />

–<br />

3<br />

0<br />

/<br />

9<br />

0<br />

2<br />

A<br />

.<br />

t<br />

p<br />

e<br />

D n<br />

o<br />

s<br />

s<br />

e<br />

s<br />

s<br />

a<br />

L<br />

s<br />

a<br />

e<br />

r<br />

d<br />

n<br />

A ,<br />

g<br />

r<br />

o<br />

b<br />

e<br />

t<br />

ö<br />

G<br />

,<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U<br />

s<br />

r<br />

e<br />

m<br />

l<br />

a<br />

h<br />

C<br />

n<br />

e<br />

d<br />

e<br />

w<br />

S<br />

f<br />

o<br />

s<br />

e<br />

t<br />

a<br />

t<br />

S<br />

g<br />

r<br />

e<br />

b<br />

d<br />

y<br />

R<br />

f<br />

o<br />

y<br />

p<br />

o<br />

c<br />

s<br />

o<br />

r<br />

t<br />

c<br />

e<br />

p<br />

s<br />

d<br />

n<br />

o<br />

c<br />

e<br />

s<br />

o<br />

t<br />

m<br />

e<br />

F<br />

s<br />

e<br />

n<br />

e<br />

r<br />

e<br />

l<br />

l<br />

u<br />

F<br />

3<br />

0<br />

/<br />

5<br />

0<br />

–<br />

3<br />

0<br />

/<br />

5<br />

0<br />

2<br />

A<br />

.<br />

t<br />

p<br />

e<br />

D y<br />

r<br />

n<br />

e<br />

H<br />

n<br />

i<br />

a<br />

l<br />

A<br />

-<br />

e<br />

r<br />

r<br />

e<br />

i<br />

P ,<br />

e<br />

n<br />

n<br />

e<br />

i<br />

t<br />

E<br />

t<br />

n<br />

i<br />

a<br />

S<br />

,<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U<br />

t<br />

e<br />

n<br />

o<br />

M<br />

-<br />

n<br />

a<br />

e<br />

J<br />

e<br />

c<br />

n<br />

a<br />

r<br />

F<br />

g<br />

n<br />

i<br />

p<br />

a<br />

h<br />

s<br />

e<br />

s<br />

l<br />

u<br />

p<br />

d<br />

n<br />

o<br />

c<br />

e<br />

s<br />

o<br />

t<br />

m<br />

e<br />

F 3<br />

0<br />

/<br />

8<br />

0<br />

–<br />

3<br />

0<br />

/<br />

3<br />

0<br />

2<br />

A<br />

.<br />

t<br />

p<br />

e<br />

D n<br />

n<br />

a<br />

m<br />

r<br />

e<br />

n<br />

ü<br />

B<br />

r<br />

e<br />

v<br />

i<br />

l<br />

O d<br />

l<br />

e<br />

f<br />

e<br />

l<br />

e<br />

i<br />

B<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U s<br />

r<br />

e<br />

t<br />

s<br />

u<br />

l<br />

c<br />

m<br />

u<br />

i<br />

l<br />

e<br />

H<br />

d<br />

e<br />

p<br />

o<br />

d<br />

f<br />

o<br />

s<br />

c<br />

i<br />

m<br />

a<br />

n<br />

y<br />

D 3<br />

0<br />

/<br />

6<br />

0<br />

–<br />

3<br />

0<br />

/<br />

4<br />

0<br />

2<br />

A<br />

.<br />

t<br />

p<br />

e<br />

D n<br />

n<br />

a<br />

m<br />

l<br />

e<br />

p<br />

p<br />

o<br />

r<br />

D<br />

g<br />

r<br />

o<br />

e<br />

G d<br />

l<br />

e<br />

f<br />

e<br />

l<br />

e<br />

i<br />

B<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U s<br />

r<br />

e<br />

t<br />

s<br />

u<br />

l<br />

c<br />

m<br />

u<br />

i<br />

l<br />

e<br />

H<br />

d<br />

e<br />

p<br />

o<br />

d<br />

f<br />

o<br />

s<br />

c<br />

i<br />

m<br />

a<br />

n<br />

y<br />

D 3<br />

0<br />

/<br />

6<br />

0<br />

–<br />

3<br />

0<br />

/<br />

4<br />

0<br />

2<br />

A<br />

.<br />

t<br />

p<br />

e<br />

D r<br />

e<br />

i<br />

e<br />

m<br />

e<br />

k<br />

n<br />

e<br />

i<br />

t<br />

S<br />

k<br />

n<br />

a<br />

r<br />

F<br />

.<br />

r<br />

D d<br />

l<br />

e<br />

f<br />

e<br />

l<br />

e<br />

i<br />

B<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U s<br />

r<br />

e<br />

t<br />

s<br />

u<br />

l<br />

c<br />

m<br />

u<br />

i<br />

l<br />

e<br />

H<br />

d<br />

e<br />

p<br />

o<br />

d<br />

f<br />

o<br />

s<br />

c<br />

i<br />

m<br />

a<br />

n<br />

y<br />

D 3<br />

0<br />

/<br />

6<br />

0<br />

–<br />

3<br />

0<br />

/<br />

4<br />

0<br />

2<br />

A<br />

.<br />

t<br />

p<br />

e<br />

D s<br />

a<br />

a<br />

l<br />

C<br />

k<br />

c<br />

i<br />

r<br />

t<br />

a<br />

P d<br />

l<br />

e<br />

f<br />

e<br />

l<br />

e<br />

i<br />

B<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U s<br />

r<br />

e<br />

t<br />

s<br />

u<br />

l<br />

c<br />

m<br />

u<br />

i<br />

l<br />

e<br />

H<br />

d<br />

e<br />

p<br />

o<br />

d<br />

f<br />

o<br />

s<br />

c<br />

i<br />

m<br />

a<br />

n<br />

y<br />

D 3<br />

0<br />

/<br />

6<br />

0<br />

–<br />

3<br />

0<br />

/<br />

4<br />

0<br />

2<br />

A<br />

.<br />

t<br />

p<br />

e<br />

D a<br />

z<br />

b<br />

o<br />

H<br />

l<br />

e<br />

v<br />

a<br />

P<br />

.<br />

r<br />

D<br />

.<br />

f<br />

o<br />

r<br />

P h<br />

c<br />

e<br />

z<br />

C<br />

e<br />

h<br />

t<br />

f<br />

o<br />

s<br />

e<br />

c<br />

n<br />

e<br />

i<br />

c<br />

s<br />

f<br />

o<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U<br />

e<br />

u<br />

g<br />

a<br />

r<br />

P<br />

,<br />

c<br />

i<br />

l<br />

b<br />

u<br />

p<br />

e<br />

R<br />

-<br />

s<br />

g<br />

n<br />

u<br />

h<br />

c<br />

s<br />

r<br />

o<br />

F<br />

m<br />

u<br />

z<br />

e<br />

g<br />

ä<br />

r<br />

t<br />

i<br />

e<br />

B<br />

r<br />

e<br />

h<br />

c<br />

s<br />

i<br />

t<br />

e<br />

r<br />

o<br />

e<br />

h<br />

t<br />

g<br />

n<br />

u<br />

g<br />

n<br />

i<br />

r<br />

b<br />

r<br />

E<br />

"<br />

e<br />

s<br />

a<br />

h<br />

p<br />

s<br />

a<br />

G<br />

r<br />

e<br />

d<br />

n<br />

i<br />

e<br />

l<br />

ü<br />

k<br />

e<br />

l<br />

o<br />

M<br />

e<br />

v<br />

i<br />

t<br />

k<br />

a<br />

o<br />

i<br />

B<br />

"<br />

a<br />

m<br />

e<br />

h<br />

t<br />

3<br />

0<br />

/<br />

2<br />

1<br />

–<br />

3<br />

0<br />

/<br />

1<br />

1<br />

3<br />

A<br />

.<br />

t<br />

p<br />

e<br />

D f<br />

r<br />

o<br />

d<br />

n<br />

e<br />

u<br />

e<br />

N<br />

f<br />

l<br />

o<br />

R<br />

.<br />

r<br />

D g<br />

r<br />

u<br />

b<br />

n<br />

e<br />

d<br />

l<br />

O<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U d<br />

P<br />

d<br />

e<br />

z<br />

i<br />

s<br />

o<br />

n<br />

a<br />

n<br />

n<br />

o<br />

s<br />

e<br />

g<br />

n<br />

a<br />

h<br />

c<br />

r<br />

e<br />

b<br />

r<br />

o<br />

s<br />

d<br />

a<br />

d<br />

e<br />

c<br />

u<br />

d<br />

n<br />

i<br />

r<br />

e<br />

s<br />

a<br />

l<br />

-<br />

V<br />

U<br />

s<br />

e<br />

l<br />

c<br />

i<br />

t<br />

r<br />

a<br />

p<br />

3<br />

0<br />

/<br />

3<br />

0<br />

–<br />

3<br />

0<br />

/<br />

2<br />

0<br />

3<br />

A<br />

.<br />

t<br />

p<br />

e<br />

D d<br />

l<br />

a<br />

w<br />

h<br />

c<br />

u<br />

B<br />

t<br />

r<br />

e<br />

b<br />

o<br />

R g<br />

r<br />

u<br />

b<br />

n<br />

e<br />

d<br />

l<br />

O<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U d<br />

P<br />

d<br />

e<br />

z<br />

i<br />

s<br />

o<br />

n<br />

a<br />

n<br />

n<br />

o<br />

s<br />

e<br />

g<br />

n<br />

a<br />

h<br />

c<br />

r<br />

e<br />

b<br />

r<br />

o<br />

s<br />

d<br />

a<br />

d<br />

e<br />

c<br />

u<br />

d<br />

n<br />

i<br />

r<br />

e<br />

s<br />

a<br />

l<br />

-<br />

V<br />

U<br />

s<br />

e<br />

l<br />

c<br />

i<br />

t<br />

r<br />

a<br />

p<br />

3<br />

0<br />

/<br />

3<br />

0<br />

–<br />

3<br />

0<br />

/<br />

2<br />

0


84<br />

n<br />

i<br />

h<br />

t<br />

i<br />

w<br />

t<br />

s<br />

o<br />

H n<br />

i<br />

h<br />

t<br />

i<br />

w<br />

t<br />

s<br />

o<br />

H n<br />

i<br />

h<br />

t<br />

i<br />

w<br />

t<br />

s<br />

o<br />

H n<br />

i<br />

h<br />

t<br />

i<br />

w<br />

t<br />

s<br />

o<br />

H n<br />

i<br />

h<br />

t<br />

i<br />

w<br />

t<br />

s<br />

o<br />

H<br />

I<br />

B<br />

M<br />

e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N n<br />

o<br />

i<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

i<br />

e<br />

m<br />

o<br />

H n<br />

o<br />

i<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

i<br />

e<br />

m<br />

o<br />

H n<br />

o<br />

i<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

i<br />

e<br />

m<br />

o<br />

H n<br />

o<br />

i<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

i<br />

e<br />

m<br />

o<br />

H n<br />

o<br />

i<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

i<br />

e<br />

m<br />

o<br />

H n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T d<br />

o<br />

i<br />

r<br />

e<br />

P d<br />

o<br />

i<br />

r<br />

e<br />

P d<br />

o<br />

i<br />

r<br />

e<br />

P d<br />

o<br />

i<br />

r<br />

e<br />

P d<br />

o<br />

i<br />

r<br />

e<br />

P<br />

3<br />

A<br />

.<br />

t<br />

p<br />

e<br />

D e<br />

l<br />

l<br />

i<br />

W<br />

r<br />

a<br />

g<br />

s<br />

n<br />

A g<br />

r<br />

u<br />

b<br />

n<br />

e<br />

d<br />

l<br />

O<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U d<br />

P<br />

d<br />

e<br />

z<br />

i<br />

s<br />

o<br />

n<br />

a<br />

n<br />

n<br />

o<br />

s<br />

e<br />

g<br />

n<br />

a<br />

h<br />

c<br />

r<br />

e<br />

b<br />

r<br />

o<br />

s<br />

d<br />

a<br />

d<br />

e<br />

c<br />

u<br />

d<br />

n<br />

i<br />

r<br />

e<br />

s<br />

a<br />

l<br />

-<br />

V<br />

U<br />

s<br />

e<br />

l<br />

c<br />

i<br />

t<br />

r<br />

a<br />

p<br />

3<br />

0<br />

/<br />

3<br />

0<br />

–<br />

3<br />

0<br />

/<br />

2<br />

0<br />

3<br />

A<br />

.<br />

t<br />

p<br />

e<br />

D z<br />

d<br />

a<br />

k<br />

r<br />

A<br />

.<br />

r<br />

D<br />

.<br />

f<br />

o<br />

r<br />

P<br />

i<br />

k<br />

s<br />

n<br />

y<br />

h<br />

c<br />

h<br />

s<br />

u<br />

r<br />

h<br />

K<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U<br />

e<br />

t<br />

a<br />

t<br />

S<br />

s<br />

u<br />

r<br />

o<br />

l<br />

e<br />

B s<br />

e<br />

b<br />

u<br />

t<br />

o<br />

n<br />

a<br />

N<br />

n<br />

o<br />

b<br />

r<br />

a<br />

C<br />

f<br />

o<br />

s<br />

e<br />

i<br />

t<br />

r<br />

e<br />

p<br />

o<br />

r<br />

p<br />

r<br />

a<br />

e<br />

n<br />

i<br />

l<br />

n<br />

o<br />

N 3<br />

0<br />

/<br />

3<br />

0<br />

–<br />

3<br />

0<br />

/<br />

3<br />

0<br />

3<br />

A<br />

.<br />

t<br />

p<br />

e<br />

D n<br />

a<br />

i<br />

p<br />

e<br />

l<br />

S<br />

i<br />

r<br />

o<br />

g<br />

i<br />

r<br />

G<br />

.<br />

r<br />

D y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U<br />

e<br />

t<br />

a<br />

t<br />

S<br />

s<br />

u<br />

r<br />

o<br />

l<br />

e<br />

B s<br />

e<br />

b<br />

u<br />

t<br />

o<br />

n<br />

a<br />

N<br />

n<br />

o<br />

b<br />

r<br />

a<br />

C<br />

f<br />

o<br />

s<br />

e<br />

i<br />

t<br />

r<br />

e<br />

p<br />

o<br />

r<br />

p<br />

r<br />

a<br />

e<br />

n<br />

i<br />

l<br />

n<br />

o<br />

N 3<br />

0<br />

/<br />

3<br />

0<br />

–<br />

3<br />

0<br />

/<br />

3<br />

0<br />

3<br />

A<br />

.<br />

t<br />

p<br />

e<br />

D d<br />

o<br />

l<br />

l<br />

i<br />

m<br />

r<br />

e<br />

M<br />

e<br />

r<br />

d<br />

n<br />

a<br />

x<br />

e<br />

l<br />

A ,<br />

e<br />

n<br />

n<br />

e<br />

i<br />

t<br />

E<br />

t<br />

n<br />

i<br />

a<br />

S<br />

,<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U<br />

t<br />

e<br />

n<br />

o<br />

M<br />

-<br />

n<br />

a<br />

e<br />

J<br />

e<br />

c<br />

n<br />

a<br />

r<br />

F<br />

g<br />

n<br />

i<br />

s<br />

s<br />

e<br />

c<br />

o<br />

r<br />

p<br />

l<br />

a<br />

i<br />

r<br />

e<br />

t<br />

a<br />

m<br />

r<br />

e<br />

s<br />

a<br />

l<br />

n<br />

i<br />

g<br />

n<br />

i<br />

r<br />

o<br />

l<br />

i<br />

a<br />

t<br />

e<br />

s<br />

l<br />

u<br />

p<br />

e<br />

v<br />

i<br />

t<br />

p<br />

a<br />

d<br />

A 3<br />

0<br />

/<br />

8<br />

0<br />

–<br />

3<br />

0<br />

/<br />

3<br />

0<br />

3<br />

A<br />

.<br />

t<br />

p<br />

e<br />

D n<br />

i<br />

v<br />

i<br />

p<br />

a<br />

r<br />

K<br />

i<br />

a<br />

l<br />

a<br />

k<br />

i<br />

M s<br />

u<br />

r<br />

a<br />

l<br />

e<br />

B<br />

,<br />

d<br />

t<br />

L<br />

s<br />

m<br />

e<br />

t<br />

s<br />

y<br />

S<br />

m<br />

A<br />

P<br />

E e<br />

h<br />

t<br />

h<br />

t<br />

i<br />

w<br />

s<br />

n<br />

o<br />

r<br />

t<br />

c<br />

e<br />

l<br />

e<br />

t<br />

o<br />

h<br />

f<br />

o<br />

s<br />

e<br />

r<br />

u<br />

t<br />

a<br />

r<br />

e<br />

p<br />

m<br />

e<br />

t<br />

f<br />

o<br />

n<br />

o<br />

i<br />

t<br />

a<br />

g<br />

i<br />

t<br />

s<br />

e<br />

v<br />

n<br />

I<br />

d<br />

o<br />

h<br />

t<br />

e<br />

m<br />

r<br />

e<br />

t<br />

l<br />

i<br />

f<br />

s<br />

s<br />

a<br />

p<br />

d<br />

n<br />

a<br />

b<br />

d<br />

e<br />

i<br />

f<br />

i<br />

d<br />

o<br />

m<br />

3<br />

0<br />

/<br />

4<br />

0<br />

-<br />

3<br />

0<br />

/<br />

4<br />

0<br />

3<br />

A<br />

.<br />

t<br />

p<br />

e<br />

D i<br />

n<br />

o<br />

p<br />

m<br />

a<br />

Z<br />

o<br />

i<br />

v<br />

a<br />

l<br />

F a<br />

n<br />

e<br />

J<br />

U<br />

S<br />

F n<br />

i<br />

t<br />

a<br />

i<br />

d<br />

a<br />

r<br />

n<br />

e<br />

g<br />

t<br />

n<br />

ö<br />

R<br />

h<br />

t<br />

i<br />

w<br />

s<br />

t<br />

n<br />

e<br />

m<br />

i<br />

r<br />

e<br />

p<br />

x<br />

E 3<br />

0<br />

/<br />

6<br />

0<br />

–<br />

3<br />

0<br />

/<br />

6<br />

0<br />

3<br />

A<br />

.<br />

t<br />

p<br />

e<br />

D n<br />

n<br />

a<br />

m<br />

h<br />

c<br />

s<br />

U<br />

o<br />

g<br />

n<br />

I a<br />

n<br />

e<br />

J<br />

U<br />

S<br />

F n<br />

i<br />

t<br />

a<br />

i<br />

d<br />

a<br />

r<br />

n<br />

e<br />

g<br />

t<br />

n<br />

ö<br />

R<br />

h<br />

t<br />

i<br />

w<br />

s<br />

t<br />

n<br />

e<br />

m<br />

i<br />

r<br />

e<br />

p<br />

x<br />

E 3<br />

0<br />

/<br />

6<br />

0<br />

–<br />

3<br />

0<br />

/<br />

6<br />

0<br />

3<br />

A<br />

.<br />

t<br />

p<br />

e<br />

D a<br />

v<br />

o<br />

k<br />

a<br />

g<br />

l<br />

u<br />

B<br />

a<br />

d<br />

z<br />

e<br />

d<br />

a<br />

N<br />

.<br />

r<br />

D ,<br />

s<br />

c<br />

i<br />

s<br />

y<br />

h<br />

p<br />

o<br />

m<br />

r<br />

e<br />

h<br />

T<br />

f<br />

o<br />

e<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

I<br />

a<br />

i<br />

s<br />

s<br />

u<br />

R<br />

,<br />

k<br />

s<br />

r<br />

i<br />

b<br />

i<br />

s<br />

o<br />

v<br />

o<br />

N<br />

r<br />

e<br />

s<br />

a<br />

l<br />

t<br />

s<br />

a<br />

v<br />

a<br />

r<br />

t<br />

l<br />

u<br />

n<br />

i<br />

t<br />

r<br />

o<br />

p<br />

s<br />

n<br />

a<br />

r<br />

t<br />

c<br />

i<br />

n<br />

o<br />

r<br />

t<br />

c<br />

e<br />

l<br />

e<br />

f<br />

o<br />

g<br />

n<br />

i<br />

l<br />

l<br />

e<br />

d<br />

o<br />

M<br />

s<br />

l<br />

a<br />

i<br />

r<br />

e<br />

t<br />

a<br />

m<br />

d<br />

e<br />

t<br />

a<br />

i<br />

d<br />

a<br />

r<br />

r<br />

i<br />

3<br />

0<br />

/<br />

6<br />

0<br />

–<br />

3<br />

0<br />

/<br />

6<br />

0<br />

3<br />

A<br />

.<br />

t<br />

p<br />

e<br />

D n<br />

o<br />

s<br />

d<br />

r<br />

a<br />

h<br />

c<br />

i<br />

R<br />

n<br />

i<br />

t<br />

r<br />

a<br />

M<br />

.<br />

r<br />

D<br />

.<br />

f<br />

o<br />

r<br />

P ,<br />

a<br />

d<br />

i<br />

r<br />

o<br />

l<br />

F<br />

l<br />

a<br />

r<br />

t<br />

n<br />

e<br />

C<br />

f<br />

o<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U<br />

,<br />

L<br />

O<br />

E<br />

R<br />

C<br />

A<br />

S<br />

U<br />

-<br />

h<br />

a<br />

r<br />

t<br />

s<br />

r<br />

e<br />

s<br />

a<br />

L<br />

-<br />

s<br />

f<br />

n<br />

o<br />

v<br />

g<br />

n<br />

u<br />

k<br />

r<br />

i<br />

w<br />

l<br />

e<br />

s<br />

h<br />

c<br />

e<br />

W<br />

r<br />

e<br />

d<br />

g<br />

n<br />

u<br />

h<br />

c<br />

u<br />

s<br />

r<br />

e<br />

t<br />

n<br />

U<br />

-<br />

u<br />

e<br />

z<br />

r<br />

E<br />

r<br />

u<br />

z<br />

n<br />

e<br />

m<br />

s<br />

a<br />

l<br />

P<br />

t<br />

i<br />

m<br />

n<br />

e<br />

z<br />

n<br />

e<br />

u<br />

q<br />

e<br />

r<br />

f<br />

e<br />

g<br />

l<br />

o<br />

F<br />

-<br />

z<br />

H<br />

k<br />

i<br />

e<br />

b<br />

g<br />

n<br />

u<br />

l<br />

h<br />

c<br />

i<br />

e<br />

r<br />

e<br />

B<br />

-<br />

V<br />

e<br />

k<br />

m<br />

i<br />

g<br />

n<br />

u<br />

l<br />

h<br />

a<br />

r<br />

t<br />

s<br />

n<br />

e<br />

g<br />

t<br />

n<br />

ö<br />

r<br />

s<br />

l<br />

u<br />

p<br />

z<br />

r<br />

u<br />

K<br />

n<br />

o<br />

v<br />

g<br />

n<br />

u<br />

g<br />

3<br />

0<br />

/<br />

8<br />

0<br />

–<br />

3<br />

0<br />

/<br />

6<br />

0<br />

3<br />

A<br />

.<br />

t<br />

p<br />

e<br />

D n<br />

a<br />

i<br />

b<br />

a<br />

F<br />

.<br />

r<br />

D<br />

.<br />

f<br />

o<br />

r<br />

P<br />

d<br />

n<br />

u<br />

m<br />

r<br />

e<br />

t<br />

o<br />

R<br />

a<br />

e<br />

r<br />

o<br />

K<br />

,<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U<br />

u<br />

o<br />

j<br />

A r<br />

e<br />

z<br />

r<br />

u<br />

k<br />

a<br />

r<br />

t<br />

l<br />

u<br />

r<br />

e<br />

t<br />

p<br />

r<br />

i<br />

h<br />

c<br />

e<br />

g<br />

g<br />

n<br />

u<br />

k<br />

r<br />

ä<br />

t<br />

s<br />

r<br />

e<br />

V<br />

e<br />

h<br />

c<br />

s<br />

i<br />

r<br />

t<br />

e<br />

m<br />

a<br />

r<br />

a<br />

P<br />

n<br />

e<br />

i<br />

l<br />

a<br />

i<br />

r<br />

e<br />

t<br />

a<br />

M<br />

n<br />

e<br />

u<br />

e<br />

n<br />

n<br />

i<br />

e<br />

s<br />

l<br />

u<br />

p<br />

m<br />

I<br />

3<br />

0<br />

/<br />

1<br />

0<br />

–<br />

3<br />

0<br />

/<br />

1<br />

0<br />

3<br />

0<br />

/<br />

8<br />

0<br />

–<br />

3<br />

0<br />

/<br />

8<br />

0<br />

3<br />

A<br />

.<br />

t<br />

p<br />

e<br />

D o<br />

h<br />

C<br />

e<br />

a<br />

B<br />

-<br />

n<br />

o<br />

W a<br />

e<br />

r<br />

o<br />

K<br />

,<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U<br />

u<br />

o<br />

j<br />

A r<br />

e<br />

z<br />

r<br />

u<br />

k<br />

a<br />

r<br />

t<br />

l<br />

u<br />

r<br />

e<br />

t<br />

p<br />

r<br />

i<br />

h<br />

c<br />

e<br />

g<br />

g<br />

n<br />

u<br />

k<br />

r<br />

ä<br />

t<br />

s<br />

r<br />

e<br />

V<br />

e<br />

h<br />

c<br />

s<br />

i<br />

r<br />

t<br />

e<br />

m<br />

a<br />

r<br />

a<br />

P<br />

n<br />

e<br />

i<br />

l<br />

a<br />

i<br />

r<br />

e<br />

t<br />

a<br />

M<br />

n<br />

e<br />

u<br />

e<br />

n<br />

n<br />

i<br />

e<br />

s<br />

l<br />

u<br />

p<br />

m<br />

I<br />

3<br />

0<br />

/<br />

8<br />

0<br />

–<br />

3<br />

0<br />

/<br />

8<br />

0<br />

3<br />

A<br />

.<br />

t<br />

p<br />

e<br />

D o<br />

k<br />

n<br />

e<br />

m<br />

i<br />

s<br />

k<br />

a<br />

M<br />

y<br />

e<br />

g<br />

r<br />

e<br />

S<br />

.<br />

r<br />

D y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U<br />

e<br />

t<br />

a<br />

t<br />

S<br />

s<br />

u<br />

r<br />

o<br />

l<br />

e<br />

B n<br />

i<br />

e<br />

t<br />

k<br />

e<br />

f<br />

f<br />

E<br />

-<br />

t<br />

r<br />

o<br />

p<br />

s<br />

n<br />

a<br />

r<br />

T<br />

d<br />

n<br />

u<br />

e<br />

t<br />

k<br />

e<br />

f<br />

f<br />

E<br />

e<br />

h<br />

c<br />

s<br />

i<br />

t<br />

p<br />

o<br />

e<br />

r<br />

a<br />

e<br />

n<br />

i<br />

l<br />

t<br />

h<br />

c<br />

i<br />

N<br />

e<br />

r<br />

h<br />

ö<br />

r<br />

o<br />

n<br />

a<br />

N<br />

-<br />

f<br />

f<br />

o<br />

t<br />

s<br />

n<br />

e<br />

l<br />

h<br />

o<br />

K<br />

3<br />

0<br />

/<br />

8<br />

0<br />

–<br />

3<br />

0<br />

/<br />

7<br />

0<br />

3<br />

A<br />

.<br />

t<br />

p<br />

e<br />

D u<br />

a<br />

r<br />

t<br />

e<br />

V<br />

i<br />

e<br />

h<br />

r<br />

a<br />

i<br />

S y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U<br />

e<br />

t<br />

a<br />

t<br />

S<br />

s<br />

u<br />

r<br />

o<br />

l<br />

e<br />

B n<br />

e<br />

s<br />

l<br />

u<br />

p<br />

m<br />

I<br />

n<br />

e<br />

z<br />

r<br />

u<br />

k<br />

a<br />

r<br />

t<br />

l<br />

u<br />

n<br />

o<br />

v<br />

r<br />

u<br />

t<br />

k<br />

e<br />

r<br />

r<br />

o<br />

k<br />

n<br />

e<br />

s<br />

a<br />

h<br />

P<br />

e<br />

v<br />

i<br />

t<br />

p<br />

a<br />

d<br />

A 3<br />

0<br />

/<br />

0<br />

1<br />

–<br />

3<br />

0<br />

/<br />

9<br />

0<br />

3<br />

A<br />

.<br />

t<br />

p<br />

e<br />

D o<br />

k<br />

n<br />

e<br />

a<br />

s<br />

I<br />

.<br />

L<br />

.<br />

r<br />

D<br />

.<br />

f<br />

o<br />

r<br />

P k<br />

s<br />

r<br />

i<br />

b<br />

i<br />

s<br />

o<br />

v<br />

o<br />

N<br />

,<br />

S<br />

A<br />

R<br />

B<br />

S R<br />

I<br />

M<br />

e<br />

h<br />

t<br />

r<br />

o<br />

f<br />

s<br />

l<br />

a<br />

t<br />

s<br />

y<br />

r<br />

c<br />

n<br />

o<br />

n<br />

w<br />

e<br />

N 3<br />

0<br />

/<br />

1<br />

1<br />

–<br />

3<br />

0<br />

/<br />

0<br />

1


85<br />

n<br />

i<br />

h<br />

t<br />

i<br />

w<br />

t<br />

s<br />

o<br />

H n<br />

i<br />

h<br />

t<br />

i<br />

w<br />

t<br />

s<br />

o<br />

H n<br />

i<br />

h<br />

t<br />

i<br />

w<br />

t<br />

s<br />

o<br />

H n<br />

i<br />

h<br />

t<br />

i<br />

w<br />

t<br />

s<br />

o<br />

H n<br />

i<br />

h<br />

t<br />

i<br />

w<br />

t<br />

s<br />

o<br />

H<br />

I<br />

B<br />

M<br />

e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N n<br />

o<br />

i<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

i<br />

e<br />

m<br />

o<br />

H n<br />

o<br />

i<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

i<br />

e<br />

m<br />

o<br />

H n<br />

o<br />

i<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

i<br />

e<br />

m<br />

o<br />

H n<br />

o<br />

i<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

i<br />

e<br />

m<br />

o<br />

H n<br />

o<br />

i<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

i<br />

e<br />

m<br />

o<br />

H n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T d<br />

o<br />

i<br />

r<br />

e<br />

P d<br />

o<br />

i<br />

r<br />

e<br />

P d<br />

o<br />

i<br />

r<br />

e<br />

P d<br />

o<br />

i<br />

r<br />

e<br />

P d<br />

o<br />

i<br />

r<br />

e<br />

P<br />

3<br />

A<br />

.<br />

t<br />

p<br />

e<br />

D s<br />

o<br />

e<br />

t<br />

a<br />

M<br />

r<br />

e<br />

i<br />

v<br />

a<br />

J a<br />

n<br />

o<br />

g<br />

a<br />

r<br />

r<br />

a<br />

T<br />

,<br />

i<br />

l<br />

i<br />

g<br />

r<br />

i<br />

V<br />

i<br />

a<br />

r<br />

i<br />

v<br />

o<br />

R<br />

t<br />

a<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U l<br />

a<br />

i<br />

c<br />

e<br />

p<br />

s<br />

n<br />

i<br />

n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

e<br />

p<br />

o<br />

g<br />

n<br />

i<br />

s<br />

a<br />

l<br />

d<br />

e<br />

k<br />

c<br />

o<br />

l<br />

-<br />

e<br />

d<br />

o<br />

m<br />

d<br />

n<br />

a<br />

W<br />

C<br />

s<br />

h<br />

p<br />

r<br />

o<br />

m<br />

o<br />

s<br />

i<br />

d<br />

n<br />

a<br />

s<br />

l<br />

a<br />

t<br />

s<br />

y<br />

r<br />

c<br />

3<br />

0<br />

/<br />

2<br />

1<br />

–<br />

3<br />

0<br />

/<br />

1<br />

1<br />

3<br />

A<br />

.<br />

t<br />

p<br />

e<br />

D a<br />

r<br />

a<br />

h<br />

i<br />

h<br />

s<br />

A<br />

i<br />

h<br />

s<br />

o<br />

t<br />

a<br />

S ,<br />

e<br />

c<br />

n<br />

e<br />

i<br />

c<br />

S<br />

l<br />

a<br />

i<br />

r<br />

t<br />

s<br />

u<br />

d<br />

n<br />

I<br />

f<br />

o<br />

e<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

I<br />

n<br />

a<br />

p<br />

a<br />

J<br />

,<br />

o<br />

y<br />

k<br />

o<br />

T<br />

f<br />

o<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U<br />

s<br />

c<br />

i<br />

t<br />

p<br />

o<br />

r<br />

a<br />

e<br />

n<br />

i<br />

l<br />

n<br />

o<br />

n<br />

d<br />

n<br />

a<br />

h<br />

c<br />

r<br />

a<br />

e<br />

s<br />

e<br />

r<br />

r<br />

e<br />

s<br />

a<br />

l<br />

t<br />

s<br />

a<br />

f<br />

a<br />

r<br />

t<br />

l<br />

U 3<br />

0<br />

/<br />

2<br />

1<br />

–<br />

3<br />

0<br />

/<br />

2<br />

1<br />

3<br />

A<br />

.<br />

t<br />

p<br />

e<br />

D n<br />

r<br />

o<br />

K<br />

g<br />

r<br />

o<br />

e<br />

G<br />

r<br />

D s<br />

e<br />

i<br />

g<br />

o<br />

l<br />

o<br />

n<br />

h<br />

c<br />

e<br />

T<br />

a<br />

n<br />

a<br />

t<br />

a<br />

K n<br />

e<br />

g<br />

n<br />

u<br />

l<br />

k<br />

c<br />

i<br />

w<br />

t<br />

n<br />

e<br />

r<br />

e<br />

s<br />

a<br />

L 4<br />

0<br />

/<br />

8<br />

0<br />

–<br />

2<br />

0<br />

/<br />

9<br />

0<br />

1<br />

B<br />

.<br />

t<br />

p<br />

e<br />

D h<br />

c<br />

a<br />

b<br />

r<br />

e<br />

H<br />

l<br />

e<br />

a<br />

h<br />

c<br />

i<br />

M<br />

-<br />

s<br />

u<br />

a<br />

l<br />

C<br />

.<br />

r<br />

D n<br />

i<br />

l<br />

r<br />

e<br />

B<br />

,<br />

I<br />

M<br />

H k<br />

i<br />

s<br />

y<br />

h<br />

p<br />

a<br />

m<br />

s<br />

a<br />

l<br />

P<br />

e<br />

h<br />

c<br />

s<br />

i<br />

t<br />

s<br />

i<br />

v<br />

i<br />

t<br />

a<br />

l<br />

e<br />

R 5<br />

0<br />

/<br />

2<br />

1<br />

–<br />

2<br />

0<br />

/<br />

2<br />

0<br />

1<br />

B<br />

.<br />

t<br />

p<br />

e<br />

D r<br />

e<br />

h<br />

c<br />

s<br />

l<br />

i<br />

H<br />

h<br />

c<br />

i<br />

r<br />

t<br />

e<br />

i<br />

D<br />

.<br />

r<br />

D n<br />

i<br />

l<br />

r<br />

e<br />

B<br />

,<br />

I<br />

M<br />

H k<br />

i<br />

s<br />

y<br />

h<br />

p<br />

a<br />

m<br />

s<br />

a<br />

l<br />

P<br />

e<br />

h<br />

c<br />

s<br />

i<br />

t<br />

s<br />

i<br />

v<br />

i<br />

t<br />

a<br />

l<br />

e<br />

R 5<br />

0<br />

/<br />

2<br />

1<br />

–<br />

2<br />

0<br />

/<br />

2<br />

0<br />

1<br />

B<br />

.<br />

t<br />

p<br />

e<br />

D e<br />

k<br />

n<br />

h<br />

a<br />

J<br />

h<br />

c<br />

i<br />

r<br />

l<br />

l<br />

U<br />

.<br />

r<br />

D n<br />

i<br />

l<br />

r<br />

e<br />

B<br />

,<br />

I<br />

M<br />

H k<br />

i<br />

s<br />

y<br />

h<br />

p<br />

a<br />

m<br />

s<br />

a<br />

l<br />

P<br />

e<br />

h<br />

c<br />

s<br />

i<br />

t<br />

s<br />

i<br />

v<br />

i<br />

t<br />

a<br />

l<br />

e<br />

R 5<br />

0<br />

/<br />

2<br />

1<br />

–<br />

2<br />

0<br />

/<br />

2<br />

0<br />

1<br />

B<br />

.<br />

t<br />

p<br />

e<br />

D c<br />

z<br />

i<br />

w<br />

o<br />

r<br />

o<br />

d<br />

e<br />

i<br />

F<br />

.<br />

f<br />

o<br />

r<br />

P ,<br />

w<br />

a<br />

z<br />

r<br />

a<br />

W<br />

,<br />

s<br />

c<br />

i<br />

n<br />

o<br />

r<br />

t<br />

c<br />

e<br />

l<br />

e<br />

o<br />

t<br />

p<br />

O<br />

f<br />

o<br />

e<br />

t<br />

u<br />

i<br />

t<br />

s<br />

n<br />

I<br />

d<br />

n<br />

a<br />

l<br />

o<br />

P<br />

r<br />

e<br />

s<br />

a<br />

l<br />

n<br />

e<br />

g<br />

t<br />

n<br />

ö<br />

R 3<br />

0<br />

/<br />

1<br />

0<br />

–<br />

3<br />

0<br />

/<br />

1<br />

0<br />

1<br />

B<br />

.<br />

t<br />

p<br />

e<br />

D k<br />

y<br />

z<br />

c<br />

j<br />

a<br />

l<br />

o<br />

k<br />

M<br />

z<br />

s<br />

u<br />

n<br />

a<br />

J ,<br />

w<br />

a<br />

z<br />

r<br />

a<br />

W<br />

,<br />

s<br />

c<br />

i<br />

n<br />

o<br />

r<br />

t<br />

c<br />

e<br />

l<br />

e<br />

o<br />

t<br />

p<br />

O<br />

f<br />

o<br />

e<br />

t<br />

u<br />

i<br />

t<br />

s<br />

n<br />

I<br />

d<br />

n<br />

a<br />

l<br />

o<br />

P<br />

r<br />

e<br />

s<br />

a<br />

l<br />

n<br />

e<br />

g<br />

t<br />

n<br />

ö<br />

R 3<br />

0<br />

/<br />

7<br />

0<br />

–<br />

3<br />

0<br />

/<br />

5<br />

0<br />

1<br />

B<br />

.<br />

t<br />

p<br />

e<br />

D g<br />

r<br />

e<br />

b<br />

n<br />

e<br />

e<br />

r<br />

G<br />

s<br />

i<br />

r<br />

o<br />

B w<br />

e<br />

r<br />

b<br />

e<br />

H<br />

,<br />

s<br />

c<br />

i<br />

s<br />

y<br />

h<br />

P<br />

f<br />

o<br />

e<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

I<br />

h<br />

a<br />

c<br />

a<br />

R<br />

l<br />

e<br />

a<br />

r<br />

s<br />

I<br />

,<br />

m<br />

e<br />

l<br />

a<br />

s<br />

u<br />

r<br />

e<br />

J<br />

f<br />

o<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U<br />

F<br />

I<br />

G<br />

t<br />

k<br />

e<br />

j<br />

o<br />

r<br />

P<br />

s<br />

e<br />

m<br />

a<br />

s<br />

n<br />

i<br />

e<br />

m<br />

e<br />

G 3<br />

0<br />

/<br />

0<br />

1<br />

-<br />

3<br />

0<br />

/<br />

0<br />

1<br />

1<br />

B<br />

.<br />

t<br />

p<br />

e<br />

D n<br />

i<br />

v<br />

e<br />

L<br />

l<br />

e<br />

a<br />

h<br />

c<br />

i<br />

M w<br />

e<br />

r<br />

b<br />

e<br />

H<br />

,<br />

s<br />

c<br />

i<br />

s<br />

y<br />

h<br />

P<br />

f<br />

o<br />

e<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

I<br />

h<br />

a<br />

c<br />

a<br />

R<br />

l<br />

e<br />

a<br />

r<br />

s<br />

I<br />

,<br />

m<br />

e<br />

l<br />

a<br />

s<br />

u<br />

r<br />

e<br />

J<br />

f<br />

o<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U<br />

F<br />

I<br />

G<br />

t<br />

k<br />

e<br />

j<br />

o<br />

r<br />

P<br />

s<br />

e<br />

m<br />

a<br />

s<br />

n<br />

i<br />

e<br />

m<br />

e<br />

G 3<br />

0<br />

/<br />

0<br />

1<br />

–<br />

3<br />

0<br />

/<br />

0<br />

1<br />

1<br />

B<br />

.<br />

t<br />

p<br />

e<br />

D v<br />

e<br />

a<br />

y<br />

r<br />

i<br />

h<br />

S<br />

.<br />

B<br />

g<br />

e<br />

l<br />

O<br />

.<br />

r<br />

D s<br />

e<br />

c<br />

n<br />

e<br />

i<br />

c<br />

S<br />

f<br />

o<br />

y<br />

m<br />

e<br />

d<br />

a<br />

c<br />

A<br />

n<br />

a<br />

i<br />

s<br />

s<br />

u<br />

R<br />

,<br />

w<br />

o<br />

c<br />

s<br />

o<br />

M<br />

,<br />

e<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

I<br />

s<br />

c<br />

i<br />

s<br />

y<br />

h<br />

P<br />

l<br />

a<br />

r<br />

e<br />

n<br />

e<br />

G<br />

a<br />

i<br />

s<br />

s<br />

u<br />

R<br />

a<br />

m<br />

s<br />

a<br />

l<br />

p<br />

t<br />

i<br />

e<br />

z<br />

z<br />

r<br />

u<br />

K<br />

n<br />

e<br />

t<br />

h<br />

c<br />

i<br />

d<br />

n<br />

e<br />

ß<br />

i<br />

e<br />

h<br />

m<br />

i<br />

e<br />

s<br />

s<br />

e<br />

z<br />

o<br />

r<br />

P<br />

e<br />

r<br />

a<br />

e<br />

l<br />

k<br />

u<br />

N 3<br />

0<br />

/<br />

0<br />

1<br />

–<br />

3<br />

0<br />

/<br />

9<br />

0<br />

1<br />

B<br />

.<br />

t<br />

p<br />

e<br />

D s<br />

d<br />

r<br />

a<br />

w<br />

d<br />

E<br />

n<br />

y<br />

d<br />

a<br />

H<br />

w<br />

e<br />

h<br />

t<br />

t<br />

a<br />

M K<br />

U<br />

,<br />

k<br />

r<br />

o<br />

Y<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U r<br />

e<br />

s<br />

a<br />

l<br />

n<br />

e<br />

g<br />

t<br />

n<br />

ö<br />

R<br />

:<br />

t<br />

n<br />

e<br />

m<br />

i<br />

r<br />

e<br />

p<br />

x<br />

E<br />

s<br />

s<br />

e<br />

c<br />

c<br />

A<br />

n<br />

e<br />

i<br />

p<br />

o<br />

r<br />

u<br />

E 3<br />

0<br />

/<br />

2<br />

1<br />

–<br />

3<br />

0<br />

/<br />

1<br />

1<br />

1<br />

B<br />

.<br />

t<br />

p<br />

e<br />

D y<br />

r<br />

t<br />

s<br />

i<br />

M<br />

h<br />

s<br />

e<br />

t<br />

i<br />

r<br />

P K<br />

U<br />

,<br />

k<br />

r<br />

o<br />

Y<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U r<br />

e<br />

s<br />

a<br />

l<br />

n<br />

e<br />

g<br />

t<br />

n<br />

ö<br />

R<br />

:<br />

t<br />

n<br />

e<br />

m<br />

i<br />

r<br />

e<br />

p<br />

x<br />

E<br />

s<br />

s<br />

e<br />

c<br />

c<br />

A<br />

n<br />

e<br />

i<br />

p<br />

o<br />

r<br />

u<br />

E 3<br />

0<br />

/<br />

2<br />

1<br />

–<br />

3<br />

0<br />

/<br />

1<br />

1<br />

1<br />

B<br />

.<br />

t<br />

p<br />

e<br />

D p<br />

m<br />

e<br />

K<br />

s<br />

a<br />

e<br />

r<br />

d<br />

n<br />

A<br />

.<br />

r<br />

D A<br />

S<br />

U<br />

,<br />

o<br />

n<br />

e<br />

R<br />

f<br />

o<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U k<br />

i<br />

m<br />

a<br />

n<br />

y<br />

d<br />

a<br />

m<br />

s<br />

a<br />

l<br />

P<br />

e<br />

h<br />

c<br />

s<br />

i<br />

t<br />

s<br />

i<br />

v<br />

i<br />

t<br />

a<br />

l<br />

e<br />

R 4<br />

0<br />

/<br />

1<br />

0<br />

–<br />

3<br />

0<br />

/<br />

2<br />

1


86<br />

n<br />

i<br />

h<br />

t<br />

i<br />

w<br />

t<br />

s<br />

o<br />

H n<br />

i<br />

h<br />

t<br />

i<br />

w<br />

t<br />

s<br />

o<br />

H n<br />

i<br />

h<br />

t<br />

i<br />

w<br />

t<br />

s<br />

o<br />

H n<br />

i<br />

h<br />

t<br />

i<br />

w<br />

t<br />

s<br />

o<br />

H n<br />

i<br />

h<br />

t<br />

i<br />

w<br />

t<br />

s<br />

o<br />

H<br />

I<br />

B<br />

M<br />

e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N n<br />

o<br />

i<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

i<br />

e<br />

m<br />

o<br />

H n<br />

o<br />

i<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

i<br />

e<br />

m<br />

o<br />

H n<br />

o<br />

i<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

i<br />

e<br />

m<br />

o<br />

H n<br />

o<br />

i<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

i<br />

e<br />

m<br />

o<br />

H n<br />

o<br />

i<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

i<br />

e<br />

m<br />

o<br />

H n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T d<br />

o<br />

i<br />

r<br />

e<br />

P d<br />

o<br />

i<br />

r<br />

e<br />

P d<br />

o<br />

i<br />

r<br />

e<br />

P d<br />

o<br />

i<br />

r<br />

e<br />

P d<br />

o<br />

i<br />

r<br />

e<br />

P<br />

2<br />

B<br />

.<br />

t<br />

p<br />

e<br />

D r<br />

e<br />

t<br />

t<br />

e<br />

w<br />

h<br />

o<br />

R<br />

p<br />

p<br />

i<br />

l<br />

i<br />

h<br />

P n<br />

i<br />

l<br />

r<br />

e<br />

B<br />

,<br />

U<br />

F n<br />

e<br />

l<br />

ä<br />

n<br />

a<br />

k<br />

a<br />

m<br />

s<br />

a<br />

l<br />

P<br />

n<br />

a<br />

n<br />

e<br />

g<br />

n<br />

u<br />

h<br />

c<br />

u<br />

s<br />

r<br />

e<br />

t<br />

n<br />

U 3<br />

0<br />

/<br />

8<br />

0<br />

-<br />

3<br />

0<br />

/<br />

6<br />

0<br />

2<br />

B<br />

.<br />

t<br />

p<br />

e<br />

D n<br />

n<br />

a<br />

m<br />

r<br />

e<br />

k<br />

c<br />

A<br />

d<br />

n<br />

a<br />

l<br />

o<br />

R n<br />

i<br />

l<br />

r<br />

e<br />

B<br />

,<br />

U<br />

F n<br />

e<br />

l<br />

ä<br />

n<br />

a<br />

k<br />

a<br />

m<br />

s<br />

a<br />

l<br />

P<br />

n<br />

a<br />

n<br />

e<br />

g<br />

n<br />

u<br />

h<br />

c<br />

u<br />

s<br />

r<br />

e<br />

t<br />

n<br />

U 3<br />

0<br />

/<br />

8<br />

0<br />

-<br />

3<br />

0<br />

/<br />

6<br />

0<br />

2<br />

B<br />

.<br />

t<br />

p<br />

e<br />

D c<br />

i<br />

v<br />

e<br />

s<br />

o<br />

l<br />

i<br />

M<br />

n<br />

a<br />

j<br />

e<br />

D<br />

.<br />

f<br />

o<br />

r<br />

P d<br />

n<br />

a<br />

a<br />

i<br />

n<br />

s<br />

o<br />

B<br />

,<br />

o<br />

v<br />

e<br />

j<br />

a<br />

r<br />

a<br />

S<br />

f<br />

o<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U<br />

a<br />

n<br />

i<br />

v<br />

o<br />

g<br />

e<br />

c<br />

r<br />

e<br />

H<br />

s<br />

d<br />

l<br />

e<br />

i<br />

F<br />

g<br />

n<br />

o<br />

r<br />

t<br />

S<br />

h<br />

t<br />

i<br />

w<br />

s<br />

e<br />

s<br />

s<br />

e<br />

c<br />

o<br />

r<br />

P<br />

f<br />

o<br />

l<br />

o<br />

r<br />

t<br />

n<br />

o<br />

C 3<br />

0<br />

/<br />

8<br />

0<br />

-<br />

3<br />

0<br />

/<br />

8<br />

0<br />

2<br />

B<br />

.<br />

t<br />

p<br />

e<br />

D v<br />

e<br />

h<br />

c<br />

i<br />

m<br />

o<br />

F<br />

y<br />

e<br />

g<br />

r<br />

e<br />

S<br />

.<br />

r<br />

D<br />

.<br />

f<br />

o<br />

r<br />

P a<br />

i<br />

s<br />

s<br />

u<br />

R<br />

,<br />

w<br />

o<br />

c<br />

s<br />

o<br />

M<br />

,<br />

e<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

I<br />

v<br />

o<br />

t<br />

a<br />

h<br />

c<br />

r<br />

u<br />

K s<br />

n<br />

o<br />

i<br />

t<br />

c<br />

a<br />

r<br />

e<br />

t<br />

n<br />

i<br />

r<br />

e<br />

t<br />

s<br />

u<br />

l<br />

c<br />

-<br />

r<br />

e<br />

s<br />

a<br />

l<br />

f<br />

o<br />

s<br />

n<br />

o<br />

i<br />

t<br />

a<br />

l<br />

u<br />

m<br />

i<br />

s<br />

l<br />

a<br />

c<br />

i<br />

r<br />

e<br />

m<br />

u<br />

N 3<br />

0<br />

/<br />

3<br />

0<br />

–<br />

3<br />

0<br />

/<br />

3<br />

0<br />

3<br />

0<br />

/<br />

1<br />

1<br />

–<br />

3<br />

0<br />

/<br />

0<br />

1<br />

2<br />

B<br />

.<br />

t<br />

p<br />

e<br />

D o<br />

k<br />

n<br />

e<br />

h<br />

z<br />

u<br />

r<br />

p<br />

o<br />

P<br />

.<br />

r<br />

D s<br />

c<br />

i<br />

s<br />

y<br />

h<br />

P<br />

g<br />

n<br />

i<br />

r<br />

e<br />

e<br />

n<br />

i<br />

g<br />

n<br />

E<br />

w<br />

o<br />

c<br />

s<br />

o<br />

M<br />

a<br />

i<br />

s<br />

s<br />

u<br />

R<br />

,<br />

e<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

I<br />

r<br />

e<br />

t<br />

s<br />

u<br />

l<br />

c<br />

-<br />

r<br />

e<br />

s<br />

a<br />

l<br />

d<br />

n<br />

a<br />

n<br />

o<br />

i<br />

t<br />

a<br />

z<br />

i<br />

n<br />

o<br />

i<br />

e<br />

l<br />

b<br />

u<br />

o<br />

d<br />

l<br />

a<br />

i<br />

t<br />

n<br />

e<br />

u<br />

q<br />

e<br />

s<br />

n<br />

o<br />

N<br />

n<br />

o<br />

i<br />

t<br />

c<br />

a<br />

r<br />

e<br />

t<br />

n<br />

i<br />

3<br />

0<br />

/<br />

4<br />

0<br />

–<br />

3<br />

0<br />

/<br />

3<br />

0<br />

3<br />

0<br />

/<br />

1<br />

1<br />

–<br />

3<br />

0<br />

/<br />

1<br />

1<br />

2<br />

B<br />

.<br />

t<br />

p<br />

e<br />

D y<br />

k<br />

s<br />

t<br />

e<br />

r<br />

a<br />

Z<br />

.<br />

F<br />

.<br />

D<br />

.<br />

r<br />

D<br />

.<br />

f<br />

o<br />

r<br />

P a<br />

i<br />

s<br />

s<br />

u<br />

R<br />

,<br />

w<br />

o<br />

c<br />

s<br />

o<br />

M<br />

,<br />

e<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

I<br />

v<br />

o<br />

t<br />

a<br />

h<br />

c<br />

r<br />

u<br />

K n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

e<br />

n<br />

e<br />

g<br />

c<br />

i<br />

n<br />

o<br />

m<br />

r<br />

a<br />

h<br />

r<br />

e<br />

d<br />

r<br />

o<br />

h<br />

g<br />

i<br />

h<br />

d<br />

e<br />

t<br />

a<br />

l<br />

u<br />

m<br />

i<br />

t<br />

S 3<br />

0<br />

/<br />

3<br />

0<br />

–<br />

3<br />

0<br />

/<br />

3<br />

0<br />

3<br />

0<br />

/<br />

1<br />

1<br />

–<br />

3<br />

0<br />

/<br />

0<br />

1<br />

2<br />

B<br />

.<br />

t<br />

p<br />

e<br />

D v<br />

e<br />

e<br />

n<br />

r<br />

o<br />

K<br />

.<br />

r<br />

D s<br />

c<br />

i<br />

s<br />

y<br />

h<br />

P<br />

g<br />

n<br />

i<br />

r<br />

e<br />

e<br />

n<br />

i<br />

g<br />

n<br />

E<br />

w<br />

o<br />

c<br />

s<br />

o<br />

M<br />

a<br />

i<br />

s<br />

s<br />

u<br />

R<br />

,<br />

e<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

I<br />

s<br />

n<br />

o<br />

i<br />

t<br />

c<br />

a<br />

r<br />

e<br />

t<br />

n<br />

i<br />

r<br />

e<br />

t<br />

s<br />

u<br />

l<br />

c<br />

-<br />

r<br />

e<br />

s<br />

a<br />

l<br />

f<br />

o<br />

s<br />

n<br />

o<br />

i<br />

t<br />

a<br />

l<br />

u<br />

m<br />

i<br />

s<br />

l<br />

a<br />

c<br />

i<br />

r<br />

e<br />

m<br />

u<br />

N 3<br />

0<br />

/<br />

3<br />

0<br />

–<br />

3<br />

0<br />

/<br />

3<br />

0<br />

3<br />

B<br />

.<br />

t<br />

p<br />

e<br />

D z<br />

m<br />

e<br />

l<br />

K<br />

o<br />

d<br />

i<br />

u<br />

G<br />

.<br />

r<br />

D Y<br />

S<br />

E<br />

D g<br />

n<br />

u<br />

l<br />

k<br />

c<br />

i<br />

w<br />

t<br />

n<br />

e<br />

r<br />

e<br />

s<br />

a<br />

L 3<br />

0<br />

/<br />

3<br />

0<br />

–<br />

3<br />

0<br />

/<br />

3<br />

0<br />

1<br />

C<br />

.<br />

t<br />

p<br />

e<br />

D n<br />

i<br />

e<br />

t<br />

s<br />

k<br />

c<br />

o<br />

L<br />

o<br />

k<br />

i<br />

e<br />

H<br />

.<br />

r<br />

D n<br />

i<br />

l<br />

r<br />

e<br />

B<br />

,<br />

U<br />

H e<br />

a<br />

n<br />

n<br />

e<br />

t<br />

n<br />

a<br />

c<br />

i<br />

t<br />

e<br />

h<br />

t<br />

n<br />

y<br />

s<br />

o<br />

t<br />

o<br />

h<br />

P 4<br />

0<br />

/<br />

2<br />

1<br />

-<br />

2<br />

0<br />

/<br />

1<br />

0<br />

1<br />

C<br />

.<br />

t<br />

p<br />

e<br />

D r<br />

e<br />

n<br />

h<br />

c<br />

s<br />

u<br />

e<br />

T<br />

s<br />

u<br />

a<br />

l<br />

K<br />

.<br />

r<br />

D n<br />

i<br />

l<br />

r<br />

e<br />

B<br />

k<br />

i<br />

n<br />

h<br />

c<br />

e<br />

T<br />

r<br />

e<br />

s<br />

a<br />

L s<br />

b<br />

e<br />

r<br />

k<br />

t<br />

u<br />

a<br />

H<br />

r<br />

e<br />

z<br />

r<br />

a<br />

w<br />

h<br />

c<br />

s<br />

g<br />

n<br />

u<br />

n<br />

n<br />

e<br />

k<br />

r<br />

e<br />

h<br />

ü<br />

r<br />

F 3<br />

0<br />

/<br />

2<br />

1<br />

–<br />

3<br />

0<br />

/<br />

1<br />

0<br />

1<br />

C<br />

.<br />

t<br />

p<br />

e<br />

D y<br />

r<br />

o<br />

M<br />

n<br />

a<br />

h<br />

p<br />

e<br />

t<br />

S<br />

.<br />

r<br />

D n<br />

i<br />

l<br />

r<br />

e<br />

B<br />

k<br />

i<br />

n<br />

h<br />

c<br />

e<br />

T<br />

r<br />

e<br />

s<br />

a<br />

L s<br />

b<br />

e<br />

r<br />

k<br />

t<br />

u<br />

a<br />

H<br />

r<br />

e<br />

z<br />

r<br />

a<br />

w<br />

h<br />

c<br />

s<br />

g<br />

n<br />

u<br />

n<br />

n<br />

e<br />

k<br />

r<br />

e<br />

h<br />

ü<br />

r<br />

F 4<br />

0<br />

/<br />

3<br />

0<br />

–<br />

2<br />

0<br />

/<br />

1<br />

1<br />

1<br />

C<br />

.<br />

t<br />

p<br />

e<br />

D .<br />

I<br />

w<br />

a<br />

l<br />

s<br />

e<br />

i<br />

W<br />

.<br />

r<br />

D<br />

.<br />

f<br />

o<br />

r<br />

P<br />

i<br />

k<br />

c<br />

e<br />

z<br />

s<br />

u<br />

r<br />

G<br />

n<br />

e<br />

l<br />

o<br />

P<br />

,<br />

n<br />

i<br />

l<br />

b<br />

u<br />

L<br />

t<br />

ä<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U s<br />

l<br />

l<br />

y<br />

h<br />

p<br />

o<br />

h<br />

t<br />

n<br />

a<br />

X<br />

f<br />

o<br />

y<br />

p<br />

o<br />

c<br />

s<br />

o<br />

r<br />

t<br />

c<br />

e<br />

p<br />

S 3<br />

0<br />

/<br />

4<br />

0<br />

–<br />

3<br />

0<br />

/<br />

3<br />

0<br />

1<br />

C<br />

.<br />

t<br />

p<br />

e<br />

D i<br />

k<br />

d<br />

e<br />

i<br />

w<br />

z<br />

d<br />

e<br />

i<br />

N<br />

s<br />

u<br />

i<br />

r<br />

a<br />

D n<br />

e<br />

l<br />

o<br />

P<br />

,<br />

n<br />

i<br />

l<br />

b<br />

u<br />

L<br />

t<br />

ä<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U s<br />

l<br />

l<br />

y<br />

h<br />

p<br />

o<br />

h<br />

t<br />

n<br />

a<br />

X<br />

f<br />

o<br />

y<br />

p<br />

o<br />

c<br />

s<br />

o<br />

r<br />

t<br />

c<br />

e<br />

p<br />

S 3<br />

0<br />

/<br />

4<br />

0<br />

–<br />

3<br />

0<br />

/<br />

3<br />

0<br />

1<br />

C<br />

.<br />

t<br />

p<br />

e<br />

D r<br />

e<br />

l<br />

l<br />

i<br />

M<br />

e<br />

n<br />

y<br />

a<br />

w<br />

D<br />

.<br />

r<br />

D<br />

.<br />

f<br />

o<br />

r<br />

P a<br />

d<br />

a<br />

n<br />

a<br />

C<br />

,<br />

o<br />

t<br />

n<br />

o<br />

r<br />

o<br />

T<br />

f<br />

o<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U s<br />

d<br />

n<br />

o<br />

b<br />

n<br />

e<br />

g<br />

o<br />

r<br />

d<br />

y<br />

h<br />

f<br />

o<br />

s<br />

e<br />

i<br />

d<br />

u<br />

t<br />

s<br />

o<br />

h<br />

c<br />

e<br />

n<br />

o<br />

t<br />

o<br />

h<br />

p<br />

d<br />

e<br />

r<br />

a<br />

r<br />

f<br />

n<br />

I 3<br />

0<br />

/<br />

2<br />

1<br />

–<br />

3<br />

0<br />

/<br />

3<br />

0<br />

1<br />

C<br />

.<br />

t<br />

p<br />

e<br />

D d<br />

e<br />

m<br />

m<br />

a<br />

h<br />

o<br />

M<br />

r<br />

a<br />

m<br />

O n<br />

e<br />

t<br />

p<br />

y<br />

g<br />

Ä<br />

,<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U<br />

t<br />

u<br />

i<br />

s<br />

s<br />

A n<br />

e<br />

m<br />

e<br />

t<br />

s<br />

y<br />

S<br />

n<br />

e<br />

t<br />

k<br />

c<br />

ü<br />

r<br />

b<br />

r<br />

e<br />

v<br />

f<br />

f<br />

o<br />

t<br />

s<br />

r<br />

e<br />

s<br />

s<br />

a<br />

w<br />

n<br />

a<br />

e<br />

i<br />

m<br />

e<br />

h<br />

c<br />

o<br />

t<br />

m<br />

e<br />

F 6<br />

0<br />

/<br />

4<br />

0<br />

–<br />

2<br />

0<br />

/<br />

4<br />

0<br />

1<br />

C<br />

.<br />

t<br />

p<br />

e<br />

D a<br />

v<br />

o<br />

k<br />

d<br />

a<br />

l<br />

V<br />

a<br />

k<br />

d<br />

a<br />

R<br />

.<br />

r<br />

D a<br />

i<br />

r<br />

a<br />

g<br />

l<br />

u<br />

B<br />

,<br />

a<br />

i<br />

f<br />

o<br />

S<br />

,<br />

s<br />

e<br />

c<br />

n<br />

e<br />

i<br />

c<br />

S<br />

f<br />

o<br />

y<br />

m<br />

e<br />

d<br />

a<br />

c<br />

A n<br />

i<br />

n<br />

o<br />

i<br />

t<br />

c<br />

a<br />

r<br />

e<br />

t<br />

n<br />

i<br />

d<br />

i<br />

p<br />

i<br />

l<br />

-<br />

l<br />

l<br />

y<br />

h<br />

p<br />

o<br />

r<br />

o<br />

l<br />

h<br />

c<br />

f<br />

o<br />

y<br />

p<br />

o<br />

c<br />

s<br />

o<br />

r<br />

t<br />

c<br />

e<br />

p<br />

s<br />

r<br />

e<br />

s<br />

a<br />

L<br />

s<br />

e<br />

n<br />

a<br />

r<br />

b<br />

m<br />

e<br />

m<br />

c<br />

i<br />

t<br />

e<br />

h<br />

t<br />

n<br />

y<br />

s<br />

o<br />

t<br />

o<br />

h<br />

p<br />

3<br />

0<br />

/<br />

6<br />

0<br />

–<br />

3<br />

0<br />

/<br />

6<br />

0


87<br />

n<br />

i<br />

h<br />

t<br />

i<br />

w<br />

t<br />

s<br />

o<br />

H n<br />

i<br />

h<br />

t<br />

i<br />

w<br />

t<br />

s<br />

o<br />

H n<br />

i<br />

h<br />

t<br />

i<br />

w<br />

t<br />

s<br />

o<br />

H n<br />

i<br />

h<br />

t<br />

i<br />

w<br />

t<br />

s<br />

o<br />

H n<br />

i<br />

h<br />

t<br />

i<br />

w<br />

t<br />

s<br />

o<br />

H<br />

I<br />

B<br />

M<br />

e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N n<br />

o<br />

i<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

i<br />

e<br />

m<br />

o<br />

H n<br />

o<br />

i<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

i<br />

e<br />

m<br />

o<br />

H n<br />

o<br />

i<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

i<br />

e<br />

m<br />

o<br />

H n<br />

o<br />

i<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

i<br />

e<br />

m<br />

o<br />

H n<br />

o<br />

i<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

i<br />

e<br />

m<br />

o<br />

H n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T d<br />

o<br />

i<br />

r<br />

e<br />

P d<br />

o<br />

i<br />

r<br />

e<br />

P d<br />

o<br />

i<br />

r<br />

e<br />

P d<br />

o<br />

i<br />

r<br />

e<br />

P d<br />

o<br />

i<br />

r<br />

e<br />

P<br />

1<br />

C<br />

.<br />

t<br />

p<br />

e<br />

D n<br />

a<br />

m<br />

s<br />

U<br />

r<br />

a<br />

w<br />

n<br />

A<br />

.<br />

r<br />

D a<br />

i<br />

s<br />

y<br />

a<br />

l<br />

a<br />

M<br />

,<br />

s<br />

n<br />

i<br />

a<br />

S<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U d<br />

e<br />

s<br />

n<br />

e<br />

d<br />

n<br />

o<br />

C<br />

f<br />

o<br />

y<br />

p<br />

o<br />

c<br />

s<br />

o<br />

r<br />

t<br />

c<br />

e<br />

p<br />

S<br />

d<br />

e<br />

r<br />

a<br />

r<br />

f<br />

n<br />

I<br />

-<br />

d<br />

i<br />

M<br />

d<br />

n<br />

o<br />

c<br />

e<br />

s<br />

o<br />

t<br />

m<br />

e<br />

F<br />

d<br />

e<br />

d<br />

n<br />

o<br />

B<br />

-<br />

n<br />

e<br />

g<br />

o<br />

r<br />

d<br />

y<br />

H<br />

r<br />

a<br />

l<br />

u<br />

c<br />

e<br />

l<br />

o<br />

m<br />

r<br />

e<br />

t<br />

n<br />

I<br />

d<br />

n<br />

a<br />

a<br />

r<br />

t<br />

n<br />

I<br />

e<br />

s<br />

a<br />

h<br />

P<br />

s<br />

m<br />

e<br />

t<br />

s<br />

y<br />

S<br />

4<br />

0<br />

/<br />

6<br />

0<br />

–<br />

3<br />

0<br />

/<br />

6<br />

0<br />

1<br />

C<br />

.<br />

t<br />

p<br />

e<br />

D e<br />

z<br />

d<br />

i<br />

o<br />

k<br />

i<br />

h<br />

C<br />

.<br />

E<br />

.<br />

r<br />

D a<br />

i<br />

g<br />

r<br />

o<br />

e<br />

G<br />

,<br />

s<br />

i<br />

l<br />

f<br />

i<br />

T<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U e<br />

a<br />

n<br />

n<br />

e<br />

t<br />

n<br />

a<br />

c<br />

i<br />

t<br />

e<br />

h<br />

t<br />

n<br />

y<br />

s<br />

o<br />

t<br />

o<br />

h<br />

P 3<br />

0<br />

/<br />

6<br />

0<br />

–<br />

3<br />

0<br />

/<br />

6<br />

0<br />

1<br />

C<br />

.<br />

t<br />

p<br />

e<br />

D a<br />

v<br />

o<br />

n<br />

u<br />

k<br />

i<br />

r<br />

K<br />

a<br />

i<br />

r<br />

a<br />

M e<br />

t<br />

a<br />

t<br />

S<br />

w<br />

o<br />

c<br />

s<br />

o<br />

M<br />

,<br />

e<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

I<br />

-<br />

j<br />

i<br />

k<br />

s<br />

r<br />

e<br />

z<br />

o<br />

l<br />

e<br />

B<br />

a<br />

i<br />

s<br />

s<br />

u<br />

R<br />

,<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U<br />

s<br />

e<br />

x<br />

e<br />

l<br />

p<br />

m<br />

o<br />

c<br />

n<br />

i<br />

e<br />

t<br />

o<br />

r<br />

p<br />

-<br />

l<br />

l<br />

y<br />

h<br />

p<br />

o<br />

r<br />

o<br />

l<br />

h<br />

c<br />

t<br />

a<br />

y<br />

p<br />

o<br />

c<br />

s<br />

o<br />

r<br />

t<br />

c<br />

e<br />

p<br />

s<br />

r<br />

e<br />

s<br />

a<br />

L 3<br />

0<br />

/<br />

5<br />

0<br />

–<br />

3<br />

0<br />

/<br />

1<br />

0<br />

1<br />

C<br />

.<br />

t<br />

p<br />

e<br />

D r<br />

e<br />

n<br />

n<br />

u<br />

r<br />

B<br />

y<br />

r<br />

r<br />

a<br />

B a<br />

d<br />

a<br />

n<br />

a<br />

C<br />

,<br />

o<br />

t<br />

n<br />

o<br />

r<br />

o<br />

T<br />

f<br />

o<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U -<br />

o<br />

h<br />

c<br />

E<br />

-<br />

n<br />

o<br />

t<br />

o<br />

h<br />

P<br />

n<br />

e<br />

l<br />

i<br />

b<br />

a<br />

t<br />

s<br />

-<br />

n<br />

e<br />

s<br />

a<br />

h<br />

P<br />

s<br />

e<br />

n<br />

i<br />

e<br />

u<br />

a<br />

b<br />

f<br />

u<br />

A<br />

n<br />

o<br />

i<br />

t<br />

k<br />

e<br />

t<br />

e<br />

D<br />

r<br />

e<br />

n<br />

y<br />

d<br />

o<br />

r<br />

e<br />

t<br />

e<br />

h<br />

t<br />

i<br />

m<br />

s<br />

t<br />

n<br />

e<br />

m<br />

i<br />

r<br />

e<br />

p<br />

x<br />

E<br />

3<br />

0<br />

/<br />

8<br />

0<br />

–<br />

3<br />

0<br />

/<br />

7<br />

0<br />

3<br />

0<br />

/<br />

2<br />

1<br />

–<br />

3<br />

0<br />

/<br />

1<br />

1<br />

1<br />

C<br />

.<br />

t<br />

p<br />

e<br />

D n<br />

a<br />

w<br />

o<br />

C<br />

l<br />

e<br />

a<br />

h<br />

c<br />

i<br />

M<br />

.<br />

r<br />

D a<br />

d<br />

a<br />

n<br />

a<br />

C<br />

,<br />

o<br />

t<br />

n<br />

o<br />

r<br />

o<br />

T<br />

f<br />

o<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U -<br />

o<br />

h<br />

c<br />

E<br />

-<br />

n<br />

o<br />

t<br />

o<br />

h<br />

P<br />

n<br />

e<br />

l<br />

i<br />

b<br />

a<br />

t<br />

s<br />

-<br />

n<br />

e<br />

s<br />

a<br />

h<br />

P<br />

s<br />

e<br />

n<br />

i<br />

e<br />

u<br />

a<br />

b<br />

f<br />

u<br />

A<br />

s<br />

t<br />

n<br />

e<br />

m<br />

i<br />

r<br />

e<br />

p<br />

x<br />

E<br />

3<br />

0<br />

/<br />

8<br />

–<br />

3<br />

0<br />

/<br />

7<br />

0<br />

3<br />

0<br />

/<br />

2<br />

1<br />

–<br />

3<br />

0<br />

/<br />

1<br />

1<br />

1<br />

C<br />

.<br />

t<br />

p<br />

e<br />

D s<br />

t<br />

i<br />

h<br />

s<br />

t<br />

d<br />

o<br />

V<br />

r<br />

e<br />

d<br />

n<br />

a<br />

x<br />

e<br />

l<br />

A<br />

.<br />

r<br />

D ,<br />

s<br />

e<br />

c<br />

n<br />

e<br />

i<br />

c<br />

S<br />

f<br />

o<br />

y<br />

m<br />

e<br />

d<br />

a<br />

c<br />

A<br />

l<br />

a<br />

n<br />

o<br />

i<br />

t<br />

a<br />

N<br />

s<br />

u<br />

r<br />

o<br />

l<br />

e<br />

B<br />

,<br />

k<br />

s<br />

n<br />

i<br />

M<br />

e<br />

s<br />

l<br />

u<br />

p<br />

m<br />

i<br />

r<br />

e<br />

s<br />

a<br />

L<br />

e<br />

z<br />

r<br />

u<br />

k<br />

a<br />

r<br />

t<br />

l<br />

u<br />

r<br />

ü<br />

f<br />

r<br />

e<br />

l<br />

d<br />

n<br />

a<br />

w<br />

z<br />

n<br />

e<br />

u<br />

q<br />

e<br />

r<br />

F<br />

-<br />

S<br />

R<br />

S 3<br />

0<br />

/<br />

0<br />

1<br />

–<br />

3<br />

0<br />

/<br />

9<br />

0<br />

2<br />

C<br />

.<br />

t<br />

p<br />

e<br />

D a<br />

n<br />

i<br />

b<br />

i<br />

k<br />

S<br />

a<br />

i<br />

l<br />

u<br />

J a<br />

i<br />

s<br />

s<br />

u<br />

R<br />

.<br />

v<br />

o<br />

t<br />

a<br />

r<br />

a<br />

S<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U s<br />

r<br />

e<br />

b<br />

i<br />

F<br />

y<br />

e<br />

l<br />

o<br />

H<br />

n<br />

i<br />

g<br />

n<br />

u<br />

t<br />

i<br />

e<br />

l<br />

t<br />

h<br />

c<br />

i<br />

L<br />

r<br />

e<br />

d<br />

g<br />

n<br />

u<br />

h<br />

c<br />

u<br />

s<br />

r<br />

e<br />

t<br />

n<br />

U 3<br />

0<br />

/<br />

2<br />

0<br />

–<br />

3<br />

0<br />

/<br />

1<br />

0<br />

3<br />

0<br />

/<br />

7<br />

0<br />

–<br />

3<br />

0<br />

/<br />

6<br />

0<br />

2<br />

C<br />

.<br />

t<br />

p<br />

e<br />

D s<br />

i<br />

k<br />

s<br />

t<br />

o<br />

s<br />

y<br />

V<br />

i<br />

r<br />

t<br />

i<br />

m<br />

D d<br />

n<br />

a<br />

n<br />

o<br />

i<br />

t<br />

a<br />

v<br />

o<br />

n<br />

n<br />

I<br />

r<br />

o<br />

f<br />

e<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

I<br />

k<br />

s<br />

t<br />

i<br />

o<br />

r<br />

T<br />

a<br />

i<br />

s<br />

s<br />

u<br />

R<br />

,<br />

h<br />

c<br />

r<br />

a<br />

e<br />

s<br />

e<br />

R<br />

n<br />

o<br />

i<br />

s<br />

u<br />

F<br />

s<br />

r<br />

e<br />

s<br />

a<br />

l<br />

r<br />

e<br />

b<br />

i<br />

f<br />

e<br />

r<br />

o<br />

c<br />

i<br />

t<br />

l<br />

u<br />

m<br />

f<br />

o<br />

g<br />

n<br />

i<br />

k<br />

c<br />

o<br />

l<br />

e<br />

s<br />

a<br />

h<br />

P 3<br />

0<br />

/<br />

2<br />

0<br />

–<br />

3<br />

0<br />

/<br />

1<br />

0<br />

2<br />

C<br />

.<br />

t<br />

p<br />

e<br />

D v<br />

e<br />

a<br />

l<br />

a<br />

l<br />

a<br />

T<br />

m<br />

i<br />

d<br />

a<br />

V<br />

.<br />

r<br />

D ,<br />

g<br />

r<br />

u<br />

b<br />

s<br />

r<br />

e<br />

t<br />

e<br />

P<br />

t<br />

k<br />

n<br />

a<br />

S<br />

,<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U<br />

e<br />

t<br />

a<br />

t<br />

S<br />

a<br />

i<br />

s<br />

s<br />

u<br />

R<br />

n<br />

o<br />

s<br />

t<br />

n<br />

e<br />

m<br />

e<br />

r<br />

u<br />

s<br />

a<br />

e<br />

m<br />

e<br />

c<br />

n<br />

e<br />

c<br />

s<br />

e<br />

n<br />

i<br />

m<br />

u<br />

l<br />

e<br />

m<br />

i<br />

t<br />

t<br />

r<br />

o<br />

h<br />

S<br />

s<br />

e<br />

r<br />

u<br />

t<br />

c<br />

u<br />

r<br />

t<br />

s<br />

r<br />

o<br />

t<br />

c<br />

u<br />

d<br />

n<br />

o<br />

c<br />

i<br />

m<br />

e<br />

s<br />

4<br />

0<br />

/<br />

2<br />

1<br />

–<br />

3<br />

0<br />

/<br />

1<br />

0<br />

2<br />

C<br />

.<br />

t<br />

p<br />

e<br />

D w<br />

o<br />

n<br />

s<br />

a<br />

j<br />

r<br />

G<br />

j<br />

e<br />

x<br />

e<br />

l<br />

A a<br />

n<br />

e<br />

J<br />

,<br />

U<br />

S<br />

F r<br />

o<br />

t<br />

a<br />

l<br />

l<br />

i<br />

z<br />

s<br />

o<br />

r<br />

e<br />

b<br />

i<br />

f<br />

b<br />

Y<br />

d<br />

e<br />

h<br />

c<br />

o<br />

l<br />

e<br />

d<br />

o<br />

M 3<br />

0<br />

/<br />

2<br />

0<br />

–<br />

3<br />

0<br />

/<br />

2<br />

0<br />

2<br />

C<br />

.<br />

t<br />

p<br />

e<br />

D n<br />

a<br />

r<br />

T<br />

c<br />

o<br />

u<br />

Q<br />

n<br />

e<br />

i<br />

T ,<br />

l<br />

u<br />

o<br />

e<br />

S<br />

;<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U<br />

l<br />

a<br />

n<br />

o<br />

i<br />

t<br />

a<br />

N<br />

l<br />

u<br />

o<br />

e<br />

S<br />

a<br />

e<br />

r<br />

o<br />

K<br />

s<br />

e<br />

r<br />

u<br />

t<br />

c<br />

u<br />

r<br />

t<br />

s<br />

r<br />

o<br />

t<br />

c<br />

u<br />

d<br />

n<br />

o<br />

c<br />

i<br />

m<br />

e<br />

s<br />

f<br />

o<br />

n<br />

o<br />

i<br />

t<br />

a<br />

s<br />

i<br />

r<br />

e<br />

z<br />

c<br />

a<br />

r<br />

a<br />

h<br />

C 6<br />

0<br />

/<br />

2<br />

0<br />

–<br />

3<br />

0<br />

/<br />

2<br />

0<br />

2<br />

C<br />

.<br />

t<br />

p<br />

e<br />

D i<br />

h<br />

T<br />

m<br />

a<br />

h<br />

P<br />

u<br />

a<br />

h<br />

C<br />

h<br />

n<br />

i<br />

M<br />

.<br />

r<br />

D s<br />

e<br />

c<br />

n<br />

e<br />

i<br />

c<br />

S<br />

l<br />

a<br />

r<br />

u<br />

t<br />

a<br />

N<br />

r<br />

o<br />

f<br />

r<br />

e<br />

t<br />

n<br />

e<br />

C<br />

l<br />

a<br />

n<br />

o<br />

i<br />

t<br />

a<br />

N<br />

y<br />

g<br />

o<br />

l<br />

o<br />

n<br />

h<br />

c<br />

e<br />

T<br />

d<br />

n<br />

a<br />

n<br />

e<br />

h<br />

c<br />

s<br />

i<br />

n<br />

o<br />

r<br />

t<br />

k<br />

e<br />

l<br />

e<br />

o<br />

t<br />

p<br />

o<br />

n<br />

a<br />

n<br />

e<br />

g<br />

n<br />

u<br />

s<br />

s<br />

e<br />

m<br />

s<br />

n<br />

o<br />

i<br />

s<br />

s<br />

i<br />

m<br />

s<br />

n<br />

a<br />

r<br />

T<br />

n<br />

e<br />

i<br />

l<br />

a<br />

i<br />

r<br />

e<br />

t<br />

a<br />

M<br />

3<br />

0<br />

/<br />

6<br />

0<br />

–<br />

3<br />

0<br />

/<br />

6<br />

0<br />

2<br />

C<br />

.<br />

t<br />

p<br />

e<br />

D r<br />

a<br />

n<br />

z<br />

A<br />

a<br />

n<br />

A 3<br />

0<br />

/<br />

2<br />

1<br />

–<br />

3<br />

0<br />

/<br />

2<br />

1


88<br />

n<br />

i<br />

h<br />

t<br />

i<br />

w<br />

t<br />

s<br />

o<br />

H n<br />

i<br />

h<br />

t<br />

i<br />

w<br />

t<br />

s<br />

o<br />

H n<br />

i<br />

h<br />

t<br />

i<br />

w<br />

t<br />

s<br />

o<br />

H n<br />

i<br />

h<br />

t<br />

i<br />

w<br />

t<br />

s<br />

o<br />

H n<br />

i<br />

h<br />

t<br />

i<br />

w<br />

t<br />

s<br />

o<br />

H<br />

I<br />

B<br />

M<br />

e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N n<br />

o<br />

i<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

i<br />

e<br />

m<br />

o<br />

H n<br />

o<br />

i<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

i<br />

e<br />

m<br />

o<br />

H n<br />

o<br />

i<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

i<br />

e<br />

m<br />

o<br />

H n<br />

o<br />

i<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

i<br />

e<br />

m<br />

o<br />

H n<br />

o<br />

i<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

i<br />

e<br />

m<br />

o<br />

H n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T d<br />

o<br />

i<br />

r<br />

e<br />

P d<br />

o<br />

i<br />

r<br />

e<br />

P d<br />

o<br />

i<br />

r<br />

e<br />

P d<br />

o<br />

i<br />

r<br />

e<br />

P d<br />

o<br />

i<br />

r<br />

e<br />

P<br />

3<br />

C<br />

.<br />

t<br />

p<br />

e<br />

D n<br />

e<br />

k<br />

A<br />

n<br />

a<br />

v<br />

s<br />

a<br />

B K<br />

U<br />

,<br />

e<br />

g<br />

d<br />

i<br />

r<br />

b<br />

m<br />

a<br />

C<br />

f<br />

o<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U n<br />

o<br />

v<br />

k<br />

i<br />

m<br />

a<br />

n<br />

y<br />

d<br />

s<br />

g<br />

n<br />

u<br />

r<br />

e<br />

i<br />

s<br />

i<br />

t<br />

e<br />

n<br />

g<br />

a<br />

M<br />

e<br />

l<br />

l<br />

e<br />

n<br />

h<br />

c<br />

s<br />

a<br />

r<br />

t<br />

l<br />

U<br />

n<br />

e<br />

t<br />

e<br />

n<br />

g<br />

a<br />

m<br />

o<br />

r<br />

e<br />

e<br />

f<br />

i<br />

t<br />

n<br />

A<br />

3<br />

0<br />

/<br />

4<br />

0<br />

-<br />

3<br />

0<br />

/<br />

3<br />

0<br />

3<br />

C<br />

.<br />

t<br />

p<br />

e<br />

D s<br />

u<br />

i<br />

c<br />

i<br />

v<br />

e<br />

k<br />

n<br />

i<br />

c<br />

r<br />

a<br />

M<br />

.<br />

r<br />

D n<br />

e<br />

d<br />

e<br />

w<br />

S<br />

,<br />

m<br />

l<br />

o<br />

h<br />

k<br />

c<br />

o<br />

t<br />

S<br />

,<br />

m<br />

l<br />

o<br />

h<br />

k<br />

c<br />

o<br />

t<br />

S<br />

H<br />

T<br />

K f<br />

o<br />

y<br />

p<br />

o<br />

c<br />

s<br />

o<br />

r<br />

c<br />

i<br />

m<br />

d<br />

l<br />

e<br />

i<br />

f<br />

-<br />

r<br />

a<br />

e<br />

n<br />

e<br />

r<br />

u<br />

t<br />

a<br />

r<br />

e<br />

p<br />

m<br />

e<br />

t<br />

w<br />

o<br />

L<br />

s<br />

e<br />

r<br />

u<br />

t<br />

u<br />

r<br />

t<br />

s<br />

o<br />

n<br />

a<br />

n<br />

g<br />

n<br />

i<br />

t<br />

c<br />

u<br />

d<br />

n<br />

o<br />

c<br />

i<br />

m<br />

e<br />

s<br />

3<br />

0<br />

/<br />

4<br />

0<br />

–<br />

3<br />

0<br />

/<br />

4<br />

0<br />

3<br />

C<br />

.<br />

t<br />

p<br />

e<br />

D t<br />

r<br />

e<br />

g<br />

e<br />

i<br />

S<br />

g<br />

r<br />

ö<br />

J n<br />

e<br />

d<br />

e<br />

w<br />

S<br />

,<br />

m<br />

l<br />

o<br />

h<br />

k<br />

c<br />

o<br />

t<br />

S<br />

,<br />

m<br />

l<br />

o<br />

h<br />

k<br />

c<br />

o<br />

t<br />

S<br />

H<br />

T<br />

K f<br />

o<br />

y<br />

p<br />

o<br />

c<br />

s<br />

o<br />

r<br />

c<br />

i<br />

m<br />

d<br />

l<br />

e<br />

i<br />

f<br />

-<br />

r<br />

a<br />

e<br />

n<br />

e<br />

r<br />

u<br />

t<br />

a<br />

r<br />

e<br />

p<br />

m<br />

e<br />

t<br />

w<br />

o<br />

L<br />

s<br />

e<br />

r<br />

u<br />

t<br />

u<br />

r<br />

t<br />

s<br />

o<br />

n<br />

a<br />

n<br />

g<br />

n<br />

i<br />

t<br />

c<br />

u<br />

d<br />

n<br />

o<br />

c<br />

i<br />

m<br />

e<br />

s<br />

3<br />

0<br />

/<br />

4<br />

0<br />

–<br />

3<br />

0<br />

/<br />

4<br />

0<br />

3<br />

C<br />

.<br />

t<br />

p<br />

e<br />

D a<br />

n<br />

n<br />

a<br />

H<br />

d<br />

i<br />

v<br />

a<br />

D<br />

.<br />

r<br />

D<br />

.<br />

f<br />

o<br />

r<br />

P K<br />

U<br />

,<br />

n<br />

a<br />

t<br />

p<br />

m<br />

a<br />

h<br />

t<br />

u<br />

o<br />

S<br />

f<br />

o<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U e<br />

h<br />

t<br />

n<br />

i<br />

s<br />

r<br />

o<br />

t<br />

a<br />

l<br />

l<br />

i<br />

c<br />

s<br />

o<br />

c<br />

i<br />

r<br />

t<br />

e<br />

m<br />

a<br />

r<br />

a<br />

p<br />

d<br />

e<br />

p<br />

m<br />

u<br />

p<br />

y<br />

l<br />

s<br />

u<br />

o<br />

n<br />

o<br />

r<br />

h<br />

c<br />

n<br />

y<br />

S<br />

d<br />

e<br />

r<br />

a<br />

r<br />

f<br />

n<br />

i<br />

-<br />

d<br />

i<br />

m<br />

d<br />

n<br />

a<br />

-<br />

r<br />

e<br />

a<br />

n<br />

3<br />

0<br />

/<br />

9<br />

0<br />

–<br />

3<br />

0<br />

/<br />

4<br />

0<br />

3<br />

C<br />

.<br />

t<br />

p<br />

e<br />

D h<br />

t<br />

i<br />

m<br />

S<br />

n<br />

a<br />

y<br />

R ,<br />

y<br />

g<br />

o<br />

l<br />

o<br />

n<br />

h<br />

c<br />

e<br />

T<br />

f<br />

o<br />

e<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

I<br />

a<br />

i<br />

g<br />

r<br />

o<br />

e<br />

G<br />

A<br />

S<br />

U<br />

,<br />

a<br />

t<br />

n<br />

a<br />

l<br />

t<br />

A<br />

e<br />

i<br />

p<br />

o<br />

k<br />

s<br />

o<br />

r<br />

t<br />

k<br />

e<br />

p<br />

S<br />

-<br />

z<br />

t<br />

r<br />

e<br />

h<br />

a<br />

r<br />

e<br />

T<br />

e<br />

r<br />

a<br />

e<br />

n<br />

i<br />

l<br />

t<br />

h<br />

c<br />

i<br />

N 3<br />

0<br />

/<br />

7<br />

0<br />

–<br />

3<br />

0<br />

/<br />

5<br />

0<br />

3<br />

C<br />

.<br />

t<br />

p<br />

e<br />

D h<br />

i<br />

h<br />

S<br />

a<br />

n<br />

i<br />

T ,<br />

a<br />

d<br />

i<br />

r<br />

o<br />

l<br />

F<br />

l<br />

a<br />

r<br />

t<br />

n<br />

e<br />

C<br />

f<br />

o<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U<br />

,<br />

L<br />

O<br />

E<br />

R<br />

C<br />

A<br />

S<br />

U<br />

e<br />

i<br />

p<br />

o<br />

k<br />

s<br />

o<br />

r<br />

t<br />

k<br />

e<br />

p<br />

S<br />

-<br />

z<br />

t<br />

r<br />

e<br />

h<br />

a<br />

r<br />

e<br />

T<br />

e<br />

r<br />

a<br />

e<br />

n<br />

i<br />

l<br />

t<br />

h<br />

c<br />

i<br />

N 3<br />

0<br />

/<br />

8<br />

0<br />

–<br />

3<br />

0<br />

/<br />

6<br />

0<br />

3<br />

C<br />

.<br />

t<br />

p<br />

e<br />

D k<br />

r<br />

a<br />

P<br />

e<br />

a<br />

J<br />

-<br />

o<br />

o<br />

D ,<br />

l<br />

u<br />

o<br />

e<br />

S<br />

,<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U<br />

l<br />

a<br />

n<br />

o<br />

i<br />

t<br />

a<br />

N<br />

l<br />

u<br />

o<br />

e<br />

S<br />

a<br />

e<br />

r<br />

o<br />

K<br />

s<br />

c<br />

i<br />

t<br />

p<br />

o<br />

-<br />

o<br />

a<br />

n<br />

a<br />

n<br />

n<br />

o<br />

m<br />

s<br />

a<br />

l<br />

p<br />

e<br />

c<br />

a<br />

f<br />

r<br />

u<br />

S 3<br />

0<br />

/<br />

5<br />

0<br />

–<br />

3<br />

0<br />

/<br />

2<br />

0<br />

4<br />

0<br />

/<br />

3<br />

0<br />

–<br />

3<br />

0<br />

/<br />

2<br />

1<br />

3<br />

C<br />

.<br />

t<br />

p<br />

e<br />

D r<br />

e<br />

l<br />

l<br />

e<br />

u<br />

M<br />

s<br />

a<br />

m<br />

o<br />

h<br />

T a<br />

i<br />

r<br />

t<br />

s<br />

u<br />

A<br />

,<br />

a<br />

n<br />

n<br />

e<br />

i<br />

V<br />

,<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U<br />

l<br />

a<br />

c<br />

i<br />

n<br />

h<br />

c<br />

e<br />

T s<br />

r<br />

e<br />

s<br />

a<br />

l<br />

e<br />

d<br />

a<br />

c<br />

s<br />

a<br />

c<br />

m<br />

u<br />

t<br />

n<br />

a<br />

u<br />

q<br />

f<br />

o<br />

s<br />

c<br />

i<br />

m<br />

a<br />

n<br />

y<br />

d<br />

t<br />

s<br />

a<br />

f<br />

a<br />

r<br />

t<br />

l<br />

U 3<br />

0<br />

/<br />

8<br />

0<br />

–<br />

3<br />

0<br />

/<br />

8<br />

0<br />

3<br />

C<br />

.<br />

t<br />

p<br />

e<br />

D i<br />

l<br />

l<br />

o<br />

P<br />

o<br />

i<br />

r<br />

a<br />

D y<br />

l<br />

a<br />

t<br />

I<br />

,<br />

o<br />

n<br />

a<br />

l<br />

i<br />

M<br />

i<br />

d<br />

o<br />

c<br />

i<br />

c<br />

e<br />

t<br />

i<br />

l<br />

o<br />

P f<br />

o<br />

y<br />

p<br />

o<br />

c<br />

s<br />

o<br />

r<br />

t<br />

c<br />

e<br />

p<br />

s<br />

d<br />

l<br />

e<br />

i<br />

f<br />

-<br />

r<br />

e<br />

a<br />

n<br />

d<br />

n<br />

o<br />

c<br />

e<br />

s<br />

o<br />

t<br />

m<br />

e<br />

F<br />

s<br />

r<br />

e<br />

m<br />

y<br />

l<br />

o<br />

p<br />

g<br />

n<br />

i<br />

t<br />

c<br />

u<br />

d<br />

n<br />

o<br />

c<br />

i<br />

m<br />

e<br />

s<br />

3<br />

0<br />

/<br />

9<br />

0<br />

–<br />

3<br />

0<br />

/<br />

9<br />

0<br />

3<br />

0<br />

/<br />

1<br />

1<br />

–<br />

3<br />

0<br />

/<br />

1<br />

1<br />

3<br />

C<br />

.<br />

t<br />

p<br />

e<br />

D l<br />

r<br />

e<br />

b<br />

ö<br />

B<br />

a<br />

l<br />

e<br />

a<br />

h<br />

c<br />

i<br />

M ,<br />

z<br />

n<br />

i<br />

L<br />

,<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U<br />

r<br />

e<br />

l<br />

p<br />

e<br />

K<br />

s<br />

e<br />

n<br />

n<br />

a<br />

h<br />

o<br />

J<br />

a<br />

i<br />

r<br />

t<br />

s<br />

u<br />

A<br />

t<br />

l<br />

a<br />

s<br />

d<br />

a<br />

e<br />

l<br />

g<br />

n<br />

i<br />

t<br />

t<br />

i<br />

m<br />

e<br />

d<br />

e<br />

r<br />

a<br />

r<br />

f<br />

n<br />

i<br />

-<br />

d<br />

i<br />

m<br />

f<br />

o<br />

s<br />

c<br />

i<br />

m<br />

a<br />

n<br />

y<br />

d<br />

t<br />

s<br />

a<br />

f<br />

a<br />

r<br />

t<br />

l<br />

U<br />

s<br />

r<br />

e<br />

s<br />

a<br />

l<br />

3<br />

0<br />

/<br />

1<br />

1<br />

–<br />

3<br />

0<br />

/<br />

0<br />

1<br />

3<br />

C<br />

.<br />

t<br />

p<br />

e<br />

D e<br />

k<br />

n<br />

e<br />

a<br />

r<br />

m<br />

o<br />

P<br />

t<br />

r<br />

e<br />

b<br />

o<br />

R n<br />

i<br />

l<br />

r<br />

e<br />

B<br />

,<br />

U<br />

H n<br />

o<br />

v<br />

e<br />

i<br />

p<br />

o<br />

k<br />

s<br />

o<br />

r<br />

t<br />

k<br />

e<br />

p<br />

s<br />

z<br />

n<br />

e<br />

z<br />

s<br />

e<br />

n<br />

i<br />

m<br />

u<br />

l<br />

o<br />

t<br />

o<br />

h<br />

P<br />

n<br />

e<br />

t<br />

h<br />

ä<br />

r<br />

d<br />

n<br />

e<br />

t<br />

n<br />

a<br />

u<br />

q<br />

r<br />

e<br />

t<br />

i<br />

e<br />

l<br />

b<br />

l<br />

a<br />

H<br />

3<br />

0<br />

/<br />

2<br />

1<br />

–<br />

3<br />

0<br />

/<br />

0<br />

1<br />

3<br />

C<br />

.<br />

t<br />

p<br />

e<br />

D o<br />

u<br />

L<br />

i<br />

e<br />

W<br />

-<br />

h<br />

i<br />

h<br />

C ,<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U<br />

g<br />

n<br />

u<br />

T<br />

o<br />

a<br />

i<br />

h<br />

C<br />

l<br />

a<br />

n<br />

o<br />

i<br />

t<br />

a<br />

N<br />

n<br />

a<br />

w<br />

i<br />

a<br />

T<br />

,<br />

u<br />

h<br />

c<br />

n<br />

i<br />

s<br />

H<br />

s<br />

m<br />

l<br />

i<br />

f<br />

n<br />

i<br />

h<br />

t<br />

f<br />

o<br />

s<br />

c<br />

i<br />

m<br />

a<br />

n<br />

y<br />

d<br />

d<br />

e<br />

r<br />

a<br />

r<br />

f<br />

n<br />

i<br />

-<br />

d<br />

i<br />

m<br />

t<br />

s<br />

a<br />

f<br />

a<br />

r<br />

t<br />

l<br />

U 3<br />

0<br />

/<br />

6<br />

0<br />

–<br />

2<br />

0<br />

/<br />

1<br />

1<br />

3<br />

C<br />

.<br />

t<br />

p<br />

e<br />

D m<br />

i<br />

K<br />

n<br />

u<br />

E<br />

n<br />

i<br />

J ,<br />

l<br />

u<br />

o<br />

e<br />

S<br />

,<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U<br />

l<br />

a<br />

n<br />

o<br />

i<br />

t<br />

a<br />

N<br />

l<br />

u<br />

o<br />

e<br />

S<br />

a<br />

e<br />

r<br />

o<br />

K<br />

r<br />

o<br />

t<br />

c<br />

u<br />

d<br />

n<br />

o<br />

c<br />

i<br />

m<br />

e<br />

s<br />

-<br />

l<br />

a<br />

t<br />

e<br />

m<br />

d<br />

e<br />

l<br />

p<br />

u<br />

o<br />

c<br />

f<br />

o<br />

y<br />

p<br />

o<br />

c<br />

s<br />

o<br />

r<br />

t<br />

c<br />

e<br />

p<br />

S<br />

s<br />

e<br />

r<br />

u<br />

t<br />

c<br />

u<br />

r<br />

t<br />

s<br />

o<br />

n<br />

a<br />

n<br />

4<br />

0<br />

/<br />

2<br />

0<br />

–<br />

3<br />

0<br />

/<br />

1<br />

1


89<br />

D. Users of Application Laboratories<br />

D1. Femtosecond Application Laboratory<br />

n<br />

i<br />

h<br />

t<br />

i<br />

w<br />

t<br />

s<br />

o<br />

H n<br />

i<br />

h<br />

t<br />

i<br />

w<br />

t<br />

s<br />

o<br />

H n<br />

i<br />

h<br />

t<br />

i<br />

w<br />

t<br />

s<br />

o<br />

H n<br />

i<br />

h<br />

t<br />

i<br />

w<br />

t<br />

s<br />

o<br />

H n<br />

i<br />

h<br />

t<br />

i<br />

w<br />

t<br />

s<br />

o<br />

H<br />

I<br />

B<br />

M<br />

e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N n<br />

o<br />

i<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

i<br />

e<br />

m<br />

o<br />

H n<br />

o<br />

i<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

i<br />

e<br />

m<br />

o<br />

H n<br />

o<br />

i<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

i<br />

e<br />

m<br />

o<br />

H n<br />

o<br />

i<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

i<br />

e<br />

m<br />

o<br />

H n<br />

o<br />

i<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

i<br />

e<br />

m<br />

o<br />

H n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T d<br />

o<br />

i<br />

r<br />

e<br />

P d<br />

o<br />

i<br />

r<br />

e<br />

P d<br />

o<br />

i<br />

r<br />

e<br />

P d<br />

o<br />

i<br />

r<br />

e<br />

P d<br />

o<br />

i<br />

r<br />

e<br />

P<br />

1<br />

A<br />

.<br />

t<br />

p<br />

e<br />

D v<br />

o<br />

t<br />

s<br />

o<br />

K<br />

r<br />

i<br />

m<br />

i<br />

s<br />

s<br />

a<br />

r<br />

K<br />

.<br />

r<br />

D ,<br />

s<br />

e<br />

c<br />

n<br />

e<br />

i<br />

c<br />

s<br />

f<br />

o<br />

y<br />

i<br />

m<br />

e<br />

d<br />

a<br />

k<br />

A<br />

n<br />

a<br />

i<br />

r<br />

a<br />

g<br />

l<br />

u<br />

B<br />

a<br />

i<br />

f<br />

o<br />

S<br />

)<br />

1<br />

0<br />

0<br />

0<br />

(<br />

u<br />

R<br />

f<br />

o<br />

n<br />

o<br />

i<br />

t<br />

p<br />

r<br />

o<br />

s<br />

d<br />

a<br />

r<br />

a<br />

l<br />

u<br />

c<br />

e<br />

l<br />

o<br />

M s<br />

k<br />

e<br />

e<br />

w<br />

3<br />

3<br />

A<br />

.<br />

t<br />

p<br />

e<br />

D n<br />

i<br />

t<br />

r<br />

a<br />

M<br />

.<br />

r<br />

D<br />

.<br />

f<br />

o<br />

r<br />

P<br />

n<br />

o<br />

e<br />

s<br />

d<br />

r<br />

a<br />

h<br />

c<br />

i<br />

R<br />

,<br />

a<br />

d<br />

i<br />

r<br />

o<br />

l<br />

F<br />

l<br />

a<br />

r<br />

t<br />

n<br />

e<br />

C<br />

f<br />

o<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U<br />

,<br />

L<br />

O<br />

E<br />

R<br />

C<br />

A<br />

S<br />

U<br />

n<br />

o<br />

i<br />

t<br />

a<br />

c<br />

i<br />

l<br />

p<br />

p<br />

a<br />

t<br />

s<br />

i<br />

d<br />

n<br />

a<br />

s<br />

e<br />

c<br />

r<br />

u<br />

o<br />

s<br />

y<br />

a<br />

r<br />

X<br />

e<br />

t<br />

a<br />

r<br />

n<br />

o<br />

i<br />

t<br />

i<br />

t<br />

e<br />

p<br />

e<br />

r<br />

h<br />

g<br />

i<br />

H s<br />

k<br />

e<br />

e<br />

w<br />

3<br />

3<br />

A<br />

.<br />

t<br />

p<br />

e<br />

D n<br />

a<br />

i<br />

b<br />

a<br />

F<br />

.<br />

r<br />

D<br />

.<br />

f<br />

o<br />

r<br />

P<br />

d<br />

n<br />

u<br />

m<br />

r<br />

e<br />

t<br />

o<br />

R<br />

a<br />

e<br />

r<br />

o<br />

K<br />

,<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U<br />

u<br />

o<br />

j<br />

A s<br />

l<br />

a<br />

t<br />

s<br />

y<br />

r<br />

c<br />

r<br />

a<br />

e<br />

n<br />

i<br />

l<br />

n<br />

o<br />

n<br />

e<br />

l<br />

o<br />

P s<br />

s<br />

k<br />

e<br />

e<br />

w<br />

2<br />

3<br />

A<br />

.<br />

t<br />

p<br />

e<br />

D a<br />

r<br />

a<br />

h<br />

i<br />

h<br />

s<br />

A<br />

i<br />

h<br />

s<br />

o<br />

t<br />

a<br />

S ,<br />

e<br />

c<br />

n<br />

e<br />

i<br />

c<br />

S<br />

l<br />

a<br />

i<br />

r<br />

t<br />

s<br />

u<br />

d<br />

n<br />

I<br />

f<br />

o<br />

e<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

I<br />

n<br />

a<br />

p<br />

a<br />

J<br />

,<br />

o<br />

y<br />

k<br />

o<br />

T<br />

f<br />

o<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U<br />

R<br />

I<br />

M<br />

e<br />

h<br />

t<br />

n<br />

i<br />

n<br />

o<br />

i<br />

t<br />

a<br />

z<br />

i<br />

r<br />

e<br />

t<br />

c<br />

a<br />

r<br />

a<br />

h<br />

c<br />

d<br />

n<br />

a<br />

n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

e<br />

n<br />

e<br />

g<br />

e<br />

s<br />

l<br />

u<br />

p<br />

-<br />

s<br />

F k<br />

e<br />

e<br />

w<br />

1<br />

3<br />

A<br />

.<br />

t<br />

p<br />

e<br />

D o<br />

k<br />

n<br />

e<br />

a<br />

s<br />

I<br />

.<br />

L<br />

.<br />

r<br />

D<br />

.<br />

f<br />

o<br />

r<br />

P k<br />

s<br />

r<br />

i<br />

b<br />

i<br />

s<br />

o<br />

v<br />

o<br />

N<br />

,<br />

S<br />

A<br />

R<br />

B<br />

S s<br />

R<br />

I<br />

M<br />

-<br />

s<br />

f<br />

e<br />

h<br />

t<br />

r<br />

o<br />

f<br />

s<br />

e<br />

t<br />

i<br />

r<br />

y<br />

p<br />

o<br />

c<br />

l<br />

a<br />

h<br />

c<br />

g<br />

n<br />

i<br />

n<br />

i<br />

a<br />

t<br />

n<br />

o<br />

c<br />

m<br />

u<br />

i<br />

h<br />

t<br />

i<br />

L s<br />

k<br />

e<br />

e<br />

w<br />

3<br />

3<br />

A<br />

.<br />

t<br />

p<br />

e<br />

D s<br />

o<br />

e<br />

t<br />

a<br />

M<br />

r<br />

e<br />

i<br />

v<br />

a<br />

J a<br />

n<br />

o<br />

g<br />

a<br />

r<br />

r<br />

a<br />

T<br />

,<br />

i<br />

l<br />

i<br />

g<br />

r<br />

i<br />

V<br />

i<br />

a<br />

r<br />

i<br />

v<br />

o<br />

R<br />

t<br />

a<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U r<br />

e<br />

s<br />

a<br />

l<br />

m<br />

u<br />

i<br />

l<br />

l<br />

u<br />

h<br />

T s<br />

k<br />

e<br />

e<br />

w<br />

2<br />

2<br />

C<br />

/<br />

3<br />

A<br />

.<br />

t<br />

p<br />

e<br />

D r<br />

a<br />

n<br />

z<br />

A<br />

a<br />

n<br />

A a<br />

n<br />

o<br />

g<br />

a<br />

r<br />

r<br />

a<br />

T<br />

,<br />

i<br />

l<br />

i<br />

g<br />

r<br />

i<br />

V<br />

i<br />

a<br />

r<br />

i<br />

v<br />

o<br />

R<br />

t<br />

a<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U r<br />

e<br />

s<br />

a<br />

l<br />

-<br />

b<br />

Y<br />

l<br />

a<br />

i<br />

x<br />

a<br />

t<br />

i<br />

p<br />

E s<br />

k<br />

e<br />

e<br />

w<br />

2<br />

3<br />

A<br />

.<br />

t<br />

p<br />

e<br />

D s<br />

a<br />

m<br />

u<br />

o<br />

d<br />

u<br />

o<br />

K<br />

l<br />

i<br />

u<br />

o<br />

n<br />

a<br />

m<br />

m<br />

E d<br />

n<br />

a<br />

e<br />

r<br />

u<br />

t<br />

c<br />

u<br />

r<br />

t<br />

S<br />

c<br />

i<br />

n<br />

o<br />

r<br />

t<br />

c<br />

e<br />

l<br />

E<br />

r<br />

o<br />

f<br />

e<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

I<br />

e<br />

c<br />

e<br />

e<br />

r<br />

G<br />

,<br />

n<br />

o<br />

i<br />

l<br />

k<br />

a<br />

r<br />

e<br />

H<br />

,<br />

r<br />

e<br />

s<br />

a<br />

L<br />

r<br />

e<br />

s<br />

a<br />

l<br />

y<br />

b<br />

e<br />

c<br />

u<br />

d<br />

o<br />

r<br />

p<br />

s<br />

m<br />

a<br />

e<br />

b<br />

n<br />

o<br />

i<br />

f<br />

o<br />

n<br />

o<br />

i<br />

t<br />

a<br />

z<br />

a<br />

m<br />

i<br />

t<br />

p<br />

o<br />

e<br />

v<br />

i<br />

t<br />

p<br />

a<br />

d<br />

A<br />

n<br />

o<br />

i<br />

t<br />

a<br />

l<br />

b<br />

a<br />

s<br />

k<br />

e<br />

e<br />

w<br />

2<br />

3<br />

A<br />

.<br />

t<br />

p<br />

e<br />

D i<br />

k<br />

a<br />

d<br />

i<br />

r<br />

y<br />

p<br />

S<br />

a<br />

i<br />

r<br />

a<br />

M d<br />

n<br />

a<br />

e<br />

r<br />

u<br />

t<br />

c<br />

u<br />

r<br />

t<br />

S<br />

c<br />

i<br />

n<br />

o<br />

r<br />

t<br />

c<br />

e<br />

l<br />

E<br />

r<br />

o<br />

f<br />

e<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

I<br />

e<br />

c<br />

e<br />

e<br />

r<br />

G<br />

,<br />

n<br />

o<br />

i<br />

l<br />

k<br />

a<br />

r<br />

e<br />

H<br />

,<br />

r<br />

e<br />

s<br />

a<br />

L<br />

r<br />

e<br />

s<br />

a<br />

l<br />

y<br />

b<br />

e<br />

c<br />

u<br />

d<br />

o<br />

r<br />

p<br />

s<br />

m<br />

a<br />

e<br />

b<br />

n<br />

o<br />

i<br />

f<br />

o<br />

n<br />

o<br />

i<br />

t<br />

a<br />

z<br />

a<br />

m<br />

i<br />

t<br />

p<br />

o<br />

e<br />

v<br />

i<br />

t<br />

p<br />

a<br />

d<br />

A<br />

n<br />

o<br />

i<br />

t<br />

a<br />

l<br />

b<br />

a<br />

s<br />

k<br />

e<br />

e<br />

w<br />

3<br />

3<br />

A<br />

.<br />

t<br />

p<br />

e<br />

D i<br />

s<br />

a<br />

n<br />

e<br />

k<br />

h<br />

s<br />

A<br />

.<br />

D<br />

.<br />

r<br />

D B<br />

T<br />

M<br />

L e<br />

m<br />

e<br />

l<br />

b<br />

o<br />

r<br />

p<br />

r<br />

e<br />

s<br />

a<br />

L<br />

e<br />

l<br />

l<br />

e<br />

i<br />

z<br />

e<br />

p<br />

S s<br />

k<br />

e<br />

e<br />

w<br />

8<br />

3<br />

A<br />

/<br />

1<br />

A<br />

.<br />

t<br />

p<br />

e<br />

D .<br />

R<br />

,<br />

d<br />

l<br />

a<br />

w<br />

h<br />

c<br />

u<br />

B<br />

.<br />

R<br />

,<br />

e<br />

l<br />

l<br />

i<br />

W<br />

.<br />

A<br />

f<br />

r<br />

o<br />

d<br />

n<br />

e<br />

u<br />

e<br />

N<br />

g<br />

r<br />

u<br />

b<br />

n<br />

e<br />

d<br />

l<br />

O<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U d<br />

P<br />

d<br />

e<br />

z<br />

i<br />

s<br />

o<br />

n<br />

a<br />

n<br />

n<br />

o<br />

s<br />

e<br />

g<br />

n<br />

a<br />

h<br />

c<br />

e<br />

t<br />

a<br />

b<br />

r<br />

o<br />

s<br />

d<br />

a<br />

d<br />

e<br />

c<br />

u<br />

d<br />

n<br />

i<br />

r<br />

e<br />

s<br />

a<br />

l<br />

-<br />

V<br />

U<br />

s<br />

e<br />

l<br />

c<br />

i<br />

t<br />

r<br />

a<br />

p<br />

s<br />

k<br />

e<br />

e<br />

w<br />

4<br />

3<br />

A<br />

/<br />

2<br />

A<br />

.<br />

t<br />

p<br />

e<br />

D .<br />

G<br />

,<br />

r<br />

e<br />

i<br />

e<br />

m<br />

e<br />

k<br />

n<br />

e<br />

i<br />

t<br />

S<br />

.<br />

F<br />

.<br />

r<br />

D<br />

n<br />

n<br />

a<br />

m<br />

l<br />

e<br />

p<br />

p<br />

o<br />

r<br />

D<br />

d<br />

l<br />

e<br />

f<br />

e<br />

l<br />

e<br />

i<br />

B<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U s<br />

k<br />

e<br />

e<br />

w<br />

5


90<br />

n<br />

i<br />

h<br />

t<br />

i<br />

w<br />

t<br />

s<br />

o<br />

H n<br />

i<br />

h<br />

t<br />

i<br />

w<br />

t<br />

s<br />

o<br />

H n<br />

i<br />

h<br />

t<br />

i<br />

w<br />

t<br />

s<br />

o<br />

H n<br />

i<br />

h<br />

t<br />

i<br />

w<br />

t<br />

s<br />

o<br />

H n<br />

i<br />

h<br />

t<br />

i<br />

w<br />

t<br />

s<br />

o<br />

H<br />

I<br />

B<br />

M<br />

e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N n<br />

o<br />

i<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

i<br />

e<br />

m<br />

o<br />

H n<br />

o<br />

i<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

i<br />

e<br />

m<br />

o<br />

H n<br />

o<br />

i<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

i<br />

e<br />

m<br />

o<br />

H n<br />

o<br />

i<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

i<br />

e<br />

m<br />

o<br />

H n<br />

o<br />

i<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

i<br />

e<br />

m<br />

o<br />

H n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T d<br />

o<br />

i<br />

r<br />

e<br />

P d<br />

o<br />

i<br />

r<br />

e<br />

P d<br />

o<br />

i<br />

r<br />

e<br />

P d<br />

o<br />

i<br />

r<br />

e<br />

P d<br />

o<br />

i<br />

r<br />

e<br />

P<br />

1<br />

C<br />

.<br />

t<br />

p<br />

e<br />

D r<br />

e<br />

d<br />

d<br />

i<br />

F<br />

k<br />

n<br />

e<br />

H<br />

.<br />

r<br />

D n<br />

e<br />

d<br />

e<br />

w<br />

S<br />

,<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U<br />

a<br />

l<br />

a<br />

s<br />

p<br />

p<br />

U g<br />

n<br />

i<br />

n<br />

e<br />

p<br />

o<br />

-<br />

g<br />

n<br />

i<br />

r<br />

e<br />

h<br />

t<br />

f<br />

o<br />

s<br />

e<br />

i<br />

d<br />

u<br />

t<br />

s<br />

l<br />

a<br />

n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

b<br />

i<br />

v<br />

d<br />

n<br />

o<br />

c<br />

e<br />

s<br />

o<br />

t<br />

m<br />

e<br />

F<br />

s<br />

n<br />

a<br />

r<br />

y<br />

p<br />

o<br />

r<br />

i<br />

p<br />

s<br />

f<br />

o<br />

s<br />

c<br />

i<br />

m<br />

a<br />

n<br />

y<br />

d<br />

n<br />

o<br />

i<br />

t<br />

c<br />

a<br />

e<br />

r<br />

k<br />

e<br />

e<br />

w<br />

1<br />

1<br />

C<br />

.<br />

t<br />

p<br />

e<br />

D r<br />

e<br />

n<br />

h<br />

c<br />

s<br />

u<br />

e<br />

T<br />

s<br />

u<br />

a<br />

l<br />

K<br />

.<br />

r<br />

D n<br />

i<br />

l<br />

r<br />

e<br />

B<br />

k<br />

i<br />

n<br />

h<br />

c<br />

e<br />

T<br />

r<br />

e<br />

s<br />

a<br />

L e<br />

c<br />

n<br />

e<br />

z<br />

s<br />

e<br />

r<br />

o<br />

u<br />

l<br />

f<br />

n<br />

i<br />

n<br />

a<br />

l<br />

e<br />

M s<br />

k<br />

e<br />

e<br />

w<br />

4<br />

3<br />

C<br />

.<br />

t<br />

p<br />

e<br />

D l<br />

r<br />

e<br />

b<br />

ö<br />

B<br />

a<br />

l<br />

e<br />

a<br />

h<br />

c<br />

i<br />

M ,<br />

z<br />

n<br />

i<br />

L<br />

,<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U<br />

r<br />

e<br />

l<br />

p<br />

e<br />

K<br />

s<br />

e<br />

n<br />

n<br />

a<br />

h<br />

o<br />

J<br />

a<br />

i<br />

r<br />

t<br />

s<br />

u<br />

A<br />

t<br />

l<br />

a<br />

s<br />

d<br />

a<br />

e<br />

l<br />

g<br />

n<br />

i<br />

t<br />

t<br />

i<br />

m<br />

e<br />

d<br />

e<br />

r<br />

a<br />

r<br />

f<br />

n<br />

i<br />

-<br />

d<br />

i<br />

m<br />

f<br />

o<br />

s<br />

c<br />

i<br />

m<br />

a<br />

n<br />

y<br />

d<br />

t<br />

s<br />

a<br />

f<br />

a<br />

r<br />

t<br />

l<br />

U<br />

s<br />

r<br />

e<br />

s<br />

a<br />

l<br />

s<br />

k<br />

e<br />

e<br />

w<br />

3<br />

3<br />

C<br />

.<br />

t<br />

p<br />

e<br />

D n<br />

e<br />

k<br />

A<br />

n<br />

a<br />

v<br />

s<br />

a<br />

B K<br />

U<br />

,<br />

e<br />

g<br />

d<br />

i<br />

r<br />

b<br />

m<br />

a<br />

C<br />

f<br />

o<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U n<br />

o<br />

v<br />

k<br />

i<br />

m<br />

a<br />

n<br />

y<br />

d<br />

s<br />

g<br />

n<br />

u<br />

r<br />

e<br />

i<br />

s<br />

i<br />

t<br />

e<br />

n<br />

g<br />

a<br />

M<br />

e<br />

l<br />

l<br />

e<br />

n<br />

h<br />

c<br />

s<br />

a<br />

r<br />

t<br />

l<br />

U<br />

n<br />

e<br />

t<br />

e<br />

n<br />

g<br />

a<br />

m<br />

o<br />

r<br />

r<br />

e<br />

f<br />

i<br />

t<br />

n<br />

A<br />

k<br />

e<br />

e<br />

w<br />

1<br />

3<br />

C<br />

.<br />

t<br />

p<br />

e<br />

D s<br />

u<br />

i<br />

c<br />

i<br />

v<br />

e<br />

k<br />

n<br />

i<br />

c<br />

r<br />

a<br />

M<br />

.<br />

r<br />

D n<br />

e<br />

d<br />

e<br />

w<br />

S<br />

,<br />

m<br />

l<br />

o<br />

h<br />

k<br />

c<br />

o<br />

t<br />

S<br />

,<br />

m<br />

l<br />

o<br />

h<br />

k<br />

c<br />

o<br />

t<br />

S<br />

H<br />

T<br />

K -<br />

i<br />

m<br />

e<br />

s<br />

f<br />

o<br />

y<br />

p<br />

o<br />

c<br />

s<br />

o<br />

r<br />

c<br />

i<br />

m<br />

d<br />

l<br />

e<br />

i<br />

f<br />

-<br />

r<br />

a<br />

e<br />

n<br />

e<br />

r<br />

u<br />

t<br />

a<br />

r<br />

e<br />

p<br />

m<br />

e<br />

t<br />

w<br />

o<br />

L<br />

s<br />

e<br />

r<br />

u<br />

t<br />

u<br />

r<br />

t<br />

s<br />

o<br />

n<br />

a<br />

n<br />

g<br />

n<br />

i<br />

t<br />

c<br />

u<br />

d<br />

n<br />

o<br />

c<br />

k<br />

e<br />

e<br />

w<br />

1<br />

3<br />

C<br />

.<br />

t<br />

p<br />

e<br />

D o<br />

l<br />

l<br />

u<br />

r<br />

e<br />

C<br />

o<br />

i<br />

l<br />

u<br />

i<br />

G<br />

.<br />

r<br />

D<br />

.<br />

f<br />

o<br />

r<br />

P<br />

i<br />

l<br />

l<br />

o<br />

P<br />

o<br />

i<br />

r<br />

a<br />

D<br />

y<br />

l<br />

a<br />

t<br />

I<br />

,<br />

o<br />

n<br />

a<br />

l<br />

i<br />

M<br />

i<br />

d<br />

o<br />

c<br />

i<br />

c<br />

e<br />

t<br />

i<br />

l<br />

o<br />

P f<br />

o<br />

y<br />

p<br />

o<br />

c<br />

s<br />

o<br />

r<br />

t<br />

c<br />

e<br />

p<br />

s<br />

d<br />

l<br />

e<br />

i<br />

f<br />

-<br />

r<br />

a<br />

e<br />

n<br />

d<br />

n<br />

o<br />

c<br />

e<br />

s<br />

o<br />

t<br />

m<br />

e<br />

F<br />

s<br />

r<br />

e<br />

m<br />

y<br />

l<br />

o<br />

p<br />

g<br />

n<br />

i<br />

t<br />

c<br />

u<br />

d<br />

n<br />

o<br />

c<br />

i<br />

m<br />

e<br />

s<br />

s<br />

k<br />

e<br />

e<br />

w<br />

4


91<br />

n<br />

i<br />

h<br />

t<br />

i<br />

w<br />

t<br />

s<br />

o<br />

H n<br />

i<br />

h<br />

t<br />

i<br />

w<br />

t<br />

s<br />

o<br />

H n<br />

i<br />

h<br />

t<br />

i<br />

w<br />

t<br />

s<br />

o<br />

H n<br />

i<br />

h<br />

t<br />

i<br />

w<br />

t<br />

s<br />

o<br />

H n<br />

i<br />

h<br />

t<br />

i<br />

w<br />

t<br />

s<br />

o<br />

H<br />

I<br />

B<br />

M<br />

e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N n<br />

o<br />

i<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

i<br />

e<br />

m<br />

o<br />

H n<br />

o<br />

i<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

i<br />

e<br />

m<br />

o<br />

H n<br />

o<br />

i<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

i<br />

e<br />

m<br />

o<br />

H n<br />

o<br />

i<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

i<br />

e<br />

m<br />

o<br />

H n<br />

o<br />

i<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

i<br />

e<br />

m<br />

o<br />

H n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T d<br />

o<br />

i<br />

r<br />

e<br />

P d<br />

o<br />

i<br />

r<br />

e<br />

P d<br />

o<br />

i<br />

r<br />

e<br />

P d<br />

o<br />

i<br />

r<br />

e<br />

P d<br />

o<br />

i<br />

r<br />

e<br />

P<br />

1<br />

B<br />

.<br />

t<br />

p<br />

e<br />

D r<br />

e<br />

l<br />

g<br />

i<br />

Z<br />

.<br />

A<br />

.<br />

f<br />

o<br />

r<br />

P w<br />

e<br />

r<br />

b<br />

e<br />

H<br />

,<br />

s<br />

c<br />

i<br />

s<br />

y<br />

h<br />

P<br />

f<br />

o<br />

e<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

I<br />

h<br />

a<br />

c<br />

a<br />

R<br />

l<br />

e<br />

a<br />

r<br />

s<br />

I<br />

,<br />

m<br />

e<br />

l<br />

a<br />

s<br />

u<br />

r<br />

e<br />

J<br />

f<br />

o<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U<br />

F<br />

I<br />

G<br />

t<br />

k<br />

e<br />

j<br />

o<br />

r<br />

P<br />

s<br />

e<br />

m<br />

a<br />

s<br />

n<br />

i<br />

e<br />

m<br />

e<br />

G s<br />

k<br />

e<br />

e<br />

w<br />

3<br />

1<br />

B<br />

.<br />

t<br />

p<br />

e<br />

D s<br />

d<br />

n<br />

e<br />

l<br />

l<br />

a<br />

T<br />

.<br />

G K<br />

U<br />

k<br />

r<br />

o<br />

Y<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U r<br />

e<br />

s<br />

a<br />

l<br />

n<br />

e<br />

g<br />

t<br />

n<br />

ö<br />

r<br />

t<br />

n<br />

m<br />

r<br />

e<br />

p<br />

x<br />

e<br />

s<br />

s<br />

e<br />

c<br />

c<br />

a<br />

E<br />

n<br />

e<br />

i<br />

p<br />

o<br />

r<br />

u<br />

E s<br />

k<br />

e<br />

e<br />

w<br />

4<br />

1<br />

B<br />

.<br />

t<br />

p<br />

e<br />

D k<br />

e<br />

r<br />

u<br />

z<br />

c<br />

z<br />

S<br />

.<br />

M<br />

.<br />

r<br />

D<br />

k<br />

y<br />

z<br />

c<br />

j<br />

a<br />

l<br />

o<br />

k<br />

M<br />

z<br />

s<br />

u<br />

n<br />

a<br />

J<br />

,<br />

w<br />

a<br />

z<br />

r<br />

a<br />

W<br />

,<br />

s<br />

c<br />

i<br />

n<br />

o<br />

r<br />

t<br />

c<br />

e<br />

l<br />

e<br />

o<br />

t<br />

p<br />

O<br />

f<br />

o<br />

e<br />

t<br />

u<br />

i<br />

t<br />

s<br />

n<br />

I<br />

d<br />

n<br />

a<br />

l<br />

o<br />

P<br />

r<br />

e<br />

s<br />

a<br />

l<br />

n<br />

e<br />

g<br />

t<br />

n<br />

ö<br />

R s<br />

k<br />

e<br />

e<br />

w<br />

4<br />

D2. High field laser laboratory


92<br />

n<br />

i<br />

h<br />

t<br />

i<br />

w<br />

t<br />

s<br />

o<br />

H n<br />

i<br />

h<br />

t<br />

i<br />

w<br />

t<br />

s<br />

o<br />

H n<br />

i<br />

h<br />

t<br />

i<br />

w<br />

t<br />

s<br />

o<br />

H n<br />

i<br />

h<br />

t<br />

i<br />

w<br />

t<br />

s<br />

o<br />

H n<br />

i<br />

h<br />

t<br />

i<br />

w<br />

t<br />

s<br />

o<br />

H<br />

I<br />

B<br />

M<br />

e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N n<br />

o<br />

i<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

i<br />

e<br />

m<br />

o<br />

H n<br />

o<br />

i<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

i<br />

e<br />

m<br />

o<br />

H n<br />

o<br />

i<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

i<br />

e<br />

m<br />

o<br />

H n<br />

o<br />

i<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

i<br />

e<br />

m<br />

o<br />

H n<br />

o<br />

i<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

i<br />

e<br />

m<br />

o<br />

H n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T d<br />

o<br />

i<br />

r<br />

e<br />

P d<br />

o<br />

i<br />

r<br />

e<br />

P d<br />

o<br />

i<br />

r<br />

e<br />

P d<br />

o<br />

i<br />

r<br />

e<br />

P d<br />

o<br />

i<br />

r<br />

e<br />

P<br />

1<br />

A<br />

.<br />

t<br />

p<br />

e<br />

D n<br />

o<br />

s<br />

s<br />

n<br />

a<br />

h<br />

o<br />

J<br />

s<br />

r<br />

a<br />

L<br />

.<br />

r<br />

D<br />

.<br />

f<br />

o<br />

r<br />

P n<br />

e<br />

d<br />

e<br />

w<br />

S<br />

,<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U<br />

d<br />

a<br />

t<br />

s<br />

l<br />

r<br />

a<br />

K i<br />

S<br />

n<br />

o<br />

s<br />

r<br />

e<br />

y<br />

a<br />

l<br />

A<br />

D<br />

C<br />

T<br />

P<br />

f<br />

o<br />

s<br />

e<br />

i<br />

d<br />

u<br />

t<br />

s<br />

s<br />

c<br />

i<br />

m<br />

a<br />

n<br />

y<br />

d<br />

n<br />

o<br />

r<br />

t<br />

c<br />

e<br />

l<br />

E<br />

n<br />

o<br />

i<br />

t<br />

a<br />

i<br />

d<br />

a<br />

r<br />

n<br />

o<br />

r<br />

t<br />

o<br />

r<br />

h<br />

c<br />

n<br />

y<br />

s<br />

r<br />

e<br />

s<br />

a<br />

L<br />

d<br />

e<br />

n<br />

i<br />

b<br />

m<br />

o<br />

c<br />

,<br />

)<br />

1<br />

0<br />

0<br />

(<br />

s<br />

t<br />

n<br />

e<br />

m<br />

i<br />

r<br />

e<br />

p<br />

x<br />

e<br />

k<br />

e<br />

e<br />

w<br />

1<br />

1<br />

A<br />

.<br />

t<br />

p<br />

e<br />

D n<br />

o<br />

s<br />

s<br />

f<br />

a<br />

t<br />

s<br />

u<br />

G<br />

n<br />

e<br />

g<br />

r<br />

ö<br />

J n<br />

e<br />

d<br />

e<br />

w<br />

S<br />

,<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U<br />

d<br />

a<br />

t<br />

s<br />

l<br />

r<br />

a<br />

K i<br />

S<br />

n<br />

o<br />

s<br />

r<br />

e<br />

y<br />

a<br />

l<br />

A<br />

D<br />

C<br />

T<br />

P<br />

f<br />

o<br />

s<br />

e<br />

i<br />

d<br />

u<br />

t<br />

s<br />

s<br />

c<br />

i<br />

m<br />

a<br />

n<br />

y<br />

d<br />

n<br />

o<br />

r<br />

t<br />

c<br />

e<br />

l<br />

E<br />

n<br />

o<br />

i<br />

t<br />

a<br />

i<br />

d<br />

a<br />

r<br />

n<br />

o<br />

r<br />

t<br />

o<br />

r<br />

h<br />

c<br />

n<br />

y<br />

s<br />

r<br />

e<br />

s<br />

a<br />

L<br />

d<br />

e<br />

n<br />

i<br />

b<br />

m<br />

o<br />

c<br />

,<br />

)<br />

1<br />

0<br />

0<br />

(<br />

s<br />

t<br />

n<br />

e<br />

m<br />

i<br />

r<br />

e<br />

p<br />

x<br />

e<br />

s<br />

k<br />

e<br />

e<br />

w<br />

2<br />

1<br />

A<br />

.<br />

t<br />

p<br />

e<br />

D n<br />

o<br />

s<br />

s<br />

a<br />

e<br />

r<br />

d<br />

n<br />

A<br />

s<br />

n<br />

a<br />

M ,<br />

g<br />

r<br />

o<br />

b<br />

e<br />

t<br />

ö<br />

G<br />

,<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U<br />

s<br />

r<br />

e<br />

m<br />

l<br />

a<br />

h<br />

C<br />

n<br />

e<br />

d<br />

e<br />

w<br />

S<br />

i<br />

S<br />

n<br />

o<br />

s<br />

r<br />

e<br />

y<br />

a<br />

l<br />

A<br />

D<br />

C<br />

T<br />

P<br />

f<br />

o<br />

s<br />

e<br />

i<br />

d<br />

u<br />

t<br />

s<br />

s<br />

c<br />

i<br />

m<br />

a<br />

n<br />

y<br />

d<br />

n<br />

o<br />

r<br />

t<br />

c<br />

e<br />

l<br />

E<br />

n<br />

o<br />

i<br />

t<br />

a<br />

i<br />

d<br />

a<br />

r<br />

n<br />

o<br />

r<br />

t<br />

o<br />

r<br />

h<br />

c<br />

n<br />

y<br />

s<br />

r<br />

e<br />

s<br />

a<br />

L<br />

d<br />

e<br />

n<br />

i<br />

b<br />

m<br />

o<br />

c<br />

,<br />

)<br />

1<br />

0<br />

0<br />

(<br />

s<br />

t<br />

n<br />

e<br />

m<br />

i<br />

r<br />

e<br />

p<br />

x<br />

e<br />

s<br />

k<br />

e<br />

e<br />

w<br />

2<br />

1<br />

A<br />

.<br />

t<br />

p<br />

e<br />

D r<br />

e<br />

k<br />

c<br />

n<br />

u<br />

D<br />

.<br />

K e<br />

l<br />

l<br />

a<br />

H<br />

,<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U<br />

r<br />

e<br />

h<br />

t<br />

u<br />

L<br />

n<br />

i<br />

t<br />

r<br />

a<br />

M e<br />

n<br />

i<br />

l<br />

m<br />

a<br />

e<br />

B<br />

Y<br />

S<br />

S<br />

E<br />

B<br />

-<br />

I<br />

B<br />

M s<br />

k<br />

e<br />

e<br />

w<br />

3<br />

1<br />

A<br />

.<br />

t<br />

p<br />

e<br />

D h<br />

c<br />

s<br />

i<br />

l<br />

h<br />

ö<br />

F<br />

.<br />

A<br />

.<br />

r<br />

D g<br />

r<br />

u<br />

b<br />

m<br />

a<br />

H<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U n<br />

i<br />

s<br />

n<br />

o<br />

i<br />

t<br />

a<br />

t<br />

i<br />

x<br />

e<br />

n<br />

o<br />

t<br />

i<br />

x<br />

e<br />

f<br />

o<br />

s<br />

c<br />

i<br />

m<br />

a<br />

n<br />

y<br />

d<br />

y<br />

a<br />

c<br />

e<br />

d<br />

d<br />

e<br />

c<br />

u<br />

d<br />

n<br />

i<br />

e<br />

c<br />

a<br />

f<br />

r<br />

u<br />

S<br />

C<br />

d<br />

e<br />

b<br />

r<br />

o<br />

s<br />

d<br />

a 0<br />

6<br />

s<br />

k<br />

e<br />

e<br />

w<br />

2<br />

D3. <strong>MBI</strong> – Bessy-Beamline


93<br />

Appendix 6<br />

Grants and contracts <strong>2003</strong><br />

Total amounts spent in <strong>2003</strong>: 3.361.860 Euro


94<br />

Appendix 7<br />

Activities in scientific organizations<br />

W. Becker<br />

Member of Program Committee and Co-chair of Strong<br />

Field Seminar, LPHYS <strong>2003</strong> (Hamburg) until <strong>2003</strong><br />

Member of Editorial Board, Physical Review A, from<br />

2002 until 2004<br />

T. Elsaesser<br />

Vorstandssprecher, Forschungsverbund <strong>Berlin</strong> e. V.<br />

from 2001-05-01 until <strong>2003</strong>-04-30<br />

Subcommittee Chair 'Ultrafast Phenomena', European<br />

Quantum Electronics Conference (EQEC), <strong>2003</strong><br />

(Munich, Germany)<br />

Member, Program Committee Quantum Electronics and<br />

Laser Science Conference (QELS) <strong>2003</strong> (Baltimore,<br />

USA)<br />

Member Advisory Board, Conference on Hot Carriers<br />

in Semiconductors 13, <strong>2003</strong> (Modena, Italy)<br />

Sprecher, DFG-Schwerpunktprogramm 1134 "Aufklärung<br />

transienter Strukturen in kondensierter Materie<br />

mit Ultrakurzzeit-Röntgenmethoden"<br />

Stellvertretender Sprecher, Sonderforschungsbereich<br />

296 "Wachstumskorrelierte Eigenschaften niederdimensionaler<br />

Halbleiterstrukturen" Technische<br />

Universität (<strong>Berlin</strong>)<br />

Member, Prize Committee, Ellis R. Lippincott Award for<br />

Vibrational Spectroscopy, Optical Society of America<br />

Vorsitzender, Programmkomitee Laser und Optik <strong>Berlin</strong><br />

(LOB) 2004 (<strong>Berlin</strong>-Adlershof, Germany)<br />

Sprecher, Wissenschaftlicher Beirat der Strahlungsquelle<br />

ELBE (Forschungszentrum Rossendorf,<br />

Germany)<br />

Member, Science Facility Access Panel, Rutherford<br />

Laboratory (Didcot, UK)<br />

Mitglied des Sprecherkreises, Initiative WissenSchafft<br />

Zukunft (<strong>Berlin</strong>, Germany)<br />

Mitglied, Apparateausschuss der Deutschen Forschungsgemeinschaft<br />

Mitherausgeber, Applied Physics A, Springer Verlag<br />

(Heidelberg)<br />

Member of Editorial Board, ChemPhysChem<br />

Member of Editorial Board, Chem. Phys. Lett.<br />

Member of Editorial Board, Chem. Phys.<br />

M. Fiebig<br />

Member of Program Committee, Quantum Complexities<br />

in Condensed Matter (Int. Workshop and Conference)<br />

(Bukhara, Usbekistan)<br />

Organizer, Magnetoelectric Interaction Phenomena in<br />

Crystals (Conference MEIPIC-5) (Sudak, Ukraine)<br />

I. V. Hertel<br />

Geschäftsführender Direktor des <strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>s,<br />

from 2001-05<br />

Sprecher, Initiativgemeinschaft der außeruniversitären<br />

Forschungseinrichtungen Adlershof (IGAFA)<br />

Vorstandsvorsitzender, Optec-<strong>Berlin</strong>-Brandenburg<br />

(OpTecBB) e.V. (<strong>Berlin</strong>) from 2000-09-14<br />

Mitglied "An morgen denken", Wissenschaft & Wirtschaft<br />

gemeinsam für <strong>Berlin</strong>, from 2001-05-01<br />

Mitglied in der ständigen Auswahlkomission für den<br />

Otto-Klung-Weberbank-Preis<br />

Mitglied, Kuratorium des Magnushauses - Deutsche<br />

Physikalische Gesellschaft e.V.<br />

Mitglied, des Kuratoriums "Lange Nacht der Wissenschaften"<br />

Mitglied, im Beirat des James Franck Binational<br />

German-Israeli Programm in Laser-Matter Interaction<br />

Member of Program Commitee of the 3th International<br />

Symposium on Laser Precision Microfabricaation (LPM<br />

<strong>2003</strong>), (München) from <strong>2003</strong>-06-21 until <strong>2003</strong>-06-24<br />

Editor in Chief, together with G. Grynberg, and F. T.<br />

Arecchi, Eur. Phys. J. D Edition Physique and Springer<br />

Verlag (Paris, Heidelberg) from 1998-01-01 until <strong>2003</strong>-<br />

03-31<br />

External Advisor, Eur. Phys. J. D Edition Physique and<br />

Springer Verlag (Paris, Heidelberg) from <strong>2003</strong>-04-01<br />

J. Kändler<br />

Vertreter im Ausschuss "Technologietransfer" der Helmholtz-Gemeinschaft<br />

Deutscher Forschungszentren für<br />

die WGL, (Bonn) from 1997-09-26<br />

Vertreter der Leibniz-Gemeinschaft im Gutachterausschuss<br />

des EEF-Fonds, Forschungszentrum<br />

Karlsruhe GmbH (Karlsruhe) from 2002-11-28


M. P. Kalachnikov<br />

Member of Program Committee Workshop on Interaction<br />

of Complex Plasmas with Superstrong Electromagnetic<br />

Radiation<br />

C. Lienau<br />

Organizer, First German-Japanese Symposium on<br />

Nano-Optics (<strong>Berlin</strong>, Germany)<br />

Member of Program Committee, Seventh International<br />

Conference on Near-field-optics (Rochester, N.Y., USA)<br />

from 2002-08<br />

P. V. Nickles<br />

Conference section chair SPIE <strong>Annual</strong> Meeting, (San<br />

Diego, USA) from <strong>2003</strong> until <strong>2003</strong><br />

Conference section chair EURO CLEO, (München) from<br />

<strong>2003</strong> until <strong>2003</strong><br />

F. Noack<br />

Organisator - Programme NLO-Auswärtsseminar,<br />

(Wolfersdorf)<br />

V. Petrov<br />

Member of Program Committee, CLEO <strong>2003</strong> and CLEO<br />

2004<br />

W. Sandner<br />

Member of Editorial Board, Laser Physics from 1999<br />

Member Steering Committee, 12th International Laser<br />

Physics Workshop (Hamburg, <strong>2003</strong>)<br />

Wissenschaftlicher Beirat BESSY, <strong>Berlin</strong>er Elektronenspeicherring-Gesellschaft<br />

für Synchrotronstrahlung<br />

(<strong>Berlin</strong>) from 2000-10<br />

Vorstandsmitglied, Kompetenznetz Optec <strong>Berlin</strong>-<br />

Brandenburg (<strong>Berlin</strong>) from 2000-09<br />

Sprecher des Arbeitskreises der Fachverbände Atomphysik,<br />

Molekülphysik, Quantenoptik, Massenspektroskopie,<br />

Kurzzeitphysik und Plasmaphysik (AMOP) der<br />

Deutschen Physikalischen Gesellschaft, Mitglied des<br />

Vorstandsrats der DPG, Deutsche Physikalische<br />

Gesellschaft from 1996-03<br />

Vorstand, Wissenschaftliche Gesellschaft Lasertechnik<br />

e. V. (WLT) from 2001<br />

Mitglied im Programmausschuss, "Optische Technologien"<br />

des BMBF from 1999<br />

Coordinator, Network of European Large Scale Laser<br />

Facilities (LASERNET) and LIMANS Cluster of the<br />

European Commission 2000-2004<br />

Member, TESLA Collaboration Board (DESY, Hamburg)<br />

from 1997<br />

Member, OECD Coordinating Committee, Global<br />

Science Forum on "Compact High Intensity Lasers"<br />

from 2001<br />

Member, Steering Committee, FEMTO Programme,<br />

European Science Foundation from 1999 until <strong>2003</strong><br />

Coordinator, LASERLAB-EUROPE, Integrated Infrastructure<br />

Network, 6th Framework Programme, EU from<br />

<strong>2003</strong><br />

Sprecher, "Interdisziplinärer Forschungsverbund UVund<br />

Röntgentechnologien", (<strong>Berlin</strong>) from 2000 until<br />

<strong>2003</strong><br />

G. Steinmeyer<br />

Member, Int. Program Committee of the Conference on<br />

Lasers and Electro-Optics Europe <strong>2003</strong> - CLEO Europe<br />

(Munich, Germany) from 12-2001<br />

H. Stiel<br />

Organizer WE Seminar Excited state processes of<br />

carotenoids in photosynthesis, together with D. Leupold,<br />

HU <strong>Berlin</strong> (Bad Honnef)<br />

J. W. Tomm<br />

Member, Int. Program Committee of the Conference on<br />

Lasers and Electro-Optics Europe <strong>2003</strong> - CLEO Europe<br />

(Munich, Germany) from 12-2001<br />

Member, Int. Steering Committee of the International<br />

Conference on Defects - Recognition, Imaging and<br />

Physics of Semiconductors (DRIP) (Batz-sur-Mer,<br />

France) from 09-2001<br />

Appendix 8<br />

Honours and awards<br />

J. Stenger: Carl-Ramsauer-Preis <strong>2003</strong> für Dissertation<br />

"Ultrafast response of inter- and intramolecular<br />

hydrogen bonds in liquids: Vibrational quantum beats<br />

and dephasing", Physikalische Gesellschaft zu <strong>Berlin</strong><br />

95


96<br />

Appendix 9<br />

Cooperations<br />

University cooperations<br />

W. Becker: Kohärente kollektive Phanomene in Clustern<br />

in starken Laserfeldern; cooperation with S. V. Fomichev,<br />

S. Popruzhenko; Moscow State Engineering Physics<br />

<strong>Institut</strong>e; D. F. Zaretsky; Kurchatov <strong>Institut</strong>e Moscow<br />

K. Biermann, Z. Wang, M. Woerner and K. Reimann: IV-<br />

VI Microcavity Lasers; cooperation with Prof. W. Heiß,<br />

M. Böberl, Prof. G. Springholz, Prof. T. Schwarzl,<br />

Universität Linz<br />

J. Dreyer: Ab initio simulation of 2D-IR spectroscopy;<br />

cooperation with Prof. S. Mukamel, University of<br />

Rochester, NY, USA<br />

U. Eichmann: Ionisation dynamics at relativistic laser<br />

intensities; cooperation with Prof. Maquet, Laboratoire<br />

de Chimie Physique-Matiere et Rayonnement, Université<br />

Pierre et Marie Curie, Paris France<br />

U. Eichmann: Two electron dynamics in laser fields;<br />

cooperation with Profs. T. Gallagher, R. R. Jones;<br />

Department of Physics, University of Charlottesville,<br />

Charlottesville, USA<br />

U. Eichmann: Stöße in ultrakalten He-Gasen und<br />

Plasmen; cooperation with Prof. von Oppen, TU <strong>Berlin</strong><br />

T. Elsaesser and C. Lienau: Teilprojekt B6 Ladungsträgerdynamik<br />

in einzelnen Halbleiter-Nanostrukturen;<br />

Sonderforschungsbereich 296; "Wachstumskorrelierte<br />

Eigenschaften niederdimensionaler Halbleiterstrukturen"<br />

(TU <strong>Berlin</strong>)<br />

T. Elsaesser and E. Nibbering: Teilprojekt B2 Femtosekunden-Schwingungsspektroskopie<br />

zur ultraschnellen<br />

Dynamik von Protonen in der kondensierten<br />

Phase; Sonderforschungsbereich 450 "Analyse und<br />

Steuerung ultraschneller photoinduzierter Reaktionen"<br />

(FU <strong>Berlin</strong>)<br />

T. Elsaesser, M. Wörner and C. Lienau: Dynamik<br />

kohärenter Anregungen in Halbleitern; cooperation with<br />

Prof. T. Kuhn, Westfälische Wilhelms-Universität Münster<br />

M. Fiebig: Optical properties of colossal magnetoresistive<br />

oxides; cooperation with Prof. Y. Tokura,<br />

University of Tokyo, Japan<br />

M. Fiebig: Nonlinear optical properties of manganite<br />

thin films; cooperation with Prof. K. Miyano, University<br />

of Tokyo, Japan<br />

M. Fiebig: Microscopic mechanisms of nonlinear<br />

magneto-optical coupling processes in various highly<br />

correlated systems; cooperation with Prof. R. Valenti,<br />

Universität Frankfurt<br />

M. Fiebig: Influence of growth conditions on magnetic<br />

microstructure; cooperation with Prof. M. Bieringer,<br />

University of Manitoba, Winnipeg, Canada<br />

M. Fiebig: Spin dynamics and nonlinear optics on<br />

antiferromagnetic compounds; cooperation with Prof.<br />

W. Hübner, Universität Kaiserslautern<br />

M. Fiebig: Nonlinear optics and sublattice interactions<br />

of frustrated compounds; cooperation with Dr. T. Kato,<br />

Chiba University, Chiba, Japan<br />

W. Freyer, A1: Special dyes for ophthalmology; cooperation<br />

with Dr. C. Haritoglou, Prof. A. Kampik,<br />

Ludwig-<strong>Max</strong>imilians-Universität, München<br />

T. Gießel, A1: Electronic structure and magnetism in<br />

transition metal clusters; cooperation with Dr. K. Fauth;<br />

G. Schütz, Universität Würzburg<br />

P. Glas: Untersuchungen zu den nichtlinearen optischen<br />

Eigenschaften von LT-GaAs; cooperation with Prof.<br />

R. Menzel, H. Legall, Universität Potsdam<br />

U. Griebner: High average power ultra-fast fiber chirped<br />

pulse amplification system; cooperation with Prof. A.<br />

Tünnermann, <strong>Institut</strong> für Angewandte Physik, Friedrich-<br />

Schiller-Universität Jena<br />

U. Griebner and R. Grunwald: Nanokristalline Schichten<br />

für SHG; cooperation with Dr. W. Seeber, Friedrich-<br />

Schiller-Universität Jena<br />

U. Griebner and V. Petrov: Laserkristalle auf Wolframatbasis;<br />

cooperation with Prof. F. Diaz, University of<br />

Taragona<br />

R. Grunwald: Charakterisierung von Mikrooptiken für<br />

Diodenlaser; cooperation with Dr. B. Ozygus, F. Scholz,<br />

Technische Universität <strong>Berlin</strong><br />

R. Grunwald: Interferometry of semiconductor disorders;<br />

cooperation with Dr. V. Raab, Universität Potsdam<br />

R. Grunwald: VUV beam shaping and materials<br />

processing; cooperation with Prof. P. Herman, Dr. J. Li,<br />

University of Toronto<br />

R. Grunwald, U. Griebner and U. Neumann: Spatiotemporal<br />

beam-shaping of fs-lasers; cooperation with<br />

Prof. M. Piché, University Laval, Quebec, Canada<br />

R. Grunwald and U. Neumann: Herstellung und Präparation<br />

von ZnO Vergleichsproben; cooperation with<br />

J. Sölle, Humboldt-Universität zu <strong>Berlin</strong>


K. Heister, A1: Electron dynamics studies of PTCDA<br />

layers on Si (001); cooperation with Prof. L Johannsson,<br />

Karlstad University, Sweden; Prof. T. Andersson,<br />

Chalmers University of Technology, Göteborg, Sweden<br />

B. Langer, A1: Aufbau und Test eines Meßstandes zur<br />

Untersuchung gespeicherter Nanopartikel mit Synchrotronstrahlung;<br />

BMBF Verbundforschungsvorhaben<br />

(Förderschwerpunkt kondensierte Materie); cooperation<br />

with Prof. E. Rühl*, R. Flesch, Universität<br />

Osnabrück (* jetzt Univ. Würzburg); Prof. D. Gerlich, M.<br />

Grimm, S. Schlemmer, TU Chemnitz; Prof. U. Becker,<br />

Fritz-Haber-<strong>Institut</strong><br />

D. Leupold: Exzitonen in photosynthetischen Antennen;<br />

cooperation with Prof. A. Razjivin, Belozerskij-<strong>Institut</strong><br />

für Biophysikalische Chemie, Univ. Moskau, Russia<br />

D. Leupold: Femtosekundenspektroskopie des Melanins;<br />

cooperation with Dr. K. Hoffmann, Dr. M. Stücker,<br />

Dermatologische Klinik, Univ. Bochum<br />

D. Leupold: Nichtlineare Spektroskopie an Photosynthesepigmenten<br />

und photosynthesischen Antennen;<br />

cooperation with Prof. H. Scheer, LMU München<br />

D. Leupold: Teilprojekt A2, Lichtsammlung und Energiedissipation<br />

in nativen und definiert veränderten<br />

photosynthetischen Antennensystemen; Sonderforschungsbereich<br />

429 "Molekulare Physiologie,<br />

Energetik und Regulation primärer pflanzlicher<br />

Stoffwechselprozesse" (FU <strong>Berlin</strong>)<br />

C. Lienau: Nahfeldspektroskopie an V-Graben<br />

Quantenfäden; cooperation with Prof. R. Cingolani,<br />

Universität Lecce, Italy<br />

C. Lienau: Spektroskopie an Quantengräben; cooperation<br />

with Prof. A.D. Wieck, Universität Bochum<br />

C. Lienau: Spektroskopie an zweidimensionalen<br />

Elektronengasen; cooperation with Dr. A. Goni, Prof. C.<br />

Thomsen, Technische Universität <strong>Berlin</strong><br />

C. Lienau: Nahfeldspektroskopie an metallischen<br />

Nanostrukturen; cooperation with Prof. D.S. Kim,<br />

Universität Seoul, Korea<br />

C. Lienau: Nahfeld-Autokorrelationsspektroskopie an<br />

Quantendrähten; cooperation with T. Otterburg, Prof. E.<br />

Kapon, EPFL Lausanne<br />

C. Lienau: Femtosecond near-field spectroscopy of<br />

semiconducting polymers; cooperation with D. Polli,<br />

Prof. G. Cerullo, Prof. G. Lanzani and Prof. S. de Silvestri,<br />

Politecnico di Milano<br />

C. Lienau and T. Elsaesser: Korrelationsspektroskopie<br />

an Halbleiter-Nanostrukturen; cooperation with Dr. V.<br />

Savona, Dr. E. Runge, Prof. R. Zimmermann, Humboldt-<br />

Universität, <strong>Berlin</strong><br />

U. Neumann and R. Grunwald: AFM-Untersuchungen<br />

zu Nanokristalliten für nichtlinear - optische<br />

Anwendungen; cooperation with Prof. A. Richter,<br />

Technische Fachhochschule Wildau<br />

U. Neumann and R. Grunwald: Herstellung von dotierten<br />

und undotierten ZnO Dünnschichten durch RF<br />

Sputtering; cooperation with G. Schoer, Technische<br />

Universität Hamburg<br />

E. T. J. Nibbering: Femtochemistry vibrational studies of<br />

the reaction dynamics of photochromic switches; cooperation<br />

with Dr. H. Fidder, University of Uppsala, Sweden<br />

E. T. J. Nibbering: Photodissociation dynamics of<br />

metallo-carbonyl complexes; cooperation with Prof. Dr.<br />

J. Korppi-Tommola, University of Jyvaskyla, Finland<br />

E. T. J. Nibbering: CO and NO photodissociation and<br />

recombination dynamics of hemoproteins; cooperation<br />

with T. Zemojtel, Dr. J. Scheele, Universitätsklinikum<br />

Freiburg<br />

P. V. Nickles: Ultrashort x-ray emission from gas clusters<br />

irradiated by ultrashort laser pulses; Gilcut Project<br />

(German-Israeli cooperation in Ultrafast Laser Technologie)<br />

(Coordinator: A. Zigler); cooperation with<br />

Racah <strong>Institut</strong>e, University of Jerusalem, Israel<br />

P. V. Nickles: X-ray lasers; Gilcut Project (German-Israeli<br />

cooperation in Ultrafast Laser Technologies);<br />

cooperation with A. Zigler, Racah <strong>Institut</strong>e, University<br />

of Jerusalem, Israel<br />

P. V. Nickles: New pumping mechanisms of x-ray lasers;<br />

cooperation with H. Fiedorowicz, <strong>Institut</strong>e of Applied<br />

Physics of Military Academy Warsaw, Polen<br />

V. Petrov, A3: New VUV transparent nonlinear crystals<br />

for sum-frequency mixing with femtosecond pulses;<br />

cooperation with Prof. R. Komatsu, Yamaguchi<br />

University, Japan<br />

V. Petrov, A3: Periodically poled KTP for femtosecond<br />

OPG applications and chirped pulse parametric<br />

amplification; cooperation with Dr. V. Pasiskevicius,<br />

Royal <strong>Institut</strong>e of Technology, Stockholm, Sweden<br />

V. Petrov, A3: Chirped pulse optical parametric<br />

amplification; cooperation with Prof. F. Rotermund, Ajou<br />

University, Suwon, Korea<br />

V. Petrov, A3: Mixed nonlinear crystals; cooperation with<br />

Dr. V. V. Badikov, Kuban State University, Krasnodar,<br />

Russia<br />

W. Radloff and C. P. Schulz, A2: Teilprojekt A4; Sonderforschungsbereich<br />

450 "Analyse und Steuerung ultraschneller<br />

photoinduzierter Reaktionen" (FU-<strong>Berlin</strong>);<br />

cooperation with Prof. L. Wöste<br />

M. Raschke and C. Lienau: Aperturlose Nahfeldmikroskopie<br />

an metallischen Nanostrukturen;<br />

cooperation with Prof. D. Kern, Universität Tübingen<br />

97


98<br />

K. Reimann, M. Woerner and T. Elsaesser: Electro-optic<br />

sampling of THz transients with MV/cm amplitudes;<br />

cooperation with R.P. Smith, Georgia <strong>Institut</strong>e of<br />

Technology, Prof. A.M. Weiner, Purdue University<br />

A. Rosenfeld, A1: WTZ Deutschland, Kanada; cooperation<br />

with Dr. P. Herman, Toronto University,<br />

Canada<br />

D. A. Rosenfeld, A1: AFM-Untersuchungen an dünnen<br />

Schichten; cooperation with Prof. Eichler, Technische<br />

Universiät <strong>Berlin</strong><br />

H. Rottke: Multiple ionization in few-cycle laser pulses;<br />

cooperation with H. Lezius and F. Krausz, TU Wien<br />

W. Sandner and W. Becker: Control of Atomic Processes<br />

with Strong Fields; cooperation with A. Sofradzija, and<br />

D. B. Milosevic, Faculty of Sciences, Dept. of Physics,<br />

University of Sarajevo<br />

C. P. Schulz, A2: Quantum chemical calculation of<br />

excited sodium-water clusters; cooperation with Dr. K.<br />

Hashimoto, Tokyo Metropolitan University, Computer<br />

Center and Department of Chemistry<br />

C. P. Schulz, A2: Dynamic processes in alkali-doped<br />

He clusters; cooperation with Dr. F. Stienkemeier; Universität<br />

Bielefeld<br />

H. Stiel: Anwendung gepulster, harter Röntgenstrahlung;<br />

cooperation with Dr. B. Kannegießer, TU <strong>Berlin</strong><br />

J. W. Tomm: Transiente Spektroskopie an Halbleiterstrukturen,<br />

die mit 'Gas-source-MBE' gewachsen<br />

wurden; cooperation with Prof. W.T. Masselink,<br />

Humboldt-Universität zu <strong>Berlin</strong><br />

J. W. Tomm: Untersuchung der Lumineszenz von Sbhaltigen<br />

Halbleiterstrukturen; cooperation with Prof. M.<br />

Amann, Walter-Schottky-Insitut, TU München<br />

J. W. Tomm: Defect spectroscopy in semiconductor<br />

devices; cooperation with Prof. E. Larkins, University of<br />

Nottingham<br />

J. W. Tomm: Raman spectroscopy of semiconductor<br />

nanostructures; cooperation with Prof. J. Jiminez,<br />

University of Valladolid, Spain<br />

J. W. Tomm: Strain analysis in semiconductor nanostructures;<br />

cooperation with Prof. M. Biermann, US Naval<br />

Academy Annapolis, USA<br />

Z. Wang, K. Reimann, M. Woerner and T. Elsaesser:<br />

Femtosecond intersubband dynamics of electrons in<br />

AlGaN/GaN high-electron-mobility transistors;<br />

cooperation with Prof. D. Hofstetter, University of<br />

Neuchatel, J. Hwang, W.J. Schaff, L.F. Eastman, Cornell<br />

University<br />

R. Weber and B. Winter, A1: Electronic structure of water;<br />

cooperation with Dr. K. Godehusen, BESSY<br />

W. Widdra, A1: Development of fast multi-angle<br />

photoelectron spectrometers; cooperation with Prof. D.<br />

Menzel, Technische Universität München<br />

B. Winter, A1: Photoemission from ultrathin organic films;<br />

cooperation with Prof. Dr. D. Zahn; Dr. T. Kampen, TU<br />

Chemnitz<br />

B. Winter, A1: Photoemission from self-assembled azobenzene<br />

alkane thiols; cooperation with Dr. S. Schrader,<br />

Prof. L. Brehmer, Universität Potsdam<br />

B. Winter, A1: Photoemission from polymer surface relief<br />

gratings; cooperation with Prof. Pietsch, Universität<br />

Potsdam<br />

B. Winter, A1: Polythiphenes and effect of iodide doping:<br />

electronic structure by photoemission; cooperation with<br />

Dr. N. Koch, Humboldt Universität zu <strong>Berlin</strong><br />

B. Winter and T. Gießel, A1: Epitaxial growth of transition<br />

metals on GaAs; cooperation with Dr. N. Esser, Prof. W.<br />

Richter, Technische Universität <strong>Berlin</strong><br />

M. Woerner and T. Elsaesser: GaAs/AlGaAs quantum<br />

cascade structures; cooperation with Dr. K. Unterrainer,<br />

Dr. G. Strasser, <strong>Institut</strong> für Festkörperelektronik,<br />

Technische Universität Wien<br />

N. Zhavaronkov, G. Korn and I. V. Hertel, A3, A: Coherent<br />

Raman Scattering; GILCULT, German-Israelien Cooperation<br />

in Ultrafast Laser Technologies; cooperation<br />

with A. Silberberg, Weizmann <strong>Institut</strong>e, Israel<br />

N. Zhavoronkov, A3: X-ray target structuring; cooperation<br />

with Prof. A. Safeler, Moscow State University<br />

Cooperation with Research <strong>Institut</strong>ions<br />

W. Becker: High intensity light-atom interaction; cooperation<br />

with M. V. Fedorov, General Physics <strong>Institut</strong>e,<br />

Moskau<br />

T. Elsaesser and C. Lienau: Regionales Service- und<br />

Kompetenzzentrum für Nanoanalytik und Nanofaktur;<br />

cooperation with Prof. Rieder, FU <strong>Berlin</strong>, Prof. J. Rabe,<br />

HU <strong>Berlin</strong>, Prof. K. H. Ploog, PDI <strong>Berlin</strong><br />

T. Elsaesser, M. Wörner, C. W. Luo and K. Reimann:<br />

Ultrafast dynamics of coherent intersubband polarisations<br />

in GaAs/AlGaAs quantum wells; cooperation<br />

with Prof. K. Ploog, Dr. R. Hey, Paul-Drude-<strong>Institut</strong> <strong>Berlin</strong><br />

M. Fiebig, T. Lottermoser and I. Sänger: Nonlinear<br />

magneto-optical properties of matter - theory and<br />

experiment; cooperation with Prof. R.V. Pisarev, Dr. V.V.<br />

Pavlov, Dr. A.V. Goltsev, Ioffe-<strong>Institut</strong>e, St. Petersburg,<br />

Russia<br />

W. Freyer, A1: Mass spectra of phtalocyanines;<br />

cooperation with M. Bartoszek, <strong>Institut</strong> für Angewandte<br />

Chemie <strong>Berlin</strong>-Adlershof


P. Glas: Fasern mit speziellem Design; cooperation with<br />

Dr. Müller, <strong>Institut</strong> für Hochtechnologie (IPHT), Jena<br />

P. Glas: Kopplung vieler Laseremitter; cooperation with<br />

Prof. Napartovich, TRINITI Troitsk <strong>Institut</strong>e for Innovation<br />

and Fusion Research, Russia<br />

P. Glas: Spezielle Halbleiterstrukturen für modelocking;<br />

cooperation with Dr. Walther, IAF Freiburg<br />

U. Griebner: Testung Hochleistungsbreitstreifendioden;<br />

cooperation with Dr. G. Erbert, Ferdinand-Braun-<strong>Institut</strong><br />

<strong>Berlin</strong><br />

R. Grunwald: Charakterisierung mikrooptischer<br />

Bauelemente; cooperation with Prof. W. Jüptner, V.<br />

Kebbel, Dr. H.-J. Hartmann, BIAS Bremen<br />

R. Grunwald: Mikrooptik zur Verbesserung der Laserdiodenkollimation;<br />

cooperation with Dr. T. Poßner, FhG<br />

IOF Jena<br />

R. Grunwald and U. Griebner: Fs-Meßtechnik und<br />

digitale Holografie im fs-Bereich; cooperation with Prof.<br />

W. Jüptner, V. Kebbel, BIAS Bremen<br />

R. Grunwald and U. Neumann: Wellenfront-Sensorik<br />

und VUV-Optik; cooperation with Dr. K. Mann, Laser-<br />

Laboratorium Göttingen<br />

K. Janulewicz: X-ray laser at 14.7 nm; cooperation with<br />

GSI, Darmstadt, Dr. T. Kühl<br />

D. Leupold: Laser spectroscopy of chlorophyll-lipid<br />

interaction; cooperation with Dr. R. Vladkova, <strong>Institut</strong>e<br />

of Biophysics, Bulgarian Acad. of Science<br />

C. Lienau: Near-field spectroscopy of single and<br />

coupled quantum dots; cooperation with Prof. J.-M.<br />

Gerard, Centre National d'Études des Télécommunications,<br />

Bagneux, France<br />

C. Lienau: Optische Eigenschaften strain-induzierter<br />

Nanostrukturen; cooperation with Dr. U. Zeimer, Prof. G.<br />

Tränkle, Ferdinand-Braun-<strong>Institut</strong>, <strong>Berlin</strong><br />

R. Müller: Theoretische Untersuchungen der<br />

Bandstruktur von Halbleitern; cooperation with Dr. H<br />

Wenzel, Ferdinand-Braun-<strong>Institut</strong>, <strong>Berlin</strong><br />

U. Neumann, M. Tischer and R. Grunwald: Dickenmessungen<br />

an strukturierten ZnO Schichten im sub-<br />

µm Bereich; cooperation with Dr. G. Wagner, <strong>Institut</strong> für<br />

Kristallzüchtung, <strong>Berlin</strong><br />

P. V. Nickles: Relativistic Plasma Dynamics (Coordinator:<br />

O. Shiryaev); cooperation with <strong>Institut</strong>e of General<br />

Physics of AS Russia, Moskau<br />

P. V. Nickles: Elektronentransport-Untersuchungen mit<br />

laserbeschleunigten Protonen: ein neues Transportverhältnis<br />

(Coordinator: W. Sandner); cooperation with<br />

H. Ruhl, and A. Kemp; General Atomics, Reno<br />

University, USA<br />

F. Noack and N. Zhavoronkov, A3: Technical consultation<br />

for fs XUV slicing laser setup (Coordinator: I. V. Hertel,<br />

<strong>Max</strong> <strong>Born</strong> <strong>Institut</strong>e); cooperation with BESSY<br />

V. Petrov, A3: Characterization of chalcopyrite nonlinear<br />

crystals; cooperation with Dr. J.-J. Zondy, Observatoire<br />

de Paris, France<br />

V. Petrov, A3: Lithium containing chalcopyrites in the<br />

femtosecond mid-infrared technology; cooperation with<br />

Prof. L. Isaenko, Design and Technological <strong>Institut</strong>e of<br />

Monocrystals, SB RAS, Novosibirsk, Russia<br />

V. Petrov, A3: Nonlinear borate crystals; cooperation with<br />

Prof. C. Chen, Beijing Center for Crystal R & D, China<br />

A. Rosenfeld, A1: fs-Untersuchungen; cooperation with<br />

D. Ashkenasi, LMTB <strong>Berlin</strong><br />

H. Rottke: Correlation in multiple ionization in strong<br />

light pulses; cooperation with G. G. Paulus, MPI für<br />

Quantenoptik, Garching<br />

H. Rottke: Correlation in multiple ionization in strong<br />

light pulses (2); cooperation with R. Moshammer, J.<br />

Ullrich, MPI für Kernphysik, Heidelberg<br />

J. Tomm: Fourier-Transform-Spektroskopie an Halbleiterlaserstrukturen;<br />

cooperation with Dr. Irmscher,<br />

<strong>Institut</strong> für Kristallzüchtung <strong>Berlin</strong><br />

J. Tomm: Spektroskopie und thermische Eigenschaften<br />

von Hochleistungslaserdioden; cooperation with Dr.<br />

Erbert, Ferdinand-Braun-<strong>Institut</strong> <strong>Berlin</strong><br />

J. Tomm: Aufbautechnologie von Hochleistungslaserdioden;<br />

cooperation with M. Hutter, Fraunhofer-Gesellschaft,<br />

<strong>Institut</strong> für Zuverlässigkeit und Mikrointegration<br />

(IZM) <strong>Berlin</strong><br />

J. Tomm: Alterungsanalytik an Laserdioden; cooperation<br />

with Dr. Baeumler, Fh-IAF Freiburg<br />

J. W. Tomm: Transiente Photolumineszenz an (In)GaNAs<br />

Strukturen; cooperation with Prof. K.H. Ploog, Paul-<br />

Drude-<strong>Institut</strong>, <strong>Berlin</strong><br />

J. W. Tomm: InAs Quantenpunkte in Silizium; cooperation<br />

with Dr. P. Werner, <strong>Max</strong>-Planck-<strong>Institut</strong> für Mikrostrukturphysik,<br />

Halle<br />

J. W. Tomm: Spektroskopische Untersuchungen an<br />

implantierten sättigbaren Absorbern; cooperation with<br />

Dr. M. Weyers, Dr. U. Zeimer, Ferdinand-Braun-<strong>Institut</strong>,<br />

<strong>Berlin</strong><br />

J. W. Tomm and F. Weik: Konvertermaterialien für das<br />

Mittlere Infrarot; cooperation with Dr. A. Lamprecht,<br />

Fraunhofer - IPM, Freiburg<br />

W. Werncke: Stimulated Raman scattering-frequency<br />

converter for ultrashort pulses; cooperation with Prof.<br />

Dr. Orlovich, Dr. A. Vodschitz, <strong>Institut</strong> of Physics,<br />

Academy of Sciences, Minsk, Belarus<br />

99


100<br />

I. Will: Development of the photocathode laser for the<br />

TESLA Test Facility (TTF); cooperation with DESY<br />

Hamburg in the framework of the TESLA collaboration<br />

I. Will: Development of the photocathode laser for an<br />

RF gun with strongly optimized emittance; PITZ<br />

cooperation with Photoinjector Test Facility at DESY/<br />

Zeuthen<br />

I. Will: Development of the photocathode laser for a<br />

superconducting CW-RF-gun; cooperation with Forschungszentrum<br />

Rossendorf<br />

I. Will: Development of the recirculation cavity for a<br />

Gamma-Gamma-Collider for TESLA; cooperation with<br />

DESY<br />

I. Will: Technical Design for VUV-FEL (Coordinator: W.<br />

Sandner, <strong>Max</strong> <strong>Born</strong> <strong>Institut</strong>e); cooperation with BESSY<br />

B. Winter, A1: Photoemission from liquid surfaces;<br />

cooperation with Dr. M. Faubel, <strong>Max</strong>-Planck-<strong>Institut</strong> für<br />

Strömungsforschung, Göttingen<br />

B. Winter, A1: Development of efficient electron detection<br />

from liquid jet; cooperation with Dr. C. Pettenhofer, Hahn-<br />

Meitner-<strong>Institut</strong> <strong>Berlin</strong><br />

B. Winter, A1: Molecular dynamics simulations;<br />

cooperation with Prof. P. Jungwirth, Heyrovsk <strong>Institut</strong>e<br />

of Physical Chemistry, Prague, Czech<br />

N. Zhavoronkov, A3: Phase transition in solid-state<br />

material; cooperation with Prof. A. I. Sheley, National<br />

<strong>Institut</strong>e for Solid State Physic<br />

Participation in Research networks<br />

U. Eichmann: Speicherung von metastabilen Heliumatomen<br />

in elektrischen Fallen; DFG Schwerpunktprogramm<br />

"Wechselwirkung in ultrakalten Atom- und<br />

Molekülgasen"; cooperation with G. von Oppen, TU<br />

<strong>Berlin</strong><br />

U. Eichmann: Elementare Ionisationsprozesse in<br />

intensivsten Laserfeldern; DFG-Schwerpunktprogramm<br />

"Wechselwirkung intensiver Laserfelder mit<br />

Materie"<br />

M. Fiebig and K. Reimann: Magnetization dynamics of<br />

antiferromagnetic compounds by nonlinear optical<br />

spectroscopy; DFG-Schwerpunktprogramm "Ultraschnelle<br />

Magnetisierungsprozesse"<br />

R. Grunwald: Verbundprojekt: Realisierung und<br />

Charakterisierung nichtlinear-optisch aktiver Glas /<br />

Kristall-Komposite auf Basis halbleiterbeschichteter<br />

transparenter Gläser mit optimierter Lokalstruktur;<br />

cooperation with Dr. W. Seeber, Universität Jena, im<br />

fachübergreifenden DFG-Forschungsvorhaben<br />

'Keramik'<br />

R. Grunwald: CHOCLAB II (Instruments and Standard<br />

Test Procedure for Laser Beams and Optics<br />

Characterization); cooperation with Eureka EU 2359,<br />

International Project<br />

M. P. Kalachnikov and P. V. Nickles: SHARP; European<br />

R&D Projekt cooperation with LLC Lund, Schweden;<br />

LOA Palaiseau, France; RAL, UK, MPQ Garching<br />

C. Lienau: EU Network: SQID - Semiconductor - Based<br />

Implementation of Quantum Information Devices;<br />

cooperation with Prof. F. Rossi, ISI Turin, Prof. R.<br />

Cingolani, INFM Lecce, Prof. E. Molinari, Universität<br />

Modena, Prof. G. Bastard, ENS Paris, Prof. L. Jacak, TU<br />

Wroclaw, Prof. I. Prigoni, Int. Solvay Inst. Brüssel, Prof. J.<br />

Baumberg, Universität Southampton, Prof. T. Kuhn,<br />

Universität Münster<br />

P. V. Nickles: X-ray lasers and Applications; European<br />

TMR-network (Coordinator: S. Jaquemot) cooperation<br />

with LULI, Paris<br />

P. V. Nickles: Wechselwirkung intensiver Laserfelder mit<br />

Materie; DFG-Schwerpunkt; cooperation with Dr. U.<br />

Jahnke, Hahn-Meitner-<strong>Institut</strong> <strong>Berlin</strong><br />

K. Reimann: Nichtlineare Spektroskopie an Gruppe-<br />

III-Nitriden; DFG-Schwerpunktprogramm "Gruppe-III-<br />

Nitride und ihre Heterostrukturen: Wachstum, materialwissenschaftliche<br />

Grundlagen und Anwendungen;<br />

cooperation with Prof. D. Fröhlich, C. Schweitzer,<br />

Universität Dortmund<br />

W. Sandner (Vorstand und Sprecher des Schwerpunkts<br />

UV- u. Röntgentechnologien): OptecBB, Kompetenznetz<br />

Optische Technologien <strong>Berlin</strong> und Brandenburg<br />

(Coordinator: I. V. Hertel, Sprecher des Vorstands von<br />

OpTecBB); cooperation with universities and industry<br />

W. Sandner: LIMANS (Cluster of the Large Scale Laser<br />

Installations); cooperation with LENZ, Florenz; Lund<br />

Laser Center; ULF-FORTH, Heraklion; LIF-LOA,<br />

Palaiseau; CUSBO, Mailand; SLIC, Saclay<br />

W. Sandner (Coordinator, Vorstand OpTecBB): Neue<br />

Methoden und Geräteentwicklungen der Röntgenfluoreszenzanalyse<br />

und Röntgendiffraktometrie für den<br />

Einsatz in Industrie und Forschung funded by Förderprojekt<br />

IFV UVR, SenVerwWAF, <strong>Berlin</strong>; cooperation with<br />

Astro- und Feinwerktechnik Adlershof GmbH; IfG,<br />

<strong>Institut</strong> für Gerätebau GmbH; IAP, <strong>Institut</strong> für angewandte<br />

Photonik e.V.; Röntgenanalytik GmbH; Röntec GmbH;<br />

rtw, Dr. Warrighoff KG, BAM Bundesanstalt für Materialforschung<br />

und -prüfung; BESSY GmbH; IZM,<br />

Fraunhofer Gesellschaft; <strong>MBI</strong>, <strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>; PTB,<br />

Physikalisch Technische Bundesanstalt, <strong>Berlin</strong>, TUB,<br />

Technische Universität <strong>Berlin</strong><br />

W. Sandner (Speaker): UVR (Interdisziplinärer<br />

Forschungsverbund UV- und Röntgentechnologien)<br />

funded by SenWissForschKult, <strong>Berlin</strong>; cooperation with<br />

more then 40 SME's and scientific institutions


H. Stiel: Molekulare Physiologie, Energetik und<br />

Regulation primärer pflanzlicher Stoffwechselprodukte;<br />

cooperation with Dr. D. Leupold<br />

J. W. Tomm: Nanop Competence Center for Application<br />

of Nanostructures in Optoelectronic; cooperation with<br />

Prof. Dr. Bimberg, TU-<strong>Berlin</strong><br />

J. W. Tomm: Screening and packaging techniques for<br />

highly reliable laser-bars for telecommunication and<br />

industrial applications; EU-Powerpack Programm;<br />

cooperation with Thales Research & Technology<br />

France / ex-Thales Laboratoire Central de Recherches<br />

(TRT), Julien Nagle, Fraunhofer <strong>Institut</strong>e for Laser<br />

Technology (ILT), Konstantin Boucke, DILAS Diodenlaser<br />

GmbH (DILAS), Holger Muentz, THALES Laser<br />

Diodes (TLD), Thierry Fillardet, <strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong> (<strong>MBI</strong>),<br />

Jens W. Tomm, University of Nottingham (UNOTT), Eric<br />

Larkins, University of Valladolid (UVA), Juan Jimenez<br />

J. W. Tomm: Untersuchung geeigneter Materialien für<br />

Lumineszenzkonverter im mittleren Infrarot und deren<br />

Verwendung in kompakten Lichtquellenmodulen;<br />

BMBF-(NMT) Verbund-Projekt MIRKO, cooperation with<br />

IPM Freiburg und WSI der TU München<br />

I. Will: Development of an optical, wavelength-tuneable<br />

femtosecond burst-mode laser for use as a pump-probe<br />

laser at the X-ray FEL user facility at TTF at DESY<br />

Hamburg; XRAY FEL Pump/Probe network cooperation<br />

with DESY, MAXLAB (Lund), DCU Dublin, LURE and<br />

BESSY<br />

M. Woerner: Lichtemitter auf der Basis von Intersubbandübergängen;<br />

in: DFG-geförderte Forschergruppe<br />

in <strong>Berlin</strong>, cooperation with TUB, HUB, HHI, PDI<br />

M. Woerner and T. Elsaesser: Reversible structural<br />

changes of crystalline solids studied by ultrafast x-ray<br />

diffraction; DFG-Schwerpunktprogramm 1134<br />

"Aufklärung transienter Strukturen in kondensierter<br />

Materie mit Ultrakurzzeit-Röntgenmethoden"<br />

N. Zhavoronkov, A3: Ultrashort X-ray sources;<br />

cooperation with Prof. M. Richardson, School of Optics,<br />

University of Florida<br />

Cooperation with Industry<br />

W. Freyer, A1: Mass spectra of sensitive porphyrazines;<br />

cooperation with Agilent Technologies Deutschland<br />

GmbH, Waldbronn<br />

P. Glas: Faserherstellung; cooperation with M. Kreitel,<br />

Fa. Fiber-Technol., <strong>Berlin</strong>, M. Zoheid, Fiber-Tech, <strong>Berlin</strong>,<br />

Prof. Langhoff, IFG, <strong>Berlin</strong><br />

R. Grunwald: Charakterisierung von Mikrostrukturen<br />

für Laser- Ophthalmologie; cooperation with Dr. G. Korn,<br />

Katana Technologies GmbH<br />

R. Grunwald and U. Griebner: Fs-Meßtechnik; cooperation<br />

with E. Büttner, C. Lukas, APE GmbH <strong>Berlin</strong><br />

R. Grunwald and U. Griebner: Mikrosystemtechnologie<br />

für Dünnschicht-Mikrooptiken; cooperation with Dr. W.<br />

Rehak, Dr. H. Mischke, ASI GmbH <strong>Berlin</strong><br />

R. Grunwald and U. Griebner: Mikrooptische Dünnschicht-Bauelemente;<br />

cooperation with Dr. D. Schäfer,<br />

Quarterwave GmbH <strong>Berlin</strong><br />

R. Grunwald and U. Neumann: Fluoreszenz-Spektroskopie<br />

an ZnO-Nanolayers; cooperation with Dr. Scholz,<br />

Lasertechnik <strong>Berlin</strong> GmbH<br />

D. Leupold: Femtosekunden-Fluorometer zur Hautkrebs-Früherkennung;<br />

cooperation with Dr. M. Scholz,<br />

LTB Lasertechnik <strong>Berlin</strong><br />

U. Neumann: Fasertechnologie; cooperation with Dr. S.<br />

Spaniol, CERAM Optec GmbH, Bonn<br />

U. Neumann and R. Grunwald: Dickenmessungen an<br />

strukturierten ZnO Schichten im sub-µm Bereich;<br />

cooperation with M. Lindner und Sven Johannsen,<br />

m.u.t. GmbH, Wedel<br />

U. Neumann and R. Grunwald: Dickenmessungen<br />

strukturierter ZnO Schichten im sub-µm Bereich;<br />

cooperation with S. Peters, Sentech Instruments, <strong>Berlin</strong><br />

A. Rosenfeld, A1: Nanostrukturierung von Glasoberflächen;<br />

cooperation with <strong>Berlin</strong>er Glass GmbH and<br />

PTB, <strong>Berlin</strong><br />

H. Stiel: Aufbau und Entwicklung eines EUV-Reflektometers;<br />

cooperation with Dr. L. v. Loyen, FhG/IWS, Dr. F.<br />

Macco, Zeiss, Dr. F. Scholze, PTB <strong>Berlin</strong>, BESTEC,<br />

<strong>Berlin</strong><br />

H. Stiel: Aufbau und Entwicklung eines kompakten hard<br />

x-ray Spektrometers; cooperation with Prof. N. Langhoff,<br />

IfG GmbH<br />

J. Tomm and C. Lienau: Spektroskopische Analytik zur<br />

Charakterisierung von Laserdioden; cooperation with<br />

M. Behringer, J. Luft, Osram, Opto Semiconductors,<br />

Regensburg<br />

J. Tomm and C. Lienau: Grundlagenuntersuchungen<br />

zur Leistungs- und Lebensdauerbegrenzung, Alterung<br />

und Verspannung von Hochleistungslaserdioden;<br />

cooperation with D. Lorenzen, Jenoptik, Laserdiode<br />

GmbH<br />

J. W. Tomm: Spektroskopische Analytik zur Verspannung<br />

von Laserdioden; cooperation with J. Biesenbach,<br />

DILAS Diodenlaser GmbH, Mainz<br />

I. Will: Development of RF phase modulators; cooperation<br />

with Fehn, LINOS<br />

101


102<br />

Appendix 10<br />

Current patents and pending applications<br />

n<br />

o<br />

i<br />

t<br />

a<br />

c<br />

i<br />

l<br />

p<br />

p<br />

A n<br />

o<br />

i<br />

t<br />

a<br />

c<br />

i<br />

l<br />

p<br />

p<br />

A n<br />

o<br />

i<br />

t<br />

a<br />

c<br />

i<br />

l<br />

p<br />

p<br />

A n<br />

o<br />

i<br />

t<br />

a<br />

c<br />

i<br />

l<br />

p<br />

p<br />

A n<br />

o<br />

i<br />

t<br />

a<br />

c<br />

i<br />

l<br />

p<br />

p<br />

A<br />

r<br />

e<br />

b<br />

m<br />

u<br />

n<br />

e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

l<br />

t<br />

i<br />

T e<br />

l<br />

t<br />

i<br />

T e<br />

l<br />

t<br />

i<br />

T e<br />

l<br />

t<br />

i<br />

T e<br />

l<br />

t<br />

i<br />

T e<br />

t<br />

a<br />

d<br />

g<br />

n<br />

i<br />

l<br />

i<br />

F e<br />

t<br />

a<br />

d<br />

g<br />

n<br />

i<br />

l<br />

i<br />

F e<br />

t<br />

a<br />

d<br />

g<br />

n<br />

i<br />

l<br />

i<br />

F e<br />

t<br />

a<br />

d<br />

g<br />

n<br />

i<br />

l<br />

i<br />

F e<br />

t<br />

a<br />

d<br />

g<br />

n<br />

i<br />

l<br />

i<br />

F<br />

5<br />

3<br />

-<br />

1<br />

.<br />

3<br />

9<br />

9<br />

2<br />

1<br />

6<br />

9<br />

1 ,<br />

d<br />

l<br />

a<br />

w<br />

n<br />

u<br />

r<br />

G<br />

r<br />

e<br />

g<br />

i<br />

d<br />

ü<br />

R<br />

n<br />

n<br />

a<br />

m<br />

r<br />

e<br />

m<br />

m<br />

i<br />

Z<br />

t<br />

u<br />

m<br />

t<br />

r<br />

a<br />

H<br />

)<br />

H<br />

b<br />

m<br />

G<br />

l<br />

a<br />

t<br />

s<br />

y<br />

r<br />

C<br />

(<br />

g<br />

n<br />

u<br />

s<br />

s<br />

a<br />

f<br />

r<br />

E<br />

r<br />

u<br />

z<br />

g<br />

n<br />

u<br />

t<br />

h<br />

c<br />

i<br />

r<br />

r<br />

o<br />

V<br />

d<br />

n<br />

u<br />

n<br />

e<br />

r<br />

h<br />

a<br />

f<br />

r<br />

e<br />

V<br />

n<br />

e<br />

g<br />

n<br />

u<br />

r<br />

e<br />

d<br />

n<br />

ä<br />

d<br />

l<br />

e<br />

f<br />

t<br />

e<br />

n<br />

g<br />

a<br />

M<br />

n<br />

o<br />

v<br />

6<br />

9<br />

9<br />

1<br />

.<br />

3<br />

0<br />

.<br />

2<br />

2<br />

4<br />

.<br />

5<br />

4<br />

7<br />

3<br />

1<br />

6<br />

9<br />

1 ,<br />

d<br />

l<br />

a<br />

w<br />

n<br />

u<br />

r<br />

G<br />

r<br />

e<br />

g<br />

i<br />

d<br />

ü<br />

R<br />

n<br />

o<br />

g<br />

g<br />

o<br />

W<br />

d<br />

e<br />

i<br />

r<br />

f<br />

g<br />

e<br />

i<br />

S<br />

)<br />

e<br />

h<br />

u<br />

r<br />

s<br />

l<br />

r<br />

a<br />

K<br />

(<br />

-<br />

o<br />

h<br />

p<br />

r<br />

o<br />

m<br />

a<br />

n<br />

a<br />

g<br />

n<br />

u<br />

l<br />

l<br />

e<br />

t<br />

s<br />

r<br />

e<br />

H<br />

r<br />

u<br />

z<br />

n<br />

e<br />

r<br />

h<br />

a<br />

f<br />

r<br />

e<br />

V<br />

t<br />

i<br />

m<br />

a<br />

d<br />

d<br />

n<br />

u<br />

s<br />

y<br />

a<br />

r<br />

r<br />

A<br />

r<br />

e<br />

h<br />

c<br />

s<br />

i<br />

t<br />

p<br />

o<br />

o<br />

r<br />

k<br />

i<br />

m<br />

r<br />

e<br />

h<br />

c<br />

s<br />

i<br />

t<br />

e<br />

s<br />

n<br />

i<br />

l<br />

r<br />

e<br />

s<br />

a<br />

F<br />

e<br />

t<br />

e<br />

t<br />

t<br />

a<br />

t<br />

s<br />

e<br />

g<br />

s<br />

u<br />

a<br />

6<br />

9<br />

9<br />

1<br />

.<br />

4<br />

0<br />

.<br />

1<br />

0<br />

9<br />

0<br />

-<br />

0<br />

.<br />

7<br />

4<br />

5<br />

0<br />

3<br />

6<br />

9<br />

1 ,<br />

r<br />

e<br />

n<br />

g<br />

o<br />

R<br />

o<br />

g<br />

n<br />

I<br />

l<br />

l<br />

e<br />

b<br />

p<br />

m<br />

a<br />

C<br />

r<br />

o<br />

n<br />

a<br />

e<br />

l<br />

E<br />

-<br />

r<br />

e<br />

s<br />

a<br />

L<br />

n<br />

e<br />

t<br />

z<br />

t<br />

ü<br />

t<br />

s<br />

r<br />

e<br />

t<br />

n<br />

u<br />

-<br />

x<br />

i<br />

r<br />

t<br />

a<br />

M<br />

r<br />

u<br />

z<br />

n<br />

e<br />

r<br />

h<br />

a<br />

f<br />

r<br />

e<br />

V<br />

-<br />

t<br />

y<br />

l<br />

a<br />

n<br />

A<br />

n<br />

o<br />

v<br />

g<br />

n<br />

u<br />

r<br />

e<br />

i<br />

s<br />

i<br />

n<br />

o<br />

I<br />

d<br />

n<br />

u<br />

n<br />

o<br />

i<br />

t<br />

p<br />

r<br />

o<br />

s<br />

e<br />

d<br />

.<br />

w<br />

z<br />

b<br />

n<br />

e<br />

l<br />

i<br />

g<br />

a<br />

r<br />

f<br />

n<br />

o<br />

v<br />

e<br />

r<br />

e<br />

d<br />

n<br />

o<br />

s<br />

e<br />

b<br />

s<br />

n<br />

i<br />

,<br />

n<br />

e<br />

l<br />

ü<br />

k<br />

e<br />

l<br />

o<br />

m<br />

n<br />

e<br />

l<br />

ü<br />

k<br />

e<br />

l<br />

o<br />

M<br />

n<br />

e<br />

l<br />

i<br />

b<br />

a<br />

l<br />

6<br />

9<br />

9<br />

1<br />

.<br />

7<br />

0<br />

.<br />

7<br />

1<br />

1<br />

5<br />

-<br />

6<br />

.<br />

9<br />

2<br />

2<br />

6<br />

3<br />

6<br />

9<br />

1 ,<br />

m<br />

m<br />

o<br />

T<br />

g<br />

n<br />

a<br />

g<br />

f<br />

l<br />

o<br />

W<br />

-<br />

s<br />

n<br />

e<br />

J<br />

,<br />

f<br />

f<br />

l<br />

o<br />

w<br />

r<br />

ä<br />

B<br />

r<br />

u<br />

t<br />

r<br />

A<br />

,<br />

r<br />

e<br />

s<br />

s<br />

ä<br />

s<br />

l<br />

E<br />

s<br />

a<br />

m<br />

o<br />

h<br />

T<br />

l<br />

e<br />

z<br />

n<br />

e<br />

M<br />

e<br />

w<br />

U<br />

r<br />

u<br />

z<br />

g<br />

n<br />

u<br />

t<br />

h<br />

c<br />

i<br />

r<br />

r<br />

o<br />

V<br />

d<br />

n<br />

u<br />

n<br />

e<br />

r<br />

h<br />

a<br />

f<br />

r<br />

e<br />

V<br />

n<br />

i<br />

e<br />

s<br />

s<br />

e<br />

z<br />

o<br />

r<br />

p<br />

s<br />

n<br />

o<br />

i<br />

t<br />

a<br />

d<br />

a<br />

r<br />

g<br />

e<br />

D<br />

r<br />

e<br />

d<br />

g<br />

n<br />

u<br />

m<br />

m<br />

i<br />

t<br />

s<br />

e<br />

B<br />

n<br />

r<br />

e<br />

s<br />

a<br />

l<br />

r<br />

e<br />

t<br />

i<br />

e<br />

l<br />

b<br />

l<br />

a<br />

H<br />

6<br />

9<br />

9<br />

1<br />

.<br />

8<br />

0<br />

.<br />

7<br />

2<br />

1<br />

5<br />

-<br />

9<br />

.<br />

9<br />

5<br />

6<br />

8<br />

4<br />

6<br />

9<br />

1 ,<br />

m<br />

m<br />

o<br />

T<br />

g<br />

n<br />

a<br />

g<br />

f<br />

l<br />

o<br />

W<br />

-<br />

s<br />

n<br />

e<br />

J<br />

,<br />

u<br />

a<br />

n<br />

e<br />

i<br />

L<br />

h<br />

p<br />

o<br />

t<br />

s<br />

i<br />

r<br />

h<br />

C<br />

,<br />

r<br />

e<br />

t<br />

h<br />

c<br />

i<br />

R<br />

r<br />

e<br />

d<br />

n<br />

a<br />

x<br />

e<br />

l<br />

A<br />

r<br />

e<br />

s<br />

s<br />

ä<br />

s<br />

l<br />

E<br />

s<br />

a<br />

m<br />

o<br />

h<br />

T<br />

n<br />

o<br />

v<br />

g<br />

n<br />

u<br />

m<br />

m<br />

i<br />

t<br />

s<br />

e<br />

B<br />

r<br />

u<br />

z<br />

n<br />

e<br />

r<br />

h<br />

a<br />

f<br />

r<br />

e<br />

V<br />

n<br />

r<br />

e<br />

s<br />

a<br />

l<br />

r<br />

e<br />

t<br />

i<br />

e<br />

l<br />

b<br />

l<br />

a<br />

H<br />

n<br />

i<br />

n<br />

e<br />

s<br />

s<br />

e<br />

z<br />

o<br />

r<br />

p<br />

s<br />

n<br />

o<br />

i<br />

t<br />

a<br />

d<br />

a<br />

r<br />

g<br />

e<br />

D<br />

6<br />

9<br />

9<br />

1<br />

.<br />

1<br />

1<br />

.<br />

5<br />

1<br />

9<br />

0<br />

-<br />

5<br />

.<br />

9<br />

4<br />

0<br />

1<br />

1<br />

7<br />

9<br />

1 ,<br />

d<br />

l<br />

e<br />

f<br />

n<br />

e<br />

s<br />

o<br />

R<br />

i<br />

d<br />

a<br />

k<br />

r<br />

A<br />

,<br />

i<br />

s<br />

a<br />

n<br />

e<br />

k<br />

h<br />

s<br />

A<br />

d<br />

i<br />

v<br />

a<br />

D<br />

,<br />

l<br />

e<br />

r<br />

a<br />

V<br />

d<br />

l<br />

a<br />

r<br />

a<br />

H<br />

l<br />

l<br />

e<br />

b<br />

p<br />

m<br />

a<br />

C<br />

r<br />

o<br />

n<br />

a<br />

e<br />

l<br />

E<br />

n<br />

e<br />

h<br />

c<br />

i<br />

l<br />

m<br />

u<br />

ä<br />

r<br />

n<br />

o<br />

v<br />

g<br />

n<br />

u<br />

l<br />

l<br />

e<br />

t<br />

s<br />

r<br />

e<br />

H<br />

r<br />

u<br />

z<br />

n<br />

e<br />

r<br />

h<br />

a<br />

f<br />

r<br />

e<br />

V<br />

n<br />

e<br />

t<br />

n<br />

e<br />

r<br />

a<br />

p<br />

s<br />

n<br />

a<br />

r<br />

t<br />

n<br />

i<br />

n<br />

e<br />

r<br />

u<br />

t<br />

k<br />

u<br />

r<br />

t<br />

s<br />

o<br />

r<br />

k<br />

i<br />

M<br />

g<br />

n<br />

u<br />

l<br />

h<br />

a<br />

r<br />

t<br />

s<br />

e<br />

b<br />

r<br />

e<br />

s<br />

a<br />

L<br />

s<br />

l<br />

e<br />

t<br />

t<br />

i<br />

m<br />

n<br />

e<br />

i<br />

l<br />

a<br />

i<br />

r<br />

e<br />

t<br />

a<br />

M<br />

7<br />

9<br />

9<br />

1<br />

.<br />

3<br />

0<br />

.<br />

3<br />

0<br />

8<br />

0<br />

-<br />

2<br />

.<br />

5<br />

6<br />

6<br />

0<br />

0<br />

7<br />

9<br />

5 ,<br />

l<br />

l<br />

e<br />

b<br />

p<br />

m<br />

a<br />

C<br />

r<br />

o<br />

n<br />

a<br />

e<br />

l<br />

E<br />

,<br />

l<br />

e<br />

t<br />

r<br />

e<br />

H<br />

r<br />

e<br />

k<br />

l<br />

o<br />

V<br />

f<br />

l<br />

o<br />

g<br />

n<br />

I<br />

n<br />

n<br />

a<br />

m<br />

g<br />

l<br />

l<br />

e<br />

T<br />

f<br />

l<br />

a<br />

R<br />

r<br />

e<br />

l<br />

a<br />

r<br />

d<br />

e<br />

h<br />

o<br />

d<br />

n<br />

e<br />

g<br />

n<br />

u<br />

l<br />

l<br />

e<br />

t<br />

s<br />

r<br />

e<br />

H<br />

r<br />

u<br />

z<br />

n<br />

e<br />

r<br />

h<br />

a<br />

f<br />

r<br />

e<br />

V<br />

e<br />

t<br />

a<br />

v<br />

i<br />

r<br />

e<br />

d<br />

n<br />

e<br />

r<br />

e<br />

l<br />

l<br />

u<br />

F<br />

.<br />

w<br />

z<br />

b<br />

e<br />

n<br />

e<br />

r<br />

e<br />

l<br />

l<br />

u<br />

F<br />

7<br />

9<br />

9<br />

1<br />

.<br />

3<br />

0<br />

.<br />

4<br />

1<br />

9<br />

5<br />

8<br />

2<br />

9<br />

8<br />

0 ,<br />

l<br />

l<br />

e<br />

b<br />

p<br />

m<br />

a<br />

C<br />

r<br />

o<br />

n<br />

a<br />

e<br />

l<br />

E<br />

,<br />

l<br />

e<br />

t<br />

r<br />

e<br />

H<br />

r<br />

e<br />

k<br />

l<br />

o<br />

V<br />

f<br />

l<br />

o<br />

g<br />

n<br />

I<br />

n<br />

n<br />

a<br />

m<br />

g<br />

l<br />

l<br />

e<br />

T<br />

f<br />

l<br />

a<br />

R<br />

s<br />

e<br />

n<br />

e<br />

r<br />

e<br />

l<br />

l<br />

u<br />

f<br />

e<br />

d<br />

n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

a<br />

p<br />

e<br />

r<br />

p<br />

e<br />

d<br />

e<br />

d<br />

e<br />

c<br />

o<br />

r<br />

P<br />

e<br />

n<br />

e<br />

r<br />

e<br />

l<br />

l<br />

u<br />

f<br />

s<br />

e<br />

d<br />

s<br />

e<br />

v<br />

i<br />

r<br />

e<br />

d<br />

e<br />

d<br />

u<br />

o<br />

s<br />

e<br />

l<br />

a<br />

r<br />

d<br />

e<br />

h<br />

o<br />

d<br />

n<br />

e<br />

7<br />

9<br />

9<br />

1<br />

.<br />

3<br />

0<br />

.<br />

4<br />

1<br />

9<br />

5<br />

8<br />

2<br />

9<br />

8<br />

0 ,<br />

l<br />

l<br />

e<br />

b<br />

p<br />

m<br />

a<br />

C<br />

r<br />

o<br />

n<br />

a<br />

e<br />

l<br />

E<br />

,<br />

l<br />

e<br />

t<br />

r<br />

e<br />

H<br />

r<br />

e<br />

k<br />

l<br />

o<br />

V<br />

f<br />

l<br />

o<br />

g<br />

n<br />

I<br />

n<br />

n<br />

a<br />

m<br />

g<br />

l<br />

l<br />

e<br />

T<br />

f<br />

l<br />

a<br />

R<br />

l<br />

a<br />

r<br />

d<br />

e<br />

h<br />

o<br />

d<br />

n<br />

e<br />

g<br />

n<br />

i<br />

r<br />

a<br />

p<br />

e<br />

r<br />

p<br />

r<br />

o<br />

f<br />

s<br />

s<br />

e<br />

c<br />

o<br />

r<br />

P<br />

s<br />

e<br />

t<br />

a<br />

v<br />

i<br />

r<br />

e<br />

d<br />

e<br />

n<br />

e<br />

r<br />

e<br />

l<br />

l<br />

u<br />

f<br />

r<br />

o<br />

s<br />

e<br />

n<br />

e<br />

r<br />

e<br />

l<br />

l<br />

u<br />

f<br />

7<br />

9<br />

9<br />

1<br />

.<br />

3<br />

0<br />

.<br />

4<br />

1<br />

3<br />

3<br />

-<br />

6<br />

.<br />

6<br />

4<br />

3<br />

4<br />

1<br />

7<br />

9<br />

1 ,<br />

u<br />

a<br />

n<br />

e<br />

i<br />

L<br />

h<br />

p<br />

o<br />

t<br />

s<br />

i<br />

r<br />

h<br />

C<br />

,<br />

e<br />

m<br />

h<br />

e<br />

B<br />

d<br />

r<br />

e<br />

G<br />

,<br />

r<br />

e<br />

t<br />

h<br />

c<br />

i<br />

R<br />

r<br />

e<br />

d<br />

n<br />

a<br />

x<br />

e<br />

l<br />

A<br />

,<br />

z<br />

t<br />

i<br />

t<br />

p<br />

ü<br />

S<br />

o<br />

k<br />

r<br />

a<br />

M<br />

r<br />

e<br />

s<br />

s<br />

ä<br />

s<br />

l<br />

E<br />

s<br />

a<br />

m<br />

o<br />

h<br />

T<br />

n<br />

e<br />

h<br />

c<br />

s<br />

i<br />

t<br />

p<br />

o<br />

r<br />

u<br />

z<br />

g<br />

n<br />

u<br />

t<br />

h<br />

c<br />

i<br />

r<br />

r<br />

o<br />

V<br />

d<br />

n<br />

u<br />

n<br />

e<br />

r<br />

h<br />

a<br />

f<br />

r<br />

e<br />

V<br />

-<br />

f<br />

u<br />

a<br />

n<br />

e<br />

g<br />

n<br />

ä<br />

l<br />

n<br />

e<br />

l<br />

l<br />

e<br />

w<br />

b<br />

u<br />

S<br />

t<br />

i<br />

m<br />

e<br />

i<br />

p<br />

o<br />

k<br />

s<br />

o<br />

r<br />

k<br />

i<br />

M<br />

g<br />

n<br />

u<br />

s<br />

ö<br />

l<br />

7<br />

9<br />

9<br />

1<br />

.<br />

3<br />

0<br />

.<br />

6<br />

2<br />

1<br />

5<br />

-<br />

3<br />

.<br />

7<br />

5<br />

2<br />

1<br />

2<br />

7<br />

9<br />

1 ,<br />

d<br />

l<br />

a<br />

w<br />

n<br />

u<br />

r<br />

G<br />

r<br />

e<br />

g<br />

i<br />

d<br />

ü<br />

R<br />

n<br />

n<br />

a<br />

m<br />

u<br />

e<br />

N<br />

e<br />

w<br />

U<br />

,<br />

)<br />

n<br />

i<br />

l<br />

r<br />

e<br />

B<br />

(<br />

n<br />

o<br />

g<br />

g<br />

o<br />

W<br />

d<br />

e<br />

i<br />

r<br />

f<br />

g<br />

e<br />

i<br />

S<br />

)<br />

e<br />

h<br />

u<br />

r<br />

s<br />

l<br />

r<br />

a<br />

K<br />

(<br />

d<br />

n<br />

u<br />

g<br />

n<br />

u<br />

m<br />

r<br />

o<br />

f<br />

l<br />

h<br />

a<br />

r<br />

t<br />

S<br />

r<br />

u<br />

z<br />

g<br />

n<br />

u<br />

n<br />

d<br />

r<br />

o<br />

n<br />

A<br />

-<br />

t<br />

h<br />

c<br />

i<br />

n<br />

t<br />

i<br />

m<br />

n<br />

o<br />

i<br />

t<br />

k<br />

e<br />

t<br />

e<br />

D<br />

n<br />

e<br />

v<br />

i<br />

t<br />

k<br />

e<br />

l<br />

e<br />

s<br />

h<br />

c<br />

i<br />

l<br />

m<br />

u<br />

ä<br />

r<br />

n<br />

e<br />

s<br />

n<br />

i<br />

l<br />

o<br />

r<br />

k<br />

i<br />

M<br />

n<br />

e<br />

h<br />

c<br />

s<br />

i<br />

r<br />

ä<br />

h<br />

p<br />

s<br />

7<br />

9<br />

9<br />

1<br />

.<br />

5<br />

0<br />

.<br />

5<br />

1


103<br />

n<br />

o<br />

i<br />

t<br />

a<br />

c<br />

i<br />

l<br />

p<br />

p<br />

A n<br />

o<br />

i<br />

t<br />

a<br />

c<br />

i<br />

l<br />

p<br />

p<br />

A n<br />

o<br />

i<br />

t<br />

a<br />

c<br />

i<br />

l<br />

p<br />

p<br />

A n<br />

o<br />

i<br />

t<br />

a<br />

c<br />

i<br />

l<br />

p<br />

p<br />

A n<br />

o<br />

i<br />

t<br />

a<br />

c<br />

i<br />

l<br />

p<br />

p<br />

A<br />

r<br />

e<br />

b<br />

m<br />

u<br />

n<br />

e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

l<br />

t<br />

i<br />

T e<br />

l<br />

t<br />

i<br />

T e<br />

l<br />

t<br />

i<br />

T e<br />

l<br />

t<br />

i<br />

T e<br />

l<br />

t<br />

i<br />

T e<br />

t<br />

a<br />

d<br />

g<br />

n<br />

i<br />

l<br />

i<br />

F e<br />

t<br />

a<br />

d<br />

g<br />

n<br />

i<br />

l<br />

i<br />

F e<br />

t<br />

a<br />

d<br />

g<br />

n<br />

i<br />

l<br />

i<br />

F e<br />

t<br />

a<br />

d<br />

g<br />

n<br />

i<br />

l<br />

i<br />

F e<br />

t<br />

a<br />

d<br />

g<br />

n<br />

i<br />

l<br />

i<br />

F<br />

9<br />

0<br />

-<br />

2<br />

.<br />

5<br />

5<br />

1<br />

6<br />

3<br />

7<br />

9<br />

1 ,<br />

s<br />

a<br />

l<br />

G<br />

r<br />

e<br />

t<br />

e<br />

P<br />

l<br />

e<br />

t<br />

i<br />

e<br />

r<br />

K<br />

l<br />

e<br />

a<br />

h<br />

c<br />

i<br />

M<br />

-<br />

r<br />

e<br />

s<br />

a<br />

F<br />

n<br />

e<br />

t<br />

k<br />

a<br />

p<br />

m<br />

o<br />

k<br />

n<br />

e<br />

n<br />

i<br />

e<br />

r<br />

ü<br />

f<br />

g<br />

n<br />

u<br />

n<br />

d<br />

r<br />

o<br />

n<br />

A<br />

g<br />

n<br />

u<br />

l<br />

h<br />

a<br />

r<br />

t<br />

s<br />

r<br />

e<br />

s<br />

a<br />

L<br />

n<br />

o<br />

v<br />

g<br />

n<br />

u<br />

g<br />

u<br />

e<br />

z<br />

r<br />

E<br />

r<br />

u<br />

z<br />

r<br />

e<br />

s<br />

a<br />

l<br />

7<br />

9<br />

9<br />

1<br />

.<br />

8<br />

0<br />

.<br />

4<br />

1<br />

2<br />

5<br />

-<br />

3<br />

.<br />

2<br />

2<br />

1<br />

1<br />

4<br />

7<br />

9<br />

1 ,<br />

s<br />

a<br />

l<br />

G<br />

r<br />

e<br />

t<br />

e<br />

P<br />

r<br />

e<br />

h<br />

c<br />

a<br />

m<br />

r<br />

r<br />

i<br />

h<br />

c<br />

S<br />

é<br />

r<br />

d<br />

n<br />

A<br />

d<br />

n<br />

u<br />

g<br />

n<br />

u<br />

s<br />

s<br />

e<br />

m<br />

r<br />

e<br />

V<br />

r<br />

u<br />

z<br />

g<br />

n<br />

u<br />

n<br />

d<br />

r<br />

o<br />

n<br />

A<br />

)<br />

g<br />

n<br />

u<br />

n<br />

d<br />

r<br />

o<br />

n<br />

a<br />

d<br />

l<br />

e<br />

f<br />

h<br />

a<br />

N<br />

(<br />

g<br />

n<br />

u<br />

r<br />

e<br />

i<br />

r<br />

u<br />

t<br />

k<br />

u<br />

r<br />

t<br />

S<br />

7<br />

9<br />

9<br />

1<br />

.<br />

9<br />

0<br />

.<br />

2<br />

1<br />

3<br />

4<br />

-<br />

7<br />

.<br />

5<br />

2<br />

0<br />

3<br />

5<br />

7<br />

9<br />

1 r<br />

e<br />

y<br />

e<br />

r<br />

F<br />

g<br />

n<br />

a<br />

g<br />

f<br />

l<br />

o<br />

W h<br />

c<br />

i<br />

l<br />

d<br />

e<br />

i<br />

h<br />

c<br />

s<br />

r<br />

e<br />

t<br />

n<br />

u<br />

t<br />

i<br />

m<br />

e<br />

f<br />

f<br />

o<br />

t<br />

s<br />

b<br />

r<br />

a<br />

F<br />

e<br />

h<br />

c<br />

s<br />

i<br />

n<br />

a<br />

g<br />

r<br />

O<br />

e<br />

g<br />

i<br />

t<br />

r<br />

a<br />

r<br />

e<br />

d<br />

,<br />

s<br />

e<br />

i<br />

z<br />

e<br />

p<br />

S<br />

n<br />

e<br />

v<br />

i<br />

t<br />

k<br />

e<br />

l<br />

e<br />

s<br />

n<br />

e<br />

g<br />

n<br />

ä<br />

l<br />

n<br />

e<br />

l<br />

l<br />

e<br />

w<br />

-<br />

n<br />

e<br />

t<br />

a<br />

D<br />

r<br />

e<br />

h<br />

c<br />

s<br />

i<br />

t<br />

p<br />

o<br />

r<br />

e<br />

d<br />

n<br />

e<br />

t<br />

l<br />

a<br />

h<br />

t<br />

n<br />

e<br />

s<br />

e<br />

i<br />

z<br />

e<br />

p<br />

S<br />

n<br />

e<br />

s<br />

s<br />

e<br />

d<br />

u<br />

z<br />

n<br />

e<br />

r<br />

h<br />

a<br />

f<br />

r<br />

e<br />

V<br />

d<br />

n<br />

u<br />

r<br />

e<br />

h<br />

c<br />

i<br />

e<br />

p<br />

s<br />

g<br />

n<br />

u<br />

l<br />

l<br />

e<br />

t<br />

s<br />

r<br />

e<br />

H<br />

7<br />

9<br />

9<br />

1<br />

.<br />

1<br />

1<br />

.<br />

7<br />

1<br />

3<br />

3<br />

-<br />

0<br />

.<br />

6<br />

6<br />

3<br />

8<br />

5<br />

7<br />

9<br />

1 ,<br />

l<br />

e<br />

g<br />

a<br />

n<br />

n<br />

ö<br />

h<br />

c<br />

S<br />

t<br />

s<br />

r<br />

o<br />

H<br />

r<br />

e<br />

n<br />

b<br />

e<br />

i<br />

r<br />

G<br />

e<br />

w<br />

U<br />

-<br />

n<br />

e<br />

d<br />

o<br />

i<br />

D<br />

m<br />

u<br />

z<br />

g<br />

n<br />

u<br />

t<br />

h<br />

c<br />

i<br />

r<br />

r<br />

o<br />

V<br />

d<br />

n<br />

u<br />

n<br />

e<br />

r<br />

h<br />

a<br />

f<br />

r<br />

e<br />

V<br />

r<br />

e<br />

d<br />

o<br />

n<br />

r<br />

e<br />

s<br />

a<br />

l<br />

r<br />

e<br />

t<br />

i<br />

e<br />

l<br />

n<br />

e<br />

l<br />

l<br />

e<br />

W<br />

n<br />

o<br />

v<br />

n<br />

e<br />

p<br />

m<br />

u<br />

p<br />

n<br />

r<br />

e<br />

k<br />

r<br />

ä<br />

t<br />

s<br />

r<br />

e<br />

v<br />

r<br />

e<br />

t<br />

i<br />

e<br />

l<br />

n<br />

e<br />

l<br />

l<br />

e<br />

W<br />

7<br />

9<br />

9<br />

1<br />

.<br />

2<br />

1<br />

.<br />

2<br />

2<br />

4<br />

.<br />

1<br />

1<br />

2<br />

1<br />

1<br />

8<br />

9<br />

1 ,<br />

r<br />

e<br />

n<br />

b<br />

e<br />

i<br />

r<br />

G<br />

e<br />

w<br />

U<br />

l<br />

e<br />

g<br />

a<br />

n<br />

n<br />

ö<br />

h<br />

c<br />

S<br />

t<br />

s<br />

r<br />

o<br />

H<br />

r<br />

e<br />

s<br />

a<br />

l<br />

r<br />

e<br />

p<br />

r<br />

ö<br />

k<br />

t<br />

s<br />

e<br />

F<br />

-<br />

r<br />

e<br />

t<br />

i<br />

e<br />

l<br />

n<br />

e<br />

l<br />

l<br />

e<br />

W<br />

-<br />

h<br />

t<br />

a<br />

p<br />

i<br />

t<br />

l<br />

u<br />

M<br />

g<br />

n<br />

u<br />

n<br />

d<br />

r<br />

o<br />

n<br />

a<br />

r<br />

e<br />

k<br />

r<br />

ä<br />

t<br />

s<br />

r<br />

e<br />

V<br />

-<br />

r<br />

e<br />

d<br />

o<br />

8<br />

9<br />

9<br />

1<br />

.<br />

3<br />

0<br />

.<br />

0<br />

1<br />

9<br />

0<br />

-<br />

5<br />

.<br />

3<br />

3<br />

0<br />

0<br />

2<br />

9<br />

9<br />

1 ,<br />

s<br />

a<br />

l<br />

G<br />

r<br />

e<br />

t<br />

e<br />

P<br />

h<br />

c<br />

s<br />

t<br />

r<br />

e<br />

P<br />

s<br />

a<br />

m<br />

o<br />

h<br />

T<br />

,<br />

)<br />

a<br />

n<br />

e<br />

J<br />

(<br />

e<br />

g<br />

a<br />

r<br />

W<br />

n<br />

e<br />

f<br />

f<br />

e<br />

t<br />

S<br />

-<br />

c<br />

r<br />

a<br />

M<br />

n<br />

o<br />

v<br />

g<br />

n<br />

u<br />

l<br />

p<br />

p<br />

o<br />

K<br />

n<br />

e<br />

t<br />

n<br />

e<br />

r<br />

ä<br />

h<br />

o<br />

k<br />

r<br />

u<br />

z<br />

g<br />

n<br />

u<br />

n<br />

d<br />

r<br />

o<br />

n<br />

A<br />

r<br />

e<br />

s<br />

a<br />

l<br />

l<br />

e<br />

z<br />

n<br />

i<br />

E<br />

r<br />

e<br />

r<br />

e<br />

r<br />

h<br />

e<br />

m<br />

g<br />

n<br />

u<br />

l<br />

h<br />

a<br />

r<br />

t<br />

s<br />

r<br />

e<br />

s<br />

a<br />

L<br />

9<br />

9<br />

9<br />

1<br />

.<br />

4<br />

0<br />

.<br />

6<br />

2<br />

3<br />

3<br />

-<br />

6<br />

.<br />

5<br />

0<br />

0<br />

3<br />

2<br />

9<br />

9<br />

1 ,<br />

d<br />

l<br />

a<br />

w<br />

n<br />

u<br />

r<br />

G<br />

r<br />

e<br />

g<br />

i<br />

d<br />

ü<br />

R<br />

,<br />

l<br />

e<br />

g<br />

a<br />

n<br />

n<br />

ö<br />

h<br />

c<br />

S<br />

t<br />

s<br />

r<br />

o<br />

H<br />

s<br />

u<br />

a<br />

l<br />

K<br />

r<br />

e<br />

h<br />

c<br />

e<br />

b<br />

n<br />

e<br />

k<br />

n<br />

e<br />

w<br />

h<br />

c<br />

S<br />

)<br />

H<br />

b<br />

m<br />

G<br />

l<br />

a<br />

t<br />

s<br />

y<br />

r<br />

C<br />

(<br />

-<br />

z<br />

n<br />

e<br />

u<br />

q<br />

e<br />

r<br />

F<br />

r<br />

u<br />

z<br />

g<br />

n<br />

u<br />

n<br />

d<br />

r<br />

o<br />

n<br />

A<br />

d<br />

n<br />

u<br />

n<br />

e<br />

r<br />

h<br />

a<br />

f<br />

r<br />

e<br />

V<br />

g<br />

n<br />

u<br />

l<br />

h<br />

a<br />

r<br />

t<br />

s<br />

r<br />

e<br />

s<br />

a<br />

L<br />

n<br />

o<br />

v<br />

n<br />

o<br />

i<br />

s<br />

r<br />

e<br />

v<br />

n<br />

o<br />

k<br />

9<br />

9<br />

9<br />

1<br />

.<br />

5<br />

0<br />

.<br />

4<br />

1<br />

2<br />

5<br />

-<br />

9<br />

.<br />

1<br />

3<br />

6<br />

5<br />

3<br />

9<br />

9<br />

1 ,<br />

d<br />

l<br />

a<br />

w<br />

d<br />

n<br />

u<br />

r<br />

G<br />

r<br />

e<br />

g<br />

i<br />

d<br />

ü<br />

R<br />

,<br />

r<br />

e<br />

n<br />

b<br />

e<br />

i<br />

r<br />

G<br />

e<br />

w<br />

U<br />

,<br />

r<br />

e<br />

s<br />

s<br />

ä<br />

s<br />

l<br />

E<br />

s<br />

a<br />

m<br />

o<br />

h<br />

T<br />

,<br />

l<br />

e<br />

b<br />

b<br />

e<br />

K<br />

r<br />

e<br />

k<br />

l<br />

o<br />

V<br />

,<br />

r<br />

e<br />

n<br />

t<br />

p<br />

ü<br />

J<br />

r<br />

e<br />

n<br />

r<br />

e<br />

W<br />

n<br />

e<br />

g<br />

r<br />

ü<br />

J<br />

-<br />

s<br />

n<br />

a<br />

H<br />

r<br />

e<br />

m<br />

e<br />

r<br />

B<br />

(<br />

n<br />

n<br />

a<br />

m<br />

t<br />

r<br />

a<br />

H<br />

e<br />

t<br />

d<br />

n<br />

a<br />

w<br />

e<br />

g<br />

n<br />

A<br />

r<br />

ü<br />

f<br />

t<br />

u<br />

t<br />

i<br />

t<br />

s<br />

n<br />

I<br />

)<br />

S<br />

A<br />

I<br />

B<br />

,<br />

k<br />

i<br />

n<br />

h<br />

c<br />

e<br />

t<br />

l<br />

h<br />

a<br />

r<br />

t<br />

S<br />

-<br />

i<br />

r<br />

e<br />

t<br />

k<br />

a<br />

r<br />

a<br />

h<br />

C<br />

r<br />

u<br />

z<br />

g<br />

n<br />

u<br />

n<br />

d<br />

r<br />

o<br />

n<br />

A<br />

d<br />

n<br />

u<br />

n<br />

e<br />

r<br />

h<br />

a<br />

f<br />

r<br />

e<br />

V<br />

n<br />

e<br />

s<br />

l<br />

u<br />

p<br />

m<br />

i<br />

r<br />

e<br />

s<br />

a<br />

L<br />

n<br />

e<br />

z<br />

r<br />

u<br />

k<br />

a<br />

r<br />

t<br />

l<br />

u<br />

n<br />

o<br />

v<br />

g<br />

n<br />

u<br />

r<br />

e<br />

i<br />

s<br />

9<br />

9<br />

9<br />

1<br />

.<br />

7<br />

0<br />

.<br />

9<br />

2<br />

9<br />

0<br />

-<br />

0<br />

.<br />

0<br />

3<br />

6<br />

5<br />

3<br />

9<br />

9<br />

1 ,<br />

d<br />

l<br />

a<br />

w<br />

n<br />

u<br />

r<br />

G<br />

r<br />

e<br />

g<br />

i<br />

d<br />

ü<br />

R<br />

,<br />

r<br />

e<br />

n<br />

b<br />

e<br />

i<br />

r<br />

G<br />

e<br />

w<br />

U<br />

,<br />

r<br />

e<br />

n<br />

t<br />

t<br />

ü<br />

B<br />

f<br />

e<br />

l<br />

t<br />

E<br />

s<br />

a<br />

k<br />

u<br />

L<br />

n<br />

a<br />

i<br />

t<br />

s<br />

i<br />

r<br />

h<br />

C<br />

k<br />

i<br />

s<br />

y<br />

h<br />

P<br />

e<br />

t<br />

d<br />

n<br />

a<br />

w<br />

e<br />

g<br />

n<br />

A<br />

(<br />

)<br />

H<br />

b<br />

m<br />

G<br />

k<br />

i<br />

n<br />

o<br />

r<br />

t<br />

k<br />

e<br />

l<br />

E<br />

d<br />

n<br />

u<br />

d<br />

n<br />

u<br />

h<br />

c<br />

i<br />

l<br />

t<br />

i<br />

e<br />

z<br />

r<br />

u<br />

z<br />

g<br />

n<br />

u<br />

n<br />

d<br />

r<br />

o<br />

n<br />

A<br />

d<br />

n<br />

u<br />

n<br />

e<br />

r<br />

h<br />

a<br />

f<br />

r<br />

e<br />

V<br />

g<br />

n<br />

u<br />

r<br />

e<br />

i<br />

s<br />

i<br />

r<br />

e<br />

t<br />

k<br />

a<br />

r<br />

a<br />

h<br />

C<br />

n<br />

e<br />

t<br />

s<br />

ö<br />

l<br />

e<br />

g<br />

f<br />

u<br />

a<br />

l<br />

a<br />

r<br />

t<br />

k<br />

e<br />

p<br />

s<br />

n<br />

e<br />

s<br />

l<br />

u<br />

p<br />

m<br />

i<br />

r<br />

e<br />

s<br />

a<br />

L<br />

n<br />

e<br />

z<br />

r<br />

u<br />

k<br />

a<br />

r<br />

t<br />

l<br />

u<br />

n<br />

o<br />

v<br />

9<br />

9<br />

9<br />

1<br />

.<br />

7<br />

0<br />

.<br />

9<br />

2<br />

2<br />

5<br />

-<br />

6<br />

.<br />

6<br />

0<br />

7<br />

9<br />

3<br />

9<br />

9<br />

1 ,<br />

r<br />

e<br />

n<br />

h<br />

c<br />

u<br />

e<br />

T<br />

s<br />

u<br />

a<br />

l<br />

K<br />

,<br />

d<br />

l<br />

o<br />

p<br />

u<br />

e<br />

L<br />

r<br />

e<br />

t<br />

e<br />

i<br />

D<br />

,<br />

t<br />

r<br />

e<br />

l<br />

h<br />

E<br />

n<br />

e<br />

g<br />

r<br />

ü<br />

J<br />

)<br />

a<br />

n<br />

e<br />

J<br />

(<br />

g<br />

i<br />

n<br />

ö<br />

K<br />

n<br />

e<br />

t<br />

s<br />

r<br />

a<br />

K<br />

-<br />

r<br />

e<br />

s<br />

a<br />

L<br />

-<br />

n<br />

e<br />

n<br />

o<br />

t<br />

o<br />

h<br />

P<br />

-<br />

i<br />

t<br />

l<br />

u<br />

M<br />

e<br />

i<br />

d<br />

r<br />

ü<br />

f<br />

r<br />

o<br />

h<br />

p<br />

o<br />

r<br />

o<br />

u<br />

l<br />

F<br />

e<br />

i<br />

p<br />

o<br />

k<br />

s<br />

o<br />

r<br />

k<br />

i<br />

M<br />

g<br />

n<br />

i<br />

n<br />

n<br />

a<br />

c<br />

S<br />

9<br />

9<br />

9<br />

1<br />

.<br />

8<br />

0<br />

.<br />

8<br />

1<br />

5<br />

4<br />

-<br />

1<br />

.<br />

2<br />

8<br />

1<br />

6<br />

4<br />

9<br />

9<br />

1 h<br />

c<br />

i<br />

l<br />

h<br />

E<br />

f<br />

l<br />

o<br />

d<br />

u<br />

R g<br />

n<br />

u<br />

l<br />

l<br />

e<br />

t<br />

s<br />

r<br />

e<br />

H<br />

r<br />

u<br />

z<br />

g<br />

n<br />

u<br />

n<br />

d<br />

r<br />

o<br />

n<br />

A<br />

d<br />

n<br />

u<br />

n<br />

e<br />

r<br />

h<br />

a<br />

f<br />

r<br />

e<br />

V<br />

n<br />

e<br />

r<br />

h<br />

ö<br />

r<br />

o<br />

n<br />

a<br />

N<br />

f<br />

f<br />

o<br />

t<br />

s<br />

n<br />

e<br />

l<br />

h<br />

o<br />

K<br />

n<br />

o<br />

v<br />

9<br />

9<br />

9<br />

1<br />

.<br />

9<br />

0<br />

.<br />

1<br />

2


104<br />

n<br />

o<br />

i<br />

t<br />

a<br />

c<br />

i<br />

l<br />

p<br />

p<br />

A n<br />

o<br />

i<br />

t<br />

a<br />

c<br />

i<br />

l<br />

p<br />

p<br />

A n<br />

o<br />

i<br />

t<br />

a<br />

c<br />

i<br />

l<br />

p<br />

p<br />

A n<br />

o<br />

i<br />

t<br />

a<br />

c<br />

i<br />

l<br />

p<br />

p<br />

A n<br />

o<br />

i<br />

t<br />

a<br />

c<br />

i<br />

l<br />

p<br />

p<br />

A<br />

r<br />

e<br />

b<br />

m<br />

u<br />

n<br />

e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

l<br />

t<br />

i<br />

T e<br />

l<br />

t<br />

i<br />

T e<br />

l<br />

t<br />

i<br />

T e<br />

l<br />

t<br />

i<br />

T e<br />

l<br />

t<br />

i<br />

T e<br />

t<br />

a<br />

d<br />

g<br />

n<br />

i<br />

l<br />

i<br />

F e<br />

t<br />

a<br />

d<br />

g<br />

n<br />

i<br />

l<br />

i<br />

F e<br />

t<br />

a<br />

d<br />

g<br />

n<br />

i<br />

l<br />

i<br />

F e<br />

t<br />

a<br />

d<br />

g<br />

n<br />

i<br />

l<br />

i<br />

F e<br />

t<br />

a<br />

d<br />

g<br />

n<br />

i<br />

l<br />

i<br />

F<br />

9<br />

0<br />

-<br />

4<br />

.<br />

9<br />

0<br />

1<br />

4<br />

5<br />

9<br />

9<br />

1 ,<br />

s<br />

a<br />

l<br />

G<br />

r<br />

e<br />

t<br />

e<br />

P<br />

r<br />

e<br />

n<br />

t<br />

i<br />

e<br />

L<br />

n<br />

i<br />

t<br />

r<br />

a<br />

M<br />

e<br />

s<br />

l<br />

u<br />

p<br />

m<br />

I<br />

r<br />

e<br />

z<br />

r<br />

u<br />

k<br />

g<br />

n<br />

u<br />

g<br />

u<br />

e<br />

z<br />

r<br />

E<br />

r<br />

u<br />

z<br />

g<br />

n<br />

u<br />

t<br />

h<br />

c<br />

i<br />

r<br />

r<br />

o<br />

V<br />

g<br />

n<br />

u<br />

l<br />

p<br />

p<br />

o<br />

k<br />

n<br />

e<br />

d<br />

o<br />

M<br />

e<br />

v<br />

i<br />

s<br />

s<br />

a<br />

p<br />

h<br />

c<br />

r<br />

u<br />

d<br />

9<br />

9<br />

9<br />

1<br />

.<br />

1<br />

1<br />

.<br />

2<br />

0<br />

9<br />

0<br />

-<br />

1<br />

.<br />

3<br />

8<br />

0<br />

4<br />

6<br />

9<br />

9<br />

1 ,<br />

n<br />

r<br />

o<br />

K<br />

g<br />

r<br />

o<br />

e<br />

G<br />

,<br />

r<br />

e<br />

n<br />

b<br />

e<br />

i<br />

r<br />

G<br />

e<br />

w<br />

U<br />

n<br />

n<br />

a<br />

m<br />

r<br />

e<br />

n<br />

n<br />

ü<br />

T<br />

s<br />

a<br />

e<br />

r<br />

d<br />

n<br />

A<br />

)<br />

a<br />

n<br />

e<br />

J<br />

(<br />

t<br />

i<br />

m<br />

m<br />

e<br />

t<br />

s<br />

y<br />

s<br />

r<br />

e<br />

k<br />

r<br />

ä<br />

t<br />

s<br />

r<br />

e<br />

v<br />

r<br />

e<br />

s<br />

a<br />

L<br />

n<br />

o<br />

i<br />

t<br />

a<br />

l<br />

u<br />

d<br />

o<br />

m<br />

z<br />

n<br />

e<br />

u<br />

q<br />

e<br />

r<br />

F<br />

r<br />

e<br />

l<br />

a<br />

n<br />

o<br />

i<br />

t<br />

r<br />

o<br />

p<br />

o<br />

r<br />

p<br />

t<br />

i<br />

e<br />

z<br />

9<br />

9<br />

9<br />

1<br />

.<br />

2<br />

1<br />

.<br />

7<br />

2<br />

8<br />

7<br />

3<br />

.<br />

3<br />

4<br />

2<br />

E ,<br />

s<br />

a<br />

l<br />

G<br />

r<br />

e<br />

t<br />

e<br />

P<br />

r<br />

e<br />

n<br />

t<br />

i<br />

e<br />

L<br />

n<br />

i<br />

t<br />

r<br />

a<br />

M<br />

y<br />

b<br />

s<br />

e<br />

s<br />

l<br />

u<br />

p<br />

t<br />

r<br />

o<br />

h<br />

s<br />

g<br />

n<br />

i<br />

c<br />

u<br />

d<br />

o<br />

r<br />

p<br />

r<br />

o<br />

f<br />

e<br />

c<br />

i<br />

v<br />

e<br />

D<br />

k<br />

c<br />

o<br />

l<br />

e<br />

d<br />

o<br />

m<br />

e<br />

v<br />

i<br />

s<br />

s<br />

a<br />

p<br />

0<br />

0<br />

0<br />

2<br />

.<br />

3<br />

0<br />

.<br />

4<br />

2<br />

4<br />

1<br />

2<br />

2<br />

-<br />

5<br />

.<br />

1<br />

9<br />

9<br />

0<br />

3<br />

9<br />

0<br />

0 ,<br />

s<br />

a<br />

l<br />

G<br />

r<br />

e<br />

t<br />

e<br />

P<br />

r<br />

e<br />

n<br />

t<br />

i<br />

e<br />

L<br />

n<br />

i<br />

t<br />

r<br />

a<br />

M<br />

y<br />

b<br />

s<br />

e<br />

s<br />

l<br />

u<br />

p<br />

t<br />

r<br />

o<br />

h<br />

s<br />

g<br />

n<br />

i<br />

c<br />

u<br />

d<br />

o<br />

r<br />

p<br />

r<br />

o<br />

f<br />

e<br />

c<br />

i<br />

v<br />

e<br />

D<br />

k<br />

c<br />

o<br />

l<br />

e<br />

d<br />

o<br />

m<br />

e<br />

v<br />

i<br />

s<br />

s<br />

a<br />

p<br />

0<br />

0<br />

0<br />

2<br />

.<br />

3<br />

0<br />

.<br />

4<br />

2<br />

8<br />

0<br />

-<br />

6<br />

.<br />

1<br />

9<br />

5<br />

2<br />

0<br />

0<br />

0<br />

5 ,<br />

s<br />

a<br />

l<br />

G<br />

r<br />

e<br />

t<br />

e<br />

P<br />

r<br />

e<br />

n<br />

t<br />

i<br />

e<br />

L<br />

n<br />

i<br />

t<br />

r<br />

a<br />

M<br />

y<br />

b<br />

s<br />

e<br />

s<br />

l<br />

u<br />

p<br />

t<br />

r<br />

o<br />

h<br />

s<br />

g<br />

n<br />

i<br />

c<br />

u<br />

d<br />

o<br />

r<br />

p<br />

r<br />

o<br />

f<br />

e<br />

c<br />

i<br />

v<br />

e<br />

D<br />

k<br />

c<br />

o<br />

l<br />

e<br />

d<br />

o<br />

m<br />

e<br />

v<br />

i<br />

s<br />

s<br />

a<br />

p<br />

0<br />

0<br />

0<br />

2<br />

.<br />

3<br />

0<br />

.<br />

4<br />

2<br />

4<br />

1<br />

2<br />

2<br />

-<br />

5<br />

.<br />

1<br />

9<br />

9<br />

0<br />

3<br />

9<br />

0<br />

0 ,<br />

s<br />

a<br />

l<br />

G<br />

r<br />

e<br />

t<br />

e<br />

P<br />

r<br />

e<br />

n<br />

t<br />

i<br />

e<br />

L<br />

n<br />

i<br />

t<br />

r<br />

a<br />

M<br />

y<br />

b<br />

s<br />

e<br />

s<br />

l<br />

u<br />

p<br />

t<br />

r<br />

o<br />

h<br />

s<br />

g<br />

n<br />

i<br />

c<br />

u<br />

d<br />

o<br />

r<br />

p<br />

r<br />

o<br />

f<br />

e<br />

c<br />

i<br />

v<br />

e<br />

D<br />

k<br />

c<br />

o<br />

l<br />

e<br />

d<br />

o<br />

m<br />

e<br />

v<br />

i<br />

s<br />

s<br />

a<br />

p<br />

0<br />

0<br />

0<br />

2<br />

.<br />

3<br />

0<br />

.<br />

4<br />

2<br />

5<br />

.<br />

6<br />

5<br />

7<br />

8<br />

2<br />

0<br />

0<br />

1 ,<br />

d<br />

l<br />

a<br />

w<br />

n<br />

u<br />

r<br />

G<br />

r<br />

e<br />

g<br />

i<br />

d<br />

ü<br />

R<br />

,<br />

r<br />

e<br />

n<br />

b<br />

e<br />

i<br />

r<br />

G<br />

e<br />

w<br />

U<br />

,<br />

r<br />

e<br />

s<br />

s<br />

ä<br />

s<br />

l<br />

E<br />

s<br />

a<br />

m<br />

o<br />

h<br />

T<br />

,<br />

)<br />

S<br />

A<br />

I<br />

B<br />

(<br />

l<br />

e<br />

b<br />

b<br />

e<br />

K<br />

r<br />

e<br />

k<br />

l<br />

o<br />

V<br />

,<br />

)<br />

S<br />

A<br />

I<br />

B<br />

(<br />

r<br />

e<br />

n<br />

t<br />

p<br />

ü<br />

J<br />

r<br />

e<br />

n<br />

r<br />

e<br />

W<br />

n<br />

e<br />

g<br />

r<br />

ü<br />

J<br />

-<br />

s<br />

n<br />

a<br />

H<br />

)<br />

S<br />

A<br />

I<br />

B<br />

(<br />

n<br />

n<br />

a<br />

m<br />

t<br />

r<br />

a<br />

H<br />

d<br />

n<br />

u<br />

-<br />

s<br />

t<br />

r<br />

o<br />

r<br />

u<br />

z<br />

g<br />

n<br />

u<br />

n<br />

d<br />

r<br />

o<br />

n<br />

A<br />

d<br />

n<br />

u<br />

n<br />

e<br />

r<br />

h<br />

a<br />

f<br />

r<br />

e<br />

V<br />

n<br />

e<br />

h<br />

c<br />

s<br />

i<br />

r<br />

t<br />

e<br />

m<br />

o<br />

r<br />

e<br />

f<br />

r<br />

e<br />

t<br />

n<br />

i<br />

n<br />

e<br />

t<br />

s<br />

ö<br />

l<br />

e<br />

g<br />

f<br />

u<br />

a<br />

t<br />

i<br />

e<br />

z<br />

-<br />

r<br />

e<br />

s<br />

a<br />

L<br />

n<br />

e<br />

z<br />

r<br />

u<br />

k<br />

a<br />

r<br />

t<br />

l<br />

u<br />

n<br />

o<br />

v<br />

g<br />

n<br />

u<br />

r<br />

e<br />

i<br />

s<br />

i<br />

r<br />

e<br />

t<br />

k<br />

a<br />

r<br />

a<br />

h<br />

C<br />

n<br />

e<br />

s<br />

l<br />

u<br />

p<br />

m<br />

i<br />

0<br />

0<br />

0<br />

2<br />

.<br />

6<br />

0<br />

.<br />

9<br />

0<br />

9<br />

0<br />

-<br />

5<br />

.<br />

6<br />

6<br />

4<br />

3<br />

1<br />

1<br />

0<br />

1 ,<br />

d<br />

l<br />

a<br />

w<br />

n<br />

u<br />

r<br />

G<br />

r<br />

e<br />

g<br />

i<br />

d<br />

ü<br />

R<br />

n<br />

h<br />

ü<br />

K<br />

m<br />

i<br />

h<br />

c<br />

a<br />

o<br />

J<br />

-<br />

s<br />

n<br />

a<br />

H<br />

)<br />

H<br />

b<br />

m<br />

G<br />

e<br />

v<br />

a<br />

w<br />

r<br />

e<br />

t<br />

a<br />

u<br />

Q<br />

(<br />

g<br />

n<br />

u<br />

g<br />

u<br />

e<br />

z<br />

r<br />

E<br />

r<br />

u<br />

z<br />

g<br />

n<br />

u<br />

n<br />

d<br />

r<br />

o<br />

n<br />

A<br />

d<br />

n<br />

u<br />

n<br />

e<br />

r<br />

h<br />

a<br />

f<br />

r<br />

e<br />

V<br />

r<br />

ü<br />

f<br />

g<br />

n<br />

u<br />

t<br />

h<br />

c<br />

i<br />

h<br />

c<br />

s<br />

e<br />

b<br />

s<br />

n<br />

o<br />

i<br />

x<br />

e<br />

l<br />

f<br />

e<br />

r<br />

i<br />

t<br />

n<br />

A<br />

r<br />

e<br />

n<br />

i<br />

e<br />

e<br />

t<br />

n<br />

e<br />

m<br />

e<br />

l<br />

e<br />

u<br />

a<br />

B<br />

e<br />

h<br />

c<br />

s<br />

i<br />

t<br />

p<br />

o<br />

o<br />

r<br />

k<br />

i<br />

m<br />

1<br />

0<br />

0<br />

2<br />

.<br />

3<br />

0<br />

.<br />

9<br />

1<br />

4<br />

3<br />

-<br />

4<br />

.<br />

6<br />

0<br />

2<br />

5<br />

2<br />

1<br />

0<br />

1 ,<br />

d<br />

l<br />

e<br />

f<br />

n<br />

e<br />

s<br />

o<br />

R<br />

i<br />

d<br />

a<br />

k<br />

r<br />

A<br />

,<br />

n<br />

a<br />

i<br />

o<br />

t<br />

S<br />

n<br />

a<br />

w<br />

z<br />

a<br />

R<br />

,<br />

e<br />

l<br />

y<br />

o<br />

B<br />

k<br />

r<br />

a<br />

M<br />

,<br />

ß<br />

o<br />

h<br />

T<br />

s<br />

a<br />

e<br />

r<br />

d<br />

n<br />

A<br />

,<br />

l<br />

e<br />

t<br />

r<br />

e<br />

H<br />

r<br />

e<br />

k<br />

l<br />

o<br />

V<br />

f<br />

l<br />

o<br />

g<br />

n<br />

I<br />

n<br />

r<br />

o<br />

K<br />

g<br />

r<br />

o<br />

e<br />

G<br />

g<br />

n<br />

u<br />

r<br />

e<br />

i<br />

r<br />

u<br />

t<br />

k<br />

u<br />

r<br />

t<br />

s<br />

o<br />

r<br />

k<br />

i<br />

M<br />

n<br />

e<br />

t<br />

k<br />

e<br />

r<br />

i<br />

d<br />

r<br />

u<br />

z<br />

n<br />

e<br />

r<br />

h<br />

a<br />

f<br />

r<br />

e<br />

V<br />

n<br />

e<br />

i<br />

l<br />

a<br />

i<br />

r<br />

e<br />

t<br />

a<br />

M<br />

n<br />

o<br />

v<br />

1<br />

0<br />

0<br />

2<br />

.<br />

5<br />

0<br />

.<br />

4<br />

1<br />

7<br />

.<br />

9<br />

7<br />

1<br />

0<br />

5<br />

2<br />

1<br />

0 ,<br />

d<br />

l<br />

a<br />

w<br />

n<br />

u<br />

r<br />

G<br />

r<br />

e<br />

g<br />

i<br />

d<br />

ü<br />

R<br />

,<br />

r<br />

e<br />

n<br />

b<br />

e<br />

i<br />

r<br />

G<br />

e<br />

w<br />

U<br />

,<br />

r<br />

e<br />

s<br />

s<br />

ä<br />

s<br />

l<br />

E<br />

s<br />

a<br />

m<br />

o<br />

h<br />

T<br />

,<br />

)<br />

S<br />

A<br />

I<br />

B<br />

(<br />

l<br />

e<br />

b<br />

b<br />

e<br />

K<br />

r<br />

e<br />

k<br />

l<br />

o<br />

V<br />

,<br />

)<br />

S<br />

A<br />

I<br />

B<br />

(<br />

r<br />

e<br />

n<br />

t<br />

p<br />

ü<br />

J<br />

r<br />

e<br />

n<br />

r<br />

e<br />

W<br />

n<br />

e<br />

g<br />

r<br />

ü<br />

J<br />

-<br />

s<br />

n<br />

a<br />

H<br />

)<br />

S<br />

A<br />

I<br />

B<br />

(<br />

n<br />

n<br />

a<br />

m<br />

t<br />

r<br />

a<br />

H<br />

d<br />

n<br />

u<br />

-<br />

s<br />

t<br />

r<br />

o<br />

r<br />

u<br />

z<br />

g<br />

n<br />

u<br />

n<br />

d<br />

r<br />

o<br />

n<br />

A<br />

d<br />

n<br />

u<br />

n<br />

e<br />

r<br />

h<br />

a<br />

f<br />

r<br />

e<br />

V<br />

n<br />

e<br />

h<br />

c<br />

s<br />

i<br />

r<br />

t<br />

e<br />

m<br />

o<br />

r<br />

e<br />

f<br />

r<br />

e<br />

t<br />

n<br />

i<br />

n<br />

e<br />

t<br />

s<br />

ö<br />

l<br />

e<br />

g<br />

f<br />

u<br />

a<br />

t<br />

i<br />

e<br />

z<br />

-<br />

r<br />

e<br />

s<br />

a<br />

L<br />

n<br />

e<br />

z<br />

r<br />

u<br />

k<br />

a<br />

r<br />

t<br />

l<br />

u<br />

n<br />

o<br />

v<br />

g<br />

n<br />

u<br />

r<br />

e<br />

i<br />

s<br />

i<br />

r<br />

e<br />

t<br />

k<br />

a<br />

r<br />

a<br />

h<br />

C<br />

n<br />

e<br />

s<br />

l<br />

u<br />

p<br />

m<br />

i<br />

1<br />

0<br />

0<br />

2<br />

.<br />

5<br />

0<br />

.<br />

1<br />

2<br />

9<br />

9<br />

0<br />

,<br />

6<br />

7<br />

8<br />

/<br />

9<br />

0 ,<br />

d<br />

l<br />

a<br />

w<br />

n<br />

u<br />

r<br />

G<br />

r<br />

e<br />

g<br />

i<br />

d<br />

ü<br />

R<br />

,<br />

r<br />

e<br />

n<br />

b<br />

e<br />

i<br />

r<br />

G<br />

e<br />

w<br />

U<br />

,<br />

r<br />

e<br />

s<br />

s<br />

ä<br />

s<br />

l<br />

E<br />

s<br />

a<br />

m<br />

o<br />

h<br />

T<br />

,<br />

)<br />

S<br />

A<br />

I<br />

B<br />

(<br />

l<br />

e<br />

b<br />

b<br />

e<br />

K<br />

r<br />

e<br />

k<br />

l<br />

o<br />

V<br />

)<br />

S<br />

A<br />

I<br />

B<br />

(<br />

r<br />

e<br />

n<br />

t<br />

p<br />

ü<br />

J<br />

r<br />

e<br />

n<br />

r<br />

e<br />

W<br />

n<br />

e<br />

g<br />

r<br />

ü<br />

J<br />

-<br />

s<br />

n<br />

a<br />

H<br />

)<br />

S<br />

A<br />

I<br />

B<br />

(<br />

n<br />

n<br />

a<br />

m<br />

t<br />

r<br />

a<br />

H<br />

d<br />

n<br />

u<br />

-<br />

s<br />

t<br />

r<br />

o<br />

r<br />

u<br />

z<br />

g<br />

n<br />

u<br />

n<br />

d<br />

r<br />

o<br />

n<br />

A<br />

d<br />

n<br />

u<br />

n<br />

e<br />

r<br />

h<br />

a<br />

f<br />

r<br />

e<br />

V<br />

n<br />

e<br />

h<br />

c<br />

s<br />

i<br />

r<br />

t<br />

e<br />

m<br />

o<br />

r<br />

e<br />

f<br />

r<br />

e<br />

t<br />

n<br />

i<br />

n<br />

e<br />

t<br />

s<br />

ö<br />

l<br />

e<br />

g<br />

f<br />

u<br />

a<br />

t<br />

i<br />

e<br />

z<br />

n<br />

e<br />

z<br />

r<br />

u<br />

k<br />

a<br />

r<br />

t<br />

l<br />

u<br />

n<br />

o<br />

v<br />

g<br />

n<br />

u<br />

r<br />

e<br />

i<br />

s<br />

i<br />

r<br />

e<br />

t<br />

k<br />

a<br />

r<br />

a<br />

h<br />

C<br />

n<br />

e<br />

s<br />

l<br />

u<br />

p<br />

m<br />

i<br />

r<br />

e<br />

s<br />

a<br />

L<br />

1<br />

0<br />

0<br />

2<br />

.<br />

6<br />

0<br />

.<br />

8<br />

0<br />

4<br />

5<br />

-<br />

3<br />

.<br />

0<br />

0<br />

1<br />

5<br />

3<br />

1<br />

0<br />

1 ,<br />

l<br />

l<br />

i<br />

W<br />

o<br />

g<br />

n<br />

I<br />

o<br />

r<br />

e<br />

i<br />

L<br />

n<br />

i<br />

m<br />

r<br />

A<br />

n<br />

e<br />

l<br />

a<br />

m<br />

i<br />

t<br />

p<br />

o<br />

r<br />

e<br />

d<br />

g<br />

n<br />

u<br />

l<br />

l<br />

e<br />

t<br />

s<br />

n<br />

i<br />

E<br />

r<br />

u<br />

z<br />

n<br />

e<br />

r<br />

h<br />

a<br />

f<br />

r<br />

e<br />

V<br />

-<br />

n<br />

e<br />

d<br />

o<br />

m<br />

n<br />

e<br />

n<br />

i<br />

e<br />

r<br />

ü<br />

f<br />

e<br />

g<br />

n<br />

ä<br />

l<br />

r<br />

o<br />

t<br />

a<br />

n<br />

o<br />

s<br />

e<br />

R<br />

r<br />

o<br />

t<br />

a<br />

l<br />

l<br />

i<br />

z<br />

s<br />

o<br />

r<br />

e<br />

s<br />

a<br />

L<br />

n<br />

e<br />

t<br />

l<br />

e<br />

p<br />

p<br />

o<br />

k<br />

e<br />

g<br />

1<br />

0<br />

0<br />

2<br />

.<br />

7<br />

0<br />

.<br />

1<br />

1


105<br />

n<br />

o<br />

i<br />

t<br />

a<br />

c<br />

i<br />

l<br />

p<br />

p<br />

A n<br />

o<br />

i<br />

t<br />

a<br />

c<br />

i<br />

l<br />

p<br />

p<br />

A n<br />

o<br />

i<br />

t<br />

a<br />

c<br />

i<br />

l<br />

p<br />

p<br />

A n<br />

o<br />

i<br />

t<br />

a<br />

c<br />

i<br />

l<br />

p<br />

p<br />

A n<br />

o<br />

i<br />

t<br />

a<br />

c<br />

i<br />

l<br />

p<br />

p<br />

A<br />

r<br />

e<br />

b<br />

m<br />

u<br />

n<br />

e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

l<br />

t<br />

i<br />

T e<br />

l<br />

t<br />

i<br />

T e<br />

l<br />

t<br />

i<br />

T e<br />

l<br />

t<br />

i<br />

T e<br />

l<br />

t<br />

i<br />

T e<br />

t<br />

a<br />

d<br />

g<br />

n<br />

i<br />

l<br />

i<br />

F e<br />

t<br />

a<br />

d<br />

g<br />

n<br />

i<br />

l<br />

i<br />

F e<br />

t<br />

a<br />

d<br />

g<br />

n<br />

i<br />

l<br />

i<br />

F e<br />

t<br />

a<br />

d<br />

g<br />

n<br />

i<br />

l<br />

i<br />

F e<br />

t<br />

a<br />

d<br />

g<br />

n<br />

i<br />

l<br />

i<br />

F<br />

1<br />

5<br />

-<br />

1<br />

.<br />

1<br />

0<br />

1<br />

5<br />

3<br />

1<br />

0<br />

1 ,<br />

m<br />

m<br />

o<br />

T<br />

g<br />

n<br />

a<br />

g<br />

f<br />

l<br />

o<br />

W<br />

-<br />

s<br />

n<br />

e<br />

J<br />

d<br />

l<br />

a<br />

w<br />

n<br />

u<br />

r<br />

G<br />

r<br />

e<br />

g<br />

i<br />

d<br />

ü<br />

R<br />

g<br />

n<br />

u<br />

r<br />

e<br />

i<br />

t<br />

s<br />

u<br />

J<br />

r<br />

u<br />

z<br />

g<br />

n<br />

u<br />

n<br />

d<br />

r<br />

o<br />

n<br />

A<br />

d<br />

n<br />

u<br />

n<br />

e<br />

r<br />

h<br />

a<br />

f<br />

r<br />

e<br />

V<br />

s<br />

k<br />

c<br />

e<br />

w<br />

z<br />

n<br />

e<br />

t<br />

n<br />

e<br />

m<br />

e<br />

l<br />

e<br />

u<br />

a<br />

B<br />

n<br />

e<br />

h<br />

c<br />

s<br />

i<br />

t<br />

p<br />

o<br />

n<br />

o<br />

v<br />

n<br />

o<br />

v<br />

g<br />

n<br />

u<br />

m<br />

r<br />

o<br />

f<br />

l<br />

h<br />

a<br />

r<br />

t<br />

S<br />

n<br />

r<br />

e<br />

t<br />

t<br />

i<br />

m<br />

e<br />

s<br />

g<br />

n<br />

u<br />

l<br />

h<br />

a<br />

r<br />

t<br />

s<br />

r<br />

e<br />

t<br />

i<br />

e<br />

l<br />

b<br />

l<br />

a<br />

H<br />

1<br />

0<br />

0<br />

2<br />

.<br />

7<br />

0<br />

.<br />

1<br />

1<br />

7<br />

.<br />

9<br />

4<br />

5<br />

1<br />

2<br />

1<br />

0<br />

2 ,<br />

d<br />

l<br />

o<br />

p<br />

u<br />

e<br />

L<br />

r<br />

e<br />

t<br />

e<br />

i<br />

D<br />

,<br />

r<br />

e<br />

l<br />

l<br />

e<br />

u<br />

M<br />

e<br />

n<br />

n<br />

a<br />

s<br />

u<br />

S<br />

,<br />

)<br />

B<br />

T<br />

L<br />

(<br />

z<br />

l<br />

o<br />

h<br />

c<br />

S<br />

s<br />

a<br />

i<br />

h<br />

t<br />

t<br />

a<br />

M<br />

,<br />

r<br />

e<br />

n<br />

h<br />

c<br />

u<br />

e<br />

T<br />

s<br />

u<br />

a<br />

l<br />

K<br />

,<br />

)<br />

B<br />

T<br />

L<br />

(<br />

n<br />

h<br />

a<br />

R<br />

x<br />

i<br />

r<br />

t<br />

a<br />

e<br />

B<br />

,<br />

r<br />

e<br />

k<br />

c<br />

ü<br />

t<br />

S<br />

s<br />

u<br />

k<br />

r<br />

a<br />

M<br />

n<br />

n<br />

a<br />

m<br />

f<br />

f<br />

o<br />

H<br />

s<br />

u<br />

a<br />

l<br />

K<br />

)<br />

m<br />

u<br />

h<br />

c<br />

o<br />

B<br />

.<br />

v<br />

i<br />

n<br />

U<br />

(<br />

d<br />

n<br />

u<br />

e<br />

s<br />

l<br />

u<br />

p<br />

m<br />

I<br />

e<br />

z<br />

r<br />

u<br />

k<br />

r<br />

ü<br />

f<br />

e<br />

l<br />

l<br />

e<br />

u<br />

q<br />

s<br />

g<br />

n<br />

u<br />

l<br />

h<br />

a<br />

r<br />

t<br />

S<br />

g<br />

n<br />

u<br />

d<br />

n<br />

e<br />

w<br />

n<br />

A<br />

e<br />

r<br />

h<br />

i<br />

1<br />

0<br />

0<br />

2<br />

.<br />

8<br />

0<br />

.<br />

1<br />

2<br />

4<br />

5<br />

-<br />

5<br />

.<br />

5<br />

3<br />

7<br />

8<br />

4<br />

1<br />

0<br />

1 ,<br />

s<br />

a<br />

l<br />

G<br />

r<br />

e<br />

t<br />

e<br />

P<br />

,<br />

r<br />

e<br />

n<br />

t<br />

i<br />

e<br />

L<br />

n<br />

i<br />

t<br />

r<br />

a<br />

M<br />

r<br />

e<br />

n<br />

b<br />

e<br />

i<br />

r<br />

G<br />

e<br />

w<br />

U<br />

g<br />

n<br />

u<br />

g<br />

u<br />

e<br />

z<br />

r<br />

E<br />

n<br />

e<br />

n<br />

a<br />

t<br />

l<br />

u<br />

m<br />

i<br />

s<br />

r<br />

u<br />

z<br />

g<br />

n<br />

u<br />

t<br />

h<br />

c<br />

i<br />

r<br />

r<br />

o<br />

V<br />

r<br />

e<br />

h<br />

c<br />

s<br />

i<br />

r<br />

t<br />

k<br />

e<br />

l<br />

e<br />

d<br />

n<br />

u<br />

e<br />

s<br />

l<br />

u<br />

p<br />

m<br />

i<br />

r<br />

e<br />

s<br />

a<br />

L<br />

r<br />

e<br />

z<br />

r<br />

u<br />

k<br />

e<br />

s<br />

l<br />

u<br />

p<br />

m<br />

I<br />

1<br />

0<br />

0<br />

2<br />

.<br />

9<br />

0<br />

.<br />

7<br />

2<br />

E<br />

D<br />

/<br />

T<br />

C<br />

P<br />

6<br />

6<br />

9<br />

4<br />

0<br />

/<br />

1<br />

0<br />

,<br />

s<br />

a<br />

l<br />

G<br />

r<br />

e<br />

t<br />

e<br />

P<br />

,<br />

r<br />

e<br />

n<br />

t<br />

i<br />

e<br />

L<br />

n<br />

i<br />

t<br />

r<br />

a<br />

M<br />

r<br />

e<br />

n<br />

b<br />

e<br />

i<br />

r<br />

G<br />

e<br />

w<br />

U<br />

g<br />

n<br />

u<br />

g<br />

u<br />

e<br />

z<br />

r<br />

E<br />

n<br />

e<br />

n<br />

a<br />

t<br />

l<br />

u<br />

m<br />

i<br />

s<br />

r<br />

u<br />

z<br />

g<br />

n<br />

u<br />

t<br />

h<br />

c<br />

i<br />

r<br />

r<br />

o<br />

V<br />

r<br />

e<br />

h<br />

c<br />

s<br />

i<br />

r<br />

t<br />

k<br />

e<br />

l<br />

e<br />

d<br />

n<br />

u<br />

e<br />

s<br />

l<br />

u<br />

p<br />

m<br />

i<br />

r<br />

e<br />

s<br />

a<br />

L<br />

r<br />

e<br />

z<br />

r<br />

u<br />

k<br />

e<br />

s<br />

l<br />

u<br />

p<br />

m<br />

I<br />

1<br />

0<br />

0<br />

2<br />

.<br />

2<br />

1<br />

.<br />

7<br />

2<br />

0<br />

.<br />

4<br />

7<br />

1<br />

0<br />

9<br />

0<br />

2<br />

0 ,<br />

d<br />

l<br />

e<br />

f<br />

n<br />

e<br />

s<br />

o<br />

R<br />

i<br />

d<br />

a<br />

k<br />

r<br />

A<br />

,<br />

n<br />

a<br />

i<br />

o<br />

t<br />

S<br />

n<br />

a<br />

w<br />

z<br />

a<br />

R<br />

,<br />

e<br />

l<br />

y<br />

o<br />

B<br />

k<br />

r<br />

a<br />

M<br />

,<br />

ß<br />

o<br />

h<br />

T<br />

s<br />

a<br />

e<br />

r<br />

d<br />

n<br />

A<br />

,<br />

l<br />

e<br />

t<br />

r<br />

e<br />

H<br />

r<br />

e<br />

k<br />

l<br />

o<br />

V<br />

f<br />

l<br />

o<br />

g<br />

n<br />

I<br />

n<br />

r<br />

o<br />

K<br />

g<br />

r<br />

o<br />

e<br />

G<br />

g<br />

n<br />

u<br />

r<br />

e<br />

i<br />

r<br />

u<br />

t<br />

k<br />

u<br />

r<br />

t<br />

s<br />

o<br />

r<br />

k<br />

i<br />

M<br />

n<br />

e<br />

t<br />

k<br />

e<br />

r<br />

i<br />

d<br />

r<br />

u<br />

z<br />

n<br />

e<br />

r<br />

h<br />

a<br />

f<br />

r<br />

e<br />

V<br />

n<br />

e<br />

i<br />

l<br />

a<br />

i<br />

r<br />

e<br />

t<br />

a<br />

M<br />

n<br />

o<br />

v<br />

2<br />

0<br />

0<br />

2<br />

.<br />

5<br />

0<br />

.<br />

4<br />

1<br />

2<br />

.<br />

3<br />

6<br />

4<br />

1<br />

3<br />

2<br />

0<br />

1 i<br />

s<br />

a<br />

n<br />

e<br />

k<br />

h<br />

s<br />

A<br />

d<br />

i<br />

v<br />

a<br />

D<br />

,<br />

)<br />

B<br />

T<br />

M<br />

L<br />

(<br />

,<br />

d<br />

l<br />

e<br />

f<br />

n<br />

e<br />

s<br />

o<br />

R<br />

i<br />

d<br />

a<br />

k<br />

r<br />

A<br />

,<br />

e<br />

p<br />

p<br />

a<br />

n<br />

K<br />

a<br />

n<br />

e<br />

r<br />

e<br />

V<br />

)<br />

B<br />

T<br />

M<br />

L<br />

(<br />

r<br />

e<br />

l<br />

l<br />

ü<br />

M<br />

d<br />

r<br />

a<br />

h<br />

r<br />

e<br />

G<br />

n<br />

o<br />

v<br />

g<br />

n<br />

u<br />

r<br />

e<br />

i<br />

r<br />

u<br />

t<br />

k<br />

u<br />

r<br />

t<br />

s<br />

o<br />

r<br />

k<br />

i<br />

M<br />

r<br />

u<br />

z<br />

n<br />

e<br />

r<br />

h<br />

a<br />

f<br />

r<br />

e<br />

V<br />

n<br />

o<br />

v<br />

g<br />

n<br />

u<br />

g<br />

u<br />

e<br />

z<br />

r<br />

E<br />

r<br />

u<br />

z<br />

n<br />

r<br />

e<br />

t<br />

i<br />

e<br />

l<br />

n<br />

e<br />

l<br />

l<br />

e<br />

w<br />

t<br />

h<br />

c<br />

i<br />

L<br />

n<br />

e<br />

t<br />

n<br />

e<br />

m<br />

e<br />

l<br />

e<br />

s<br />

n<br />

o<br />

i<br />

t<br />

k<br />

n<br />

u<br />

F<br />

n<br />

e<br />

h<br />

c<br />

s<br />

i<br />

t<br />

p<br />

o<br />

2<br />

0<br />

0<br />

2<br />

.<br />

7<br />

0<br />

.<br />

5<br />

0<br />

3<br />

.<br />

8<br />

7<br />

0<br />

8<br />

3<br />

2<br />

0<br />

1 ,<br />

d<br />

l<br />

a<br />

w<br />

n<br />

u<br />

r<br />

G<br />

r<br />

e<br />

g<br />

i<br />

d<br />

ü<br />

R<br />

r<br />

e<br />

h<br />

c<br />

s<br />

i<br />

F<br />

s<br />

a<br />

e<br />

r<br />

d<br />

n<br />

A<br />

d<br />

n<br />

u<br />

-<br />

s<br />

t<br />

r<br />

o<br />

r<br />

u<br />

z<br />

g<br />

n<br />

u<br />

n<br />

d<br />

r<br />

o<br />

n<br />

A<br />

d<br />

n<br />

u<br />

n<br />

e<br />

r<br />

h<br />

a<br />

f<br />

r<br />

e<br />

V<br />

g<br />

n<br />

u<br />

s<br />

s<br />

e<br />

m<br />

s<br />

n<br />

o<br />

i<br />

x<br />

e<br />

l<br />

f<br />

e<br />

R<br />

n<br />

e<br />

t<br />

s<br />

ö<br />

l<br />

e<br />

g<br />

f<br />

u<br />

a<br />

l<br />

e<br />

k<br />

n<br />

i<br />

w<br />

2<br />

0<br />

0<br />

2<br />

.<br />

8<br />

0<br />

.<br />

1<br />

2<br />

2<br />

5<br />

-<br />

2<br />

.<br />

8<br />

2<br />

0<br />

9<br />

3<br />

2<br />

0<br />

1 ,<br />

r<br />

e<br />

n<br />

h<br />

c<br />

u<br />

e<br />

T<br />

s<br />

u<br />

a<br />

l<br />

K<br />

,<br />

d<br />

l<br />

o<br />

p<br />

u<br />

e<br />

L<br />

r<br />

e<br />

t<br />

e<br />

i<br />

D<br />

r<br />

e<br />

k<br />

c<br />

e<br />

B<br />

g<br />

n<br />

a<br />

g<br />

f<br />

l<br />

o<br />

W<br />

,<br />

)<br />

l<br />

k<br />

c<br />

i<br />

H<br />

&<br />

r<br />

e<br />

k<br />

c<br />

e<br />

B<br />

.<br />

a<br />

F<br />

(<br />

,<br />

r<br />

e<br />

k<br />

c<br />

ü<br />

t<br />

S<br />

s<br />

u<br />

k<br />

r<br />

a<br />

M<br />

n<br />

n<br />

a<br />

m<br />

f<br />

f<br />

o<br />

H<br />

s<br />

u<br />

a<br />

l<br />

K<br />

)<br />

m<br />

u<br />

h<br />

c<br />

o<br />

B<br />

.<br />

v<br />

i<br />

n<br />

U<br />

(<br />

n<br />

o<br />

v<br />

g<br />

n<br />

u<br />

r<br />

e<br />

i<br />

z<br />

i<br />

f<br />

i<br />

t<br />

n<br />

e<br />

d<br />

I<br />

r<br />

u<br />

z<br />

n<br />

e<br />

r<br />

h<br />

a<br />

f<br />

r<br />

e<br />

V<br />

n<br />

e<br />

t<br />

r<br />

o<br />

s<br />

n<br />

i<br />

n<br />

a<br />

l<br />

e<br />

M<br />

2<br />

0<br />

0<br />

2<br />

.<br />

8<br />

0<br />

.<br />

1<br />

2<br />

0<br />

.<br />

9<br />

3<br />

8<br />

3<br />

4<br />

2<br />

0<br />

1 r<br />

e<br />

y<br />

e<br />

m<br />

n<br />

i<br />

e<br />

t<br />

S<br />

r<br />

e<br />

t<br />

n<br />

ü<br />

G r<br />

u<br />

z<br />

m<br />

e<br />

t<br />

s<br />

y<br />

s<br />

n<br />

e<br />

t<br />

h<br />

c<br />

i<br />

h<br />

c<br />

S<br />

d<br />

n<br />

u<br />

n<br />

e<br />

r<br />

h<br />

a<br />

f<br />

r<br />

e<br />

V<br />

n<br />

o<br />

v<br />

n<br />

o<br />

i<br />

t<br />

a<br />

s<br />

n<br />

e<br />

p<br />

m<br />

o<br />

K<br />

n<br />

e<br />

g<br />

i<br />

d<br />

n<br />

a<br />

b<br />

t<br />

i<br />

e<br />

r<br />

b<br />

n<br />

e<br />

g<br />

n<br />

i<br />

r<br />

e<br />

g<br />

t<br />

i<br />

m<br />

n<br />

e<br />

t<br />

k<br />

e<br />

f<br />

f<br />

e<br />

t<br />

i<br />

e<br />

z<br />

f<br />

u<br />

a<br />

l<br />

n<br />

e<br />

p<br />

p<br />

u<br />

r<br />

G<br />

n<br />

e<br />

h<br />

c<br />

s<br />

i<br />

t<br />

p<br />

o<br />

n<br />

i<br />

n<br />

e<br />

n<br />

o<br />

i<br />

t<br />

a<br />

l<br />

l<br />

i<br />

z<br />

s<br />

o<br />

s<br />

n<br />

o<br />

i<br />

t<br />

a<br />

s<br />

r<br />

e<br />

p<br />

s<br />

i<br />

D<br />

n<br />

e<br />

m<br />

e<br />

t<br />

s<br />

y<br />

S<br />

2<br />

0<br />

0<br />

2<br />

.<br />

9<br />

0<br />

.<br />

3<br />

1<br />

2<br />

.<br />

8<br />

3<br />

8<br />

3<br />

4<br />

2<br />

0<br />

1 ,<br />

d<br />

l<br />

a<br />

w<br />

n<br />

u<br />

r<br />

G<br />

r<br />

e<br />

g<br />

i<br />

d<br />

ü<br />

R<br />

,<br />

)<br />

S<br />

A<br />

I<br />

B<br />

(<br />

l<br />

e<br />

b<br />

b<br />

e<br />

K<br />

r<br />

e<br />

k<br />

l<br />

o<br />

V<br />

n<br />

n<br />

a<br />

m<br />

u<br />

e<br />

N<br />

e<br />

w<br />

U<br />

r<br />

u<br />

z<br />

g<br />

n<br />

u<br />

n<br />

d<br />

r<br />

o<br />

n<br />

A<br />

d<br />

n<br />

u<br />

n<br />

e<br />

r<br />

h<br />

a<br />

f<br />

r<br />

e<br />

V<br />

r<br />

e<br />

d<br />

g<br />

n<br />

u<br />

r<br />

e<br />

i<br />

s<br />

i<br />

r<br />

e<br />

t<br />

k<br />

a<br />

r<br />

a<br />

h<br />

C<br />

n<br />

e<br />

t<br />

s<br />

ö<br />

l<br />

e<br />

g<br />

f<br />

u<br />

a<br />

s<br />

t<br />

r<br />

o<br />

t<br />

n<br />

o<br />

r<br />

f<br />

n<br />

e<br />

l<br />

l<br />

e<br />

W<br />

r<br />

e<br />

n<br />

i<br />

e<br />

g<br />

n<br />

u<br />

m<br />

m<br />

ü<br />

r<br />

K<br />

2<br />

0<br />

0<br />

2<br />

.<br />

9<br />

0<br />

.<br />

3<br />

1


106<br />

n<br />

o<br />

i<br />

t<br />

a<br />

c<br />

i<br />

l<br />

p<br />

p<br />

A n<br />

o<br />

i<br />

t<br />

a<br />

c<br />

i<br />

l<br />

p<br />

p<br />

A n<br />

o<br />

i<br />

t<br />

a<br />

c<br />

i<br />

l<br />

p<br />

p<br />

A n<br />

o<br />

i<br />

t<br />

a<br />

c<br />

i<br />

l<br />

p<br />

p<br />

A n<br />

o<br />

i<br />

t<br />

a<br />

c<br />

i<br />

l<br />

p<br />

p<br />

A<br />

r<br />

e<br />

b<br />

m<br />

u<br />

n<br />

e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

l<br />

t<br />

i<br />

T e<br />

l<br />

t<br />

i<br />

T e<br />

l<br />

t<br />

i<br />

T e<br />

l<br />

t<br />

i<br />

T e<br />

l<br />

t<br />

i<br />

T e<br />

t<br />

a<br />

d<br />

g<br />

n<br />

i<br />

l<br />

i<br />

F e<br />

t<br />

a<br />

d<br />

g<br />

n<br />

i<br />

l<br />

i<br />

F e<br />

t<br />

a<br />

d<br />

g<br />

n<br />

i<br />

l<br />

i<br />

F e<br />

t<br />

a<br />

d<br />

g<br />

n<br />

i<br />

l<br />

i<br />

F e<br />

t<br />

a<br />

d<br />

g<br />

n<br />

i<br />

l<br />

i<br />

F<br />

P<br />

E<br />

/<br />

T<br />

C<br />

P<br />

9<br />

5<br />

4<br />

0<br />

1<br />

/<br />

2<br />

0<br />

,<br />

l<br />

h<br />

u<br />

R<br />

t<br />

u<br />

m<br />

t<br />

r<br />

a<br />

H<br />

d<br />

n<br />

u<br />

i<br />

l<br />

l<br />

i<br />

W<br />

d<br />

l<br />

a<br />

w<br />

s<br />

O<br />

i<br />

s<br />

e<br />

h<br />

g<br />

r<br />

o<br />

B<br />

o<br />

c<br />

r<br />

a<br />

M<br />

f<br />

o<br />

.<br />

v<br />

i<br />

n<br />

U<br />

s<br />

n<br />

e<br />

e<br />

u<br />

Q<br />

(<br />

,<br />

)<br />

t<br />

s<br />

a<br />

f<br />

l<br />

e<br />

B<br />

n<br />

o<br />

n<br />

n<br />

i<br />

K<br />

c<br />

a<br />

M<br />

w<br />

e<br />

r<br />

d<br />

n<br />

A<br />

)<br />

a<br />

i<br />

n<br />

r<br />

o<br />

f<br />

i<br />

l<br />

a<br />

C<br />

f<br />

o<br />

.<br />

v<br />

i<br />

n<br />

U<br />

(<br />

g<br />

n<br />

u<br />

n<br />

n<br />

i<br />

w<br />

e<br />

G<br />

r<br />

u<br />

z<br />

g<br />

n<br />

u<br />

t<br />

h<br />

c<br />

i<br />

r<br />

n<br />

i<br />

E<br />

d<br />

n<br />

u<br />

n<br />

e<br />

r<br />

h<br />

a<br />

f<br />

r<br />

e<br />

V<br />

r<br />

e<br />

t<br />

h<br />

c<br />

i<br />

d<br />

n<br />

e<br />

r<br />

e<br />

n<br />

n<br />

I<br />

m<br />

e<br />

d<br />

s<br />

u<br />

a<br />

n<br />

r<br />

e<br />

d<br />

l<br />

i<br />

B<br />

n<br />

o<br />

v<br />

n<br />

e<br />

m<br />

s<br />

a<br />

l<br />

P<br />

2<br />

0<br />

0<br />

2<br />

.<br />

9<br />

0<br />

.<br />

8<br />

1<br />

3<br />

3<br />

-<br />

7<br />

.<br />

2<br />

9<br />

8<br />

4<br />

5<br />

2<br />

0<br />

1 ,<br />

z<br />

c<br />

i<br />

w<br />

e<br />

l<br />

u<br />

n<br />

a<br />

J<br />

l<br />

o<br />

r<br />

a<br />

K<br />

,<br />

s<br />

e<br />

l<br />

k<br />

c<br />

i<br />

N<br />

.<br />

V<br />

r<br />

e<br />

t<br />

e<br />

P<br />

,<br />

i<br />

t<br />

t<br />

e<br />

n<br />

a<br />

i<br />

c<br />

u<br />

L<br />

o<br />

i<br />

n<br />

o<br />

t<br />

n<br />

A<br />

,<br />

e<br />

b<br />

e<br />

i<br />

r<br />

P<br />

d<br />

r<br />

e<br />

G<br />

r<br />

e<br />

n<br />

d<br />

n<br />

a<br />

S<br />

g<br />

n<br />

a<br />

g<br />

f<br />

l<br />

o<br />

W<br />

g<br />

n<br />

u<br />

g<br />

u<br />

e<br />

z<br />

r<br />

E<br />

r<br />

u<br />

z<br />

g<br />

n<br />

u<br />

n<br />

d<br />

r<br />

o<br />

n<br />

A<br />

d<br />

n<br />

u<br />

n<br />

e<br />

r<br />

h<br />

a<br />

f<br />

r<br />

e<br />

V<br />

r<br />

e<br />

t<br />

n<br />

e<br />

r<br />

ä<br />

h<br />

o<br />

k<br />

n<br />

o<br />

i<br />

s<br />

s<br />

i<br />

m<br />

E<br />

r<br />

e<br />

n<br />

a<br />

t<br />

n<br />

o<br />

p<br />

s<br />

r<br />

e<br />

t<br />

k<br />

r<br />

ä<br />

t<br />

s<br />

r<br />

e<br />

v<br />

g<br />

n<br />

u<br />

l<br />

h<br />

a<br />

r<br />

t<br />

S<br />

r<br />

e<br />

g<br />

i<br />

l<br />

l<br />

e<br />

w<br />

z<br />

r<br />

u<br />

k<br />

2<br />

0<br />

0<br />

2<br />

.<br />

1<br />

1<br />

.<br />

1<br />

2<br />

2<br />

5<br />

-<br />

6<br />

.<br />

6<br />

7<br />

3<br />

0<br />

6<br />

2<br />

0<br />

1 ,<br />

n<br />

a<br />

y<br />

s<br />

i<br />

t<br />

e<br />

v<br />

A<br />

-<br />

r<br />

e<br />

T<br />

s<br />

i<br />

g<br />

r<br />

a<br />

S<br />

,<br />

r<br />

e<br />

r<br />

ü<br />

n<br />

h<br />

c<br />

S<br />

s<br />

a<br />

i<br />

h<br />

t<br />

t<br />

a<br />

M<br />

s<br />

e<br />

l<br />

k<br />

c<br />

i<br />

N<br />

.<br />

V<br />

r<br />

e<br />

t<br />

e<br />

P<br />

g<br />

n<br />

u<br />

g<br />

u<br />

e<br />

z<br />

r<br />

E<br />

r<br />

u<br />

z<br />

n<br />

e<br />

r<br />

h<br />

a<br />

f<br />

r<br />

e<br />

V<br />

d<br />

n<br />

u<br />

g<br />

n<br />

u<br />

t<br />

h<br />

c<br />

i<br />

r<br />

r<br />

o<br />

V<br />

s<br />

n<br />

e<br />

r<br />

h<br />

a<br />

f<br />

r<br />

e<br />

V<br />

-<br />

n<br />

e<br />

h<br />

c<br />

f<br />

p<br />

ö<br />

r<br />

T<br />

s<br />

e<br />

n<br />

i<br />

e<br />

2<br />

0<br />

0<br />

2<br />

.<br />

2<br />

1<br />

.<br />

3<br />

1<br />

3<br />

3<br />

-<br />

6<br />

.<br />

3<br />

8<br />

8<br />

1<br />

6<br />

2<br />

0<br />

1 ,<br />

r<br />

e<br />

y<br />

e<br />

m<br />

n<br />

i<br />

e<br />

t<br />

S<br />

r<br />

e<br />

t<br />

n<br />

ü<br />

G<br />

r<br />

e<br />

n<br />

b<br />

e<br />

i<br />

r<br />

G<br />

e<br />

w<br />

U<br />

d<br />

n<br />

u<br />

r<br />

u<br />

t<br />

k<br />

e<br />

r<br />

r<br />

o<br />

k<br />

s<br />

n<br />

o<br />

i<br />

s<br />

r<br />

e<br />

p<br />

s<br />

i<br />

D<br />

r<br />

u<br />

z<br />

n<br />

e<br />

r<br />

h<br />

a<br />

f<br />

r<br />

e<br />

V<br />

t<br />

n<br />

e<br />

m<br />

e<br />

l<br />

E<br />

s<br />

e<br />

d<br />

n<br />

e<br />

r<br />

e<br />

i<br />

s<br />

n<br />

e<br />

p<br />

m<br />

o<br />

k<br />

s<br />

n<br />

o<br />

i<br />

s<br />

r<br />

e<br />

p<br />

s<br />

i<br />

d<br />

2<br />

0<br />

0<br />

2<br />

.<br />

2<br />

1<br />

.<br />

9<br />

1<br />

1<br />

8<br />

8<br />

2<br />

2<br />

9<br />

0<br />

3<br />

0<br />

O<br />

W ,<br />

u<br />

a<br />

n<br />

e<br />

i<br />

L<br />

h<br />

p<br />

o<br />

t<br />

s<br />

i<br />

r<br />

h<br />

C<br />

,<br />

g<br />

n<br />

i<br />

r<br />

e<br />

b<br />

b<br />

i<br />

N<br />

k<br />

i<br />

r<br />

E<br />

.<br />

v<br />

i<br />

n<br />

U<br />

(<br />

n<br />

r<br />

e<br />

K<br />

r<br />

e<br />

t<br />

e<br />

i<br />

D<br />

,<br />

)<br />

n<br />

e<br />

g<br />

n<br />

i<br />

b<br />

ü<br />

T<br />

r<br />

e<br />

b<br />

r<br />

e<br />

o<br />

H<br />

h<br />

c<br />

i<br />

r<br />

n<br />

i<br />

e<br />

H<br />

,<br />

)<br />

g<br />

r<br />

e<br />

b<br />

l<br />

e<br />

d<br />

i<br />

e<br />

H<br />

L<br />

B<br />

M<br />

E<br />

(<br />

s<br />

t<br />

i<br />

B<br />

e<br />

f<br />

i<br />

L<br />

(<br />

k<br />

c<br />

i<br />

W<br />

d<br />

e<br />

r<br />

f<br />

n<br />

a<br />

M<br />

)<br />

n<br />

e<br />

g<br />

n<br />

i<br />

b<br />

ü<br />

T<br />

,<br />

G<br />

A<br />

n<br />

e<br />

h<br />

c<br />

s<br />

i<br />

m<br />

e<br />

h<br />

c<br />

n<br />

o<br />

v<br />

e<br />

s<br />

e<br />

h<br />

t<br />

n<br />

y<br />

S<br />

e<br />

t<br />

r<br />

e<br />

i<br />

z<br />

u<br />

d<br />

n<br />

I<br />

-<br />

r<br />

e<br />

t<br />

i<br />

e<br />

l<br />

b<br />

l<br />

a<br />

H<br />

r<br />

e<br />

d<br />

o<br />

-<br />

l<br />

l<br />

a<br />

t<br />

e<br />

M<br />

f<br />

u<br />

a<br />

n<br />

e<br />

g<br />

n<br />

u<br />

d<br />

n<br />

i<br />

b<br />

r<br />

e<br />

V<br />

n<br />

e<br />

r<br />

u<br />

t<br />

k<br />

u<br />

r<br />

t<br />

s<br />

o<br />

n<br />

a<br />

N<br />

3<br />

0<br />

0<br />

2<br />

.<br />

5<br />

0<br />

.<br />

5<br />

0<br />

4<br />

5<br />

-<br />

7<br />

.<br />

0<br />

1<br />

1<br />

2<br />

2<br />

3<br />

0<br />

1 ,<br />

n<br />

n<br />

a<br />

m<br />

r<br />

r<br />

e<br />

H<br />

m<br />

i<br />

h<br />

c<br />

a<br />

o<br />

J<br />

u<br />

o<br />

k<br />

a<br />

s<br />

u<br />

H<br />

n<br />

o<br />

t<br />

n<br />

A<br />

n<br />

e<br />

t<br />

e<br />

r<br />

k<br />

s<br />

i<br />

d<br />

n<br />

o<br />

v<br />

g<br />

n<br />

u<br />

g<br />

u<br />

e<br />

z<br />

r<br />

E<br />

r<br />

u<br />

z<br />

n<br />

e<br />

r<br />

h<br />

a<br />

f<br />

r<br />

e<br />

V<br />

-<br />

r<br />

e<br />

i<br />

V<br />

s<br />

l<br />

e<br />

t<br />

t<br />

i<br />

m<br />

n<br />

e<br />

l<br />

a<br />

n<br />

g<br />

i<br />

s<br />

n<br />

e<br />

g<br />

n<br />

ä<br />

l<br />

n<br />

e<br />

l<br />

l<br />

e<br />

w<br />

r<br />

h<br />

e<br />

M<br />

n<br />

e<br />

h<br />

c<br />

s<br />

i<br />

n<br />

o<br />

t<br />

o<br />

h<br />

p<br />

m<br />

e<br />

n<br />

i<br />

e<br />

n<br />

i<br />

g<br />

n<br />

u<br />

h<br />

c<br />

s<br />

i<br />

m<br />

n<br />

e<br />

l<br />

l<br />

e<br />

w<br />

y<br />

a<br />

r<br />

r<br />

a<br />

r<br />

e<br />

s<br />

a<br />

f<br />

l<br />

l<br />

a<br />

t<br />

s<br />

i<br />

r<br />

K<br />

3<br />

0<br />

0<br />

2<br />

.<br />

5<br />

0<br />

.<br />

9<br />

0<br />

9<br />

8<br />

6<br />

1<br />

0<br />

/<br />

3<br />

0<br />

E<br />

D<br />

/<br />

T<br />

C<br />

P ,<br />

z<br />

c<br />

i<br />

w<br />

e<br />

l<br />

u<br />

n<br />

a<br />

J<br />

l<br />

o<br />

r<br />

a<br />

K<br />

,<br />

s<br />

e<br />

l<br />

k<br />

c<br />

i<br />

N<br />

.<br />

V<br />

r<br />

e<br />

t<br />

e<br />

P<br />

,<br />

i<br />

t<br />

t<br />

e<br />

n<br />

a<br />

i<br />

c<br />

u<br />

L<br />

o<br />

i<br />

n<br />

o<br />

t<br />

n<br />

A<br />

,<br />

e<br />

b<br />

e<br />

i<br />

r<br />

P<br />

d<br />

r<br />

e<br />

G<br />

r<br />

e<br />

n<br />

d<br />

n<br />

a<br />

S<br />

g<br />

n<br />

a<br />

g<br />

f<br />

l<br />

o<br />

W<br />

g<br />

n<br />

u<br />

g<br />

u<br />

e<br />

z<br />

r<br />

E<br />

r<br />

u<br />

z<br />

g<br />

n<br />

u<br />

n<br />

d<br />

r<br />

o<br />

n<br />

A<br />

d<br />

n<br />

u<br />

n<br />

e<br />

r<br />

h<br />

a<br />

f<br />

r<br />

e<br />

V<br />

r<br />

e<br />

t<br />

n<br />

e<br />

r<br />

ä<br />

h<br />

o<br />

k<br />

n<br />

o<br />

i<br />

s<br />

s<br />

i<br />

m<br />

E<br />

r<br />

e<br />

n<br />

a<br />

t<br />

n<br />

o<br />

p<br />

s<br />

r<br />

e<br />

t<br />

k<br />

r<br />

ä<br />

t<br />

s<br />

r<br />

e<br />

v<br />

g<br />

n<br />

u<br />

l<br />

h<br />

a<br />

r<br />

t<br />

S<br />

r<br />

e<br />

g<br />

i<br />

l<br />

l<br />

e<br />

w<br />

z<br />

r<br />

u<br />

k<br />

3<br />

0<br />

0<br />

2<br />

.<br />

5<br />

0<br />

.<br />

1<br />

2<br />

9<br />

2<br />

1<br />

4<br />

0<br />

/<br />

3<br />

0<br />

E<br />

D<br />

/<br />

T<br />

C<br />

P ,<br />

n<br />

a<br />

y<br />

s<br />

i<br />

t<br />

e<br />

v<br />

A<br />

-<br />

r<br />

e<br />

T<br />

s<br />

i<br />

g<br />

r<br />

a<br />

S<br />

,<br />

r<br />

e<br />

r<br />

ü<br />

n<br />

h<br />

c<br />

S<br />

s<br />

a<br />

i<br />

h<br />

t<br />

t<br />

a<br />

M<br />

s<br />

e<br />

l<br />

k<br />

c<br />

i<br />

N<br />

.<br />

V<br />

r<br />

e<br />

t<br />

e<br />

P<br />

g<br />

n<br />

u<br />

g<br />

u<br />

e<br />

z<br />

r<br />

E<br />

r<br />

u<br />

z<br />

n<br />

e<br />

r<br />

h<br />

a<br />

f<br />

r<br />

e<br />

V<br />

d<br />

n<br />

u<br />

g<br />

n<br />

u<br />

t<br />

h<br />

c<br />

i<br />

r<br />

r<br />

o<br />

V<br />

s<br />

n<br />

e<br />

r<br />

h<br />

a<br />

f<br />

r<br />

e<br />

V<br />

-<br />

n<br />

e<br />

h<br />

c<br />

f<br />

p<br />

ö<br />

r<br />

T<br />

s<br />

e<br />

n<br />

i<br />

e


107


108


109


110


111<br />

<strong>Max</strong> <strong>Born</strong> <strong>Institut</strong>e (<strong>MBI</strong>)<br />

for Nonlinear Optics and Short Pulse Spectroscopy<br />

in the Forschungsverbund <strong>Berlin</strong> e. V.<br />

Mail Address:<br />

<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong><br />

<strong>Max</strong>-<strong>Born</strong>-Straße 2 A<br />

12489 <strong>Berlin</strong><br />

Germany<br />

Phone: (++49 30) 6392 1505<br />

Fax: (++49 30) 6392 1519<br />

email: mbi@mbi-berlin.de<br />

http://www.mbi-berlin.de<br />

The Divisions of the <strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>e<br />

Division A:<br />

Clusters and Interfaces<br />

Prof. Dr. I. V. Hertel<br />

Division B:<br />

Intense Laser Fields<br />

Prof. Dr. W. Sandner<br />

Division C:<br />

Nonlinear Processes in Condensed Matter<br />

Prof. Dr. T. Elsaesser<br />

Division Z:<br />

Technical and Administrative Infrastructure<br />

Dr. J. Kändler<br />

City district: <strong>Berlin</strong> Treptow-Köpenick<br />

Subdistrict: <strong>Berlin</strong>-Adlershof<br />

Site: <strong>Berlin</strong>-Adlershof<br />

Street: <strong>Max</strong>-<strong>Born</strong>-Straße 2 A<br />

S-Bahn: S45, S46, S6, S8 and S9<br />

Station: <strong>Berlin</strong>-Adlershof<br />

from there: Bus 360 to Magnusstraße<br />

Subway: U7<br />

Station: Rudow<br />

from there: Bus 360 to Magnusstraße


112


<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong><br />

für Nichtlineare Optik<br />

und Kurzzeitspektroskopie<br />

im Forschungsverbund <strong>Berlin</strong> e. V.<br />

<strong>Max</strong>-<strong>Born</strong>-Straße 2 A<br />

D-12489 <strong>Berlin</strong><br />

Tel.: (++49 30) 63 92 - 15 05<br />

Fax: (++49 30) 63 92 - 15 19<br />

e-mail: mbi@mbi-berlin.de<br />

http://www.mbi-berlin.de

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!