28.01.2013 Views

Annual Report 2004 - Max-Born-Institut Berlin

Annual Report 2004 - Max-Born-Institut Berlin

Annual Report 2004 - Max-Born-Institut Berlin

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Annual</strong> <strong>Report</strong> <strong>2004</strong><br />

<strong>Max</strong> <strong>Born</strong> <strong>Institut</strong>e<br />

for Nonlinear Optics and<br />

Short Pulse Spectroscopy<br />

Forschungsverbund <strong>Berlin</strong> e.V.


<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong><br />

für Nichtlineare Optik<br />

und Kurzzeitspektroskopie<br />

im Forschungsverbund <strong>Berlin</strong> e. V.<br />

<strong>Annual</strong> <strong>Report</strong><br />

Jahresbericht<br />

<strong>2004</strong><br />

1


2<br />

Jahresbericht <strong>2004</strong><br />

<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong><br />

für Nichtlineare Optik<br />

und Kurzzeitspektoskopie<br />

im Forschungsverbund <strong>Berlin</strong> e.V.<br />

<strong>Annual</strong> <strong>Report</strong> <strong>2004</strong><br />

<strong>Max</strong> <strong>Born</strong> <strong>Institut</strong>e (MBI)<br />

for Nonlinear Optics and<br />

Short Pulse Spectroscopy<br />

Forschungsverbund <strong>Berlin</strong> e.V.<br />

<strong>Max</strong>-<strong>Born</strong>-Straße 2 A<br />

12489 <strong>Berlin</strong><br />

Germany<br />

Phone: (++49 30) 63 92 - 15 05<br />

Fax: (++49 30) 63 92 - 15 19<br />

e-mail: mbi@mbi-berlin.de<br />

http://www.mbi-berlin.de


Preface 5<br />

Research reports<br />

Feature articles<br />

Femtosecond X-ray Diffraction for Direct Observation of Ultrafast Structural<br />

Dynamics in Condensed Matter 11<br />

Probing the Photostability of DNA 19<br />

Ion Acceleration with Ultrafast Lasers –<br />

a Gateway to Explore Phenomena in Relativistic Plasma Dynamics 25<br />

Short description of research projects<br />

Laser Research<br />

1-01: Ultrafast Nonlinear Optics and Few Cycle Pulses 37<br />

1-02: Short Pulse Laser Systems 41<br />

Ultrafast and Nonlinear Phenomena:<br />

Atoms, Molecules, Clusters, and Plasma<br />

2-01: Laser Plasma Dynamics 45<br />

2-02: Ionization Dynamics in Intense Laser Fields 49<br />

2-03: Free Clusters and Molecules 53<br />

2-04: Molecular Vibrational and Reaction Dynamics in the Condensed Phase 57<br />

Ultrafast and Nonlinear Phenomena:<br />

Solids and Surfaces<br />

3-01: Dynamics at Surfaces and Structuring 61<br />

3-02: Solids and Nanostructures 65<br />

3-03: Opto Electronic Devices 69<br />

3-04: Transient Structures and Imaging with X-Rays 71<br />

Scientific Infrastructure:<br />

Short Pulse and High Field Lasers<br />

4-1: Development and Implementation of Laser Systems and Measuring Techniques 73<br />

4-21: Femtosecond Application Laboratories 75<br />

4-22: High-Field Laser Application Laboratory (HFL) 76<br />

4-23: MBI-BESSY Beamline 79<br />

3


83<br />

95<br />

103<br />

105<br />

108<br />

119<br />

120<br />

122<br />

123<br />

130<br />

4<br />

Appendices<br />

Appendix 1: Publications<br />

Appendix 2: External Talks, Teaching<br />

Appendix 3: Ongoing Diploma- and PhD theses, Habilitations<br />

Appendix 4: Guest Lectures at the MBI<br />

Appendix 5: Staff, Extended Research Visits of MBI Staff at External <strong>Institut</strong>ions,<br />

Visiting Scientists at the MBI and Users of the Application Laboratories<br />

Appendix 6: Grants and Contracts <strong>2004</strong><br />

Appendix 7: Activities in Scientific Organisations<br />

Appendix 8: Honours, Awards and External Calls<br />

Appendix 9: Cooperations<br />

Appendix 10: Current Patents, Pending Applications and Registered Design


Preface<br />

It is generally expected that the photon will<br />

play a key role in the development of cutting<br />

edge technologies in the 21 st century. One of<br />

the unique areas that has attained high<br />

relevance in recent years is the generation<br />

and application of extremely short light pulses<br />

consisting of only few cycles of the electric<br />

field. Ultra-fast science has become an<br />

important field of basic research and has found<br />

broad application in measurement and – more<br />

recently – process technologies.<br />

It is in this area where the research mission<br />

of the MBI lies. Specifically, the institute conducts<br />

basic research in the field of nonlinear optics<br />

and ultra fast dynamics of the interaction of<br />

light with matter and pursues applications<br />

which emerge from this research. For these<br />

investigations it develops and uses ultra-fast<br />

and ultra-intense lasers and laser based short<br />

pulse light sources. Lasers are a research<br />

subject of their own, while they are also the<br />

essential tool for experimental studies of lightmatter<br />

interaction. It is the combination of laser<br />

and measuring techniques with interdisciplinary<br />

applications which constitutes the unique profile<br />

of the MBI and its attraction to external cooperation<br />

partners.<br />

The <strong>Annual</strong> <strong>Report</strong> <strong>2004</strong> presented here<br />

gives a comprehensive summary of the research<br />

results of the MBI. In the first part, overviews on<br />

the projects are given, arranged according to<br />

the structure of the MBI Research Programme<br />

as schematically illustrated in Figure A on<br />

page 7. As tradition in every second annual<br />

report, these overviews are preceeded by<br />

feature articles on selected topical highlights,<br />

this time on femtosecond X-ray diffraction, on<br />

photo-stability of DNA, and on laser particle<br />

acceleration. Finally, the appendices give a<br />

full listing of publications, invited talks, teaching<br />

activities, patents, scientific exchange and<br />

collaborations, and other achievements of the<br />

MBI and its members of staff.<br />

In its research the MBI puts strong emphasis<br />

on collaborations with universities, research<br />

laboratories, industry and small and medium<br />

enterprises. <strong>2004</strong> was a particularly fruitful<br />

year for the commencement of new activities<br />

in this direction. The institute participates in one<br />

newly started Transregio SFB and two major<br />

BMBF-funded Joint Research Projects with<br />

industry on fs- and EUV-research, respectively.<br />

Within the newly started EU 6 th Framework<br />

Programme the MBI is coordinating two major<br />

networks, the Laser Integrated Infrastructure<br />

Initiative (I3) and one Specific Targeted Research<br />

(STREP) activity. In addition, the institute is<br />

work-package leader in one Integrated Project,<br />

and project partner in one EU Design Study<br />

and one Network of Excellence.<br />

With the research programme being the<br />

relevant structural organisation of the MBI for<br />

the actual research activities, the underlying<br />

expertise and competencies, in a sense the<br />

long term basis, rests with the MBI staff. As<br />

can be deduced from Figure B, the MBI staff<br />

represents inter-disciplinary competencies in<br />

a number of well chosen areas which are<br />

relevant to the research programme. In <strong>2004</strong><br />

the total staff averaged 172, half of which were<br />

scientists, including 25 PhD students. In addition,<br />

the MBI is engaged in teaching and education<br />

with 5 diploma students and 6 apprentices. In<br />

October <strong>2004</strong> the institute was proud to welcome<br />

Professor Martin Weinelt as the new department<br />

head A1, who started on a joint appointment<br />

as professor at the FU <strong>Berlin</strong>. The MBI also<br />

congratulates Dr. Karsten Heyne to his appointment<br />

as Junior Professor at the FU <strong>Berlin</strong>.<br />

A special highlight, held on December 10<br />

and 11, <strong>2004</strong>, was the commemoration ceremony<br />

on the occasion of the 50 th anniversary of <strong>Max</strong><br />

<strong>Born</strong>’s Nobel award. Addresses were brought<br />

by representatives of the Universities of<br />

Wroclaw, <strong>Max</strong> <strong>Born</strong>’s birth town, and Göttingen,<br />

his long term work place and burial town, and<br />

by the president of the Humboldt University<br />

<strong>Berlin</strong>, the place of his first academic employment.<br />

Speeches and keynote lectures were<br />

given by the president of the German Physical<br />

Society, Professor Knut Urban, by Professor<br />

Paul Corkum FRSC, Ottawa, on “Attosecond<br />

imaging”, a new and exciting research field<br />

evolving from the foundations laid during <strong>Max</strong><br />

<strong>Born</strong>’s times, and by Professor Gustav V.R.<br />

<strong>Born</strong>, FRCP Hon FRCS FRS, <strong>Max</strong> <strong>Born</strong>’s son,<br />

in a fascinating lecture on “<strong>Max</strong> <strong>Born</strong>, a memoir”.<br />

The ceremony included a special two-day<br />

Professor Gustav V. R.<br />

<strong>Born</strong>, <strong>Max</strong> <strong>Born</strong>'s son,<br />

during his lecture on<br />

“<strong>Max</strong> <strong>Born</strong>, a memoir”.<br />

5 5


6<br />

Directors<br />

Thomas Elsässer<br />

and Ingolf V. Hertel<br />

in discussion with<br />

Gustav <strong>Born</strong>.<br />

Gustav <strong>Born</strong>, after the<br />

unveiling of the memorial<br />

tablet at the entrance to<br />

the <strong>Max</strong> <strong>Born</strong> Lecture<br />

Hall. The tablet was made<br />

after a pencil drawing by<br />

<strong>Max</strong> <strong>Born</strong>'s daughter<br />

Gritli. The original is in the<br />

possession of the <strong>Born</strong><br />

family, with a copy given<br />

to the MBI as a gift on<br />

occasion of the institute's<br />

inauguration ceremony in<br />

1994. It is also reproduced<br />

on the front cover of this<br />

report.<br />

Professor Paul<br />

Corkum, Steacie<br />

Research <strong>Institut</strong>e,<br />

Ottawa, Canada,<br />

during his keynote<br />

lecture.<br />

Wolfgang Sandner,<br />

Managing Director<br />

of MBI, during his<br />

welcome address.<br />

Gustav <strong>Born</strong><br />

with students from the<br />

<strong>Max</strong> <strong>Born</strong> Gymnasium,<br />

<strong>Berlin</strong> Pankow.<br />

exhibition, organized by Dr. h.c. Jost Lemmerich,<br />

intended to familiarize a broader public,<br />

including university and high-school students,<br />

with his work and his life. The ceremony was<br />

attended by more than 200 scientists and<br />

invited guests from all over Germany.<br />

<strong>Berlin</strong>, March 2005<br />

<strong>Max</strong> <strong>Born</strong>’s work bears many relations to<br />

the MBI’s scientific mission today, starting from<br />

the seminal thesis on nonlinear two-photon<br />

absorption by his student Maria Goeppert-<br />

Mayer and his famous book on optics, later<br />

co-edited with Emil Wolf. Close relations also<br />

exist with his work on “<strong>Born</strong> approximation” and<br />

“<strong>Born</strong>-Oppenheimer approximation” in atomic<br />

and molecular physics, respectively, on<br />

relativistic electrons and on the dynamical<br />

theory of crystal lattices. The MBI is proud to<br />

bear his name and to continue research in<br />

these areas in the spirit of <strong>Max</strong> <strong>Born</strong>.<br />

The MBI Directors<br />

Ingolf Hertel Wolfgang Sandner Thomas Elsaesser


2 Ultrafast and Nonlinear Phenomena:<br />

Atoms, Molecules, Clusters, and Plasma<br />

2-01<br />

Laser Plasma<br />

Dynamics<br />

2-02<br />

Ionization Dynamics<br />

in Intense Laser Fields<br />

2-03<br />

Free Clusters and<br />

Molecules<br />

Board of Directors<br />

1-01<br />

Ultrafast Nonlinear<br />

Optics and Few<br />

Cycle Pulses<br />

2-04<br />

Molecular Vibrational and Reaction Dynamics<br />

in the Condensed Phase<br />

4-1<br />

Development and Implementation of<br />

Laser Systems and Measuring Techniques<br />

1 Laser Research<br />

3 Ultrafast and Nonlinear Phenomena:<br />

Solids and Surfaces<br />

1-02<br />

Short Pulse<br />

Laser Systems<br />

4 Scientific Infrastructure:<br />

Short Pulse and High Field Lasers<br />

3-01<br />

Dynamics at Surfaces<br />

and Structuring<br />

3-02<br />

Solids and<br />

Nanostructures<br />

3-03<br />

Opto Electronic<br />

Devices<br />

3-04<br />

Transient Structures and<br />

Imaging with X-Rays<br />

4-2<br />

Access to Laser Systems and<br />

Service for the Application Laboratories<br />

Fig. A:<br />

Research Structure<br />

of the MBI<br />

Fig. B:<br />

Organisational Structure<br />

of the MBI<br />

7


8<br />

Members of the Scientific Advisory Board:<br />

Prof. Dr. Wolfgang Domcke (Vice Chairman)<br />

<strong>Institut</strong> für Theoretische Chemie, Technische Universität München<br />

Prof. Dr. Theodor W. Hänsch<br />

<strong>Max</strong>-Planck-<strong>Institut</strong> für Quantenoptik, Garching<br />

Prof. Dr. Ferenc Krausz (Chairman)<br />

<strong>Max</strong>-Planck-<strong>Institut</strong> für Quantenoptik, Garching<br />

Prof. Dr. Karl Leo<br />

<strong>Institut</strong> für Angewandte Photophysik, Technische Universität Dresden<br />

Prof. Dr. Stephen R. Leone<br />

Department of Chemistry, University of California, Berkeley, USA<br />

Frau Prof. Dr. Irène Nenner<br />

C.E.A. - Centre d’Etudes de Saclay, Frankreich<br />

Prof. Dr. Sune Svanberg<br />

Division of Atomic Physics, Lund <strong>Institut</strong>e of Technology, Schweden<br />

Prof. Dr. Ian A. Walmsley<br />

Department of Physics, University of Oxford, UK<br />

Representatives of the cooperating universities:<br />

Prof. Dr. Jürgen Rabe<br />

<strong>Institut</strong> für Physik, Humboldt-Universität zu <strong>Berlin</strong><br />

Prof. Dr. Dietmar Stehlik<br />

Fachbereich Physik, Freie Universität <strong>Berlin</strong><br />

Prof. Dr. Christian Thomsen<br />

<strong>Institut</strong> für Festkörperphysik, Technische Universität <strong>Berlin</strong><br />

Representatives of the Federal Republic and the State of <strong>Berlin</strong>:<br />

Prof. Dr. Jürgen Richter<br />

Bundesministerium für Bildung und Forschung, Ref. 411, Bonn<br />

Dr. Rainer Schuchardt<br />

Senatsverwaltung für Wissenschaft, Forschung und Kultur, Referat III C 3, <strong>Berlin</strong><br />

Honorary member:<br />

Prof. Sir Harry Kroto<br />

The School of Chemistry and Molecular Science, University of Sussex Falmer, Brighton, UK


Feature articles<br />

9


Femtosecond X-ray Diffraction for Direct Observation of Ultrafast<br />

Structural Dynamics in Condensed Matter<br />

M. Bargheer, N. Zhavoronkov, Y. Gritsai, M. Woerner, T. Elsaesser<br />

Basic processes in Nature such as phase<br />

transitions or (bio)chemical reactions are<br />

connected with structural changes of matter.<br />

The spatial rearrangement of electrons and<br />

nuclei, the formation and breaking of chemical<br />

bonds, as well as atomic and molecular<br />

motions underlie those events. In liquids and<br />

solids, the constituting atoms and molecules<br />

couple through different short- and long-range<br />

interactions, leading to structural changes on<br />

ultrafast time scales between 10 -15 and 10 -12 s.<br />

Experiments with a time resolution down<br />

to a few femtoseconds have provided detailed<br />

insight into ultrafast processes in physics,<br />

chemistry and biology and have unravelled<br />

the underlying interaction mechanisms [1]. So<br />

far, structural dynamics have mainly been<br />

addressed by following the time evolution of<br />

absorption and emission bands assigned to a<br />

particular structural species. Though this<br />

indirect approach has been successful in<br />

numerous cases, a more direct observation<br />

and analysis of transient, in particular local<br />

structure is necessary for understanding<br />

structural dynamics in detail. Femtosecond multidimensional<br />

spectroscopy [2] representing the<br />

optical analogue of multidimensional nuclear<br />

magnetic resonance, and subpicosecond<br />

x-ray techniques [3] can grasp transient<br />

structures and – thus – have developed into<br />

fascinating new areas of ultrafast science. In<br />

the following, new results on femtosecond x-ray<br />

diffraction are presented. First, we introduce our<br />

novel microfocus copper K α source providing<br />

incoherent, femtosecond x-ray pulses at a<br />

1-kHz repetition rate [ZGB]. We then discuss a<br />

series of focusing optics suitable for femtosecond<br />

x-ray diffraction [BZB]. To demonstrate<br />

the potential of this technique, we present our<br />

recent results on coherent atomic motions in<br />

a semiconductor nanostructure [BZG04].<br />

Microfocus copper K source for<br />

α<br />

femtosecond x-ray science<br />

Laser-driven femtosecond (fs) hard x-ray<br />

plasma sources find increasing application for<br />

real-time studies of transient phenomena of<br />

chemical and physical interest by x-ray<br />

diffraction or x-ray absorption. Low repetition<br />

rate (0.1-10 Hz) high-power laser systems<br />

have been used successfully for fs-hard x-ray<br />

generation with comparably large diameters<br />

of the x-ray source of approximately 100 µm<br />

[4][5].<br />

In many imaging applications, i.e. scanning<br />

x-ray absorption, photoelectron microscopy or<br />

medical imaging, a small source size and a<br />

high source brightness are required for high<br />

resolution imaging. In x-ray diffraction<br />

experiments the source size is a potential limit<br />

for angular resolution. Small source size is<br />

also one of the important issues for generating<br />

a high on-sample photon flux by x-ray focusing<br />

optics. Another issue in femtosecond x-ray<br />

diffraction is the exact timing of the generated<br />

femtosecond x-ray pulses relative to the pump<br />

pulse initiating the structural changes. The<br />

degree of synchronization determines the<br />

achievable time resolution.<br />

Recently, reliable and stable x-ray sources,<br />

based on kHz systems with high average<br />

power, have been reported and are becoming<br />

the state of the art [6]-[8][ZGK04]. In the<br />

following, we present our novel laser-driven<br />

1 kHz source in which ultrashort hard x-ray<br />

bursts of K α radiation are generated by interaction<br />

of femtosecond laser pulses with a thin<br />

(20 µm) Cu target.<br />

The experimental setup is shown in Fig.1.<br />

The source consists of a system for 20 µm thick<br />

and 20 mm wide Cu-foil-target transportation<br />

and a 1 kHz Ti:sapphire laser system. The<br />

transportation speed of the foil is high enough<br />

to expose a fresh surface for succeeding laser<br />

pulses. The whole setup was placed into a<br />

vacuum chamber evacuated down to 10 -4 mbar.<br />

Pulses from a Ti:sapphire femtosecond laser<br />

system, operating at a 1 kHz repetition rate<br />

(center wavelength λ laser =800 nm, 5 mJ pulse<br />

energy, and 45 fs pulse duration) were used<br />

as the driving radiation. The contrast of the<br />

main pulse to the amplified spontaneous<br />

emission (ASE) and to the intrinsic pre-pulse<br />

located in time 5.5 ps before the main pulse<br />

were measured to be 10 7 and 10 5 , respectively.<br />

Fig. 1:<br />

The central part of the<br />

laser plasma source is<br />

the femtosecond laser<br />

system with high average<br />

power. The laser pulses<br />

are focused by a 100 mm<br />

lens onto a copper tape<br />

target, which works like<br />

an audio tape recorder in<br />

auto-reverse mode. In<br />

order to obtain the<br />

required high intensity of<br />

10 17 W/cm 2 , this has to<br />

be done in a vacuum<br />

chamber. Any gas<br />

atmosphere would be<br />

ionized at this intensity<br />

level.<br />

11


12<br />

Fig. 2:<br />

Geometry of the lasertarget<br />

interaction (insert);<br />

experimental knife-edge<br />

data (solid circles),<br />

functional fitting to the<br />

knife-edge data (dashdot<br />

line), the Gaussian fit<br />

to the X-ray emitting area<br />

(solid line), results of the<br />

X-ray source image obtained<br />

with the Ge bentcrystal<br />

(dashed line, open<br />

triangles), together with<br />

the laser spot (dotted line).<br />

Fig. 3:<br />

Generated x-ray<br />

spectrum as measured<br />

by a Si-detector. The<br />

insert shows the high<br />

energetic part measured<br />

by a NaI scintillator in<br />

combination with a<br />

photomultiplier.<br />

The p-polarized laser beam was focused<br />

by a F/5 lens of 100 mm focal length into a<br />

spot with a diameter of 6.7 µm FWHM (full width<br />

half maximum, Fig. 2), producing an on-axis<br />

peak intensity of approximately 10 17 W/cm 2 .<br />

The rapid heating of the target by the focused<br />

laser beam causes a shock wave, which is<br />

reflected from the rear face of the target back<br />

into the interaction region, leading to the<br />

ejection of molecular clusters and small target<br />

fragments towards the focusing lens. To<br />

prevent lens contamination by such debris, a<br />

175 µm thick and 200 m long plastic band<br />

was placed in front of the lens and permanently<br />

moved during the experiment at approximately<br />

20 mm/min (Fig. 1).<br />

For laser intensities exceeding 10 12 W/cm 2 ,<br />

i.e., during the pre-pulse or at the leading edge<br />

of the main pulse, vaporization and ionization<br />

of the target occur. As a result, the main part of<br />

the pulse interacts with a very thin, expanding<br />

layer of ionized matter of near-solid density.<br />

Absorption of the main pulse in this layer<br />

results in the creation of a dense high<br />

temperature plasma. For intensities higher<br />

than 10 16 W/cm 2 supra-thermal electrons are<br />

produced, primarily by the processes of<br />

resonance absorption and vacuum heating<br />

[9]-[11]. The majority of the accelerated hot<br />

electrons leave the dense plasma region and<br />

consequently a very strong space charge field<br />

is being set up. A significant fraction of the hot<br />

electrons streams back towards the positively<br />

charged space charge region on the target<br />

surface, penetrate the target and produce a<br />

burst of incoherent x-rays being emitted in the<br />

full solid angle. In our experiments, we use<br />

the emission in forward direction in order to<br />

minimize the timing jitter between the optical<br />

and the x-ray pulses.<br />

The generated x-ray spectrum shown in<br />

Fig. 3 consists of the K α lines of Cu and a broad<br />

background of Bremsstrahlung. The energy<br />

conversion efficiency into the K α line emission<br />

reaches a maximal value of 2 x 10 -5 . Such<br />

efficiency is typical for x-ray generation with<br />

ultrashort high-contrast pulses (cf. Ref. [9]). We<br />

generate a total K α flux of up to 1.3 x 10 11<br />

photons/s. There is no evidence for saturation<br />

of the x-ray yield up to our maximum laser<br />

intensity of 10 17 W/cm 2 . A pulse-to-pulse<br />

stability of the x-ray output of 3 percent (root<br />

mean square) was measured in real time<br />

during 10 minutes with the help of a highspeed<br />

data acquisition system. The long term<br />

stability of our novel setup allowed us to use<br />

the source in advanced x-ray diffraction<br />

experiments for a continuous measurement<br />

time of more than 10 hours [BZG04].<br />

The size is a critical and important parameter<br />

of any x-ray source. A large source size<br />

prevents effective work in a high magnification<br />

regime and limits, for instance, the ability to<br />

detect small structural characteristics. We<br />

measured the size of the x-ray emitting area<br />

in the horizontal plane using a knife-edge<br />

technique and detecting a 23-fold magnified<br />

x-ray image with a charged coupled device<br />

(CCD-ANDOR DO-434). Deconvoluting the<br />

knife-edge results we derive a diameter of the<br />

Gaussian fit for the emitting area of 10±2 µm<br />

(FWHM, Fig. 2). The diameter of the x-ray<br />

emitting area is only slightly larger than the<br />

laser beam diameter of 6.7 µm (FWHM) and<br />

they both are smaller than the target thickness<br />

of 20 µm. Such a small x-ray source size<br />

observed in forward direction demands that<br />

the spatial diffusion of the high energetic<br />

electrons is restricted within the conus indicated<br />

in Fig. 2. This is only possible if the part of hot<br />

thermalized electrons with an isotropic<br />

distribution in momentum space has a short<br />

stopping distance within few micrometers<br />

(area I), and if the hot electron distribution has a<br />

strong anisotropy in forward direction (area II).<br />

To summarize this part, we have developed<br />

and characterized an efficient, bright x-ray source<br />

suitable for sub-picosecond experiments.<br />

Application of high-contrast intense femtosecond<br />

pulses enables us to optimize the<br />

conditions for efficient x-ray generation and to<br />

reach the highest K α flux from plasma sources<br />

driven at a kHz repetition rate of 1.3 x 10 11<br />

photons/s. A new geometry for a time-resolved<br />

x-ray diffraction experiment with an essentially<br />

improved temporal jitter was demonstrated.<br />

Because of the very small irradiation area,<br />

this source is also very attractive for x-ray<br />

microscopy.


Comparison of focusing optics for<br />

femtosecond x-ray diffraction<br />

X-ray diffraction represents a standard<br />

technique to determine the equilibrium<br />

structure of crystalline materials. In the simplest<br />

picture, the superposition of waves elastically<br />

reflected from different planes in the crystal<br />

lattice leads to the formation of an x-ray beam<br />

in a direction determined by the constructive<br />

interference of the reflected waves (Bragg's<br />

law). So far, x-ray diffraction has mainly been<br />

applied to analyze time-independent structures.<br />

Diffraction of ultrashort x-ray pulses allows to<br />

take sequences of diffraction patterns and in<br />

this way analyze time-dependent structure,<br />

i.e., follow atomic motions in real-time. Recent<br />

experiments using hard x-ray pulses from<br />

laser-produced plasma sources with a duration<br />

of approximately 100 femtoseconds (fs)<br />

demonstrated the detection of ultrafast changes<br />

in crystalline solids via x-ray diffraction (XRD)<br />

[12]-[18].<br />

In the following, we characterize and<br />

compare four different types of focusing optics<br />

for hard x-rays, suitable for femtosecond x-ray<br />

diffraction experiments with femtosecond<br />

plasma sources. Although these isotropically<br />

emitting sources can be applied without the<br />

use of x-ray focusing optics [BZG04] the<br />

extension to the investigation of smaller<br />

samples demands such enhancing optics [19],<br />

as the solid angle of x-rays used in an<br />

experiment decreases with the sample size.<br />

In addition, very strong excitation may require<br />

a focused x-ray beam on the sample,<br />

especially, if the structural change is irreversible<br />

and the sample must be replaced at a fast<br />

rate. A schematic of a typical fs-XRD setup is<br />

shown in Fig. 4.<br />

In such type of experiments, an optical<br />

pump pulse triggers a structural change in the<br />

sample and a subsequent x-ray probe pulse<br />

takes snapshots of this motion or dislocation<br />

by recording the diffracted x-ray pattern<br />

(rocking curve) as a function of the time delay<br />

between the pump and the probe pulse. The<br />

optic can only collect the solid angle Ω 0 and<br />

image the source region onto a focal spot with<br />

a convergent solid angle ΔΘ. Here we consider<br />

only optics which focus the x-rays in both<br />

dimensions perpendicular to the beam. However,<br />

for simplicity we introduce ΔΘ, the one<br />

dimensional convergence angle in the reflection<br />

plane, determined by the Bragg reflection with<br />

angle Θ (Fig. 4). To determine the collection<br />

efficiency for the characteristic line emission,<br />

here Cu K α , we define the reflectivity of the<br />

optical element as R = N f / (N 0 ⋅ Ω 0 ), where N 0 is<br />

the number of K α photons emitted by the<br />

source per second and per steradian and N f<br />

is the number of K α photons per second at the<br />

focus. In a typical experiment we have to<br />

maximize the number of photons which are<br />

actually Bragg-reflected. The angular range<br />

of the measurable rocking curve ΔΘ is usually<br />

larger than the width of a certain the Bragg<br />

reflex δΘ (cf. Fig. 4).<br />

When measuring x-ray diffraction from<br />

single crystals the essential characterizing<br />

parameter of the entire setup is the number of<br />

photons incident on the sample per unit Bragg<br />

angle and per second, i.e. n θ = N 0 R/ΔΘ. Unlike<br />

in conventional x-ray diffraction setups, the<br />

sample is kept fixed, and the interesting part<br />

of the rocking curve (Θ-2Θ scan) is recorded<br />

simultaneously by the x-ray CCD camera.<br />

Thus, the convergence angle ΔΘ determines<br />

which fraction of a rocking curve can be<br />

measured without scanning the sample. It is<br />

one of the main advantages of this type of<br />

setup compared to parallel beam geometries<br />

(realized, e.g., at synchrotron light sources)<br />

that angular scans are unnecessary, and that<br />

lineshifts in a pump-probe scan can be observed<br />

simultaneously with intensity modulations. In<br />

this study we have explored and tested four<br />

different x-ray concentrators and mirrors<br />

discussed as follows.<br />

The various geometries used in our study<br />

are schematically depicted in Fig. 5:<br />

a) A 100 µm thick Germanium crystal cut<br />

along the (111) plane is bonded to a toroidally<br />

bent quartz substrate. Here the (444) reflex is<br />

used and the curvature of the crystal is chosen<br />

in such a way that the entire surface area<br />

(12 x 40 mm 2 ) is reflecting. Such doubly curved<br />

crystals are extensively discussed in the<br />

literature [19], also with respect to the expected<br />

temporal pulse broadening [20]. The mirror is<br />

made for 1:1 imaging with a working distance<br />

of 468 mm, and the deflection angle is given<br />

by the angle 2Θ = 70° of the Ge (444) reflex.<br />

The focus is rather close to the source (200 mm)<br />

which imposes some geometric constraints on<br />

the experimental design of the setup (Fig. 5a).<br />

Fig. 4:<br />

Schematic of a typical fs-<br />

XRD setup. Hard x-ray<br />

pulses from a laser<br />

generated plasma are<br />

collected by an optical<br />

system, where the focus<br />

can be located before the<br />

sample, on the sample or<br />

directly on the CCD. The<br />

latter is only possible for<br />

a large optic-to-focus<br />

distance (optic c). Ω 0 is<br />

the solid angle of x-rays<br />

which can be collected<br />

by the optic. ΔΘ is the<br />

one dimensional angle of<br />

the convergent x-ray<br />

beam in the Braggreflection<br />

plane after the<br />

optic, i.e. the measurable<br />

angular range of the<br />

rocking curve in units of<br />

Bragg angles Θ. All<br />

photons which are<br />

incident on the optical<br />

system within Ω 0 are<br />

assumed to be reflected<br />

and imaged onto the<br />

focus with an average<br />

reflectivity R. δΘ is the<br />

actual width of a certain<br />

Bragg reflex to be<br />

measured in a fs-XRD<br />

experiment.<br />

Fig. 5:<br />

Schematic of the four<br />

optics analyzed:<br />

a) Toroidally bent Ge<br />

crystal,<br />

b) multilayer optic,<br />

c) ellipsoidal capillary,<br />

d) poly-capillary. The<br />

magnification of b and c<br />

were chosen to be 2 and<br />

7, respectively, but could<br />

be designed differently.<br />

13


14<br />

Fig. 6:<br />

Comparison of the<br />

efficiency regarding<br />

a) number of photons<br />

per second in the focus,<br />

b) number of photons<br />

per second within 1 mrad,<br />

c) flux in the focus (i.e.<br />

number of photons per<br />

second and mm 2 .<br />

In all cases we exhibit<br />

numbers only for K α<br />

photons normalized to the<br />

optimum source flux of<br />

N opt = 4x10 9 photons/(s sr).<br />

Both capillary optics<br />

transmit also K β and some<br />

high energetic (Bremsstrahlung)<br />

photons.<br />

Optic No.:<br />

a bent Ge crystal,<br />

b multilayer optic,<br />

c ellipsoidal capillary,<br />

d poly-capillary.<br />

Fig. 7:<br />

a)-d) Beam cross<br />

sections in the focus<br />

(upper panel) and after<br />

the focus (lower panel).<br />

We note the interference<br />

pattern in the far field of<br />

the multilayer optic which<br />

is produced by the two<br />

possible paths each<br />

photon can take.<br />

e) Vertically integrated<br />

beam profiles from Fig. 6<br />

a-d, together with the<br />

spatial extent of the x-ray<br />

source. Note that all<br />

cross sections resemble<br />

Gaussian distributions,<br />

except the strongly magnifying<br />

elliptical capillary<br />

which has a large, near<br />

Lorenzian line shape.<br />

b) The second imaging device consists of<br />

two perpendicular elliptical multilayer mirrors<br />

(MLM) reflecting at a Bragg angle of approx. 3°,<br />

determined by the multilayer periodicity. There<br />

are two possible optical paths (Fig. 5b) to focus<br />

in two dimensions by the Kirkpatrick-Baez<br />

scheme [22]. The reflectivity of the optic over the<br />

entire solid angle Ω 0 is very large (approx. 0.3<br />

for a 15 µm small source size), because the<br />

thickness of the multilayers is graded along<br />

the ellipse. This makes the design of the MLM<br />

very flexible, e.g., regarding the magnification<br />

ratio. We have chosen a magnification M = 2 : 1<br />

with a source-focus distance of 300 mm. The<br />

rather small (albeit designable) distance from<br />

the source to the optic housing was chosen to<br />

be 43 mm. This requires a good accessibility of<br />

the source. The multilayer periodicity is<br />

designed to suppress Cu K β radiation efficiently<br />

[23]. The white Bremsstrahlung background is<br />

strongly suppressed with an average reflectivity<br />

of approximately 10 -4 .<br />

c) Capillary x-ray optics are glass capillaries<br />

or poly-capillaries, which guide x-rays by total<br />

reflection. The elliptical capillary optic is made<br />

from a thin lead glass tube which is pulled in<br />

such a way as to approximate the shape of an<br />

ellipsoid. The resulting focusing is cylindrically<br />

symmetric and occurs by total reflection of the<br />

x-rays on the Helium/Glass interface. (The<br />

optic is filled with He.) We selected a 150 mm<br />

long section of the ellipsoid which images the<br />

x-rays with a magnification of M = 1 : 7. The<br />

small deflection angle is determined by the<br />

angle of total reflection (0:3° for lead glass),<br />

and the calculated average reflectivity of the<br />

capillary is 0.8. The high energetic x-rays are<br />

somewhat suppressed, as the angle of total<br />

reflection decreases with increasing photon<br />

energy. The source to optic-housing distance<br />

is 50 mm.<br />

d) The principle of operation of typical polycapillary<br />

elements consisting of bundles of<br />

glass or quartz capillaries is also based on<br />

the effect of total internal reflection of radiation,<br />

however, here several reflections are needed.<br />

This reduces the transmission through the optic<br />

and leads to an increase of the x-ray pulse<br />

duration. A more substantial broadening stems<br />

from the different single capillary lengths within<br />

the array of 59000 capillaries (cf. Fig. 5d). We<br />

further note that the spectral response is<br />

similarly unselective as in the single-capillary<br />

case, and the convergence angle is very large<br />

(3.4°). There are geometric constraints on both<br />

on the source optic distance (43 mm) and on<br />

the optic-focus distance (18 mm). The latter<br />

can only be increased at the expense of a<br />

larger focus. Due to the very large collection<br />

angle Ω 0 this optic delivers the highest largest<br />

integral number of Cu K α photons in the focus.<br />

The main parameters of interest that are<br />

compared in the following are the total number<br />

of photons which are imaged onto the focus,<br />

the number of photons per Bragg angle, the<br />

focal spot size and the transmitted spectrum.<br />

The number of photons in the focal spot N f<br />

was determined by integration over the Cu K α<br />

line, and was then compared with the actual<br />

source flux N 0 , which was measured in the<br />

same way. In Fig. 6a we show the number of<br />

photons per second in the focus N n , normalized<br />

by the respectively measured N 0 to an<br />

optimum source flux of N opt = 4 x 10 9 photons/s,<br />

i.e. N n = N f N opt /N 0 . The convergence of the xray<br />

beam was determined by scanning the<br />

CCD camera parallel to the beam direction.<br />

Characteristic cross-sections of the focus<br />

are shown in Fig. 7 a-d) The measured ΔΘ<br />

was used to calculate the number of photons<br />

per second and mrad Bragg angle (Fig. 6b),


again normalized to N opt . The size of the focus<br />

was determined for each optic by vertical<br />

integration of Fig. 7 a)-d) and the resulting one<br />

dimensional beam profiles are plotted in Fig.<br />

7 e). The size of the foci in the full width at half<br />

maximum definition (FWHM) is d = 23, 32, 105<br />

and 155 µm, respectively. The accuracy of the<br />

focal cross-section is limited by the pixel size<br />

of the CCD, 13 x 13 µm 2 . These foci have to be<br />

compared to the measured size of the source<br />

of 10±2 µm. The flux values shown in Fig. 6c<br />

are determined from Fig. 6a by assuming a<br />

spherical focus with diameter d.<br />

In summary, we have characterized and<br />

compared four different types of focusing<br />

optics for hard x-rays, suitable for femtosecond<br />

x-ray diffraction experiments. We demonstrate<br />

a 23 µm focus with a toroidally bent Ge single<br />

crystal. A maximum flux of 7 x 10 8 photons/(s mm 2 )<br />

is generated in a 32 µm focus using a multilayer<br />

mirror. An elliptical glass capillary yields<br />

the highest number of photons per Bragg angle<br />

[2 x 10 5 photons/(s mrad)]. The largest number<br />

of photons per second [3 x 10 6 photons/s] is<br />

obtained in the 105 µm focus of a poly-capillary<br />

optical lens system. All numbers are given for<br />

characteristic Cu K α photons.<br />

Femtosecond x-ray diffraction:<br />

Coherent atomic motions in a semiconductor<br />

nanostructure<br />

We now present results of the first x-ray<br />

diffraction experiment performed with our<br />

novel microfocus plasma source described in<br />

the first section [BZG04]. We observe minute<br />

reversible structural changes in a nanostructured<br />

solid. These changes conserve the<br />

crystal volume and occur in the femtosecond<br />

time domain. As a prototype sample<br />

representative for a larger class of inorganic<br />

and organic nanostructures, we chose a GaAs/<br />

AlGaAs superlattice (Fig. 8A). A femtosecond<br />

laser pulse impulsively excites electron-hole<br />

pairs in the lowest n=1 subband of the GaAs<br />

quantum wells (QWs) (Fig. 8B), thus weakening<br />

the interatomic bonds. The crystal lattice<br />

responds to such excitation with an expansion<br />

of the wells and a concomitant compression<br />

of the AlGaAs barriers, and vice versa in the<br />

next half period, thus triggering a coherent<br />

acoustic standing wave (Fig. 8D). The<br />

amplitude of this motion is a fraction of only<br />

S=Δa/a 0 =1.5x10 -4 of the lattice constant<br />

a 0 =565 pm. Such displacive excitation of<br />

coherent phonons (DECP) [24] is a prototype<br />

of a much wider class of phase-coherent<br />

atomic motion, initiated in each unit cell of a<br />

(molecular) crystal. DECP is the solid state<br />

analog of the Franck-Condon principle for<br />

electronic excitation of molecules.<br />

The superlattice (SL) sample, grown by<br />

molecular beam epitaxy on a GaAs substrate,<br />

consisted of 2000 layers of electronically<br />

uncoupled 8 nm GaAs quantum wells and 8 nm<br />

Al 0.4 Ga 0.6 As barriers (Fig. 8A).<br />

A schematic of our tabletop subpicosecond<br />

infrared pump - x-ray probe setup is detailed<br />

in Fig. 9A. An 800 nm pump pulse with a flux of<br />

2 mJ/cm 2 excited electron-hole pairs via interband<br />

absorption. The pump pulse was<br />

absorbed exclusively in the quantum wells,<br />

and created a spatially modulated excitation<br />

with the periodicity of the SL matching exactly<br />

the reciprocal SL vector g SL =2π/d SL (inverse<br />

SL period d SL =16 nm, Fig. 10). A time-delayed<br />

x-ray pulse was diffracted from the sample to<br />

probe the resulting lattice dynamics. Cu K α<br />

emission was used in forward geometry, which<br />

allowed for an accurate measurement of the<br />

timing of pump and probe pulses. An x-ray<br />

CCD camera monitored the rocking curve. The<br />

influence of intensity fluctuations of the source<br />

was removed by normalizing to reflections not<br />

affected by the pump pulse. The signal (Fig. 9B)<br />

was taken as the intensity difference between<br />

the pumped and the un-pumped region.<br />

The static diffraction pattern of this sample<br />

around the (002) peak is displayed in Fig. 9C.<br />

It shows a strong central maximum with a<br />

position determined by the average lattice<br />

Fig. 8:<br />

(A) Semiconductor superlattice<br />

(SL) consisting of<br />

GaAs quantum wells<br />

(QWs, white) and<br />

AlGaAs barriers (grey).<br />

(B) Probability densities<br />

|Ψ VB;CB<br />

n (z)|2 (blue lines) of<br />

the electronic n=1 and<br />

n=2 valence (VB) and<br />

conduction (CB) subband<br />

states in the respective<br />

SL potentials along z, i.e.<br />

in [001] direction.<br />

(D) Linear chain model for<br />

the phonon dynamics (not<br />

to scale): Atomic layers,<br />

i.e. (001) planes, of Ga,<br />

As, or an alloy of Al and<br />

Ga atoms connected via<br />

schematic springs are in<br />

their equilibrium positions<br />

before excitation t


16<br />

Fig. 10:<br />

Dispersion relation of<br />

longitudinal acoustic (LA)<br />

phonons in the folded<br />

Brillouin zone of the SL.<br />

The reciprocal SL vector<br />

g SL indicates the experimentally<br />

excited zonefolded<br />

LA phonon (ZFLAP).<br />

Fig. 11:<br />

(A) Intensity modulation<br />

of the -1 st order SL peak<br />

after ultrafast excitation<br />

of electron-hole pairs in<br />

the n=1 subbands of the<br />

semiconductor nanostructure.<br />

Plotted is the<br />

relative reflectivity<br />

change ΔR/R 0 as a<br />

function of time delay<br />

between near-infrared<br />

pump and x-ray probe<br />

pulses. The solid red line<br />

represents the result from<br />

a simulation, showing a<br />

cosine-like oscillation with<br />

the period of 3.5 ps of the<br />

ZFLAP.<br />

(B) Fourier transform of<br />

the time-resolved data in<br />

panel (A).<br />

(C) Angular position ΔΘ<br />

of the -1 st order peak.<br />

Fig. 12:<br />

Schematic of the (002)<br />

SL rocking curve (black<br />

line) together with that of<br />

the corresponding single<br />

SL unit cell (red envelope)<br />

as a function of<br />

Δk=4π/λ sin(Θ) (Bragg's<br />

law). A compression of<br />

the barriers shifts the<br />

envelope towards the<br />

position of the blue curve,<br />

thus, modulating the<br />

intensity of the satellites.<br />

Inset: wavevector diagram<br />

of SL x-ray diffraction.<br />

constant of the entire crystal of approximately<br />

0.56 nm and two first-order satellite peaks [25].<br />

The satellites are due to 'artificial' periodicity<br />

of the superlattice and are determined by the<br />

superlattice period of 16 nm, much longer than<br />

the lattice constant. The satellites originate<br />

from the AlGaAs barrier layers as the GaAs<br />

structure factor and – thus – the intensity<br />

diffracted from the quantum wells are negligibly<br />

small.<br />

Excitation of this sample by the 800 nm<br />

pulse promotes electrons from the valence<br />

band into the (anti-binding) conduction band<br />

of the quantum wells and weakens interatomic<br />

covalent bonds in the GaAs crystal lattice. This<br />

excitation is periodic in space as the 800 nm<br />

pulse is absorbed in the quantum well layers<br />

exclusively. As a result of excitation, the<br />

strength of the superlattice peaks exhibit<br />

pronounced oscillations as a function of delay<br />

time. This is shown in Fig. 11A for the -1 st order<br />

peak. The oscillation period is 3.5 ps<br />

corresponding to a frequency of 0.29 THz. The<br />

angular position of the satellite peaks remains<br />

unchanged during the oscillations,<br />

demonstrating that changes of the average<br />

superlattice period, i.e. changes of the crystal<br />

volume, are negligible on this time scale.<br />

The oscillations in the diffracted intensity<br />

are caused by coherent acoustic phonon<br />

oscillations in the superlattice. Upon excitation<br />

of electrons into the conduction band, the<br />

weakening of the covalent bonds in the GaAs<br />

layers leads to an expansion of the quantum<br />

wells in space and a compression of the AlGaAs<br />

barriers [Fig. 8D], in this way impulsively<br />

launching acoustic phonon oscillations in the<br />

superlattice. The wavevector of the phonons<br />

created is determined by the spatial periodicity<br />

of the optical excitation (Fig. 10). Such phonon<br />

oscillations are equivalent to a periodic<br />

modulation of the lattice constant of the AlGaAs<br />

layers, i.e., the atomic motions of this part of<br />

the crystal lattice are directly monitored.<br />

We now discuss how the small atomic<br />

amplitudes Δa/a are translated into relatively<br />

large reflectivity modulations ΔR/R 0 (Fig. 11A)<br />

of the selected satellite of the (002) reflex (Fig.<br />

12). Because the GaAs wells have a negligible<br />

(002) structure factor (quasi-forbidden because<br />

Z Ga =31 ≈ Z As =33 Z), the ΔR/R 0 of any (002)<br />

reflex [27] is exclusively caused by the AlGaAs<br />

barriers (Z Al =13). A compression of the barriers<br />

shifts the envelope [Fig. 12, red line: calculated<br />

rocking curve for a single SL unit cell before<br />

excitation, a0 B =a (t


ΔR(t)/R 0 = ΔR max /2R 0 x [cos(2πνt) - 1] is an<br />

oscillation with the amplitude ΔR max /2R 0 around<br />

an equilibrium position displaced by the same<br />

amount. This constitutes direct experimental<br />

proof of the displacive excitation mechanism<br />

under conditions of strong excitation, in contrast<br />

to the results for weak excitation [29].<br />

In conclusion, reversible structural changes<br />

of a nanostructure were measured nondestructively<br />

with sub-picometer spatial and<br />

sub-picosecond time resolution via x-ray<br />

diffraction (XRD). The spatially periodic<br />

femtosecond excitation of a GaAs/AlGaAs<br />

superlattice results in coherent lattice motions<br />

with a 3.5 ps period. Small changes ΔR/R=0.01<br />

of weak Bragg reflexes (R=0.005) were<br />

detected. The shape of the XRD signal, i.e. the<br />

phase and amplitude of its oscillation around a<br />

new equilibrium, demonstrates the displacive<br />

excitation of the zone folded acoustic phonons<br />

as the dominant mechanism for strong<br />

excitation.<br />

This underlines the very high sensitivity of<br />

the experiment and demonstrates the potential<br />

of this technique to observe fully reversible<br />

structural changes in real-time. Future studies<br />

will concentrate on reversible phase transitions<br />

in materials with correlated electron systems<br />

like, e.g., superconductors and ferromagnets.<br />

Acknowledgements<br />

This work was sponsored by the Deutsche<br />

Forschungsgemeinschaft via Schwerpunktprogramm<br />

SPP 1134 and by the Bundesministerium<br />

für Bildung und Forschung,<br />

project 13N7923. We acknowledge R. Bruch,<br />

H. Legall and H. Stiel for their contributions in<br />

the experiments characterizing the polycapillary<br />

x-ray optic and we thank J. C. Woo, D.<br />

S. Kim, D. H. Woo, K. G. Yee, and S. B. Choi for<br />

the sample growth. This work in Korea was<br />

supported by the Korean Science and<br />

Engineering Foundation, the Ministry of<br />

Science and Technology, and the Korean<br />

Research Foundation (2003-015-C00185).<br />

References<br />

[BZB] M. Bargheer, N. Zhavoronkov, R. Bruch, H.<br />

Legall, H. Stiel, M. Woerner, T. Elsaesser:<br />

Comparison of Focusing Optics for Femtosecond,<br />

x-ray Diffraction, Appl. Phys. B (in press).<br />

[ZGB] N. Zhavoronkov, Y. Gritsai, M. Bargheer, M.<br />

Woerner, T. Elsaesser, F. Zamponi, I. Uschmann,<br />

E. Förster: Microfocus Cu K α source for femtosecond<br />

x-ray science, Opt. Lett. (submitted).<br />

[BZG04] M. Bargheer, N. Zhavoronkov, Y. Gritsai, J.<br />

C. Woo, D. S. Kim, M. Woerner, T. Elsaesser:<br />

Coherent Atomic Motions in a Nanostructure<br />

Studied by Femtosecond X-Ray Diffraction,<br />

Science 306 (<strong>2004</strong>) 1771<br />

[1] T. Elsaesser, S. Mukamel, M.M. Murnane, N.F.<br />

Scherer (Eds.): Ultrafast Phenomena XII, Springer,<br />

<strong>Berlin</strong> 2001<br />

[2] D.M. Jonas, Annu. Rev. Phys. Chem. 54 (2003)<br />

425<br />

[3] A. Rousse, C. Rischel, J.C. Gauthier, Rev. Mod.<br />

Phys. 73 (2001) 17<br />

[4] Ch. Reich et al., Phys. Rev. E 68 (2003) 056408<br />

[5] D. C. Eder et al., Appl. Phys. B 70 (2000) 211<br />

[6] G. Korn et al., Opt. Lett. 27 (2002) 866<br />

[7] Y. Jiang, T. Lee, W. Li, G. Ketwaroo, C. G. Rose-<br />

Petruck, Opt. Lett. 27 (2002) 963<br />

[8] B. Hou et al., Appl. Phys. Lett. 84 (<strong>2004</strong>) 2259<br />

[9] C. Reich, P. Gibbon, I. Uschmann, E. Förster,<br />

Phys. Rev. Lett. 84 (2000) 4846<br />

[10] F. Ewald, H. Schwoerer, R. Sauerbrey, Europhys.<br />

Lett. 60 (2002) 710<br />

[11] C. Ziener et al., Phys. Rev. E 65 (2002) 066411<br />

[12] K. Sokolowski-Tinten et al., Nature 422 (2003)<br />

287<br />

[13] K. Sokolowski-Tinten et al., Phys. Rev. Lett. 87<br />

(2001) 225701<br />

[14] A. Cavallieri et al., Phys. Rev. Lett. 85 (2000) 586<br />

[15] C. Rose-Petruck et al., Nature 398 (1999) 310<br />

[16] C. Rischel et al., Nature 390 (1997) 490<br />

[17] C. W. Siders et al., Science 286 (1999) 1340<br />

[18] A. Rousse et al., Nature 410 (2001) 65<br />

[19] G. Hildebrandt and H. Bradaczek, The Rikagu<br />

Journal 17 (2000) 13<br />

[20] T. Missalla et al., Rev. Sci. Instr. 70 (1999) 1288<br />

[21] F. Chukhovskii and E. Förster, Acta Cryst. A 51<br />

(1995) 668<br />

[22] P. Kirkpatrick and A. Baez, J. Opt. Soc. Am. 38<br />

(1948) 766<br />

[23] M. Schuster and H. Gobel, J. Phys. D 28 (1995)<br />

[24] H. J. Zeiger et al., Phys. Rev. B 45 (1992) 768<br />

[25] L. Tapfer, K. Ploog, Phys. Rev. B 33 (1986) 5565<br />

[26] S. M. Durbin, G. C. Follis, Phys. Rev. B 51 (1995)<br />

10127<br />

[27] A. Krost, G. Bauer, J. Woitok, Optical Characterization<br />

of Epitaxial Semiconductor Layers,<br />

G. Bauer, W. Richter, eds. (Springer, <strong>Berlin</strong>, 1996),<br />

pp. 287–391.<br />

[28] C. Colvard, et al., Phys. Rev. B 31 (1985) 2080<br />

[29] A. Bartels, T. Dekorsy, H. Kurz, K. Köhler, Phys.<br />

Rev. Lett. 82 (1999) 1044<br />

Fig. 13:<br />

Simulation of the phonon<br />

dynamics using a linear<br />

chain model.<br />

(A) Schematic of SL.<br />

(B) Impulsively excited<br />

spatial electron-hole<br />

density (initial condition).<br />

(C) Contour plot of the<br />

transient strain in the SL<br />

as a function of time and z.<br />

(D) Transient amplitudes a<br />

of the central atoms in the<br />

wells (green and blue)<br />

and the interface atoms<br />

(black and red), colorcoded<br />

in (A).<br />

17


Probing the Photostability of DNA<br />

E. Samoylova, H. Lippert, V.R. Smith, I.V. Hertel, H.-H. Ritze, W. Radloff, T. Schultz<br />

Introduction<br />

The surface of the earth is constantly<br />

irradiated by sunlight and the resulting photochemistry,<br />

with photosynthesis in particular, is<br />

paramount for the existence of life. A single<br />

photon of the ultraviolet (


20<br />

Fig. 4:<br />

Ab initio potential<br />

energies of the electronic<br />

ground state (S 0 ), the<br />

locally excited ( 1 ππ*(LE))<br />

and charge-transfer<br />

excited ( 1 ππ*(CT)) states<br />

of the 2-aminopyridine<br />

dimer as a function of<br />

the transfer coordinate<br />

of a single proton.<br />

Insets A and B denote<br />

the equilibrium structures<br />

of the ground state and<br />

the 1 ππ*(CT) state.<br />

Fig. 3:<br />

(Left) Time dependent<br />

ion signals for<br />

(2-aminopyridine) n<br />

clusters with n=1..4.<br />

(Right) Cluster structures<br />

optimized by PM3-semiempirical<br />

calculation.<br />

Note the near-planar<br />

dimer structures in B and<br />

C, correlated with a fast<br />

τ 2 signal decay. Signals<br />

marked with (∗) were<br />

fragmentation artifacts<br />

(see text).<br />

We employed laser systems supplied by<br />

the Femtosecond Application Laboratories of<br />

the <strong>Max</strong> <strong>Born</strong> <strong>Institut</strong>e. They included a tunable<br />

Ti:Sapphire oscillator, regeneratively amplified<br />

to millijoule levels at 1 kHz (Spectra Physics<br />

TSUNAMI and SPITFIRE or Clark MXR). For<br />

the excitation pulses, part of the beam was<br />

sent through an optical parametric amplifier<br />

(Light Conversion TOPAS, model 4/800/f) and<br />

subsequently frequency mixed and frequency<br />

doubled to give µJ of tunable light in the<br />

ultraviolet. Alternatively, we used the third<br />

harmonic radiation close to 266 nm. For the<br />

ionization pulses, up to 160 µJ of the 800 nm<br />

beam was used directly or frequency doubled<br />

or quadrupled to give µJ pulses of 400 nm or<br />

200 nm light. The beams were further attenuated<br />

with neutral density filters and focussed to spot<br />

sizes of 100-200 µm. In all cases, the fluence of<br />

the pump and probe pulses was kept sufficiently<br />

low to avoid multi-photon excitation or strong<br />

field effects in the ionization step. The temporal<br />

width of the laser pulses was determined within<br />

the spectrometer using calibration compounds<br />

and was in the range of 130 - 150 fs.<br />

To obtain time-dependent ion signals, a<br />

delay line with sub-micrometer resolution was<br />

used to scan the time delay between the<br />

excitation and ionization pulses. The observed<br />

signals are directly proportional to the excitedstate<br />

populations, i.e. the measured decay of<br />

an ion signal as a function of time delay is a<br />

direct measure of the corresponding excitedstate<br />

population decay. Typically 8 or more<br />

scans with alternating scan direction were<br />

averaged to avoid systematic errors from longterm<br />

instabilities of the laser system or the<br />

cluster source.<br />

Results<br />

Base pair model: 2-aminopyridine dimer<br />

Recent ab initio calculations for excited<br />

states in the guanine-cytosine base pair<br />

suggest an H-atom transfer reaction involving<br />

amino groups as proton donors and ring<br />

nitrogens as proton acceptors [5]. Near the Htransfer<br />

minimum, a conical intersection with<br />

the electronic ground state leads to rapid<br />

internal conversion. The experimental<br />

investigation of the excited states in the<br />

guanine-cytosine Watson-Crick base pair is<br />

complicated by the existence of several<br />

tautomeric forms [6]. In this case, a simplified<br />

mimetic model can allow the investigation of<br />

the basic photochemical reaction mechanisms:<br />

2-aminopyridine (2AP) dimer offers the<br />

relevant hydrogen bonds and reaction pathways<br />

[7], but otherwise lacks the complexity of<br />

the pyrimidine and purine bases.<br />

We found an excited-state lifetime of<br />

τ 2 = 65 ps for 2-aminopyridine dimer (Fig. 3B),<br />

orders of magnitude shorter then the corresponding<br />

lifetime τ 1 = 1.5 ns in the monomer<br />

(Fig. 3A) or larger clusters (Figs. 3C,D). The<br />

short-lived contribution in the monomer, as<br />

well as the long-lived signal in the dimer were<br />

due to cluster fragmentation and vanished<br />

when narrow cluster distributions were investigated.<br />

The dynamics in the trimer, however,<br />

show a real bi-exponential decay with τ 1 and<br />

τ 2 , indicating the presence of two distinct<br />

populations. The dramatic change of excitedstate<br />

lifetime as a function of cluster size<br />

must be due to a change in the relaxation<br />

mechanism. In the 2-aminopyridine dimer, the<br />

mechanism was the theoretically predicted [7]<br />

excited-state electron-proton transfer (Fig. 4).<br />

It is readily apparent that this relaxation<br />

pathway is not available to the monomer, which<br />

is lacking the partner for electron and proton<br />

transfer. It is far less obvious why this relaxation<br />

mechanism is inactive in larger clusters. To<br />

understand this observation, we performed


structure simulations for cluster sizes n=1-4<br />

using the so called “Parametric Method 3 (PM3)”<br />

(Fig. 3, right). With low computational cost, the<br />

results of this method were in good agreement<br />

with high-level ab initio calculations available<br />

for the monomer and dimer [7]. The nearplanar,<br />

doubly hydrogen-bonded structure<br />

characteristic for the dimer is only one of<br />

several stable structures for the 2AP trimer and<br />

completely absent in the 2AP tetramer (Figs.<br />

3 C, D). This structure thus seems to be<br />

essential for the fast excited-state decay in<br />

dimer and trimer.<br />

The mechanism depicted in Fig. 4 may be<br />

of general relevance in multiply H-bonded<br />

chromophores, specifically DNA base pairs.<br />

Ab initio calculations for the Watson-Crick form<br />

of the guanine-cytosine base pair predicted<br />

similar vertical excitation energy for the π-π*<br />

charge-transfer (CT) state and the π-π* locallyexcited<br />

(LE) state [5]. This property may lead<br />

to an even faster excited-state decay than<br />

observed for the 2AP dimer. Recent<br />

experiments have indeed revealed an<br />

extremely broad UV absorption spectrum for<br />

the Watson-Crick guanine-cytosine base pair,<br />

indicating a sub-100 fs excited-state lifetime<br />

[8]. For other, non-Watson-Crick isomers, sharp<br />

spectra corresponding to long excited-state<br />

lifetimes were observed. The observed fast<br />

relaxation pathway is thus strongly dependent<br />

on the molecular structure of the clusters,<br />

similar to our observations for 2AP clusters.<br />

Adenine clusters<br />

For the dominant 9H-tautomer of adenine,<br />

spectra were recorded near the reported origin<br />

of the n-π* and the π-π* state at 35497 cm -1<br />

and 36105 cm -1 [9, 10]. Excitation energies<br />

> 1200 cm -1 above the origin led to diffuse<br />

spectral structures, caused by ultrashort lifetimes<br />

of the corresponding excited states.<br />

In time-resolved experiments, Lührs and<br />

coworkers observed an excited-state lifetime<br />

of 9 ps after excitation of adenine with picosecond<br />

laser pulses at 277 nm [11], within the<br />

region of sharp absorption bands. Using<br />

femtosecond pulses at 267 nm, the region of<br />

diffuse bands, Kang and coworkers found a<br />

lifetime of 1 ps for adenine, assigned as the<br />

lifetime of the n-π* state [9] and 6.4 ps for<br />

thymine [12]. Ullrich and coworkers provided<br />

a detailed analysis of the time-resolved photoelectron<br />

spectra of adenine excited at 250 or<br />

266 nm and demonstrated that the picosecond<br />

signal decay was preceded by a much shorter<br />

contribution of


22<br />

Fig. 7:<br />

Three most stable<br />

structures for<br />

adenine 1 (H 2 O) 1 . The<br />

water is bound in vicinity<br />

of the azine (A) or amino<br />

(B,C) groups.<br />

Fig. 8:<br />

Location of the σ* orbitals<br />

for the isomer, given in<br />

Fig. 7B. (A) The diffuse<br />

orbital is found near the<br />

azine group, or (B) is<br />

localized near the water<br />

moiety.<br />

Fig. 9:<br />

Time-dependent ion<br />

signals for thymine and<br />

thymine dimer. Lifetimes<br />

and signal ratios of τ 1<br />

and τ 2 components are<br />

not affected by<br />

clustering.<br />

We investigated relaxation pathways in the<br />

clusters involving π-σ* states by ab initio<br />

calculations. Two π-σ* states exist, with the σ*<br />

orbital located either at the azine (ring NH) or<br />

the amino (NH 2 ) group. According to our<br />

calculations the π-σ* state of adenine monomer<br />

lies about 0.45 eV above the π-π* state. Hence,<br />

the coupling of the two states opens only a<br />

weak channel and relaxation is dominated by<br />

π-π* → n-π* internal conversion. The existence<br />

of a minor π-σ* channel has been confirmed,<br />

however, by H-atom detection with nanosecond<br />

spectroscopy [15, 16].<br />

The three most stable structures for adeninewater<br />

according to calculations [17] are characterized<br />

by two hydrogen bonds: One between<br />

the water hydrogen and an adenine ring<br />

nitrogen and the other between oxygen and<br />

hydrogen of the azine (Fig. 7A) or amino (Figs.<br />

7B,C) group. Due to its large dipole moment,<br />

the π-σ* state should be strongly stabilized by<br />

microsolvation in all isomers. We calculated<br />

the down-shift of the π-σ* adiabatic excitation<br />

energies with respect to bare adenine (for<br />

details, see [RLS05]). We found stabilization<br />

energies of 0.14-0.21 eV for the two π-σ* states<br />

in all isomers Fig. 7A-C. The π-π* to π-σ*<br />

coupling can be expected to increase<br />

correspondingly and dominate in competition<br />

with the π-π* to n-π* coupling, offering a more<br />

efficient relaxation pathway. In comparison, the<br />

reduction of the π-σ* state energy in two<br />

isomers of adenine dimer was smaller, but still<br />

significant (0.11...0.14 eV). This explains the<br />

strongly reduced n-π* population in adenine<br />

dimer (Fig. 5) and the complete absence<br />

thereof in adenine-water clusters (Fig. 6). It may<br />

be somewhat surprising that both π-σ* states<br />

are stabilized by about the same order of<br />

magnitude in all adenine-water isomers. The<br />

dipole field of the more remote water appears<br />

to be sufficient to drastically affect the π-σ*<br />

energetics. Furthermore, the calculations show<br />

that in some cases a hydrogen bond between<br />

water and adenine is broken. Fig. 8 shows the<br />

two π-σ* states for one isomer: The remote<br />

water still possesses two hydrogen bonds in<br />

the π-σ* excited-state (Fig. 8A). When the σ*<br />

electron is near the water, the hydrogen bond<br />

between nitrogen of the adenine ring system<br />

and hydrogen of the water constituent is broken<br />

(Fig. 8B).<br />

In microsolvated clusters of adenine dimer,<br />

we found an additional long-lived signal with<br />

a nanosecond lifetime which was not present<br />

in adenine dimer. This unexpected change in<br />

relaxation dynamics might be related to a<br />

change in the cluster structure: An exhaustive<br />

molecular dynamics study [18] predicted a<br />

transition from planar H-bound to stacked<br />

structures upon solvation of adenine dimer by<br />

two or more water molecules. A detailed<br />

investigation of the underlying processes is<br />

still lacking, but we expect that this process<br />

can be explained by a shift of the relative<br />

excited-state energies as investigated in detail<br />

for the π-σ* state above. Identical observations<br />

were made in the liquid phase: Here, subpicosecond<br />

excited-state lifetimes were found<br />

for isolated adenine, but a nanosecond lifetime<br />

was found for stacked adenine in singlestranded<br />

DNA [1]. Thus we hope that our microsolvated<br />

model systems faithfully reproduce<br />

the biologically relevant processes in solution.<br />

Thymine clusters<br />

The excited states in thymine resemble<br />

those of adenine. Ab initio calculations predict<br />

an n-π* state lower in energy than the bright ππ*<br />

state. The absence of sharp bands in supersonic<br />

jet experiments was correspondingly<br />

assigned to a fast π-π* to n-π* transition [1]. Our<br />

time-resolved ion spectra revealed two signal<br />

components with lifetimes of approx. 100 fs<br />

and 6.5 ps, which we assigned to the π-π* and<br />

n-π* states respectively (Fig. 9). Longer scans<br />

revealed an additional long-lived component,<br />

which may be due to triplet states. Contrary to<br />

our results for adenine, neither lifetime nor<br />

signal amplitudes were affected by the<br />

clustering in thymine dimer (Fig. 9B) or larger<br />

clusters. An explanation may be found in the<br />

relative energies of the π-σ* states which<br />

affected the relaxation in adenine clusters. Our<br />

ab initio calculations predicted an energy gap<br />

of 1.0 eV between the n-π* and π-σ* states in<br />

thymine, compared to the much smaller energy<br />

gap of 0.6 eV in adenine. The stabilization of<br />

the π-σ* state in thymine, even if similar in<br />

magnitude to that in adenine, may thus not be<br />

sufficient to overcome the large energy gap.<br />

Hence the π-σ* state fails to offer a competing<br />

relaxation channel, even if energetically<br />

stabilized in the dimer or larger clusters.


The adenine-thymine base pair showed<br />

similar excited-state dynamics to those of<br />

adenine and thymine (Fig. 10). We interpreted<br />

this as evidence for a fairly unperturbed<br />

relaxation of the two chromophores in the<br />

adenine-thymine base pair, proceeding via the<br />

π-π*, n-π* and π-σ* states as observed for the<br />

monomers and homo-dimers. With respect to<br />

the different isomers observed spectroscopically<br />

[19] and predicted theoretically [20] for<br />

the dimers in the molecular beam, we have to<br />

state that our experiments did not allow an<br />

isomer-selective study due to the large<br />

spectral width of the femtosecond laser pulses.<br />

Instead, our time-dependent signals represent<br />

the sum of contributions from all isomers. While<br />

the lack of isomer discrimination is regrettable,<br />

the integral detection of all isomers does have<br />

advantages when compared with the difficulty<br />

to observe short-lived states in spectroscopic<br />

studies with nanosecond pulses.<br />

Conclusions and outlook<br />

To summarize, we used a combination of<br />

time-resolved spectroscopy and computational<br />

methods to obtain a detailed picture of excitedstate<br />

processes in DNA bases and base-pairs.<br />

In 2-aminopyridine dimer, we found an excitedstate<br />

deactivation mechanism specific to<br />

hydrogen-bonded aromatic dimers. Similar<br />

mechanisms might occur in the guaninecytosine<br />

Watson-Crick base pair and thus<br />

increase the photostability of the genetic code.<br />

In adenine and thymine clusters, only four<br />

excited states of π-π*, n-π* and π-σ* character<br />

seemed to be relevant in shaping the excitedstate<br />

properties. Similarities of the excited-state<br />

decay parameters in the isolated bases and<br />

the base pairs suggest an intra-monomer<br />

relaxation mechanism in the base pairs.<br />

Microsolvation of adenine drastically<br />

changed the propensity of the relaxation<br />

channels, but was still well described within<br />

our model. The solvent molecules stabilized<br />

the highly polar π-σ* states and the resulting<br />

coupling of the bright π-π* state to the<br />

dissociative π-σ* states provided an efficient<br />

drain for the excited-state population. In all<br />

investigated species, changes in the cluster<br />

structures had a large effect on the observed<br />

excited-state properties. The combination of<br />

pump-probe spectroscopy with isomer selection<br />

methods, e.g. spectral hole-burning, is needed<br />

to investigate such effects in more detail. We<br />

currently assemble this novel type of experiment<br />

by combining a nanosecond hole burning<br />

laser with our established femtosecond pumpprobe<br />

spectroscopy (Fig. 11).<br />

For the biologically relevant liquid phase,<br />

a detailed understanding of excited-state<br />

processes is difficult to achieve because highlevel<br />

theoretical methods are not available.<br />

As demonstrated here, gas phase experiments<br />

combined with theory can supply such a<br />

detailed understanding but the relevance of<br />

such results to real biological systems is often<br />

disputed. In adenine clusters, we found<br />

astonishing similarities between observations<br />

made in microsolvated clusters and<br />

observations in the liquid phase. It appears<br />

that structure might play the dominant role in<br />

determining excited-state properties and that<br />

the solvation effects are well reproduced in<br />

rather small clusters. Isomer specific studies<br />

may thus be a next step to provide a bridge<br />

between the detailed understanding available<br />

in the gas phase and the complex observations<br />

made in the biologically relevant liquid phase.<br />

Fig. 10:<br />

Time-dependent ion<br />

signals for adenine,<br />

thymine and the adeninethymine<br />

base pair. The<br />

excited state relaxation<br />

dynamics of the base<br />

pair resemble those of<br />

the monomers.<br />

Fig. 11:<br />

Experimental setup for<br />

isomer-selective cluster<br />

studies. A synchronized<br />

nanosecond laser<br />

selects a cluster species<br />

by spectral hole burning.<br />

Subsequent femtosecond<br />

pump-probe<br />

spectroscopy reveals<br />

the corresponding<br />

dynamics.<br />

23


24<br />

References<br />

[1] C.E. Crespo-Hernandez, B. Cohen, P.M. Hare,<br />

and B. Kohler, Chem. Rev. 104 (<strong>2004</strong>) 1977<br />

[2] N. Ismail, L. Blancafort, M. Olivucci, B. Kohler,<br />

M.A. Robb, J. Am. Chem. Soc. 124 (2002) 6818<br />

[3] A.L. Sobolewski, W. Domcke, C. Dedonder-<br />

Lardeux, C. Jouvet, Phys. Chem. Chem. Phys. 4<br />

(2002) 1093<br />

[4] M. Merchan and L. Serrano-Andres, J. Am. Chem.<br />

Soc. 125 (2003) 8108<br />

[5] A.L. Sobolewski, W. Domcke, Phys. Chem. Chem.<br />

Phys. 6 (<strong>2004</strong>) 2763<br />

[6] E. Nir, C. Janzen, P. Imhof, K. Kleinermanns, M.S.<br />

de Vries, Phys. Chem. Chem. Phys. 4 (2002) 732<br />

[7] A.L. Sobolewski, W. Domcke, Chem. Phys. 294<br />

(2003) 73<br />

[8] M.S. deVries, private communication.<br />

[9] N.J. Kim, G. Jeong, Y.S. Kim, J. Sung, S.K. Kim, J.<br />

Chem. Phys. 113 (2000) 10051<br />

[10] E. Nir, C. Plützer, K. Kleinermanns, M. de Vries,<br />

Eur. Phys. J. D 20 (2002) 317<br />

[11] D.C. Lührs, J. Viallon, and I. Fischer, Phys. Chem.<br />

Chem. Phys. 3 (2001) 1827<br />

[12] H. Kang, K.T. Lee, B. Jung, Y.J. Ko, and S.K.<br />

Kim, J. Am. Chem. Soc. 124 (2002) 12958<br />

[13] A.L. Sobolewski and W. Domcke, Eur. Phys. J.<br />

D 20 (2002) 369<br />

[14] H. Kang, K.T. Lee, S.K. Kim, Chem. Phys. Lett.<br />

359 (2002) 213<br />

[15] I. Hünig, C. Plützer, K.A. Seefeld, D. Löwenich,<br />

M. Nispel, and K. Kleinermanns, Chem. Phys. Chem.<br />

5 (<strong>2004</strong>) 1427<br />

[16] M. Zierhut, W. Roth, and I. Fischer, Phys. Chem.<br />

Chem. Phys. 6 (<strong>2004</strong>) 5178<br />

[17] M. Hanus, M. Kabelac, J. Rejnek, F. Ryjacek,<br />

and P. Hobza, J. Phys. Chem. B 108 (<strong>2004</strong>) 2087<br />

[18] M. Kabelac, P. Hobza, Chem. Eur. J. 7 (2001)<br />

2067<br />

[19] C. Plützer, I. Hünig, K. Kleinermanns, Phys. Chem.<br />

Chem. Phys. 5 (2003) 1158<br />

[20] M. Kabelac, P. Hobza, J. Phys. Chem. B 105<br />

(2003) 5804<br />

[SRS99] V. Stert, W. Radloff, C.P. Schulz, I.V. Hertel,<br />

Eur. Phys. J. D 5 (1999) 97<br />

[SSR04] T. Schultz, E. Samoylova, W. Radloff, I.V.<br />

Hertel, A.L. Sobolewski, W. Domcke, Science 306<br />

(<strong>2004</strong>) 1765<br />

[SLU05] E. Samoylova, H. Lippert, S. Ullrich, I.V.<br />

Hertel, W. Radloff and T. Schultz, J. Am. Chem.<br />

Soc. 127 (2005) 1782<br />

[RLS05] H.-H.Ritze, H.Lippert, E. Samoylova, V.R.<br />

Smith, I.V. Hertel, W. Radloff, T.Schultz, submitted<br />

to J. Chem. Phys.<br />

[USZ04] S. Ullrich, T. Schultz, M.Z. Zgierski, and A.<br />

Stolow, J. Am. Chem. Soc. 126 (<strong>2004</strong>) 2262


Ion Acceleration with Ultrafast Lasers –<br />

a Gateway to Explore Phenomena in Relativistic Plasma Dynamics<br />

M. Schnürer, S. Ter-Avetisyan, S. Busch, G. Priebe, M. P. Kalachnikov, E. Risse, J. Tümmler, K. Janulewicz,<br />

P. V. Nickles, W. Sandner<br />

Introduction<br />

With the availability of high-power CPA-<br />

(chirped pulse amplification) lasers [1] and<br />

their present parameters new perspectives of<br />

efficient laser driven particle acceleration have<br />

been opened in recent years. Fast moving ions<br />

with kinetic energies approaching several<br />

tens of MeV [2] have been observed. They are<br />

carrying a significant part of the incident laser<br />

energy. This striking feature has actuated<br />

already a broad variety of studies concerning<br />

the underlying physical processes and possible<br />

applications. In Germany a DFG-supported<br />

network (TRANSREGIO SFB) on “Relativistic<br />

plasma dynamics” has recently been initiated<br />

which has ion acceleration as one of its main<br />

topics.<br />

If intense femtosecond laser pulses irradiate<br />

matter an energetic electron population is<br />

created which immediately builds up an<br />

acceleration field for the ions. The electric field<br />

is produced by charge separation as the<br />

electrons acquire energies of up to several<br />

MeV and are being pushed out of the laser<br />

focus by ponderomotive forces. A special case<br />

is the so called “Target Normal Sheath<br />

Acceleration” (TNSA)-[3], where the expulsion<br />

of electrons is highly directional and perpendicular<br />

to the back surface of a thin target.<br />

These mechanisms are assumed to play the<br />

key role in ion acceleration. In effect, ions are<br />

abruptly accelerated from a thin plasma-layer<br />

which feels the enormous electric field from<br />

the separated energetic electron population.<br />

At a typically produced field strength of<br />

1 MV/µm [4] a proton at rest needs about 470 fs<br />

to be accelerated to an energy of 10 MeV. The<br />

laser pulse duration can be considerably<br />

shorter because the lifetime of the accelerating<br />

field is determined by electron dynamics in<br />

the plasma and can thus exceed the laser<br />

pulse duration. Recent experiments [5] and<br />

simulations [6] have shown the enormous<br />

potential of laser pulses with a high temporal<br />

contrast for laser driven ion acceleration.<br />

Especially the use of laser produced proton<br />

beams is a fast developing field. Protons passing<br />

a plasma with sufficient energy will be deflected<br />

by the strong electric and magnetic fields.<br />

Thus, a field reconstruction is possible from<br />

the proton image, and processes causing<br />

these fields can be investigated. This is one of<br />

our major objectives within the collaboration<br />

of the national TRANSREGIO TR18 project,<br />

funded by the DFG. Together with partner<br />

groups from universities in Düsseldorf (Prof.<br />

O. Willi, Prof. G. Pretzler), München (Prof. D. Habs,<br />

Dr. U. Schramm, Prof. F. Krausz) and Jena (Prof.<br />

R. Sauerbrey) we will use the proton beams to<br />

both study the physics of their origin and<br />

dynamical processes in relativistic plasmas<br />

through proton imaging. The relevant projects<br />

are A5, “Ion acceleration from laser irradiated<br />

thin foils”, co-ordinated by MBI, and A6, “Quantitative<br />

measurement of electric and magnetic<br />

fields using proton imaging”, coordinated by<br />

University of Düsseldorf.<br />

We report on the first results from these<br />

projects, investigating the dependence of fast<br />

ion formation as a function of laser parameters.<br />

We create the ion beams with quite different<br />

laser parameters from the two MBI multi-TW<br />

laser systems. Detailed studies of ion spectra<br />

from isolated water droplet targets as well as<br />

from plane foil targets are presented. The<br />

acceleration behaviour, leading to deep<br />

modulations in the ion energy spectra [7], is<br />

discussed in the frame of a multi-electron<br />

temperature plasma. A creation of narrow band<br />

(“monoenergetic”) ion/proton spectra appears<br />

to be possible, which could provide new application<br />

options in the accelerator and proton<br />

imaging technology.<br />

MBI laser facilities for proton<br />

acceleration<br />

It is known from previous work that laser<br />

acceleration requires laser drivers near the<br />

cutting edge of the present day parameters,<br />

especially with regard to the peak intensity<br />

and contrast. Both MBI laser systems, the 10 TW<br />

glass laser and the >20 TW Ti:Sa [8] laser<br />

located in the high-field laser (HFL) laboratory,<br />

belong to a class of lasers delivering intensities<br />

at the 10 19 W/cm 2 level. They allow for interaction<br />

experiments in a broad range of parameters,<br />

such as laser pulse durations down to ~40 fs<br />

at 1J energy (Ti:Sa laser, 800nm), or down to<br />

~0.8 ps at > 5J (glass laser, 1060nm).<br />

Recent efforts to improve the contrast ratio<br />

of the Ti:Sa laser resulted in remarkably high<br />

values. This work was invoked by two European<br />

R&D projects, FIRE and SHARP, devoted to<br />

the development of ultrashort and intense<br />

lasers. As a specific result several third order<br />

correlators with a high dynamic range have<br />

been developed in different project groups<br />

(LOA, Saclay and MBI), allowing for the first<br />

25


26<br />

Fig. 1:<br />

Scan of the averaging<br />

3 order correlator<br />

depicting the intensity<br />

contrast level of the<br />

40 fs, 20 TW Ti:Sa<br />

laser. Blue: normal<br />

contrast; red: improved<br />

contrast level of up to<br />

2*10 -8 by changing the<br />

delay of pump lasers.<br />

The artifact peaks<br />

arise from reflections<br />

on optical elements of<br />

the correlator and<br />

pulses appearing in the<br />

frequency doubled<br />

beam.<br />

Fig. 2:<br />

Deuterons and oxygen<br />

ions at different<br />

ionization stage<br />

emerging from a laser<br />

irradiated 20 micron<br />

heavy water droplet<br />

Laser:<br />

pulse duration ~ 40 fs,<br />

intensity ~ 10 19 W/cm 2 .<br />

time to characterize in a unified way the contrast<br />

of the Ti:Sa lasers up to a level of 10 -10 . The<br />

Saclay correlator was used in a comparative<br />

experiment campaign throughout several<br />

European laboratories, dubbed as “the flying<br />

circus”. The results have demonstrated that the<br />

MBI Ti:Sa laser can presently be optimized to<br />

a very high contrast level of 10 -8 , which is at<br />

the forefront of present days standards.<br />

We used the possibility that the ASE-level<br />

of the pumped Ti:Sa amplifier crystals can be<br />

modified by changing the temporal delay of<br />

the pump pulse. Doing so a change of the ASEpedestal<br />

level from 10 -7 to (2-5)*10 -8 (intensity<br />

in relation to the pulse peak) was measured<br />

with a third order scanning autocorrelator with<br />

a high dynamic range of 10 10 [9]. In Fig. 1 a<br />

record of the intensity ratio (average value from<br />

several thousand of pulses) is shown while<br />

scanning the range between 120 ps to 10 ps<br />

in front of the pulse peak. The direct effect of<br />

this high contrast on the proton acceleration<br />

is described below.<br />

Further increase of the laser intensiy<br />

requires even higher contrast levels in the Ti:Sa<br />

laser. Various methods have been explored in<br />

the context of the European SHARP project,<br />

such as the double CPA - technique [9], or the<br />

use of a cavity-dumped oscillator with higher<br />

output energy which is being prepared for<br />

implementation.<br />

One important experimental contribution<br />

of the MBI in the TRANSREGIO project is based<br />

on the possibility to synchronize the two MBI<br />

high field lasers. The synchronization with 1ps<br />

accuracy (based on experiences from the long<br />

standing MBI - DESY collaboration on photocathode<br />

and pump-probe lasers for FEL’s)<br />

allows one to carry out the proposed pump<br />

probe experiments for the ion acceleration and<br />

proton imaging studies, as well as further applications.<br />

Such synchronized, dual high-field<br />

laser setup is unique world-wide. Since it<br />

cannot operate at 10 Hz repetition rate we<br />

implemented a recent upgrade to achieve even<br />

a synchronized 100 TW single shot operation<br />

of the Ti:Sa laser, allowing one to perform<br />

plasma experiments at intensities beyond the<br />

present level of ~10 19 W/cm 2 . The output energy<br />

of the Ti:Sa pulse, pumped by a frequency<br />

doubled extra arm of our glass laser system,<br />

reaches about 6 J before the compressor, the<br />

estimated level required for a 100 TW operation.<br />

As we know from our own studies on direct<br />

intensity measurements, reliable power and<br />

intensity determination at this level will require<br />

a series of dedicated interaction measurements.<br />

Experiment<br />

The experiments have been carried out<br />

with ~40 fs laser pulses at 810 nm center<br />

wavelength from the MBI-High-Field-Ti:Salaser<br />

[8]. For the present experiments, up to<br />

800 mJ pulses in a beam of 70 mm in diameter<br />

were focused with a f/2.5 off-axis parabolic<br />

mirror. Interaction intensities of ~ 10 19 W/cm 2<br />

have been estimated from the energy content<br />

in a focal area with a diameter of ~ 6 µm. A<br />

commercially available capillary nozzle (Micro<br />

Jet Components, Sweden) is used as one<br />

target source. With the nozzle liquid water or<br />

heavy water is injected into the vacuum chamber.<br />

The water jet decomposes after a few millimeter<br />

of propagation into a train of droplets<br />

which have been well characterized [10]. The<br />

average droplet diameter is about 20 µm.<br />

Additionally, in comparative experiments also<br />

plane foils of mylar and aluminium with a thickness<br />

of 10 µm or 20 µm have been exposed to<br />

both the Ti:Sa laser and the glass laser radiation.<br />

For our studies up to four identical spectrometers<br />

with nuclear track detectors (CR 39 -<br />

plates), looking under different angles to the<br />

target, have been used for ion detection. For more<br />

detailed investigations two identical Thomson<br />

parabola spectrometer coupled with microchannel-plates<br />

(MCP) registered the ion emission<br />

at observation angles of 0° (laser propagation<br />

direction), and 135°. The spectrometer entrance<br />

pinholes with a diameter of 200 µm are placed<br />

at a distance of 35 cm from the source.


Conversion of laser energy to ion<br />

kinetic energy<br />

Fig. 2 gives an example of an ion spectrum<br />

obtained from an irradiated heavy water droplet.<br />

Ion numbers have been calculated with the<br />

single particle response factor of the MCP-<br />

CCD (charge-coupled-device) detection,<br />

assuming an quasi-isotropic ion emission from<br />

the droplet. Actually, this assumption is only<br />

justified within a factor of 2-3 given by previous<br />

observations: Simultaneous registration of the<br />

ion emission with four Thomson spectrometer<br />

and covering an observation angle of 135<br />

degrees gave a signal variation of no more<br />

than a factor of 2 to 3 [11].<br />

From the emission depicted in Fig. 2 an<br />

efficiency up to 9% from laser energy to proton<br />

kinetic energy within 120 keV and 1 MeV and<br />

of about 3% from laser energy to all oxygen<br />

ions with energies between 40 keV and<br />

800 keV could be deduced.<br />

As a result we conclude that the present<br />

values are well above the 1% conversion rates<br />

which have been obtained with laser pulses<br />

being an order of magnitude longer (several<br />

100 fs up to 1 ps), but more energetic (10 J–<br />

50 J). The comparison is made in an energy<br />

interval between the maximum (i.e. cutoff)<br />

energy down to about 10% of the cutoff energy.<br />

Furthermore, the integral ion emission has been<br />

validated in experiments studying D(d,n) fusion<br />

reactions in heavy water droplets [12]. The<br />

average over several 10 4 shots gave a conversion<br />

of about 2% of the incident laser energy<br />

into deuteron kinetic energy above 20 keV.<br />

Strong modulations in proton and<br />

deuteron emission spectra<br />

Fig. 3 visualizes a proton spectrum from a<br />

20 micron H 2 O-droplet in a logarithmic - linear<br />

plot. Clearly two branches of the spectrum are<br />

visible which one can assign to proton -<br />

temperature parameters (170 ± 20) keV and<br />

(630 ± 20) keV, respectively, if an exponential<br />

fit of each branch is done. A weighted average<br />

of the two branches would yield a value of<br />

about 370 keV.<br />

Both populations are separated by a “dip”<br />

in the spectrum at about 450 keV, which is<br />

reproducible and more pronounced in the data<br />

shown below. The occurrence of such<br />

pronounced dips appears to be new, and it is<br />

a significant feature under our conditions. It is<br />

possible to explain the dominant feature of<br />

the energy distribution of the emitted protons<br />

(deuterons) on basis of an isothermic expansion<br />

model [13,14], which appears, on first sight,<br />

somewhat surprising for the case of ultrashort<br />

pulses creating the plasma.<br />

Based on our own calculations it appears<br />

plausible that the dip in the velocity distribution<br />

corresponds to an internal electrostatic sheath<br />

appearing due to hot- and cold-electron isothermal<br />

expansion, where ions are strongly<br />

accelerated in a small region. This dip develops<br />

in a region of self–similar flow where the ions<br />

experience rapid acceleration due to an abrupt<br />

increase in the electric field. This increase<br />

occurs at the location in the expanding plasma<br />

where most of the cold electrons are reflected,<br />

corresponding to a step in the ion charge<br />

density. The depth of the dip as a function of<br />

the peak field is a sensitive function of the hotto-cold<br />

electron temperature ratio T h /T c in the<br />

ion spectra, while the position in the spectrum<br />

depends on the hot-to-cold electron density<br />

ratio n h /n c .<br />

In the experiments typical ion spectra could<br />

be recorded from heavy water droplets as<br />

shown in camera pictures taken with a single<br />

laser shot (see Fig. 4). The deuteron spectrum<br />

deduced from this digital CCD-image is shown<br />

in the inset. The dips in proton as well as in<br />

deuteron spectra emitted from water droplets<br />

vary somewhat in their position and modulation<br />

depth, which we tentatively ascribe to fluctuations<br />

Fig. 3:<br />

Proton emission from a<br />

20 micron H 2 O-droplet<br />

exposed with a single<br />

laser pulse. Proton<br />

emission at 135°.<br />

Fig. 4:<br />

CCD-image of<br />

registered ion emission<br />

emerging from an heavy<br />

water droplet irradiated<br />

at 10 19 W/cm 2 .<br />

Insert: evaluated<br />

spectrum from the<br />

deuteron trace.<br />

27


28<br />

Fig. 5:<br />

Single shot proton<br />

spectrum with a<br />

remarkable dip and<br />

model calculation<br />

with a two electron<br />

temperature plasma<br />

expansion model<br />

reproducing the<br />

observed feature.<br />

Fig. 6:<br />

Snapshots of ion spectra<br />

at different delay times of<br />

the applied electric field at<br />

the plates and the laser<br />

pulse. The abszissa shows<br />

the ratio of the charge to<br />

momentum (Z/mv) for the<br />

particles (note the (Z/mv)<br />

is decreasing from right<br />

to left); the ordinate gives<br />

the ratio of charge to<br />

energy (Z/mv exp2) of<br />

the particles.<br />

a) At first the deuterons<br />

appear and they reproduce<br />

the electric field<br />

transient like a oscillographic<br />

picture.<br />

b) Last low energetic<br />

deuterons are visible on<br />

the left and the first oxygen<br />

ions appear.<br />

c) Only oxygen ions from<br />

O 1+ -O 6+ are visible at later<br />

times. The thin black line<br />

is a model calculation incorporating<br />

delay times,<br />

geometry and the instantaneous<br />

birth of all ions.<br />

in laser parameters as e.g. the beam pointing<br />

on the droplet or the pulse shape itself. We<br />

observed, however, dips throughout the whole<br />

range of proton energies registered with our<br />

spectrometer.<br />

Fig. 5 compares an experimental proton<br />

energy distribution from a single laser shot<br />

with calculations based on the free expansion<br />

theory of Wickens et al. [13]. A reasonable fit<br />

for the depth and position of the dip in the proton<br />

spectrum is obtained when the hot-to-cold<br />

electron temperature ratio T h /T c is assumed to<br />

be about 9.8, and the hot-to-cold electron<br />

density ratio n h /n c is about 1/100. Individual<br />

electron temperatures (fitted values) of T c =<br />

7.5 keV and T h = 74 keV compare quite well to<br />

the range of temperatures derived from the Xray<br />

emission, which turned out to lie between<br />

T c = 5...10 keV and T h = 20...100 keV, respectively.<br />

Still, we note that in other recent theoretical<br />

studies multispecies plasma effects and the<br />

influence of electron cooling are discussed as<br />

alternative explanation [15].<br />

In conclusion, our experimental result<br />

shows that laser pulses which are shorter than<br />

the anticipated acceleration time of ions can<br />

establish an efficient acceleration. Most importantly,<br />

the existing theoretical interpretations<br />

suggest that there are some ways to allow for<br />

a controlled shaping of the energy distribution<br />

of the emitted ions, either through the ability to<br />

control the components of the electron density<br />

and temperature of the plasma or, alternatively,<br />

through multi-species effects.<br />

Time resolved measurement of ion<br />

emission from a droplet<br />

Time-resolved measurements are required<br />

to learn more about the acceleration dynamics<br />

in the plasma, e.g. which ions are accelerated<br />

first, and what in turn is their influence on the<br />

acceleration of the other ion species.<br />

In order to investigate the emitted highenergy<br />

ions temporally resolved in dependence<br />

on both their charge states and energies<br />

we have developed new diagnostics consisting<br />

of a modified Thomson-parabola spectrometer<br />

[16]. For that purpose, a pulsed electric field<br />

was applied to the deflecting plates in the<br />

Thomson spectrometer. As a result the<br />

trajectories did not only reveal the energies of<br />

the particles due to their deflection in the<br />

magnetic field but also its temporal evolution<br />

according to the applied electric pulse shape,<br />

much like in a streak camera. The time delay<br />

between the plasma creation and the<br />

applied electric field should be the sum of the<br />

acceleration time in the plasma sheath and<br />

the time of flight (TOF) of the ions to the<br />

spectrometer. The latter can be calculated from<br />

the ion energies measured in the spectrometer<br />

because the geometry of the experiment<br />

is known. The temporal relation between the<br />

applied electric pulse shape and the delay, as<br />

well as the measured modulation of the ion<br />

spectrum and the measured time-of-flight will<br />

characterize the temporal evolution of the ion<br />

acceleration. A time resolved measurement<br />

using only a MCP is not possible because the<br />

fluorescence response of the phosphor screen<br />

used for the imaging has a too low temporal<br />

resolution.<br />

At present we achieved a temporal resolution<br />

of about (400 - 500) ps. Concerning the<br />

acceleration process it is interesting to know if<br />

the ions are produced with a very broad instantaneous<br />

energy (velocity) spread during a very<br />

short time period or if the produced ion energy<br />

is a function of time and the instantaneous<br />

energy (velocity) spread is relatively small.<br />

From our results we can conclude that all<br />

ions were “born” instantaneously within the<br />

experimental resolution limit and have been<br />

accelerated simultaneously by the same<br />

electric field. With the assumption that all ions<br />

are emitted instantaneously the measured<br />

spectra could be simulated quite well. In Fig. 6<br />

snapshots of the ions at three different time<br />

delays are depicted and compared with<br />

simulated spectra.


The calculation is in good agreement with<br />

the experimental result and clearly reproduces<br />

the shape of the measured ion spectra. Hence,<br />

the temporal scenario of the ion emission<br />

under our experimental conditions [7] is such<br />

that the deuterons and oxygen ions are<br />

accelerated simultaneously and travel on the<br />

way to the spectrometer with a characteristic<br />

velocity difference which results in different<br />

arrival times at the detector.<br />

Ion acceleration as a function of<br />

laser pulse parameters<br />

In order to optimize the ion emission the<br />

interplay between the target properties and<br />

the available laser parameters has to be<br />

studied. A first important characteristic is the<br />

scaling of the ion signals with laser intensity.<br />

The laser intensity was varied by changing<br />

both 1) the laser energy with an attenuator<br />

using the angular transmission dependence of<br />

polarizers in the system or 2) the laser pulse<br />

duration due to varying the grating separation in<br />

the pulse compressor. We observed a proportional<br />

increase of the high energy cutoff in the<br />

proton spectra with the square root of the laser<br />

intensity up to intensity values of 5x10 18 W/cm 2 .<br />

Similar behaviour has been reported in other<br />

experiments [17]. At higher intensities, however,<br />

the maximum observed proton energies<br />

stagnated or even they showed declining values.<br />

We assume that our observed break-up of<br />

cutoff ion-energies at our highest intensities<br />

is connected with the temporal contrast of the<br />

laser pulse. Measurements with a third order<br />

correlator [16] have quantified an ASE-pedestal<br />

of the pulse at a ~ ns time duration with an<br />

intensity between 10 -7 to 10 -8 of the peak<br />

intensity (10 18 - 10 19 W/cm 2 ) in dependence of<br />

pumping conditions of the laser amplifiers]. The<br />

resulting intensity of 10 10 - 10 12 W/cm 2 is<br />

sufficient for producing different pre-plasma<br />

conditions on the vacuum-target interface<br />

which influences the laser energy absorption,<br />

the resulting hot electron creation and the<br />

following ion acceleration. In a recent paper<br />

[17] we suggest a simple extension of Mora’s<br />

[18] ion-acceleration model in order to infer a<br />

connection between the hot electron energy<br />

and the ion cutoff-energy. Thereby ionacceleration<br />

from an already heated surface<br />

provides lower energetic ions than from a cold<br />

one. This simple model shows how the ion<br />

energy is related to the ratio of the maximum<br />

electron energy (maximum Debye-length) and<br />

a start-energy of the electrons (start Debyelength).<br />

This start parameter is dependent on<br />

pre-heating conditions. Different pre-heating<br />

of the target-surface can result from different<br />

laser pulse contrasts.<br />

Recently ion acceleration from the rearside<br />

of thin foils has been investigated in<br />

dependence on foil thickness and laser pulse<br />

contrast [19]. Here we are looking to ions,<br />

which are accelerated from a laser-irradiated<br />

front-side of the target. Pre-heating provides a<br />

more extended pre-plasma with a reduced<br />

plasma density gradient. Such a situation has<br />

been also modelled with the 1-dim LPIC++ [20]<br />

code. The calculated ion-spectrum becomes<br />

less energetic if due to a lower temporal laser<br />

pulse contrast the high intensity peak of the<br />

pulse interacts already with a more extended<br />

pre-plasma. This simple model can give some<br />

interpretation for our experimental findings<br />

concerning the ion spectra originating from<br />

the front-surface emitted in backward direction.<br />

In principle a more complex scenario has to<br />

be modeled: In a formed pre-plasma multidimensional<br />

effects as relativistic self focusing<br />

of the laser radiation can occur which in turn<br />

increase the laser intensity and thus the hot<br />

electron energies. This can lead to an increase<br />

of the acceleration fields and corresponding<br />

ion energies at the rear-side of the target. Such<br />

effects are not covered by an one-dimensional<br />

modeling. But such effects, which have been<br />

visible with plane foil targets, have not been<br />

observed with the droplet target under our<br />

irradiation conditions.<br />

In an additional experiment we have proven<br />

the dependence of the deuteron cutoff energy<br />

on the laser pulse contrast.<br />

With such a variation in the contrast ratio as<br />

seen in Fig. 7 we could observe a clear effect<br />

on the ion spectra. Two corresponding spectra<br />

recorded in backward emission direction are<br />

displayed in Fig. 7.<br />

It is clearly visible how the cutoff energy of<br />

the deuterons is shifted to higher energies if<br />

the temporal contrast ratio of the laser pulse is<br />

enhanced. Also the conversion of laser energy<br />

to ion kinetic energy is slightly enhanced if<br />

one compares the integrated spectra. In case<br />

of the laser shot with the higher contrast the<br />

incident laser energy is reduced to about 70%<br />

(that is ~ (500 - 600) mJ) because of the pump<br />

delay manipulation. Our experiments show<br />

Fig. 7:<br />

Enhanced cutoff energy<br />

of deuteron emission<br />

from 20 micron heavy<br />

water droplets when<br />

the ASE level was<br />

increased by a factor<br />

of 5 giving a high<br />

contrast of (2-5)*10 -8 .<br />

Triangles: Deuterons at<br />

lower ASE contrast;<br />

circles: Deuterons at<br />

high ASE contrast.<br />

29


30<br />

Fig. 9:<br />

Comparison of proton<br />

emission from foils<br />

irradiated with different<br />

laser systems and quiet<br />

different laser pulse<br />

parameter:<br />

Blue: (1-2)x10 19 W/cm 2<br />

produced with 40 fs<br />

pulses from a Ti:Salaser,<br />

Red: (2-4)x10 18 W/cm 2<br />

produced with 0.8 ps<br />

pulses from a<br />

Nd:Glass laser.<br />

Fig. 8:<br />

Proton emission and only<br />

weak C 4+ - ion emission<br />

registered from irradiated<br />

20 micron thick mylar<br />

foils with 40 fs laser<br />

pulses at ~ 10 19 W/cm 2 .<br />

A clear separation (dip)<br />

between the lower and<br />

the higher energetic part<br />

is also formed here.<br />

how critical the temporal pulse contrast influences<br />

the ion spectra if ultrashort laser<br />

pulses are used. On the other side it should<br />

open a possibility to manipulate the spectra,<br />

for example to produce “monoenergetic-like”<br />

proton bunches in the MeV range.<br />

Proton acceleration from<br />

contamination layers on thin flat<br />

foils<br />

It is known that energetic protons can not<br />

only be produced from water targets but also<br />

from metallic or plastic targets. That is because<br />

all surfaces are covered with a few monolayers<br />

of water hydrocarbon contaminants if<br />

no special cleaning is provided in an ultrahigh<br />

vacuum environment. This “dirty” layer is of<br />

advantage if it covers the backside of an laser<br />

irradiated thin foil because it serves as the<br />

proton source for the laser driven accelerator.<br />

The foils, either made from plastic or a metal,<br />

are between several microns up to some tens<br />

of micron thick. The intense laser irradiates<br />

the front side and the created high energy<br />

electrons are pushed through the foil, break<br />

out at the backside and led to the formation of<br />

an electric double layer or the so called<br />

acceleration sheath as described previously.<br />

In the build up electric field the ion are accelerated.<br />

Quantitative analysis of contamination<br />

layers and emerging spectra have been<br />

published recently [21].<br />

All the majority of recently published<br />

experiments is carried out with much longer<br />

laser pulses. We started investigations of the<br />

proton generation from plane mylar foils using<br />

our intensive 40 fs laser pulses from the Ti:Sa<br />

system. As a striking feature we found a<br />

strongly reduced emission from carbon ions.<br />

In some shots only a strong proton signal was<br />

visible. Carbon emerges also from the contamination<br />

layer. In Fig. 8 that difference is<br />

apparent in comparison to Fig. 1 (the radius<br />

of the water-droplet is comparable to the<br />

thickness of the plane targets of 20 µm) where<br />

the emission started from a pure water<br />

interface. Only a spurious C 4+ ion emission is<br />

visible. That is also in contrast to observed<br />

results where longer pulses have been used<br />

to irradiate foil targets.<br />

A possible interpretation for our observation<br />

is linked to the ultrashort driving pulses used.<br />

With the ultrashort laser pulse and, hence, fast<br />

rising electron pulse the acceleration field is<br />

established very rapidly. Because of the mass<br />

difference the protons are pulled immediately<br />

away from the other more heavier ions e.g.<br />

the carbon ions. This could lead to a massive<br />

shielding of the electric acceleration field for<br />

the heavier ion species, and a much lower<br />

number is ionized and accelerated. Furthermore,<br />

we observe an interesting structure of<br />

the spectrum. The lower energy part seems to<br />

be separated from the high energy one with a<br />

small dip which can be similarly interpreted<br />

with the appearance of two significant different<br />

electron temperatures.<br />

In order to study such processes proton<br />

imaging can give more insight to the<br />

acceleration scenario. Therefore we performed<br />

proton acceleration experiments with our<br />

second multi-TW laser system which delivers<br />

a ps-pulse at an energy of several J. Once<br />

more the shape of the observed spectrum we<br />

depicted in Fig. 9 is astonishing. It is a little bit<br />

smoother but it shows similar components as<br />

that one created with a 20 times shorter pulse.<br />

It becomes obvious that the interplay between<br />

different laser pulse parameters such as the<br />

duration, the intensity, the energy and the<br />

temporal pulse contrast is very complex and it<br />

is still far from a sufficient understanding.<br />

Conclusion<br />

Ion and proton acceleration is a fascinating<br />

field with a large potential of applications, but<br />

complex and still largely unexplored physics.<br />

Taking the advantage of a repetitive laser and<br />

a droplet target together with an online readout<br />

of the signals from Thomson mass-spectrometers<br />

allowed us to study in detail the<br />

dependence of the ion acceleration on laser<br />

pulse energy, temporal pulse duration and


contrast. A temporal pulse contrast of about<br />

10 -7 at 1-2 ns in front of the pulse peak – in<br />

principle a very good value – limits under our<br />

conditions the achievable cutoff energies of<br />

protons and deuterons. This is also visible in<br />

the break-up of the cutoff energies if the full<br />

laser energy is supplied to the target. An<br />

increase of cutoff energies is observed with<br />

an enhanced temporal laser pulse contrast.<br />

Proton acceleration experiments with thin foil<br />

targets using our two different TW-laser<br />

systems show a similar and pronounced two<br />

component structure of the proton spectrum.<br />

This supports our previous model calculations<br />

for proton and deuteron spectra emerging from<br />

droplet targets with significant different electron<br />

temperatures which influence strongly the<br />

shape of the ion spectra. Laser pulse contrast,<br />

shape and the target stucture are crucial parameters<br />

for a shaping of the energetic proton/<br />

ion component accelerated by ultra-intense<br />

laser pulse-driven electrical fields.<br />

Acknowledgements<br />

We acknowledge stimulating discussions<br />

on the project with A. Kemp during his onemonth<br />

visit at the MBI.<br />

The work was partly supported by the<br />

DFG-Transregio TR18.<br />

References<br />

[1] Strickland, D., and Mourou, G.; Opt. Commun.<br />

56 (1985) 219<br />

[2] Mourou, G.A., Barty, C.P.J., and Perry, M.D.;<br />

Phys. Today 51 (1998) 22<br />

[3] Hatchett, S.P. et al.; Phys. Plasmas 7 (2000) 2076<br />

[4] Hegelich, M. et al.; Phys. Rev. Lett. 89 (2002)<br />

085002<br />

[5] Mackinnon, A. J. et al.; Phys. Rev. Lett. 88 (2002)<br />

215006<br />

[6] Dong, Q. L., Sheng, Z.-M., Yu, M.Y., and Zhang,<br />

J. Phys. Rev. E 68 (2003) 026408<br />

[7] Ter-Avetisyan, S. et al.; Phys. Rev. Lett. 93 (<strong>2004</strong>)<br />

15506<br />

[8] Kalachnikov, M.P., Karpov, V., Schönnagel, H.<br />

and Sandner, W.; Opt. Lett. 30 N o 8 (2005), in press<br />

[9] Kalachnikov, M.P., Risse, E., and Schönnagel<br />

H., Optics Express (2005), in press<br />

[10] Hemberg, B., Hansson, A. M., Berglund, M.,<br />

and Hertz, H. M. J.; Appl. Phys. 88 (2000) 5421;<br />

Düsterer, S., PhD-thesis, FSU-Jena (2003)<br />

[11] Busch, S. et al.; Appl. Phys. Lett. 82 (2003)3354<br />

[12] Schnürer, M. et al.; Phys. Rev. E 70 (<strong>2004</strong>)<br />

056401<br />

[13] Wickens, L.M., Allen J.E.; Phys. Rev. Lett. 41<br />

(1978) 243<br />

[14] Busch, S. et al.; Appl. Phys. B 78 (<strong>2004</strong>) 911<br />

[15] Bychenkov, V.Yu. et al.; Phys. Plasmas 11 (<strong>2004</strong>)<br />

3242; A. Kemp and H. Ruhl, Phys.Plasmas (2005)<br />

in press<br />

[16] Ter-Avetisyan, S. et al.; J. of Phys. D (2005)<br />

in press<br />

[17] Schnürer, M. et al.; Laser and Part. Beams 23<br />

(2005)<br />

[18] Mora, P.; Phys. Rev. Lett. 90 (2003) 185002<br />

[19] Kaluza, M. et al.; Phys. Rev. Lett. 93 (<strong>2004</strong>)<br />

045003<br />

[20] Lichters, R., Pfund, R.E.W., and Meyer-ter-Vehn,<br />

<strong>Report</strong> MPQ 255, <strong>Max</strong>-Planck-<strong>Institut</strong> für Quantenoptik,<br />

Garching (1997)<br />

[21] Allen, M. et al.; Phys. Rev. Lett. 93 (<strong>2004</strong>) 265004<br />

31


Short Description<br />

of Research Projects<br />

33


2 Ultrafast and Nonlinear Phenomena:<br />

Atoms, Molecules, Clusters, and Plasma<br />

2-01<br />

Laser Plasma Dynamics<br />

K. Janulewicz, P. V. Nickles, M. Schnuerer<br />

2-02<br />

Ionization Dynamics<br />

in Intense Laser Fields<br />

W. Becker, U. Eichmann,<br />

H. Rottke<br />

2-03<br />

Free Clusters and Molecules<br />

T. Schultz, C. P. Schulz<br />

2-04<br />

Molecular Vibrational and Reaction Dynamics<br />

in the Condensed Phase<br />

E. Nibbering<br />

DIREKTORIUM (KOLLEGIALE WISSENSCHAFTLICHE LEITUNG)<br />

I. V. HERTEL, W. SANDNER, T. ELSÄSSER<br />

2 Ultraschnelle und nichtlineare Prozesse:<br />

Atome, Moleküle, Cluster und Plasmen<br />

2-01<br />

Laser-Plasma-Dynamik<br />

K. Janulewicz, P. V. Nickles, M. Schnürer<br />

2-02<br />

Ionisationsdynamik in<br />

intensiven Laserfeldern<br />

W. Becker, U. Eichmann,<br />

H. Rottke<br />

2-03<br />

Freie Cluster und Moleküle<br />

T. Schultz, C. P. Schulz<br />

2-04<br />

Molekulare Reaktions- und Schwingungsdynamik<br />

in der kondensierten Materie<br />

E. Nibbering<br />

4-1<br />

Entwicklung und Aufbau von<br />

Lasersystemen und Messtechnik<br />

I. Will, M. Zhavoronkov<br />

Board of Directors (Joint Scientific Responsibility)<br />

I. V. Hertel, W. Sandner, T. Elsaesser<br />

1 Laser Research<br />

1-01<br />

Ultrafast Nonlinear Optics<br />

and Few Cycle Pulses<br />

J. Herrmann, F. Noack,<br />

G. Steinmeyer<br />

4-1<br />

Development and Implementation of Laser Systems<br />

and Measuring Techniques<br />

I. Will, M. Zhavoronkov<br />

1 Laserforschung<br />

1-01<br />

Ultraschnelle nichtlineare<br />

Optik und Impulse mit<br />

wenigen Zyklen<br />

J. Herrmann, F. Noack,<br />

G. Steinmeyer<br />

4 Wissenschaftliche Infrastruktur:<br />

Kurzpuls- und Höchstfeldlaser<br />

3 Ultrafast and Nonlinear Phenomena:<br />

Solids and Surfaces<br />

3-01<br />

Dynamics at Surfaces and Structuring<br />

T. Gießel, A. Rosenfeld, M. Weinelt<br />

1-02<br />

Short Pulse<br />

Laser Systems<br />

U. Griebner, V. Petrov,<br />

M. Kalashnikov<br />

4 Scientific Infrastructure:<br />

Short Pulse and High Field Lasers<br />

3 Ultraschnelle und nichtlineare Prozesse:<br />

Festkörper und Oberflächen<br />

3-01<br />

Dynamik an Oberflächen und Strukturierung<br />

T. Gießel, A. Rosenfeld, M. Weinelt<br />

1-02<br />

Kurzpuls-<br />

Lasersysteme<br />

U. Griebner, V. Petrov,<br />

M. Kalashnikov<br />

3-02<br />

Solids and<br />

Nanostructures<br />

M. Fiebig, C. Lienau,<br />

M. Woerner<br />

3-03<br />

Opto Electronic<br />

Devices<br />

J. Tomm<br />

3-04<br />

Transient Structures and<br />

Imaging with X-Rays<br />

H. Stiel, M. Woerner, Zhavoronkov<br />

4-2<br />

Access to Laser Systems and<br />

Service for the Application Laboratories<br />

P. V. Nickles, F. Noack, M. Woerner<br />

3-02<br />

Festköper und<br />

Nanostrukturen<br />

M. Fiebig, C. Lienau,<br />

M. Wörner<br />

3-03<br />

Optoelektronische<br />

Bauelemente<br />

J. Tomm<br />

3-04<br />

Transiente Strukturen und Bildgebung mit<br />

Röntgenstrahlung<br />

H. Stiel, M. Wörner, Zhavoronkov<br />

4-2<br />

Bereitstellung von Lasersystemen und<br />

Betrieb der Applikationslabore<br />

P. V. Nickles, F. Noack, M. Wörner<br />

35


1-01: Ultrafast Nonlinear Optics and Few Cycle Pulses<br />

J. Herrmann, F. Noack, G. Steinmeyer (project coordinators)<br />

and P. Glas, R. Grunwald, V. Petrov, O. Steinkellner, P. Tzankov, N. Zhavoronkov, V. P. Kalosha, A. Husakou,<br />

U. Neumann, G. Stibenz<br />

1. Overview<br />

The generation of ultrashort laser pulses<br />

down to few optical cycles in a very broad<br />

spectral region (from 100 nm up to the THz<br />

range) by nonlinear optical processes is the<br />

main goal of all ongoing activities within the<br />

framework of this project. Besides the further<br />

improvement of known techniques for pulse<br />

shortening we also pursue new strategies<br />

such as nonlinear processes in holey fibers,<br />

photonic crystals or pulse compression by<br />

Raman-active molecular modulation. In order<br />

to either generate new wavelengths or<br />

enhance the conversion efficiency, stability,<br />

spectral and spatial quality, and to simplify<br />

already existing concepts we investigate new<br />

solid-state nonlinear optical materials with 2 nd -<br />

and 3 rd -order nonlinear susceptibility and<br />

apply them in novel interaction schemes for<br />

frequency conversion of femtosecond pulses,<br />

e.g. chirped pulse optical parametric<br />

amplification (CPOPA). For tunable and<br />

efficient generation of sub-100-fs pulses in the<br />

wavelength range from 100 to 165 nm, we<br />

investigate, both experimentally and theoretically,<br />

four-wave-mixing in special hollow<br />

waveguides and compression of vacuum UV<br />

pulses by Raman-active molecular modulation.<br />

Simultaneously with these activities devoted<br />

to the generation of ultrashort pulses with one<br />

or more extreme parameters we concentrate<br />

on the characterization of their temporal and<br />

spatial structure as well as on active control<br />

by shaping mechanisms. The full control over<br />

all parameters of ultrashort and few cycle light<br />

pulses (wavelength, temporal shape, phase,<br />

energy, etc.) is a long-term objective for the<br />

whole project.<br />

2. Subprojects and collaborations<br />

At present the project is organized in three<br />

subprojects:<br />

UP1: Few-cycle pulse generation and nonlinear<br />

optical processes in hollow waveguides,<br />

photonic crystal fibers and microstructured<br />

materials<br />

UP2: High-energy vacuum UV femtosecond<br />

pulses (100-160 nm) at 1-kHz repetition rate<br />

UP3: Novel nonlinear materials and interaction<br />

schemes for frequency conversion of ultrashort<br />

laser pulses<br />

Collaboration partners: M. Piché (University<br />

Quebec), U. Keller and F. W. Helbing (ETH<br />

Zürich), R. Iliev and Ch. Etrich (FSU Jena), G.<br />

Sansone and M. Nisoli (Milano), Laserlabor<br />

Göttingen, BIAS (Bremen), L. Isaenko (DTIM<br />

Novosibirsk), J.-J. Zondy (Observatoire Paris),<br />

F. Rotermund (Ajou University), R. Komatsu<br />

(Yamaguchi University), V. Pasiskevicius (KTH<br />

Stockholm), V. Badikov (HTL Krasnodar),<br />

D. Shen (Tsinghua University), Quarterwave<br />

(<strong>Berlin</strong>er Glas) and Fibertec (<strong>Berlin</strong>), Y. Kida<br />

(Kiushu University), E. Büttner (APE <strong>Berlin</strong>),<br />

Prof. P. Herman (University Toronto), IKZ <strong>Berlin</strong>,<br />

ASI Advanced Semiconductor Instruments<br />

GmbH (<strong>Berlin</strong>), I. Buchvarov (Sofia University),<br />

A. Maksimenko (University Minsk).<br />

Funding:<br />

• DPG<br />

DFG Project 1782/2-2; DFG Project He 2083<br />

• EU<br />

Eureka-number EU 2359; RII3-CT-2003-<br />

506350<br />

• BMBF<br />

BMBF-WTZ German-Canadian Collaboration<br />

Project, 00/016; BLR 01/001<br />

3. Results in <strong>2004</strong><br />

Few-cycle pulse generation and nonlinear<br />

optical processes in hollow waveguides,<br />

photonic crystal fibers and microstructured<br />

materials<br />

Pulses as short as 3.8 fs have been<br />

generated with supercontinuum generation<br />

and subsequent pulse compression by<br />

chirped mirrors [SSV04]. These pulses exhibit<br />

a pulse duration that corresponds to only<br />

about 1.5 cycles of the optical field. These<br />

pulses have been carefully characterized with<br />

a newly developed variant of SPIDER (see<br />

Fig. 1), which allows to increase the dynamic<br />

range of the detection system and therefore<br />

Fig. 1:<br />

SPIDER measurement<br />

of one of the shortest<br />

pulses obtained with the<br />

hollow fiber compression<br />

technique.<br />

37


38<br />

Fig. 4:<br />

Array of ultraflat<br />

cylindrical microlenses<br />

for VUV beam.<br />

Fig. 2 (left):<br />

Visible part of the generated<br />

supercontinuum<br />

spectrum in a soft-glass<br />

microstructure fiber,<br />

extending over 3 optical<br />

octaves.<br />

Fig. 5 (right):<br />

Truncated ultrashort<br />

Bessel-Gauss pulses:<br />

spatio-spectrally<br />

undistorted propagation<br />

of a localized 10-fs<br />

wavepacket over a<br />

Rayleigh range of 13 cm.<br />

Fig. 3:<br />

Two-dimensional<br />

mapping of the pulse<br />

duration of a 10-fs<br />

Ti:sapphire laser<br />

oscillator with multichannel<br />

2 nd order<br />

collinear autocorrelation<br />

(beam shaper: reflective<br />

microaxicon arrays).<br />

does not loose coherence in the sharp spectral<br />

drop outs of the continuum [SSt04]. The<br />

extreme sensitivity of this method was also<br />

demonstrated by dispersion measurements,<br />

which allowed the detection of a additional<br />

glass slides of less than 100 microns thickness<br />

in the beam path.<br />

This unique source, currently offering the<br />

shortest pulses at MBI, was already applied in<br />

several spectroscopic experiments. One<br />

application was the measurement of optical<br />

nonlinearities of a semiconductor in amplitude<br />

and phase with spectral resolution. Our<br />

measurements confirmed the Kramers-Kronig<br />

relationship for the carrier-induced dynamics<br />

in a saturable quantum-well based absorber<br />

[SSta05]. They further elucidated thermally<br />

induced mechanisms, which were induced by<br />

a spectral shift of the Bragg reflector of the<br />

sample.<br />

Simultaneously, we explored the supercontinuum<br />

generation in novel microstructured<br />

fiber architectures. These fibers are<br />

made from a soft glass and showed remarkably<br />

broadband white-light continua, which extended<br />

over up to 3 optical octaves (Fig. 2)<br />

and also showed measurable spectral content<br />

well below 300 nm in the uv spectral range.<br />

Further applications of the ultrashort pulses<br />

were in the spatially resolved characterization<br />

of short pulses via an extended Shack-Hartmann<br />

scheme [GNG04b] (Fig. 3), the development<br />

of ultrathin ZnO films, which exhibit relatively<br />

high conversion efficiencies while being only<br />

few hundred nanometer thick [NGG04],<br />

and the demonstration of spatio-temporal selfreconstructing<br />

Bessel X-pulses [GNS]. Purely<br />

reflective, low-dispersion components for<br />

single-maximum nondiffractive beam array<br />

generation were designed and tested for the<br />

first time [GKe05]. VUV-capable, nanolayer<br />

microlenses [GNK04] for wavefront sensing<br />

and multichannel materials processing were<br />

developed (Fig. 4).<br />

Localized wavepackets with, in contrast to<br />

Gaussian beams, undistorted ultrabroadband<br />

spectral transfer functions over more than<br />

10 cm Rayleigh range were obtained by selfapodized<br />

truncation of small-angle ultrashortpulsed<br />

Bessel-Gauss beams at pulse durations<br />

of 5-10 fs (Fig. 5; [GNS]).<br />

A third issue of this subproject is a theoretical<br />

study [HHe04] of superfocusing of light beams<br />

below the diffraction limit by photonic crystals<br />

with negative refraction. We have shown that<br />

it is possible to focus light to spots below the<br />

diffraction limit (superfocusing) by the<br />

combination of two main elements: one which<br />

creates weak near-field evanescent<br />

components of the beam, like a wavelengthscale<br />

aperture, and an amplifier of these<br />

evanescent fields, like a slab of a photonic<br />

crystal with negative refraction.<br />

By numerical solution of the <strong>Max</strong>well<br />

equations we demonstrate the amplification<br />

of evanescent components with a constructive<br />

superposition and focusing to a spot below<br />

the diffraction limit for a realistic photonic<br />

crystal. In Fig. 6, superfocusing is studied for a<br />

2D lattice of holes in GaAs with a lattice<br />

constant of 0.191 λ and an aperture width of<br />

1.15 λ. After the transmission through the<br />

aperture shown by the green line in Fig. 10(a),<br />

weak evanescent components are generated,<br />

which are amplified by the slab of the photonic<br />

crystal with negative refraction and form a<br />

broad spatial transverse spectrum Fig. 10(b).


(a)<br />

The resulting spatial distribution after the photonic<br />

crystal, as shown in Fig. 10(c), demonstrates<br />

superfocusing below the diffraction limit.<br />

High-energy vacuum UV femtosecond<br />

pulses (100-160 nm) at 1-kHz repetition rate<br />

Due to absorption and phase-matching<br />

constraints, the generation of high-energy<br />

pulses in the vacuum ultraviolet by 2 nd -order<br />

processes in nonlinear crystals is practically<br />

limited to wavelengths above 166 nm. Phasematched<br />

generation of tunable femtosecond<br />

pulses at shorter wavelengths is possible by<br />

broadband four-wave mixing in gases. A<br />

possibility to increase the efficiency of 3 rd -order<br />

nonlinear processes in gases is the use of<br />

hollow waveguides, which provides phasematching<br />

and higher intensity over a long<br />

interaction length.<br />

We used laser pulses of a high-energy<br />

Ti:sapphire laser system at 1 kHz centered<br />

around 805 nm (ω) with a spectral bandwidth<br />

of 13 nm and around 268 nm (3ω) with a<br />

spectral width of 1.5 nm to demonstrate efficient<br />

generation of vacuum UV pulses in a 25-cmlong<br />

argon-filled hollow waveguide with an<br />

inner diameter of 100 µm. By adjusting the<br />

argon pressure, phase-matching for the fourwave<br />

mixing process 5ω = 3ω + 3ω - ω can be<br />

achieved (see Fig. 7). The generated laser<br />

pulses (see Fig. 8) with energies of more than<br />

50 nJ centered at 161 nm have a spectral<br />

bandwidth of 0.35 nm supporting a pulse<br />

duration of 100 fs. By increasing the spectral<br />

bandwidth and tuning the central wavelength<br />

of the infrared pulse, high-energy sub-50-fs<br />

pulses, continuously tunable in the VUV are<br />

feasible.<br />

In addition we have demonstrated<br />

shortening of light pulses in the ultraviolet (UV)<br />

by phase-modulation in impulsively excited<br />

nitrogen in a 25-cm-long hollow waveguide of<br />

128-µm diameter. After compression with CaF 2<br />

prisms the pulse duration was determined by<br />

XFROG to be 23 fs with an excellent timebandwidth<br />

product of 0.50 (see Fig. 9, 10).<br />

Our approach for generation of sub-30-fs<br />

ultraviolet pulses is based on a combination<br />

of conversion to the UV by efficient 2 nd -order<br />

nonlinear processes and additional pulse compression<br />

by impulsively excited wave-packets<br />

in nitrogen. The compression at 266 nm<br />

demonstrated here is also possible for pulses<br />

at wavelengths less than 205 nm, where<br />

second harmonic generation with angular<br />

dispersion and higher-order phase-matched<br />

sum-frequency mixing are not applicable.<br />

Fig. 6:<br />

Superfocusing by an<br />

aperture and a slab of a<br />

photonic crystal. In (a),<br />

the field distribution in and<br />

after the photonic crystal<br />

is shown. The spatial<br />

transverse spectrum (b)<br />

exhibits contributions of<br />

evanescent components<br />

to the formation of a spot<br />

below the diffraction limit<br />

(c) with 0.25λ FWHM.<br />

Fig. 9:<br />

XFROG trace of the<br />

UV pulses at 266 nm<br />

in cross-correlation<br />

with near-IR pulses<br />

at 800 nm.<br />

Fig. 10:<br />

Pulse intensity and<br />

phase profiles<br />

reconstructed by<br />

the XFROG trace<br />

in Fig. 9.<br />

Fig. 7:<br />

Generation of the fifth<br />

harmonic as a function<br />

of the argon pressure.<br />

Fig. 8:<br />

Spectrum of the fifth<br />

harmonic measured at<br />

an argon pressure of<br />

28 Torr.<br />

39


40<br />

Fig. 11:<br />

Signal pulse energy<br />

obtained by CPOPA<br />

using a single stage of<br />

PPSLT (periodically<br />

poled stoichiometric<br />

lithium tantalate) with a<br />

domain-inversion period<br />

of 30.7 µm at room<br />

temperature.<br />

Novel nonlinear materials and interaction<br />

schemes for frequency conversion of ultrashort<br />

laser pulses<br />

New periodically poled materials were<br />

studied in <strong>2004</strong> in our CPOPA setup (see<br />

annual reports 2002-2003). These included<br />

the biaxial KNbO 3 , and LiTaO 3 , which cannot<br />

be phase-matched otherwise by birefringence.<br />

The aim is to find optimum materials which<br />

can simultaneously provide high parametric<br />

gain and large amplification bandwidth for<br />

short pulses. Photorefractive damage is<br />

reduced in LiTaO 3 by the stoichiometric<br />

composition and the 1% MgO doping. The low<br />

coercive field of stoichiometric LiTaO 3 is<br />

essential for the fabrication of thick quasiphase-matched<br />

devices, and we used 2-mm<br />

samples with 7 and 10 mm length. For a period<br />

of 30.7 µm and pumping by 1 ns pulses at<br />

1064 nm (1 kHz repetition rate), we achieved<br />

the highest parametric gain ever reported<br />

(>1.9 10 6 , ≈ 63 dB) for a single stage CPOPA,<br />

see Fig. 11. The stretched femtosecond pulses<br />

at 1560 nm that were amplified as signal<br />

pulses, were from a passively mode-locked<br />

Er-fiber seed laser (RYP04).<br />

The progress in the study of the Licontaining<br />

chalcogenides is evidenced by the<br />

comprehensive review on LiInS 2 which<br />

appeared in <strong>2004</strong> (FSM04). A similar review<br />

on LiInSe 2 is now under preparation. Optical<br />

parametric oscillation in LiInSe 2 , possessing<br />

improved thermal properties in comparison to<br />

the conventional material in this spectral<br />

range, AgGaS 2 , was also achieved for the first<br />

time. Finally, a completely new crystal, the<br />

chalcopyrite LiGaTe 2 , was studied for the first<br />

time showing a very promising potential for<br />

frequency conversion in the mid-IR region. We<br />

characterized some of the representatives of<br />

the family of quaternary semiconductors<br />

Ag x Ga x Ge 1-x S(e) 2 and generated pulses of only<br />

5 optical cycles (84 fs) near 5 µm by differencefrequency<br />

mixing in one of them (PNB04). We<br />

also established that the birefringence of these<br />

compounds can be engineered to be so high<br />

that they are phase-matchable at wavelengths<br />

which are very close to their band-gaps. Thus<br />

these typical mid-IR crystals are applicable<br />

also in the near-IR/visible, providing very high<br />

effective non linearity for frequency conversion<br />

of short pulses in thin samples.<br />

Own publications <strong>2004</strong> ff<br />

(for full titles and list of authors see appendix 1)<br />

FSM04: S. Fossier et al.; J. Opt. Soc. Am. B 21 (<strong>2004</strong>)<br />

1981-2007<br />

HHe04: A. Husakou et al.; Opt. Exp. 12 (<strong>2004</strong>) 6419-97<br />

PBP04: V. Petrov et al.; Opt. Commun. 235 (<strong>2004</strong>)<br />

219-26<br />

PBS04: V. Petrov et al.; Opt. Mat. 26 (<strong>2004</strong>) 217-22<br />

PNB04: V. Petrov et al.; Appl. Opt. 43 (<strong>2004</strong>) 4590-7<br />

PNS04: V. Petrov et al.; Opt. Lett. 29 (<strong>2004</strong>) 373-5<br />

PYI04: V. Petrov et al.; Appl. Phys. B 78 (<strong>2004</strong>) 543-6<br />

RYP04: F. Rotermund et al.; Opt. Exp. 12 (<strong>2004</strong>)<br />

6421-7<br />

SKN04: G. Y. Slepyan et al.; Int. J. of Nanoscience 3<br />

(<strong>2004</strong>) 343-54<br />

YTI04: A. P. Yelisseyev et al.; J. Appl. Phys. 96 (<strong>2004</strong>)<br />

3659-65<br />

GBR04: G. Graschew et al.; SPIE Proc. 5463 (<strong>2004</strong>)<br />

68-74<br />

GKe04: R. Grunwald et al.; (Springer-Verlag, <strong>Berlin</strong>,<br />

Germany, <strong>2004</strong>) Vol. 97, 300-11<br />

GKN04: R. Grunwald et al.; Opt. Eng. 43 (<strong>2004</strong>)<br />

2518-24<br />

GNG04a: R. Grunwald et al.; SPIE Proc. 5333 (<strong>2004</strong>)<br />

1-11<br />

GNG04b: R. Grunwald et al.; SPIE Proc. 5333 (<strong>2004</strong>)<br />

122-30<br />

GNK04: R. Grunwald et al.; Opt. Lett. 29 (<strong>2004</strong>) 977-9<br />

GSt04: R. Grunwald et al.; Physik in unserer Zeit 35<br />

(<strong>2004</strong>) 218-26<br />

NGG04: U. Neumann et al.; Appl. Phys. Lett. 84<br />

(<strong>2004</strong>) 170-2<br />

SSV04: G. Sansone et al.; Appl. Phys. B 78 (<strong>2004</strong>)<br />

551-5<br />

Stec04: G. Steinmeyer; Appl. Phys. A 79 (<strong>2004</strong>) 1663-71<br />

SSt05a: G. Stibenz et al.; Appl. Phys. Lett. 86 (2005)<br />

081105/1-3<br />

in press<br />

KKO: R. Komatsu et al.; J. Cryst. Growth<br />

TGu05: P. Tzankov et al.; Chapter 4.4 in Springer<br />

Handbook of Condensed Matter and Materials<br />

Data (Springer) (2005) 817-890<br />

GNS: R. Grunwald et al.; SPIE Proc. 5579<br />

SKe: G. Steinmeyer et al.; (Kluwer Academic<br />

Publishing, Norwell, MA)<br />

Stea: G. Steinmeyer (IOP Publishing, Bristol, UK)<br />

Steb: G. Steinmeyer; in Handbook of Optoelectronics<br />

Invited talks at international conferences <strong>2004</strong><br />

(for full titles see appendix 2)<br />

S. A. Maksimenko together with G. Ya. Slepyan, and<br />

J. Herrmann; European Materials Research Society<br />

<strong>2004</strong>, Spring Meeting, Symposium I: Advanced<br />

Multifunctional Nanocarbon and Nanosystems 04<br />

(<strong>2004</strong>-05-24)<br />

R. Grunwald together with U. Neumann, U. Griebner,<br />

V. Kebbel, and H.-J. Kuehn; Photonics West <strong>2004</strong><br />

(San Jose, California, <strong>2004</strong>-01)<br />

R. Grunwald together with U. Neumann, and V. Kebbel;<br />

Progress in Electromagnetics Research Symposium<br />

(PIERS <strong>2004</strong>), Workshop on Localized<br />

Waves (Pisa, Italy, <strong>2004</strong>-03)<br />

R. Grunwald together with U. Neumann, G. Stibenz,<br />

S. Langer, G. Steinmeyer, V. Kebbel, J.-L. Néron, and<br />

M. Piché; Photonics North (Ottawa, Canada, <strong>2004</strong>-09)<br />

G. Steinmeyer together with U. Keller; Optical Interference<br />

Coatings 9th Topical Meeting (Tucson, AZ,<br />

USA, <strong>2004</strong>-07)<br />

G. Steinmeyer; 4th International Symposium on Modern<br />

Problems in Laser Physics (Novosibirsk, Russia,<br />

<strong>2004</strong>-08)<br />

P. Tzankov together with O. Steinkellner, T. Fiebig, I.<br />

Nikolov, and I. Buchvarov; International Workshop<br />

on Optical Parametric Processes and Periodical<br />

Structures (Vilnius, Lithuania, <strong>2004</strong>-09)


1-02: Short Pulse Laser Systems<br />

U. Griebner, M. Kalashnikov, V. Petrov, (Project coordinators)<br />

and P. Glas, J. Liu, H. Redlin, E. Risse, H. Schönnagel, R. Schumann, I. Will, N. Zhavoronkov<br />

1. Overview<br />

The general goal of this project is the<br />

development of sophisticated short pulse laser<br />

sources. Laser concepts based on Ti:Sapphire,<br />

rare-earth- and transition-metal doped crystals,<br />

semiconductors and microstructure fibers for<br />

femtosecond and picosecond oscillator and<br />

amplifier systems are under investigation.<br />

One focus of this project is the progress of<br />

compact diode-pumped femtosecond laser<br />

systems. The potential of novel ytterbium and<br />

neodymium doped active materials and semiconductor<br />

structures is studied in the 1-µm<br />

spectral range. In particular, Yb-doped laser<br />

crystals are well-suited for building conceptually<br />

simple and highly efficient diode-pumped<br />

femtosecond lasers. The monoclinic double<br />

tungstates KY(WO 4 ) 2 , KGd(WO 4 ) 2 and KLu(WO 4 ) 2<br />

doped with Yb 3+ -ions have been recognized<br />

as attractive host-dopant combinations and<br />

some of the most promising results with respect<br />

to diode-pumped femtosecond generation have<br />

been obtained in the 100-fs region. Further, the<br />

interest in novel tetragonal sodium double<br />

tungstates like Yb:NaGd(WO 4 ) 2 is due to their<br />

disordered crystal structure which ensures<br />

larger bandwidths in mode-locked lasers in<br />

comparison to the mono-clinic potassium<br />

double tungstates. Compared to conventional<br />

fiber designs, microstructure fibers have<br />

considerably enhanced the possibilities of<br />

tailoring linear and nonlinear fiber properties.<br />

For mode-locked fiber lasers, dispersion<br />

engineering is of particular interest, as it permits<br />

intrinsic dispersion compensation or soliton<br />

propagation at virtually arbitrary wavelengths.<br />

This project further contains research<br />

activities to continuously upgrade the multiterawatt<br />

Ti:Sapphire laser operated in the<br />

frame of High Field Laser (HFL) Application<br />

laboratory in order to keep the laser system in<br />

an internationally competitive condition.<br />

Generally, the modern high power Ti:Sapphire<br />

laser systems suffer from a relatively low amplified<br />

spontaneous emission (ASE) contrast of<br />

the laser pulse, which typically lies in the range<br />

of 10 -5 -10 -7 . For the MBI-HFL the actual ASE<br />

contrast value is 10 -7 . Improvement of the ASE<br />

contrast ratio to the value of ~10 -10 , which is<br />

necessary for pre-pulse free laser-matter<br />

interaction (at peak intensity I>10 20 W/cm 2 ), is<br />

one of the most important roots of current international<br />

activities. Development of diagnostics<br />

for laser beam and pulse characterization is<br />

an important issue of this direction.<br />

A major part of the project is dedicated to<br />

the development of new schemes for generation<br />

of trains of femtosecond pulses. One of the<br />

most promising schemes is OPCPA, the combination<br />

of Optical-Parametric amplification<br />

and Chirped Pulse Amplification. The main<br />

advantages of this scheme are a negligible<br />

thermal lensing, a broad amplification bandwidth<br />

and large tunability in wavelength.<br />

Consequently, the generated output pulses are<br />

free from pulsation of the beam profile during<br />

the pulse train. That's why it is particularly well<br />

suited for generation of trains of femtoscond<br />

pulses with a time structure of the VUV FEL at<br />

DESY Hamburg.<br />

2. Subprojects and collaborations<br />

At present the project is organized in two<br />

subprojects:<br />

UP1: Compact, diode pumped laser systems<br />

and new active materials (Partly supported<br />

by the EU-Project DT-CRYS (see www.dtcrys.net)<br />

and the BMBF-projects no. 13N8337<br />

and 13N8570)<br />

• short pulse lasers based on new double<br />

tungstate and sesquioxide crystals /<br />

composite crystal structures doped with<br />

ytterbium and thulium as the active laser ion,<br />

• femtosecond microstructure fiber lasers in<br />

the 1-µm spectral range (joint activity with<br />

project 1-01),<br />

• compact all semiconductor-based femtosecond<br />

lasers (joint activity with project 3-03).<br />

UP2: Short pulse amplification, high peak<br />

and average power (This work is partially<br />

carried out in cooperation with HASYLAB/DESY<br />

in the framework of an EU supported project,<br />

contract no. HPRI-CT-1999-50009/Pump-Probe<br />

and in EU cooperation, "SHARP" - project,<br />

contract Nr.: HPRI-CT-2001-50037.)<br />

• development of diagnostics for the laser<br />

beam characterization, especially temporal<br />

contrast, focusability, intensity,<br />

• development of high amplified spontaneous<br />

emission temporal contrast (≥10 9 ) Ti:Sapphire<br />

laser system,<br />

• development of methods to improve focusable<br />

intensity of the HFL Ti:Sapphire laser to<br />

I>10 20 W/cm 2 ,<br />

• development of the optical pump/probe laser<br />

for the TTF FEL in OPCPA technology:<br />

improvement of the stability and the power,<br />

increase of the conversion efficiency from<br />

pump to signal beam.<br />

41


42<br />

Fig. 1b:<br />

Input/output<br />

characteristics of the cw<br />

Nd-doped penta fiber<br />

laser at 1054 nm.<br />

Fig. 1a:<br />

Scanning electron<br />

micrograph of the end<br />

face of the Nd-doped<br />

microstructure penta<br />

fiber (hole diameter: 18<br />

µm, core diameter: 12<br />

µm).<br />

Fig. 2b:<br />

Comparison of the<br />

recompressed pulses of<br />

the 2 mJ, 35 fs CPA laser<br />

(red curve) and the 20<br />

mJ, 50 fs DCPA laser<br />

pulses (blue curve).<br />

The artifact peaks arise<br />

from reflections on optical<br />

elements of the correlator<br />

and pulses appearing in the<br />

frequency doubled beam.<br />

Collaboration partners: F. Diaz (University<br />

Tarragona), K. Petermann (University<br />

Hamburg), A. Tünnermann (University Jena),<br />

M. Weyers, G. Erbert (FBH <strong>Berlin</strong>), Fibertec<br />

(<strong>Berlin</strong>), HASYLAB / DESY (Hamburg), J-P.<br />

Chambaret (LOA Palaiseau,France), I. Ross<br />

(RAL, Great Britain), K. Witte (MPQ Garching).<br />

3. Results in <strong>2004</strong><br />

The shortest pulses ever produced with<br />

an Yb 3+ -doped monoclinic double tungstate<br />

laser using a semiconductor saturable absorber<br />

mirror (SAM) were achieved. Based on an<br />

Yb:KLu(WO 4 ) 2 crystal pulses as short as 81 fs<br />

at 1046 nm were generated with an average<br />

power of 70 mW at 95 MHz repetition rate. The<br />

time-bandwidth product amounted to 0.318,<br />

i.e. close to the Fourier limit [GRP]. Epitaxial<br />

growth of very thin (


intensity and thus, contribution to the nonlinear<br />

phase, is the highest. The second CPA stage<br />

consists of a stretcher, a multi-pass amplifier<br />

and a compressor. The output energy of the<br />

recompressed pulse reaches the value of<br />

~20 mJ, FWHM of the recompressed pulse is<br />

~50 fs. The temporal contrast of laser pulses<br />

was characterized by a high dynamic range<br />

cross-correlator, which supports dynamic<br />

range of intensity of 10 10 . The temporal shape<br />

of the DCPA laser pulse, and the pulse<br />

measured before the temporal filtering are<br />

shown in Fig. 2b. The substantial improvement<br />

of temporal contrast with the DCPA laser is<br />

evident. We did not observe with our crosscorrelator<br />

a noticeable ASE signal at the<br />

leading edge of the laser pulse. This allows us<br />

to conclude that the ASE contrast at this edge<br />

is at least 10 10 , which is also the limit of our<br />

correlator. Taking into account that the ASE<br />

level at the first CPA stage has the value of 10 7<br />

and the fact that the nonlinear filter has a<br />

damping limit of ~10 5 , allows us to estimate<br />

the expected value of contrast at the front edge<br />

of 10 12 , which could not be measured with our<br />

cross-correlator.<br />

The optical pump/probe laser for the VUV<br />

FEL is designed for production of trains of<br />

femtosecond pulses. This laser generates<br />

trains of femtosecond pulses with parameters<br />

matching the time structure of the VUV FEL.<br />

The laser has been built as an OPCPA system.<br />

The initial seed pulses for the OPCPA are<br />

generated by a standard femtosecond Ti:Sa<br />

oscillator that is synchronized to the RF of linear<br />

accelerator. After being stretched to ~20 ps<br />

duration, the pulses are successively amplified<br />

in three LBO crystals. All three stages of this<br />

optical-parametric amplifiers (OPA) are pumped<br />

by a frequency-doubled Nd:YLF burst-mode<br />

laser. The first stages of this pump laser are<br />

identical to the TTF photocathode laser. An<br />

additional booster stage was added to reach<br />

a power during the pulse train of up to 1.2 kW.<br />

The complete scheme and the parameters of<br />

the OPCPA pump/probe laser are shown in<br />

Fig. 3.<br />

Fig. 2a:<br />

Schematic of the DCPA<br />

laser.<br />

Gr - diffraction gratings,<br />

RR - retro-reflectors,<br />

PC - Pockels cells,<br />

M1, M2 - mirrors of the<br />

multipass amplifier<br />

f = 42 cm and 50 cm,<br />

FM - flat mirror of the<br />

stretcher.<br />

Fig. 3:<br />

Scheme of the OPCPA<br />

pump/probe laser<br />

installed at the VUV FEL<br />

at DESY Hamburg.<br />

43


44<br />

Own publications <strong>2004</strong> ff<br />

(for full titles and list of authors see appendix 1)<br />

ASA04: A. Aznar et al.; Appl. Phys. Lett. 85 (<strong>2004</strong>)<br />

4313-4315<br />

BKK04: I. A. Begishev et al.; J. Opt. Soc. Am. B 21<br />

(<strong>2004</strong>) 318-322<br />

GKS04: E. Gubbini et al.; Vacuum 76 (<strong>2004</strong>) 45-49<br />

GPP04: U. Griebner et al.; Opt Expr. 12 (<strong>2004</strong>) 3125-<br />

3130<br />

KPG04: P. Klopp et al.; Opt. Lett. 29 (<strong>2004</strong>) 391-393<br />

KRS04: M. P. Kalashnikov et al.; Opt. Expr. 12 (<strong>2004</strong>)<br />

5088-5097<br />

MGS04: M. Moenster et al.; Opt Expr. 12 (<strong>2004</strong>)<br />

4523-4528<br />

MPA04: X. Mateos et al.; IEEE J. Quantum Elect. 40<br />

(<strong>2004</strong>) 1056-1059<br />

PGM04: V. Petrov et al.; IEEE J. Quantum Elect. 40<br />

(<strong>2004</strong>) 1244-1251<br />

RLG04: M. Rico et al.; Opt. Exp. 12 (<strong>2004</strong>) 5362-<br />

5367<br />

in press (as of Jan. 2005)<br />

GLR05: U. Griebner et al.; IEEE J. Quantum Elect.<br />

KRS05b: M. P. Kalashnikov et al.; Opt. Lett. 30 (2005)<br />

LCC05: J. Liu et al.; phys. status solidi a 202 (2005)<br />

R29-R31<br />

LRG05: J. Liu et al.; phys. status solidi a 202 (2005)<br />

R19-R21<br />

WKT: I. Will et al.; Nucl. Instrum. Meth. A<br />

XSJ: X. Mateos et al.; Opt. Mat.<br />

ZTo: N. Zhavoronkov et al.; JOSA<br />

submitted (until 21st Feb. 2005)<br />

GRP: U. Griebner et al.; Opt. Expr.<br />

HJK: M. v. Hartrott et al.; Proceedings FEL <strong>2004</strong><br />

RMP: S. Rivier et al.; Opt. Lett.<br />

ZGW: N. Zhavoronkov et al.; Opt. Lett.<br />

Invited talks at international conferences <strong>2004</strong><br />

(for full titles see appendix 2)<br />

U. Griebner together with A. Aznar, R. Solé, M. Aguiló,<br />

F. Diaz, R. Grunwald, and V. Petrov; Conference<br />

on Lasers and Electro-Optics (CLEO), <strong>2004</strong> (San<br />

Francisco, California, <strong>2004</strong>)<br />

I. Will; VUV-FEL Users Workshop on Technical Issues<br />

for First Experiments (DESY, Hamburg, <strong>2004</strong>-<br />

08-23)


2-01: Laser Plasma Dynamics<br />

K. A. Janulewicz, P. V. Nickles, M. Schnuerer, (Project Coordinators)<br />

and S. Busch, P. Priebe, S. Ter-Avetisyan, J. Tümmler<br />

1. Overview<br />

Highly ionized plasmas produced by short,<br />

intense laser pulse irradiation are investigated<br />

in two sub-projects:<br />

In the first sub-project we study relativistic<br />

plasma dynamics using ultra-intense laser<br />

pulses. The objective is the investigation of<br />

ion/proton acceleration from structured foils<br />

and microdroplet targets. Specifically,<br />

mechanisms leading to ion acceleration and<br />

generation of ion beams with well characterized<br />

parameters will be studied. Using such<br />

a proton beam generated by one laser we plan<br />

to study plasma dynamic effects in a second<br />

plasma. This radiographic method, also called<br />

proton imaging, allows to gain knowledge<br />

about the acceleration process itself, and<br />

about the plasma dynamics in the plasma<br />

which is being imaged.<br />

For the latter the objective is to investigate<br />

field structures (solitons, electron currents a.o.)<br />

appearing in a relativistic plasma. Results of<br />

these basic physics investigations open for<br />

the first time a view into such an extreme hot,<br />

dense and well localized plasma and are<br />

necessary as input data for relevant simulations.<br />

The progress in this field is generally determined<br />

by the access to ultra-intense lasers,<br />

sophisticated targets and complex diagnostic<br />

tools, usually not available in one single<br />

laboratory. The MBI is part of a national consortium<br />

of university laboratories and research<br />

institutions (DFG Transregio SFB TR18 with<br />

the partner universities Munich (LMU), Düsseldorf,<br />

and Jena) devoted to studying this topic<br />

over a wide range of laser parameters and<br />

with application prospects in plasma physics,<br />

astrophysics, and nuclear physics. MBI is<br />

leading the project A5 "Ion acceleration from<br />

laser irradiated thin foils" and is participating in<br />

several others. MBI's experimental contribution<br />

to the collaboration is the provision of two<br />

separate, synchronized high-field lasers,<br />

each of which having state-of-the-art pulse<br />

characteristics. This setup is unique worldwide.<br />

The 1ps - synchronization of the two MBI<br />

high field lasers, the 1ps, >5J CPA glass laser<br />

and the 40fs, ~1J Ti:Sa laser, rests on the<br />

experience gained from long standing MBI-<br />

DESY collaborations on FEL photo-cathode<br />

lasers, and is the basis for our own studies<br />

and collaboration experiments with Transregio<br />

partners.<br />

Using high resolution diagnostics based<br />

on Thomson spectrometers we could already<br />

obtain a number of results for ion acceleration<br />

from targets irradiated by ultra-short (40fs)<br />

laser pulses during the first year of the<br />

Transregio SFB. In particular, we were able to<br />

demonstrate a qualitatively new emission<br />

characteristics of mixed ion/proton beams<br />

emerging from thin plane foils (c.f. feature<br />

article).<br />

The second sub-project is concerned with<br />

research on optimum plasma conditions for<br />

compact coherent VUV or EUV sources, commonly<br />

called "table-top X-ray lasers", working<br />

in the wavelength region around 10-15 nm.<br />

The objective of this project is an X-ray laser<br />

with coherent pulse energies in the mJ range,<br />

pulse durations in the ps range and practically<br />

useful average powers of up to 1 mW. It will,<br />

for the first time, bring a coherent EUV-source<br />

with a peak brilliance comparable to the<br />

planned VUV-FEL's, albeit substantially lower<br />

average power into the laboratory. Still, it would<br />

be a valuable complement to the acceleratorbased<br />

new facilities with inherently limited<br />

user access. Realization of this objective<br />

requires a) research on gain mechanisms and<br />

demonstrated gain saturation of XRL's at pump<br />

energies of the order of 1J, and b) the<br />

availability of a high-power driver lasers with<br />

suitable pulse characteristics and average<br />

powers of the order of kW.<br />

The present state of the project rests on<br />

previous MBI breakthrough results and<br />

expertise in x-ray laser research, especially<br />

on the first implementation of the transient<br />

inversion pumping scheme with ultra-low<br />

pump energies of the order of 1J, using shaped<br />

single pulses. In <strong>2004</strong>, apart from results on<br />

the characterization of the single shot XRL<br />

output, a repetitive operation mode at 10 Hz<br />

using the MBI Ti:Sa laser has been realized,<br />

which will from now on be exploited after the<br />

recent upgrade of the MBI Ti:Sa laser pulse<br />

energy to levels above 1J. This step from the<br />

usual single-shot operation towards a 10Hz<br />

repetition rate constitutes a major milestone<br />

on the way towards the long-term project<br />

objective.<br />

The X-ray laser realised on this way is<br />

foreseen for applications taking advantage of<br />

its narrow spectral bandwidth and good spatial<br />

coherence of its emission. Plasma interferometry<br />

is especially promising and important<br />

application. On the other hand, narrow spectral<br />

45


46<br />

bandwidth and high photon number together<br />

with high photon energy makes this source<br />

also very attractive for specific linear and<br />

nonlinear spectroscopic applications. Using<br />

such a source for spectroscopy of highly<br />

charged heavy ions is subject of a joint project<br />

with the GSI Darmstadt. Such a compact soft<br />

x-ray source with high repetition rate will be a<br />

valuable tool complementary in many aspects<br />

to future large-scale short-wavelength FELs<br />

(Free Electron Lasers).<br />

2. Subprojects<br />

UP1: Investigation of relativistic laser plasmas<br />

with MeV-proton beam imaging<br />

Collaborations: Univ. Düsseldorf, Univ. Jena,<br />

LMU München, MPQ Garching: Two joint<br />

projects in the DFG-Transregio TR18 (start july<br />

<strong>2004</strong>) for ion acceleration and proton imaging,<br />

including applications in plasma diagnostics,<br />

astrophysics and nuclear physics.<br />

UP2: Coherent XUV-radiation from laser<br />

plasmas (X-ray lasers) and its optimization<br />

for applications<br />

Collaborations: T. Kühl, GSI Darmstadt, A.<br />

Klisnick, LIXAM Paris, Development of an xray<br />

laser for heavy-ion spectroscopy at the GSI;<br />

Prof. H Fiedorowicz, Warsaw, Development of<br />

gas targets for X-ray lasers;<br />

Prof. A Zigler, Jerusalem, Capillary targets with<br />

guiding for X-ray lasers;<br />

Prof. G.J. Pert, York, Numerical modeling of Xray<br />

lasers.<br />

3. Results in <strong>2004</strong><br />

In the sub-project on relativistic plasma<br />

physics we concentrated our studies on<br />

proton beam generation from plane thin foils<br />

using the two different high-field TW-lasers.<br />

The results are relevant to the physics of proton<br />

acceleration with ultra-intense laser fields and<br />

they are an experimental prerequisite for the<br />

planned proton imaging experiments in 2005.<br />

In connection with our observations of deep<br />

modulations in proton and deuteron spectra<br />

emitted from micro-droplet targets [TSB04,<br />

STB04] detailed theoretical studies have been<br />

performed [BST04, KeR]. It was proposed that<br />

co-moving heavier ion species are mainly<br />

responsible for the observed effect which is<br />

controversial to the self-similar plasma expansion<br />

model assuming two components of<br />

the electron temperature. Therefore the interplay<br />

between heavy ions and protons in mixed<br />

laser accelerated beams was in our research<br />

focus. The proton emission could be extended<br />

up to 4 MeV kinetic energy under our<br />

experimental parameters (cf 2-01 feature article).<br />

The new aspect introduced in these experiments<br />

was the use of ultra-short driving<br />

pulses from the Ti:Sa system. In a multi-species<br />

environment we could show that a heavier ion<br />

component suffers a massive field-shielding<br />

of the rapidly accelerated protons. We could<br />

drive this principally know effect up to its<br />

extreme – a purely emerging proton beam<br />

emerging from a multi-component ion layer. A<br />

proton spectrum was found with an accentuated<br />

shape. It consists of two branches which<br />

can be partly separated and which can be<br />

approximately characterized by distinctly<br />

different temperatures. When, for comparison,<br />

the ps-laser pulse is used for the ion<br />

acceleration the heavy ion background of the<br />

proton beam changes but the general spectral<br />

shape remains: a decreasing number of protons<br />

up to approximately 1 MeV kinetic energy<br />

which is followed by a more slowly decreasing<br />

energy distribution extending up to the cutoff<br />

at 4 MeV.<br />

We conclude that the build-up electron<br />

distribution yields the dominating influence on<br />

the proton spectra, and that field-shielding acts<br />

on heavier ions in a mixed beam.<br />

All the energetically different ions are<br />

emitted within a small time-window. This is a<br />

consequence of the sudden field-acceleration<br />

initiated by an intense short laser pulse. Such<br />

a behaviour was proven with a time resolving<br />

ion diagnostic [TSN] which was developed on<br />

basis of our Thomson-spectrometer. It combines<br />

a time of flight ion diagnostic with the energy<br />

analysis inside the spectrometer, very similar<br />

to a streak camera. We demonstrated this new<br />

method with a temporal resolution of about<br />

0.5 ns and showed how it can be extended to<br />

smaller time intervals.<br />

These experiments are very sensitive to<br />

the laser pulse parameters. Especially the<br />

laser pulse contrast is a crucial parameter in<br />

relativistic-laser-intensity matter interaction<br />

(see relevant activities in projects 4.02, 1.02).<br />

We benefitted from the fact that the MBI highfield<br />

Ti:Sa laser can be operated with one of<br />

the best contrast ratios of its kind, as shown by<br />

independent external measurements within<br />

the European SHARP collaboration. We could<br />

demonstrate that with a changed contrast from<br />

about 10 -7 to 2x10 -8 the high-energy cutoff<br />

could be nearly doubled [MTB]. Up to 2 MeV<br />

deuterons have been registered from laser<br />

exposed micro-droplet target systems. The<br />

investigation of the processes involved will<br />

help to find suitable laser-target concepts<br />

supporting the need of low laser energy for<br />

the envisioned proton imaging studies in the<br />

MeV range.


An acceleration mechanism which holds<br />

for energetic negative ions was established<br />

[TSB04] on the basis of really surprising<br />

experimental findings. H - , D - and O - with<br />

energies up to a few hundred keV have been<br />

observed in experiments with water targets.<br />

The mechanism predicts the dissociation of a<br />

molecule with an additionally attached electron<br />

to a negative ion during a pre-plasma stage<br />

and the extraction of the negative ions. This<br />

extraction is with the accelerated electrons in<br />

which the spurious negative ions are embedded<br />

and which accompany the positive ions.<br />

We introduced a new methodological<br />

approach for the comparison of small scale<br />

laser driven neutron sources [TSH05, SHJ04].<br />

On basis of a defined fusion D(d,n) reaction<br />

probability quite different target systems<br />

irradiated under different conditions can be<br />

compared much better and better extrapolations<br />

concerning the neutron rates can be done. This<br />

has been applied to our developed spraysource<br />

(patent pending) in comparison to<br />

cluster and gas target systems. In this concept<br />

the laser energy transfer is included and<br />

plasma volume-effects can be separated.<br />

In preparation of the proton imaging<br />

experiments the laser synchronization was<br />

pursued. Here we are able to draw from longterm<br />

experiences with the MBI-DESY<br />

collaboration on phase-synchronized photocathode<br />

lasers for accelerators and FEL's.<br />

Experiments on the phase jitter of the pulses,<br />

using the existing oscillators in both high-field<br />

lasers, showed that they had to be replaced<br />

by new systems. The full availability of the<br />

synchronisation for plasma experiments will<br />

commence in early 2005; it will be accompanied<br />

by the completion of the single-shot<br />

upgrade of the Ti:Sa laser to pulse energies of<br />

about 6J and power levels of about 100TW,<br />

using an extra long-pulse, frequency doubled<br />

arm of the glass laser for pumping.<br />

Within the sub-project "X-ray laser" the<br />

work on the Ni-like Ag soft X-ray laser (XRL)<br />

pumped by a single, profiled picosecond pulse<br />

has been continued. The physics behind this<br />

pumping process (which constitutes a major<br />

step towards high repetition rate XRLs) has<br />

been identified by careful determination of the<br />

optimum pump pulse shape, using correlation<br />

techniques, in combination with numerical<br />

simulations of the kinetics of the active medium<br />

[JNK04,JPT04,JPT]. Development of an original<br />

scheme for an on-line third-order correlator<br />

constituted a base for this research topic [PRT].<br />

We have demonstrated a 10 Hz x-ray laser<br />

based on the newly proposed pumping scheme<br />

termed GRIP (GRazing Incidence Pumping)<br />

which offers the possibility to apply significantly<br />

reduced pumping energies at the repetition<br />

rate well above 1 Hz. GRIP is actually a specific<br />

geometrical variant of the traditional transient<br />

double pulse (long-short) pump scheme. The<br />

scheme benefits from the grazing incidence<br />

of the heating picosecond pulse on the preformed<br />

plasma column elongating the path of<br />

the pump laser in the active medium.<br />

Our present 10 Hz x-ray laser works with<br />

slab molybdenum targets irradiated by the MBI<br />

Ti:Sa laser with the total pump energy of only<br />

400-450 mJ (150 mJ in 400 ps and 300 mJ in<br />

9 ps). Lasing was registered at 18.9 nm and<br />

the necessary optimum delay between the two<br />

pumping pulses has been determined. Even<br />

if the measurements were registered in the<br />

"single-shot mode" (due to limited rate of the<br />

data acquisition) the laser operated at a<br />

repetition rate of 10 Hz. Up to 20 shots could<br />

be fired without target refreshing. The smallsignal<br />

gain coefficient was estimated to about<br />

20 cm -1 . The beam divergence of 5-6 mrad<br />

measured for the target of 3 mm in length<br />

suggested some remarkable softening of the<br />

density gradients in the medium [TJP].<br />

For a continuous 10 Hz operation at<br />

saturated amplification a refreshable target<br />

was developed which will be implemented<br />

next. The next steps on the way to the project<br />

objective will include optimisation of the 10 Hz<br />

operation towards saturation and routine<br />

availability for application experiments, notably<br />

also in conjunction with plasma diagnostics<br />

from the first sub-project.<br />

Fig. 1:<br />

Enhanced cutoff energy<br />

of deuteron emission<br />

from 20 micron heavy<br />

water droplets when<br />

the ASE level was<br />

increased by a factor<br />

of 5 giving a high<br />

contrast of (2-5)*10 -8 .<br />

Triangles: Deuterons at<br />

lower ASE contrast;<br />

circles: Deuterons at<br />

high ASE contrast.<br />

Fig. 2:<br />

An example of the<br />

emission spectrum<br />

recorded in the<br />

experiment on the<br />

18.9 nm molybdenum<br />

soft X-ray laser<br />

pumped collissionally<br />

in the GRIP<br />

arrangement.<br />

The lineout shows<br />

the dominance of the<br />

lasing line over the<br />

emission spectrum<br />

(additionally is the<br />

absorption edge of<br />

the used Al-filter at<br />

17.1 nm visible).<br />

47


48<br />

Finally, a joint project under the German-<br />

Israeli research cooperation treaty deals with<br />

optical field ionisation (OFI) X-ray lasers.<br />

Although presently not lying on the main roadmap<br />

of the MBI XRL project, OFI XRLs have in<br />

principle also a potential to be operated in the<br />

repetitive regime. Using plasma pre-forming<br />

by a slow capillary discharge an enhancement<br />

of the spectral line at 24.7 nm in lithium-like<br />

nitrogen has been demonstrated by irradiation<br />

such a capillary with a 40 fs laser pulse from a<br />

titanium:sapphire laser system. This is the first<br />

demonstration of the laser line enhancement<br />

in this recombination OFI-pumped scheme.<br />

High intensity of the pumping beam reduced<br />

the influence of the ionization losses on the<br />

axial uniformity of the pump process [JTPa].<br />

Incidentally, this experiment, conducted for<br />

the first time at relativistic incident intensities,<br />

delivered rather important information for other<br />

fields. It confirmed a significant improvement<br />

of the triggering jitter by igniting the capillary<br />

with a coaxially aligned auxiliary nanosecond<br />

laser. On the other hand, the measurements on<br />

the transmission spectrum of the pump pulse<br />

guided under relativistic conditions showed a<br />

blue-shifting caused by the ionization on the<br />

pulse front and, in some shots, a significant<br />

red shift suggesting existence of wake-field<br />

break. The latter is crucial in the plasma based<br />

electron accelerators and suggests the<br />

possibility of the laser forced wakefield.<br />

Own publications <strong>2004</strong> ff<br />

(for full titles and list of authors see appendix 1)<br />

BST04: S. Busch et al.; Appl. Phys. B 78 (<strong>2004</strong>) 911-4<br />

STB04: M. Schnürer et al.; Appl. Phys. B 78 (<strong>2004</strong>)<br />

595-9<br />

TSB04: S. Ter-Avetisyan et al.; PRL 93 (<strong>2004</strong>) 155006/<br />

1-4<br />

SHJ04: M. Schnürer et al.; PRE 70 (<strong>2004</strong>) 0560401/<br />

1-10<br />

TSB04: S. Ter-Avetisyan et al.; J. Phys. B 37 (<strong>2004</strong>)<br />

3633-40<br />

TSH05: S. Ter-Avetisyan et al.; Phys. Plasmas 12<br />

(2005) 012702<br />

JNK04: K. A. Janulewicz et al.; Phys. Rev. A 70<br />

(<strong>2004</strong>)<br />

LJK04: A. Lucianetti et al.; Opt. Lett. 29 (<strong>2004</strong>) 881<br />

JPT04: K.A. Janulewicz et al.; IEEE J. Sel. Top.<br />

Quantum Electron. 10 (<strong>2004</strong>) (invited paper)<br />

in press (Feb. 2005)<br />

MTB: M. Schnürer et al.; Laser, Part. Beams<br />

KeR: A. Kemp and H. Ruhl, Phys. Plasmas<br />

TSN: S. Ter-Avetisyan, J. Appl. Phys.D<br />

NJS: P. V. Nickles et al.; in Landolt-Börnstein, Laser<br />

Applications<br />

NJS: P. V. Nickles et al.; in Strong laser field physics<br />

editors T. Brabec and H. Kapteyn, Springer<br />

JTPa: K.A. Janulewicz et al.; Opt. Lett<br />

JTPb: K.A. Janulewicz et al.; in X-Ray Lasers <strong>2004</strong>,<br />

Proceedings of the 9th ICXRL, Beijing, IOP Conf.<br />

Series<br />

JTPc: K.A. Janulewicz et al.; in X-Ray Lasers <strong>2004</strong>,<br />

Proceedings of the 9th ICXRL, Beijing, IOP Conf.<br />

Series<br />

submitted (until 21st Febr. 2005)<br />

JTP: K.A. Janulewicz et al.; Phys. Rev. A<br />

PRT: G. Priebe et al.; Opt. Express<br />

TJP: J. Tümmler et al.; Opt. Express<br />

Invited talks at international conferences <strong>2004</strong><br />

(for full titles see appendix 2)<br />

K. Janulewicz; ICXRL, 9. Int. Conference on X-ray<br />

lasers (Beijing, China, <strong>2004</strong>-05-26)<br />

K. A. Janulewicz together with et al.; ICXRL, 9. Int.<br />

Conference on X-ray lasers (Beijing, China, <strong>2004</strong>-<br />

05-26)<br />

K. A. Janulewicz; GILCULT-Workshop (Rehovot, Israel,<br />

<strong>2004</strong>-02-17)<br />

P. V. Nickles together with M. Schnürer, S.Ter<br />

Avetisyan, S. Busch, W. Sandner, H.Jahnke, and<br />

D. Hilscher; FIHFP-Workshop (Kyoto, <strong>2004</strong>-04-<br />

26.-28.)<br />

P. V. Nickles together with M. Schnürer, S.Ter<br />

Avetisyan, S. Busch, A. Kemp, H. Ruhl, and W.<br />

Sandner; Japanese-USA Workshop on Laser<br />

Plasma Theory (Osaka, Japan, <strong>2004</strong>-04-29.-30.)<br />

P. V. Nickles together with M. Schnürer, S. Ter-<br />

Avetisyan, S. Busch, W. Sandner, D. Hilscher, and<br />

U. Jahnke; 20th EPS General Conference of the<br />

Condensed Matter Division ”Interaction of matter<br />

with laser light under extreme conditions” (Prag,<br />

Tschechien, <strong>2004</strong>-07-22)


2-02: Ionization Dynamics in Intense Laser Fields<br />

W. Becker, U. Eichmann, H. Rottke (Project coordinators)<br />

and P. Agostini, D. Bauer, M. Böttcher, E. Eremina , S. Gerlach, E. Gubbini, H. Hetzheim, R. Jung,<br />

M. Kalashnikov, Th. Kwapien, X. Liu, N. Zhavaronkov<br />

1. Overview<br />

The project objective is the comprehensive<br />

analysis of basic interaction mechanisms of<br />

isolated atoms/ions, molecules and clusters<br />

with intense laser fields.<br />

Experimental work concentrates on the<br />

investigation of ionization processes at light<br />

intensities between 10 14 W/cm 2 and >10 19 W/cm 2 .<br />

It focuses on the significance and the<br />

manifestations of electron-electron correlation,<br />

the influence of relativistic effects on multiple<br />

ionization and on the manipulation of multiple<br />

ionization processes via laser pulse characteristics.<br />

In particular, few-cycle pulses with<br />

stabilized carrier-envelope phase and defined<br />

state of polarization will be applied as well as<br />

two-color pulses, which typically consist of an<br />

(intense) infrared laser pulse with an ultrashort<br />

high-order harmonic superimposed. The latter<br />

can be timed with respect to the former. The<br />

physics is dominated by the interplay between<br />

tunneling processes, free electron motion and<br />

electron-ion collisions in the presence of timedependent<br />

external fields. Furthermore, research<br />

is focused on the interaction between correlated<br />

electron dynamics in tightly bound inner shells<br />

and relativistic laser fields and includes the<br />

investigations of the interaction of strong laser<br />

fields with single, higher charged ions.<br />

Theoretical work concentrates on the<br />

description of intense-laser atom processes in<br />

terms of an “S-matrix” together with the “strongfield<br />

approximation”. As applications, single and<br />

multiple ionization of atoms and molecules are<br />

considered at intensities reaching up into the<br />

relativistic regime. For the interaction of lasers<br />

with clusters a wide range of methods is utilized:<br />

simple models, classical-trajectory calculations,<br />

time-dependent density-functional methods for<br />

large clusters, and solutions of the time-dependent<br />

Schrödinger equation for small clusters.<br />

The long term perspective of this project,<br />

which relies on a strong interplay between<br />

theoretical and experimental investigations, is<br />

a detailed and complete understanding of<br />

strong field multiple ionization processes.<br />

2. Subprojects and collaborations<br />

UP1: Dynamics of strong-field multiple<br />

ionization<br />

Collaborations with H. Walther (<strong>Max</strong>-Planck<br />

<strong>Institut</strong> für Quantenoptik) and G.G. Paulus<br />

(MPQ, now Texas A&M University, College<br />

Station, TX), F. Krausz ( TU Vienna and MPQ),<br />

M. Lezius (TU Vienna), P. Agostini (Humboldtresearch<br />

awardee), A. Huetz (Univ. Paris-Sud),<br />

T.F. Gallagher (Univ. of Virginia), G. von Oppen<br />

(TU <strong>Berlin</strong>).<br />

Joint DFG funded project with R. Moshammer<br />

and J. Ullrich (<strong>Max</strong>-Planck <strong>Institut</strong> für Kernphysik).<br />

DFG funded project within the DFG<br />

Schwerpunkt “Wechselwirkung intensiver<br />

Laserfelder mit Materie”.<br />

Joint DFG funded project with G. von Oppen (TU<br />

<strong>Berlin</strong>) on laser cooling of metastable helium,<br />

which uses the laser infrastructure (cw-cooling<br />

lasers) of the ion trapping activity.<br />

Collaborations on theory projects with D.B.<br />

Milosevic (University of Sarajevo) (Volkswagen-<br />

Stiftung-supported project), H. Schomerus<br />

(MPIPKS ), C. Faria (Univ. Hannover).<br />

In-house collaboration with project 2.03,<br />

project 2.01 and with the HFL and femtosecond<br />

application laboratories.<br />

UP2: High-intensity laser-cluster interaction<br />

Collaboration with D.F. Zaretsky, S.V. Fomichev<br />

(Kurchatov <strong>Institut</strong>, Moskau), S.V. Popruzhenko<br />

(Moscow Engineering Physics <strong>Institut</strong>e (State<br />

University)) (DFG-supported project).<br />

In house with project 2-03 on cluster in strong<br />

laser fields (A. Stalmashonak, N. Zhavaronkov,<br />

M. Boyle, C. P. Schulz).<br />

3. Results in <strong>2004</strong><br />

UP1: Dynamics of strong-field multiple<br />

ionization<br />

Molecular structure and e - - correlation in<br />

strong field double ionization: In collaboration<br />

with the group of F. Krausz (TU Vienna, MPI für<br />

Quantenoptik), the group of H. Walther (MPI<br />

für Quantenoptik), M. Lezius (TU Vienna) and<br />

G. G. Paulus (Texas A&M University) we started<br />

first experimental investigations on nonsequential<br />

double ionization (NSDI) of atoms<br />

in few-cycle laser pulses with stabilized carrierenvelope<br />

(CE) phase [LRE04]. We have been<br />

successful in measuring the dependence of<br />

the momentum distribution of doubly charged<br />

Ar ions on the setting of the CE phase. Using a<br />

classical model [LFa04, FLS04a] we analyzed<br />

our experimental findings in collaboration with<br />

the our theory group and C. Figueira de<br />

Morisson Faria (Univ. of Hannover).<br />

A considerable part of the experimental<br />

work in <strong>2004</strong> was devoted to the generation<br />

of high order harmonics (HHG) and the application<br />

of the harmonics in photoionization of<br />

49


50<br />

Fig. 1:<br />

Electron kinetic energy<br />

distribution from 1photon<br />

double ionization<br />

of Xe using the 25 th<br />

harmonic with a photon<br />

energy of hν = 38.6 eV.<br />

The inset shows the<br />

electron momentum<br />

distribution. The<br />

polarization of the XUV<br />

light is parallel to the<br />

horizontal axis of the<br />

inset.<br />

atomic targets. In this joint project with division<br />

A of the MBI we collaborated with P. Agostini<br />

(DRECAM/SPAM, Centre d’Etudes de Saclay)<br />

and A. Huetz (Univ. Paris-Sud). The setup<br />

consists of the harmonic source combined with<br />

a monochromator which allows to select single<br />

harmonics. The monochromator images the<br />

harmonic source point into the application<br />

experiment. With this configuration the pulse<br />

width of the extreme ultraviolet (XUV) pulses<br />

available in the experiment in a wavelength<br />

range down to ~12 nm is presently about 1.5 ps.<br />

It is determined by the grating used in the<br />

monochromator. Photoionization experiments<br />

with the XUV harmonic radiation are done in<br />

our reaction microscope which allows to<br />

measure in coincidence the momentum of<br />

photoions and electrons.<br />

In a first run of the experiment towards the<br />

end of the year we focused on 1-photon<br />

double ionization of Xenon and processes<br />

where the absorption of one XUV and several<br />

infrared (λ = 800 nm) photons leads to double<br />

ionization of Xe. The Ti:Sapphire laser system<br />

used to drive the high harmonic source delivered<br />

~5 mJ pulses with a width of ~50 fs at a<br />

repetition rate of 1kHz. It was designed by<br />

N. Zavaronkov. Harmonics were generated in<br />

Argon gas with high efficiency up to the<br />

~29 th order (hν ~ 45 eV), close to the cutoff of<br />

this generation medium. A small part of the<br />

Ti:Sapphire laser beam was split off from the<br />

main beam to direct it separately to the reaction<br />

microscope for combined XUV/IR photoionization<br />

experiments.<br />

We have been successful in measuring<br />

the electron momentum distribution for 1photon<br />

double ionization of Xe with the 25 th and<br />

27 th harmonic. An example angle integrated<br />

photoelectron spectrum in coincidence with<br />

Xe ++ ions is shown in Fig. 1. The corresponding<br />

2-D momentum distribution of the electrons is<br />

shown in the inset. The XUV light beam is<br />

polarized along the p || axis. The maximum<br />

excess energy the two photoelectrons can take<br />

away is 5.5 eV for this photon energy. At this<br />

kinetic energy the electron yield drops to zero<br />

in Fig. 1. Besides 1-photon double ionization<br />

we also started to look into double ionization<br />

initiated by absorption of one XUV and several<br />

infrared photons.<br />

The experiments done so far indicate that<br />

it will be possible to use the high harmonics<br />

together with the IR driver laser radiation to<br />

look into the dynamics of processes. Especially<br />

the XUV attosecond pulse train generated,<br />

combined with the reaction microscope for<br />

complete final state analysis, should open the<br />

possibility to steer electron motion to trigger<br />

reactions and analyze the breakup of systems<br />

even into several charged particles.<br />

Atoms in relativistic laser fields: We have<br />

investigated atomic ionization dynamics in Kr<br />

in the transition regime from nonrelativistic to<br />

relativistic laser intensities (10 16 W/cm 2 to<br />

10 18 W/cm 2 ). In this intensity regime the ionization<br />

is expected to be dominated by sequential<br />

processes. The rescattering mechanism,<br />

substantially enhancing ionization for low<br />

charge states and at low non-relativistic<br />

intensities, is suppressed by several orders of<br />

magnitude due to the break down of the dipole<br />

approximation and unfavored scaling laws with<br />

increasing charge. This has been studied in<br />

detail in [GEK05b]. Comparison of experimental<br />

ion yield curves with rate equations including<br />

rescattering, electron drift through the magnetic<br />

field and higher order relativistic effects has<br />

shown the negligible contribution of the<br />

rescattered electron to the total ion yield.<br />

Having established the fact that rescattering<br />

plays a minor role in the ionisation<br />

dynamics at intensities above 10 16 W/cm 2 , we<br />

focused our investigation on the applicability<br />

of the “single active electron description”, which<br />

– among others – bears the assumption of<br />

fully relaxed core states between successive<br />

ionization steps [Gek05a]. In particular we were<br />

concerned with transient core polarization or<br />

alignment effects originating from the strong<br />

dependence of the field ionization rates on<br />

the magnetic quantum number m, as has been<br />

speculated on in a theoretical paper by [1].<br />

Best suited for this task are inner d-shells of<br />

atoms allowing for magnetic quantum numbers<br />

as high as |m|=2. Depending on the intrinsic<br />

time scales of the light frequency, pulse<br />

duration and atomic relaxation effects the rate<br />

equations for atomic field ionisation may be<br />

dramatically changed in these systems. We<br />

found that for 40 fs, intense laser pulses internal<br />

m-mixing processes are sufficiently fast to<br />

destroy any transient core polarization. As a<br />

consequence, it has been found that field<br />

ionization proceeds mainly through the m=0<br />

sub-states and that the total ion yield curves<br />

follow nicely the theoretical curves based on


only m=0 ADK tunneling rates, which is rather<br />

surprising if one considers the order-ofmagnitude<br />

differences between ADK rates for<br />

different m sub-shells of an atom or ion.<br />

This work is of considerable interest for the<br />

scientific community involved in high-intensity<br />

laser development. One of the paramount<br />

problems there is the reliable determination<br />

of focal intensities. The usual method relies<br />

on separate measurement of the temporal<br />

pulse width, the focal spot size and the pulse<br />

energy, which is subject to considerable errors<br />

if the exact temporal pulse shape, wave-front<br />

tilt or distortions, ASE background, full-power<br />

focussing properties etc. are not exactly known.<br />

In contrast, peak intensity determination from<br />

the ionisation stage of atoms inside the focal<br />

area provides a direct intensity measurement<br />

as long as the relation between external<br />

electrical field strength and ionisation is<br />

theoretically known. The present research has<br />

the objective to determine the latter with high<br />

accuracy, better than the present state of knowledge,<br />

and thus eventually provide an “atomic<br />

intensity probe” for ultra-high intensity lasers.<br />

Cold ion targets: The generation of cold<br />

single ionic targets in order to allow for the<br />

interaction of single localized higher charged<br />

ions with intense laser pulses relies on a fast<br />

loading of the ion trap. We have designed and<br />

tested a linear trap, which is loaded with Ca +<br />

ions from a laser ablation process outside the<br />

trap. The dynamics of the trapping process has<br />

not been fully revealed so far, but it has been<br />

found that a reliable loading of the trap can be<br />

performed at a high repetition rate (up to 10Hz).<br />

In subsequent experiments the first clouds of<br />

sympathetically cooled ions, which have been<br />

generated by fs-laser ionisation, have been<br />

made visible in the trap.<br />

Theory: Theoretical work largely concentrated<br />

on modelling intense-laser atom processes<br />

in order to identify and confirm simple underlying<br />

mechanisms that afford intuitive understanding<br />

and predictive power. Such models<br />

are, for atoms and molecules, almost always<br />

based on some version of the strong-field<br />

approximation (SFA). Currently, we are further<br />

scrutinizing such models by comparing their<br />

outcome with the exact numerical solution of<br />

the time-dependent Schroedinger equation<br />

wherever possible.<br />

In particular, in the context of the S-matrix<br />

description initiated earlier, we have attempted<br />

to achieve a more detailed understanding of the<br />

electron-electron correlation that is instrumental<br />

for nonsequential double ionization (NSDI).<br />

We have investigated the effect of the Coulomb<br />

repulsion between the two electrons in the final<br />

state on their joint momentum distribution.<br />

Indeed, Coulomb repulsion suppresses events<br />

where the two electrons have similar<br />

momenta. Remarkably, this effect is hardly<br />

visible in the data. A (frustrating) conclusion of<br />

this work is that for the case of neon (where<br />

NSDI predominantly proceeds via recollisionimpact<br />

ionization) the simpler the model is the<br />

better does it work. That is to say, the theoretical<br />

description that is based on a contact interaction<br />

between the electrons and the ion and neglects<br />

the Coulomb repulsion between the electrons<br />

yields the best agreement with the data [FLB04,<br />

FLS04].<br />

The theory can be further simplified by<br />

ignoring quantum effects except for the initial<br />

tunneling of the most loosely bound electron<br />

into the continuum. Sufficiently high above the<br />

threshold, such a classical model agrees very<br />

well with the quantum results. Encouraged by<br />

this agreement, we have applied it to NSDI by<br />

few-cycle pulses and reproduced the data<br />

[LRE04] qualitatively [LFa04, FLS04].<br />

Dynamics in intense few-cycle pulses:<br />

Above-threshold ionization (ATI) has been the<br />

paradigm of an intense-laser atom process<br />

for 25 years. We have continued earlier work<br />

on ATI, especially high-order ATI, by few-cycle<br />

pulses with the goal of providing a “phasemeter”<br />

for a high-precision measurement of<br />

the carrier-envelope phase of a few-cycle<br />

pulse. It turns out that high-order ATI is a much<br />

more sensitive phase meter than the previously<br />

employed left-right asymmetry of the<br />

energy-integrated yield [MPB04, PLM04]. One<br />

has to cope, of course, with the much smaller<br />

number of high-energy electrons. We have<br />

also embarked on a study of ATI of negatively<br />

charged ions where one of the basic<br />

assumptions of the SFA, viz. the neglect of the<br />

Coulomb potential of once-ionized system, is<br />

very well justified and, moreover, the effect of<br />

the angular momentum of the electronic ground<br />

state can be investigated. We found excellent<br />

agreement of the SFA with experimental data<br />

for ionization of F - . The remaining discrepancy<br />

may be associated with a Feshbach resonance.<br />

If so, this would be the first observation of a<br />

qualitative many-electron effect in ATI [GMB04].<br />

UP2: High-intensity laser-cluster interaction<br />

For laser-irradiated clusters, we have confirmed<br />

our previous model-based conjecture,<br />

namely that the nonlinear (third-order) Mie<br />

resonance with the incident laser field has<br />

various observable consequences, by extensive<br />

numerical simulations with the help of Fermi<br />

molecular dynamics [FZB04]. In particular,<br />

emission of the third harmonic should be<br />

strongly enhanced near resonance, which has<br />

been observed experimentally in the mean<br />

time. We have continued this study with an<br />

investigation of the damping mechanism that<br />

is responsible for the width of the resonance.<br />

51


52<br />

It turns out that collisionless damping (Landau<br />

damping) is dominant for small clusters. For<br />

the one-dimensional case, a thin film, we have<br />

identified the inverse dependence of the<br />

damping constant on the film thickness as a<br />

criterion to confirm the significance of Landau<br />

damping [ZKP04].<br />

The interaction of short laser pulses with<br />

small rare-gas clusters was also investigated<br />

by using a microscopic, semiclassical model<br />

with an explicit treatment of the inner-atomic<br />

dynamics. Field and collisional ionization as<br />

well as recombination are incorporated selfconsistently<br />

so that the use of rates for these<br />

processes could be avoided. The laser absorption<br />

and ionization mechanisms in clusters<br />

at near-infrared (800 nm) and VUV wavelengths<br />

(100 nm) were analyzed. Dynamical<br />

ionization ignition was found to be the dominant<br />

inner-ionization mechanism, while collisional<br />

ionization is insignificant [Bau04a, Bau04b].<br />

Other references<br />

[1] Taieb et al.; Phys. Rev. Lett. 87 (2001) 053002<br />

Own publications <strong>2004</strong> ff<br />

(for full titles and list of authors see appendix 1)<br />

Bau04a: D. Bauer; Appl. Phys. B 78 (<strong>2004</strong>) 801-6<br />

Bau04b: D. Bauer; J. Phys. B: At. Mol. Opt. Phys. 37<br />

(<strong>2004</strong>) 3085-101<br />

BFe04: W. Becker, and M.V. Fedorov (editors): in<br />

Universality and Diversity in Science, Festschrift<br />

in Honor of Naseem K. Rahman’s 60th Birthday<br />

(World Scientific, <strong>2004</strong>)<br />

CDB04: F. Ceccherini et al.; Appl. Phys. B 78 (<strong>2004</strong>)<br />

851-4<br />

CMi04: A. Cerkic et al.; Phys. Rev. A 70 (<strong>2004</strong>)<br />

053402/1-7<br />

ELR04: E. Eremina et al.; Phys. Rev. Lett. 92 (<strong>2004</strong>)<br />

173001/1-14<br />

FLB04: C. Figueira de Morisson Faria et al.; Phys.<br />

Rev. A 69 (<strong>2004</strong>) 021402/1-4<br />

FLS04a: C. Figueira de Morisson Faria et al.; Phys.<br />

Rev. A 70 (<strong>2004</strong>) 043406/1-12<br />

FLS04b: C. Figueira de Morisson Faria et al.; Phys.<br />

Rev. A 69 (<strong>2004</strong>) 043405/1-17<br />

FZB04: S. V. Fomichev et al.; J. Phys. B: At. Mol. Opt.<br />

Phys. 37 (<strong>2004</strong>) L175-L82<br />

GMB04: A. Gazibegovic-Busuladzic et al.; Phys. Rev.<br />

A 70 (<strong>2004</strong>) 053403/1-13<br />

LFa04: X. Liu et al.; Phys. Rev. Lett. 92 (<strong>2004</strong>) 133006/<br />

1-4<br />

LRE04: X. Liu et al.; Phys. Rev. Lett. 93 (<strong>2004</strong>)<br />

263001/1-4<br />

MPB04: D. B. Milosevic et al.; Laser Physics Letters<br />

1 (<strong>2004</strong>) 93-9<br />

PLM04: G. G. Paulus et al.; Phys. Scr. T110 (<strong>2004</strong>)<br />

120-5<br />

Rei04: H. R. Reiss; in Universality and Diversity in<br />

Science: Festschrift in honor of Naseem K.<br />

Rahman’s 60th birthday, W. Becker, and M. V.<br />

Fedorov eds. (Singapore, <strong>2004</strong>) 151-66<br />

SBe04: M. B. Smirnov et al.; Phys. Rev. A 69 (<strong>2004</strong>)<br />

013201/1-7<br />

ZKP04: D. F. Zaretsky et al.; J. Phys. B: At. Mol. Opt.<br />

Phys. 37 (<strong>2004</strong>) 4817-30<br />

CMi05: A. Cerkic et al.; Laser Phys. 15 (2005) 268-75<br />

FZB05: S. V. Fomichev et al.; Phys. Rev. A 71 (2005)<br />

013201/1-13<br />

GEK05a: E. Gubbini et al.; Phys. Rev. Lett. 94 (2005)<br />

053601/1-4<br />

GEK05b: E. Gubbini et al.; J. Phys. B: At. Mol. Opt.<br />

Phys. 38 (2005) L87-93<br />

MBe05: D. B. Milosevic et al.; J. Mod. Opt. 52 (2005)<br />

233-41<br />

RKr05: H. R. Reiss et al.; J. Phys. A: Math. Gen. 38<br />

(2005) 527-9<br />

submitted<br />

MBB: D. B. Milosevic et al.; J. Mod. Opt.<br />

MPB: D. B. Milosevic et al.; Phys. Rev. Lett.<br />

UCh: V.I. Usachenko et al.; Phys. Rev. A<br />

Invited talks at international conferences <strong>2004</strong><br />

(for full titles see appendix 2)<br />

P. Agostini; Attosecond MURI Workshop (Berkeley,<br />

USA, <strong>2004</strong>-12)<br />

D. Bauer; 329 th WE-Heraeus Seminar “Manipulation<br />

of few-body quantum dynamics” (Bad Honnef,<br />

<strong>2004</strong>-06-27)<br />

W. Becker; OSA, <strong>Annual</strong> Meeting (Rochester, NY,<br />

USA, <strong>2004</strong>-10-12)<br />

W. Becker together with S.V. Fomichev, S.V.<br />

Popruzhenko, D. F. Zaretsky, and D. Bauer; 13 th<br />

International Laser Physics Workshop, LPHYS’04<br />

(Trieste, Italy, <strong>2004</strong>-07)<br />

U. Eichmann; International Workshop and Seminar<br />

“Rydberg Physics” (Dresden, <strong>2004</strong>-05-03):<br />

Excitation routes to doubly highly excited Rydberg<br />

atoms: Fano lineshapes revisited<br />

U. Eichmann; 13 th Laser Physics Workshop, LPHYS’04<br />

(Trieste, Italy, <strong>2004</strong>-07-15)<br />

U. Eichmann; International Conference on Ultrahigh<br />

Intensity Lasers, ICUILS <strong>2004</strong> (Lake Tahoe, USA,<br />

<strong>2004</strong>-07-06)<br />

E. Eremina; 329 th WE-Heraeus Seminar: “Manipulation<br />

of Few-Body Quantum Dynamics” (Bad Honnef,<br />

Physik-Zentrum, <strong>2004</strong>-06)<br />

C. Figueira de Morisson Faria together with H.<br />

Schomerus, X. Liu, and W. Becker; 13 th International<br />

Laser Physics Workshop (LPHYS’04)<br />

(Trieste, Italy, <strong>2004</strong>-07-12)<br />

X. Liu together with E. Eremina H. Rottke, W. Sandner,<br />

E. Goulielmakis, K. O’Keefe, M. Lezius, F. Krausz,<br />

F. Lindner, M. Schätzel, G. G. Paulus, H. Walther;<br />

LPHYS’04 (Trieste, Italien, <strong>2004</strong>-07-04)<br />

D. B. Milosevic, G. G. Paulus and W. Becker; 13 th<br />

International Laser Physics Workshop LPHYS’04<br />

(Trieste, Italien, <strong>2004</strong>-07-17)<br />

S. V. Popruzhenko together with W. Becker, Ph. A.<br />

Korneev, and D. F. Zaretsky; International Workshop<br />

on Atomic Physics (<strong>Max</strong>-Planck-<strong>Institut</strong> für Physik<br />

komplexer Systeme, Dresden, <strong>2004</strong>-12)<br />

H. Rottke; 8 th EPS Conference on Atomic and Molecular<br />

Physics (Rennes, Frankreich, <strong>2004</strong>-07-07)<br />

W. Sandner; ICUIL <strong>2004</strong>, (Lake Tahoe, USA, <strong>2004</strong>-<br />

10-06)


2-03: Free Clusters and Molecules<br />

T. Schultz, C. P. Schulz, W. Radloff (Project coordinators)<br />

and T. Laarmann, H.-H. Ritze, M. Boyle, H. Lippert, P.-A. Henry, E. Samoilova, I. Shchatsinin, V. R. Smith,<br />

A. Stalmashonak, T. Caspers, D. Kandula<br />

1. Overview<br />

The goal of this project is to understand<br />

ultrafast, photo-induced processes in isolated<br />

molecules and molecular clusters in the gas<br />

phase and – as far as possible – to control these<br />

dynamics using nonlinear optical methods and<br />

short laser pulses.<br />

The following themes are presently in the<br />

focus of the research activities: We initiate and<br />

probe elementary photochemical reactions in<br />

the time domain using low intensity laser fields.<br />

Our research is focused on photo-induced<br />

excited state dynamics of biologically relevant<br />

chromophore molecules, such as amino acids<br />

or DNA bases embedded in small clusters of<br />

solvent molecules. Hydrogen, proton and<br />

electron transfer, internal conversion, isomerisation<br />

and fragmentation are the key<br />

processes studied.<br />

At higher laser intensities (up to 10 16 W/cm 2 ),<br />

finite systems such as C 60 and clusters of water<br />

or ammonia molecules are the model objects<br />

of interest. The complex nonadiabatic multielectron<br />

dynamics (NMED) induced in such fields<br />

leads to multielectron excitation, (multiple)<br />

ionization, fragmentation and rearrangement.<br />

Understanding the energy relaxation and redistribution<br />

between the electronic and nuclear<br />

system is crucial for modelling and manipulating<br />

the subsequent formation of highly<br />

excited neutral Rydberg states, multiply ionized<br />

states and fragmentation. Finally, Coulomb<br />

explosion and hydrodynamic cluster expansion<br />

are expected as a final stage at very high<br />

intensities.<br />

As a long-term perspective optimal control<br />

of specific physical and chemical reactions in<br />

large finite systems – both in the linear and highly<br />

nonlinear intensity regime – is envisaged.<br />

2. Subprojects and collaborations<br />

UP1: Photochemical elementary reactions<br />

in biologically relevant systems: solvation,<br />

hydrogen-, proton- and electron-transfer.<br />

Partially the project is complementary to MBI<br />

project 2-04 (Vibrational and Reaction<br />

Dynamics in the Condensed Phase). This work<br />

is a project (TP A4) of the DFG Collaborative<br />

Research Center 450 “Analysis and control of<br />

ultrafast, photoinduced reactions”.<br />

UP2: Finite systems in moderately strong<br />

laser fields (up to 10 16 W/cm 2 ): nonadiabatic<br />

multi-electron dynamics and nuclear<br />

motion. Close collaboration exists with project<br />

2-02 (Ionization Dynamics in Intense Laser<br />

Fields). This work is also a project (TP A2) of<br />

the DFG Collaborative Research Center 450.<br />

3. Results in <strong>2004</strong><br />

In UP1, we began a systematic study of<br />

the excited state relaxation processes in DNA<br />

bases. In a model base pair, 2-aminopyridinedimer,<br />

we characterized an intermolecular<br />

electron-proton transfer reaction coordinate<br />

[SSR04]. Important for the conceptual layout<br />

and understanding of these experiments was<br />

the fruitful interaction with external theory<br />

groups as well as the constant in-house<br />

theoretical support with ab-initio modelling.<br />

The hydrogen transfer along this coordinate<br />

reduced the excited state lifetimes from nanoseconds<br />

to picoseconds. Similar relaxation<br />

pathways may increase the photostability of<br />

planar, hydrogen-bound chromophores such<br />

as the Watson-Crick base pairs. Deuteration<br />

of aminopyridine resulted in small isotope<br />

effects, indicating that proton transfer is not the<br />

rate-limiting step. A variation of the excitation<br />

energy within 250-293 nm also had small<br />

effects and we speculate that electronic factors<br />

are rate limiting in this system.<br />

In adenine clusters and adenine-water<br />

clusters, we observed two competing relaxation<br />

pathways for the optically bright ππ* states<br />

(Fig. 1a,b) [SLU, RLS]. A slower relaxation<br />

pathway in adenine proceeded via the nπ*<br />

Fig. 1:<br />

Time-dependent ion<br />

signals for adenine<br />

clusters, thymine<br />

clusters and the adeninethymine<br />

base pair dimer<br />

excited with 272 nm and<br />

ionized with 800 nm. The<br />

τ 1 decay component is<br />

due to the ππ* state, the<br />

τ 2 component due to the<br />

nπ* state.<br />

53


54<br />

Fig. 2:<br />

Results from a<br />

fragmentation experiment<br />

with temporally shaped<br />

pulses. The lower left<br />

panel shows a ‘standard’<br />

C mass spectrum after<br />

60<br />

interaction with a 50 fs<br />

800nm laser pulse. Its<br />

temporal and spectral<br />

profile is shown in the<br />

lower right panel as<br />

obtained from an X-<br />

FROG analysis. The<br />

mass spectrum in the top<br />

left panel documents a<br />

mass spectrum after 100<br />

generations of iterative<br />

trial to maximize the C 3<br />

fragment. The temporal<br />

and spectral<br />

characteristics of the<br />

pulse responsible for this<br />

mass spectrum is given<br />

in the top right panel.<br />

+<br />

state with a lifetime of 1 ps. In adenine water<br />

clusters, another relaxation pathway reduced<br />

the excited state lifetime to ~100 fs. Using ab<br />

initio calculations, we linked the faster relaxation<br />

to a stabilization of πσ* states in the clusters.<br />

Both relaxation channels appear in adenine<br />

dimer and larger clusters, in agreement to a<br />

moderate πσ* stabilization predicted by theory.<br />

In thymine, a similar ππ* to nπ* relaxation<br />

channel exists. In the corresponding clusters,<br />

the πσ* states was not sufficiently stabilized to<br />

compete with this relaxation channel and we<br />

found identical dynamics for all clusters (Fig.<br />

1b,c) [SLU]. The adenine thymine base pair<br />

behaved similar to the corresponding monomers<br />

or dimers (Fig. 1c) and no specific relaxation<br />

channel could be identified for this base pair.<br />

First attempts were made to use nonadiabatic<br />

alignment for the selection of cluster<br />

species. Impulsive Raman excitation of<br />

rotational modes by picosecond laser pulses<br />

can lead to high degrees of molecular alignment.<br />

This alignment modulates the excitation crosssections<br />

in a pump-probe experiments and<br />

can thus be employed for selection. So far, our<br />

experience shows that significant improvements<br />

in laser stability will be necessary to obtain<br />

the required signal to noise ratio.<br />

Excited state dynamics of small hydrocarbon<br />

radicals were investigated in collaboration<br />

with Prof. I. Fischer (Universität Würzburg). For<br />

the 2 2 A’ (3s) Rydberg state of ethyl excited at<br />

250 nm, a lifetime of 20 fs was found, much<br />

faster then predicted from the known<br />

dissociation behaviour. The 3 2 B 1 state of<br />

propargyl excited at 255 nm showed a slower<br />

decay with a time constant 50 fs, which is in<br />

agreement with subsequent statistical fragmentation<br />

observed in the ground state. The<br />

4 2 B 2 state of benzyl excited at 255 nm<br />

decayed within 150±30 fs.<br />

In the focus of UP2 were two aspects of the<br />

excitation and ionisation dynamics of finite<br />

systems: While in the first 6 month of <strong>2004</strong><br />

experiments with shaped pulses explored the<br />

possibilities of optimal control schemes, in the<br />

second half of the year the ionisation dynamics<br />

of C 60 after irradiation with sub-10fs pulses<br />

have been investigated. The latter experiments<br />

were enabled by a close collaboration with the<br />

project 1-01 and profited from collaboration with<br />

theory groups.<br />

We have build a femtosecond pulse shaper<br />

using the well-established technique of spectral<br />

phase control by liquid crystal modulators [1].<br />

Our pulse shaper is capable to transmit the<br />

bandwidth of a 25 fs pulse with up to 800 µJ<br />

pulse energy. The 640 pixels of the liquid crystal<br />

modulator allow a maximal spread of the pulse<br />

up to about 4 ps. We have used the generic<br />

algorithm in a closed feedback loop to optimise<br />

different fragments from the C fullerene. Fig. 2<br />

60<br />

+ shows an example for the C fragment. A<br />

3<br />

strong signal enhancement of about 10 is found<br />

when C is exposed to the structured multiple<br />

60<br />

pulse characterized by the X-FROG pattern in<br />

the upper right panel as opposed to a short<br />

50 fs pulse of equal total fluence. Presently,<br />

we are unable to correlate the observed


temporal pulse shape with know properties of<br />

the C 60 fullerene, such as vibrational frequencies<br />

etc. More refined experiments using a reduced<br />

parameter space, e.g. pulse trains with<br />

variable width, distance and amplitude are<br />

planed for the future to gain a more detailed<br />

insight into these processes.<br />

In collaboration with project 1-01 (Ultrafast<br />

nonlinear optics and few cycle pulses) we<br />

have investigated the photo excitation and<br />

ionisation of C fullerenes with ultrashort pulses<br />

60<br />

having a duration of about 9 fs and an intensity<br />

up to 5x1014 W/cm2 . By analysing the mass<br />

spectra it has been found that the abundance<br />

q+ of higher charged C (q = 2, 3, ...) decreases<br />

60<br />

compared to earlier measurements with longer<br />

laser pulses (see [HLS]). These experiments<br />

have initiated a new collaboration with the<br />

theoretical group of A. Becker (MPI for the<br />

Physics of Complex Systems, Dresden). They<br />

are able to calculate the ionisation probability<br />

q+ for C using an S-matrix approach [2]. The<br />

60<br />

theoretical calculation confirmed the decreasing<br />

ionisation efficiency with decreasing pulse<br />

duration although a quantitative comparison<br />

is difficult due to the unknown detection<br />

probability of the higher charged ions. We were<br />

also able to measure the ion yield for the<br />

different charge states of C as a function of<br />

60<br />

the laser intensity at 9 fs pulse duration to<br />

determine the order of the ionisation process<br />

and the saturation intensity. These data are<br />

presently evaluated.<br />

Other references<br />

[1] A.M. Weiner, Rev. Sci. Instrum. 71 (2000) 1929<br />

[2] A. Becker, L. Plaja, P. Moreno, M. Nurhuda, F.H.M.<br />

Faisal, Phys. Rev. A 64 (2001) 023408<br />

Own publications <strong>2004</strong> ff<br />

(for full titles and list of authors see appendix 1)<br />

BHS04: M. Boyle et al.; Phys. Rev. A 70 (<strong>2004</strong>)<br />

051201/1-4<br />

DBS04: G. Droppelmann et al.; Phys. Rev. Lett. 93<br />

(<strong>2004</strong>) 023402/1-4<br />

LdG04: T. Laarmann et al.; Phys. Rev. Lett. 92 (<strong>2004</strong>)<br />

143401/1-4<br />

LMO04: H. Lippert et al.; Phys.Chem.Chem.Phys. 6<br />

(<strong>2004</strong>) 4283-95<br />

LRH04a: H. Lippert et al.; ChemPhysChem 5 (<strong>2004</strong>)<br />

1423-7<br />

LRH04b: H. Lippert et al.; Chem. Phys. Lett. 398<br />

(<strong>2004</strong>) 526-31<br />

LSS04a: H. Lippert et al.; in Femtochemistry and<br />

Femtobiology: Ultrafast Events in Molecular<br />

Science (Elsevier, Amsterdam, <strong>2004</strong>) 49-52<br />

LSS04b: H. Lippert et al.; Phys.Chem.Chem.Phys.<br />

6 (<strong>2004</strong>) 2718-24<br />

RLS04: H.-H. Ritze et al.; J. Chem. Phys. 120 (<strong>2004</strong>)<br />

3619-29<br />

SCS04: C. P. Schulz et al.; Phys. Rev. Lett. 92 (<strong>2004</strong>)<br />

013401/1-4<br />

SES04: C. Stanciu et al.; in Proceeding SPIE (<strong>2004</strong>)<br />

Vol. 5352, 116-25<br />

SLR04: V. Stert et al.; Chem. Phys. Lett. 388 (<strong>2004</strong>)<br />

144-9<br />

SNR04: O. Steinkellner et al.; J. Chem. Phys. 121<br />

(<strong>2004</strong>) 1765-9<br />

SSH04: C. P. Schulz et al.; Isr. J. Chem. 44 (<strong>2004</strong>)<br />

19-25<br />

SSR04: T. Schultz et al.; Science 306 (<strong>2004</strong>) 1765-8<br />

SUQ04: T. Schultz et al.; in Femtochemistry and<br />

Femtobiology: Ultrafast Events in Molecular<br />

Science (Elsevier, Amsterdam, <strong>2004</strong>) 45-8<br />

USZ04a: S. Ullrich et al.; J. Am. Chem. Soc. 126<br />

(<strong>2004</strong>) 2262-3<br />

USZ04b: S. Ullrich et al.; Phys.Chem.Chem.Phys. 6<br />

(<strong>2004</strong>) 4167-9<br />

in press (as of Jan. 2005)<br />

HCH05: K. Hansen et al.; New J. of Phys.: Conf.<br />

Series 4 (2005) 282-5<br />

SLU05: E. Samoilova et al.; J. Am. Chem. Soc. 127<br />

(2005) 1782-6<br />

TBS05: M. S. Taylor et al.; J. Chem. Phys. 122 (2005)<br />

054310/1-11<br />

vLW05: K. v. Haeften et al.; J. Phys. B: At. Mol. Opt.<br />

Phys. 38 (2005) 373-86<br />

WdG05: H. Wabnitz et al.; Phys. Rev. Lett. 94 (2005)<br />

023001/1-4<br />

HLS: I. V. Hertel et al.; Adv. At. Mol. Opt. Phys.<br />

LHJ: A. Lassesson et al.; Eur. Phys. J. D<br />

ZNS: M. Zierhut et al.; J. Chem. Phys.<br />

submitted (until 21st Febr. 2005)<br />

RLS: H.-H.Ritze et al.; submitted to J. Chem. Phys.<br />

Invited talks at international conferences <strong>2004</strong><br />

(for full titles see appendix 2)<br />

M. Boyle; Workshop “European Cluster Cooling<br />

Network <strong>2004</strong>“, Glasgow, England, <strong>2004</strong><br />

I. V. Hertel; German Israeli Cooperation in Ultrafast<br />

Laser Technology (GILCULT), Weizmann <strong>Institut</strong>e,<br />

Revohot, Israel, <strong>2004</strong><br />

I. V. Hertel; European Research Conference on<br />

“Molecules of Biological Interest in the Gas Phase“,<br />

Exceter, UK, <strong>2004</strong><br />

I. V. Hertel; Gordon Conference Multiphoton Processes,<br />

Tilton School, Tilton, New Hampshire, USA, <strong>2004</strong><br />

T. Laarmann; International Workshop on Atomic<br />

Physics, Dresden, <strong>2004</strong><br />

C. P. Schulz; International Workshop on Atomic<br />

Physics, Dresden, <strong>2004</strong><br />

C. Stanciu; Photonics West <strong>2004</strong>, San Jose, <strong>2004</strong><br />

55


56<br />

2-04: Molecular Vibrational and Reaction Dynamics in the Condensed Phase<br />

E. T. J. Nibbering (Project coordinator)<br />

and W. Werncke, D. Leupold, B. Voigt, J. Dreyer, K. Heyne, V. Kozich, A. Usman, N. Huse,<br />

O. F. Mohammed, S. Ashihara<br />

1. Overview<br />

The aim of the project is the real-time determination<br />

of the ultrafast structural dynamics of<br />

molecular and biomolecular systems [Nib04].<br />

The first main target is the observation and<br />

analysis of ultrafast processes in equilibriumstate<br />

structures while they explore the energy<br />

landscapes [NEl04]. These energy landscapes<br />

are not static but fluctuating due to the<br />

dynamical interactions of these structures with<br />

the surroundings (such as liquid solvent shells,<br />

or the protein backbone). The ultrafast nature<br />

of these fluctuations necessitate femtosecond<br />

time resolution for the structure-resolving<br />

spectroscopic techniques. The second main<br />

target is the determination of biomolecular<br />

structures that undergo substantial geometric<br />

rearrangements induced by optically triggered<br />

chemical reactions (photochemistry) [NFP05].<br />

Chemical reactions studied include hydrogen<br />

and proton transfer, electron transfer, bond<br />

fission, ring-opening/closure and cis/trans isomerizations.<br />

2. Subprojects and collaborations<br />

Research in this project is structured into<br />

three major subprojects:<br />

UP1: Coherent vibrational response of<br />

hydrogen bonds,<br />

UP2: Ultrafast chemical reaction dynamics,<br />

UP3: Vibrational energy flow.<br />

Connections can be made with the following<br />

MBI-projects:<br />

UP2 & UP3: project 2.03 (Schulz, Schultz et al.)<br />

for comparison with chemical reaction dynamics<br />

of model systems in gas/cluster phase.<br />

External collaborations exist with:<br />

UP1: J. Manz / O. Kühn (Freie Universität <strong>Berlin</strong>,<br />

Germany) through SFB 450; S. Mukamel<br />

(University of California at Irvine, USA); R.J.D.<br />

Miller (University of Toronto, Canada).<br />

UP2: E. Pines (Ben Gurion University of the<br />

Negev, Beer-Sheva, Israel) through GIF 722/<br />

01; H. Fidder (Uppsala Universitet, Sweden);<br />

Tomasz Zemojtel (University of Würzburg,<br />

Germany); P. M. Kozlowski (University of<br />

Louisville, Kentucky, USA); J. Korppi-Tommola<br />

(University of Jyväskylä, Finland).<br />

UP3: V. Olrovich (Academy of Sciences<br />

Belarus, Minsk) though DFG WE 1489 and<br />

WTZ.<br />

3. Results in <strong>2004</strong><br />

UP 1: Coherent response in hydrogen bonds<br />

(SFB 450-B2)<br />

The purpose of this project is to understand<br />

the coherent dynamics of O-H/O-D stretching<br />

modes in hydrogen bonds, with which one can<br />

explore the potential of optically steering<br />

proton transfer. Coherent nuclear motions as<br />

well as processes of phase and population<br />

relaxation in intra- and intermolecular hydrogen<br />

bonds are studied experimentally by ultrafast<br />

infrared (IR) pump-probe and photon echo<br />

spectroscopy [NEl04]. Within the collaborative<br />

research centre SFB450 a collaboration exists<br />

with the quantum chemistry group at the Freie<br />

Universität <strong>Berlin</strong> to elucidate the mechanisms<br />

that underlie these hydrogen bonded O-H/O-<br />

D stretching band line shapes. With the Miller<br />

group (University of Toronto, Canada) a phasestable<br />

diffractive optics set-up has been<br />

designed for heterodyne detected multidimensional<br />

infrared spectroscopy, with which<br />

molecular couplings in hydrogen bonded<br />

systems ranging from well-ordered acetic acid<br />

dimer [HBCa, HBCb] to disordered liquids such<br />

as water [CBH, HAN] are now investigated.<br />

Theoretical evaluation of molecular response<br />

in multidimensional infrared spectroscopy is<br />

pursued in close collaboration with the Mukamel<br />

group (University of California at Irvine, USA).<br />

Hydrogen bonded carboxylic groups are<br />

structural motifs that often stabilize protein<br />

conformations, and play a fundamental role<br />

in proton pumps through membranes. We use<br />

the cyclic acetic acid dimer as a model system<br />

to investigate the coherence properties of O-<br />

H/O-D stretching vibrations in intermolecular<br />

hydrogen bonds. In numerous theoretical<br />

surveys it has been proposed that the steadystate<br />

infrared line shape of acetic acid dimer<br />

is determined by the following interactions of<br />

the O-H/O-D stretching modes: a) anharmonic<br />

coupling with low-frequency modes that<br />

modulate the hydrogen bond distance; b)<br />

Davydov or excitonic coupling between the<br />

O-H stretching oscillators; c) Fermi resonances<br />

with overtones or combination bands; d) homogeneous<br />

or inhomogeneous broadening due<br />

to coupling with a fluctuating bath. Here we<br />

investigate the relative importance of these<br />

coupling mechanisms underlying the vibrational<br />

dynamics of the hydrogen bond in acetic acid<br />

dimer in a combined experimental and<br />

theoretical approach.


Experimental studies on hydrogen bonded<br />

systems:<br />

The coupling mechanisms can be distinguished<br />

with different nonlinear IR spectroscopic<br />

techniques [EHH04, EHH]. We have estimated<br />

the microscopic origin for the coherent nuclear<br />

motions of intermolecular hydrogen bonds in<br />

acetic acid dimer with femtosecond IR pumpprobe<br />

spectroscopy [HHD04]. For cyclic acetic<br />

acid dimers consisting of identical or different<br />

isotopomers, we have found that two hydrogen<br />

bond low-frequency modes underlie<br />

pronounced oscillations in the pump-probe<br />

transients, the 145 cm -1 in-plane bending mode,<br />

and the 170 cm -1 in-plane stretching mode. A<br />

weaker contribution of 50 cm -1 is caused by a<br />

methyl torsion mode. Oscillatory signals due<br />

to the Davydov (excitonic) coupling between<br />

the two O-H or O-D stretching oscillators are<br />

completely absent in the pump-probe signals,<br />

as has experimentally been confirmed by<br />

comparing the response of (CD 3 COOH) 2 with<br />

that of CD 3 COOH-CD 3 COOD.<br />

Photon echo spectroscopy of the O-H<br />

stretching mode is sensitive to anharmonic<br />

couplings with low-frequency modes and to<br />

Fermi resonances with combination overtone<br />

levels of the fingerprint vibrations. A detailed<br />

comparison with theoretical calculations (see<br />

below) has shown that these different couplings<br />

have similar magnitude. Due to the resulting<br />

intrinsic complex fine pattern in the absorption<br />

O-H stretching line shape, a multitude of<br />

coherences are generated by femtosecond<br />

excitation, resulting in ultrafast non-exponential<br />

dephasing of the O-H stretching polarization.<br />

The anharmonically coupled low-frequency<br />

modes lead to quantum beats in homodyne<br />

detected photon echo signals [EHH04]. Heterodyne-detected<br />

two-dimensional spectroscopy<br />

[HBC] on the other hand reveals the fine level<br />

structure caused by the Fermi resonances<br />

(Fig. 1).<br />

With two-colour pump-probe spectroscopy<br />

we have been able to study in phthalic acid<br />

monomethylester the anharmonic coupling of<br />

the O-H stretching mode with the C-O and<br />

C=O stretching and O-H bending modes and<br />

relaxation pathways that are expected to be<br />

present through the overtone and combination<br />

bands of these fingerprint vibrations that<br />

couple with the O-H stretching mode through<br />

Fermi resonances [HNE04, HPN]. A cascaded<br />

energy redistribution pathway has been<br />

deduced along the O-H bending and two O-H<br />

out-of-plane deformation modes.<br />

Ab initio simulation of linear and coherent<br />

multidimensional infrared vibrational spectra<br />

of hydrogen bonded systems:<br />

Detailed calculations based on density<br />

functional theory and density matrix models<br />

have demonstrated that both anharmonic<br />

coupling to low-frequency modes as well as<br />

Fermi resonance coupling with fingerprint<br />

modes are important mechanisms explaining<br />

the lineshape of the O-H stretching IR absorption<br />

band in acetic acid dimers. The calculations<br />

allow for the first time for a quantitative understanding<br />

[Drea] of the linear high-resolution<br />

gas phase as well as solution phase IR spectra<br />

(Fig. 2a).<br />

Predicted coherent two-dimensional infrared<br />

spectra (Fig. 2b) show distinct signatures for<br />

the different coupling mechanisms [Dreb]. In<br />

going from anharmonic coupling of O-H<br />

stretching to low-frequency modes to Fermi<br />

resonance coupling with fingerprint mode<br />

combination tones to a combined mechanism<br />

the number of individual 2D peaks grows considerably<br />

and the complexity of the vibrational<br />

signatures increases substantially. Introduction<br />

of homogeneous broadening causes many<br />

individual peaks to overlap to a single vibrational<br />

feature. The 2D IR spectra are dominated by<br />

vibrational signatures originating from cross<br />

peaks due to Fermi resonance couplings.<br />

Fig. 1:<br />

Heterodyne detected<br />

three-pulse photon echo<br />

result for the cyclic dimer<br />

(CH 3 COOH) 2 (b),<br />

recorded for the<br />

population waiting time of<br />

400 fs, when the excited<br />

state has decayed. This<br />

signal is determined by<br />

the Liouville space<br />

pathways going through<br />

the O-H stretching<br />

ground state, where the<br />

2D spectrum is governed<br />

by the fundamental O-H<br />

stretching transitions<br />

only. The dotted line<br />

marks the diagonal and<br />

off-diagonal peaks for<br />

excitation frequency<br />

2920 cm -1 , also shown as<br />

blue line in (a) for<br />

comparison with the<br />

steady state IR<br />

spectrum.<br />

Fig. 2:<br />

a) Calculated (sticks)<br />

and experimental linear<br />

IR spectra (liquid phase:<br />

red line; gas phase blue<br />

line; latter taken from<br />

Emmeluth et al., J. Chem.<br />

Phys. 18 (2003) 2242).<br />

b) Calculated 2D-IR<br />

spectrum (R3 Liouville<br />

space pathways only to<br />

simulate ground<br />

vibrational state<br />

absorption) showing<br />

predominantly multimode<br />

coherences from Fermi<br />

resonance couplings.<br />

57


58<br />

Fig. 3:<br />

Transient experimental<br />

band intensities of the<br />

C=O stretching marker<br />

mode of acetic acid in<br />

the acid-base<br />

neutralization reaction<br />

between pyranine and<br />

acetate for different<br />

base concentrations.<br />

Solid curves have been<br />

calculated with two<br />

static terms for “tight”<br />

and “loose” complexes<br />

and a diffusive part for<br />

initially uncomplexed<br />

pyranine.<br />

UP2: Ultrafast chemical reaction dynamics<br />

(GIF 722/01 and EU User Facility funds)<br />

Photoinduced chemical transformations<br />

are studied by measuring transient vibrational<br />

spectra after electronic excitation [NFP05]. Sitespecific<br />

molecular geometries and processes<br />

such as intramolecular vibrational redistribution<br />

and vibrational cooling are revealed.<br />

In a joint effort between the MBI and the<br />

Ben Gurion University of the Negev (Beer-<br />

Sheva, Israel), we have observed bimodal<br />

reaction dynamics in the neutralization reaction<br />

between the photoacid pyranine and the base<br />

acetate in water (Fig. 3) [RMM04, RPM04,<br />

MRD, RMP]. In “tightly” bound acid-base<br />

complexes, the proton transfer proceeds<br />

extremely fast (within 150 femtoseconds). In<br />

contrast “loose” encounter pairs, adding a<br />

second static term to the observed proton<br />

transfer dynamics, react with a 6 ps time<br />

constant. With the second static term a direct<br />

connection between the diffusion controlled<br />

reaction models of Eigen-Weller and of Collins-<br />

Kimball can be made. The slower dynamics of<br />

the “loose” encounter pairs may be caused by<br />

solvent shell rearrangements, or by proton transmission<br />

through a von Grotthuss mechanism.<br />

Femtosecond IR spectroscopy has also<br />

revealed a solvent dependent photoacidity<br />

state of pyranine [MDM].<br />

In a joint project between the MBI and the<br />

University of Uppsala results on the ultrafast<br />

internal conversion (IC) dynamics of a photochromic<br />

spiropyran-merocyanine switch pair<br />

[FRN04] have lead to a refinement of the wellestablished<br />

“energy gap law“ for IC, to a<br />

connection of two theoretical explanations for<br />

IC, currently believed to be unrelated and to a<br />

prediction that regulation of (photo-)chemical<br />

yields at the expense of photophysical decay<br />

can be accomplished by active control of<br />

molecular conformations.<br />

In a joint project by the MBI, the University<br />

of Würzburg, the European Molecular Biology<br />

Laboratory in Heidelberg (all Germany) and<br />

the University of Louisville (Kentucky, USA) we<br />

have used femtosecond infrared polarization<br />

spectroscopy and density functional theory in<br />

a study on the key signaling molecule nitric<br />

oxide (NO) bound to myoglobin [ZRH04]. Our<br />

results show that after photolysis a substantial<br />

fraction of NO recombines within the first few<br />

picoseconds. The diatomic ligand is severely<br />

tilted in the protein and the Fe-NO moiety is<br />

able to sample a wide range of off-axis tilting<br />

and bending conformations.<br />

Femtosecond infrared polarization<br />

spectroscopy has also been used to determine<br />

the ground state structure and the solventdependent<br />

excited-state lifetime of trans-Sphenyl-thio-p-hydroxycinnamate,<br />

a model<br />

compound for the chromophore of photoactive<br />

yellow protein [UMH05]. Comparison of our<br />

results with earlier reported work on model<br />

compounds and on PYP suggests an intricate<br />

tuning mechanism of the protein environment<br />

for the relaxation dynamics of PYP.<br />

In a femtosecond study of the light-induced<br />

CO-ligand dissociation from Ru(dcbpy)(CO) 2 I 2<br />

(a collaboration between the MBI and the<br />

University of Jyväskylä, Finland) we have<br />

observed that besides the formation of photoproduct<br />

on a picosecond time scale a significant<br />

fraction follows the efficient recombination<br />

pathway to the electronic ground state<br />

[LAM04].<br />

UP3: Vibrational energy flow (DFG WE 1489/<br />

5 and WTZ- BLR 02/003)<br />

The aim is to characterize vibrational<br />

populations of molecules during ultrafast<br />

photochemical reactions, as well as subsequent<br />

intramolecular vibrational energy redistribution<br />

and energy transfer to the environment.<br />

We applied picosecond resonance Raman<br />

spectroscopy to monitor vibrational populations<br />

after a complete proton transfer cycle of the<br />

important photostabilizer 2-(2’-hydroxy-5’methylphenyl)benzotriazole<br />

(TINUVIN)<br />

[KDW04, WKD]. The time dependence of the<br />

resonance Raman line shape function of the<br />

strongly vibrationally excited molecule prevents<br />

a direct extraction of kinetic data. Instead, we<br />

developed a method to derive kinetic data for<br />

such systems [KWe05]. In TINUVIN a lowfrequency<br />

mode, already earlier identified as<br />

the hydrogen transfer promoting mode, serves<br />

as the accepting mode of most of the excess<br />

energy that is released in the hydrogen transfer<br />

cycle. A Boltzmann distribution of the excess<br />

energy is established in the molecule 10-15 ps<br />

after initiation of the reaction, followed by<br />

vibrational cooling that is completed in 40 ps.<br />

In a collaboration with the Stepanov <strong>Institut</strong>e<br />

of Physics (Minsk, Belorussia) we developed<br />

a picosecond hybrid Raman optical parametric<br />

amplifier representing a useful device for applications<br />

in time-resolved spectroscopy [VSO05].


Own publications <strong>2004</strong> ff<br />

(for full titles and list of authors see appendix 1)<br />

KWe05: V. Kozich et al.; J. Mol. Struct. 735-736 (2005)<br />

145-151<br />

NFP05: E. T. J. Nibbering et al.; Annu. Rev. Phys.<br />

Chem. 56 (2005) 337-367<br />

UMH05: A. Usman et al.; Chem. Phys. Lett. 401<br />

(2005) 157-163<br />

VSO05: A. I. Vodchits et al.; J. Opt. Soc. Am. B 22<br />

(2005) 453-458<br />

EHH04: T. Elsaesser et al.; in Femtochemistry and<br />

Femtobiology: Ultrafast Events in Molecular<br />

Science 157-165, J. T. Hynes and M. M. Martin<br />

eds. (Elsevier, Amsterdam, <strong>2004</strong>)<br />

FRN04: H. Fidder et al.; J. Am. Chem. Soc. 126 (<strong>2004</strong>)<br />

3789-3794<br />

HHD04: K. Heyne et al.; J. Chem. Phys. 121 (<strong>2004</strong>)<br />

902-913<br />

HNE04: K. Heyne et al.; J. Phys. Chem. A 108 (<strong>2004</strong>)<br />

6083-6086<br />

KDW04: V. Kozich et al.; Chem. Phys. Lett. 399 (<strong>2004</strong>)<br />

484-489<br />

LAM04: V. Lehtovuori et al.; J. Phys. Chem. A 108<br />

(<strong>2004</strong>) 1644-1649<br />

Nib04: E. T. J. Nibbering; in Encyclopedia of Modern<br />

Optics 5 253-263, R. D. Guenther, D. G. Steel,<br />

and L. Bayvel eds. (Elsevier, Oxford, <strong>2004</strong>)<br />

NEl04: E. T. J. Nibbering et al.; Chem. Rev. 104 (<strong>2004</strong>)<br />

1887-1914<br />

RMM04: M. Rini et al.; in Femtochemistry and Femtobiology:<br />

Ultrafast Events in Molecular Science<br />

189-192, J. T. Hynes and M. M. Martin eds.<br />

(Elsevier, Amsterdam, <strong>2004</strong>)<br />

RPM04: M. Rini et al.; J. Chem. Phys. 121 (<strong>2004</strong>)<br />

9593-9610<br />

ZRH04: T. Zemojtel et al.; J. Am. Chem. Soc. 126<br />

(<strong>2004</strong>) 1930-1931<br />

in press (as of Jan. 2005)<br />

CBH: M. L. Cowan et al.; Nature<br />

Dreb: J. Dreyer; Int. J. Quantum Chem.<br />

EHH: T. Elsaesser et al.; in Time-Resolved Vibrational<br />

Spectroscopy XI<br />

HPN: K. Heyne et al.; in Ultrafast Phenomena XIV, T.<br />

Kobayashi, T. Okada, T. Kobayashi et al. eds.<br />

(Springer Verlag, <strong>Berlin</strong>, Germany)<br />

HAN: N. Huse et al.; Chem. Phys. Lett.<br />

HBC: N. Huse et al.; in Ultrafast Phenomena XIV, T.<br />

Kobayashi, T. Okada, T. Kobayashi et al. eds.<br />

(Springer Verlag, <strong>Berlin</strong>, Germany)<br />

LLS: D. Leupold et al.; in Biochemistry and Biophysics<br />

of Chlorophylls, B. Grimm, R. Porra, W. Rüdiger et<br />

al. eds. (Kluwer)<br />

MDM: O. F. Mohammed et al.; ChemPhysChem<br />

MRD: O. F. Mohammed et al.; in Ultrafast Phenomena<br />

XIV, T. Kobayashi, T. Okada, T. Kobayashi et al.<br />

eds. (Springer Verlag, <strong>Berlin</strong>, Germany)<br />

RHN: M. Rini et al.; in Time-Resolved Vibrational<br />

Spectroscopy XI<br />

RMP: M. Rini et al.; in Time-Resolved Vibrational<br />

Spectroscopy XI<br />

WKD: W. Werncke et al.; in Ultrafast Phenomena<br />

XIV, T. Kobayashi, T. Okada, T. Kobayshi et al.<br />

eds. (Springer Verlag, <strong>Berlin</strong>, Germany)<br />

WKV: W. Werncke et al.; in Time-Resolved Vibrational<br />

Spectroscopy XI<br />

submitted (until 21st Febr. 2005)<br />

Drea: J. Dreyer; J. Chem. Phys.<br />

HBCb: N. Huse et al.; Phys. Rev. Lett.<br />

Invited talks at international conferences <strong>2004</strong><br />

(for full titles see appendix 2)<br />

T. Elsaesser; Minerva-Gentner Symposium 'Optical<br />

Spectroscopy of Biomolecular Dynamics' (Kloster<br />

Banz, Bad Staffelstein, <strong>2004</strong>-03)<br />

T. Elsaesser; 21 Century COE-RCMS International<br />

Conference on Frontiers of Physical Chemistry<br />

on Molecular Materials (Nagoya, Japan, <strong>2004</strong>-01)<br />

T. Elsaesser; 33rd National Congress of the Italian<br />

Chemical Society (Naples, Italy, <strong>2004</strong>-06)<br />

T. Elsaesser; XX IUPAC Symposium on Photochemistry<br />

(Granada, Spain, <strong>2004</strong>-07)<br />

T. Elsaesser together with K. Heyne, N. Huse, J.<br />

Dreyer, and E.T.J. Nibbering; Second International<br />

Conference on Coherent Multidimensional Vibrational<br />

Spectroscopy (Madison, Wisconsin, <strong>2004</strong>-08)<br />

E. T. J. Nibbering together with M. Rini, O.F.<br />

Mohammed, J. Dreyer, B.-Z. Magnes, D. Pines,<br />

and E. Pines; Ultrafast Phenomena XIV (Niigata,<br />

Japan, <strong>2004</strong>-07)<br />

E. T. J. Nibbering together with K. Heyne, T. Elsaesser,<br />

M. Petkovic, and O. Kühn; Second International<br />

Conference on Coherent Multidimensional Vibrational<br />

Spectroscopy (Madison, Wisconsin, <strong>2004</strong>-08)<br />

59


3-01: Dynamics at Surfaces and Structuring<br />

T. Gießel, A. Rosenfeld, M. Weinelt, B. Winter (Project coordinators)<br />

and D. Bröcker, C. E. Heiner, B. Langer, H. Prima-Garcia, M. Pickel, A. Schmidt, P. Schmidt, R. Schmidt,<br />

R. Stoian, R. Weber<br />

1. Overview<br />

The main focus of the present project is<br />

the geometric and electronic structure of solid<br />

and liquid surfaces and their response to<br />

excitation by femtosecond laser pulses. The<br />

research topics range from single electron<br />

dynamics at ferromagnetic metal and semiconductor<br />

surfaces to the collective response<br />

of the electronic system to intense laser<br />

excitation close to or above the ablation<br />

threshold. Thereby the coupling of electronic<br />

excitations to nuclear motion is studied<br />

following e.g. electron solvation in aqueous<br />

solutions, phase transitions in solids and at their<br />

surfaces and eventually material removal.<br />

2. Subprojects and collaborations<br />

UP1: Dynamics at surfaces studied by lasersynchrotron<br />

pump-probe experiments, in<br />

collaboration with W. Widdra (Univ. Halle)<br />

UP2: Electron dynamics at semiconductor surfaces,<br />

in collaboration with Th. Fauster (Univ.<br />

Erlangen), M. Rohlfing (IU Bremen)<br />

UP3: Spin-polarized image-potential-state<br />

electrons as ultrafast magnetic sensors in front<br />

of ferromagnetic surfaces (DFG WE2037/1-2),<br />

in collaboration with M. Donath (Univ. Münster)<br />

(DFG DO502/4-2)<br />

UP4: Dynamics at liquid water surfaces studied<br />

by laser pump – synchrotron-radiation probe<br />

experiments, in collaboration with M. Faubel<br />

(MPI Göttingen), P. Jungwirth (Univ. Prague),<br />

and C. Pettenkofer (HMI <strong>Berlin</strong>)<br />

UP5: Studies of free and levitated nano-particles<br />

using synchrotron and FEL radiation, in<br />

collaboration with E. Rühl (Univ. Würzburg),<br />

Th. Leisner (TU Ilmenau), U. Becker (Fritz-<br />

Haber-<strong>Institut</strong>, <strong>Berlin</strong>), W. Widdra (Univ. Halle),<br />

D. Gerlich (TU-Chemnitz)<br />

UP6: Material structuring with femtosecond<br />

technology, (DFG Ro 2074/5-1), International<br />

Office of the DFG (WTZ program with the<br />

<strong>Institut</strong>e of Thermophysics, Novosibirsk, Russia)<br />

3. Results in <strong>2004</strong><br />

UP1: Collective excitations at semiconductor<br />

surfaces. A time-resolution of about 10 ps is<br />

demonstrated at the MBI - BESSY beamline<br />

in the so-called low-α mode of the <strong>Berlin</strong><br />

synchrotron facility. This result implies an even<br />

better synchronization between femtosecond<br />

laser and synchrotron-radiation pulses. Relocating<br />

the experiment to a new beamline in<br />

early <strong>2004</strong> allows now to match foci of synchrotron<br />

and laser radiation to below 50 μm, which,<br />

together with the electronic gating of the<br />

detector, turned out to be essential requirements<br />

to record data with sufficient resolution<br />

and statistics in the BESSY hybrid mode.<br />

Using vacuum-ultraviolet and soft X-ray<br />

radiation we were able to resolve the decay<br />

dynamics of the band-gap renormalization in<br />

silicon induced by a laser driven carrier plasma<br />

(800 nm, 70 mJ/cm 2 ). Recording both the<br />

energetic position of the silicon valence band<br />

(VB, green circles in Fig. 1) and the Si 2p corelevel<br />

(orange triangles), allows to distinguish<br />

between narrowing of the fundamental bandgap<br />

and photovoltaic effects. As seen by the<br />

transient shift of the VB the carrier plasma<br />

decays after ultrafast build-up (broadened by<br />

the time-resolution of the experiment) in about<br />

120 ps. This is attributed to Auger recombination<br />

and associated phonon emission. Moreover,<br />

the linewidth of the spin-orbit split Si 2p surface<br />

component (red) and bulk contribution (blue)<br />

broadens on a shorter timescale. This indicates<br />

selective vibrational excitation of surface and<br />

bulk, i.e. non-thermal heating processes (Fig. 1<br />

bottom).<br />

UP2: Dynamics at Si(100). The electronic<br />

structure and electron dynamics at the Si(100)<br />

surface was studied by two-photon photoemission<br />

with femtosecond laser pulses.<br />

Fig. 1:<br />

Top: Position of the<br />

silicon valence-bandedge<br />

(green) and the Si<br />

2p core-level (orange)<br />

as a function of delay<br />

between laser pump and<br />

synchrotron-radiation<br />

probe pulses.<br />

Bottom: Linewidth of the<br />

Si 2p surface<br />

component (red) and<br />

bulk component (blue).<br />

61


62<br />

Fig. 2:<br />

Measured (symbols)<br />

and calculated (solid<br />

lines, shaded areas)<br />

surface band structure<br />

of Si(100) c(4 x 2) at<br />

90 K.<br />

Numbers indicate<br />

timescales of relaxation<br />

processes.<br />

Fig. 3:<br />

Energy-resolved 2PPE<br />

spectra, spin integrated<br />

and spin resolved; the<br />

exchange-splitting of<br />

56 ± 10 meV for the first<br />

and 7 ± 3 meV for the<br />

second image-potential<br />

state between the<br />

majority Δ and minority<br />

Δ<br />

components is clearly<br />

discernible. The inset<br />

shows a spectrum<br />

acquired with s-polarized<br />

pump-pulses. Note here<br />

the spin polarization of<br />

about 80 % in the n=1<br />

state.<br />

Fig. 4a:<br />

Photoelectron spectrum<br />

of 0.02 m TBAI (top),<br />

compared to that of 1m<br />

NaBr (middle) and a<br />

mixture of 1m NaBr and<br />

0.02m TBAI (bottom)<br />

aqueous solutions.<br />

Excitation energy was<br />

100 eV. In view of the ca.<br />

50 times higher bromide<br />

concentration the 60%<br />

decrease of the iodide<br />

signal for the mixed<br />

solution is not large, which<br />

can be explained by the<br />

greater propensity of iodide<br />

for the solution surface.<br />

At a temperature of 90 K the occupied D up<br />

dangling bond state is located 150±30 meV<br />

below the valence band maximum (VBM) at<br />

the center of the surface Brillouin zone Γ and<br />

exhibits an effective hole mass of 0.5±0.15 m e .<br />

The unoccupied D Down band has a local<br />

minimum at Γ of 650±30 meV above the VBM<br />

and shows strong dispersion along the dimer<br />

rows of the c(4 x 2) reconstructed surface.<br />

2PPE spectra of Si(100) are dominated by<br />

interband transitions between the occupied<br />

and unoccupied surface states and emission<br />

out of transiently and permanently charged<br />

surface defects. Including electron-hole interaction<br />

in many-body calculations of the quasiparticle<br />

band structure leads us to assign a<br />

dangling bond split-off state to a quasi-onedimensional<br />

surface exciton with a binding<br />

energy of 130 meV. Electrons resonantly excited<br />

to the unoccupied D Down dangling-bond band<br />

with an excess energy of about 350 meV need<br />

1.5 ps to scatter via phonon emission to the<br />

band bottom at Γ and relax within 5 ps with an<br />

excited hole in the occupied surface band to<br />

form the exciton living for nanoseconds [WKS,<br />

FWe].<br />

UP3: Spin-polarized image-potential-state<br />

electrons as ultrafast magnetic sensors in<br />

front of ferromagnetic surfaces. Ultrafast<br />

demagnetization of ferromagnetic thin films<br />

upon laser excitation is a phenomenon not<br />

yet fully understood. Image-potential states,<br />

accessible by spin-resolved 2PPE, provide a<br />

simple model system for a detailed investigation<br />

of spin-dependent electron dynamics<br />

directly in the time domain. The identification<br />

of spin-dependent scattering processes at<br />

surfaces allows to pinpoint the elementary<br />

steps leading to the loss of magnetization. We<br />

have studied the energetics and dynamics of<br />

exchange-split image-potential states on<br />

ultrathin iron films on Cu(100) with time-,<br />

energy-, and spin-resolved bichromatic 2PPE.<br />

We were able to observe the exchange<br />

splitting of the first and the second imagepotential<br />

state directly. A surface state spin<br />

polarization of about 80 % is achieved by<br />

excitation with s-polarized light (Fig. 3).<br />

In time- and spin-resolved measurements,<br />

lifetimes of 16±2 fs for majority-spin and of<br />

11±2 fs for minority-spin electrons were found.<br />

Most noticeably, we find spin-dependent pure<br />

dephasing rates in the first image-potential<br />

state. These findings not only substantiate<br />

previous models but manifest that at the<br />

magnetic surface both inelastic and quasielastic<br />

scattering processes are spin-dependent<br />

[SPW].<br />

UP4: Liquid jet studies. The interactions between<br />

water molecules and dissolved ions are<br />

of crucial importance for many physical and<br />

chemical processes. Specifically, enhanced<br />

anion concentrations at the salt solution<br />

interface play an important role in various<br />

atmospheric and environmental chemical<br />

processes. The present VUV photoemission<br />

study is concerned with iodide’s large propensity<br />

for the solution surface. In the experiment iodide<br />

was added to aqueous tetrabutylammoniumbromide<br />

(TBABr) solution, with the iodide


anions being in great excess over the bromide<br />

anions. Supported by molecular dynamics<br />

(MD) simulations iodide is found to be more<br />

enhanced in the interfacial layer, covered by<br />

surface-active tetrabutyl-ammonium cations,<br />

as compared to bromide.<br />

The cations are surface-bound due to<br />

hydrophobic interactions of the butyl chains,<br />

while the anions exhibit a propensity for the<br />

vacuum/solution interface due to their<br />

appreciable polarizability and size, which are<br />

both larger for iodide than from bromide. This<br />

anion specificity also explains the experimentally<br />

observed lower activity of TBABr<br />

compared to TBAI in polar solvents. [WWW04,<br />

WWS04a, WWS04b].<br />

UP5: Studies of free and levitated nanoparticles<br />

using synchrotron and FEL<br />

radiation. In this subproject we study single<br />

isolated nano-particles when they are exposed<br />

to VUV and soft X-ray synchrotron radiation.<br />

The key component for experiments on isolated<br />

nanoparticles or micro-particles is a quadrupole<br />

particle trap. It consists of electrodes,<br />

where suitable AC- and DC-voltages are<br />

applied to stabilize the charged particle in the<br />

center of the trap. Any change in mass or<br />

charge state leads to changes in the motion<br />

frequencies of the trapped particle. These are<br />

monitored by an optical detection system,<br />

which also serves to characterize the chargeto-mass<br />

ratio of the particle. The detectable<br />

changes of the charge state can be as low as<br />

one elementary charge [GLS04]. From such<br />

charging experiments one can derive<br />

fundamental processes that can only occur in<br />

isolated matter, e.g. in chemically tailored<br />

nano-particles.<br />

Fig. 5 shows a comparison of the distribution<br />

of emitted electrons per absorbed photon for<br />

a pure single SiO 2 nano-particle and a SiO 2<br />

particle with a 39 nm gold shell at 84 eV. The<br />

experimental results are modelled by Poisson<br />

distributions which suitably describe the<br />

emission of secondary electrons. One can<br />

clearly see a change in the mean value of the<br />

secondary electron emission value. Further-<br />

more, tuning the photon energy to the oxygen<br />

K-edge the significant increase in the charging<br />

of SiO 2 nano-particles completely vanishes<br />

when the particle is covered with a gold shell.<br />

Recent work has shown that liquid particles<br />

can be stored also and investigated by soft xrays.<br />

This opens a wide range of applications in<br />

material research and even life science [LGG].<br />

UP6: Material structuring with femtosecond<br />

technology. Dynamic pulse temporal tailoring<br />

and adaptive optimization open up opportunities<br />

to regulate and manipulate excitation of the<br />

electronic system and energy transfer. This<br />

allows to exploit dynamic processes and to<br />

optimize structuring.<br />

Sequential energy delivery induces a stepwise<br />

preparation of the material, influences<br />

the balance between the induced non-thermal<br />

and thermal mechanisms for particle ejection,<br />

and if feedback-assisted provides a material<br />

specific optimization process. We propose a<br />

procedure based on evolutionary algorithms<br />

using phase modulation and subsequent<br />

temporal pulse tailoring to improve the characteristics<br />

of a Si ion beam emitted from laser<br />

irradiated silicon targets at moderate fluences<br />

[SMW04, SMS]. By optimizing the energy<br />

delivery rate impinging on the silicon target<br />

a)<br />

b) c)<br />

we can take advantage of a succession of<br />

phase transformations, drive the system in<br />

specific thermodynamic states, and obtain<br />

controllable low-kinetic-energy and high-flux<br />

ion beams for practical purposes, among them<br />

ion implantation in micro- and optoelectronics<br />

(Fig. 6). A theoretical study was performed on<br />

the role of rapid electronic transport in defining<br />

the characteristics of material removal with<br />

ultra-short laser pulses. The developed models<br />

are general and can be used to describe charge<br />

transport dynamics in different materials on<br />

ultra-fast timescales [BSR04a,b].<br />

Fig. 4b:<br />

Typical snapshot from<br />

MD simulations of 16<br />

TBAI ion pairs in a slab<br />

containing 16 NaBr ion<br />

pairs and 863 water<br />

molecules (31×31×30 Å 3 ).<br />

Color coding: TBA + - light<br />

blue and white, iodide –<br />

magenta, bromide – gold,<br />

sodium – green, water –<br />

red and white sticks.<br />

Already from the<br />

snapshot the segregation<br />

patterns of the ions in the<br />

interfacial layer can be<br />

seen qualitatively.<br />

Fig. 6:<br />

(a) Evolution of the Si +<br />

ion yield during the<br />

optimization run. A ten<br />

fold increase is obtained<br />

for the ion yield with a<br />

velocity of 4.5x10 4 m/s at<br />

a fluence of 0.9 J/cm 2 .<br />

(b) TOF mass-resolved<br />

Si + trace corresponding<br />

to the single pulse<br />

and optimal pulse<br />

respectively.<br />

(c) Temporal intensity<br />

envelope of the optimal<br />

pulse.<br />

Fig. 5:<br />

Electron emission<br />

distributions for single 84<br />

eV photon absorption of<br />

SiO 2 nano-particle with<br />

and without a 39 nm gold<br />

shell. The probabilities are<br />

modeled by Poisson<br />

distributions and they<br />

show a significant<br />

difference between gold<br />

coated and plain silica.<br />

63


64<br />

Own publications <strong>2004</strong> ff<br />

(for full titles and list of authors see appendix 1)<br />

BGW04: D. Bröcker, T. Gießel and W. Widdra; Chem.<br />

Phys. 299 (<strong>2004</strong>) 247-251<br />

BSR04a: N. M. Bulgakova et al.; Phys. Rev. B 69<br />

(<strong>2004</strong>) 054102/1-12<br />

BSR04b: N. M. Bulgakova et al.; Appl. Phys. A 79<br />

(<strong>2004</strong>) 1153-1155<br />

ESS04: F. Elsholz et al.; Appl. Phys. Lett. 84 (<strong>2004</strong>)<br />

4167-4169<br />

FMT04: W. Freyer, S. Müller and K. Teuchner; J.<br />

Photoch. Photobio. A 163 (<strong>2004</strong>) 231-240<br />

GLS04: M. Grimm et al.; in AIP Conference Proceedings,<br />

Atomic, Molecular and Chemical Physics,<br />

T. Warwick, and et al. eds. (<strong>2004</strong>) 1062-1065<br />

HFU04: K. Heister et al.; Langmuir 20 (<strong>2004</strong>) 1222-<br />

1227<br />

HGP04: O. Henneberg et al.; Appl. Phys. Lett. 84<br />

(<strong>2004</strong>) 1561-1563<br />

KSS04: E. Koudoumas et al.; Thin Solid Films 453-<br />

454 (<strong>2004</strong>) 372-376<br />

LGT04: W. L. Ling et al.; Surf. Science 570 (<strong>2004</strong>)<br />

L297-L303<br />

PVC04: G. Prümper et al.; Phys. Rev. A 69 (<strong>2004</strong>)<br />

62717/1-7<br />

PWF04: D. Pop et al.; Journal of Physical Chemisty<br />

B 108 (<strong>2004</strong>) 9158-9167<br />

RAs04: A. Rosenfeld and D. Ashkenasi; SPIE Proc.<br />

5063 (<strong>2004</strong>) 478-481<br />

SEH04: C. Stanciu, R. Ehlich and I. V. Hertel; Appl.<br />

Phys. A 79 (<strong>2004</strong>) 515-520<br />

SMW04: R. Stoian et al.; in SPIE Proc 5662 (<strong>2004</strong>)<br />

593-602<br />

SRH04: R. Stoian et al.; Appl. Phys. Lett. 85 (<strong>2004</strong>)<br />

694-695<br />

TSL04a: G. Turri et al.; Phys. Rev. Lett. 92 (<strong>2004</strong>)<br />

013001/1-4<br />

TSL04b: G. Turri et al.; Phys. Rev. A 70 (<strong>2004</strong>)<br />

022515/1-7<br />

VCL04: J. Viefhaus et al.; Phys. Rev. Lett. 92 (<strong>2004</strong>)<br />

083001/1-4<br />

WWS04a: R. L. Weber et al.; J. Phys. Chem. B 108<br />

(<strong>2004</strong>) 4729-4736<br />

WWS04b: B. Winter et al.; J. Phys. Chem. B 108<br />

(<strong>2004</strong>) 14558-14564<br />

WWW04: B. Winter et al.; J. Phys. Chem. A 108<br />

(<strong>2004</strong>) 2625-2632<br />

in press (as of Jan. 2005)<br />

KRR: S. Korica, et al.; Phys. Rev. A<br />

RKL: A. Reinköster, et al.; J. Electron Spectrosc.<br />

Relat. Phenom.<br />

WKS: M. Weinelt et al.; Appl. Phys. A.<br />

LGG: B. Langer et al.; in BESSY Highlights (BESSY,<br />

<strong>Berlin</strong>).<br />

LLA: B. Lohmann et al.; Phys. Rev. A 71, 020701(R)<br />

(2005).<br />

submitted (until 14 Feb. 2005)<br />

BBS: I. M. Burakow et al.; Mass Spectrometry<br />

BFW: K. Boger, Th. Fauster, and M. Weinelt; New J.<br />

Phys.<br />

BSR: N. M. Bulgakova et al.; SPIE Proc.<br />

ESS: F. Elsholz et al.; New J Phys.<br />

Fre: W. Freyer; J. Photoch. Photobio. A<br />

FWe: Th. Fauster and M. Weinelt; Surf. Sci.<br />

HYF: C. Haritoglou et al.; Invest Ophthalmol. Vis. Sci.<br />

MWM: T. Moritz et al.;Phys. Rev. Lett.<br />

PWF: D. Pop et al.; J. Phys. Chem. B<br />

SMS: R. Stoian et al.; Phys. Rev. Lett.<br />

SPW: A. B. Schmidt et al.; Phys. Rev. Lett.<br />

WWHa: B. Winter et al.; P. Phys. Chem. Chem. Phys.<br />

WWHb: B. Winter et al.; J. Am. Chem. Soc.<br />

WWF: J. Wang, M. Weinelt and T. Fauster; Appl.<br />

Phys. A<br />

Invited talks at international conferences <strong>2004</strong><br />

(for full titles see appendix 2)<br />

I. V. Hertel; Int. Workshop on Adv. Laser Processing<br />

for the Coming Generation, RIKEN; Wako, Japan,<br />

<strong>2004</strong><br />

I. V. Hertel; Gordon Conference Water and Aqueous<br />

Solutions, Plymouth, New Hampshire, USA, <strong>2004</strong><br />

B. Langer; 68. Physikertagung und AMOP-Frühjahrstagung,<br />

München, <strong>2004</strong><br />

R. Stoian; 5th International Symposium on Laser<br />

Precision Microfabrication (LPM <strong>2004</strong>), Nara,<br />

Japan, <strong>2004</strong>


3-02: Solids and Nanostructures<br />

M. Fiebig, C. Lienau, M. Wörner (Project coordinators)<br />

and N. P. Duong, T. Lottermoser, C. W. Luo, K. Müller, R. Müller, C. Neacsu, M. B. Raschke, K. Reimann,<br />

C. Ropers, T. Satoh, Z. Wang<br />

1. Overview<br />

In highly correlated condensed mattersystems<br />

electron-electron correlations lead to<br />

a broad range of novel and unusual phenomena<br />

which are interesting from the point of view of<br />

both fundamental research and practical<br />

application. We combine activities on ultrafast<br />

charge dynamics, on nonlinear optics of longrange<br />

ordered systems, and on nano-scale<br />

optics in order to gain new insight into<br />

fundamental phenomena in this thriving field<br />

of research.<br />

2. Subprojects and collaborations<br />

UP1: Ultrafast electron dynamics in individual<br />

and electronically coupled nanostructures,<br />

UP2: Optical antennas for spectroscopy: field<br />

confinement, energy transfer, molecular<br />

switches,<br />

UP3: Coherence and dynamics of electrons,<br />

phonons and quantum transport in 2D nanostructures,<br />

UP4: Ultrafast spin and lattice dynamics of antiferromagnetic<br />

and electronic phase transitions.<br />

There are possible future connections of<br />

UP1, UP3, UP4 to project 3.04. UP1 is part of<br />

the SFB 296 of the DFG. In part UP4 is a project<br />

of the SPP1133 of the DFG.<br />

3. Results in <strong>2004</strong><br />

UP1 (1): Coupling two quantum dots by<br />

dipole-dipole interaction. The ultrafast<br />

coherent control of excitonic and spin degrees<br />

of freedom in individual quantum dots<br />

[UML04b] is currently explored by numerous<br />

research groups since it is of prime importance<br />

for implementing novel quantum function in<br />

artificial solid-state nanostructures [BLi].<br />

Theoretical studies predict that the use of<br />

dipolar couplings between adjacent quantum<br />

dots is a promising strategy for realizing nonlocal<br />

few-qubit operations, such as controlled<br />

NOT gates. In ensemble measurements,<br />

however, dipolar couplings have so far been<br />

masked by disorder-induced inhomogeneous<br />

broadening.<br />

Using ultrafast near-field pump-probe<br />

spectroscopy [Lie04a,LGU04,UML04a], we<br />

have performed the first experimental study of<br />

the nonlinear optical response of a pair of<br />

quantum dots coupled via dipolar interaction<br />

[UML]. In these experiments, the single-exciton<br />

population in the first quantum dot is controlled<br />

by resonant picosecond excitation, giving rise<br />

to Rabi oscillations in the nonlinear optical<br />

response. As a result the exciton transition of<br />

the second quantum dot is spectrally shifted<br />

and concomitant Rabi oscillations observed.<br />

The temporal and spectral dynamics of the<br />

optical nonlinearity shows clearly that coupling<br />

between permanent excitonic dipole moments<br />

is the dominant interaction mechanism,<br />

whereas quasi-resonant (Förster) energy<br />

transfer is weak. In these first experiments, the<br />

coupling strength is still slightly too weak to to<br />

implement nonlocal condition quantum gates.<br />

New experiments on ordered arrays of dipolecoupled<br />

dots with couplings enhanced by<br />

external electric fields or photonic cavities are<br />

currently underway.<br />

UP1 (2): Ultrafast light transmission through<br />

plasmonic crystals. The unusual linear and<br />

nonlinear optical properties of metallic nanostructure<br />

arrays currently attract much attention,<br />

because such structures are promising<br />

candidates for novel applications in field<br />

localization, nano- and perfect lensing, nanoscale<br />

wave-guiding and ultrafast switching<br />

[MRL04]. Even though it is known that these<br />

properties arise from temporally short-lived<br />

and spatially localized surface plasmon<br />

polariton (SPP) excitations, with lifetimes in<br />

the 3 - 300 fs range, the ultrafast dynamics of<br />

these excitations has largely remained elusive.<br />

In close collaboration with project 1-01 and<br />

the group of D. S. Kim (Seoul) we have performed<br />

the first experimental study of ultrafast<br />

Fig. 1:<br />

Amplitude- and phaseresolved<br />

time structure<br />

of the electric field of the<br />

incident 11-fs light<br />

pulses and the pulses<br />

transmitted through a<br />

periodic array of<br />

nanoslits in an optically<br />

thick metal film [RPS].<br />

65


66<br />

Fig. 2:<br />

Apertureless near-field<br />

vibrational imaging of<br />

nanodomains formed by<br />

local phase separation of<br />

a block-copolymer thin<br />

film of Polystyrene-b-<br />

Poly-(2-vinylpyridine)<br />

(PS-b-P2VP). Contrast at<br />

3.39 μm (2950 cm -1 ) is<br />

obtained due to spectral<br />

variations of the C-H<br />

stretch vibrational<br />

resonances between the<br />

different polymer<br />

constituents. Bright red<br />

regions correspond to<br />

P2VP domains in PS<br />

matrix (green/blue).<br />

Fig. 3:<br />

(a)-(c) Electric field<br />

transients measured<br />

after sample H<br />

(electron density of<br />

n=1.2 x 10 12 cm -2 per<br />

QW) for incident field<br />

amplitudes of<br />

(a) 5 kV/cm,<br />

(b) 45 kV/cm, and<br />

(c) 100 kV/cm. Dashed<br />

line: Field envelopes of<br />

the input pulses.<br />

(d)-(f) Both the shape<br />

and the amplitude of the<br />

theoretically calculated<br />

transients are in good<br />

agreement with the<br />

corresponding experimental<br />

counterparts<br />

(a)-(c).<br />

light pulse propagation through plasmonic<br />

crystals using light pulses much shorter in<br />

duration than the SPP lifetime [RPS,RML]. Our<br />

experiments reveal surprisingly long SPP<br />

lifetimes of several hundred fs, more than an<br />

order of magnitude larger than previously<br />

thought (Fig. 1). Ultrafast and spatially-resolved<br />

near-field experiments show directly that the<br />

coherent coupling between surface plasmon<br />

polaritons, induced by spatial variations in the<br />

dielectric function of the nanostructure causes<br />

this strong damping suppression. In close<br />

analogy to Dicke sub-/superradiance in atomic<br />

systems, this coupling leads to the formation<br />

of symmetric and antisymmetric SPP modes<br />

with strongly different radiative lifetimes. These<br />

results are relevant for a detailed microscopic<br />

understanding plasmonic dynamics in metal<br />

nanostructures and indicate new strategies for<br />

greatly enhancing SPP lifetimes which is<br />

important for using SPP as flying qubits in<br />

quantum information processing and/or in<br />

nano-bio sensing applications.<br />

UP2: Apertureless scanning near-field<br />

microscopy. The optical antenna properties<br />

of metallic tips to detect and concentrate light<br />

to highly confined regions is being investigated<br />

and employed for ultrahigh resolution nearfield<br />

microscopy: In linear light scattering the<br />

plasmonic characteristics of the emission<br />

behavior of individual nanoscopic tips has been<br />

investigated and allowed for an understanding<br />

of the correlation of spectral dependence and<br />

local-field enhancement with structural parameter<br />

– providing important selection criteria<br />

for tips to be used as probes in scanning nearfield<br />

microscopy [NSR].<br />

In nonlinear light scattering, making use of<br />

the unique symmetry properties of the tips<br />

( mm) allowed for the otherwise inseparable<br />

8<br />

distinction between surface and bulk contributions<br />

in second-harmonic generation (SHG)<br />

[NRR]. This separation of these different nonlinear<br />

source polarizations has been a long<br />

standing problem in surface nonlinear optics<br />

because of its fundamental importance for<br />

proper signal assignment. The study also<br />

allowed to derive general symmetry selection<br />

rules for SHG from nanostructures.<br />

Near-field imaging on the basis of infrared<br />

vibrational contrast has been achieved and<br />

allowed for the identification of nanodomains<br />

formed by molecular selfassembly of blockcopolymer<br />

surfaces (see Fig. 2). With a sub-<br />

10 nm spatial resolution corresponding to a<br />

sensitivity of as low as 10 3 C-H oscillators the<br />

results indicate that for the first time IRspectroscopy<br />

providing access to intramolecular<br />

dimensions is within reach. Similarly the use<br />

of Raman spectroscopy for spectroscopic<br />

imaging is being explored.<br />

UP3 (1): Optical phonon sidebands of<br />

electronic intersubband absorption in<br />

strongly polar semiconductor heterostructures.<br />

The optical lineshapes of electronic<br />

transitions in condensed matter reflect the<br />

ultrafast dynamics of the elementary excitations<br />

to which the electrons are coupled. Of particular<br />

interest for a broad range of phenomena is<br />

the coupling between electrons and nuclear<br />

motions, i.e., local vibrational modes and/or<br />

phonons. In [WRW05] we presented the first<br />

evidence for a distinct optical phonon progression<br />

in the linear and nonlinear intersubband<br />

absorption spectra of electrons in a<br />

GaN/Al 0.8 Ga 0.2 N heterostructure. Femtosecond<br />

two-color pump-probe experiments in the midinfrared<br />

reveal spectral holes on different<br />

vibronic transitions separated by the LO phonon<br />

frequency. These features wash out with a<br />

decay time of 80 fs due to spectral diffusion.<br />

The remaining nonlinear transmission changes<br />

decay with a time constant of 380 fs. All results<br />

observed are described by the independent<br />

boson model.<br />

UP3 (2): Nonlinear response of radiatively<br />

coupled intersubband transitions of quasitwo-dimensional<br />

electrons. Radiative<br />

coupling of resonantly excited intersubband<br />

transitions in GaAs/AlGaAs multiple quantum<br />

wells can have a strong impact on the coherent<br />

nonlinear optical response, as is shown in Fig. 3<br />

by phase and amplitude resolved propagation


studies of ultrashort electric field transients.<br />

Upon increasing the driving field amplitude,<br />

strong radiative coupling leads to a pronounced<br />

self-induced absorption, followed by a<br />

bleaching due to the onset of delayed Rabi<br />

oscillations. A many-particle theory including<br />

light propagation effects accounts fully for the<br />

experimental results.<br />

UP4: Phase control of antiferromagnetics.<br />

Antiferromagnetic systems offer inherent<br />

advantages for ultrafast manipulation of the<br />

magnetic order parameter because of the<br />

absence of a macroscopic magnetization. Here<br />

the magnetization dynamics of transitionmetal<br />

oxides was investigated by optical pump/<br />

probe experiments with second harmonic<br />

generation acting as sensor for the sublattice<br />

magnetization.<br />

In NiO a photoinduced ultrafast reorientation<br />

of Ni 2+ spins due to change of the magnetic<br />

anisotropy was observed [DSF04]. Recovery<br />

of the magnetic ground state occurs as<br />

coherent oscillation of the antiferromagnetic<br />

order parameter between hard- and easy-axis<br />

states manifesting itself as quantum beating.<br />

The lifetime of the photoinduced state is about<br />

1 ns and limited by spin-lattice interaction. With<br />

a second pump pulse ultrafast recovery of the<br />

magnetic ground state is induced so that<br />

controlled ultrafast switching of an antiferromagnetic<br />

order parameter was demonstrated<br />

for the first time.<br />

In RMnO 3 (R = Y, Ho) we observed the<br />

decoupling of a spin reorientation from the<br />

lattice temperature in the course of a magnetic<br />

phase transition, thereby contrasting recent<br />

investigations on orthoferrites. In Cr 2 O 3<br />

decoupling between the dynamical behavior<br />

Own publications <strong>2004</strong> ff<br />

(for full titles and list of authors see appendix 1)<br />

AKE04: T. Altebäumer et al.; tm Technisches Messen<br />

71 (<strong>2004</strong>) 34-38<br />

BGS04: M. Bargheer et al.; Israel Journal of Chemistry<br />

(special issue in honor of Prof. J. Jortner) 44<br />

(<strong>2004</strong>) 9-17<br />

DSF04: N. P. Duong et al.; Phys. Rev. Lett. 93 (<strong>2004</strong>)<br />

117402/1-4<br />

Elsb04: T. Elsaesser; Appl. Phys. A 79 (<strong>2004</strong>) 1627-<br />

1634<br />

FEC04: M. Fiebig et al.; in Magnetoelectric interaction<br />

phenomena in crystals (Kluwer, Dordrecht, The<br />

Netherlands, <strong>2004</strong>)<br />

FFL04: M. Fiebig et al.; Opt. Lett. 29 (<strong>2004</strong>) 41-43<br />

FGL04: M. Fiebig et al.; Journal of Magnetism and<br />

Magnetic Materials 272-276 (<strong>2004</strong>) 353-354<br />

Fie04: M. Fiebig et al.; in Magnetoelectric Interaction<br />

Phenomena in Crystals, M. Fiebig, V. Eremenko,<br />

and I. Chupis eds. (Kluwer, Dordrecht, The Netherlands,<br />

<strong>2004</strong>) 163-179<br />

of the amplitude and phase of the antiferromagnetic<br />

order parameter was observed<br />

which is assigned to the magnetoelectric<br />

properties of the compound.<br />

The linear magnetoelectric effect – the<br />

induction of polarization by a magnetic field<br />

and of magnetization by an electric field –<br />

provides a promising route for linking magnetic<br />

and electric properties. We showed that ferromagnetic<br />

ordering in hexagonal HoMnO 3 is<br />

reversibly switched on and off by the applied<br />

field via magnetoelectric interactions [LLA04].<br />

While magneto-optical techniques are used<br />

to monitor this “giant” magnetoelectric effect<br />

its microscopic origin is revealed by neutron<br />

and x-ray diffraction. From the results, basic<br />

requirements for other candidate materials to<br />

exhibit magnetoelectric phase control are<br />

identified. Ultrafast experiments on magnetoelectric<br />

phase control are underway.<br />

FPi04: M. Fiebig et al.; Journal of Magnetism and<br />

Magnetic Materials 272-276 (<strong>2004</strong>) E1607-E1610<br />

KBG04a: T. Kiljunen et al.; PhysChemChemPhys 6<br />

(<strong>2004</strong>) 2185-2197<br />

KBG04b: T. Kiljunen et al.; PhysChemChemPhys 6<br />

(<strong>2004</strong>) 2932-2939<br />

LFG04: T. Lottermoser et al.; in Magnetoelectric<br />

Interaction Phenomena in Crystals, Springer, M.<br />

Fiebig, V. Eremenko, and I. Chupis eds. (Kluwer,<br />

Dordrecht, The Netherlands, <strong>2004</strong>) 105-114<br />

LFi04: T. Lottermoser et al.; Phys. Rev. B 70 (<strong>2004</strong>)<br />

220407/1-4<br />

LGU04: C. Lienau et al.; SPIE Proc. 5352 (<strong>2004</strong>) 16-31<br />

Lie04a: C. Lienau et al.; Phil. Trans. R. Soc. Lond. A<br />

362 (<strong>2004</strong>) 861-879<br />

LIG04: C. Lienau et al.; Phys. Rev. B 69 (<strong>2004</strong>)<br />

085302/1-9<br />

LLA04: T. Lottermoser et al.; Nature 430 (<strong>2004</strong>) 541-<br />

544<br />

LRu04: C. Lienau et al.; Physik Journal 3 (<strong>2004</strong>) 17-18<br />

LRW04a: C. W. Luo et al.; Phys. Rev. Lett. 92 (<strong>2004</strong>)<br />

047402/1-4<br />

Fig. 4:<br />

Magnetic phase control<br />

by an electric field E in<br />

HoMnO 3 . Yellow: Mn 3+<br />

spins, red: Ho 3+ spins.<br />

The Y-shaped structure<br />

shows the dominating<br />

superexchange paths in<br />

the respective phases.<br />

67


68<br />

LRW04b: C. W. Luo et al.; Appl. Phys. A 78 (<strong>2004</strong>)<br />

435-440<br />

LRW04c: C. W. Luo et al.; Semicond. Sci. Technol. 19<br />

(<strong>2004</strong>) S285-S286<br />

MRL04: R. Mueller et al.; Opt Expr. 12 (<strong>2004</strong>) 5067-<br />

5081<br />

PFi04: R. V. Pisarev et al.; Ferroelectrics 303 (<strong>2004</strong>)<br />

113-118<br />

PSP04: R. V. Pisarev et al.; Phys. Rev. Lett. 93 (<strong>2004</strong>)<br />

037204/1-4<br />

RSh04: M. B. Raschke et al.; in Encyclopedia of<br />

Modern Optics, R.D. Guenther, D.G. Steel, and L.<br />

Bayvel eds. (Elsevier, Oxford, <strong>2004</strong>) Vol. 5, 184-<br />

189<br />

SLF04: T. Satoh et al.; Appl. Phys. B 79 (<strong>2004</strong>) 701-<br />

706<br />

UML04a: T. Unold et al.; Semicond. Sci. Technol. 19<br />

(<strong>2004</strong>) S260-S263<br />

UML04b: T. Unold et al.; Phys. Rev. Lett. 92 (<strong>2004</strong>)<br />

157401/1-4<br />

WER04: M. Woerner et al.; SPIE Proc. 5352 (<strong>2004</strong>)<br />

333-347<br />

WFL04: I. Waldmüller et al.; Phys. Rev. B 69 (<strong>2004</strong>)<br />

205307/1-9<br />

WRE04: M. Woerner et al.; J. Phys.: Condens. Matter<br />

16 (<strong>2004</strong>) R25-R48<br />

WRW04: Z. Wang et al.; Semicond. Sci. Technol. 19<br />

(<strong>2004</strong>) S463-S464<br />

RLi05: E. Runge et al.; Phys. Rev. B 71 (2005)<br />

035347/1-5<br />

WRW05: Z. Wang et al.; Phys. Rev. Lett. 94 (2005)<br />

037403/1-4<br />

in press (as of Jan. 2005)<br />

BLi: J. J. Baumberg et al.; in Semiconductor<br />

Macroatoms: Basic Physics and Quantum Device<br />

Applications, F. Rossi ed. (World Scientific Press)<br />

FLL: M. Fiebig et al.; Journal of Magnetism and<br />

Magnetic Materials<br />

FPP: M. Fiebig et al.; Journal of Optical Society<br />

America B<br />

NSR: C. C. Neacsu et al.; Appl. Phys. B (in press)<br />

RML: C. Ropers et al.; in Ultrafast Phenomena XIV,<br />

T. Kobayashi, T. Okada, T. Kobayshi, K.A. Nelson,<br />

and S. De Silvestri eds. (Springer, <strong>Berlin</strong>, Germany)<br />

SLF: T. Satoh et al.; J. Appl. Phys. 97 (in press)<br />

SLR: T. Shih et al.; in Ultrafast Phenomena XIV, T.<br />

Kobayashi, T. Okada, T. Kobayshi, K.A. Nelson,<br />

and S. De Silvestri eds. (Springer, <strong>Berlin</strong>, Germany)<br />

submitted (until 14 Feb. 2005)<br />

DSF: N. P. Duong et al.; in Proceedings of the 9 th<br />

Asia Pacific Physics Conference (Hanoi, Vietnam)<br />

HSR: A. Hagen et al.; Science<br />

MML: R. Müller et al.; Opt Expr.<br />

NRR: C. C. Neacsu et al.; Phys. Rev. Lett.<br />

RHC: C. Ropers et al.; Phys. Rev. A<br />

RPS: C. Ropers et al.; Phys. Rev. Lett.<br />

SRW: T. Shih et al.; Phys. Rev. Lett.<br />

UML: T. Unold et al.; Phys. Rev. Lett.<br />

Invited talks at international conferences <strong>2004</strong><br />

(for full titles see appendix 2)<br />

T. Elsaesser; International Workshop on Cooperative<br />

Phenomena in Optics and Transport in Nanostructures<br />

(Dresden, Germany, <strong>2004</strong>-06)<br />

M. Fiebig; Joint European Magnetic Symposia<br />

(JEMS ’04) (Dresden, Germany, <strong>2004</strong>-09)<br />

M. Fiebig; AIO Workshop on Spectroscopy in<br />

Molecular, Organic, and Inorganic Systems<br />

(Ameland, Netherlands, <strong>2004</strong>-09)<br />

M. Fiebig; Academy Colloquium on Ultrafast Spin<br />

and Magnetization Dynamics in Magnetic Nanostructures<br />

(Amsterdam, Netherlands, <strong>2004</strong>-06)<br />

M. Fiebig; Int. Workshop on Magneto-Optics of<br />

Magnetic Thin Films, Multilayers and Nanostructures<br />

(Duisburg, Germany, <strong>2004</strong>-04)<br />

C. Lienau together with T. Unold, K. Müller, T.<br />

Elsaesser, and A.D.Wieck; Conference on Lasers<br />

and Electro Optics / International Quantum<br />

Electronics Conference CLEO/IQEC <strong>2004</strong> (San<br />

Francisco, California, <strong>2004</strong>-05)<br />

C. Lienau together with T. Guenther, T. Unold, K.<br />

Mueller, and T. Elsaesser; Photonics West <strong>2004</strong><br />

(San José, California, <strong>2004</strong>-01)<br />

C. Lienau; American Chemical Society National<br />

Meeting (Anaheim, CA, USA, <strong>2004</strong>-04)<br />

C. Lienau; PIERS <strong>2004</strong>, Progress in Electromagnetics<br />

Research Symposium (Pisa, Italy,<br />

<strong>2004</strong>-03)<br />

C. Lienau; LASERION <strong>2004</strong> Workshop, Microfabrication,<br />

nanosturctured materials and biotechnology,<br />

Schloss Ringberg (Rottach-Egern, Germany,<br />

<strong>2004</strong>-06-22)<br />

C. Lienau; SPIE OPTO-Ireland Meeting, Royal Dublin<br />

Society (Dublin, Ireland, <strong>2004</strong>-04)<br />

C. Lienau; Solid State Based Quantum Information<br />

Processing (Hersching, Germany, <strong>2004</strong>-09)<br />

M. Raschke; SERS Rundgespräch, Fritz-Haber-<br />

<strong>Institut</strong> der <strong>Max</strong>-Planck-Gesellschaft (<strong>Berlin</strong>, <strong>2004</strong>-<br />

10)<br />

C. Ropers together with C. Lienau, R. Müller, G.<br />

Stibenz, G. Steinmeyer, D.J. Park, Y.C. Yoon,<br />

and D.S. Kim; Ultrafast Phenomena XIV (Niigata,<br />

Japan, <strong>2004</strong>-07)<br />

Z. Wang; The CCAST Workshop on Strong Field<br />

Laser Physics, <strong>2004</strong> (Wuyishan, China, <strong>2004</strong>-11)<br />

M. Woerner; International Workshop on Quantum<br />

Cascade Lasers (Sevilla, Spain, <strong>2004</strong>-01)<br />

M. Woerner; Photonics West (San José, California,<br />

<strong>2004</strong>-01)<br />

M. Woerner together with T. Shih, C.W. Luo, K.<br />

Reimann, T. Elsaesser, R. Hey, and K.H. Ploog;<br />

The 17th <strong>Annual</strong> Meeting of the IEEE Laser &<br />

Electro-Optics Society (LEOS <strong>2004</strong>) (Rio Mar,<br />

Puerto Rico, <strong>2004</strong>-11)<br />

M. Woerner; 2nd Korean/German Workshop on<br />

Applied Physics and Mathematics (Heidelberg,<br />

Germany, <strong>2004</strong>-09)


3-03: Opto Electronic Devices<br />

J. W. Tomm (Project coordinator)<br />

and F. Weik, V. Talalaev, Tran Q. Tien<br />

1. Overview<br />

The project group deals with applications<br />

of spectroscopic techniques developed or<br />

improved at the MBI to analytical purposes in<br />

optoelectronic devices. A primary objective is<br />

to improve the insight into the microscopic<br />

nature of the mechanisms defining the limits<br />

of operation of optoelectronic devices, in<br />

particular diode lasers. Effects such as defect<br />

creation and accumulation within the active<br />

region, mechanical stress as well as device<br />

and – particularly – facet heating are quantitatively<br />

analyzed. Models of device aging<br />

scenarios are developed and strategies are<br />

developed in order to minimize the impact of<br />

these processes.<br />

Together with our main industrial partners,<br />

such as OSRAM Opto Semiconductors,<br />

THALES, JENOPTIK Laserdiode und DILAS<br />

new generations of optoelectronic devices<br />

with increased brightness and reliability are<br />

created by taking into account the analytical<br />

results obtained at MBI. Investigations of<br />

transient recombination processes in the 5 ps-<br />

10 ns range in optoelectronic materials and<br />

epitaxial structures such as quantum-well or<br />

quantum-dot structures complete these devicerelated<br />

analytical activities. Carrier transfer<br />

kinetics in self assembled or structured microand<br />

nanostructures such as stressors are<br />

addressed. This allows, e.g., for optical<br />

measurement of transport kinetics in semiconductor<br />

structures. Furthermore, the group<br />

is involved in joint activities for the creation of<br />

novel classes of optoelectronic light sources<br />

such as mid-infrared light emitting diodes or<br />

compact femtosecond emitters. Demonstrators<br />

are assembled and tested. These device<br />

demonstrators reach a performance substantially<br />

exceeding the present state of the art.<br />

2. Results in <strong>2004</strong><br />

The EU-funded Project IST-2000-29447<br />

POWERPACK was successfully finished.<br />

Within this project we developed novel<br />

methodologies for strain an defect analysis in<br />

high-power diode laser arrays (cm-bars) as<br />

well as screening tools for rapid device<br />

analysis and applied them to a large number<br />

of laser bars (~200) provided by industrial<br />

partners such as THALES or DILAS GmbH.<br />

On the basis of the data obtained within this<br />

project new insights into the generation of<br />

defects as well as in the generation and<br />

relaxation of strains in AlGaAs/GaAs-based<br />

high-power diode laser array are obtained.<br />

Simultaneous monitoring of the mechanical<br />

strain and the defect concentration in the<br />

devices allows studying the interplay between<br />

these extrinsic parameters in dependence on<br />

device operation time [GWT04, TTO]. There are<br />

two parameters, which contribute to the spread<br />

of the mechanical strain, the local position at<br />

the device, and, the device operation time that<br />

substantially enhances the strain as well. For<br />

midgap levels as well as shallower defect<br />

levels, which are due to physically different<br />

defects, very different creation scenarios are<br />

observed. The concentration of shallow defects<br />

and band-tail states is strongly correlated with<br />

compressive strain in their vicinity, no matter<br />

how the strain is created; see Fig. 1 (a). For<br />

midgap levels there is no direct correlation,<br />

however, an increase by a factor of 3 after<br />

1500 h of operation time is observed; see<br />

Fig. 1 (c). The knowledge on defect creation<br />

scenarios is extensible to other GaAs-based<br />

devices and represents a rather general contribution<br />

to device physics.<br />

Fig. 1:<br />

Spread of the defectrelated<br />

µPC signal as<br />

measure for the defect<br />

concentration for the<br />

different level depths<br />

within one emitter versus<br />

spectral position of the<br />

1hh-1e transition as<br />

measure for the<br />

compressive strain at<br />

the corresponding local<br />

position. Full symbols<br />

represent data obtained<br />

at 0 hours, open<br />

symbols mark data<br />

measured in the same<br />

spectral range after<br />

1500 hours of operation.<br />

69


70<br />

Fig. 2:<br />

Output power versus<br />

operation current of the<br />

4.2 µm mid infrared<br />

converter device.<br />

Fig. 3:<br />

Photograph<br />

of a mid infrared<br />

converter device.<br />

We monitor the temporal mechanical strain<br />

evolution with typical use in the quantum-well of<br />

AlGaAs/GaAs-based cm-bars by spectroscopic<br />

means. We show experimentally that pristine<br />

devices are essentially uniaxially compressed<br />

along the 110-direction with a strain maximum<br />

of -0.16% at the center of the device. At the<br />

device edges almost no packaging-induced<br />

strain is detectable. After 500 h of cw operation<br />

at a current of I=80A the strain is reduced by<br />

50%. Furthermore, we observe the growth of<br />

a localized region of compressive strain, of<br />

hydrostatic symmetry, in one emitter of a<br />

particular cm-bar. A compression of about<br />

-0.017% is observed, and is most likely caused<br />

by point defect accumulation. Our results clearly<br />

demonstrate that information about absolute<br />

strain values and, at least in part, about strain<br />

symmetry as well can be obtained by<br />

spectroscopic means even within packaged,<br />

complex optoelectronic devices [TGS].<br />

Within the national project MIRCO (Mid<br />

InfraRed COnverter) 03 N1084C we provide<br />

our partners with the spectroscopic methodology<br />

required for the development of a novel<br />

device, namely a hybrid optoelectronic lightemitter<br />

for the 4-5 µm infrared spectral region.<br />

The active region of this device, which is<br />

designed and assembled at MBI, is made of<br />

PbSe or related mixed crystal systems. In order<br />

to enhance the out-coupling efficiency of the<br />

device further the surface of the active region<br />

receives a special structurization implemented<br />

by wet chemical etching. A luminescence<br />

imaging setup for spectroscopy in the mid<br />

infrared is developed and used for evaluating<br />

the different surface structures.<br />

On the basis of these investigations an<br />

optically pumped luminescence device made<br />

from such structured films with an cw output<br />

power of more than 1 mW cw is assembled.<br />

The output power strongly depends on the<br />

dimensions of the surface structures. The<br />

spectra of the device are centered around the<br />

CO 2 absorption line at 4.2 mm and have a half<br />

width of 50 meV [WTG04a]. The output power<br />

data surpass the current state of the art of<br />

optoelectronic light emitting devices in this<br />

spectral range by more than an order of<br />

magnitude.<br />

Own publications <strong>2004</strong><br />

(for full titles and list of authors see appendix 1)<br />

GWT04: Axel Gerhardt et al.; Appl. Phys. Lett. 84<br />

(<strong>2004</strong>) 3525-3527<br />

WTG04a: F. Weik et al.; Appl. Phys. Lett. 86 (2005)<br />

041106<br />

in press (as of Jan. 2005)<br />

TTO: Tran Quoc Tien et al.; Appl. Phys. Lett.<br />

TGS: Tran Quoc Tien et al.; Appl. Phys. Lett.<br />

Invited talks at international conferences <strong>2004</strong><br />

(for full titles see appendix 2)<br />

J. W. Tomm together with A. Gerhardt, T.Q. Tran,<br />

M.L. Biermann, M.O. Manasreh, and B.S. Passmore;<br />

Material Research Society Fall Meeting (Boston,<br />

MA, USA, <strong>2004</strong>-11)<br />

J. W. Tomm; 2nd CEPHONA Workshop of the Center<br />

of Excellence on Physics and Technology of<br />

Photonic Nanostructures, <strong>Institut</strong>e of Electron<br />

Technology (Warsaw, Poland, <strong>2004</strong>-11)


3-04: Transient Structures and Imaging with X-Rays<br />

H. Stiel, M. Wörner, N. Zhavoronkov (Project coordinators)<br />

and M. Bargheer, H. Legall, K. Janulewicz, D. Leupold<br />

1. Overview<br />

This project aims at the development and<br />

the application of coherent and incoherent<br />

laser-based x-ray sources emitting light in the<br />

wavelength range between 0.1 and 20 nm.<br />

The current applications focus on time-resolved<br />

x-ray diffraction experiments on crystalline<br />

solids using a high repetition rate laser<br />

produced plasma (LPP) source and on x-ray<br />

absorption studies concerning the role of<br />

carotenoids in energy transfer processes.<br />

2. Subprojects and collaborations<br />

UP1: Hard x-ray generation using high<br />

repetition rate laser systems.<br />

UP2: Generation and application of soft x-rays<br />

from laser-based sources. Special emphasis<br />

is directed to application experiments using<br />

the possibilities of MBI x-ray laser developed<br />

in project 2.01.<br />

UP3: Investigation of phase transitions and<br />

structural dynamics in solids: in the framework<br />

of SPP 1134 and in close collaboration with<br />

Project 3.02 and Seoul National University.<br />

3. Results in <strong>2004</strong><br />

UP1/UP3: The results of these two subprojects<br />

are detailed in one of the feature articles in<br />

this annual report. The main activities were<br />

the following:<br />

• Microfocus K α sources for femtosecond xray<br />

science [ZGK04,ZGB05],<br />

• Comparison of focusing optics for femtosecond<br />

x-ray diffraction [BZB05],<br />

• Femtosecond x-ray diffraction: Coherent<br />

atomic motions in a semiconductor nanostructure<br />

[BZG04].<br />

UP2: Development and application of<br />

instrumentation for the soft and hard x-ray<br />

region. Application of x-ray spectroscopy,<br />

diffraction and metrology in chemical, biological<br />

and material sciences has attracted much<br />

attention. The development of instrumentation<br />

for compact laboratory x-ray radiation sources<br />

is one of the most important challenges at this<br />

time. A laboratory x-ray source for near edge<br />

x-ray absorption fine structure (NEXAFS)<br />

experiments in the soft x-ray range requires<br />

the generation of a broad x-ray continuum. A<br />

crucial point for NEXAFS experiments is the<br />

choice of the spectrograph. It should deliver a<br />

high photon flux in the detector plane and at the<br />

same time an appropriate spectral resolution.<br />

So far we used a transmission grating as<br />

spectrograph and an x-ray CCD-camera as<br />

detector system for the soft x-ray region. An<br />

enhancement of the resolution by a factor of 2<br />

would be of great interest since transition<br />

peaks visible in the absorption spectrum of<br />

excitations from the core electron 1s state into<br />

unoccupied molecular states have a typical<br />

width of 500 meV.<br />

Furthermore, the transmission grating<br />

spectrometer is a non focussing system, and<br />

the acquisition time and signal-to-noise ratio<br />

of the spectrum could be greatly enhanced by<br />

using a focussing polychromator. To get an<br />

improvement in this direction we used a special<br />

x-ray optic as new focussing polychromator<br />

system, an off-axis reflection zone plate (ORZ).<br />

This optic was originally developed for<br />

spectroscopy of laser produced plasmas. The<br />

basic pattern of the ORZ is given by nonconcentric<br />

ellipses, which act as diffraction<br />

grating with curved lines and varying grating<br />

constant. The projection of the pattern towards<br />

the source follows the rule of a fresnel zone<br />

plate. It follows that for a certain geometry and<br />

single wavelength a diffraction-limited image<br />

(2-fold magnification) is formed in the detector<br />

plane. By using the ORZ we were able to collect<br />

even single laser shot spectra with a spectral<br />

resolution better than 450 meV [VSL04]. This<br />

is the basis for time-resolved measurements<br />

in a pump-and-probe scheme where a degradation<br />

of the sample takes place after a few<br />

visible pump pulses.<br />

In collaboration with project 2.01 (x-ray<br />

laser) the work on EUV-interferometry was<br />

continued. Because most of the materials are<br />

not transparent for soft x-ray radiation the<br />

design of the beam splitter is a crucial problem<br />

in EUV-interferometry. In collaboration with<br />

Fig. 1:<br />

Experimental<br />

arrangement of the<br />

NEXAFS-spectrometer<br />

using an off-axis<br />

reflection zone plate.<br />

71


72<br />

Fig. 2:<br />

Single shot emission<br />

spectrum of a laser<br />

produced copper<br />

plasma measured by<br />

the ORZ spectrograph.<br />

RheinAhrCampus, Remagen and with the<br />

<strong>Institut</strong>e of Applied Photonics, Adlershof<br />

different optics have been tested. It was found<br />

that an experimental setup consisting of a<br />

diffraction grating as a beam splitter and two<br />

multi-layer mirrors seems very promising for<br />

EUV-interferometry using a 10 Hz x-ray laser<br />

at 13.9 nm.<br />

Time-resolved spectroscopy in the hard xray<br />

range requires compact spectrometers<br />

with high energy resolution. A spectroscopic<br />

device in the so called von HAMOS geometry<br />

combines both high efficiency and a wide<br />

spectral range. The development and optimization<br />

of a compact focusing von HAMOS<br />

spectrometer using highly oriented pyrrolytic<br />

crystals (HOPG) will be done in a joint project<br />

with the <strong>Institut</strong>e of Applied Photonics,<br />

Adlershof. The application of the spectrometer<br />

in diagnostics of “out off band” emission from<br />

the x-ray laser caused by highly charged ions<br />

(in collaboration with project 2.01) as well as<br />

in time-resolved x-ray absorption experiments<br />

is planned for the next future.<br />

Own publications <strong>2004</strong> ff<br />

(for full titles and list of authors see appendix 1)<br />

BZG04:M. Bargheer et al.; Science 306 (<strong>2004</strong>) 1771<br />

LSV04: H. Legall et al.; Rev. Sci. Instrum. 75 (<strong>2004</strong>)<br />

11. 4981-8<br />

VSL04: U. Vogt et al.; Rev. Sci. Instrum. 75 (<strong>2004</strong>) 11.<br />

4606-9<br />

ZGK04:N. Zhavoronkov et al.; Appl. Phys. B 79 (<strong>2004</strong>)<br />

663<br />

in press (as of Jan. 2005)<br />

BZB05: M. Bargheer et al.; Appl. Phys. B<br />

submitted<br />

ZGB05:N. Zhavoronkov et al.; Opt. Lett.<br />

Invited talks at international conferences <strong>2004</strong><br />

(for full titles see appendix 2)<br />

H. Legall together with D. Leupold, H. Lokstein, H.<br />

Stiel, and U. Vogt; 324. Wilhelm und Else Heraeus<br />

Seminar "Exploring the nanostructures of soft<br />

materials with x-rays" (Bad Honnef, <strong>2004</strong>-05-10)


4-1: Infrastructure Project: Development and Implementation of Laser<br />

Systems and Measuring Techniques<br />

I. Will, N. Zhavoronkov (Project coordinators)<br />

and G. Klemz, H. Redlin<br />

1. Overview<br />

A major part of the activities of this project<br />

was dedicated the improvement of the photocathode<br />

lasers installed at DESY Hamburg<br />

and at the Photoinjector Test Facility at Zeuthen<br />

(PITZ). These activities are part of MBI's longstanding<br />

participation in the international<br />

TESLA collaboration, and in the development<br />

of the VUV-FEL facility and the European X-<br />

FEL at DESY in Hamburg. These projects are<br />

of national and international importance and<br />

require specialized optical lasers as crucial<br />

components. MBI has become a strategic<br />

partner, and uses the expertise gained in high<br />

average power laser development and<br />

synchronization for its own research.<br />

2. Results in <strong>2004</strong><br />

An upgraded version of the photocathode<br />

laser of the TESLA Test Facility has been<br />

installed at DESY Hamburg in February <strong>2004</strong><br />

(Fig. 1). The main improvement is the replacement<br />

of the flashlamps previously used for<br />

pumping the oscillator and the preamplifiers<br />

by semiconductor diodes. This has increased<br />

the reliability and stability of the laser system<br />

significantly. According to the operators of TTF,<br />

the fluctuation of the micropulse energy in the<br />

UV has been reduced to 1% rms compared to<br />

≥3% before the upgrade.<br />

The photocathode laser generates trains<br />

of ultraviolet picosecond pulses with these<br />

parameters:<br />

• pulse trains with up to 800 micropulses<br />

(programmable),<br />

• repetition rate in the pulse train: 1...3 MHz,<br />

• duration of the micropulses: τ = 12 ps<br />

(FWHM), tunable,<br />

• micropulse energy at 266 nm wavelength:<br />

E micro = 53 μJ.<br />

A similar laser system which has been<br />

equipped with an additional pulse shaper for<br />

generation of flat-top pulses has been in use<br />

at the Photoinjector Teststand at Zeuthen (PITZ).<br />

Both lasers are an important pre-requisite for<br />

successful operation of the TTF injector and of<br />

the PITZ installation respectively during <strong>2004</strong>.<br />

At present, we make a major effort to replace<br />

the flashlamp-pumped booster amplifiers by<br />

those pumped with semiconductor diodes. The<br />

first prototype of the completely diode-pumped<br />

photocathode laser has reached the parameters<br />

required for TTF in Dec. <strong>2004</strong> at the<br />

MBI. This laser system features a long-term<br />

stability of 0.5% rms in the UV (measured over<br />

a period of 6 hours), a simplified usage and<br />

easy maintenance. Installation of this prototype<br />

at PITZ is foreseen in February 2005. After<br />

being tested at PITZ, an improved version of<br />

this laser will be installed at TTF in Hamburg<br />

by the end of 2005.<br />

Fig. 1:<br />

Scheme of the<br />

upgraded Nd:YLF<br />

photocathode laser.<br />

73


74<br />

Fig. 2:<br />

Envelope of the output<br />

pulse trains which look<br />

similar for 1.0 and<br />

3.0 MHz repetition rate<br />

of the individual micropulses<br />

in the train.<br />

This repetition rate is<br />

determined by the<br />

frequency the pulse<br />

pickers (Pockels cells)<br />

are triggered with.<br />

Fig. 3:<br />

Set-up of the Ti:Sapphire<br />

laser system.<br />

Fig. 4:<br />

3 rd order autocorrelation<br />

trace of the<br />

output laser pulses.<br />

The second part of the project concerns a<br />

Ti:Sa laser of high average power which has<br />

been used for experiments in the frame of<br />

Projects 3-04 “Ultrafast X-ray Research” and<br />

2-02 “Ionisation Dynamics in Intense Laser<br />

Fields”. This laser system was further developed<br />

during <strong>2004</strong>. The complete system shown in<br />

Fig. 3 is compact and fits on a standard optical<br />

table of 1.5 x 3 m 2 size. In dependence on the<br />

pump power, the pulses are amplified to an<br />

energy of 7-14 mJ, which corresponds to an<br />

average power of 7-14 W at 1 kHz repetition<br />

rate. The output channel of the laser system<br />

can be arranged either after the regenerative<br />

amplifier or after the final booster amplifier<br />

resulting in an energy of the compressed pulse<br />

of 1.5-2 mJ or 5-10 mJ, respectively. The pulse<br />

duration is 46 fs. An almost diffraction limited<br />

waist size is reached with the peak intensity of<br />

2 x 10 17 W/cm 2 . The spatial profile of the Laser<br />

beam is Gaussian with M 2 better than 1.3.<br />

Using a 3 rd order autocorrelator with a<br />

dynamic range of 8 orders of magnitude, the<br />

temporal structure of the pulses was measured.<br />

We obtained a contrast between the main pulse<br />

and the amplified spontaneous emission (ASE)<br />

of 10 7 (Fig. 4). A pulse-to-pulse stability of the<br />

laser output of 0.3 percent (root mean square)<br />

was obtained during a measurement period<br />

of 10 minutes. Stable operation of the system<br />

was demonstrated during a period of 76 hours<br />

of uninterrupted operation.


4-21: Infrastructure Project: Femtosecond Application Laboratories<br />

F. Noack, M. Wörner (Project coordinators)<br />

1. Overview<br />

The <strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>e (MBI) develops,<br />

operates and provides femtosecond laser<br />

systems in a broad spectral range. A variety of<br />

sources for coherent, ultrashort light pulses<br />

are currently being explored, typically based<br />

on commercial and home built Ti:Sapphire<br />

lasers, but also on new laser materials. The<br />

use of nonlinear optical techniques such as<br />

harmonic generation, four wave mixing and<br />

parametric processes ensures access to wavelengths<br />

ranging from the VUV (~100nm) up to<br />

the IR (~10μm) with pulse durations ranging<br />

from 500 fs down to about 5 fs.<br />

Among the experimental techniques used<br />

with these laser systems are pump-(delayed)probe<br />

methods, transient spectroscopy, impulsive<br />

Raman spectroscopy, molecular and<br />

cluster beams, UHV-surface analysis etc.<br />

Simultaneously with these activities devoted<br />

to the generation of ultrashort pulses with one<br />

or more extreme parameters we concentrate<br />

on the characterization of their temporal and<br />

spatial structure as well as on active control<br />

by shaping mechanisms. The full control over<br />

all parameters of ultrashort and few cycle light<br />

pulses (wavelength, temporal shape, phase,<br />

energy, etc.) is a long-term objective for the<br />

whole project.<br />

Major extensions of the fs-application<br />

laboratories planned for the next two years<br />

are the access to time resolved X-ray<br />

measurements, energetic tunable pulses in<br />

the wavelength range from 100-200 nm and<br />

systems for higher average power.<br />

2. User statistics <strong>2004</strong><br />

Presently access to six femtosecond<br />

systems for time resolved spectroscopy is<br />

granted (see also the MBI homepage). Furthermore,<br />

temporally limited access to systems still<br />

under development or to additional systems<br />

which are extremely complex for user operation<br />

is also offered, please contact directly the<br />

department heads working closest to your field<br />

of interest.<br />

The overall use of the fs-application labs<br />

is about 65%. Taking into account the time for<br />

service and repairs of the systems the total<br />

load exceeds 90%. About 20% of the access<br />

time was used by visiting scientists mainly<br />

supported by the Laserlab Europe programme<br />

of the European Community. In addition one<br />

system especially designed for investigation<br />

of material structuring is used for about 2<br />

month per year by a local company based on<br />

a cooperation contract.<br />

Last year we had guests from Netherlands,<br />

Spain, Russia, Korea, Bulgaria, France, Japan,<br />

China and of course from Germany, for a<br />

complete list please see appendix 5.<br />

Publications<br />

All publications which have emerged from<br />

work in this facility are listed under the relevant<br />

research projects.<br />

Fig. 1:<br />

Art-photography<br />

taken at the Multi-Color<br />

system. The three wavelengths<br />

are generated<br />

simultaneously with<br />

nonlinear optical<br />

conversion of a single<br />

femtosecond laser<br />

system.<br />

Fig. 2:<br />

Typical setup of a time<br />

resoled experiment<br />

using ultraviolet<br />

excitation and midinfrared<br />

probing.<br />

(M. Rini and O.<br />

Mohammed<br />

Abdelsabbor aligning<br />

the setup).<br />

75


76<br />

Fig. 1:<br />

View of the central laser<br />

hall inside the HFL<br />

building: On the far left -<br />

hand side the housed<br />

10Hz /20-30TW Ti:Sa<br />

laser can be seen, on<br />

the right-hand side is the<br />

front end of the CPA<br />

glass laser. The<br />

structure in the center is<br />

the folded glass laser<br />

CPA power amplifier,<br />

together with a 15 ns<br />

frequency- doubled<br />

beam for pumping of the<br />

single shot 100TW Ti:Sa<br />

power amplifier located<br />

at the far end of the 10<br />

Hz Ti:Sa laser sytem.<br />

4-22: Infrastructure Project: High-Field Laser Application Laboratory (HFL)<br />

P. V. Nickles (Project Coordinator)<br />

1. Overview<br />

The MBI high-field laser application<br />

laboratory develops, applies and provides<br />

femto- and picosecond laser systems operating<br />

in a broad intensity in excess of 10 19 W/cm 2 ,<br />

complemented by short-pulse, high-averagepower<br />

lasers for special applications. A specific<br />

MBI contribution to the high field physics,<br />

especially relativistic plasma dynamics an<br />

laser particle acceleration, arises from the<br />

unique possibility of synchronized operation<br />

of the two separate high-field lasers, each of<br />

which has state-of-the-art pulse characteristics,<br />

and from the ongoing research and results on<br />

the plasma dynamics of laser irradiated dense<br />

targets. Regarding the available laser infrastructure,<br />

research and development is directed<br />

towards highest possible intensities, short<br />

pulses (presently < 40 fs in the Ti:Sa system)<br />

at high pulse contrast. Part of the activities is<br />

focussed on diagnostics development for the<br />

on-line characterisation of the laser parameters.<br />

The HFL is located in a separate building<br />

with restricted access due to radiation safety<br />

and cleanliness considerations. Its structure<br />

and equipment allows to perform a variety of<br />

laser-matter interaction experiments such as<br />

single atom ionisation as well as complex<br />

laser-plasma interaction studies. The latter<br />

include incoherent and coherent x-ray emission<br />

(collisionally pumped x-ray laser), as well as<br />

generation and acceleration of charged particles,<br />

with special amphasis on protons and highly<br />

charged ions and their applications. A diversity<br />

of diagnostic equipment with high energetic<br />

(spectral), spatial and temporal resolution,<br />

consisting of optical and x-ray streak cameras,<br />

CCD cameras, x-ray and EUV-spectrometers,<br />

and Thomson spectrometers is available.The<br />

synchronization of the two MBI high field lasers<br />

(a 1ps, >5J CPA glass laser and the ~40 fs,<br />

800 mJ Ti:Sa laser) with 1ps accuracy, offering<br />

unique experimental possibilities, rests on<br />

long-term experience with photocathode lasers<br />

at DESY and laser-synchrotron synchronization<br />

at the MBI-BESSY Beamline. It will be available<br />

for experiments in early 2005. It is one essential<br />

basis for the laser acceleration experiments<br />

within the Transregio collaboration.<br />

According to the general mission of the<br />

MBI these facilities are not only used for the<br />

in-house research (mainly projects 1-02, 2-<br />

01, 2-02 and 3.04), but also offered to external<br />

users who are interested in research collaborations<br />

with MBI groups. A broad field of<br />

interdisciplinary studies is addressed, ranging<br />

from atomic, laser and plasma physics to material<br />

science, metrology up to industrial relevant<br />

applications. The laboratory is also open to<br />

external users within the Transnational Access<br />

Activity of the 5 th and 6 th Framework Programs<br />

of the EU (Integrated Laser Infrastructure<br />

Network LASERLAB-EUROPE) and other<br />

bilateral cooperations. The following systems<br />

are in operation:<br />

• Two high-peak power lasers, capable of<br />

delivering intensities between 10 18 and more<br />

than 10 19 W/cm 2 , in particular, a 10 Hz CPA<br />

20 TW (40 fs, 800 mJ) Ti:Sapphire laser and<br />

a single shot ~10 TW (1 ps, > 5 J) glass<br />

laser. The synchronization of the two systems<br />

at the 1ps-level, implementing two new<br />

oscillators, will be available for experiments<br />

in 2005 for unique proton radiography and<br />

high-field pump-probe experiments in laserbased<br />

plasma physics. In the synchronized<br />

single-shot mode the Ti:Sa laser will be<br />

pumped by an extra long-pulse, frequency<br />

doubled arm of the glass laser, boosting its<br />

pulse energy up to ~6J and the power up to<br />

the 100TW level.<br />

• One YLF burst mode laser (5 kW average<br />

burst power, up to 1MHz repetition rate,<br />

flexible pulse duration >3ps ) covering a<br />

wide range of beam parameters like energy,<br />

duration, repetition rate and intensity. This<br />

system is typically used as unique driver<br />

laser for research on or with incoherent laserplasma<br />

VUV-, EUV- and x-ray sources.<br />

• A prototype of a 10 Hz collisionally excited<br />

nickel-like Mo X-ray laser at 14.9 nm working<br />

on the new GRIP principle has been successfully<br />

demonstrated. Additionally, a transient


single-shot nickel-like Ag X-ray laser at<br />

13.9 nm with output energy of several μJ in<br />

~20 ps is already in operation. Beam<br />

propagation and focusing optics are available<br />

and in use. While these lasers are, in principle,<br />

available for applications, they are still<br />

subject to intensive research efforts with the<br />

medium-term objective of developing a<br />

novel table-top, high-repetition rate and high<br />

average power EUV laser.<br />

The following supporting systems and<br />

infrastructure are available in the high field<br />

laser application laboratory:<br />

• Auto-correlators for on-line pulse duration<br />

measurement of CPA-glass laser and Ti:Sa<br />

laser pulses.<br />

• SPIDER for a quasi-on-line control of the<br />

duration of the Ti:Sa laser pulse at full energy<br />

(10 fs resolution) and an averaging 3 rd order<br />

correlator for the Ti:Sapphire laser with high<br />

dynamics range as well as a single shot 3 rd<br />

order correlator for the glass laser system.<br />

Both for monitoring of shape and contrast of<br />

the compressed highly energetic pulses.<br />

• Implementation of an adaptive mirror- feedback<br />

with wavefront controlling Hartmann<br />

sensor, that resulted in a improvement of<br />

the focus intensity, leading to an intensity of<br />

about 10 19 W/cm 2 .<br />

• Update of the beam propagation system<br />

for five interaction chambers in separate<br />

laboratories, surrounding the central laser<br />

hall (Fig. 2).<br />

• Implementation of radiation protection system<br />

for highly energetic charged particles and<br />

x-rays (dosemeters).<br />

• 4 channel Thomson parabola for ion spectra<br />

measurments and 4 channel neutron TOF.<br />

• System for on-line monitoring of the spectral<br />

content of the glass laser pulses.<br />

• Experimental arrangement for guiding experiments<br />

at relativistic intensities (see also<br />

access experiments).<br />

• A vacuum compressor chamber for the glass<br />

laser has been developed which will come<br />

together with a corresponding beam<br />

propagation system in regular use in 2005.<br />

Furthermore the HFL-laboratory is equipped<br />

with a variety of commercial diagnostics<br />

enabling measurements with high spectral,<br />

spatial and temporal resolution (optical and<br />

x-ray streak and CCD cameras, different<br />

spectrometers from optical down to x-ray<br />

range).<br />

2. User statistics <strong>2004</strong><br />

Access to all 4 systems for laser matter<br />

interaction studies is currently granted (see<br />

above or the MBI homepage). Additionally,<br />

temporally limited access to systems being<br />

developed (for example incoherent x-ray<br />

sources) were also offered for users.<br />

The Ti:Sa laser serves as a research tool<br />

for light-matter interactions within the HFL<br />

laboratory and, at the same time, is subject to<br />

laser research and development within the<br />

infrastructure and scientific focus areas of<br />

the MBI research programme. The overall<br />

availability of the laser for both these activities<br />

was 85%, with the remaining 15% accounting<br />

for unscheduled downtime or repair. Out of the<br />

85% productive time, 2/3 (a total of 57%) were<br />

given to internal and external user access,<br />

while 1/3 (28% of the total time) were used for<br />

scheduled laser upgrade and maintenance.<br />

About 18% of the user access time goes to<br />

external collaboration projects with visiting<br />

scientists. They are mainly supported by the<br />

Transnational Access program of the European<br />

Community (FP5 and FP6) which assumes an<br />

average facility availability of about (but not<br />

substantially exceeding) 15%. The following<br />

access experiments have been performed in<br />

<strong>2004</strong> (see also appendix 5):<br />

• 02.04-02.04, Dr. G. Tempea / Dr. L. Veisz (EUaccess<br />

proposal), Generation of few cycle<br />

Multi-TW pulses:<br />

Within the framework of an EU-access proposal<br />

(Tempea/Krausz) we demonstrated the<br />

production of 30 - 40 mJ laser pulses with a<br />

temporal width of about 18 fs at a beam<br />

diameter of about 25 mm. This result was<br />

achieved using 50-fs, 200-mJ input pulses.<br />

The spectral broadening was introduced by<br />

propagation this pulse in a 2 mm quartzplate<br />

irradiated at an intensity level of about<br />

10 12 W/cm 2 . The pulses were subsequently<br />

compressed with a chirped mirror line. The<br />

experiment demonstrated for the first time<br />

at such an energy level that this method may<br />

be applicable as an alternatively route to<br />

produce energetic sub -20 fs pulses. Still;<br />

questions concerning limiting processes of<br />

the method are open. Follow-up projects are<br />

intended.<br />

Fig. 2:<br />

Beam propagation and<br />

distributing system of<br />

the Ti:Sa laser. The far<br />

left chamber contains a<br />

large-aperture adaptive<br />

mirror with a Shaeck-<br />

Hartmann sensor for<br />

wave front corrections.<br />

In the central chamber<br />

is the main beam<br />

distribution mirror<br />

steering the beam<br />

towards the interaction<br />

chambers in use. One<br />

of the interaction<br />

chambers is seen in the<br />

front part of the picture.<br />

77


78<br />

Fig. 3:<br />

Table with the Ti:Sa<br />

high field laser system.<br />

The laser is housed.<br />

On the top are flow<br />

boxes arranged to<br />

maintain required<br />

clean air conditions<br />

for the system.<br />

• 08-09.04, M. Levin / Prof. A. Zigler (GIFproject),<br />

University of Jerusalem, Relativistic<br />

guiding of fs-pulses in BN -micro-capillaries /<br />

Pre-requisit for high-repetetitive compact Xray<br />

lasers:<br />

Demonstration of relativistic guiding in long<br />

micro-capillaries for the first time. Interaction<br />

processes could be analyzed by shifts in<br />

the spectrum of the transmitted beam and<br />

changes in the XUV line spectrum.<br />

Publications<br />

All publications which have emerged from<br />

experiments in HFL laboratory are listed under<br />

the relevant research projects.


4-23: Infrastructure Project: MBI-BESSY Beamline<br />

T. Gießel, M. Weinelt<br />

1. Overview<br />

The <strong>Max</strong>-<strong>Born</strong> <strong>Institut</strong>e operates an<br />

application laboratory at BESSY - the 3 rd<br />

generation synchrotron light source in <strong>Berlin</strong>.<br />

The experiment combines laser and synchrotron<br />

radiation (SR) in order to study the<br />

dynamics of photoinduced processes at surfaces.<br />

Typically, laser-excited states in the nearsurface<br />

region of the investigated system are<br />

probed by SR pulses (see Fig. 1). The existing<br />

surface science techniques employing<br />

synchrotron radiation such as angle-resolved<br />

photoelectron spectroscopy, photoelectron<br />

diffraction, and X-ray absorption open up various<br />

opportunities to probe laser-induced changes<br />

of the electronic and geometric structure.<br />

However, the SR pulse length in the picosecond<br />

range restricts dynamical studies to<br />

systems with relatively long-living electronic<br />

excitations. Moreover, the small number of probe<br />

photons in the SR pulse (10 4 photons/pulse)<br />

compared to laser pulses typically used in twophoton<br />

photoemission (> 10 10 photons/pulse)<br />

requires a small focus (


80<br />

Fig. 4:<br />

Photoelectron intensity<br />

as a function of arrival<br />

time at the detector<br />

relative to the laser<br />

pulses for hybrid mode<br />

with (green) and without<br />

electronic gate (red and<br />

blue). Analyzer parameters<br />

are set for high<br />

transmission and energy<br />

resolution leading to a<br />

low time resolution of<br />

~40 ns as can be seen<br />

from the broad<br />

distribution of the<br />

electron signal caused<br />

by the single SR bunch<br />

in the gap between the<br />

multi bunch sequences.<br />

hemispherical electron analyzer (EA125,<br />

Omicron). Both UHV apparatus and laser<br />

system are mobile and can be hooked up to<br />

other beamlines. The electronics for timeresolved<br />

photoelectron counting was modified<br />

for two distinct detection schemes. For the<br />

investigation of dynamics in the nanosecond<br />

to microsecond regime we developed a pumpmultiple-probe<br />

detection scheme (see Fig. 3)<br />

[1]. In this scheme the laser-excited state is<br />

probed in a parallel fashion by consecutive<br />

SR pulses in multi-bunch mode. To assign<br />

the photoelectrons to individual synchrotron<br />

bunches requires a time-resolution of < 2 ns.<br />

This limits the transmission and energy resolution<br />

of the electron analyzer. If the relevant time<br />

scale of the processes to be investigated is<br />

smaller than a few nanoseconds, it is more<br />

efficient to use an electronic gate for detecting<br />

exclusively photoelectrons ionized by one<br />

particular SR pulse following the laser excitation.<br />

For a reasonably high transmission and energy<br />

resolution of the analyzer the time spread of<br />

the photoelectrons in the analyzer is ~ 40 ns.<br />

Hence, photoelectrons from one particular SR<br />

pulse can be discriminated only in single<br />

bunch mode or in the so-called hybrid mode.<br />

For the latter Fig. 4 shows the time-resolved<br />

photoelectron signal with (green) and without<br />

electronic gate (red and blue are with and<br />

without laser).<br />

First measurements in the low-α hybrid<br />

mode demonstrate a time-resolution of about<br />

10 ps. Reversible spectral changes of the<br />

valence band and Si 2p core level upon laser<br />

excitation are interpreted in terms of a band<br />

gap renormalization at the Si(100) surface<br />

(see also project 3-01 UP1).<br />

References<br />

[1] T. Gießel, D. Bröcker, P. Schmidt and W. Widdra,<br />

Rev. Sci. Instrum. 74 (2003) 4620


Appendices<br />

81


Appendix 1<br />

Publications<br />

AKE04: T. Altebäumer, D. Kern, R. Ehlich, H. Hörber,<br />

M. Raschke, E. Nibbering and C. Lienau; Kontrollierte<br />

biochemische Synthese auf Metall/Halbleiter-<br />

Nanostrukturen; tm Technisches Messen 71 (<strong>2004</strong>)<br />

34-38<br />

ASA04: A. Aznar, R. Solé, M. Aguiló, F. Diaz, U. Griebner,<br />

R. Grunwald and V. Petrov; Growth, optical characterization,<br />

and laser operation of epitaxial Yb:KY(WO 4 ) 2 /<br />

KY(WO 4 ) 2 composites with monoclinic structure; Appl.<br />

Phys. Lett. 85 (<strong>2004</strong>) 4313-4315<br />

Bau04a: D. Bauer; Small rare gas clusters in XUV laser<br />

pulses; Appl. Phys. B 78 (<strong>2004</strong>) 801-806<br />

Bau04b: D. Bauer; Small rare gas clusters in laser<br />

fields: ionisation and absorption at long and short laser<br />

wavelengths; J. Phys. B: At. Mol. Opt. Phys. 37 (<strong>2004</strong>)<br />

3085-3101<br />

BDP04: M. L. Biermann, S. Duran, K. Peterson, A.<br />

Gerhardt, J. W. Tomm, W. Trzeciakowski and A. Bercha;<br />

Spectroscopic method of strain analysis in semiconductor<br />

quantum-well devices; J. Appl. Phys. 96<br />

(<strong>2004</strong>) 4056-4065<br />

BFe04: W. Becker and M. V. Fedorov (editors),<br />

Universality and Diversity in Science, Festschrift in<br />

Honor of Naseem K. Rahman’s 60th Birthday (World<br />

Scientific, <strong>2004</strong>)<br />

BGS04: M. Bargheer, M. Gühr and N. Schwentner;<br />

Collisions transfer coherence; Israel Journal of<br />

Chemistry (special issue in honor of Prof. J. Jortner)<br />

44 (<strong>2004</strong>) 9-17<br />

BGW04: D. Bröcker, T. Gießel and W. Widdra; Charge<br />

carrier dynamics at the SiO 2 /Si(100) surface: A timeresolved<br />

photoemission study with combined laser<br />

and synchrotron radiation; Chem. Phys. 299 (<strong>2004</strong>)<br />

247-251<br />

BHS04: M. Boyle, M. Heden, C. P. Schulz, E. E. B.<br />

Campbell and I. V. Hertel; Two color pump probe<br />

study and internal energy dependence of Rydberg<br />

state excitation in C 60 ; Phys. Rev. A 70 (<strong>2004</strong>) 051201/<br />

1-4<br />

BKK04: I. A. Begishev, M. P. Kalachnikov, V. Karpov, I. A.<br />

Kulagin, P. V. Nickles, H. Schönnagel and T. Usmanov;<br />

Limitation of second harmonic generation of femtosecond<br />

Ti:Sapphire laser pulses; J. Opt. Soc. Am. B<br />

21 (<strong>2004</strong>) 318-322<br />

BSR04a: N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V.<br />

Hertel and E. E. B. Campbell; Electronic transport and<br />

consequences for material removal in ultrafast pulsed<br />

laser ablation of material; Phys. Rev. B 69 (<strong>2004</strong>)<br />

054102/1-12<br />

BSR04b: N. M. Bulgakova, R. Stoian, A. Rosenfeld, E.<br />

E. B. Campbell and I. V. Hertel; Model description of<br />

surface charging during ultrafast laser ablation of<br />

materials; Appl. Phys. A 79 (<strong>2004</strong>) 1153-1155<br />

BST04: S. Busch, O. Shirjaev, S. Ter-Avetisyan, M.<br />

Schnürer, P. V. Nickles and W. Sandner; Shape of ion<br />

energy spectra in ultra-short and intense laser-matter<br />

interaction; Appl. Phys. B 78 (<strong>2004</strong>) 911-914<br />

BZG04: M. Bargheer, N. Zhavoronkov, Y. Gritsai, J. C.<br />

Woo, D. S. Kim, M. Woerner and T. Elsaesser; Coherent<br />

atomic motions in a nanostructure studied by femtosecond<br />

x-ray diffraction; Science 306 (<strong>2004</strong>) 1771-1773<br />

(see also perspective by P.H. Bucksbaum 1691-1692)<br />

CDB04: F. Ceccherini, N. Davini, D. Bauer and F. Cornolti;<br />

Harmonic generation by atoms in circularly polarized<br />

fields: fas-off and near resonances regimes; Appl. Phys.<br />

B 78 (<strong>2004</strong>) 851-854<br />

CMi04: A. Cerkic and D. B. Milosevic; Plateau structures<br />

in potential scattering in a strong laser field; Phys. Rev.<br />

A 70 (<strong>2004</strong>) 053402/1-7<br />

DBS04: G. Droppelmann, O. Bünermann, C. P. Schulz<br />

and F. Stienkemeier; Formation times of RbHe-exciplexes<br />

on the surface of superfluid vs. normalfluid helium<br />

nanodroplets; Phys. Rev. Lett. 93 (<strong>2004</strong>) 023402/1-4<br />

DSF04: N. P. Duong, T. Satoh and M. Fiebig; Ultrafast<br />

manipulation of antiferromagnetism of NiO; Phys. Rev.<br />

Lett. 93 (<strong>2004</strong>) 117402/1-4<br />

EHH04: T. Elsaesser, K. Heyne, N. Huse and E. T. J.<br />

Nibbering; Ultrafast vibrational dynamics of hydrogenbonded<br />

dimers in solution; in Femtochemistry and<br />

Femtobiology: Ultrafast Events in Molecular Science,<br />

J.T. Hynes, and M.M. Martin eds. (Elsevier, Amsterdam,<br />

<strong>2004</strong>) 157-165<br />

ELR04: E. Eremina, X. Liu, H. Rottke, W. Sandner, M. G.<br />

Schätzel, A. Dreischuh, G. G. Paulus, H. Walther, R.<br />

Moshammer and J. Ullrich; Influence of molecular<br />

structure on double ionization of N 2 and O 2 by high<br />

intensity ultrashort laser pulses; Phys. Rev. Lett. 92<br />

(<strong>2004</strong>) 173001/1-4<br />

Els04b: T. Elsaesser; Femtosecond mid-infrared<br />

spectroscopy of low-energy excitations in solids; Appl.<br />

Phys. A 79 (<strong>2004</strong>) 1627-1634<br />

83


84<br />

Els04c: T. Elsaesser; Ultrafast structural dynamics in<br />

condensed matter; Humboldt-Spektrum 3-4 (<strong>2004</strong>)<br />

106-109<br />

ESS04: F. Elsholz, E. Schöll, C. Scharfenorth, H. Eichler<br />

and A. Rosenfeld; Control of surface roughness in<br />

amorphous thin film growth; Appl. Phys. Lett. 84 (<strong>2004</strong>)<br />

4167-4169<br />

FEC04: M. Fiebig, V. Eremenko and I. Chupis (eds.),<br />

Magnetoelectric interaction phenomena in crystals,<br />

(Kluwer, Dordrecht, The Netherlands, <strong>2004</strong>)<br />

FFL04: M. Fiebig, D. Fröhlich, T. Lottermoser and S.<br />

Kallenbach; Phase-resolved second-harmonic imaging<br />

with non-ideal laser sources; Opt. Lett. 29 (<strong>2004</strong>) 41-43<br />

FGL04: M. Fiebig, A. V. Goltsev, T. Lottermoser and R.<br />

V. Pisarev; Structure and interaction of domain walls in<br />

YMnO 3 ; Journal of Magnetism and Magnetic Materials<br />

272-276 (<strong>2004</strong>) 353-354<br />

Fie04: M. Fiebig; Magnetoelectric interaction in crystals<br />

observed by nonlinear magneto-optics; in Magnetoelectric<br />

Interaction Phenomena in Crystals, M. Fiebig,<br />

V. Eremenko, and I. Chupis eds. (Kluwer, Dordrecht,<br />

The Netherlands, <strong>2004</strong>) 163-179<br />

FLB04: C. Figueira de Morisson Faria, X. Liu, W. Becker<br />

and H. Schomerus; Coulomb repulsion and quantumclassical<br />

correspondence in laser-induced nonsequential<br />

double ionization; Phys. Rev. A 69 (<strong>2004</strong>)<br />

021402/1-4<br />

FLS04a: C. Figueira de Morisson Faria, X. Liu, A.<br />

Sanpera and M. Lewenstein; Classical and quantummechanical<br />

treatments of nonsequential double<br />

ionization with few-cycle laser pulses; Phys. Rev. A 70<br />

(<strong>2004</strong>) 043406/1-12<br />

FLS04b: C. Figueira de Morisson Faria, X. Liu, H.<br />

Schomerus and W. Becker; Electron-electron dynamics<br />

in laser-induced nonsequential double ionization;<br />

Phys. Rev. A 69 (<strong>2004</strong>) 043405/1-17<br />

FMT04: W. Freyer, S. Müller and K. Teuchner; Photophysical<br />

properties of benzoannelated metal-free<br />

phthalocyanines; J. Photoch. Photobio. A 163 (<strong>2004</strong>)<br />

231-240<br />

FPi04: M. Fiebig and R. V. Pisarev; Nonlinear optics - a<br />

powerful tool for the investigation of magnetic structures;<br />

Journal of Magnetism and Magnetic Materials 272-276<br />

(<strong>2004</strong>) E1607-E1610<br />

FRN04: H. Fidder, M. Rini and E. T. J. Nibbering; The<br />

role of large conformational changes in efficient ultrafast<br />

internal conversation: Deviations from the energy<br />

gap law.; J. Am. Chem. Soc. 126 (<strong>2004</strong>) 3789-3794<br />

FSM04: S. Fossier, S. Salaün, J. Mangin, O. Bidault, I.<br />

Thenot, J.-J. Zondy, W. Chen, F. Rotermund, V. Petrov,<br />

P. Petrov, J. Henningsen, A. Yelisseyev, L. Isaenko, S.<br />

Lobanov, O. Balachninaite, G. Slekys and V. Sirutkaitis;<br />

Optical, vibrational, thermal, electrical, damage and<br />

phase-matching properties of lithium thioindate; J. Opt.<br />

Soc. Am. B 21 (<strong>2004</strong>) 1981-2007<br />

FZB04: S. V. Fomichev, D. F. Zaretsky and W. Becker;<br />

Classical modelling of the nonlinear properties of<br />

clusters in strong low-frequency laser fields; J. Phys.<br />

B: At. Mol. Opt. Phys. 37 (<strong>2004</strong>) L175-L182<br />

GBR04: G. Graschew, M. Bastian, S. Rakowsky, T. A.<br />

Roelofs, E. Balanos, P. M. Schlag, G. Steinmeyer and<br />

T. Elsaesser; Development of an applicator for multiphoton<br />

PDT; SPIE Proc. 5463 (<strong>2004</strong>) 68-74<br />

GKe04: R. Grunwald and V. Kebbel; Micro-optical beam<br />

shaping for supershort-pulse lasers; in Springer Series<br />

in Optical Sciences, ‘Microoptics - From Technology to<br />

Applications’, Juergen Jahns, and K.-H. Brenner eds.<br />

(Springer-Verlag, <strong>Berlin</strong>, Germany, <strong>2004</strong>) Vol. 97, 300-<br />

311<br />

GKN04: R. Grunwald, V. Kebbel, U. Neumann, U. Griebner<br />

and M. Piché; Ultrafast spatio-temporal processing<br />

with thin-film microoptics; Opt. Eng. 43 (<strong>2004</strong>) 2518-<br />

2524<br />

GKS04: E. Gubbini, G. Kommol, M. Schnürer, H.<br />

Schönnagel, U. Eichmann, M. P. Kalashnikov, P. V.<br />

Nickles, F. Eggenstein, G. Reichardt and W. Sandner;<br />

„On-line“ cleaning of optical components in a multi<br />

TW-Ti:Sa laser system; Vacuum 76 (<strong>2004</strong>) 45-49<br />

GLS04: M. Grimm, B. Langer, S. Schlemmer, T. Lischke,<br />

W. Widdra, D. Gerlich, U. Becker and E. Rühl; New setup<br />

to study trapped nano-particles using synchrotron<br />

radiation; in AIP Conference Proceedings, Atomic,<br />

Molecular and Chemical Physics, T. Warwick et al. eds.<br />

(<strong>2004</strong>) 1062-1065<br />

GMB04: A. Gazibegovic-Busuladzic, D. B. Milosevic and<br />

W. Becker; High-energy above-threshold detachment<br />

from negative ions; Phys. Rev. A 70 (<strong>2004</strong>) 053403/1-13<br />

GNG04a: R. Grunwald, U. Neumann, U. Griebner, V.<br />

Kebbel and H.-J. Kuehn; Spatio-temporal control of<br />

laser beams with thin-film shapers; SPIE Proc. 5333<br />

(<strong>2004</strong>) 1-11<br />

GNG04b: R. Grunwald, U. Neumann, U. Griebner, K.<br />

Reimann, G. Steinmeyer and V. Kebbel; Wavefront<br />

autocorrelation of femtosecond laser beams; SPIE<br />

Proc. 5333 (<strong>2004</strong>) 122-130<br />

GNK04: R. Grunwald, U. Neumann, V. Kebbel, H.-J. Kühn,<br />

K. Mann, U. Leinhos, H. Mischke and D. Wulff-Molder;<br />

Vacuum-ultraviolet beam array generation by flat<br />

micro-optical structures; Opt. Lett. 29 (<strong>2004</strong>) 977-979


GNV04: R. Glatthaar, J. Nurnus, U. Vetter, D. Szewczyk,<br />

A. Lambrecht, F. Weik and J. W. Tomm; Mid-infrared<br />

light sources at room temperature based on lead<br />

chalcogenides; SPIE Proc. 5459 (<strong>2004</strong>) 54-60<br />

GPP04: U. Griebner, V. Petrov, K. Petermann and V.<br />

Peters; Passively mode-locked Yb:Lu 2 O 3 laser; Opt.<br />

Expr. 12 (<strong>2004</strong>) 3125-3130<br />

GRR04: R. A. Ganeev, A. I. Ryasnyansky, V. I. Redkorechev,<br />

K. Fostiropoulos, G. Priebe and T. Usmanov; Nonlinearoptical<br />

parameters of thin C 60 films at 532 nm; Quant.<br />

Electron.+ 34 (<strong>2004</strong>) 81-85<br />

GSt04: R. Grunwald and G. Steinmeyer; Ultrakurze<br />

Laserpulse: Regenbögen in Raum und Zeit; Physik in<br />

unserer Zeit 35 (<strong>2004</strong>) 218-226<br />

GTO04: A. Gerhardt, J. W. Tomm, S. Schwirzke-Schaaf,<br />

J. Nagle, M. Oudart and Y. Sainte-Marie; Simultaneous<br />

quantitative determination of strain and defect profiles<br />

within the active region along high-power diode laser<br />

bars by micro-photocurrent mapping; The European<br />

Physical Journal - Applied Physics 27 (<strong>2004</strong>) 451-454<br />

GWT04: A. Gerhardt, F. Weik, T. Q. Tran, J. W. Tomm, T.<br />

Elsaesser, J. Biesenbach, H. Müntz, G. Seibold and M.<br />

L. Biermann; Device deformation during low-frequency<br />

pulsed operation of high-power diode bars; Appl. Phys.<br />

Lett. 84 (<strong>2004</strong>) 3525-3527<br />

HFU04: K. Heister, S. Frey, A. Ulman, M. Grunze and M.<br />

Zharnikov; Irradiation sensitivity of self-assembled<br />

monolayers with an introduced “Weak Link”; Langmuir<br />

20 (<strong>2004</strong>) 1222-1227<br />

HGP04: O. Henneberg, T. Geue, U. Pietsch, M.<br />

Saphiannikova and B. Winter; Investigation of<br />

azobenzene side group orientation in polymer surface<br />

relief gratings by means of photoelectron spectroscopy;<br />

Appl. Phys. Lett. 84 (<strong>2004</strong>) 1561-1563<br />

HHD04: K. Heyne, N. Huse, J. Dreyer, E. T. J. Nibbering,<br />

T. Elsaesser and S. Mukamel; Coherent low-frequency<br />

motions of hydrogen bonded acetic acid dimers in the<br />

liquid phase; J. Chem. Phys. 121 (<strong>2004</strong>) 902-913<br />

HHe04: A. Husakou and J. Herrmann; Superfocusing<br />

of light beams below the diffraction limit by photonic<br />

crystals with negative refraction; Opt. Exp. 12 (<strong>2004</strong>)<br />

6419-6497<br />

HMT04: A. Hagen, G. Moos, V. Talalaev and T. Hertel;<br />

Electronic structure and dynamics of optically excited<br />

single-wall carbon nanotubes; Appl. Phys. A 78 (<strong>2004</strong>)<br />

1137-1145<br />

HNE04: K. Heyne, E. T. J. Nibbering, T. Elsaesser, M.<br />

Petkovic and O. Kühn; Cascaded energy redistribution<br />

upon O-H stretching excitation in an intramolecular<br />

hydrogen bond; J. Phys. Chem. A 108 (<strong>2004</strong>) 6083-6086<br />

HST04: F. Hatami, L. Schrottke, J. W. Tomm, V. Talalaev,<br />

C. Kristukat, A. R. Goni and W. T. Masselink; Optical<br />

properties and carrier dynamics of InP quantum dots<br />

embedded in GaP; SPIE Proc. 5352 (<strong>2004</strong>) 77-89<br />

JLP04: K. A. Janulewicz, A. Lucianetti, G. Priebe and P. V.<br />

Nickles; Review of state-of-the-art and about<br />

characteristics table-tops of X-ray lasers; X-ray<br />

Spectrometry 33 (<strong>2004</strong>) 262-266<br />

JPT04: K. A. Janulewicz, G. Priebe, J. Tümmler and P. V.<br />

Nickles; Single-pulse low-energy-driven transient<br />

inversion X-ray lasers; J. Sel. Top. Quantum Electron<br />

10 (<strong>2004</strong>) 1368-1372<br />

JNK04: K. A. Janulewicz, P. V. Nickles, R. E. King and G.<br />

J. Pert; Influence of pump pulse structure on a transient<br />

collisionally pumped Ni-like Ag X-ray laser; Phys. Rev.<br />

A 70 (<strong>2004</strong>) 013804/1-7<br />

KBG04a: T. Kiljunen, M. Bargheer, M. Gühr and N.<br />

Schwentner; A potential energy surface and a trajectory<br />

study of photodynamics and strong-field alignment of<br />

CIF molecule in rare gas (Ar,Kr) solids;<br />

PhysChemChemPhys 6 (<strong>2004</strong>) 2185-2197<br />

KBG04b: T. Kiljunen, M. Bargheer, M. Gühr, N. Schwentner<br />

and B. Schmidt; Photodynamics and ground state<br />

librational states of CIF molecule in solid Ar. Comparison<br />

of experiment and theory; PhysChemChemPhys 6<br />

(<strong>2004</strong>) 2932-2939<br />

KDW04: V. Kozich, J. Dreyer and W. Werncke; Vibrational<br />

excitation after ultrafast Intramolecular proton transfer<br />

of TINUVIN: a time-resolved resonance Raman study;<br />

Chem. Phys. Lett. 399 (<strong>2004</strong>) 484-489<br />

KPG04: P. Klopp, V. Petrov, U. Griebner, K. Petermann,<br />

V. Peters and G. Erbert; Highly efficient mode-locked<br />

Yb:Sc 2 O 3 laser; Opt. Lett. 29 (<strong>2004</strong>) 391-393<br />

KRS04: M. P. Kalashnikov, E. Risse, H. Schönnagel, A.<br />

Husakou, J. Herrmann and W. Sandner; Characterization<br />

of a nonlinear filter for the front-end of high contrast<br />

double-CPA Ti:sapphire laser; Opt. Expr. 12 (<strong>2004</strong>)<br />

5088-5097<br />

KSS04: E. Koudoumas, M. Spyridaki, R. Stoian, A.<br />

Rosenfeld, P. Tzanetakis, I. V. Hertel and C. Fotakis;<br />

Influence of pulse temporal manipulation on the<br />

properties of laser ablated Si ion beams; Thin Solid<br />

Films 453-454 (<strong>2004</strong>) 372-376<br />

LAM04: V. Lehtovuori, J. Aumanen, P. Myllyperkiö, M.<br />

Rini, E. T. J. Nibbering and J. Korppi-Tommola; Transient<br />

midinfrared study of light induced dissociation reaction<br />

of Ru (dcbpy) (CO) 2 I 2 in solution; J. Phys. Chem. A 108<br />

(<strong>2004</strong>) 1644-1649<br />

LdG04: T. Laarmann, A. R. B. de Castro, P. Gürtler, W.<br />

Laasch, J. Schulz, H. Wabnitz and T. Möller; Interaction<br />

of Argon clusters with intense VUV-laser radiation: The<br />

role of electronic structure in the energy-deposition<br />

process; Phys. Rev. Lett. 92 (<strong>2004</strong>) 143401/1-4<br />

85


86<br />

LFa04: X. Liu and C. Figueira de Morisson Faria; Nonsequential<br />

double ionization with few-cycle laser pulses;<br />

Phys. Rev. Lett. 92 (<strong>2004</strong>) 133006/1-4<br />

LFG04: T. Lottermoser, M. Fiebig, A. V. Goltsev and R. V.<br />

Pisarev; Multiferroic ordering in hexagonal manganites;<br />

in Magnetoelectric Interaction Phenomena in Crystals,<br />

Springer, M. Fiebig, V. Eremenko, and I. Chupis eds.<br />

(Kluwer, Dordrecht, The Netherlands, <strong>2004</strong>) 105-114<br />

LFi04: T. Lottermoser and M. Fiebig; Correlation<br />

between domain walls and magnetoelectric behavior<br />

in HoMnO 3 ; Phys. Rev. B 70 (<strong>2004</strong>) 220407/1-4<br />

LGT04: W. L. Ling, T. Gießel, K. Thürmer, R. Q. Hwang,<br />

N. C. Bartelt and K. F. McCarty; Crucial role of substrate<br />

steps in de-wetting of crystalline thin films; Surf.<br />

Science 570 (<strong>2004</strong>) L297-L303<br />

LGU04: C. Lienau, T. Guenther, T. Unold, K. Mueller and<br />

T. Elsaesser; Femtosecond near-field spectroscopy of<br />

single quantum dots; SPIE Proc. 5352 (<strong>2004</strong>) 16-31<br />

Lie04a: C. Lienau; Ultrafast near-field spectroscopy of<br />

single semiconductor quantum dots; Phil. Trans. R.<br />

Soc. Lond. A 362 (<strong>2004</strong>) 861-879<br />

LIG04: C. Lienau, F. Intonti, T. Guenther, T. Elsaesser,<br />

V. Savona, R. Zimmermann and E. Runge; Near-field<br />

autocorrelation spectroscopy of disordered semiconductor<br />

quantum wells; Phys. Rev. B 69 (<strong>2004</strong>)<br />

085302/1-9<br />

LJK04: A. Lucianetti, K. A. Janulewicz, R. Kroemer, G.<br />

Priebe, J. Tümmler, W. Sandner, P. V. Nickles and V. I.<br />

Redkorechev; Transverse spatial coherence of a transient<br />

nickellike silver soft-x-ray laser pumped by a single<br />

picosecond laser pulse; Opt. Lett. 29 (<strong>2004</strong>) 881-883<br />

LLA04: T. Lottermoser, T. Lonkai, U. Amann, D. Hohlwein,<br />

J. Ihringer and M. Fiebig; Magnetic phase control by an<br />

electric field; Nature 430 (<strong>2004</strong>) 541-544<br />

LMO04: H. Lippert, J. Manz, M. Oppel, G. K. Paramonov,<br />

W. Radloff, H.-H. Ritze and V. Stert; Control of breaking<br />

strong versus weak bonds of BaFCH 3 by femtosecond<br />

IR + VIS laser pulses: theory and experiment;<br />

PhysChemChemPhys 6 (<strong>2004</strong>) 4283-4295<br />

LRE04: X. Liu, H. Rottke, E. Eremina, W. Sandner, E.<br />

Goulielmakis, K. O. Keeffe, H. Lezius, F. Krausz, F.<br />

Lindner, N. G. Schätzel, G. G. Paulus and H. Walther;<br />

Nonsequential double ionization at the single-opticalcycle<br />

limit; Phys. Rev. Lett. 93 (<strong>2004</strong>) 263001/1-4<br />

LRH04a: H. Lippert, H.-H. Ritze, I. V. Hertel and W.<br />

Radloff; Femtosecond time-resolved hydrogen-atom<br />

elimination from photoexcited pyrrole molecules;<br />

ChemPhysChem 5 (<strong>2004</strong>) 1423-1427<br />

LRH04b: H. Lippert, H.-H. Ritze, I. V. Hertel and W.<br />

Radloff; Femtosecond time-resolved analysis of the<br />

photophysics of the indole molecule; Chem. Phys. Lett.<br />

398 (<strong>2004</strong>) 526-531<br />

LRu04: C. Lienau and E. Runge; Leuchtende Wellenfunktionen;<br />

Physik Journal 3 (<strong>2004</strong>) 17-18<br />

LRW04a: C. W. Luo, K. Reimann, M. Woerner, T.<br />

Elsaesser, R. Hey and K. H. Ploog; Phase-resolved<br />

nonlinear response of a two-dimensional electron gas<br />

under femtosecond intersubband excitation; Phys. Rev.<br />

Lett. 92 (<strong>2004</strong>) 047402/1-4<br />

LRW04b: C. W. Luo, K. Reimann, M. Woerner and T.<br />

Elsaesser; Nonlinear terahertz spectroscopy of semiconductor<br />

nanostructures; Appl. Phys. A 78 (<strong>2004</strong>) 435-<br />

440<br />

LRW04c: C. W. Luo, K. Reimann, M. Woerner, T.<br />

Elsaesser, R. Hey and K. H. Ploog; Rabi oscillations of<br />

intersubband transitions in GaAs/AlGaAs MQWs;<br />

Semicond. Sci. Technol. 19 (<strong>2004</strong>) S285-S286<br />

LSS04a: H. Lippert, V. Stert, C. P. Schulz, I. V. Hertel and<br />

W. Radloff; Comparison of ultrafast photoinduced<br />

processes in indole(NH 3 ) n and indole(H 2 O) 4 clusters;<br />

in Femtochemistry and Femtobiology: Ultrafast Events<br />

in Molecular Science, M. M. Martin, and J. T. Hynes<br />

eds. (Elsevier, Amsterdam, <strong>2004</strong>) 49-52<br />

LSS04b: H. Lippert, V. Stert, C. P. Schulz, I. V. Hertel and<br />

W. Radloff; Photoinduced hydrogen transfer dynamics<br />

in indole-ammonia clusters at different excitation<br />

energies; PhysChem ChemPhys 6 (<strong>2004</strong>) 2718-2724<br />

LSV04: H. Legall, H. Stiel, U. Vogt, H. Schönnagel, P.-V.<br />

Nickles, J. Tümmler, F. Scholz and F. Scholze; Spatial<br />

and spectral characterization of a laser produced<br />

plasma source for EUV metrology; Rev. Sci. Instrum.<br />

75 (<strong>2004</strong>) 4981-4988<br />

MGS04: M. Moenster, P. Glas, G. Steinmeyer and R.<br />

Iliew; Mode-locked Nd-doped microstructured fiber<br />

laser; Opt. Expr. 12 (<strong>2004</strong>) 4523-4528<br />

MPA04: X. Mateos, V. Petrov, M. Aguiló, R. M. Solé, J.<br />

Gavaldà, J. Massons, F. Diaz and U. Griebner;<br />

Continuous-wave laser oscillation of Yb 3+ in monoclinic<br />

KLu(WO 4 ) 2 ; IEEE J. Quantum Elect. 40 (<strong>2004</strong>)<br />

1056-1059<br />

MPB04: D. B. Milosevic, G. G. Paulus and W. Becker;<br />

Metering the absolute phase of a few-cycle pulse via<br />

its high-order above-threshold ionization spectrum;<br />

Laser Physics Letters 1 (<strong>2004</strong>) 93-99<br />

MRL04: R. Mueller, C. Ropers and C. Lienau; Femtosecond<br />

light pulse propagation through metallic nanohole<br />

arrays: The role of the dielectric substrate; Opt.<br />

Expr. 12 (<strong>2004</strong>) 5067-5081<br />

NEl04: E. T. J. Nibbering and T. Elsaesser; Ultrafast<br />

vibrational dynamics of hydrogen bonds in the<br />

condensed phase; Chem. Rev. 104 (<strong>2004</strong>) 1887-1914<br />

NGG04: U. Neumann, R. Grunwald, U. Griebner, G.<br />

Steinmeyer and W. Seeber; Second harmonic efficiency<br />

of ZnO nanolayers; Appl. Phys. Lett. 84 (<strong>2004</strong>) 170-172


Nib04: E. T. J. Nibbering; Femtosecond condensed<br />

phase spectroscopy: Structural dynamics; in Encyclopedia<br />

of Modern Optics, R.D. Guenther, D.G. Steel, and<br />

L. Bayvel eds. (Elsevier, Oxford, <strong>2004</strong>) Vol. 5, 253-263<br />

Nic04: P. V. Nickles, Interaction of intense short laser<br />

pulses with matter and related applications, ILE-<br />

Publications, “Lectures of Guest- Professors”, (ILE,<br />

Osaka, Japan, Osaka, <strong>2004</strong>)<br />

PBP04: V. Petrov, V. Badikov, V. Panyutin, G.<br />

Shevyrdyaeva, S. Sheina and F. Rotermund; Mid-IR<br />

optical parametric amplification with femtosecond<br />

pumping near 800 nm using Cd x Hg 1-x Ga 2 S 4 ; Opt.<br />

Commun. 235 (<strong>2004</strong>) 219-226<br />

PBS04: V. Petrov, V. Badikov, G. Shevyrdyaeva, V.<br />

Panyutin and V. Chizhikov; Phase-matching properties<br />

and optical parametric amplification in single crystals<br />

of AgGaGeS 4 ; Opt. Mat. 26 (<strong>2004</strong>) 217-222<br />

PFi04: R. V. Pisarev and M. Fiebig; Impact of ferroelectric<br />

ordering on optical and magnetic properties of hexagonal<br />

manganites; Ferroelectrics 303 (<strong>2004</strong>) 113-118<br />

PGM04: V. Petrov, F. Güell, J. Massons, J. Gavalda, R.<br />

M. Sole, M. Aguilo, F. Diaz and U. Griebner; Efficient<br />

tunable laser operation of Tm: KGd(WO 4 ) 2 in the<br />

continuous-wave regime at room temperature; IEEE<br />

J. Quantum Elect. 40 (<strong>2004</strong>) 1244-1251<br />

PLM04: G. G. Paulus, F. Lindner, D. B. Milosevic and W.<br />

Becker; Phase-controlled single-cycle strong field<br />

photoionization; Phys. Scr. T110 (<strong>2004</strong>) 120-125<br />

PNB04: V. Petrov, F. Noack, V. Badikov, G. Shevyrdyaeva,<br />

V. Panyutin and V. Chizhikov; Phase-matching and<br />

femtosecond difference-frequency generation in the<br />

quaternary semiconductor AgGaGe 5 Se 12 ; Appl. Opt. 43<br />

(<strong>2004</strong>) 4590-4597<br />

PNS04: V. Petrov, F. Noack, D. Shen, F. Pan, G. Shen, X.<br />

Wang, R. Komatsu and V. Alex; Application of the<br />

nonlinear crystal SrB 4 O 7 for ultrafast diagnostics<br />

converting to wavelengths as short as 125 nm; Opt.<br />

Lett. 29 (<strong>2004</strong>) 373-375<br />

PSP04: R. V. Pisarev, I. Sänger, G. A. Petrakovskii and<br />

M. Fiebig; Magnetic-field induced second harmonic<br />

generation in CuB 2 O 4 ; Phys. Rev. Lett. 93 (<strong>2004</strong>)<br />

037204/1-4<br />

PVC04: G. Prümper, J. Viefhaus, S. Cvejanovic, D. Rolles,<br />

O. Geißner, T. Lischke, R. Hentges, C. Wienberg, W.<br />

Mahler, U. Becker, B. Langer, T. Prosper, N. Zema, S.<br />

Turchini and B. Zada; Upper limit for steroselective<br />

photodissociation of free amino acide in the vacuum<br />

ultraviolet region and at the C1s edge; Phys. Rev. A 69<br />

(<strong>2004</strong>) 62717/1-7<br />

PWF04: D. Pop, B. Winter, W. Freyer, R. Weber, W.<br />

Widdra and I. V. Hertel; Photoelectron spectroscopy<br />

on thin films of extended copper porphyrazines; J. Phys.<br />

Chem. B 108 (<strong>2004</strong>) 9158-9167<br />

PYI04: V. Petrov, A. Yelisseyev, L. Isaenko, S. Lobanov,<br />

A. Titov and J.-J. Zondy; Second harmonic generation<br />

and optical parametric amplification in the mid-IR with<br />

orthorhombic biaxial crystals LiGaS 2 and LiGaSe 2 ; Appl.<br />

Phys. B 78 (<strong>2004</strong>) 543-546<br />

RAs04: A. Rosenfeld and D. Ashkenasi; Ultra short<br />

laser pulse modification of waveguides; SPIE Proc.<br />

5063 (<strong>2004</strong>) 478-481<br />

RCF04: H. Ruhl, T. Cowan and J. Fuchs; The generation<br />

of micro-fiducials in laser-accelerated proton flows,<br />

their imaging property of surface structures and<br />

application for the characterization of the flow; Phys.<br />

Plasmas 11 (<strong>2004</strong>) L17-L20<br />

Rei04: H. R. Reiss; Facts and fallacies in strong-field<br />

physics; in Universality and Diversity in Science:<br />

Festschrift in honor of Naseem K. Rahman’s 60th<br />

birthday, W. Becker, and M. V. Fedorov eds. (<strong>2004</strong>) 151-<br />

166<br />

RLG04: M. Rico, J. Liu, U. Griebner, V. Petrov, M. D.<br />

Serrano, F. Esteban-Betegón, C. Cascales and C. Zaldo;<br />

Tunable laser operation of ytterbium in disordered<br />

single crystals of Yb: NaGd(WO 4 ) 2 ; Opt. Exp. 12 (<strong>2004</strong>)<br />

5362-5367<br />

RLS04: H.-H. Ritze, H. Lippert, V. Stert, W. Radloff and<br />

I. V. Hertel; Theoretical study of the hydrogen atom<br />

transfer in the heterodimer indole-ammonia and<br />

comparison with experimental results; J. Chem. Phys.<br />

120 (<strong>2004</strong>) 3619-3629<br />

RMM04: M. Rini, O. F. Mohammed, B.-Z. Magnes, E.<br />

Pines and E. T. J. Nibbering; Bimodal intermolecular<br />

proton transfer in water: Photoacid-base pairs studied<br />

with ultrafast infrared spectroscopy; in Femtochemistry<br />

and Femtobiology: Ultrafast Events in Molecular<br />

Science, J.T. Hynes, and M.M. Martin eds. (Elsevier,<br />

Amsterdam, <strong>2004</strong>) 189-192<br />

RPM04: M. Rini, D. Pines, B.-Z. Magnes, E. Pines and<br />

E. T. J. Nibbering; Bimodal proton transfer in acid-base<br />

reactions in water; J. Chem. Phys. 121 (<strong>2004</strong>) 9593-<br />

9610<br />

RSh04: M. B. Raschke and Y. R. Shen; Sum-frequency<br />

generation at surfaces; in Encyclopedia of Modern<br />

Optics, R.D. Guenther, D.G. Steel, and L. Bayvel eds.<br />

(Elsevier, Oxford, <strong>2004</strong>) Vol. 5, 184-189<br />

RYP04: F. Rotermund, C. J. Yoon, V. Petrov, F. Noack,<br />

S. Kurimura, N.-E. Yu and K. Kitamura; Application of<br />

periodically poled stoichiometric LiTaO 3 for efficient<br />

optical parametric chirped pulse amplification at 1 kHz;<br />

Opt. Exp. 12 (<strong>2004</strong>) 6421-6427<br />

SBe04: M. B. Smirnov and W. Becker; X-ray emission<br />

in clusters in a strong electromagnetic field; Phys. Rev.<br />

A 69 (<strong>2004</strong>) 013201/1-7<br />

87


88<br />

SCS04: C. P. Schulz, P. Claas, D. Schumacher and F.<br />

Stienkemeier; Formation and stability of high-spin alkali<br />

clusters; Phys. Rev. Lett. 92 (<strong>2004</strong>) 013401/1-4<br />

SEH04: C. Stanciu, R. Ehlich and I. V. Hertel; Photopolymerization<br />

of C 60 and Li@C 60 studied by second<br />

harmonic generation and infrared spectroscopy; Appl.<br />

Phys. A 79 (<strong>2004</strong>) 515-520<br />

SES04: C. Stanciu, R. Ehlich, G. Y. Slepyan, A. A.<br />

Khrutchinski, S. A. Maksimenko, F. Rotermund, V.<br />

Petrov, O. Steinkellner, F. Rohmund, E. E. B. Campbell,<br />

J. Herrmann and I. V. Hertel; Third-harmonic generation<br />

in carbon nanotubes: Theory and experiment; in<br />

Proceeding SPIE, Kong-Thon Tsen, Jin-Joo Song, and<br />

Hongxing Jiang eds. (<strong>2004</strong>) Vol. 5352, 116-125<br />

SHJ04: M. Schnürer, D. Hilscher, U. Jahnke, S. Ter-<br />

Avetisyan, S. Busch, M. Kalachnikov, H. Stiel, P. V.<br />

Nickles and W. Sandner; Explosion characteristics of<br />

intense femtosecond-laser driven water droplets;<br />

Phys. Rev. E 70 (<strong>2004</strong>) 056401/1-10<br />

SKN04: G. Y. Slepyan, A. A. Khrutchinski, A. M. Nemilentsau,<br />

S. A. Maksimenko and J. Herrmann; High-order optical<br />

harmonic generation on carbon nanotubes: quantummechanical<br />

approach; Int. J. of Nanoscience 3 (<strong>2004</strong>)<br />

343-354<br />

SLF04: T. Satoh, T. Lottermoser and M. Fiebig;<br />

Resonance-enhanced two-photon sum-frequency<br />

generation in NiO and KNiF 3 ; Appl. Phys. B 79 (<strong>2004</strong>)<br />

701-706<br />

SLR04: V. Stert, H. Lippert, H.-H. Ritze and W. Radloff;<br />

Femtosecond time-resolved dynamics of the<br />

electronically excited ethylene molecule; Chem. Phys.<br />

Lett. 388 (<strong>2004</strong>) 144-149<br />

SMW04: R. Stoian, A. Mermillod-Blondin, S. Winkler, A.<br />

Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, C.<br />

Fotakis, I. M. Burakov and N. M. Bulgakova; Temporal<br />

pulse manipulation and adaptive optimization in ultrafast<br />

laser processing of materials; in SPIE Proc., H.<br />

Helvajian, K. Itoh, K. F. Kobayashi, A. Ostendorf, and K.<br />

Sugioka eds. (SPIE, WA, <strong>2004</strong>, Bellingham,<br />

Washington, USA, <strong>2004</strong>) Vol. 5662, 593-602<br />

SNR04: O. Steinkellner, F. Noack, H.-H. Ritze, W.<br />

Radloff and I. V. Hertel; Ultrafast predissociation<br />

dynamics of water molecules excited to the electronic<br />

C and D states; J. Chem. Phys. 121 (<strong>2004</strong>) 1765-1769<br />

SRH04: R. Stoian, A. Rosenfeld, I. V. Hertel, N. M.<br />

Bulgakova and E. E. B. Campbell; Comments on the<br />

“Coloumb explosion in femtosecond laser ablation of<br />

Si(111); Appl. Phys. Lett. 85 (<strong>2004</strong>) 694-695<br />

SSH04: C. P. Schulz, A. Scholz and I. V. Hertel; Ultrafast<br />

energy redistribution in photoexcited sodium-ammonia<br />

clusters; Isr. J. Chem. B 44 (<strong>2004</strong>) 19-25<br />

SSR04: T. Schultz, E. Samoilova, W. Radloff, I. V. Hertel,<br />

A. L. Sobolewski and W. Domcke; Efficient excitedstate<br />

deactivation of a model base pair: Evidence for<br />

the role of excited-state hydrogen transfer and conical<br />

intersections; Science 306 (<strong>2004</strong>) 1765-1768<br />

SSt04: G. Stibenz and G. Steinmeyer; High dynamic<br />

range characterization of ultrabroadband white-light<br />

continuum pulses; Opt. Expr. 12 (<strong>2004</strong>) 6319-6325<br />

SSV04: G. Sansone, G. Steinmeyer, C. Vozzi, S. Stagira,<br />

M. Nisoli, S. D. Silvestri, K. Starke, D. Ristau, B.<br />

Schenkel, J. Biegert, A. Gosteva and U. Keller; Mirror<br />

dispersion control of a hollow fiber supercontinuum;<br />

Appl. Phys. B 78 (<strong>2004</strong>) 551-555<br />

STB04: M. Schnürer, S. Ter-Avetisyan, S. Busch, M. P.<br />

Kalachnikov, E. Risse, W. Sandner and P. V. Nickles;<br />

MeV-proton emission from ultrafast laser-driven microparticles;<br />

Appl. Phys. B 78 (<strong>2004</strong>) 895-899<br />

Stec04: G. Steinmeyer; Dispersion compensation by<br />

microstructured optical devices in ultrafast optics; Appl.<br />

Phys. A 79 (<strong>2004</strong>) 1663-1671<br />

SUQ04: T. Schultz, S. Ullrich, J. Quenneville, T. J.<br />

Martinez, M. Z. Zgierski and A. Stolow; Azobene photoisomerization:<br />

Two states and two relaxation pathways<br />

explain the violation of Kasha’s rule; in Femtochemistry<br />

and Femtobiology: Ultrafast Events in Molecular<br />

Science, M. M. Martin, and J. T. Hynes eds. (Elsevier,<br />

Amsterdam, <strong>2004</strong>) 45-48<br />

TGB04: J. W. Tomm, A. Gerhard, M. L. Biermann and J.<br />

P. Holland; Quantitative spectroscopic strain analysis<br />

of AlGaAs-based high-power diode laser devices; Eur.<br />

Phys. J. Appl. Phys. 27 (<strong>2004</strong>) 461-464<br />

TSBa04: S. Ter-Avetisyan, M. Schnürer, S. Busch and<br />

P. V. Nickles; Negative ions from liquid microdroplets<br />

irratiated with ultrashort and intense laser pulses; J.<br />

Phys. B: At. Mol. Opt. Phys. 37 (<strong>2004</strong>) 3633-3640<br />

TSBb04: S. Ter-Avetisyan, M. Schnürer, S. Busch, E.<br />

Risse, P. V. Nickles and W. Sandner; Spectral Dips in<br />

Ion Emission Emerging from Ultrashort Laser-Driven<br />

Plasmas; Phys. Rev. Lett. 93 (<strong>2004</strong>) 155006/1-4<br />

TSG04: J. W. Tomm, V. Strelchuk, A. Gerhard, U. Zeimer,<br />

M. Zorn, H. Kissel, M. Weyers and J. Jiménez;<br />

Properties of As + -implanted and annealed GaAs and<br />

InGaAs quantum-wells: structural and band-structure<br />

modifications; J. Appl. Phys. 95 (<strong>2004</strong>) 1122-1126<br />

TSL04a: G. Turri, G. Snell, B. Langer, M. Martins, E. Kukk,<br />

S. E. Canton, R. C. Bilodeau, N. Cherepkov, J. D. Bozek,<br />

A. L. Kilcoyne and N. Berrah; Probing the molecular<br />

environment using spin-resolved photoelectron<br />

spectroscopy; Phys. Rev. Lett. 92 (<strong>2004</strong>) 013001/1-4<br />

TSL04b: G. Turri, G. Snell, B. Langer, M. Martins, E. Kukk,<br />

S. E.Canton, R. C. Bilodeau, N. Cherepkov, J. D. Bozek,<br />

A. L. Kilcoyne and N. Berrah; Spin- and angle-resolved<br />

spectroscopy of S 2p photoionization in the hydrogen<br />

sulfide molecule; Phys. Rev. A 70 (<strong>2004</strong>) 022515/1-7


TTZ04a: V. G. Talalaev, J. W. Tomm, N. D. Zakharov, P.<br />

Werner, B. V. Novikov, G. É. Cirlin, Y. B. Samsonenko, A.<br />

A. Tonkikh, V. A. Egorov, N. K. Polyakov and V. M. Unstinov;<br />

Spectroscopy of exciton states of InAs quantum<br />

molecules; Semiconductors 38 (<strong>2004</strong>) 696-701<br />

TTZ04b: V. G. Talalaev, J. W. Tomm, N. D. Zakharov, P.<br />

Werner, B. V. Novikov and A. A. Tonkikh; Transient<br />

spectroscopy of InAs quantum dot molecules; Appl.<br />

Phys. Lett. 85 (<strong>2004</strong>) 284-286<br />

TWG04: J. W. Tomm, F. Weik, A. Gerhardt, T. Q. Tran, J.<br />

Biesenbach, H. Müntz and G. Seibold; Transient thermal<br />

tuning properties of single emitters in actively cooled highpower<br />

cm-bar arrays; SPIE Proc. 5336 (<strong>2004</strong>) 125-131<br />

UCK04: D. Ursescu, K. Cassou, A. Klisnick, T. Kuehl,<br />

P. Neumayer, P. Nickles, D. Ros, S. <strong>Born</strong>eis, E. Gaul,<br />

W. Geithner, C. Haefner and P. Wiewior; Transient<br />

collisionally pumped X-ray laser at Phelix; Italian<br />

Physical Society, Conference Proceedings of “Atoms<br />

and Plasmas in Super-Intense Laser Fields” 88 (<strong>2004</strong>)<br />

413-418<br />

UML04a: T. Unold, K. Müller, C. Lienau and T. Elsaesser;<br />

Space and time resolved coherent optical spectroscopy<br />

of single quantum dots; Semicond. Sci. Technol. 19<br />

(<strong>2004</strong>) S260-S263<br />

UML04b: T. Unold, K. Mueller, C. Lienau, T. Elsaesser<br />

and A. D. Wieck; Optical stark effect in a quantum dot:<br />

Ultrafast control of single exciton polarizations; Phys.<br />

Rev. Lett. 92 (<strong>2004</strong>) 157401/1-4<br />

USZ04a: S. Ullrich, T. Schultz, M. Z. Zgieski and A. Stolow;<br />

Direct observation of electronic relaxation dynamics in<br />

Adenine via time-resolved photoelecton spectroscopy;<br />

J. Am. Chem. Soc. 126 (<strong>2004</strong>) 2262-2263<br />

USZ04b: S. Ullrich, T. Schultz, M. Z. Zgierski and A. Stolow;<br />

Electronic relaxation dynamics in DNA and RNA bases<br />

studied by time-resolved photoelectron spectroscopy;<br />

PhysChemChemPhys 6 (<strong>2004</strong>) 4167-4169<br />

VCL04: J. Viefhaus, S. Cvejanovic, B. Langer, T. Lischke,<br />

G. Prümper, D. Rolles, A. V. Golovin, A. N. Grum-Grzhimailo,<br />

N. M. Kabachnik and U. Becker; Energy and angular<br />

distributions of electrons emitted by direct double Auger<br />

decay; Phys. Rev. Lett. 92 (<strong>2004</strong>) 083001/1-4<br />

VSL04: U. Vogt, H. Stiel, H. Legall and T. Wilhein; High<br />

resolution x-ray absorption spectroscopy using a laser<br />

plasma radiation source; Rev. Sci. Instrum. 75 (<strong>2004</strong>)<br />

4606-4609<br />

WER04: M. Woerner, F. Eickemeyer, K. Reimann, T.<br />

Elsaesser, S. Barbieri, C. Sirtori, T. Mueller, R.<br />

Bratschitsch, K. Unterrainer and G. Strasser; Coherent<br />

vs. incoherent charge transport in semiconductor<br />

quantum cascade structures; SPIE Proc. 5352 (<strong>2004</strong>)<br />

333-347<br />

WFL04: I. Waldmüller, J. Förstner, S. C. Lee, A. Knorr,<br />

M. Woerner, K. Reimann, R. A. Kaindl, T. Elsaesser, R.<br />

Hey and K. H. Ploog; Optical dephasing of coherent<br />

intersubband transitions in a quasi-two-dimensional<br />

electron gas; Phys. Rev. B 69 (<strong>2004</strong>) 205307/1-9<br />

WRE04: M. Woerner, K. Reimann and T. Elsaesser;<br />

Coherent charge transport in semiconductor quantum<br />

cascade structures; J. Phys.: Condens. Matter 16<br />

(<strong>2004</strong>) R25-R48<br />

WRW04: Z. Wang, K. Reimann, M. Woerner, T. Elsaesser,<br />

D. Hofstetter, J. Hwang, W. J. Schaff and L. F. Eastman;<br />

Femtosecond intersubband dynamics of electrons in<br />

AlGaN/GaN-based high-electron-mobility transistors;<br />

Semicond. Sci. Technol. 19 (<strong>2004</strong>) S463-S464<br />

WTG04a: F. Weik, J. W. Tomm, R. Glatthaar, U. Vetter,<br />

D. Szewczy, J. Nurnus, A. Lambrecht, L. Mechold, B.<br />

Spellenberg and M. Bassler; Mid infrared luminescence<br />

imaging and its application to the optimization<br />

of light emitting diodes; Appl. Phys. Lett. 86 (<strong>2004</strong>)<br />

041106/1-3<br />

WTG04b: F. Weik, J. W. Tomm, R. Glatthaar, U. Vetter,<br />

D. Szewczyk, J. Nurnus, A. Lambrecht, M. Grau, R.<br />

Meyer, M. C. Amann, B. Spellenberg and M. Bassler;<br />

Materials and structural design of a mid-infrared lightemitting<br />

device; SPIE Proc. 5366 (<strong>2004</strong>) 149-157<br />

WWS04a: R. L. Weber, B. Winter, P. M. Schmidt, W.<br />

Widdra, I. V. Hertel, M. Dittmar and M. Faubel; Photoemission<br />

from aqueous alkali-halide using EUV<br />

synchrotron radiation; J. Phys. Chem. B 108 (<strong>2004</strong>)<br />

4729-4736<br />

WWS04b: B. Winter, R. Weber, P. M. Schmidt, I. V. Hertel,<br />

M. Faubel, L. Vrbka and P. Jungwirth; Molecular structure<br />

of surface-active salt solutions: Photoelectron<br />

spectroscopy and molecular dynamics simulations of<br />

aqueous tetrabutyl-ammonium iodide; J. Phys. Chem.<br />

B 108 (<strong>2004</strong>) 14558-14564<br />

WWW04: B. Winter, R. Weber, W. Widdra, M. Dittmar, M.<br />

Faubel and I. V. Hertel; Full valence band photoemission<br />

from liquid water using EUV synchrotron radiation; J.<br />

Phys. Chem. A 108 (<strong>2004</strong>) 2625-2632<br />

YTI04: A. P. Yelisseyev, V. A. Drebushchak, A. S. Titov, L.<br />

I. Isaenko, S. I. Lobanov, K. M. Lyapunov, V. A. Gruzdev,<br />

S. G. Komarov, V. Petrov and J.-J. Zondy; Thermal<br />

properties of the midinfrared nonlinear crystal LiInSe 2 ;<br />

J. Appl. Phys. 96 (<strong>2004</strong>) 3659-3665<br />

ZGK04: N. Zhavoronkov, Y. Gritsai, G. Korn and T.<br />

Elsaesser; Ultra-short efficient laser driven hard X-ray<br />

source operated at a kHz repetition rate; Appl. Phys. B<br />

79 (<strong>2004</strong>) 663-667<br />

ZKo04: N. Zhavoronkov and G. Korn; Regenerative<br />

amplification of femtosecond laser pulses in Ti:sapphire<br />

at multi-kHz repetition rates; Opt. Lett. 29 (<strong>2004</strong>) 198-<br />

200<br />

89


90<br />

ZKP04: D. F. Zaretsky, P. A. Korneev, S. V. Popruzhenko<br />

and W. Becker; Landau damping in thin films irradiated<br />

by a strong laser field; J. Phys. B: At. Mol. Opt. Phys. 37<br />

(<strong>2004</strong>) 4817-4830<br />

ZRH04: T. Zemojtel, M. Rini, K. Heyne, T. Dandekar, E.<br />

T. J. Nibbering and P. M. Kozlowski; NO bound<br />

myoglobin: Structural diversity and dynamics of the NO<br />

ligand; J. Am. Chem. Soc. 126 (<strong>2004</strong>) 1930-1931<br />

in press<br />

BLi: J. J. Baumberg and C. Lienau; Ultrafast coherent<br />

spectroscopy of single semiconductor quantum dots;<br />

in Semiconductor Macroatoms: Basic Physics and<br />

Quantum Device Applications, F. Rossi ed. (World<br />

Scientific Press)<br />

CMi: A. Cerkic and D. B. Milosevic; Potential scattering in<br />

a bichromatic laser field: plateau structures; Laser Phys.<br />

CBH: M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer,<br />

B. Chugh, E. T. J. Nibbering, T. Elsaesser and R. J. D.<br />

Miller; Ultrafast memory loss and energy redistribution<br />

in the hydrogen bond network of liquid H 2 O; Nature<br />

Drea: J. Dreyer; Hydrogen-bonded acetic acid dimers:<br />

Anharmonic coupling and linear infrared spectra studied<br />

with density functional theory; J. Chem. Phys.<br />

Dreb: J. Dreyer; Density functional theory simulations<br />

of two-dimensional infrared spectra for hydrogenbonded<br />

acetic acid dimers; Int. J. Quantum Chem.<br />

EHH: T. Elsaesser, K. Heyne, N. Huse and E. T. J.<br />

Nibbering; Ultrafast vibrational dynamics of hydrogen<br />

bonded dimers in solution; in Time-Resolved<br />

Vibrational Spectroscopy XI<br />

FLL: M. Fiebig, T. Lottermoser, T. Lonkai, A. V. Goltsev<br />

and R. V. Pisarev; Magnetoelectric effects in multiferroic<br />

manganites; J. Magn. Magn. Mat.<br />

FPP: M. Fiebig, V. V. Pavlov and R. V. Pisarev; Second<br />

harmonic generation as a novel tool for studying<br />

electronic and magnetic structures of crystals; J. Opt.<br />

Soc. Am. B<br />

FZB: S. V. Fomichev, D. F. Zaretsky, D. Bauer and W.<br />

Becker; Classical molecular-dynamics simulations of<br />

laser-irradiated clusters: nonlinear electron dynamics<br />

and resonance-enhanced low-order harmonic<br />

generation; Phys. Rev. A<br />

GEK: E. Gubbini, U. Eichmann, M.-P. Kalashnikov and<br />

W. Sandner; Strong laser field ionization of Kr: First<br />

order relativisticeffects defeat rescattering; J. Phys. B:<br />

At. Mol. Opt. Phys.<br />

GEK: E. Gubbini, U. Eichmann, M. Kalachnikov and W.<br />

Sandner; Core Relaxation in Atomic Ultra Strong Laser<br />

Field Ionization; Phys. Rev. Lett.<br />

GLR: U. Griebner, J. Liu, S. Rivier, A. Aznar, R. Grunwald,<br />

R. Solé, M. Aguiló, F. Díaz and V. Petrov; Laser operation<br />

of epitaxially grown Yb:KLu(WO 4 ) 2 /KLu(WO 4 ) 2 composites<br />

with monoclinic crystalline structure; IEEE J.<br />

Quantum Elect.<br />

GNS: R. Grunwald, U. Neumann, G. Stibenz, G. Steinmeyer,<br />

V. Kebbel, J.-L. Néron and M. Piché; Truncated<br />

ultrashort-pulse small-angle bessel beams; SPIE Proc.<br />

GSN: W. I. Gruszecki, H. Stiel, D. Niedzwiedzki, M. Beck,<br />

J. Milanowska, H. Lokstein and D. Leupold; Towards<br />

elucidating the energy of the first excited singlet state<br />

of xanthophyll cycle pigments by x-ray absorption<br />

spectroscopy; Biochim. Biophys. Acta<br />

HBC: N. Huse, B. D. Bruner, M. L. Cowan, J. Dreyer, E.<br />

T. J. Nibbering, T. Elsaesser and R. J. D. Miller;<br />

Heterodyne 2D-IR photon echo spectroscopy of multilevel<br />

OH stretching coherences in hydrogen bonds; in<br />

Ultrafast Phenomena XIV, T. Kobayashi, T. Okada, T.<br />

Kobayashi, K.A. Nelson, and S. De Silvestri eds.<br />

(Springer Verlag, <strong>Berlin</strong>, Germany)<br />

HCH: K. Hansen, E. E. B. Campbell and I. V. Hertel;<br />

Laser power dependence in femtosecond ionization<br />

of fullerenes; New J. of Phys.: Conf. Series<br />

HLS: I. V. Hertel, T. Laarmann and C. P. Schulz; Ultrafast<br />

excitation, ionization and fragmentation of C 60 ; Adv. At.<br />

Mol. Opt. Phys.<br />

HPN: K. Heyne, M. Petkovic, E. T. J. Nibbering, O. Kühn<br />

and T. Elsaesser; Cascaded energy redistribution<br />

upon O-H stretch excitation in an intramolecular<br />

hydrogen bondes system; in Ultrafast Phenomena<br />

XIV, T. Kobayashi, T. Okada, T. Kobayashi, K.A. Nelson,<br />

and S. De Silvestri eds. (Springer Verlag, <strong>Berlin</strong>,<br />

Germany)<br />

JST: K. A. Janulewicz, M. Schnuerer, J. Tuemmler, G.<br />

Priebe, E. Risse, P.V. Nickles, B. Greenberg, M. Levin,<br />

A. Pukhov, P. Mandelbaum and A. Zigler; Enhancement<br />

of a 24.77 nm line emitted by plasma of boron-nitride<br />

capillary discharge irradiated by high-intensity<br />

ultrashort laser pulse; Opt. Lett.<br />

KKO: R. Komatsu, H. Kawano, Z. Oumaru, K. Shinoda<br />

and V. Petrov; Growth of transparent SrB 4 O 7 single<br />

crystal and its new applications; J. Cryst. Growth<br />

KRR: S. Korica, D. Rolles, A. Reinköster, B. Langer, J.<br />

Viefhaus, S. Cvejanovic and U. Becker; Partial cross<br />

sections and angular distributions of resonant and nonresonant<br />

valence photoemission of C 60 ; Phys. Rev. A<br />

KRSb: M. P. Kalashnikov, E. Risse, H. Schönnagel and<br />

W. Sandner; Double-CPA laser: a way to clean pulses<br />

temporally; Opt. Lett.<br />

KRu: A. J. Kemp and H. Ruhl; Multispecies Ion<br />

Acceleration off Laser-Irradiated Water Dropletes; Phys.<br />

Plasmas


KWe05: V. Kozich and W. Werncke; Influence of<br />

vibrational cooling on the time-dependence of stokes<br />

and anti-stokes resonance raman scattering; J. Mol.<br />

Struct.<br />

KWT: A. Kozlowska, F. Weik, J. W. Tomm, A. Malag, M.<br />

Latoszek, P. Wawrzyniak, M. Teodorczyk, L. Dobrzanski,<br />

M. Zbroszczyk and M. Bugajski; Thermal properties of<br />

high-power diode lasers investigated by microthermography;<br />

SPIE Proc.<br />

LGG: B. Langer, M. Grimm, C. Graf, S. Dembski, R.<br />

Lewinski, S. Schlemmer, D. Gerlich, W. Widdra, U.<br />

Becker and E. Rühl; Step by step: Controlled charging<br />

of trapped nanoparticles; in BESSY Highlights, G. André,<br />

H. Henneken, and M. Sauerborn eds. (BESSY, <strong>Berlin</strong>)<br />

LHJ: A. Lassesson, K. Hansen, M. Jönsson, A. Gromov,<br />

E. E. B. Campbell, M. Boyle, D. Pop, C. P. Schulz and I.<br />

V. Hertel; A femtosecond laser study of the endohedral<br />

fullerenes Li@C 60 and La@C 82 ; Eur. Phys. J. D<br />

LLS: D. Leupold, H. Lokstein and H. Scheer; Excitation<br />

energy transfer between (bacterio)chlorophylls - the role<br />

of excitonic coupling; in Biochemistry and Biophysics of<br />

Chlorophylls, B. Grimm, R. Porra, W. Rüdiger, and H.<br />

Scheer eds. (Kluwer)<br />

LLS: B. Lohmann, B. Langer, G. Snell and U. Kleinman;<br />

Configuration-interaction-induced dynamic spin<br />

polarization of the Ar*(2p-1 1/2 , 3/24s1/2 ) resonant Auger<br />

J=1<br />

decay; Phys. Lett. A<br />

LRG: J. Liu, M. Rico, U. Griebner, V. Petrov, V. Peters, K.<br />

Petermann and G. Huber; Efficient room temperature<br />

continuous-wave operation of an Yb 3+ : Sc 2 O 3 crystal<br />

laser at 1041.6 and 1094.6 nm; phys. status solidi a<br />

MBe: D. B. Milosevic and W. Becker; Attosecond pulse<br />

generation by bicircular fields: from pulse trains to<br />

single pulses; J. Mod. Opt.<br />

MDM: O. F. Mohammed, J. Dreyer, B.-Z. Magnes, E.<br />

Pines and E. T. J. Nibbering; Solvent dependent photoacidity<br />

state of pyranine as monitored with transient<br />

mid-infrared spectroscopy; ChemPhysChem<br />

MRD: O. F. Mohammed, M. Rini, J. Dreyer, B.-Z. Magnes,<br />

D. Pines, E. T. J. Nibbering and E. Pines; Bimodal<br />

intermolecular proton transfer in acid-base neutralization<br />

reactions in water; in Ultrafast Phenomena XIV, T.<br />

Kobayashi, T. Okada, T. Kobayashi, K.A. Nelson, and<br />

S. De Silvestri eds. (Springer Verlag, <strong>Berlin</strong>, Germany)<br />

MWS: Y. I. Mazur, Z. M. Wang, G. J. Salamo, M. Xiao, J.<br />

W. Tomm, V. Talalaev and H. Kissel; Interdot carrier<br />

transfer in asymmetric bilayer of InAs/GaAs quantum<br />

dot structures; Appl. Phys. Lett.<br />

NFP: E. T. J. Nibbering, H. Fidder and E. Pines; Ultrafast<br />

chemistry: using time-resolved vibrational spectroscopy<br />

for interrogation of structural dynamics; Annu. Rev.<br />

Phys. Chem.<br />

NJS: P. V. Nickles, K. A. Janulewicz and W. Sandner;<br />

Table top X-ray lasers in short laser pulse and<br />

discharge driven plasmas; in Strong laser field<br />

physics, H. Kapteyn T. Brabec ed.<br />

NJS: P. V. Nickles, K. A. Janulewicz and W. Sandner; Xray<br />

lasers, Landolt-Bernstein ed.<br />

NSR: C. C. Neacsu, G. A. Steudle and M. Raschke;<br />

Plasmonic light scattering from nanoscopic metal tips;<br />

Appl. Phys. B<br />

PCM: B. S. Passmore, Y. C. Chua, M. O. Manasreh and<br />

J. W. Tomm; Longitudinal modes in InAlGaAs/AlGaAs<br />

high-power laser diodes; Progress in Compound Semiconductor<br />

Materials IV - Electronic and Optoelectronic<br />

Applications<br />

RGP: A. I. Ryasnyanskiy, R. A. Ganeev, G. Priebe, V. I.<br />

Redkorechev, K. Fostiropoulos and T. Usmanov;<br />

Competition of third- and fifth-order nonlinear optical<br />

processes in C60 thin film; Fullerenes, Nanotubes<br />

and Carbon Nanostructures<br />

RHN: M. Rini, A.-K. Holm, E. T. J. Nibbering and H.<br />

Fidder; Ultrafast UV/mid-IR study of the photochromism<br />

of the spiropyran - merocyanine photoreaction; in Time-<br />

Resolved Vibrational Spectroscopy XI<br />

RKr: H. R. Reiss and V. P. Krainov; Further comment<br />

on ‘Generalized Bessel Functions in Tunnelling<br />

Ionization’; J. Phys. A: Math. Gen.<br />

RLi: E. Runge and C. Lienau; Near-field wave function<br />

spectroscopy of excitons and biexcitons; Phys. Rev. B<br />

RKL: A. Reinköster, S. Korica, B. Langer, G. Prümper,<br />

D. Rolles and J. Viefhaus; Photoelectron and photoion<br />

study of the valence photoionization of C 60 ; J. Electron<br />

Spectrosc. Relat. Phenom.<br />

RML: C. Ropers, R. Müller, C. Lienau, G. Stibenz, G.<br />

Steinmeyer, D. J. Park, Y. C. Yoon and D. S. Kim; Ultrafast<br />

dynamics of light transmission through plasmonic<br />

crystals; in Ultrafast Phenomena XIV, T. Kobayashi, T.<br />

Okada, T. Kobayshi, K.A. Nelson, and S. De Silvestri<br />

eds. (Springer, <strong>Berlin</strong>, Germany)<br />

RMP: M. Rini, B.-Z. Magnes, E. Pines and E. T. J.<br />

Nibbering; Direct observation of bimodal intermolecular<br />

proton transfer in photoacid-base pairs in<br />

water; in Time-Resolved Vibrational Spectroscopy XI<br />

SKe: G. Steinmeyer and U. Keller; Optical comb<br />

dynamics and stabilization; in Femtosecond Optical<br />

Frequency Comb: Principle, Operation, and Applications,<br />

J. Ye, and S. Cundiff eds. (Kluwer Academic Publishing,<br />

Norwell, MA)<br />

SLF: T. Satoh, T. Lottermoser and M. Fiebig; Detection<br />

of spin and charge states in transition metal oxides by<br />

nonlinear optics; J. Appl. Phys.<br />

91


92<br />

SLU: E. Samoilova, H. Lippert, S. Ullrich, I. V. Hertel, W.<br />

Radloff and T. Schultz; Dynamics of photoinduced<br />

processes in adenine and thymine base pairs; J. Am.<br />

Chem. Soc.<br />

SSta: G. Stibenz, G. Steinmeyer and W. Richter; Dynamic<br />

spectral interferometry for measuring the nonlinear<br />

amplitude and phase response of a saturable absorber<br />

mirror; Appl. Phys. Lett.<br />

STB: M. Schnürer, S. Ter-Avetisyan, S. Busch, E. Risse,<br />

M. P. Kalachnikov, W. Sandner and P. V. Nickles; Ion<br />

acceleration with ultrafast laser driven water droplets;<br />

Laser Part. Beams<br />

Stea: G. Steinmeyer; Ultrafast Optoelectronics; in<br />

Handbook of Optoelectronics, J. Dakin, and R. Brown<br />

eds. (IOP Publishing, Bristol, UK)<br />

Steb: G. Steinmeyer; Nonlinear and short pulse effects;<br />

in Handbook of Optoelectronics<br />

TBP: J. W. Tomm, M. L. Biermann, B. S. Passmore, M.<br />

O. Manasreh, A. Gerhardt and T. Q. Tien; Spectroscopic<br />

analysis of external stresses in semiconductor quantumwell<br />

materials; Progress in Compound Semiconductor<br />

Materials IV - Electronic and Optoelectronic Applications<br />

TBS: M. S. Taylor, J. Barbera, C. P. Schulz, F. Muntean,<br />

A. B. McCoy and W. C. Lineberger; Femtosecond<br />

dynamics of Cu(H 2 O) 2 ; J. Chem. Phys.<br />

TGS: Q. T. Tran, A. Gerhardt, S. Schwirzke-Schaaf, J. W.<br />

Tomm, H. Müntz, J. Biesenbach, M. Oudart, J. Nagle<br />

and M. L. Biermann; Relaxation of packaging-induced<br />

strains in AlGaAs-based high-power diode laser<br />

arrays; Appl. Phys. Lett.<br />

TGu: P. Tzankov and G. Gurzadyan; Chapter 4.4:<br />

Dielectrics and Electrooptics; in Springer Handbook<br />

of Condensed Matter and Materials Data, W.<br />

Martienssen, and H. Warlimont eds. (Springer)<br />

TSH: S. Ter-Avetisyan, M. Schnürer, D. Hilscher, U.<br />

Jahnke, S. Busch, P. V. Nickles and W. Sandner; Fusion<br />

neutron yield from a laser-irradiated heavy-water spray;<br />

Phys. Plasmas<br />

TSN: S. Ter-Avetisyan, M. Schnürer and P.-V. Nickles;<br />

Time resolved corpuscular diagnostics of plasmas<br />

produced with high intensity femtosecond-laserpulses;<br />

J. Phys. D: Appl. Phys.<br />

TTO: Q. T. Tran, J. W. Tomm, M. Oudart and J. Nagle;<br />

Mechanical strain and defect distributions in GaAsbased<br />

diode lasers monitored during operation; Appl.<br />

Phys. Lett.<br />

TWG: J. W. Tomm, F. Weik, R. Glatthaar, U. Vetter, J.<br />

Nurnus, A. Lambrecht, B. Spellenberg, M. Bassler, M.<br />

Behringer and J. Luft; A novel light-emitting structure<br />

for the 3-5 µm spectral range; SPIE Proc.<br />

UMH: A. Usman, O. F. Mohammed, K. Heyne, J. Dreyer<br />

and E. T. J. Nibbering; Excited state dynamics of a PYP<br />

chromophore model system explored with ultrafast<br />

infrared spectroscopy; Chem. Phys. Lett.<br />

vLW: K. v. Haeften, T. Laarmann, H. Wabnitz and T.<br />

Möller; The electronically excited states of helium<br />

clusters: An unusual example for the presence of<br />

Rydberg states in condensed matter; J. Phys. B: At.<br />

Mol. Opt. Phys.<br />

VSO: A. I. Vodchits, A. G. Shvedko, V. A. Orlovich, V. P.<br />

Kozich and W. Werncke; Stimulated Raman<br />

amplification of ultrashort seed pulses in compressed<br />

methane; J. Opt. Soc. Am. B<br />

WdG: H. Wabnitz, A. R. B. de Castro, P. Gürtler, T.<br />

Laarmann, W. Laasch, J. Schulz and T. Möller; Multiple<br />

ionization of rare gas atoms irradiated with intense<br />

VUV radiation; Phys. Rev. Lett.<br />

WKD: W. Werncke, V. Kozich and J. Dreyer; Vibrational<br />

excitation and energy redistribution after ultrafast<br />

intramolecular proton transfer of TINUVIN; in Ultrafast<br />

Phenomena XIV, T. Kobayashi, T. Okada, T. Kobayshi,<br />

K.A. Nelson, and S. De Silvestri eds. (Springer Verlag,<br />

<strong>Berlin</strong>, Germany)<br />

WKS: M. Weinelt, M. Kutschera, R. Schmidt, Ch. Orth,<br />

Th. Fauster and M. Rohlfing; Electronic structure and<br />

electron dynamics at Si(100); Appl. Phys. A<br />

WKT: I. Will, G. Koss and I. Templin; The Photocathode<br />

laser of the TESLA Test Facility; Nucl. Instrum. Meth. A<br />

WKV: W. Werncke, V. Kozich, A. I. Vodchits and J. Dreyer;<br />

Ultrafast excitation of out-of-plane vibrations and vibrational<br />

energy redistribution after internal conversion of 4-nitroaniline;<br />

in Time-Resolved Vibrational Spectroscopy XI<br />

WRW: Z. Wang, K. Reimann, M. Woerner, T. Elsaesser,<br />

D. Hofstetter, J. Hwang, W. J. Schaff and L. F. Eastman;<br />

Optical phonon sidebands of electronic intersubband<br />

absorption in strongly polar semiconductor heterostructures;<br />

Phys. Rev. Lett.<br />

XSJ: X. Mateos, R. Sole, J. Gavalda, M. Aguilo, J.<br />

Massons and F. Diaz; Crystal growth, spectroscopic<br />

studies and laser operation of Yb 3+ -doped potassium<br />

lutetium tungstate; Opt. Mat.<br />

ZNS: M. Zierhut, B. Noller, T. Schultz and I. Fischer;<br />

Excited-state decay of hydrocarbon radicals, investigated<br />

by femtosecond time-resolved photoionization: Ethyl,<br />

Propargyl, and Benzyl; J. Chem. Phys.<br />

ZTo: N. Zhavoronkov and K. Tominaga; All-solid-state<br />

compact laser system based on a new cavity-dumped<br />

oscillator design; J. Opt. Soc. Am. B


submitted<br />

BBS: I. M. Burakow, N. M. Bulgakova, R. Stoian, A.<br />

Rosenfeld and I. V. Hertel; Theoretical study of the<br />

possibility of material modification with temporally<br />

shaped femtosecond laser pulses; Mass Spectrometry<br />

BdG: C. Bostedt, A. R. B. de Castro, P. Gürtler, T.<br />

Laarmann, W. Laasch, J. Schulz, A. Swiderski, H.<br />

Wabnitz and T. Möller; Non-linear phenomena in atoms<br />

and clusters induced by intense VUV radiation from a<br />

free electron laser; J. Electron Spectrosc. Rel. Phenom.<br />

BFW: K. Boger, T. Fauster and M. Weinelt; Elastic<br />

scattering in image-potential bands observed by twophoton<br />

photoemission; New J. Phys.<br />

BSR: N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V.<br />

Hertel and E. E. B. Campbell; Surface charging under<br />

pulsed laser ablation of solids and its consequences:<br />

Studies with a continuum approach; SPIE Proc.<br />

dLS: A. R. B. de Castro, T. Laarmann, J. Schulz, H.<br />

Wabnitz and T. Möller; Photoionization of Helium atoms<br />

irradiated with intense VUV free-electron laser light:<br />

Theoretical modelling of multi-photon and singlephoton<br />

processes; Phys. Rev. A<br />

Els: T. Elsaesser; Coherent low-frequency motions in<br />

condensed phase hydrogen bonding and transfer; in<br />

Handbook of Hydrogen Transfer; Vol. 1: Physical and<br />

Chemical Aspects of Hydrogen Transfer, R.L. Schowen,<br />

J.P. Klinman, J. Hynes, and H.-H. Limbach eds. (Wiley-<br />

VCH, Weinheim, Germany)<br />

FHM: H. Fidder, A.-K. Holm, O. F. Mohammed, M. Rini<br />

and E. T. J. Nibbering; Time-resolved observation of<br />

sequential merocyanine product conversion after<br />

femtosecond UV excitation of a nitro-substituted<br />

spiropyran; PhysChemChemPhys<br />

Gru: R. Grunwald; Microoptics; in Digital Encyclopedia<br />

of Applied Physics, G.L. Trigg ed. (Wiley-VCH, Weinheim)<br />

Fre: W. Freyer; Reaction of singlet oxygen with anthralocyanines;<br />

J. Photoch. Photobio. A<br />

FWe: Th. Fauster and M. Weinelt; Carrier dynamics on<br />

surface studied by two-photon photoemission; Surf.<br />

Science<br />

HBC: N. Huse, B. D. Bruner, M. L. Cowan, J. Dreyer, E.<br />

T. J. Nibbering, R. J. D. Miller and T. Elsaesser;<br />

Anharmonic couplings underlying ultrafast vibrational<br />

dynamics of hydrogen bonds in liquids; Phys. Rev. Lett.<br />

HJK: M. v. Hartrott, E. Jäschke, D. Krämer, D. Richter, J.<br />

P. Carneiro, K. Flöttmann, S. Schreiber, K. Abrahamyan,<br />

J. Bähr, J. Bohnet, U. Gensch, H.-J. Grabosch, J. H.<br />

Hahn, M. Krasilnikov, D. Lipka, V. Miltchev, A. Oppelt, L.<br />

Staykov, F. Stephan, P. Michelaro, C. Pagani, D. Serote,<br />

I. Tsakov, W. Sandner, I. Will, W. Ackermann, W. F. O.<br />

MÜller, S. Setzer, T. Weiland and J. Roßbach; The Photo<br />

Injector Test Facility at DESA Zeuthen: Results of the<br />

first phase; Proceedings FEL <strong>2004</strong><br />

HYF: C. Haritoglou, A. Yu, W. Freyer, U. Welge-Lussen,<br />

S. G. Priglinger, C. Alge, K. Eibl, C. Niewöhner and A.<br />

Kampik; An evaluation of novel vital dyes for intraocular<br />

surgery; Invest Ophthalmol. Vis. Sci.<br />

KLR: M. P. Kalachnikov, I. M. Lachko, E. Risse and H.<br />

Schönnagel; Amplification of down- and up-chirped<br />

pusles in Ti:sapphire; Digest CLEO/QUELS Europe<br />

2005<br />

KLT: A. Kozlowska, M. Latoszek, J. W. Tomm, F. Weik, T.<br />

Elsaesser, M. Zbroszczyk, M. Bugajski, B. Spellenberg<br />

and M. Bassler; Analysis of thermal images from diode<br />

lasers: Temperature profiling and reliability screening;<br />

Appl. Phys. Lett.<br />

KRS: M. P. Kalachnikov, E. Risse, H. Schönnagel and<br />

W. Sandner; ASE-temporal contrast of 10 10 with a<br />

double CPA laser; Digest CLEO/QUELS 2005<br />

LKa: I. M. Lachko and M. P. Kalachnikov; Characterization<br />

of the Temporal Contrast of a Front End of a Multi-<br />

Terawatt Ti:sapphire Laser; ICONO/LAT 2005<br />

LKL: D. Leupold, M. Krikunova, H. Lokstein, K. Teuchner,<br />

H. Scheer, A. Moskalenko and A. Razjivin; Excitation<br />

energy transfer from a bacteriochlorophyll higher<br />

excited state to carotenoids in LH2 of Chromatium;<br />

Photochem. Photobiol.<br />

LSB: H. Legall, H. Stiel, M. Beck, D. Leupold, W.<br />

Gruszecki, R. Hiller and H. Lokstein; Near edge x-ray<br />

absorption fine structure spectroscopy (NEXAFS) of<br />

pigment-protein complexes: Peridinin-chlorophyll aprotein<br />

(PCP) of Amphidinium carterae; Bioch. Biophys.<br />

Acta<br />

MML: R. Müller, V. Malyarchuk and C. Lienau; A theoretical<br />

study on the optical near field in a metal film with a<br />

periodic nanohole array excited by ultrashort light<br />

pulses; Opt. Expr.<br />

MWM: T. Moritz, W. Widdra, D. Menzel, K.-B. Bohnen and<br />

R. Heid; Adsorbate-induced surface stiffening: Surface<br />

lattice dynamics of Ru(001)-(1x1)-O; Phys. Rev. Lett.<br />

MWT: Y. I. Mazur, Z. M. Wang, G. G. Tarasov, G. J. Salamo,<br />

J. W. Tomm, V. Talalaev and H. Kissel; Peculiarities of<br />

non-resonant tunneling carrier transfer in bi-layer<br />

asymmmetric InAs/GaAs quantum dots; Phys. Rev. B<br />

NRR: C. C. Neacsu, G. A. Reider and M. B. Raschke;<br />

Second-harmonic generation from nanoscopic metal<br />

tips: Generalized symmetry selection rules for single<br />

nanostructures; Phys. Rev. Lett.<br />

PWF: D. Pop, B. Winter, W. Freyer, W. Widdra and I. V.<br />

Hertel; Photoelectron spectroscopy on thin films of<br />

extended zinc porphyrazines; J. Phys. Chem. B<br />

RHC: C. Ropers, J. M. Hickmann and R. Y. Chiao;<br />

Condensate-mediated processes revisited: Quantum<br />

interference hinders transmission; Phys. Rev. A<br />

93


94<br />

RPS: C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer,<br />

J. Kim, D. S. Kim and C. Lienau; Ultrafast light transmission<br />

and subradiant damping in plasmonic crystals;<br />

Phys. Rev. Lett.<br />

SMS: R. Stoian, A. Mermillod-Blondin, M. Spyridaki, E.<br />

Koudoumas, N. M. Bulgakova, A. Rosenfeld, P.<br />

Tzanetakis, C. Fotakis and I. V. Hertel; Optimization of<br />

ultrafast laser generated low-energy ion beams from<br />

silicon targets; Appl. Phys. Lett.<br />

SPW: A. B. Schmidt, M. Pickel, M. Wiemhöfer, M. Donath<br />

and M. Weinelt; Spin-dependent electron dynamics in<br />

front of a ferromagnetic surface; Phys. Rev. Lett.<br />

SRW: T. Shih, K. Reimann, M. Woerner, T. Elsaesser, I.<br />

Waldmüller, A. Knorr, R. Hey and K. H. Ploog; Nonlinear<br />

response of radiatively coupled intersubband<br />

transitions of quasi-two-dimensional electrons; Phys.<br />

Rev. Lett.<br />

SStb: G. Steinmeyer and G. Stibenz; Compression and<br />

characterization of few-cycle white-light supercontinuum<br />

pulses; Laser Phys.<br />

STL: M. Schneider, K. Teuchner and D. Leupold;<br />

Zweiphotonenfluoreszenz okulärer Melanome.<br />

Versuche zu einer neuen diagnostischen Methode; Der<br />

Ophthalmologe<br />

TGT: J. W. Tomm, A. Gerhardt, T. Q. Tran, M. Oudart, J.<br />

Nagle, J. Biesenbach and H. Müntz; Amplification of<br />

uniaxial stress in the vicinity of grooves in device<br />

structures; Appl. Phys. Lett.<br />

Tom: J. W. Tomm; Advanced characterization; in High-<br />

Power Diode-Lasers for Material Processing. Principles<br />

and Applications, Poprawe, Loosen, and Bachmann<br />

eds. (Springer, Heidelberg)<br />

TRW: P. Tzankov, S. Rivier, R. Weber, O. Steinkellner<br />

and V. Petrov; Enhanced performance of a sub-20-fs<br />

Ti:sapphire laser by optimised symmetry of the<br />

intracavity dispersion compensation; Opt. Quant. Elect.<br />

UCh: V. I. Usachenko and S.-I. Chu; Strong-field<br />

ionization of laser-irradiated homonuclear light<br />

diatomics: the generalized KFR-LCAO-MO model;<br />

Phys. Rev. A<br />

UMLc: T. Unold, K. Mueller, C. Lienau, T. Elsaesser<br />

and A. D. Wieck; Optical control of excitons in a pair of<br />

quantum dots coupled by the dipole dipole interactions;<br />

Phys. Rev. Lett.<br />

WTG: F. Weik, J. W. Tomm, R. Glatthaar, U. Vetter, J.<br />

Nurnus and A. Lambrecht; A light-emitting device with<br />

more than 1 mW output power at 4.2 µm; Electron.<br />

Lett.<br />

WWF: J. Wang, M. Weinelt and T. Fauster; Suppression<br />

of pre- and post-pulses in a multipass Ti:sapphire<br />

amplifier; Appl. Phys. B<br />

WWHa: B. Winter, R. Weber, I. V. Hertel, M. Faubel, L.<br />

Vrbka and P. Jungwirth; Effect of bromide on the<br />

interfacial structur of aqueous terabutyl-ammonium<br />

idodide: Photoelectron spectroscopy and molecular<br />

dynamics simulations; PhysChemChemPhys<br />

WWHb: B. Winter, R. Weber, I. V. Hertel, M. Faubel, P.<br />

Jungwirth, E. C. Brown and S. E. Bradforth; Electron<br />

binding energies of aqueous alkali and halide ions.<br />

EUV photoelectron spectroscopy of liquid solutions<br />

and combined ab initio and molecular dynamics<br />

calculations; J. Am. Chem. Soc.<br />

Diploma- and PhD theses, Habilitations<br />

Diploma theses<br />

Hei04: C. Heiner; Order and symmetry of sexithiophene<br />

within thin films studied by angle-resolved photoemission<br />

(Supervisor: I. V. Hertel, and B. Winter), Freie<br />

Universität <strong>Berlin</strong>, Diplomarbeit <strong>2004</strong>-04<br />

PhD theses<br />

Bro04: D. Bröcker; Zeitaufgelöste Experimente zur<br />

Oberflächen-Photospannung an Silizium (Supervisor:<br />

W. Widdra, M. Weinelt, and R. Krause-Rehberg), Martin-<br />

Luther-Universität Halle-Wittenberg Halle, Dissertation<br />

<strong>2004</strong>-07-12<br />

Sat04: T. Satoh; Resonance enhanced sum frequency<br />

generation in centrosymmeric magnetic oxides<br />

(Supervisor: M. Fiebig K. Miyano), Universität Tokyo,<br />

Dissertation <strong>2004</strong>-04<br />

Sch04: R. Schumann; Laserkühlung und Speicherung<br />

metastabiler Heliumatome in inhomogenen elektrischen<br />

Feldern (Supervisor: G. von Oppen, U. Eichmann), Technische<br />

Universität <strong>Berlin</strong>, Dissertation <strong>2004</strong>-04<br />

Master<br />

Boh04: M. Bohmeyer; Vergleichende Charakterisierung<br />

von Femtosekunden-Laserpulsen mittels SPIDER und<br />

Korrelationsmessungen (Supervisor: M. Schnürer), B1,<br />

TFH Wildau <strong>Berlin</strong>, Masterarbeit <strong>2004</strong>-08-13<br />

Lan04: S. Langer; Neuartiges 2D-Autokorrelatorsystem<br />

für ultrakurze Laserimpulse basierend auf einem<br />

erweiterten Shack-Hartmann Verfahren (Supervisor:<br />

R. Grunwald), Technische Fachhochschule Wildau,<br />

Masterarbeit <strong>2004</strong>-10


Appendix 2<br />

External Talks, Teaching<br />

Invited lectures at conferences<br />

P. Agostini; Attosecond MURI Workshop (Berkeley,<br />

USA, <strong>2004</strong>-12): Attosecond synchronization of high<br />

harmonics<br />

D. Bauer; 329th WE-Heraeus Seminar “Manipulation<br />

of few-body quantum dynamics” (Bad Honnef, <strong>2004</strong>-<br />

06-27): Clusters in intense laser fields<br />

W. Becker; OSA, <strong>Annual</strong> Meeting (Rochester, NY, USA,<br />

<strong>2004</strong>-10-12): Nonsequential double ionization: The<br />

simple man’s S-matrix description<br />

W. Becker together with S. V. Fomichev, S. V.<br />

Popruzhenko, D. F. Zaretsky, and D. Bauer; 13th<br />

International Laser Physics Workshop, LPHYS’04<br />

(Trieste, Italy, <strong>2004</strong>-07): Nonlinear electron dynamics<br />

in laser-irradiated clusters<br />

M. Boyle; Workshop “European Cluster Cooling<br />

Network <strong>2004</strong>” (Glasgow, England, <strong>2004</strong>-06-08): Time<br />

resolved dynamics of C 60<br />

U. Eichmann; 13th Laser Physics Workshop, LPHYS’04<br />

(Trieste, Italy, <strong>2004</strong>-07-15): Ionization dynamics in the<br />

transition regime between non-relativistic and relativistic<br />

laser intensities<br />

U. Eichmann; International Conference on Ultrahigh<br />

Intensity Lasers, ICUILS <strong>2004</strong> (Lake Tahoe, USA, <strong>2004</strong>-<br />

07-06): Towards the Atomic Intensity Probe: Relativistic<br />

Effects and Core Relaxation in Ultra-Strong Laser Field<br />

Ionization<br />

U. Eichmann, International Workshop and Seminar<br />

“Rydberg Physics” (Dresden, <strong>2004</strong>-05-03): Excitation<br />

routes to doubly highly excited Rydberg atoms: Fano<br />

lineshapes revisited<br />

T. Elsaesser; Minerva-Gentner Symposium ‘Optical<br />

Spectroscopy of Biomolecular Dynamics’ (Kloster<br />

Banz, Bad Staffelstein, <strong>2004</strong>-03): Ultrafast vibrational<br />

dynamics of hydrogen bonded dimers in solution<br />

T. Elsaesser; 21 Century COE-RCMS International<br />

Conference on Frontiers of Physical Chemistry on<br />

Molecular Materials (Nagoya, Japan, <strong>2004</strong>-01): Structure<br />

and function of hydrogen bonded systems probed by<br />

ultrafast vibrational spectroscopy<br />

T. Elsaesser; International Workshop on Cooperative<br />

Phenomena in Optics and Transport in Nanostructures<br />

(Dresden, Germany, <strong>2004</strong>-06): Ultrafast dynamics of<br />

coherent intersubband polarizations in semiconductor<br />

quantum wells<br />

T. Elsaesser; 33rd National Congress of the Italian<br />

Chemical Society (Naples, Italy, <strong>2004</strong>-06): Ultrafast<br />

vibrational dynamics of hydrogen bonds in the<br />

condensed phase (plenary talk)<br />

T. Elsaesser; XX IUPAC Symposium on Photochemistry<br />

(Granada, Spain, <strong>2004</strong>-07): Ultrafast vibrational<br />

dynamics of hydrogen bonded dimers in the condensed<br />

phase<br />

T. Elsaesser together with K. Heyne, N. Huse, J. Dreyer,<br />

and E.T.J. Nibbering; Second International Conference<br />

on Coherent Multidimensional Vibrational Spectroscopy<br />

(Madison, Wisconsin, <strong>2004</strong>-08): Ultrafast vibrational<br />

dynamics and anharmonic couplings of hydrogenbonded<br />

dimers in the condensed phase<br />

E. Eremina; 329th WE-Heraeus Seminar: “Manipulation<br />

of Few-Body Quantum Dynamics” (Bad Honnef,<br />

Physik-Zentrum, <strong>2004</strong>-06): Non-Sequential Double<br />

Ionisation of Atoms and Molecules<br />

M. Fiebig; Joint European Magnetic Symposia (JEMS<br />

’04) (Dresden, Germany, <strong>2004</strong>-09): ‘Gigantic’ magnetoelectric<br />

effects in multiferroic manganites<br />

M. Fiebig; AIO Workshop on Spectroscopy in Molecular,<br />

Organic, and Inorganic Systems (Ameland, Netherlands,<br />

<strong>2004</strong>-09): Nonlinear optics as powerful tool for<br />

investigation of magnetic structures and interactions<br />

M. Fiebig; Academy Colloquium on Ultrafast Spin and<br />

Magnetization Dynamics in Magnetic Nanostructures<br />

(Amsterdam, Netherlands, <strong>2004</strong>-06): Spin dynamics<br />

in antiferromagnets investigated by nonlinear<br />

magneto-optical spectroscopy<br />

M. Fiebig; Int. Workshop on Magneto-Optics of Magnetic<br />

Thin Films, Multilayers and Nanostructures (Duisburg,<br />

Germany, <strong>2004</strong>-04): Spin dynamics and giant magnetoelectricity<br />

investigated by nonlinear magneto-optical<br />

spectroscopy<br />

C. Figueira de Morisson Faria together with H.<br />

Schomerus, X. Liu, and W. Becker; 13th International<br />

Laser Physics Workshop (LPHYS’04) (Trieste, Italy,<br />

<strong>2004</strong>-07-12): Electron-electron dynamics in laserinduced<br />

nonsequential double ionization<br />

U. Griebner together with A. Aznar, R. Solé, M. Aguiló, F.<br />

Diaz, R. Grunwald, and V. Petrov; Conference on Lasers<br />

and Electro-Optics (CLEO), <strong>2004</strong> (San Francisco,<br />

California, <strong>2004</strong>): Growth and laser operation of an<br />

Yb-doped epitaxial tungstate crystal Yb:KY(WO 4 ) 2 /<br />

KY(WO 4 ) 2<br />

95


96<br />

R. Grunwald together with U. Neumann, U. Griebner,<br />

V. Kebbel, and H.-J. Kuehn; Photonics West <strong>2004</strong> (San<br />

Jose, California, <strong>2004</strong>-01): Spatio-temporal control of<br />

laser beams with thin-film shapers<br />

R. Grunwald together with U. Neumann, and V. Kebbel;<br />

Progress in Electromagnetics Research Symposium<br />

(PIERS <strong>2004</strong>), Workshop on Localized Waves (Pisa,<br />

Italy, <strong>2004</strong>-03): Generation of small-angle localized<br />

light waves with thin-film microoptics<br />

R. Grunwald together with U. Neumann, G. Stibenz, S.<br />

Langer, G. Steinmeyer, V. Kebbel, J.-L. Néron, and M.<br />

Piché; Photonics North (Ottawa, Canada, <strong>2004</strong>-09):<br />

Truncated ultrashort-pulse small-angle Bessel beams<br />

I. V. Hertel; German Israeli Cooperation in Ultrafast<br />

Laser Technology, GILCULT (Weizmann <strong>Institut</strong>e,<br />

Revohot, Israel, <strong>2004</strong>-02-16): Ultrafast dynamics in a<br />

large finite system with interesting perspectives for<br />

optimal control strategies<br />

I. V. Hertel, together with R. Stoian, and A. Rosenfeld;<br />

International Workshop on Advanced Laser Processing<br />

for Coming Generation (The <strong>Institut</strong>e of Physical and<br />

Chemical Research, RIKEN; Wako, Japan, <strong>2004</strong>-05-<br />

18): Femtosecond material processing: From a<br />

fundamental understanding to tailored applications<br />

I. V. Hertel, Gordon Conference Multiphoton Processes<br />

(Tilton School,Tilton, New Hampshire, USA, <strong>2004</strong>):<br />

Introduction to Atoms and Molecules in High Fields<br />

I. V. Hertel together with B. Winter, and R. Weber; Gordon<br />

Conference Water & Aquaeous Solutions (Plymouth,<br />

New Hampshire, USA, <strong>2004</strong>-08-03): Photoelectron<br />

spectroscopy of aqueous solutions<br />

I. V. Hertel, together with T. Schultz, and W. Radloff;<br />

European Research Conference on “Molecules of<br />

Biological Interest in the Gas Phase” (Exeter, UK, <strong>2004</strong>-<br />

04-14): Excited state dynamics in (adenine) n and<br />

(thymine) n clusters<br />

K. Janulewicz; ICXRL, 9. Int. Conference on X-ray<br />

lasers (Beijing, China, <strong>2004</strong>-05-26): Strong line<br />

enhancement at 24.7 nm in a boron-nitride capillary<br />

discharge irradiated by a fs laser pulse<br />

K. A. Janulewicz; GILCULT-Workshop (Rehovot, Israel,<br />

<strong>2004</strong>-02-17): An ultrashort X-ray emission from gas<br />

cluster irradiated by ultrashort pulses<br />

T. Laarmann; International Workshop on Atomic Physics<br />

(<strong>Max</strong>-Planck-<strong>Institut</strong> für Physik komplexer Systeme,<br />

Dresden, <strong>2004</strong>-12-29): Optimal control of energy<br />

redistribution in C 60 : Selection of relaxation pathways<br />

using temporally shaped laser pulses<br />

B. Langer; 68. Physikertagung und AMOP-Frühjahrstagung<br />

(München, <strong>2004</strong>-03-21): Hauptvortrag:<br />

Photoionisation als Struktursonde von delokalisierten<br />

Elektronen in Fullerenen<br />

H. Legall together with D. Leupold, H. Lokstein, H. Stiel,<br />

and U. Vogt; 324. Wilhelm und Else Heraeus Seminar<br />

“Exploring the nanostructures of soft materials with xrays“<br />

(Bad Honnef, <strong>2004</strong>-05-10): A high resolution<br />

laboratory table top soft x-rayspectrometer<br />

C. Lienau together with T. Unold, K. Müller, T. Elsaesser,<br />

and A.D.Wieck; Conference on Lasers and Electro<br />

Optics / International Quantum Electronics Conference<br />

CLEO/IQEC <strong>2004</strong> (San Francisco, California, <strong>2004</strong>-<br />

05): Femtosecond nonlinear spectroscopy of two<br />

quantum dots coupled by dipole-dipole interaction<br />

C. Lienau together with T. Guenther, T. Unold, K.<br />

Mueller, and T. Elsaesser; Photonics West <strong>2004</strong> (San<br />

José, California, <strong>2004</strong>-01): Femtosecond near-field<br />

spectroscopy of single quantum dots<br />

C. Lienau; American Chemical Society National Meeting<br />

(Anaheim, CA, USA, <strong>2004</strong>-04): Ultrafast nanospectroscopy<br />

of semiconductor quantum dots<br />

C. Lienau; PIERS <strong>2004</strong>, Progress in Electromagnetics<br />

Research Symposium (Pisa, Italy, <strong>2004</strong>-03): Ultrafast<br />

nano-optics<br />

C. Lienau; LASERION <strong>2004</strong> Workshop, Microfabrication,<br />

nanosturctured materials and biotechnology, Schloss<br />

Ringberg (Rottach-Egern, Germany, <strong>2004</strong>-06-22):<br />

Ultrafast plasmon nano-optics<br />

C. Lienau; SPIE OPTO-Ireland Meeting, Royal Dublin<br />

Society (Dublin, Ireland, <strong>2004</strong>-04): Coupling two<br />

quantum dots by dipole-dipole interactions<br />

C. Lienau; Solid State Based Quantum Information<br />

Processing (Hersching, Germany, <strong>2004</strong>-09): Ultrafast<br />

coherent spectroscopy of dipole-coupled quantum dots<br />

X. Liu together with E. Eremina H. Rottke, W. Sandner,<br />

E. Goulielmakis, K. O’Keefe, M. Lezius, F. Krausz, F.<br />

Lindner, M. Schätzel, G. G. Paulus, H. Walther; LPHYS’04<br />

(Trieste, Italien, <strong>2004</strong>-07-04): Steering non-sequential<br />

double ionization at the few-optical-cycle limit<br />

S. A. Maksimenko together with G. Ya. Slepyan, and J.<br />

Herrmann; European Materials Research Society <strong>2004</strong>,<br />

Spring Meeting, Symposium I: Advanced Multifunctional<br />

Nanocarbon and Nanosystems 04 (<strong>2004</strong>-05-24):<br />

Electromagnetic effects in nanotubes: Waveguiding,<br />

nonlinear response, QED<br />

D. B. Milosevic, G. G. Paulus and W. Becker; 13th International<br />

Laser Physics Workshop LPHYS’04 (Trieste,<br />

Italien, <strong>2004</strong>-07-17): Quantum-orbit theory of highorder<br />

above threshold ionization by few cycle pulses<br />

E. T. J. Nibbering together with M. Rini, O.F. Mohammed,<br />

J. Dreyer, B.-Z. Magnes, D. Pines, and E. Pines; Ultrafast<br />

Phenomena XIV (Niigata, Japan, <strong>2004</strong>-07): Bimodal<br />

intermolecular proton transfer in acid-base neutralization<br />

reactions in water


E. T. J. Nibbering together with K. Heyne, T. Elsaesser,<br />

M. Petkovic, and O. Kühn; Second International<br />

Conference on Coherent Multidimensional Vibrational<br />

Spectroscopy (Madison, Wisconsin, <strong>2004</strong>-08):<br />

Cascaded energy redistribution upon O-H stretching<br />

excitation in an intramolecular hydrogen bond<br />

P. V. Nickles together with M. Schnürer, S.Ter Avetisyan,<br />

S. Busch, W. Sandner, H.Jahnke, and D. Hilscher;<br />

FIHFP-Workshop (Kyoto, <strong>2004</strong>-04-26.-28.): Inward and<br />

outward-directed deuteron acceleration in exploding<br />

D2O-micro spheres studied by fusion neutron<br />

spectroscopy<br />

P. V. Nickles together with M. Schnürer, S.Ter Avetisyan,<br />

S. Busch, A. Kemp, H. Ruhl, and W. Sandner; Japanese-<br />

USA Workshop on Laser Plasma Theory (Osaka,<br />

Japan, <strong>2004</strong>-04-29.-30.): Ion generation in microdroplets<br />

P. V. Nickles together with M. Schnürer, S. Ter-Avetisyan,<br />

S. Busch, W. Sandner, D. Hilscher, and U. Jahnke; 20th<br />

EPS General Conference of the Condensed Matter<br />

Division “Interaction of matter with laser light under<br />

extreme conditions (Prag, Tschechien, <strong>2004</strong>-07-22):<br />

Particle acceleration from laser- created relativistic<br />

plasmas<br />

P. V. Nickles together with K. Janulewicz; ICXRL, 9. Int.<br />

Conference on X-ray lasers (Beijing, China, <strong>2004</strong>-05-<br />

26): Low-energy-single-laser-pulse driven soft x-ray<br />

lasers<br />

S. V. Popruzhenko together with W. Becker, Ph. A.<br />

Korneev, and D. F. Zaretsky; International Workshop<br />

on Atomic Physics (<strong>Max</strong>-Planck-<strong>Institut</strong> für Physik<br />

komplexer Systeme, Dresden, <strong>2004</strong>-12): Collisionless<br />

heating of the classical electron nanoplasma in laserirradiated<br />

clusters<br />

M. Raschke; SERS Rundgespräch, Fritz-Haber-<strong>Institut</strong><br />

der <strong>Max</strong>-Planck-Gesellschaft (<strong>Berlin</strong>, <strong>2004</strong>-10):<br />

Surface-enhanced second-harmonic generation at<br />

nanostructures<br />

H. R. Reiss; International Conference on Laser Physics<br />

(Trieste, Italien, <strong>2004</strong>-07-16): Photoelectron Momentum<br />

Distributions in Strong-Field Ionization<br />

H. R. Reiss; International Symposium on Ultrafast<br />

Intense Laser Science 3 (Palermo, Italien, <strong>2004</strong>-09-<br />

17): Physical Insights from the Strong-Field<br />

Approximation<br />

C. Ropers together with C. Lienau, R. Müller, G. Stibenz,<br />

G. Steinmeyer, D.J. Park, Y.C. Yoon, and D.S. Kim; Ultrafast<br />

Phenomena XIV (Niigata, Japan, <strong>2004</strong>-07): Ultrafast<br />

dynamics of light transmission through plasmonic crystals<br />

H. Rottke; 8th EPS Conference on Atomic and Molecular<br />

Physics (Rennes, Frankreich, <strong>2004</strong>-07-07): Strong field<br />

non-sequential double ionization: the effect of molecular<br />

structure<br />

W. Sandner; Innovationsforum - Neue Perspektiven<br />

der Optikindustrie (Rathenow, <strong>2004</strong>-05): Optische<br />

Technologien - Potentiale, Trends und Erfordernisse<br />

am Standort Deutschland, BMBFed.<br />

W. Sandner; ICUIL <strong>2004</strong>, (Lake Tahoe, USA, <strong>2004</strong>-10-<br />

06): ICUIL Working Group on High Power Beam<br />

Characterization and Intensity Measurements<br />

W. Sandner; 68. Physikertagung und AMOP-Frühjahrstagung<br />

<strong>2004</strong> (München, <strong>2004</strong>-03-25): Atomphysik in<br />

starken Laserfeldern, Plenarvortrag<br />

C. P. Schulz; International Workshop on Atomic Physics<br />

(<strong>Max</strong>-Planck <strong>Institut</strong> für Physik komplexer Systeme,<br />

Dresden, <strong>2004</strong>-12-29): Multi-electron dynamics in<br />

large finite systems: Excitation, ionisation and<br />

fragmentation of C 60 in strong laser fields<br />

C. Stanciu together with R. Ehlich, G. Ya. Slepyan, A. A.<br />

Khrutchinski, S. A. Maksimenko, F. Rotermund, V.<br />

Petrov, O. Steinkellner, F. Rohmund, E. E. B. Campbell,<br />

J. Herrmann, and I. V. Hertel; Photonics West <strong>2004</strong><br />

(San Jose, <strong>2004</strong>-01-27): Third-harmonic generation<br />

in carbon nanotubes: Theory and experiment<br />

G. Steinmeyer together with U. Keller; Optical Interference<br />

Coatings 9th Topical Meeting (Tucson, AZ,<br />

USA, <strong>2004</strong>-07): Multilayer coatings for ultrafast<br />

lasers<br />

G. Steinmeyer; 4th International Symposium on Modern<br />

Problems in Laser Physics (Novosibirsk, Russia,<br />

<strong>2004</strong>-08): Compression and characterization of fewcycle<br />

white light supercontinuum pulses<br />

R. Stoian together with A. Mermillod-Blondin, S. Winkler,<br />

A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas,<br />

C. Fotakis, I. M. Burakov, and N. M. Bulgakova; 5th<br />

International Symposium on Laser Precision Microfabrication<br />

(LPM <strong>2004</strong>) (Nara, Japan, <strong>2004</strong>-05-11):<br />

Temporal pulse manipulation and adaptive<br />

optimization in ultrafast laser processing of materials<br />

J. W. Tomm together with A. Gerhardt, T.Q. Tran, M.L.<br />

Biermann, M.O. Manasreh, and B.S. Passmore; Material<br />

Research Society Fall Meeting (Boston, MA, USA,<br />

<strong>2004</strong>-11): Spectroscopic analysis of external stresses<br />

in semiconductor quantum-well materials<br />

J. W. Tomm; 2nd CEPHONA Workshop of the Center of<br />

Excellence on Physics and Technology of Photonic Nanostructures,<br />

<strong>Institut</strong>e of Electron Technology (Warsaw,<br />

Poland, <strong>2004</strong>-11): Application of Raman-spectroscopy<br />

to analytical purposes at semiconductor structures and<br />

devices<br />

Z. Wang; The CCAST Workshop on Strong Field Laser<br />

Physics, <strong>2004</strong> (Wuyishan, China, <strong>2004</strong>-11): Optical<br />

phonon sidebands of electronic intersubband absorption<br />

in strongly polar semeconductor heterostructures<br />

97


98<br />

I. Will; VUV-FEL Users Workshop on Technical Issues<br />

for First Experiments (DESY, Hamburg, <strong>2004</strong>): Optical<br />

laser facility<br />

M. Woerner; International Workshop on Quantum<br />

Cascade Lasers (Sevilla, Spain, <strong>2004</strong>-01): Ultrafast<br />

coherent electron transport in quantum cascade<br />

structures<br />

M. Woerner; Photonics West (San José, California,<br />

<strong>2004</strong>-01): Coherent vs. incoherent charge transport in<br />

semiconductor quantum cascade structures<br />

M. Woerner together with T. Shih, C.W. Luo, K. Reimann,<br />

T. Elsaesser, R. Hey, and K.H. Ploog; The 17th <strong>Annual</strong><br />

Meeting of the IEEE Laser & Electro-Optics Society<br />

(LEOS <strong>2004</strong>) (Rio Mar, Puerto Rico, <strong>2004</strong>-11): Ultrafast<br />

spectroscopy of a two-dimensional electron gas<br />

M. Woerner; 2nd Korean/German Workshop on Applied<br />

Physics and Mathematics (Heidelberg, Germany,<br />

<strong>2004</strong>-09): Femtosecond X-Ray Diffraction from<br />

coherent atomic motions in nanostructures<br />

Invited external talks at seminars and colloquia<br />

M. Bargheer; Seminar Hamburger Synchrotronstrahlungslabor<br />

(HasyLab) (Hamburg, <strong>2004</strong>-01):<br />

Ultrafast X-ray diffraction from superlattice-phonons<br />

M. Bargheer; Forschungsseminar Optik/Photonik<br />

Humboldt Universität (<strong>Berlin</strong>, <strong>2004</strong>-11): Coherent motions<br />

in a nanostructure studied by femtosecond X-ray<br />

diffraction<br />

M. Bargheer; Seminar zur Physik der kondensierten<br />

Materie, MPI für Metallforschung (Stuttgart, <strong>2004</strong>-11):<br />

Femtosecond X-ray diffraction<br />

W. Becker, Seminar (National Research Council<br />

Canada, Ottawa, Ontario, <strong>2004</strong>-01-26): Interference<br />

effects in intense-laser atom physics<br />

W. Becker, Quantum Optics Seminar (<strong>Institut</strong>e for<br />

Quantum Studies, Texas A&M University, College<br />

Station, USA, <strong>2004</strong>-02-03): Which-way interference in<br />

intense-laser atom physics<br />

W. Becker, Theoretisch-Physikalisches Kolloquium<br />

(Universität Ulm, Abt. für Quantenphysik, <strong>2004</strong>-02-19):<br />

Which-path interference in multiphoton ionization of<br />

atoms<br />

W. Becker, Theory Colloquium (Los Alamos, USA, <strong>2004</strong>-<br />

06-01): Above-threshold ionization with few-cycle<br />

pulses<br />

W. Becker; CAS-Seminar (Center for Advanced Studies,<br />

University of New Mexico, USA, <strong>2004</strong>-11): Laser-atom<br />

physics with few-cycle pulses<br />

D. Bröcker, together with T. Gießel, and W. Widdra;<br />

Seminar (Paul Scherrer <strong>Institut</strong> (SLS), Schweiz, <strong>2004</strong>-<br />

03-12): Time resolved electron spectroscopy at the laserexcited<br />

silicon surface using synchrotron radiation<br />

S. Busch, Marie-Curie-Tag (Marie-Curie-Gymnasium,<br />

Ludwigsfelde, <strong>2004</strong>-11-04): Erzeugung von hochenergetischen<br />

Teilchenstrahlen mit Hilfe von hochintensiven<br />

Laserstrahlen<br />

J. Dreyer, Seminar für theoretische Chemie, Technische<br />

Universität München (<strong>2004</strong>-06): Ab initio simulation of<br />

2D IR spectra for hydrogen bonded systems<br />

U. Eichmann, Abschlusskolloquium DFG-Schwerpunkt<br />

“Materie in starken Laserfeldern“ (Jena, <strong>2004</strong>-04-01):<br />

Atomare Ionisationsdynamik in intensiven Laserfeldern<br />

U. Eichmann, Bothe-Kolloquium (MPI für Kernphysik,<br />

Heidelberg, <strong>2004</strong>-12-08): Atomic Core Relaxation in<br />

Weak and Strong Laser Field Ionization<br />

T. Elsaesser, Mini-Workshop on Nano-Optics, MPI für<br />

Polymerforschung (Mainz, <strong>2004</strong>-04): Ultrafast processes<br />

in nanostructures<br />

T. Elsaesser, Physikalisches Kolloquium, Universität<br />

Karlsruhe (TH) (<strong>2004</strong>-04): Ultraschnelle Dynamik niederenergetischer<br />

Anregungen in Halbleiter-Nanostrukturen<br />

T. Elsaesser, THEOCHEM Seminar, <strong>Institut</strong> für<br />

Theoretische Chemie (Universität Bochum, <strong>2004</strong>-04):<br />

Ultrafast hydrogen bond dynamics and proton transfer<br />

in the liquid phase<br />

T. Elsaesser, GDCh Kolloquium (Universität Kiel,<br />

<strong>2004</strong>-04): Wasserstoffbrücken in Flüssigkeiten – Ultraschnelle<br />

Schwingungsbewegungen und Relaxationsprozesse<br />

T. Elsaesser, Kolloquium, Department of Chemistry<br />

(University of Kobe, Japan, <strong>2004</strong>): Coherent vibrational<br />

excitations of hydrogen bonded dimers in solution<br />

T. Elsaesser, Seminar, Ecole Normale Supérieure,<br />

Dept. of Chemistry (Paris, France, <strong>2004</strong>-06): Ultrafast<br />

vibrational dynamics of hydrogen bonds in liquids<br />

T. Elsaesser, DRECAM (CEA Saclay, France, <strong>2004</strong>-06-<br />

08): Ultrafast hydrogen bonding dynamics in liquids<br />

T. Elsaesser, Kolloquium, <strong>Institut</strong> für Festkörper- und<br />

Werkstoffforschung (Dresden, <strong>2004</strong>-07): Ultrakurzzeitdynamik<br />

niederenergetischer Anregungen in Halbleiter-<br />

Nanostrukturen<br />

T. Elsaesser, Physikalisches Kolloquium, Universität<br />

Erlangen (<strong>2004</strong>-07): Kohärente Femtosekundendynamik<br />

optischer Anregungen in Halbleiter-<br />

Nanostrukturen<br />

T. Elsaesser, <strong>Berlin</strong>er Sommer-Uni 04 (Technische<br />

Universität <strong>Berlin</strong>, <strong>2004</strong>-09): Nanotechnologie: Grundlagen<br />

und neue Anwendungen


T. Elsaesser; Physikalisches Kolloquium, Universität<br />

Kassel (<strong>2004</strong>-12): Ultraschnelle Strukturänderungen<br />

in kondensierter Materie – Schwingungsdynamik und<br />

Relaxationsprozesse<br />

M. Fiebig, Seminar, Universität zu Köln (<strong>2004</strong>-07):<br />

Nonlinear optics as novel tool for the determination of<br />

magnetic structures and interactions<br />

M. Fiebig, Seminar, <strong>Max</strong>-Planck-<strong>Institut</strong> für Festkörperphysik<br />

(Stuttgart, <strong>2004</strong>-05): Giant magnetoelectricity<br />

and spin dynamics investigated by nonlinear<br />

magneto-optics<br />

M. Fiebig, Seminar, Universität (Kaiserslautern, <strong>2004</strong>-<br />

01): Sublattice interaction and spin dynamics in antiferromagnets<br />

M. Fiebig, Seminar, Universität Würzburg (<strong>2004</strong>-01):<br />

Nichtlineare Optik als neue Methode zur Bestimmung<br />

magnetischer Strukturen und Wechselwirkungen<br />

H. Prima Garcia, Workshop (University of Material, Sevilla,<br />

Spain, <strong>2004</strong>-10-18): Application of the synchrotron<br />

radiation for the characterization of materials<br />

U. Griebner; Kolloquium COPL, Université Laval<br />

(Canada, <strong>2004</strong>-12): Laser operation of Yb 3+ -doped<br />

epitaxially grown tungstate composites in the continuouswave<br />

and femtosecond regime<br />

U. Griebner; Kolloquium <strong>Institut</strong>o Nacional de Astrofisica<br />

Optica y Electronica (INAOE) (Tonantzintla, Puebla,<br />

Mexico, <strong>2004</strong>-05): Spatio-temporal processing of<br />

femtosecond laser pulses with thin-film micro-optics<br />

R. Grunwald, Kolloquium, Laser Laboratorium<br />

(Göttingen, <strong>2004</strong>-01): Fortschritte bei der Laserstrahlformung<br />

mit Dünnschicht-Mikrooptiken (Progress in<br />

laser beam shaping with thin-film micro-optics)<br />

R. Grunwald, Kolloquium, COPL, Laval University<br />

(Canada, <strong>2004</strong>-09): Spectral transfer of ultrashort-pulse<br />

truncated Bessel beams<br />

R. Grunwald; Vortrag bei APE GmbH (<strong>Berlin</strong>, <strong>2004</strong>-11):<br />

Neue Konzepte für die Diagnostik ultrakurzer Laserpulse<br />

(New concepts for the diagnostics of ultrashort<br />

laser pulses)<br />

R. Grunwald; Seminar, <strong>Institut</strong> für Optik und Quantenelektronik,<br />

Friedrich-Schiller Universität, Jena (<strong>2004</strong>-<br />

12): High-power ultrashort-pulse Bessel beams<br />

C. Heiner, Seminar (Halle, <strong>2004</strong>): Combined synchrotron/<br />

laser radiation measurements of 6T on gold(110)<br />

I. V. Hertel, Seminar (Tohuku University, Sendai,Japan,<br />

<strong>2004</strong>-05-20): Non-adiabatic multi-electron dynamics<br />

in moderately intense laser fields (


100<br />

C. Lienau; Seminar AG Kaindl (Freie Universität <strong>Berlin</strong>,<br />

<strong>2004</strong>-02): Ultraschnelle Nano-Optik<br />

U. Neumann; Seminar, AG Réal Vallée, Université<br />

Laval / COPL (Québec, Canada, <strong>2004</strong>-12): Second<br />

harmonic characteristics of ZnO nanostructured films<br />

E. T. J. Nibbering, Seminar <strong>Institut</strong> für Physikalische<br />

und Theoretische Chemie, Rheinische Friedrich-<br />

Wilhelm-Universität (Bonn, <strong>2004</strong>-01): Ultraschnelle<br />

chemische Reaktionen: Struktur und Dynamik untersucht<br />

mittels Femtosekunden-Infrarotspektroskopie<br />

E. T. J. Nibbering, Seminar NIST (Gaithersburg,<br />

Maryland, USA, <strong>2004</strong>-04): Bimodal proton transfer<br />

dynamics in acid-base pairs in water<br />

E. T. J. Nibbering, Photonics Research Ontario<br />

Seminar Series ‘Frontier in Photonics’ (Toronto,<br />

Canada, <strong>2004</strong>-04): Bimodal proton transfer dynamics<br />

in acid-base pairs in water<br />

E. T. J. Nibbering, Seminar, AG Prof. Zinth, Universität<br />

München (<strong>2004</strong>-05): Bimodal proton transfer dynamics<br />

in acid-base pairs in water<br />

E. T. J. Nibbering, Seminar, Department of Chemistry,<br />

University of Tokyo (Japan, <strong>2004</strong>-07): Bimolecular<br />

diffusion controlled proton transfer reaction dynamics<br />

E. T. J. Nibbering, Seminar, <strong>Institut</strong>e of Industrial Science,<br />

University of Tokyo (Japan, <strong>2004</strong>-07): Coherent response<br />

of hydrogen bonds: Femtosecond mid-infrared<br />

spectroscopy as a tool for structure and dynamics<br />

E. T. J. Nibbering; Seminar, Department of Physical<br />

Chemistry, University of Jyväskylä (Finland, <strong>2004</strong>-09):<br />

Bimolecular diffusion controlled proton transfer reaction<br />

dynamics<br />

E. T. J. Nibbering; Lehrstuhlseminar Prof. G. Gerber,<br />

Universität Würzburg (<strong>2004</strong>-11): Direct and indirect<br />

protein transfer in acid-base pairs in water<br />

E. T. J. Nibbering; MSC Seminar, University of Groningen<br />

(The Netherlands, <strong>2004</strong>-10): Bimodal proton transfer<br />

dynamics in acid-base pairs in water<br />

P. V. Nickles, Colloquium (ILE Osaka, Japan, <strong>2004</strong>-03-<br />

05): High field laser science and applications at MBI<br />

P. V. Nickles, Kolloquium (JAERI, Kyoto, Japan, <strong>2004</strong>-<br />

05-13): X-ray laser and ion acceleration research at<br />

MBI - Recent results<br />

P. V. Nickles, Kolloquium (Tokyo University, Japan,<br />

<strong>2004</strong>-06-07): Modern Trends in low-pumped X-raylaser<br />

research<br />

P. V. Nickles, Kolloquium (Kyoto University, Japan, <strong>2004</strong>-<br />

06-17): Applications highly intense and short laser<br />

pulses<br />

V. Petrov, Colloquium - Spectra Physics (Mountain View,<br />

California, USA, <strong>2004</strong>-05-21): Novel crystalline hosts<br />

for CW and femtosecond Yb and Tm lasers<br />

M. Raschke; Mini-Workshop on Nano-Optics; MPI für<br />

Polymerforschung (Mainz, <strong>2004</strong>-04): Scattering-type<br />

near-field microscopy and spectroscopy<br />

M. Raschke; Kolloquium, Vanderbilt University,<br />

Department of Physics (Nashville, Tennessee, USA,<br />

<strong>2004</strong>-03): Local field confinement at metallic nanostructures:<br />

optical antennas for ultrahigh resolution<br />

microscopy<br />

M. Raschke; Seminar, AG Prof. A. Yodh, University of<br />

Pennsylvania (Philadelphia, PA, USA, <strong>2004</strong>-03):<br />

Second-harmonic light scattering from single nanostructures:<br />

generalized symmetry selection rules and<br />

near-field enhancement<br />

M. Raschke; Seminar, AG Prof. L. Novotny, University of<br />

Rochester (Rochester, NY, USA, <strong>2004</strong>-03): Facts and<br />

artefacts in scattering-type near-field microscopy<br />

M. Raschke; Seminar, Universität Konstanz, Center for<br />

Applied Photonics (Konstanz, <strong>2004</strong>-09): Secondharmonic<br />

light scattering from nanostructures: symmetry<br />

selection rules and near-field enhancement<br />

M. Raschke; Seminar, AG Prof. Sandoghdar, ETH<br />

Zürich (Zürich, Switzerland, <strong>2004</strong>-09): Control of optical<br />

fields on the nanoscale for scattering-type near-field<br />

microscopy<br />

S. Revier, Seminar (Optical <strong>Institut</strong>e, Technische Universität<br />

<strong>Berlin</strong>, <strong>2004</strong>-12-07): Double tungstate crystals,<br />

the epitaxially grown Yb:KLuW/KLuW composite<br />

A. Rosenfeld, Femtomat <strong>2004</strong> (Klagenfurth, <strong>2004</strong>-02-<br />

24): Material processing by adaptive optimization of<br />

ultrafast laser-material interactions<br />

W. Sandner, 195. PTB-Seminar Hochleistungslaser<br />

(Braunschweig, <strong>2004</strong>-06): Licht-Materie-Wechselwirkung<br />

bei höchsten Intensitäten: Von einzelnen<br />

Atomen zu Doppel-Plasmen<br />

M. Schnürer, DFG-Schwerpunkt-Abschlusskolloquium<br />

„Materie in starken Laserfeldern“ (Jena, <strong>2004</strong>-04-02):<br />

Kernanregungen in heißen dichten Plasmen<br />

T. Schultz, Seminar (MPI für biophysikalische Chemie,<br />

Düsseldorf, <strong>2004</strong>-07-01): Investigating excited state<br />

dynamics by time-resolved photoelectron spectroscopy<br />

C. P. Schulz, Seminar (Steacie <strong>Institut</strong>e for Molecular<br />

Sciences, Ottawa, Canada, <strong>2004</strong>-02-10): Solvation<br />

processes: From simple atoms to complex molecules<br />

C. P. Schulz, Seminar (Dept. of Chemistry, Temple<br />

University, Philadelphia, USA, <strong>2004</strong>-02-12): C 60<br />

ionisation and fragmentation dynamics


G. Steinmeyer, Kolloquium des SFB ‘Quantenlimitierte<br />

Messprozesse mit Atomen, Molekülen und Photonen’<br />

(Universität Hannover, <strong>2004</strong>-01): Erzeugung von Lichtpulsen<br />

von wenigen optischen Zyklen Dauer<br />

G. Steinmeyer, together with P. Glas, R. Iliew, and R.<br />

Wedell; Gemeinsames Seminar der Bundesanstalt<br />

für Materialforschung und -prüfung (BAM) und des<br />

<strong>Institut</strong>s für Gerätebau GmbH (IfG), <strong>Berlin</strong>:<br />

Anwendungen von mikro- und nanostrukturiertem Glas<br />

im Bereich der Röntgen- und optischen Technologien<br />

sowie Life Science (<strong>Berlin</strong>, <strong>2004</strong>-03): Weißlichterzeugung<br />

in speziellen mikrostrukturierten Weichglasfasern<br />

G. Steinmeyer, Physikalisches Kolloquium, Universität<br />

Hannover (<strong>2004</strong>-04): Neue Perspektiven durch Laserpulse<br />

von wenigen optischen Zyklen Dauer<br />

G. Steinmeyer together with P. Glas; Workshop<br />

Photonische Kristallfasern, <strong>Institut</strong> für Physikalische<br />

Hochtechnologie (Jena, <strong>2004</strong>-11): Laseractive PCF<br />

based on multicomponent glasses<br />

H. Stiel, 198. PTB Seminar „Quantitative Roentgenspektroskopie“<br />

(<strong>Berlin</strong>, <strong>2004</strong>-10-26): Laserbasierte<br />

Quellen für ein Laborröntgenmikroskop<br />

H. Stiel, Seminar des FSP Photonik der TU <strong>Berlin</strong><br />

(<strong>Berlin</strong>, <strong>2004</strong>-11-26): Laserbasierte Quellen für<br />

zeitaufgelöste Röntgentechniken<br />

J. W. Tomm; Department of Physics, University of<br />

Arkansas (Fayetteville, USA, <strong>2004</strong>-01): Optical<br />

spectroscopy of semiconductor structures and optoelectronic<br />

devices<br />

J. W. Tomm; EL3-Seminar, Freiberger Compound<br />

Materials (Freiberg, <strong>2004</strong>-06): Zeitaufgelöste Photolumineszenz-Messungen<br />

an GaAs:O<br />

J. W. Tomm; Seminar at the <strong>Institut</strong>e of Materials<br />

Science and Applied Research (Vilnius, Lithuania,<br />

<strong>2004</strong>-10): Optical spectroscopy of semiconductor<br />

device structures<br />

M. Weinelt, Gruppenseminar der AG Wolf (Freie<br />

Universität <strong>Berlin</strong>, <strong>2004</strong>-10-22): Up and down - electron<br />

dynamics at Si(100)<br />

W. Werncke; Seminar, Waseda University (Tokyo,<br />

Japan, <strong>2004</strong>-07): Vibrational excitation and energy<br />

redistribution studied by time resolved resonance<br />

Raman spectroscopy<br />

W. Werncke; Seminar, Universität München (<strong>2004</strong>-12):<br />

Vibrational excitation after ultrafast photo reactions<br />

studied by time resolved resonance Raman<br />

spectroscopy<br />

W. Werncke; Seminar, Tokyo University (Tokyo, Japan,<br />

<strong>2004</strong>-07): Vibrational excitation after ultrafast intramolecular<br />

proton transfer: a study unter conditions of<br />

time-dependent resonance Raman cross secitons<br />

I. Will, JRA Meetings (Vilnius, Litauen, <strong>2004</strong>-09-24):<br />

Efficiency Optimisation of an OPA<br />

I. Will, JRA Meetings (Vilnius, Litauen, <strong>2004</strong>-09-24):<br />

Diode pumped ring amplifier for an OPCPA pump<br />

I. Will, <strong>Annual</strong> Project Meeting X-ray FEL pump/probe<br />

(Hamburg, <strong>2004</strong>-02-01): Development of an optical,<br />

wavelength-tunabel laser for pump-probe experiments<br />

at the TESLA FEL<br />

B. Winter, Seminar (University of Southern California,<br />

Los Angeles, <strong>2004</strong>-06-07): Photoelectron spectroscopy<br />

of aqueous solutions<br />

B. Winter, Seminar (University of California, Irvine, USA,<br />

<strong>2004</strong>-06-11): Photoelectron spectrosocopy of liquid<br />

water and aqueous solutions<br />

M. Woerner, Vorstellungsvortrag, <strong>Institut</strong> für Experimentelle<br />

und Angewandte Physik, Universität Regensburg<br />

(<strong>2004</strong>-10): Nichtlineare Terahertz-Spektroskopie an<br />

einem quasi-zwei-dimensionalen Elektronengas<br />

M. Woerner; Seminar, Walther-Meissner-<strong>Institut</strong><br />

(Garching, <strong>2004</strong>-12): Coherent atomic motions in a<br />

nanostructure studied by femtosecond x-ray diffraction<br />

Academic teaching<br />

U. Eichmann together with Th. Kwapien, Übungen,<br />

Vorlesung, 4 Semesterwochenstunden (Technische<br />

Universität <strong>Berlin</strong>, <strong>2004</strong>-WS <strong>2004</strong>/05): Atom- und<br />

Molekülphysik I<br />

T. Elsaesser, Seminar, 2 Semesterwochenstunden<br />

(Humboldt Universität <strong>Berlin</strong>, <strong>2004</strong>-Wintersemester<br />

<strong>2004</strong>/05): Optik und Spektroskopie: Moderne Optik<br />

T. Elsaesser, Vorlesung, 2 Semesterwochenstunden<br />

(Humboldt Universität <strong>Berlin</strong>, <strong>2004</strong>-Sommersemester):<br />

Optik und Spektroskopie: Elektronische und optische<br />

Eigenschaften von Halbleitern<br />

M. Fiebig, Vorlesung, 1 Semesterwochenstunde<br />

(Universität Dortmund, <strong>2004</strong>-Wintersemester <strong>2004</strong>/<br />

2005): Nichtlineare Optik an magnetischen Systemen<br />

U. Griebner, Vorlesung Photonics Master Course, 4<br />

Stunden (Technische Fachhochschule Wildau, <strong>2004</strong>):<br />

Erzeugung kurzer optischer Impulse<br />

U. Griebner, Vorlesung Physics Master Course, 2 Stunden<br />

(COPL, Université Laval, Québec, <strong>2004</strong>): Generation<br />

of ultrashort laser pulses<br />

R. Grunwald, Vorlesung Photonics Master Course, 4<br />

Stunden (Technische Fachhochschule Wildau, <strong>2004</strong>):<br />

Mikrooptik<br />

I. V. Hertel, Vorlesung, 4 Semester Wochenstunden<br />

(FU <strong>Berlin</strong>, <strong>2004</strong>-WS 04/05): Einführung in die Atomund<br />

Molekülphysik<br />

101


102<br />

I. V. Hertel, together with T. Laarmann, and F. Müh;<br />

Übungen, 2 Semester Wochenstunden (FU <strong>Berlin</strong>,<br />

<strong>2004</strong>-WS 04/05): Einführung in die Atom- und<br />

Molekülphysik<br />

E. T. J. Nibbering, Gastvorlesung über Dephasing und<br />

Photon-Echo Messungen, 4 Stunden (Ludwig<br />

<strong>Max</strong>imilians Universität, München, <strong>2004</strong>-Sommersemester):<br />

Neue Ergebnisse auf dem Gebiet<br />

ultraschneller Vorgänge<br />

M. Raschke, Fortgeschrittenenpraktikum, 4 Semesterwochenstunden<br />

(Humboldt Universität, <strong>2004</strong>-Wintersemester<br />

<strong>2004</strong>/2005): Kohärente Anti-Stokes Ramanstreuung<br />

M. Raschke, Fortgeschrittenenpraktikum, 4 Semesterwochenstunden<br />

(Humboldt Universität, <strong>2004</strong>-Sommersemester):<br />

Kohärente Anti-Stokes Ramanstreuung<br />

W. Sandner, 2 Semesterwochenstunden, (Technische<br />

Universität <strong>Berlin</strong>) <strong>2004</strong> SS, Vorlesung und Seminar:<br />

Licht-Materie- Wechselwirkung bei höchsten Intensitäten<br />

W. Sandner und E. Risse, Übungen, 1 Semesterwochenstunde<br />

(Technische Universität <strong>Berlin</strong>, <strong>2004</strong>-<br />

WS <strong>2004</strong>/05): Angewandte Optik und Photonik: Höhere<br />

Experimentalphysik III<br />

W. Sandner, Vorlesung, 3 Semesterwochenstunden<br />

(Technische Universität <strong>Berlin</strong>, <strong>2004</strong>-WS <strong>2004</strong>/05):<br />

Angewandte Optik und Photonik: Höhere<br />

Experimental-physik III (mit Übungen)<br />

General talks (popular science, science politics etc.)<br />

T. Gießel, Vortragsreihe der Leibnitz-Gemeinschaft<br />

«Wissenschaft für Jugendliche» (Lichtburgforum,<br />

13357 <strong>Berlin</strong>, <strong>2004</strong>-06-25): «LUMOS» - Zaubertricks,<br />

die keine sind<br />

I. V. Hertel, Weiterbildungsseminar für Wissenschaftsjournalisten<br />

(Villa „Ida“, Leipzig, <strong>2004</strong>-10-05): Vorteile<br />

und Defizite der deutschen Forschungslandschaft<br />

I. V. Hertel, Fraktionsvorstand der CSU Landtagsfraktion<br />

München in Adlershof (<strong>Berlin</strong>, Seminarraum BESSY,<br />

<strong>2004</strong>-10-25): <strong>Berlin</strong>-Adlershof als Wissenschaftsstadt<br />

– Technologien für das 21. Jahrhundert<br />

I. V. Hertel, Japanische Regierungsdelegation (WISTA,<br />

<strong>2004</strong>-11-18): Optische Technologien in <strong>Berlin</strong> und<br />

Brandenburg (LOB <strong>2004</strong>)<br />

I. V. Hertel, Studiointerview (Studio FAB, <strong>2004</strong>-11-22):<br />

Potentialausschöpfung im Forschungssystem<br />

I. V. Hertel, Forum der Laser-Optik <strong>Berlin</strong> (LOB <strong>2004</strong>)<br />

(<strong>Berlin</strong>-Adlershof, <strong>2004</strong>-03-03): Photonik an außeruniversitären<br />

<strong>Institut</strong>en<br />

I. V. Hertel, <strong>Berlin</strong>er Wirtschaftsgespräche e.V., 6.<br />

Sitzung des Gesprächskreises „Neue Technologien,<br />

Forschung und Wissenschaft“ (<strong>Berlin</strong>er Abgeordnetenhaus,<br />

<strong>2004</strong>-01-27): Ein Wissenschaftsinformationssystem<br />

für <strong>Berlin</strong> und Brandenburg<br />

J. Kändler; Informationsveranstaltung für WGL-Einrichtungen<br />

in Mecklenburg-Vorpommern, (IOW, <strong>2004</strong>-<br />

05-14): Programmbudgtes in Forschungseinrichtungen<br />

auf der Basis einer Kosten- und Leistungrechnung –<br />

Überlegungen zur Erstellung des Leistungsplans mit<br />

integrierter Betrachtung der Finanzierung


Appendix 3<br />

Ongoing Diploma- and PhD theses, Habilitations<br />

Diploma theses<br />

H. Hetzheim; Above-theshold Ionisation in Molekülen<br />

(Supervisor: W. Becker, and T. Elsässer), HU <strong>Berlin</strong>,<br />

Diplomarbeit<br />

D. Kandula; Aufbau einer Kapillarenanordnung zur<br />

nichtlinearen Spektroskopie am H 2 O und anderen<br />

Molekülen (Supervisor: C. P. Schulz, and I. V. Hertel),<br />

Freie Universität <strong>Berlin</strong>, Diplomarbeit<br />

P. M. Schmidt; The triiodide equilibrium in water<br />

investigated by photoemission (Supervisor: I. V. Hertel,<br />

and B. Winter), Freie Universität <strong>Berlin</strong>, Diplomarbeit<br />

PhD theses<br />

O. Berndt; Laserspektroskopie hochangeregter<br />

molekularer Elektronenzustände (Supervisor: W.<br />

Sandner), Technische Universität <strong>Berlin</strong>, Dissertation<br />

F. Bortolotto; Hybridly pumped soft X-ray lasers (Supervisor:<br />

W. Sandner), Technische Universität <strong>Berlin</strong>,<br />

Dissertation<br />

M. Böttcher; Generation and application of short pulse<br />

high harmonics in the XUV spectral range (Supervisor:<br />

W. Sandner) Technische Universität <strong>Berlin</strong>, Doktorarbeit<br />

2007-04<br />

M. Boyle; Femtosecond pulseshaping and its application<br />

to fullerenes (Supervisor: I. V. Hertel), Freie Universität<br />

<strong>Berlin</strong>, Dissertation<br />

S. Busch; Wechselwirkung intensiver Laserstrahlung<br />

mit Materie (Supervisor: W. Sandner), TU <strong>Berlin</strong>,<br />

Dissertation<br />

E. Eremina; Korrelation in atomarer und molekularer<br />

Vielfachionisation (Supervisor: W. Sandner), Technische<br />

Universität <strong>Berlin</strong>, Dissertation<br />

S. Gerlach; Speicherung von metastabilen Heliumatomen<br />

in elektrischen Feldern zur Untersuchung von<br />

kalten Stößen (Supervisor: U. Eichmann, and W.<br />

Sandner), Technische Universität <strong>Berlin</strong>, Doktorarbeit<br />

R. Glatthaar; Züchtung und Charakterisierung von<br />

Bleisalzschichten für optoelektronische Bauelemente<br />

(Supervisor: T. Elsaesser), Humboldt-Universität <strong>Berlin</strong>,<br />

Dissertation<br />

E. Gubbini; Ionisationsdynamik bei relativistischen<br />

Laserintensitäten (Supervisor: W. Sandner), Technische<br />

Universität <strong>Berlin</strong>, Dissertation<br />

P. A. Henry; Isomer-selective investigation ofbiologically<br />

relevant clusters (Supervisor: I. V. Hertel), Freie Universität<br />

<strong>Berlin</strong>, Dissertation<br />

N. Huse; Femtosekunden-Schwingungsspektroskopie<br />

von Wasserstoffbrücken in kondensierter Phase<br />

(Supervisor: T. Elsaesser), International Humboldt<br />

Graduate School, Humboldt-Universität <strong>Berlin</strong>,<br />

Dissertation<br />

R. Jung; Experimente mit ultralangsamen metastabilen<br />

Heliumatomen (Supervisor: G. von Oppen, and U.<br />

Eichmann), Technische Universität Dissertation<br />

P. Klopp; Neue Yb-dotierte Lasermaterialien und ihre<br />

Anwendungen in modensynchronisierten Lasern<br />

(Supervisor: T. Elsaesser), Humboldt-Universität <strong>Berlin</strong>,<br />

Dissertation<br />

T. Kwapien; Ionisationsdynamik höher geladener<br />

Ionen (Supervisor: U. Eichmann, and W. Sandner),<br />

Technische Universität <strong>Berlin</strong>, Doktorarbeit<br />

H. Lippert; Ultrakurzzeitspektroskopie von Chromophoren<br />

in einer Solvathülle (Supervisor: I. V. Hertel,<br />

and W. Radloff), Freie Universität <strong>Berlin</strong>, Dissertation<br />

A. Mermillod-Blondin; Potential applications of fsbeam<br />

shaping in micromachining and photoinscription<br />

(Supervisor: I. V. Hertel, R. Stoian, and E. Audouard),<br />

Université Jean Monnet, <strong>Institut</strong> Superieur Des Techniques<br />

Avancees St. Etienne, Dissertation<br />

O. F. Mohammed; Femtosecond IR spectroscopy of<br />

photochromic molecules in solution (Supervisor: N.<br />

Ernsting), Humboldt-Universität <strong>Berlin</strong>, Dissertation<br />

L. Molina-Luna; Räumliche höchstauflösende optische<br />

Spektroskopie an Nanosystemen (Supervisor: T.<br />

Elsaesser), Humboldt-Universität <strong>Berlin</strong>, Dissertation<br />

M. Mönster; Erzeugung ultrakurzer Lichtimpulse in<br />

photonischen Strukturen (Supervisor: T. Elsaesser),<br />

Humboldt-Universität <strong>Berlin</strong>, Dissertation<br />

K. Müller; Femtosekunden-Nahfeldspektroskopie an<br />

Halbleitern und Nanostrukturen (Supervisor: T.<br />

Elsaesser), Humboldt-Universität <strong>Berlin</strong>, Dissertation<br />

C.-C. Neacsu; Apertulose Nahfeldsondenmikroskopie<br />

an Festkörpern (Supervisor: T. Elsaesser), Humboldt-<br />

Universität <strong>Berlin</strong>, Dissertation<br />

M. Pickel; Spin dynamics at ferromagnetic thin-film<br />

surface (Supervisor: M. Weinelt), Freie Universität<br />

<strong>Berlin</strong>, Dissertation<br />

103


104<br />

H. Prima Garcia; Laser-induced structural changes<br />

investigated with synchrotron radiation (Supervisor: M.<br />

Weinelt), Freie Universität <strong>Berlin</strong>, Dissertation<br />

S. Rivier; Untersuchung neuartiger Drei-Niveau-Lasermerialien<br />

und -geometrien für effiziente und modensynchronisierte<br />

Laserquellen (Supervisor: I. V. Hertel,<br />

and V. Petrov), Freie Universität <strong>Berlin</strong>, Dissertation<br />

C. Ropers; Nanooptik von Metall- / Halbleiter-Hybridstrukturen<br />

(Supervisor: T. Elsaesser), Humboldt-<br />

Universität <strong>Berlin</strong>, Dissertation<br />

F. Saas; Erzeugung ultrakurzer Lichtimpulse mit einem<br />

halbleiterbasierten Lasersystem (Supervisor: T.<br />

Elsaesser), International Humboldt Graduate School,<br />

Humboldt-Universität <strong>Berlin</strong>, Dissertation<br />

E. Samoilova; Excited state reaction dynamics in<br />

biological chromophores and clusters (Supervisor: I.<br />

V. Hertel, and T. Schultz), Freie Universität <strong>Berlin</strong>,<br />

Dissertation<br />

I. Sänger; Magnetische Wechselwirkungen mehrfach<br />

geordneter Systeme (Supervisor: M. Bayer, M. Fiebig),<br />

Universität Dortmund, Dissertation<br />

A. B. Schmidt; Image-potential states infront of ultrathin<br />

iron films – a time- and spin-resolved two-photon<br />

photoemission study (Supervisor: M. Weinelt), Freie<br />

Universität <strong>Berlin</strong>, Dissertation<br />

R. Schmidt; Orientation, electronic structure, and<br />

efficiency of molecular switches at surfaces (Supervisor:<br />

M. Weinelt), Freie Universität <strong>Berlin</strong>, Dissertation<br />

I. Shchatsinin; Free clusters in strong shaped laser<br />

fields: multielectron dynamics and forced nuclear motion<br />

(Supervisor: I. V. Hertel, and C. P. Schulz), Freie<br />

Universität <strong>Berlin</strong>, Dissertation<br />

A. Stalmashonak; Linear and nonlinear processes in<br />

molecular systems induced by shaped, ultrashort laser<br />

pulses in hollow wave guides (Supervisor: I. V. Hertel),<br />

Freie Universität <strong>Berlin</strong>, Dissertation<br />

G. Stibenz; Entwicklung und Anwendung eines Hohlfaserkompressors<br />

zur Erzeugung kurzer Lichtpulse<br />

(Supervisor: T. Elsaesser), Humboldt-Universität <strong>Berlin</strong>,<br />

Dissertation


Appendix 4<br />

Guest Lectures at the MBI<br />

A. Kgop, University of Nevada, USA; Seminar B: Höchstfeldlaserphysik,<br />

(<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2004</strong>-01-08): Laserdriven<br />

electron transport in dense matter: PIC-MMC<br />

F. Kärtner, Massachusetts <strong>Institut</strong>e of Technology, USA;<br />

Seminar C: Nichtlineare Prozesse in kondensierter<br />

Materie, (<strong>2004</strong>-01-23): Towards single-cycle optical<br />

pulses<br />

F. Fillaux, LADIR-CNRS and Université Pierre et Marie<br />

Curie, Thiais, France; Seminar C: Nichtlineare Prozesse<br />

in kondensierter Materie, (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2004</strong>-01-<br />

28): Proton transfer dynamics and interconversion of<br />

centrosymmetric hydrogen bonded dimers in<br />

potassium hydrogen carbonate (KHCO 3 ) and benzoic<br />

acid crystals<br />

B. v. Aken, Univ. of Cambridge, UK; Seminar C: Nichtlineare<br />

Prozesse in kondensierter Materie, (<strong>Max</strong>-<strong>Born</strong>-<br />

<strong>Institut</strong>, <strong>2004</strong>-02-05): Geometrically driven ferroelectricity<br />

in hexagonal manganites<br />

E. Vauthey, Dpt. de chimie-physique, Université de<br />

Genève; Seminar C: Nichtlineare Prozesse in kondensierter<br />

Materie, (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2004</strong>-02-10): Ultrafast<br />

spectroscopy on photoinduced bimolecular electron<br />

transfer reactions<br />

B. Brutschy, Universität Frankfurt/Main; <strong>Institut</strong>skolloquium,<br />

(<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2004</strong>-02-11): Schwingungen<br />

von mikrosolvatisierten Aromaten: Schwache<br />

H-Brücken und schnelle solvatationsinduzierte<br />

Reaktionen<br />

O. Smirnova, Technische Universität Wien; Seminar B:<br />

Höchstfeldlaserphysik, (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2004</strong>-02-13):<br />

Theoretical aspects of time-resolved Auger<br />

measurements<br />

G. Ganteför, Universität Konstanz; Sonderkolloquium<br />

des SFB 450 (FU) und des MBI, (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>,<br />

<strong>2004</strong>-02-17): Cluster und Nanopartikel: Schönheit und<br />

Vielfalt in der Welt der allerkleinsten Teilchen<br />

F. M. Bickelhaupt, Vrije Universiteit, Amsterdam, NL;<br />

Sonderkolloquium des SFB 450 (FU) und des MBI, (<strong>Max</strong>-<br />

<strong>Born</strong>-<strong>Institut</strong>, <strong>2004</strong>-02-17): DNA structure, bonding and<br />

replication<br />

W. Knoll, MPI für Polymerforschung, Mainz; Seminar<br />

C: Nichtlineare Prozesse in kondensierter Materie,<br />

(<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2004</strong>-02-19): Nanoscopic building<br />

blocks from polymers, metals and semiconductors<br />

D. Polli, Politecnico die Milano, Dipartimento di Fisica,<br />

Italy; Seminar A: Kurzzeitspektroskopie an Molekülen,<br />

Clustern und Oberflächen, (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2004</strong>-<br />

02-26): Early events of energy relaxation in carotenoids<br />

studied by Ultrafast Pump-Probe Spectroscopy and<br />

implications for photosynthesis<br />

J.-E. Moser, <strong>Institut</strong>e of Chemical Sciences & Engineering,<br />

Ecole Polytechnique Fédérale de Lausanne, Switzerland;<br />

Seminar C: Nichtlineare Prozesse in kondensierter<br />

Materie, (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2004</strong>-03-02): Dynamics of<br />

ultrafast charge transfer processes implied in the dye<br />

sensitization of oxide semiconductors<br />

C. Ascheron, Springer-Verlag, Heidelberg; Seminar C:<br />

Nichtlineare Prozesse in kondensierter Materie, (<strong>Max</strong>-<br />

<strong>Born</strong>-<strong>Institut</strong>, <strong>2004</strong>-03-11): Science Citation Index Use<br />

and Abuse: Is the science citation index the ultimate<br />

measure for the quality of scientific publications?<br />

M. Weinelt, Universität Erlangen, Lehrstuhl für Festkörperphysik;<br />

Seminar A: Kurzzeitspektroskopie an<br />

Molekülen, Clustern und Oberflächen, (<strong>Max</strong>-<strong>Born</strong>-<br />

<strong>Institut</strong>, <strong>2004</strong>-04-01): Dynamics of electron relaxation<br />

and exciton formation on Si(100)<br />

H. Knuppertz, FernUniversität Hagen, Optische Nachrichtentechnik;<br />

Seminar C: Nichtlineare Prozesse in<br />

kondensierter Materie, (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2004</strong>-04-06):<br />

Das Montgomery-Interferometer als Zeitfilter<br />

W. Buck, PTB, <strong>Berlin</strong>; <strong>Institut</strong>skolloquium, (<strong>Max</strong>-<strong>Born</strong>-<br />

<strong>Institut</strong>, <strong>2004</strong>-04-21): Radiometry and consequences<br />

P. Simon, Laserlaboratorium Göttingen; Seminar A:<br />

Kurzzeitspektroskopie an Molekülen, Clustern und<br />

Oberflächen, (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2004</strong>-05-05): The<br />

excimer laser as a short pulse amplifier – a powerful<br />

tool for the generation of high intensities and nanoscale<br />

structures<br />

P. Agostini, CEA, Saclay; <strong>Institut</strong>skolloquium, (<strong>Max</strong>-<strong>Born</strong>-<br />

<strong>Institut</strong>, <strong>2004</strong>-05-12): Attosecond pulses from high<br />

harmonics<br />

D. Dundas, The Queens’ University of Belfast, UK;<br />

Seminar B: Höchstfeldlaserphysik, (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>,<br />

<strong>2004</strong>-05-17): Molecules in intense laser fields<br />

H. R. Reiss, American University, Washington, D. C.,<br />

USA; <strong>Institut</strong>skolloquium, (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2004</strong>-05-<br />

19): Relativistic strong-field phenomena<br />

D. Salzmann, Soreq NRC, Dept. of Plasma Physics,<br />

Yavne, Israel; Seminar C: Nichtlineare Prozesse in<br />

kondensierter Materie, (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2004</strong>-05-26):<br />

Optimization of K-alpha emission from laser produced<br />

plasmas<br />

105


106<br />

L. Vrbka, J. Heyrovsky <strong>Institut</strong>e of Physical Chemistry,<br />

Academy of Sciences of the Czech Republic, Prague;<br />

Seminar A: Kurzzeitspektroskopie an Molekülen,<br />

Clustern und Oberflächen, (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2004</strong>-<br />

06-02): Molecular structure of surface active salt<br />

solutions: Molecular dynamics studies<br />

J.-M. Rost, <strong>Max</strong>-Planck-<strong>Institut</strong> für Physik komplexer<br />

Systeme, Dresden; <strong>Institut</strong>skolloquium, (<strong>Max</strong>-<strong>Born</strong>-<br />

<strong>Institut</strong>, <strong>2004</strong>-06-09): Coupling of matter and light in<br />

extended systems<br />

I. Fischer, <strong>Institut</strong> für Physikalische Chemie, Universität<br />

Würzburg; Sonderkolloquium des SFB 450 (FU) und<br />

des MBI, (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2004</strong>-06-15): H-atom<br />

dynamics: A common motive in the photo-chemistry<br />

of biomolecules and reactive intermediates<br />

M. Gerhards, <strong>Institut</strong> für Physikalische Chemie I,<br />

Heinrich-Heine-Universität Düsseldorf; Seminar A:<br />

Kurzzeitspektroskopie an Molekülen, Clustern und<br />

Oberflächen, (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2004</strong>-06-22): ß-sheet<br />

model systems in the gas phase - peptides, microsolvation<br />

molecular recognition<br />

D. J. Kaup, University of Central Florida, Orlando, USA;<br />

<strong>Institut</strong>skolloquium, (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2004</strong>-06-23):<br />

Three-wave solitons and continuous waves in media<br />

with competing quadratic and cubic nonlinearities<br />

M. Fortin, Université Laval, Québec, Canada; Seminar<br />

C: Nichtlineare Prozesse in kondensierter Materie,<br />

(<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2004</strong>-06-29): Liquid mirror<br />

characterization by Bessel beams interferometry<br />

I. Lachko, Superstrong Laser Field Laboratory of Moscow<br />

State University, Russia; Seminar B: Höchstfeldlaserphysik,<br />

(<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2004</strong>-06-29): Diagnostics of<br />

fast particles accelerated in femtosecond laser plasma<br />

at intensities of 10 16 W/cm 2<br />

Hr. Kanapathipillai; GSI, Darmstadt; Seminar B:<br />

Höchstfeldlaserphysik, (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2004</strong>-07-<br />

06): Aspects of laser absorption in clusters<br />

P. Saari, <strong>Institut</strong>e of Physics, University of Tartu, Estonia;<br />

<strong>Institut</strong>skolloquium, (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2004</strong>-07-07):<br />

Localized waves in ultrafast optics<br />

G. G. Paulus, Texas A&M University, College Station, TX<br />

USA; <strong>Institut</strong>skolloquium, (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2004</strong>-08-<br />

11): Quantum optics with single optical cycles<br />

A. N. Benner, Universität Stuttgart; Seminar B: Höchstfeldlaserphysik,<br />

(<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2004</strong>-08-24):<br />

Rydberg and ultracold plasma<br />

I. Mingareev, Universität Göttingen; Seminar C: Nichtlineare<br />

Prozesse in kondensierter Materie (<strong>Max</strong>-<strong>Born</strong>-<br />

<strong>Institut</strong>, <strong>2004</strong>-08-24): Anregungsspektroskopie an<br />

Trionen in AlGaAs/GaAs-Heterostrukturen<br />

D. Froehlich, Universität Dortmund, Fachbereich Experimentelle<br />

Physik II; Seminar C: Nichtlineare Prozesse<br />

in kondensierter Materie, (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2004</strong>-09-<br />

02): High resolution spectroscopy of excitons in Cu 20<br />

H. Geßner, Chemnitz; Seminar B: Höchstfeldlaserphysik,<br />

(<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2004</strong>-09-02): Using angleresolved<br />

light-scattering in the VUV spectral regime to<br />

determin the topology of thin-film structures on CaF 2 -<br />

substrates<br />

G. Korn, Katana Technologies GmbH, Kleinmachnow;<br />

<strong>Institut</strong>skolloquium, (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2004</strong>-09-15):<br />

Refractive surgery with solid-state lasers: The future of<br />

laser vision correction<br />

H. Kono, Department of Chemistry, Graduate School of<br />

Science, Tohoku University, Sendai, Japan; Seminar A:<br />

Kurzzeitspektroskopie an Molekülen, Clustern und<br />

Oberflächen, (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2004</strong>-09-15): Quantum<br />

mechanical investigation of electronic and nuclear<br />

dynamics of molecules in intense laser fields.<br />

K. Tomaniga, Molecular Photoscience Research Center,<br />

Kobe University; Seminar A: Kurzzeitspektroskopie an<br />

Molekülen, Clustern und Oberflächen, (<strong>Max</strong>-<strong>Born</strong>-<br />

<strong>Institut</strong>, <strong>2004</strong>-09-23): Vibrational fluctuation in<br />

hydrogen-bonding solvents studied by infrared<br />

nonlinear spectroscopy<br />

C. Kunath, TFH Wildau; Seminar B: Höchstfeldlaserphysik,<br />

(<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2004</strong>-09-27): Charakterisierung<br />

von Mikrospiegelarrays im DUV<br />

P. Rußbüldt, Fraunhofer ILT, Aachen; Seminar B: Höchstfeldlaserphysik,<br />

(<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2004</strong>-09-28):<br />

Entwicklung kompakter, diodengepumpter fs-Laser<br />

P. Hamm, <strong>Institut</strong> für Physikalische Chemie, Universität<br />

Zürich; <strong>Institut</strong>skolloquium, (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2004</strong>-<br />

09-29): Ultrafast IR-driven cis-trans isomerization of<br />

nitrous acid<br />

E. Audouard, Laboratoire Traitement du Signal et<br />

Instrumentation, Université Jean Monnet, Saint Etienne;<br />

Seminar A: Kurzzeitspektroskopie an Molekülen,<br />

Clustern und Oberflächen, (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2004</strong>-09-<br />

30): Ultrafast laser processing: News, tools and<br />

industrial development<br />

I. Fischer, Universität Würzburg; Seminar A: Kurzzeitspektroskopie<br />

an Molekülen, Clustern und Oberflächen,<br />

(<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2004</strong>-10-06): Photodissociation and<br />

dissociative of hydrocarbon radicals<br />

C. Bordas, Laboratoire de Spectrométrie, Ionique et<br />

Moléculaire (LASIM), Univ. Lyon; Seminar A: Kurzzeitspektroskopie<br />

an Molekülen, Clustern und Oberflächen,<br />

(<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2004</strong>-10-19): Time-resolved photoelectron<br />

spectroscopy of thermionic emission in carbon<br />

clusters


W. P. Schleich, Abteilung für Quantenphysik, Universität<br />

Ulm; <strong>Institut</strong>skolloqium, (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2004</strong>-10-20):<br />

Wave packet dynamics, quantum carpets, and<br />

factorization of numbers<br />

G. Meijer, Fritz-Haber-<strong>Institut</strong>, <strong>Berlin</strong>; <strong>Institut</strong>skolloquium,<br />

(<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2004</strong>-10-27): Manipulation of<br />

molecules with electric fields<br />

K. Osvay, Univ. of Szeged, Dept. of Optics and Quantum<br />

Electronics, Hungary; Seminar B: Höchstfeldlaserphysik,<br />

(<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2004</strong>-10-29): Dispersion<br />

measurement and characterization of fs-pulses in a<br />

CPA laser using linear devices<br />

A. Lassesson, Universität Greifswald; Seminar A: Kurzzeitspektroskopie<br />

an Molekülen, Clustern und Oberflächen,<br />

(<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2004</strong>-11-03): On the creation<br />

of multiply charged negative fullerenes in an ion trap<br />

A. Espagne, Département de Chimie, Ecole Normale<br />

Supérieure, Paris; Seminar C: Nichtlineare Prozesse<br />

in kondensierter Materie, (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2004</strong>-11-<br />

04): Primary events in the Photoactive Yellow Protein<br />

(PYP): Role of the chromophore photophysics<br />

B. M. Smirnov, Russian Academy of Sciences; Seminar<br />

B: Höchstfeldlaserphysik, (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2004</strong>-11-<br />

08): Nucleation processes and properties of the cluster<br />

plasma<br />

T. Baumert, Universität Kassel, <strong>Institut</strong> für Physik und<br />

CINSaT, FB Naturwissenschaften; <strong>Institut</strong>skolloquium,<br />

(<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2004</strong>-11-10): Ultrafast spectroscopy:<br />

Electrons, atoms, molecules and plasmas<br />

J. Limpouch, Czech Technical University, Prague;<br />

Seminar C: Nichtlineare Prozesse in kondensierter<br />

Materie, (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2004</strong>-11-11): Femtosecond<br />

laser-target interactions and generation of ultrashort<br />

line X-ray pulses (theory and simulations)<br />

R. G. Ulbrich, Universität Kassel, <strong>Institut</strong> für Physik und<br />

CINSaT, FB Naturwissenschaften; <strong>Institut</strong>skolloquium,<br />

(<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2004</strong>-11-17): Impurities revisited:<br />

Scanning tunneling microscopy on metal and semiconductor<br />

surfaces<br />

G. V. R. <strong>Born</strong>, The William Harvey Research <strong>Institut</strong>e,<br />

St. Bartholomew’s, and the Royal London School of<br />

Medicine and Dentistry, University of London; Festkolloquium:<br />

50 Jahre Nobelpreis <strong>Max</strong> <strong>Born</strong>, (<strong>Max</strong>-<strong>Born</strong>-<br />

<strong>Institut</strong>, <strong>2004</strong>-12-10): <strong>Max</strong> <strong>Born</strong>: A memoir<br />

P. Corkum, Steacie <strong>Institut</strong>e for Molecular Science,<br />

National Research Council, Ottawa, Ontario, Canada;<br />

Festkolloquium: 50 Jahre Nobelpreis <strong>Max</strong> <strong>Born</strong>, (<strong>Max</strong>-<br />

<strong>Born</strong>-<strong>Institut</strong>, <strong>2004</strong>-12-10): Attosecond imaging: Asking<br />

a molecule to paint a self-portrait<br />

L. Schultz, Leibniz-<strong>Institut</strong> für Festkörper- und Werkstoffforschung<br />

(IFW) Dresden; <strong>Institut</strong>skolloquium, (<strong>Max</strong>-<br />

<strong>Born</strong>-<strong>Institut</strong>, <strong>2004</strong>-12-15): High Temperature Superconductors:<br />

From physical principles to new materials<br />

and new applications<br />

P. Agostini, CEA, Saclay, France; Seminar A: Kurzzeitspektroskopie<br />

an Molekülen, Clustern und Oberflächen,<br />

(<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, <strong>2004</strong>-12-15): Two-color multiphoton<br />

double ionization of xenon<br />

U. Teubner, <strong>Institut</strong> für Mikrotechnik Mainz GmbH;<br />

Seminar B: Höchstfeldlaserphysik, (<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>,<br />

<strong>2004</strong>-12-17): Interaction of high intensity laser-pulses<br />

with matter: From pico- to attosecond pulses<br />

107


108<br />

Appendix 5<br />

Staff, Extended Research Visits of MBI Staff at External <strong>Institut</strong>ions, Visiting Scientists at the<br />

MBI and Users of the Application Laboratories<br />

A. Staff<br />

M M B<br />

B<br />

I<br />

I<br />

F F u<br />

u n<br />

n d<br />

d i<br />

i n<br />

n g<br />

g<br />

i i n<br />

n<br />

s<br />

s<br />

t<br />

t<br />

i<br />

i<br />

t<br />

t<br />

u<br />

u<br />

t<br />

t<br />

i<br />

i<br />

o<br />

o<br />

n<br />

n<br />

a<br />

a<br />

l<br />

l<br />

p p r<br />

r o<br />

ojjj<br />

j e<br />

eccc<br />

c t<br />

t s<br />

s<br />

e e<br />

x<br />

x<br />

t<br />

t<br />

e<br />

e<br />

r<br />

r<br />

n<br />

n<br />

a<br />

a<br />

l<br />

l<br />

p p e<br />

e r<br />

r m<br />

m a<br />

a n<br />

n e<br />

e n<br />

n t<br />

t n n o<br />

o n<br />

n -<br />

- p<br />

p e<br />

e r<br />

r m<br />

m a<br />

a n<br />

n e<br />

e n<br />

n t<br />

t p p e<br />

e r<br />

r m<br />

m a<br />

a n<br />

n e<br />

e n<br />

n t<br />

t n n<br />

o<br />

o<br />

n<br />

n<br />

-<br />

-<br />

p<br />

p<br />

e<br />

e<br />

r<br />

r<br />

m<br />

m<br />

a<br />

a<br />

n<br />

n<br />

e<br />

e<br />

n<br />

n<br />

t<br />

t<br />

Scientists 30 18 - 13 - 61 61<br />

61<br />

Graduatestudents- 12 - 11 1 24 24<br />

24<br />

1 Guest scientists<br />

- 4 - 7 9 20 20<br />

20<br />

Nonscientificstaff65 132 - 8 53 91 91<br />

91<br />

t tt t o<br />

ottt<br />

t a<br />

a l<br />

l<br />

95 95<br />

95 47 47<br />

47 - 39 39<br />

39 15 15<br />

15 1 1<br />

9<br />

9<br />

6<br />

6<br />

1 longer<br />

than<br />

one<br />

( typically<br />

6 to<br />

12)<br />

month<br />

at<br />

the<br />

MBI<br />

including<br />

fellowship<br />

holders;<br />

2 3 including apprentices<br />

and<br />

temporary<br />

student<br />

helpers;<br />

diploma<br />

students<br />

ttt t tooo<br />

o ottt<br />

t a<br />

a l<br />

l


109


110<br />

B. Extended research visits of MBI staff at external institutions<br />

t<br />

n<br />

e<br />

m<br />

t<br />

r<br />

a<br />

p<br />

e<br />

D t<br />

n<br />

e<br />

m<br />

t<br />

r<br />

a<br />

p<br />

e<br />

D t<br />

n<br />

e<br />

m<br />

t<br />

r<br />

a<br />

p<br />

e<br />

D t<br />

n<br />

e<br />

m<br />

t<br />

r<br />

a<br />

p<br />

e<br />

D t<br />

n<br />

e<br />

m<br />

t<br />

r<br />

a<br />

p<br />

e<br />

D e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N e<br />

m<br />

a<br />

N t<br />

s<br />

o<br />

H t<br />

s<br />

o<br />

H t<br />

s<br />

o<br />

H t<br />

s<br />

o<br />

H t<br />

s<br />

o<br />

H n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

o<br />

b<br />

a<br />

l<br />

l<br />

o<br />

c<br />

f<br />

o<br />

c<br />

i<br />

p<br />

o<br />

T d<br />

o<br />

i<br />

r<br />

e<br />

P d<br />

o<br />

i<br />

r<br />

e<br />

P d<br />

o<br />

i<br />

r<br />

e<br />

P d<br />

o<br />

i<br />

r<br />

e<br />

P d<br />

o<br />

i<br />

r<br />

e<br />

P<br />

C r<br />

e<br />

s<br />

s<br />

e<br />

a<br />

s<br />

l<br />

E<br />

.<br />

T ,<br />

e<br />

r<br />

u<br />

e<br />

i<br />

r<br />

é<br />

p<br />

u<br />

S<br />

e<br />

l<br />

a<br />

m<br />

r<br />

o<br />

N<br />

e<br />

l<br />

o<br />

c<br />

E<br />

,<br />

s<br />

e<br />

n<br />

y<br />

H<br />

.<br />

T<br />

.<br />

J<br />

e<br />

c<br />

n<br />

a<br />

r<br />

F<br />

,<br />

s<br />

i<br />

r<br />

a<br />

P<br />

,<br />

.<br />

t<br />

p<br />

e<br />

D<br />

y<br />

r<br />

t<br />

s<br />

i<br />

m<br />

e<br />

h<br />

C<br />

d<br />

n<br />

a<br />

s<br />

e<br />

r<br />

u<br />

t<br />

c<br />

e<br />

L<br />

;<br />

s<br />

d<br />

n<br />

o<br />

b<br />

n<br />

e<br />

g<br />

o<br />

r<br />

d<br />

y<br />

h<br />

f<br />

o<br />

s<br />

c<br />

i<br />

m<br />

a<br />

n<br />

y<br />

d<br />

t<br />

s<br />

a<br />

f<br />

a<br />

r<br />

t<br />

l<br />

U<br />

)<br />

r<br />

o<br />

s<br />

s<br />

e<br />

f<br />

o<br />

r<br />

p<br />

g<br />

n<br />

i<br />

t<br />

i<br />

s<br />

i<br />

v<br />

(<br />

h<br />

c<br />

r<br />

a<br />

e<br />

s<br />

e<br />

r<br />

o<br />

t<br />

1<br />

0<br />

-<br />

6<br />

0<br />

-<br />

4<br />

0<br />

0<br />

2<br />

0<br />

3<br />

-<br />

6<br />

0<br />

-<br />

4<br />

0<br />

0<br />

2<br />

2<br />

A n<br />

n<br />

a<br />

m<br />

r<br />

r<br />

e<br />

H<br />

.<br />

J ,<br />

e<br />

m<br />

o<br />

R<br />

f<br />

o<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U<br />

a<br />

z<br />

r<br />

e<br />

T<br />

,<br />

o<br />

t<br />

n<br />

a<br />

s<br />

s<br />

A<br />

.<br />

G<br />

y<br />

l<br />

a<br />

t<br />

I<br />

,<br />

M<br />

F<br />

N<br />

J<br />

,<br />

o<br />

l<br />

l<br />

i<br />

r<br />

T<br />

.<br />

S<br />

e<br />

s<br />

a<br />

h<br />

p<br />

l<br />

l<br />

a<br />

t<br />

s<br />

i<br />

r<br />

K<br />

e<br />

h<br />

c<br />

s<br />

i<br />

n<br />

o<br />

t<br />

o<br />

h<br />

P<br />

)<br />

n<br />

o<br />

i<br />

t<br />

a<br />

r<br />

e<br />

p<br />

o<br />

o<br />

c<br />

h<br />

c<br />

r<br />

a<br />

e<br />

s<br />

e<br />

r<br />

(<br />

o<br />

t<br />

2<br />

0<br />

-<br />

3<br />

0<br />

-<br />

4<br />

0<br />

0<br />

2<br />

5<br />

1<br />

-<br />

3<br />

0<br />

-<br />

4<br />

0<br />

0<br />

2<br />

1<br />

B s<br />

e<br />

l<br />

k<br />

c<br />

i<br />

N<br />

.<br />

V<br />

.<br />

P n<br />

a<br />

p<br />

a<br />

J<br />

,<br />

a<br />

k<br />

a<br />

s<br />

O<br />

E<br />

L<br />

I<br />

,<br />

a<br />

k<br />

a<br />

s<br />

O<br />

E<br />

L<br />

I<br />

n<br />

a<br />

p<br />

a<br />

J r<br />

e<br />

t<br />

t<br />

a<br />

m<br />

h<br />

t<br />

i<br />

w<br />

s<br />

e<br />

s<br />

l<br />

u<br />

p<br />

r<br />

e<br />

s<br />

a<br />

l<br />

t<br />

r<br />

o<br />

h<br />

s<br />

e<br />

s<br />

n<br />

e<br />

t<br />

n<br />

i<br />

f<br />

o<br />

n<br />

o<br />

i<br />

t<br />

c<br />

a<br />

r<br />

e<br />

t<br />

n<br />

I<br />

-<br />

t<br />

s<br />

e<br />

u<br />

G<br />

f<br />

o<br />

s<br />

e<br />

r<br />

u<br />

t<br />

c<br />

e<br />

L<br />

;<br />

s<br />

n<br />

o<br />

i<br />

t<br />

a<br />

c<br />

i<br />

l<br />

p<br />

p<br />

a<br />

d<br />

e<br />

t<br />

a<br />

l<br />

e<br />

r<br />

d<br />

n<br />

a<br />

)<br />

r<br />

o<br />

s<br />

s<br />

e<br />

f<br />

o<br />

r<br />

p<br />

g<br />

n<br />

i<br />

t<br />

i<br />

s<br />

i<br />

v<br />

(<br />

s<br />

r<br />

o<br />

s<br />

s<br />

e<br />

f<br />

o<br />

r<br />

P<br />

o<br />

t<br />

4<br />

0<br />

-<br />

3<br />

0<br />

-<br />

4<br />

0<br />

0<br />

2<br />

2<br />

0<br />

-<br />

7<br />

0<br />

-<br />

4<br />

0<br />

0<br />

2<br />

2<br />

A z<br />

l<br />

u<br />

h<br />

c<br />

S<br />

.<br />

P<br />

-<br />

.<br />

C f<br />

o<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U<br />

,<br />

A<br />

L<br />

I<br />

J<br />

,<br />

r<br />

e<br />

g<br />

r<br />

e<br />

b<br />

e<br />

n<br />

i<br />

L<br />

.<br />

C<br />

A<br />

S<br />

U<br />

,<br />

.<br />

l<br />

o<br />

C<br />

r<br />

e<br />

d<br />

l<br />

u<br />

o<br />

B<br />

s<br />

c<br />

i<br />

m<br />

a<br />

n<br />

y<br />

d<br />

r<br />

e<br />

t<br />

s<br />

u<br />

l<br />

c<br />

t<br />

s<br />

a<br />

f<br />

a<br />

r<br />

t<br />

l<br />

u<br />

n<br />

o<br />

h<br />

c<br />

r<br />

a<br />

e<br />

s<br />

e<br />

R<br />

)<br />

r<br />

o<br />

s<br />

s<br />

e<br />

f<br />

o<br />

r<br />

p<br />

g<br />

n<br />

i<br />

t<br />

i<br />

s<br />

i<br />

v<br />

(<br />

o<br />

t<br />

1<br />

0<br />

-<br />

1<br />

0<br />

-<br />

4<br />

0<br />

0<br />

2<br />

9<br />

2<br />

-<br />

2<br />

0<br />

-<br />

4<br />

0<br />

0<br />

2<br />

o<br />

t<br />

1<br />

3<br />

-<br />

5<br />

0<br />

-<br />

4<br />

0<br />

0<br />

2<br />

6<br />

0<br />

-<br />

7<br />

0<br />

-<br />

4<br />

0<br />

0<br />

2<br />

2<br />

C r<br />

e<br />

n<br />

b<br />

e<br />

i<br />

r<br />

G<br />

.<br />

U ,<br />

c<br />

e<br />

b<br />

e<br />

u<br />

Q<br />

,<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U<br />

l<br />

a<br />

v<br />

a<br />

L<br />

,<br />

é<br />

h<br />

c<br />

i<br />

P<br />

.<br />

M<br />

a<br />

d<br />

a<br />

n<br />

a<br />

C<br />

h<br />

t<br />

i<br />

w<br />

s<br />

r<br />

e<br />

s<br />

a<br />

l<br />

d<br />

n<br />

o<br />

c<br />

e<br />

s<br />

o<br />

t<br />

m<br />

e<br />

f<br />

f<br />

o<br />

g<br />

n<br />

i<br />

p<br />

a<br />

h<br />

s<br />

l<br />

a<br />

r<br />

o<br />

p<br />

m<br />

e<br />

t<br />

-<br />

o<br />

i<br />

t<br />

a<br />

p<br />

S<br />

)<br />

t<br />

s<br />

i<br />

t<br />

n<br />

e<br />

i<br />

c<br />

s<br />

g<br />

n<br />

i<br />

t<br />

i<br />

s<br />

i<br />

v<br />

(<br />

s<br />

y<br />

a<br />

r<br />

r<br />

a<br />

l<br />

a<br />

c<br />

i<br />

t<br />

p<br />

o<br />

-<br />

o<br />

r<br />

c<br />

i<br />

m<br />

o<br />

t<br />

4<br />

2<br />

-<br />

1<br />

1<br />

-<br />

4<br />

0<br />

0<br />

2<br />

6<br />

0<br />

-<br />

2<br />

1<br />

-<br />

4<br />

0<br />

0<br />

2<br />

2<br />

C d<br />

l<br />

a<br />

w<br />

n<br />

u<br />

r<br />

G<br />

.<br />

R ,<br />

c<br />

e<br />

b<br />

e<br />

u<br />

Q<br />

,<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U<br />

l<br />

a<br />

v<br />

a<br />

L<br />

,<br />

é<br />

h<br />

c<br />

i<br />

P<br />

.<br />

M<br />

a<br />

d<br />

a<br />

n<br />

a<br />

C<br />

h<br />

t<br />

i<br />

w<br />

s<br />

r<br />

e<br />

s<br />

a<br />

l<br />

d<br />

n<br />

o<br />

c<br />

e<br />

s<br />

o<br />

t<br />

m<br />

e<br />

f<br />

f<br />

o<br />

g<br />

n<br />

i<br />

p<br />

a<br />

h<br />

s<br />

l<br />

a<br />

r<br />

o<br />

p<br />

m<br />

e<br />

t<br />

-<br />

o<br />

i<br />

t<br />

a<br />

p<br />

S<br />

)<br />

t<br />

s<br />

i<br />

t<br />

n<br />

e<br />

i<br />

c<br />

s<br />

g<br />

n<br />

i<br />

t<br />

i<br />

s<br />

i<br />

v<br />

(<br />

s<br />

y<br />

a<br />

r<br />

r<br />

a<br />

l<br />

a<br />

c<br />

i<br />

t<br />

p<br />

o<br />

-<br />

o<br />

r<br />

c<br />

i<br />

m<br />

o<br />

t<br />

9<br />

0<br />

-<br />

9<br />

0<br />

-<br />

4<br />

0<br />

0<br />

2<br />

8<br />

0<br />

-<br />

0<br />

1<br />

-<br />

4<br />

0<br />

0<br />

2<br />

2<br />

C n<br />

n<br />

a<br />

m<br />

u<br />

e<br />

N<br />

.<br />

U ,<br />

o<br />

t<br />

n<br />

o<br />

r<br />

o<br />

T<br />

f<br />

o<br />

y<br />

t<br />

i<br />

s<br />

r<br />

e<br />

v<br />

i<br />

n<br />

U<br />

,<br />

n<br />

a<br />

m<br />

r<br />

e<br />

H<br />

.<br />

P<br />

a<br />

d<br />

a<br />

n<br />

a<br />

C<br />

l<br />

a<br />

c<br />

i<br />

t<br />

p<br />

o<br />

o<br />

r<br />

c<br />

i<br />

m<br />

h<br />

t<br />

i<br />

w<br />

g<br />

n<br />

i<br />

s<br />

s<br />

e<br />

c<br />

o<br />

r<br />

p<br />

s<br />

l<br />

a<br />

i<br />

r<br />

e<br />

t<br />

a<br />

m<br />

r<br />

e<br />

s<br />

a<br />

l<br />

V<br />

U<br />

V<br />

)<br />

t<br />

s<br />

i<br />

t<br />

n<br />

e<br />

i<br />

c<br />

s<br />

g<br />

n<br />

i<br />

t<br />

i<br />

s<br />

i<br />

v<br />

(<br />

s<br />

r<br />

e<br />

p<br />

a<br />

h<br />

s<br />

m<br />

a<br />

e<br />

b<br />

o<br />

t<br />

9<br />

0<br />

-<br />

2<br />

1<br />

-<br />

4<br />

0<br />

0<br />

2<br />

8<br />

1<br />

-<br />

2<br />

1<br />

-<br />

4<br />

0<br />

0<br />

2


111<br />

C. Visiting scientists<br />

Host within Name Home institution Topic of collaboration Period<br />

MBI<br />

Dept. A1 Dr. Stephan Schlemmer TU Chemnitz, <strong>Institut</strong>e for Physics Nano particle experiments at BESSY II 05/02 - 04/04<br />

Dept. A1 Michael Grimm TU Chemnitz, <strong>Institut</strong>e for Physics Nano particle experiments at BESSY II 05/02 - 03/05<br />

Dept. A1 Prof. Dr. Wolf Widdra Martin-Luther-University, Halle MBI-BESSY beamline 04/03 - 03/04<br />

Dept. A1 Igor Burakov <strong>Institut</strong>e of Thermophysics SB RAS, Material modification with shaped fs pulses 06/04 - 08/04<br />

Novosibirsk, Russia 11/04 - 12/04<br />

Dept. A1 Alexandre Mermillod Jean-Monet University, Saint Etienne, Material modification with shaped fs pulses 01/04 - 03/05<br />

France<br />

Dept. A1 Dr. Burkhard Langer Julius-<strong>Max</strong>imilian-University, MBI-BESSY beamline 04/04 - 06/06<br />

Würzburg<br />

Dept. A1 Martin Pickel Univ. Erlangen, Festkörperphysik Time- and spin-resolved photoemission 10/04 - 10/04<br />

Dept. A1 Anke Schmidt Univ. Erlangen, Festkörperphysik Time- and spin-resolved photoemission 10/04 - 10/04<br />

Dept. A2 Elena Samoilova <strong>Institut</strong>e on Laser Physics, Biological molecules in the gas phase 01/03 - 02/04<br />

Novosibirsk, Russia<br />

Dept. A2 Dr. Volker Stert formerly MBI Modification of coincidence spectrometer 02/04 - 06/05<br />

Dept. A2 Dr. Susanne Ullrich National Research Council, Canada Pump-probe spectroscopy of DNA-bases 04/04 - 05/04<br />

Dept. A2 Dr. Klavs Hansen Chalmers University, Gothenburg, Fragmentation process in C 60 after ultrafast excitation 07/04 - 07/04<br />

Sweden<br />

Dept. A2 Pierre-Alain Henry Jean-Monet University, Theoretical contributions to the research project 10/04 - 10/04<br />

Saint Etienne, France "Biological Molecules in the Gas Phase"


112<br />

Host within Name Home institution Topic of collaboration Period<br />

MBI<br />

Dept. A3 Prof. Fabian Rotermund Ajou University, Korea Parametric amplification of chirped ultrashort light 01/04 - 01/04<br />

pulses with new nonlinear materials 07/04 - 08/04<br />

Dept. A3 Mikalai Krapivin EPAm Systems Ltd, Belarus Investigation of temperatures of hot electrons with the 01/04 - 01/04<br />

modified band pass filter method<br />

Dept. A3 Frank Güll Universitat Rovira i Virgili, Tarragona New active laser materials 01/04 - 01/04<br />

Dept. A3 Javier Mateos Universitat Rovira i Virgili, Tarragona New active laser materials 01/04 - 01/04<br />

11/04 - 10/06<br />

Dept. A3 Siarhei Vetrau Belarus State University Pulse shaping 01/04 - 01/04<br />

Dept. A3 Dr. Sergey Maksimenko Belarus State University Nonlinear optical effects in carbon nanotubes 04/04 - 04/04<br />

Dept. A3 Dr. Mauricio Rico <strong>Institut</strong>o de Ciencia de Materiales New active materials for diode pumped ultrafast 04/04 - 03/06<br />

Hernandez de Madrid lasers<br />

Dept. A3 Dr. K. Posezian Pondicherry University, India Supercontinuum generation and soliton perturbation 05/04 - 08/04<br />

theory<br />

Dept. A3 Won-Bae Cho Ajou University, Korea Transmission of capillary waveguides 07/04 - 08/04<br />

Dept. A3 Chang Jun Yoon Ajou University, Korea Parametric conversion of short light pulses 07/04 - 08/04<br />

Dept. A3 Dr. Georg Korn Femtotechnologies GmbH Laser developement 09/01 - 12/06<br />

Dept. A3 Dr. Olga Fedotova Belarus National Academy of Spectral broadening, supercontinuum generation and 10/04 - 12/04<br />

Sciences dispersion modification in planar rib waveguides<br />

Dept. A3 Prof. Dr. L. Isaenko SB RAS, Novosibirsk New nonlinear crystals for the MIR 08/04 - 08/04<br />

11/04 - 11/04<br />

Dept. A3 Dr. Yiquiang Qin Department of Physics, National New laser materials 10/04 - 12/04<br />

University of Singapore<br />

Dept. A3 Prof. Dr. Jean-Jacques Observatoire de Paris-Meudon, Investigation of novel Li-containing chalcogenide 11/04 - 11/04<br />

Zondy France crystals


113<br />

Host within Name Home institution Topic of collaboration Period<br />

MBI<br />

Dept. A3 Yuichiro Kida Kyushu University, Fukuoka, Japan Compression of femtosecond ultraviolet pulses 11/04 - 11/04<br />

Dept. B1 Prof. Dr. Reinhard Bruch University of Nevada, USA X-ray laser, X-ray multifiber optics 09/04 - 12/04<br />

Dept. B1 Dr. Andreas Kemp University of Reno, USA Relativistic plasmadynamics, Pic simulations of ion 12/03 - 01/04<br />

dynamics (Theory)<br />

Dept. B2 Prof. Dr. Howard R. Reiss American University, Relativistic laser-particle interaction (Theory) 03/04 - 03/05<br />

Washington, D.C., USA<br />

Dept. B2 Prof. Dr. Pierre Agostini CEA/DSM/SPAM, Gif sur Yvette, Atomic photoionization with high order harmonics 04/04 - 09/04<br />

France 12/04 - 12/04<br />

Dept. B2 Dr. Vladimir Usachenko <strong>Institut</strong>e of Applied Laser Physics, Strong-field approximation for molecules in intensive 07/04 - 10/04<br />

Tashkent, Uzbekistan laser fields (Theory)<br />

Dept. B2 Prof. Dejan Milosevic University of Sarajevo, Control of processes with strong fields (Theory) 07/04 - 08/04<br />

Bosnia and Hercegovina<br />

Dept. B2 Prof. Dr. Sergey Fomichev Kurchatov <strong>Institut</strong>e, Moscow, Russia Numerical simulations of laser-cluster interactions 03/04 - 04/04<br />

(Theory)<br />

Dept. B2 Prof. Dr. Sergej Moscow Engineering Physics Nonsequential double ionization and laser-cluster 03/04 - 03/04<br />

Popruzhenko <strong>Institut</strong>e, Russia interaction (Theory) 11/04 - 12/04<br />

Dept. B2 Prof. Dr. D. F. Zaretsky Kurchatov <strong>Institut</strong>e, Moscow, Russia Stimulated high order harmonic generation (Theory) 03/04 - 05/04<br />

10/04 - 12/04<br />

Dept. B2 Prof. Dr. Alain Huetz Univ. Paris-Sud, Orsay, France Two-photon two-colour double ionization 11/04 - 11/04<br />

Dept. B2 Dr. Mathieu Gisselbrecht Univ. Paris-Sud, Orsay, France Two-photon two-colour double ionization 11/04 - 11/04<br />

Dept. B2 Prof. Dr. Sergej Moscow Engineering Physics Coulomb effects in the atom-threshold ionization 11/04 - 11/04<br />

Goreslavski <strong>Institut</strong>e; Moscow, Russia (Theory)<br />

Dept. B2 Dr. Philipp Korneev Moscow Engineering Physics Numerical simulations of laser-cluster interactions 03/04 - 04/04<br />

<strong>Institut</strong>e, Russia (Theory) 11/04 - 11/04<br />

Dept. C1 Dr. Heiko Lockstein HU, <strong>Berlin</strong> Photosynthetic antennae 01/02 - 12/04


114<br />

Host within Name Home institution Topic of collaboration Period<br />

MBI<br />

Dept. C1 Dr. Klaus Teuchner Laser Technik <strong>Berlin</strong> Early diagnosis of black skin cancer 01/03 - 12/04<br />

Dept. C1 Dr. Stephan Mory Laser Technik <strong>Berlin</strong> Early diagnosis of black skin cancer 11/02 - 03/04<br />

Dept. C1 Dr. Anwar Usman University Sains, Malaysia Femtosecond mid-infrared spectroscopy of 06/03 - 06/05<br />

condensed phase intra- and intermolecular<br />

hydrogen-bonded systems<br />

Dept. C1 Barry D. Bruner University of Toronto, Canada Heterodyne detected photon echo experiments on 03/04 - 04/04<br />

water and acetic acid dimer 07/04 - 08/04<br />

Dept. C1 Dr. Michael L. Cowan University of Toronto, Canada Heterodyne detected photon echo experiments on 03/04 - 04/04<br />

water and acetic acid dimer 07/04 - 08/04<br />

Dept. C1 Curtis A. Rosenow University or Arizona; USA Summer student course on nonlinear optics 05/04 - 08/04<br />

Dept. C1 Satoshi Ashihara <strong>Institut</strong>e of Industrial Science, Femtosecond infrared spectroscopy of the OH bend 08/04 - 11/04<br />

University of Tokyo, Japan vibration of water<br />

Dept. C1 Dr. Alexander Vodtshits National Academy of Sciences, SRS frequency conversion for ultrashort laser pulses 09/04 - 10/04<br />

Minsk, Belorussia<br />

Dept. C2 Jean Luc Neron COPL, Laval University Quebec, Truncated ultrashort-pulse Bessel beams 03/04 - 03/04<br />

Canada<br />

Dept. C2 Dr. Anna Kozlowska <strong>Institut</strong>e of Electronic Materials Thermal Properties of High-Power Diode Laser 01/04 - 01/04<br />

and Technology, Warsaw, Poland Arrays (EU-Access) 05/04 - 06/04<br />

09/04 - 09/04<br />

11/04 - 11/04<br />

Dept. C2 Dr. Volker Kebbel Bremen <strong>Institut</strong>e of Applied Beam Few-cycle Bessel-X-pulses 05/04 - 05/04<br />

Technology 11/04 - 11/04<br />

Dept. C2 Hans Knuppertz FernUniversität Hagen Femtosecond Montgomery effect 03/04 - 04/04<br />

Dept. C2 Prof. Peeter Saari University of Tartu Localized wavepackets 04/04 - 07/04<br />

Dept. C2 Dr. Kaido Reivelt University of Tartu Localized wavepackets 04/04 - 07/04


115<br />

Host within Name Home institution Topic of collaboration Period<br />

MBI<br />

Dept. C2 Mateus Latoszek <strong>Institut</strong>e of Electronic Materials and Thermal Properties of High-Power Diode Laser 09/04 - 09/04<br />

Technology, Warsaw, Poland Arrays (EU-Access)<br />

Dept. C2 Dr. Vadim Talalaev State University, Sankt Petersburg, Transient luminescence measurements on 01/03 - 12/04<br />

Russia semiconductor structures<br />

Dept. C2 Tien Quoc Tran Hanoi National University, Vietnam Characzerisation of semiconductor structures 02/03 - 02/06<br />

Dept. C3 Dr. Mischa Bonn <strong>Institut</strong>e of Chemistry, University Charge vs. exciton photo-generation in 04/04 - 04/04<br />

of Leiden, The Netherlands semiconducting polymers<br />

Dept. C3 Axel Jakob Hagen Fritz-Haber-<strong>Institut</strong>, <strong>Berlin</strong> Time-resolved photoluminescence from excitons 04/04 - 10/04<br />

in carbon nanotubes<br />

Dept. C3 Dr. Euan Hendry <strong>Institut</strong>e of Chemistry, University Charge vs. exciton photo-generation in 04/04 - 04/04<br />

of Leiden, The Netherlands semiconducting polymers (EU-Access) 08/04 - 08/04<br />

Dept. C3 Dr. Mattijs Koeberg <strong>Institut</strong>e of Chemistry, University Charge vs. exciton photo-generation in 04/04 - 04/04<br />

of Leiden, The Netherlands semiconducting polymers (EU-Access) 08/04 - 08/04<br />

Dept. C3 Brett Harris Middle Tennesee State University, Ultrafast x-ray scattering 05/04 - 05/04<br />

Murfreesboro, USA<br />

Dept. C3 Dr. Francesca Intonti European Laboratory for Nonlinear Imaging of near-field modes in photonic crystals 06/04 - 07/04<br />

Spectroscopy, Firenze, Italy (EU-Access)<br />

Dept. C3 Jan-Patrck Porst Universität Heidelberg Aufbau eines Nahfeldmikroskops 08/04 - 09/04<br />

Dept. C3 Doo-Jae Park Seoul National University, Seoul, Surface plasmon nano-optics 12/03 - 04/04<br />

Korea 07/04 - 08/04<br />

Dept. C3 Dario Polli Politecnico di Milano, Italy Femtosecond near-field spectroscopy of 02/04 - 02/04<br />

semiconducting polymers 06/04 - 06/04<br />

Dept. C3 Robert Pomraenke HU, <strong>Berlin</strong> Photolumineszenzspektroskopie von 01/04 - 09/05<br />

Halbleiterquantendrähten<br />

Dept. C3 Jin Eun Kim Seoul National University, Seoul, Spectroscopy of coupled metal-semiconductor 11/03 - 02/04<br />

Korea nanostructures


116<br />

D. Users of application laboratories<br />

D1. Femtosecond application laboratory<br />

Host within Name Home institution Topic of collaboration Period<br />

MBI<br />

Dept. A1 Dr. Krassimir Kostov Bulgarian Akademiy of sciences, Molecular adsorption of Ru(0001) 3 weeks<br />

Sofia<br />

Dept. A1 Dr. D. Ashkenasi LMTB Spezielle Laserprobleme 5 weeks<br />

Dept. A2 Dr. Susanne Ullrich National Research Council, Zeitaufgelöste pump-probe-Spektroskopie an 3 weeks<br />

Canada DANN-Basenpaaren<br />

Dept. A2 Prof. Dr. Ingo Fischer Julius-<strong>Max</strong>imilians-Universität, Pump-probe spectroscopy of small hydrocarbon 2 weeks<br />

Würzburg radicals<br />

Dept. A3 Prof. Dr. Jean-Jacques Observatoire de Paris-Meudon, Investigation of novel Li-containing chalcogenide 3 weeks<br />

Zondy France crystals<br />

Dept. A3 Prof. Dr. Fabian Ajou University, Korea Poled nonlinear crystals, OPCPA 4 weeks<br />

Rotermund<br />

Dept. A3 Yuichiro Kida Kyushu University, Fukuoka Compression of femtosecond ultraviolet pulses 4 weeks<br />

812-8581, Japan<br />

Dept. A3 Prof. Dr. L. Isaenko SB RAS, Novosibirsk Lithium containing chalcopyrites for the fs-MIRs 3 weeks<br />

Dept. A3 Dr. Javier Mateos Universitat Rovira i Virgili, Tarragona Thullium laser 4 weeks<br />

Dept. A3 Dr. Vitali Vedenyapin SB RAS, Novosibirsk OPO with new crystals 4 weeks<br />

Dept. A3 Dr. Yiqiang Qin Department of Physics, National New laser materials 4 weeks<br />

University of Singapore, China<br />

Dept. A3 Frank Güll Universitat Rovira i Virgili, Tarragona New active laser materials 2 weeks


117<br />

Host within Name Home institution Topic of collaboration Period<br />

MBI<br />

Dept. B2 Prof. Dr. Alain Huetz Univ. Paris-Sud, Orsay, France Two-photon two-colour double ionization (EU-Access) 4 weeks<br />

Dept. B2 Dr. Mathieu Gisselbrecht Univ. Paris-Sud, Orsay, France Two-photon two-colour double ionization (EU-Access) 4 weeks<br />

Dept. C1 Dr. Stephan Mory Laser Technik <strong>Berlin</strong> Diagnostics of skin cancer 4 weeks<br />

Dept. C1 Dr. Klaus Teuchner Laser Technik <strong>Berlin</strong> Melanin fluorescence 8 weeks<br />

Dept. C3 Dr. M. Bonn AMOLF, Netherland Mid-infrared and UV-spectroscopy of polymers 3 weeks<br />

Dept. C3 Dr. Euan Hendry <strong>Institut</strong>e of Chemistry, University Charge vs. exciton photo-generation in 3 weeks<br />

of Leiden, The Netherlands semiconducting polymers (EU-Access)<br />

Dept. C3 Dr. Mattijs Koeberg <strong>Institut</strong>e of Chemistry, University Charge vs. exciton photo-generation in 3 weeks<br />

of Leiden, The Netherlands semiconducting polymers (EU-Access)


118<br />

D2. High field laser laboratory<br />

Host within Name Home institution Topic of collaboration Period<br />

MBI<br />

Dept. B1 Dr. Claus-Michael Herbach HMI, <strong>Berlin</strong> Fusion neutrons for ion diagnostics 4 weeks<br />

Dept. B1 Dr. Dietrich Hilscher HMI, <strong>Berlin</strong> Fusion neutrons for ion diagnostics 4 weeks<br />

Dept. B1 Dr. Ullrich Jahnke HMI, <strong>Berlin</strong> Fusion neutrons for ion diagnostics 4 weeks<br />

Dept. B1 Dr. Gabriel Tempea TU Vienna, Austria Relativistic Plasmadynamics – Generation of 1 week<br />

few-cycle Multi TW Pulses (EU-Access)<br />

Dept. B1 Dr. Laszlo Veisz TU Vienna, Austria Relativistic Plasmadynamics – Generation of 2 weeks<br />

few-cycle Multi TW Pulses (EU-Access)<br />

Dept. B1 Prof. A. Zigler Racah <strong>Institut</strong>e of Physics, Hebrew X-ray Laser, relativistic guidance of fs laser pulses 4 weeks<br />

University of Jerusalem, Israel<br />

Dept. B1 Michael Levin Racah <strong>Institut</strong>e of Physics, Hebrew X-ray Laser, relativistic guidance of fs laser pulses 4 weeks<br />

University of Jerusalem, Israel<br />

Dept. B3 Ilja Mikhailovich Lachko M. V. Lomonosov Moscow State Amplification of down- and up-chirped pulses 8 weeks<br />

University, Russia<br />

D3. MBI – Bessy-beamline<br />

Host within Name Home institution Topic of collaboration Period<br />

MBI<br />

Dept. A1 Dr. Manfred Faubel MPI for Dynamics and Short Pulse Spectroscopy on molecules, clusters 3 weeks<br />

Self-Organisation, Göttingen and surfaces<br />

Dept. A1 Philipp Martin Schmidt Fritz-Haber-<strong>Institut</strong>, <strong>Berlin</strong> Photoelectron spectroscopy at liquid water surfaces 3 weeks


119<br />

Appendix 6<br />

Grants and Contracts <strong>2004</strong><br />

Total amounts spent in <strong>2004</strong>: 2.835.161 Euro


120<br />

Appendix 7<br />

Activities in Scientific Organisations<br />

W. Becker<br />

Wiss. Organisation des “High-Field Attosecond Physics”<br />

- 340. WE-Heraeus-Seminar, together with W. Sandner,<br />

Th. Brabec, F. Ehlotzky and A. Scrinzi (Obergurgl, Austria)<br />

Member of Editorial Board Physical Review A<br />

Member of Editorial Board Laser Physics Letters<br />

Co chair Strong-Field Seminar and Member Advisory<br />

and Program Committee 13th International Laser<br />

Physics Workshoop LPHYS'04, (Trieste, Italy)<br />

T. Elsaesser<br />

Sprecher, DFG-Schwerpunktprogramm 1134 “Aufklärung<br />

transienter Strukturen in kondensierter Materie mit<br />

Ultrakurzzeit-Röntgenmethoden”<br />

Stellvertretender Sprecher, Sonderforschungsbereich<br />

296 “Wachstumskorrelierte Eigenschaften niederdimensionaler<br />

Halbleiterstrukturen” (<strong>Berlin</strong>), Technische<br />

Universität<br />

Mitglied, Prize Committee, Ellis R. Lippincott Award for<br />

Vibrational Spectroscopy, Optical Society of America<br />

Vorsitzender, Programmkomitee Laser und Optik <strong>Berlin</strong><br />

(LOB) <strong>2004</strong> (<strong>Berlin</strong>-Adlershof, Germany)<br />

Chairman, International Conference on Transient<br />

Chemical Structures in Dense Media 2005 (Paris, France)<br />

Mitglied, Advisory Board, Conference Series on Time-<br />

Resolved Vibrational Spectroscopy<br />

Mitglied, Apparateausschuss der Deutschen<br />

Forschungsgemeinschaft<br />

Sprecher, Wissenschaftlicher Beirat der Strahlungsquelle<br />

ELBE (Forschungszentrum Rossendorf, Germany)<br />

Mitglied, Science Facility Access Panel, Rutherford<br />

Laboratory (Didcot, UK)<br />

Mitglied, Wissenschaftlicher Beirat, BESSY, <strong>Berlin</strong><br />

Mitglied des Sprecherkreises, Initiative WissenSchafft<br />

Zukunft (<strong>Berlin</strong>, Germany)<br />

Mitherausgeber, Applied Physics A, Springer Verlag<br />

(Heidelberg)<br />

Mitglied des Editorial Board, ChemPhysChem,<br />

Mitglied des Editorial Board, Chem. Phys. Lett.<br />

Mitglied des Editorial Board, Chem. Phys.<br />

P. Glas<br />

Mitglied, Int. Program Committee of the Conference on<br />

Lasers and Electro-Optics Europe 2005 - CLEO Europe<br />

(Munich, Germany)<br />

U. Griebner<br />

Mitglied, Int. Program Committee of the EPS-QEOD<br />

Europhoton Conference <strong>2004</strong> (Lausanne, Switzerland),<br />

from 2003<br />

I. V. Hertel<br />

Geschäftsführender Direktor, <strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong> from<br />

2001-05 until <strong>2004</strong>-05<br />

Sprecher, Initiativgemeinschaft der außeruniversitären<br />

Forschungseinrichtungen in Adlershof, IGAFA since 1992<br />

Vorstandsvorsitzender, (<strong>Berlin</strong>), Optec-<strong>Berlin</strong>-Brandenburg<br />

(OpTecBB) e.V. from 2000-09-14 until <strong>2004</strong>-11-30<br />

Altvorsitzender, Optec-<strong>Berlin</strong>-Brandenburg e.V.<br />

(OpTecBB) since <strong>2004</strong>-12-01<br />

Mitglied, “An morgen denken”, Wissenschaft & Wirtschaft<br />

gemeinsam für <strong>Berlin</strong>, from 2001-05-01<br />

Mitglied der ständigen Auswahlkommission, Otto-<br />

Klung-Weberbank-Preis der FU<br />

Mitglied, Kuratorium des Magnushauses, Deutsche<br />

Physikalische Gesellschaft e.V.<br />

Mitglied, Kuratorium “Lange Nacht der Wissenschaften”<br />

Mitglied, Beirat des James Franck Binational German-<br />

Israeli Programm in Laser-Matter Interaction, Minerva<br />

Foundation from <strong>2004</strong>-01-01<br />

Mitglied, im Rat der <strong>Berlin</strong> Brandenburgischen<br />

Akademie der Wissenschaften, from <strong>2004</strong>-12<br />

External Advisor, Eur. Phys. J. D (Paris, Heidelberg),<br />

Edition Physique and Springer Verlag from <strong>2004</strong>-01-01<br />

Programme Committee member, 4th International<br />

Symposium on Laser Precision Microfabrication, LPM<br />

<strong>2004</strong> (Nara, Japan), SPIE from <strong>2004</strong>-05-11 until <strong>2004</strong>-<br />

05-14<br />

Discussion Leader, Multiphoton Processes Gordon<br />

Conference “Atoms and molecules in high fields” (Tilton<br />

School,Tilton, New Hampshire, USA), from 06-13<br />

Program Commitee Member, 6th International Symposium<br />

on Laser Precision Microfabrication, LPM2005<br />

(Colonial Williamsburg, Virginia, USA), from 2005-04-<br />

04 until 2005-04-07<br />

M. P. Kalachnikov<br />

Member of Evaluation Committee of GEMINI-TW<br />

Ti:sapphire laser project, (London, UK), RAL, Rutherford<br />

Appelton Laboratory, from <strong>2004</strong> until 2005<br />

Member of Program Committee, Workshop on Interaction<br />

of Complex Plasmas with Strong Electromagnetic<br />

Radiation, (Russia), <strong>2004</strong><br />

Organizer of the final EU-SHARP project meeting, MBI<br />

(<strong>Berlin</strong>), May <strong>2004</strong>


J. Kändler<br />

Vertreter im Ausschuss “Technologietransfer” der<br />

Helmholtz-Gemeinschaft Deutscher Forschungszentren<br />

für die WGL, (Bonn) from 1997-09-26<br />

Vertreter der Leibniz-Gemeinschaft im Gutachterausschuss<br />

des EEF-Fonds, Forschungszentrum Karlsruhe<br />

GmbH (Karlsruhe) from 2002-11-28<br />

C. Lienau<br />

Organisator, First German-Japanese Symposium on<br />

Nano-Optics (<strong>Berlin</strong>, Germany),<br />

Mitglied, Programmkomitee, Seventh International<br />

Conference on Near-Field-Optics (Rochester, USA),<br />

from 2002-08<br />

P. V. Nickles<br />

Member of the Board of International X-ray Laser<br />

Conference<br />

Member of the Board of the High Field and Short<br />

Wavelength Application Conference (HFSW)<br />

Member of the Advisory Board of the International Xray<br />

Laser Conference (Peking, China), <strong>2004</strong><br />

E. T. J. Nibbering<br />

Mitglied, International Program Committee Ultrafast<br />

Phenomena XIV (Niigata, Japan)<br />

V. Petrov<br />

Coordinator, Kick-Off-Meeting EU-Project DT-CRYS<br />

(<strong>Berlin</strong>), <strong>Max</strong> <strong>Born</strong> <strong>Institut</strong>e and Forschungsverbund<br />

<strong>Berlin</strong> e.V. from <strong>2004</strong>-04-26 until <strong>2004</strong>-04-27<br />

Programme committee member, Conference on Lasers<br />

and Electro-Optics (CLEO) <strong>2004</strong> (San Francisco,<br />

California, USA), from <strong>2004</strong>-05-16 until <strong>2004</strong>-05-21<br />

W. Sandner<br />

Geschäftsführender Direktor <strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong>, (<strong>Berlin</strong>),<br />

from <strong>2004</strong>-05 until 2007-04<br />

Wissenschaftlicher Beirat BESSY, (<strong>Berlin</strong>), <strong>Berlin</strong>er<br />

Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung<br />

from 2000-10 until <strong>2004</strong>-3<br />

Wissenschaftlicher Beirat des Magnus-Hauses, (<strong>Berlin</strong>),<br />

DPG from <strong>2004</strong>-12<br />

Member, Evaluation Committee of the National Research<br />

Council, Canada, and of the Academy of Sciences,<br />

Czech Republic, <strong>2004</strong><br />

Coordinator, Integrated European Laser Laboratories<br />

(LASERLAB-EUROPE) in the 6th Framework of the<br />

European Commission; Chair of the Participants<br />

Council, Chair of the Management Board; from <strong>2004</strong>-1<br />

until 2007-12<br />

Member, TESLA Collaboration Board (Hamburg), from<br />

1997<br />

Vorstandsmitglied Transregio SFB TR18 “Relativistic<br />

Laser Plasma Dynamics”, since <strong>2004</strong>-6<br />

Member, IUPAP International Committee on Ultra-high<br />

Intensity Lasers ICUIL (since <strong>2004</strong>)<br />

Mitglied im Programmausschuss “Optische Technologien”,<br />

des BMBF from 2002<br />

Sprecher des Arbeitskreises der Fachverbände Atomphysik,<br />

Molekülphysik, Quantenoptik, Massenspektroskopie,<br />

Kurzzeitphysik und Plasmaphysik (AMOP) der<br />

Deutschen Physikalischen Gesellschaft, Mitglied des<br />

Vorstandsrats der DPG, Deutsche Physikalische<br />

Gesellschaft from 1996-03<br />

Vorstandsmitglied, Physikalische Gesellschaft zu <strong>Berlin</strong><br />

e. V. (<strong>Berlin</strong>), from <strong>2004</strong>-02 until 2006<br />

Vorstandsmitglied (Past President), Wissenschaftliche<br />

Gesellschaft Lasertechnik e. V. (WLT), from <strong>2004</strong><br />

Vorstandsmitglied, Kompetenznetz (<strong>Berlin</strong>), Optec<br />

<strong>Berlin</strong>-Brandenburg e. V. from 2000-09<br />

Kuratoriumsmitglied, Internet-Portal “Welt der Physik”,<br />

DPG from <strong>2004</strong>-04-01 until 2006-04-01<br />

Mitglied Organisationskomitee “High-Field Attosecond<br />

Physics” - 340 WE-Heraeus-Seminar, together with W.<br />

Becker, (Obergurgl, A), from <strong>2004</strong> until 2005<br />

Member of Editorial Board, “Laser Physics”, from 1999<br />

G. Steinmeyer<br />

Mitglied, Int. Program Committee of the Conference on<br />

Lasers and Electro-Optics Europe 2005 - CLEO Europe<br />

(Munich, Germany)<br />

J. W. Tomm<br />

Mitglied, Int. Program Committee of the Conference on<br />

Lasers and Electro-Optics Europe 2005 - CLEO Europe<br />

(Munich, Germany)<br />

Mitglied, Int. Steering Committee of the International<br />

Conference on Defects - Recognition, Imaging and<br />

Physics of Semiconductors (DRIP) (Batz-sur-Mer,<br />

France), from 09-2001<br />

121


122<br />

Appendix 8<br />

Honours, Awards and External Calls<br />

M. Bargheer<br />

Tiburtius Prize for PhD work (PhD-thesis at FU-<strong>Berlin</strong> in<br />

the group of N. Schwentner)<br />

W. Becker<br />

Fellow of the Optical Society of America<br />

T. Elsaesser<br />

Professeur invité, Ecole Normale Supérieure, Paris<br />

I. V. Hertel<br />

Bundesverdienstkreuz erster Klasse, Januar <strong>2004</strong>,<br />

verliehen durch den Bundespräsidenten der Bundesrepublik<br />

Deutschland, <strong>Berlin</strong><br />

K. Heyne<br />

Ruf auf Juniorprofessur, am FB Physik, Freie Universität<br />

<strong>Berlin</strong> (angenommen)<br />

P. V. Nickles<br />

Lectures of Guest-Professors: Interaction of intense<br />

short laser pulses with matter and related applications,<br />

ILE Osaka, Japan


Appendix 9<br />

Cooperations<br />

Cooperations with universities<br />

W. Becker, B2: Kohärente kollektive Phanomene in<br />

Clustern in starken Laserfeldern; cooperation with S. V.<br />

Fomichev, S. Popruzhenko; Moscow State Engineering<br />

Physics <strong>Institut</strong>e; D. F. Zaretsky; Kurchatov <strong>Institut</strong>e<br />

Moscow<br />

W. Becker, B2: Relativistic Laser-Particle Interaction;<br />

(H. Reiss, American University Washington, D.C., USA)<br />

cooperation with H. Reiss, American University<br />

Washington, D.C., USA<br />

W. Becker and W. Sandner, B2: Control of Atomic<br />

Processes with Strong Fields; cooperation with A.<br />

Sofradzija, and D. B. Milosevic, Faculty of Sciences,<br />

Dept. of Physics, University of Sarajevo<br />

K. Biermann, Z. Wang, M. Woerner and K. Reimann,<br />

C3: IV-VI Microcavity Lasers; cooperation with Prof. W.<br />

Heiß, M. Böberl, Prof. G. Springholz, Prof. T. Schwarzl,<br />

Universität Linz<br />

J. Dreyer, C1: Ab initio simulation of 2D-IR spectroscopy;<br />

cooperation with Prof. S. Mukamel, University of<br />

California, Irvine, USA<br />

U. Eichmann, B2: Ionisation dynamics at relativistic laser<br />

intensities; cooperation with Prof. Maquet, Laboratoire<br />

de Chimie Physique-Matière et Rayonnement<br />

Université Pierre et Marie Curie, Paris France<br />

U. Eichmann, B2: Two electron dynamics in laser fields;<br />

cooperation with Profs. T. Gallagher; Department of<br />

Physics, University of Charlottesville, Charlottesville,<br />

USA<br />

U. Eichmann, B2: Stöße in ultrakalten He-Gasen und<br />

Plasmen; cooperation with Prof. von Oppen, TU <strong>Berlin</strong><br />

T. Elsaesser and C. Lienau, C0, C3: Teilprojekt B6<br />

Ladungsträgerdynamik in einzelnen Halbleiter-Nanostrukturen;<br />

Sonderforschungsbereich 296; “Wachstumskorrelierte<br />

Eigenschaften niederdimensionaler Halbleiterstrukturen”<br />

(TU <strong>Berlin</strong>)<br />

T. Elsaesser and E. Nibbering, C0, C1: Teilprojekt B2<br />

Femtosekunden-Schwingungsspektroskopie zur ultraschnellen<br />

Dynamik von Protonen in der kondensierten<br />

Phase; Sonderforschungsbereich 450 “Analyse und<br />

Steuerung ultraschneller photoinduzierter Reaktionen“<br />

(FU <strong>Berlin</strong>)<br />

T. Elsaesser, M. Woerner and C. Lienau, C0, C3: Dynamik<br />

kohärenter Anregungen in Halbleitern; cooperation with<br />

Prof. T. Kuhn, Westfälische Wilhelms-Universität Münster<br />

M. Fiebig, C3: Optical properties of colossal magnetoresistive<br />

oxides; cooperation with Prof. Y. Tokura,<br />

University of Tokyo, Japan<br />

M. Fiebig, C3: Microscopic mechanisms of nonlinear<br />

magneto-optical coupling processes in highly correlated<br />

systems; cooperation with Prof. R. Valenti, Universität<br />

Frankfurt<br />

M. Fiebig, C3: Nonlinear optics and sublattice interactions<br />

of systems with multiple magnetic ordering; cooperation<br />

with Prof. Dr. M. Bayer and Prof. Dr. I. Sänger, Universität<br />

Dortmund<br />

M. Fiebig and N.P. Duong, C3: Spin dynamics and nonlinear<br />

optics on antiferromagnetic compounds; cooperation<br />

with Prof. W. Hübner, Universität Kaiserslautern<br />

M. Fiebig and T. Lottermoser, C3: Influence of growth<br />

conditions on magnetic microstructure; cooperation with<br />

Prof. M. Bieringer, University of Manitoba, Winnipeg,<br />

Canada<br />

M. Fiebig and T. Lottermoser, C3: Nonlinear optics and<br />

sublattice interactions of frustrated compounds; cooperation<br />

with Dr. T. Kato, Chiba University, Chiba, Japan<br />

M. Fiebig, Th. Lottermoser and T. Satoh, C3: Nonlinear<br />

optical properties of manganite thin films; cooperation<br />

with Prof. K. Miyano, University of Tokyo, Japan<br />

W. Freyer, A1: Special dyes for ophthalomology;<br />

cooperation with Dr. C. Haritoglou, Prof. A. Kampik,<br />

Ludwig-<strong>Max</strong>imilian-Universität, München<br />

U. Griebner, C2: High average power ultra-fast fiber<br />

chirped pulse amplification system; cooperation with<br />

Prof. A. Tünnermann, <strong>Institut</strong> für Angewandte Physik,<br />

Friedrich-Schiller-Universität Jena<br />

U. Griebner and V. Petrov, C2, A3: Laserkristalle auf<br />

Wolframatbasis; cooperation with Prof. F. Diaz, University<br />

of Taragona<br />

R. Grunwald, C2: Interferometry of semiconductor<br />

disorders; cooperation with Dr. V. Raab, Universität<br />

Potsdam<br />

R. Grunwald, C2: Reflective microoptics for fs-laser<br />

beam shaping; cooperation with Dr. M. Ferstl, Heinrich-<br />

Hertz-<strong>Institut</strong>, <strong>Berlin</strong><br />

R. Grunwald, U. Griebner and U. Neumann, C2: Spatiotemporal<br />

beam-shaping of fs-lasers; cooperation with<br />

Prof. M. Piché, University Laval, Quebec, Canada<br />

123


124<br />

R. Grunwald and U. Neumann, C2: Ultrafast optical<br />

processing; cooperation with Prof. J. Jahns, H.W.<br />

Knuppertz, Fernuniversität Hagen<br />

R. Grunwald, U. Neumann and A. Rosenfeld, C2, A1:<br />

VUV beam shaping and materials processing;<br />

cooperation with Prof. P. Herman, Dr. J. Li, University of<br />

Toronto<br />

J. Herrmann, A3: Supercontinuum generation in photonic<br />

crystal fibers by radiation of solitons; cooperation with<br />

Dr. K. Porsezian, Pondicherry University, India<br />

J. Herrmann, A1: Spectral broadening, supercontinuum<br />

generation and dispersion modification in planar rib<br />

waveguides; cooperation with O. Fedorova, <strong>Institut</strong>e of<br />

Solid State and Semiconductor Physics, Belarus<br />

National Academy of Sciences<br />

M. P. Kalachnikov, B3: Improvement of pulse parameters<br />

of Ti:sapphire-based systems; cooperation with Dr.<br />

Savelev, K. Lachko; Moscow State University, Russia<br />

T. Laarmann: Interaction of rare gas atoms and clusters<br />

with intense VUV-FEL pulses; cooperation with Prof. T.<br />

Möller, Technische Universität <strong>Berlin</strong><br />

D. Leupold, C1: Exzitonen in photosynthetischen<br />

Antennen; cooperation with Prof. A. Razjivin, Belozerskij-<br />

<strong>Institut</strong> für Biophysikalische Chemie, Univ. Moskau,<br />

Russia<br />

D. Leupold, C1: Femtosekundenspektroskopie des<br />

Melanins; cooperation with Dr. K. Hoffmann, Dr. M.<br />

Stücker, Dermatologische Klinik, Univ. Bochum<br />

D. Leupold, C1: Nichtlineare Spektroskopie an Photosynthesepigmenten<br />

und photosynthesischen Antennen;<br />

cooperation with Prof. H. Scheer, LMU München<br />

D. Leupold, C1: Teilprojekt A2, Lichtsammlung und<br />

Energiedissipation in nativen und definiert veränderten<br />

photosynthetischen Antennensystemen; Sonderforschungsbereich<br />

429 „Molekulare Physiologie,<br />

Energetik und Regulation primärer pflanzlicher Stoffwechselprozesse“<br />

(HU <strong>Berlin</strong>)<br />

C. Lienau, C3: Spektroskopie an Quantengräben;<br />

cooperation with Prof. A.D. Wieck, Universität Bochum<br />

C. Lienau, C3: Spektroskopie an zweidimensionalen<br />

Elektronengasen; cooperation with Dr. A. Goni, Prof. C.<br />

Thomsen, Technische Universität <strong>Berlin</strong><br />

C. Lienau, C3: Nahfeldspektroskopie an metallischen<br />

Nanostrukturen; cooperation with Prof. D.S. Kim,<br />

Universität Seoul, Korea<br />

C. Lienau, C3: Nahfeld-Autokorrelationsspektroskopie<br />

an Quantendrähten; cooperation with T. Otterburg, Prof.<br />

E. Kapon, EPFL Lausanne<br />

C. Lienau, C3: Femtosecond near-field spectroscopy<br />

of semiconducting polymers; cooperation with D. Polli,<br />

Prof. G. Cerullo, Prof. G. Lanzani and Prof. S. de Silvestri,<br />

Politecnico di Milano<br />

C. Lienau and T. Elsaesser, C3, C0: Korrelationsspektroskopie<br />

an Halbleiter-Nanostrukturen; cooperation<br />

with Dr. V. Savona, Dr. E. Runge, Prof. R. Zimmermann,<br />

Humboldt-Universität, <strong>Berlin</strong><br />

U. Neumann and R. Grunwald, C2: AFM-Untersuchungen<br />

zu Nanokristalliten für nichtlinear - optische<br />

Anwendungen; cooperation with Prof. A. Richter,<br />

Technische Fachhochschule Wildau<br />

U. Neumann and R. Grunwald, C2: Herstellung von<br />

dotierten und undotierten ZnO Dünnschichten durch<br />

RF Sputtering; cooperation with G. Schoer, Technische<br />

Universität Hamburg-Harburg<br />

E. T. J. Nibbering, C1: Femtochemistry vibrational<br />

studies of the reaction dynamics of photochromic<br />

switches; cooperation with Dr. H. Fidder, University of<br />

Uppsala, Sweden<br />

E.T.J. Nibbering, C1: Photodissociation dynamics of<br />

metallo-carbonyl complexes; cooperation with Prof. Dr.<br />

J. Korppi-Tommola, University of Jyvaskyla, Finland<br />

E.T.J. Nibbering, C1: CO and NO photodissociation and<br />

recombination dynamics of hemoproteins; cooperation<br />

with T. Zemojtel, Universitätsklinikum Freiburg, Prof. T.<br />

Dandekar, Universität Würzburg, P.M. Kozlowski,<br />

Universität Louisville<br />

P. V. Nickles and K. A. Janulewicz, B1: Novel excitation<br />

schemes for small-sized x-ray lasers; GIF-Projekt<br />

cooperation with A. Zigler, Racah <strong>Institut</strong>e, University<br />

of Jerusalem, Israel<br />

V. Petrov, A3: Mixed nonlinear crystals; cooperation with<br />

Dr. V. V. Badikov, Kuban State University, Krasnodar,<br />

Russia<br />

V. Petrov, A3: New VUV transparent nonlinear crystals<br />

for sum-frequency mixing with femtosecond pulses;<br />

cooperation with Prof. R. Komatsu, Yamaguchi<br />

University, Japan<br />

V. Petrov, A3: Periodically poled KTP for femtosecond<br />

OPG applications and chirped pulse parametric<br />

amplification; cooperation with Dr. V. Pasiskevicius,<br />

Royal <strong>Institut</strong>e of Technology, Stockholm, Sweden<br />

M. Raschke, C3: Synthese photochromer Schaltermoleküle<br />

an Oberflächen; cooperation with Prof. Rück-<br />

Braun, Technische Universität <strong>Berlin</strong><br />

M. Raschke, C3: Spectral hole burning on electronic<br />

surface states on silicon; cooperation with Dr. J. McGuire,<br />

Prof. Y.R. Shen, University of California, Berkeley<br />

M. Raschke and C. Lienau, C3: Aperturlose Nahfeldmikroskopie<br />

an metallischen Nanostrukturen; cooperation<br />

with Prof. D. Kern, Universität Tübingen


K. Reimann, M. Woerner and T. Elsaesser, C3, C0:<br />

Nonlinear response of radiatively coupled intersubband<br />

transitions of quasi-two-dimensional electrons; cooperation<br />

with Prof. A. Knorr, I. Waldmüller, <strong>Institut</strong> für<br />

Theoretische Physik, Technische Universität <strong>Berlin</strong><br />

A. Rosenfeld, A1: AFM-Untersuchungen an dünnen<br />

Schichten; cooperation with Prof. Eichler, Technische<br />

Universiät <strong>Berlin</strong><br />

A. Rosenfeld, A1: WTZ Deutschland, Kanada; cooperation<br />

with Dr. P. Herman, Toronto University, Canada<br />

H. Rottke, B2: Multiple ionization in few-cycle laser<br />

pulses; cooperation with H. Lezius, Photonic <strong>Institut</strong>e,<br />

TU Wien<br />

H. Rottke, B2: Two-photon two-color double ioniztion;<br />

cooperation with A. Huetz, Univ. Paris-Sud, Orsay,<br />

France<br />

H. Rottke, B2: Multiple ionization in few-cycle laser<br />

pulses; cooperation with G. G. Paulus, Texas A&M<br />

University, College Station, USA<br />

T. Schultz, A2: Time resolved spectroscopy of<br />

hydrogencarbon radicals; cooperation with Dr. I. Fischer,<br />

Universität Würzburg<br />

T. Schultz and I. V. Hertel, A2: Teilprojekt A4; Sonderforschungsbereich<br />

450 “Analyse und Steuerung ultraschneller<br />

photoinduzierter Reaktionen” (FU-<strong>Berlin</strong>)<br />

cooperation with Prof. L. Wöste<br />

C. P. Schulz, A2: Teilprojekt A2; Sonderforschungsbereich<br />

450 „Analyse und Steuerung ultraschneller<br />

photoinduzierter Reaktionen“ (FU-<strong>Berlin</strong>) cooperation<br />

with Prof. L. Wöste<br />

C. P. Schulz, A2: Dynamic processes in alkali-doped<br />

He clusters; cooperation with Dr. F. Stienkemeier;<br />

Universität Bielefeld<br />

H. Stiel, B1: Anwendung gepulster, harter Röntgenstrahlung;<br />

cooperation with Dr. B. Kannegießer, TU <strong>Berlin</strong><br />

H. Stiel, B1: Forschungsschwerpunkt Photonik<br />

(Coordinator: W. Sandner) cooperation with TU <strong>Berlin</strong><br />

H. Stiel, B1: EUV-Interferometrie; cooperation with T.<br />

Wilhein, RheinAhrCampus, Remagen<br />

J. W. Tomm, C2: Spectroscopy of semiconductor<br />

structures; cooperation with Prof. W.T. Masselink,<br />

Humboldt-Universität zu <strong>Berlin</strong><br />

J. W. Tomm, C2: Spectroscopy of Sb-containing narrowgap<br />

semiconductor structures; cooperation with Prof.<br />

M. Amann, Walter-Schottky-Insitut, TU München<br />

J. W. Tomm, C2: Defect-spectroscopy of semiconductor<br />

devices; cooperation with Prof. E. Larkins, University of<br />

Nottingham<br />

J. W. Tomm, C2: Defect and Raman spectroscopy; cooperation<br />

with Prof. J. Jiminez, University of Valladolid,<br />

Spain<br />

J. W. Tomm, C2: Strain analysis in optoelectronic<br />

devices; cooperation with Prof. M.L. Biermann, Dept.<br />

Physics and Astronomy, Eastern Kentucky University,<br />

Richmond, USA<br />

J. W. Tomm, C2: Fourier-analysis of emission spectra;<br />

cooperation with Prof. O. Manasreh, Dept. Electrical<br />

Engineering, University of Arkansas, Fayetteville, USA<br />

J. W. Tomm, C2: Transient spectroscopy of InAs/GaAs<br />

quantum-dot structures; cooperation with G.J. Salamo,<br />

Dr. Y.I. Mazur, Dept. of Physics, University of Arkansas,<br />

Fayetteville, USA<br />

P. Tzankov, A3: Highly efficient nonlinear optical<br />

conversion processes; cooperation with Dr. I. Buchvarov,<br />

Sofia University, Bulgaria<br />

Z. Wang, K. Reimann, M. Woerner and T. Elsaesser, C3:<br />

Femtosecond intersubband dynamics of electrons in<br />

AlGaN/GaN high-electron-mobility transistors; cooperation<br />

with Prof. D. Hofstetter, University of Neuchatel,<br />

J. Hwang, W.J. Schaff, L.F. Eastman, Cornell University<br />

M. Weinelt, A1: Ultraschnelle Magnetisierungsprozesse;<br />

cooperation with Prof. M. Donath, Universität Münster<br />

B. Winter, A1: Photoemission from self-assembled<br />

azobenzene alkane thiols; cooperation with Dr. S.<br />

Schrader, Prof. L. Brehmer, Universität Potsdam<br />

B. Winter, A1: Photoemission from polymer surface relief<br />

gratings; cooperation with Prof. Pietsch, Universität<br />

Potsdam<br />

B. Winter, A2: Polythiphenes and effect of iodide doping:<br />

electronic structure by photoemission; cooperation with<br />

Dr. N. Koch, Humboldt Universität zu <strong>Berlin</strong><br />

B. Winter, A2: Molecular dynamics simulations of<br />

solution interfaces; cooperation with Prof. Pavel Jungwirth,<br />

<strong>Institut</strong>e of Organic Chemistry and Biochemistry,<br />

Academy of Sciences of the Czech Republic, and Center<br />

for Complex Molecular Systems and Biomolecules,<br />

Prague, Czech Republic<br />

B. Winter, A2: Electronic structure of ions in solution;<br />

cooperation with Prof. Stephen E. Bradforth, University<br />

of Southern California, Los Angeles, USA<br />

M. Woerner and T. Elsaesser, C3, C0: GaAs/AlGaAs<br />

quantum cascade structures; cooperation with Dr. K.<br />

Unterrainer, Dr. G. Strasser, <strong>Institut</strong> für Festkörperelektronik,<br />

Technische Universität Wien<br />

N. Zhavoronkov, A3: Laser-Plasmainteraction; cooperation<br />

with Prof. J. Limpouch, Technische Universität Prag<br />

125


126<br />

Cooperations with research institutions<br />

W. Becker, B2: Coherent collective phenomena in<br />

clusters irradiated by a strong laser field; cooperation<br />

with D. F. Zaretsky and S. V. Fomichev, Kurchatov<br />

<strong>Institut</strong>e, Moscow<br />

W. Becker, B2: Coulomb-Effekte in der Above-Threshold<br />

Ionisation; cooperation with S.P. Goreslavski, Moscow<br />

Engineering Physics <strong>Institut</strong>e, Moscow, Russia<br />

W. Becker, B2: Strong-field approximation for molecules<br />

in intense laser fields; cooperation with V. I. Usachenko,<br />

<strong>Institut</strong>e of Applied Laser Physics Tashkent, Usbekistan<br />

T. Elsaesser, M. Woerner, C.W. Luo and K. Reimann,<br />

C0, C3: Ultrafast dynamics of coherent intersubband<br />

polarisations in GaAs/AlGaAs quantum wells; cooperation<br />

with Prof. K. Ploog, Dr. R. Hey, Paul-Drude-<br />

<strong>Institut</strong> <strong>Berlin</strong><br />

M. Fiebig and T. Lottermoser, C3: Giant magnetoelectric<br />

effects in multiferroics; cooperation with Dr. T. Lonkai,<br />

Hahn-Meitner-<strong>Institut</strong>, <strong>Berlin</strong><br />

M. Fiebig, T. Lottermoser and I. Sänger, C3: Nonlinear<br />

magneto-optical properties of matter - theory and<br />

experiment; cooperation with Prof. R.V. Pisarev, Dr. V.V.<br />

Pavlov, Dr. A.V. Goltsev, Ioffe-<strong>Institut</strong>e, St. Petersburg,<br />

Russia<br />

W. Freyer, A1: Mass spectra of phthalocyanines;<br />

cooperation with M. Bartoszek, <strong>Institut</strong> für Angewandte<br />

Chemie <strong>Berlin</strong>-Adlershof<br />

P. Glas, C2: Fasern mit speziellem Design; cooperation<br />

with Dr. Müller, <strong>Institut</strong> für Hochtechnologie (IPHT), Jena<br />

P. Glas, C2: Kopplung vieler Laseremitter; cooperation<br />

with Prof. Napartovich, TRINITI Troitsk <strong>Institut</strong>e for<br />

Innovation and Fusion Research, Russia<br />

P. Glas, C2: Spezielle Halbleiterstrukturen für modelocking;<br />

cooperation with Dr. Walther, IAF Freiburg<br />

U. Griebner, C2: Testung Hochleistungsbreitstreifendioden;<br />

cooperation with Dr. G. Erbert, Ferdinand-<br />

Braun-<strong>Institut</strong> <strong>Berlin</strong><br />

R. Grunwald, C2: Charakterisierung mikrooptischer<br />

Bauelemente; cooperation with Prof. W. Jüptner, Dr. V.<br />

Kebbel, BIAS Bremen<br />

R. Grunwald and U. Griebner, C2: Fs-Meßtechnik und<br />

digitale Holografie im fs-Bereich; cooperation with Prof.<br />

W. Jüptner, Dr. V. Kebbel, BIAS Bremen<br />

R. Grunwald and U. Neumann, C2: Wellenfront-Sensorik<br />

und VUV-Optik; cooperation with Dr. K. Mann, Laser-<br />

Laboratorium Göttingen<br />

D. Leupold, C1: Laser spectroscopy of chlorophyll-lipid<br />

interaction; cooperation with Dr. R. Vladkova, <strong>Institut</strong>e<br />

of Biophysics, Bulgarian Academy of Science<br />

C. Lienau, C3: Near-field spectroscopy of single and<br />

coupled quantum dots; cooperation with Prof. J.-M. Gerard,<br />

Centre National d’Études des Télécommunications,<br />

Bagneux, France<br />

U. Neumann and R. Grunwald, C2: Spektroskopie an<br />

Kalziumfluorid-Strukturen; cooperation with Dr. M.<br />

Rossberg, <strong>Institut</strong> für Kristallzüchtung, <strong>Berlin</strong><br />

U. Neumann, M. Tischer and R. Grunwald, C2: Dickenmessungen<br />

an strukturierten ZnO Schichten im sub-µm<br />

Bereich; cooperation with Dr. G. Wagner, <strong>Institut</strong> für Kristallzüchtung,<br />

<strong>Berlin</strong>, S. Peters, Sentech Instruments, <strong>Berlin</strong><br />

P. V. Nickles and M.Schnürer, B1: Relativistic Plasma<br />

Dynamics; Neutrongeneration. cooperation with HMI,<br />

U. Jahnke, D. Hilscher<br />

P. V. Nickles, B1: X-ray laser at 14.7 nm; cooperation<br />

with GSI, Darmstadt, Dr. T. Kühl<br />

F. Noack and N. Zhavoronkov, A3: Technical consultation<br />

for fs XUV slicing laser setup; (Coordinator:<br />

I.V. Hertel, <strong>Max</strong> <strong>Born</strong> <strong>Institut</strong>e) cooperation with BESSY<br />

V. Petrov, A3: Characterization of chalcopyrite nonlinear<br />

crystals; cooperation with Dr. J.-J. Zondy, Observatoire<br />

de Paris, France<br />

V. Petrov, A3: Lithium containing chalcopyrites in the<br />

femtosecond mid-infrared technology; cooperation with<br />

Prof. L. Isaenko, Design and Technological <strong>Institut</strong>e of<br />

Monocrystals, SB RAS, Novosibirsk, Russia<br />

V. Petrov, A3: Nonlinear borate crystals; cooperation with<br />

Prof. C. Chen, Beijing Center for Crystal R & D, China<br />

M. Raschke, C3: Aperturlose Nahfeldmikroskopie an<br />

Block-Copolymer Nanostrukturen; cooperation with Dr.<br />

Dong Ha Kim, Prof. W. Knoll, <strong>Max</strong>-Planck-<strong>Institut</strong> für<br />

Polymerforschung, Mainz<br />

M. Raschke, C3: Selbstassemblierte plasmonische<br />

Nanostrukturen; cooperation with Dr. W. Fritzsche,<br />

<strong>Institut</strong> für Physikalische Hochtechnologie (IPHZ), Jena<br />

A. Rosenfeld, A1: fs-Untersuchungen; cooperation with<br />

D. Ashkenasi, LMTB <strong>Berlin</strong><br />

A. Rosenfeld, A1: WTZ Deutschland, Russland; cooperation<br />

with <strong>Institut</strong>e of Thermophysics, Novosibirsk,<br />

Russia<br />

H. Rottke, B2: Correlation in multiple ionization in strong<br />

light pulses; cooperation with G. G. Paulus, MPI für<br />

Quantenoptik, Garching<br />

H. Rottke, B2: Correlation in multiple ionization in strong<br />

light pulses (2); cooperation with R. Moshammer, J.<br />

Ullrich, MPI für Kernphysik, Heidelberg<br />

H. Rottke, B2: Atomic photoionization with high order<br />

harmonics; cooperation with P. Agostini, CEA/DSM/<br />

SPAM, Gyf-sur-Yvette, France


H. Rottke, B2: Multiple ionization in few-cycle laser pulses;<br />

cooperation with F. Krausz, MPI für Quantenoptik, Garching<br />

C. P. Schulz, A2: Ionization of C 60 in intense laser pulses;<br />

cooperation with Dr. A. Becker, <strong>Max</strong>-Planck-<strong>Institut</strong> für<br />

Physik komplexer Systeme, Dresden<br />

H. Stiel, B1: Entwicklung eines kompakten hard x-ray<br />

Spektrometers; cooperation with R. Wedell, IAP e.V.<br />

J. W. Tomm, C2: Spectroscopy of semiconductor devices;<br />

cooperation with Dr. G. Erbert, Dr. B. Sumpf, Ferdinand-<br />

Braun-<strong>Institut</strong> <strong>Berlin</strong><br />

J. W. Tomm, C2: Photoluminescence mapping of III-Vmaterial;<br />

cooperation with Dr. Baeumler, Fh-IAF Freiburg<br />

J. W. Tomm, C2: Transient spectroscopy of quantumwell<br />

structures; cooperation with Dr. U. Jahn, Dr. T.<br />

Flissikowski, Paul-Drude-<strong>Institut</strong>, <strong>Berlin</strong><br />

J. W. Tomm and U. Griebner, C2: Spectroscopy of SAMstructures<br />

and SCDL-devices; cooperation with Dr. U.<br />

Zeimer, Dr. M. Zorn, Ferdinand-Braun-<strong>Institut</strong>, <strong>Berlin</strong><br />

J. W. Tomm and V. Talalaev, C2: Transient spectroscopy<br />

of Si- and Ge-based quantum structures; cooperation<br />

with Dr. P. Werner, <strong>Max</strong>-Planck-<strong>Institut</strong> für Mikrostrukturphysik,<br />

Halle<br />

J. W. Tomm and F. Weik, C2: Spectroscopy of lead-salt<br />

narrow-gap semiconductor structures; cooperation with<br />

Dr. J. Nurnus, Dr. A. Lamprecht, Fraunhofer - IPM, Freiburg<br />

J. W. Tomm and F. Weik, C2: Band-structure and optical<br />

properties of InAsSb-MQW; cooperation with Dr. U.<br />

Bandelow, Weierstrass <strong>Institut</strong>e for Applied Analysis<br />

and Stochastics, <strong>Berlin</strong><br />

J. W. Tomm and F. Weik, C2: Infrared imaging of<br />

semiconductor devices; cooperation with A. Kozlowska,<br />

<strong>Institut</strong>e of Electronic Materials Technology, Laser<br />

Laboratory, Warsaw, Poland<br />

J. W. Tomm and F. Weik, C2: Thermoreflectance mapping<br />

of diode lasers; cooperation with Prof. M. Bugajski,<br />

<strong>Institut</strong>e of Electron Technology, Warsaw, Poland<br />

W. Werncke, C1: Stimulated Raman scattering-frequency<br />

converter for ultrashort pulses; cooperation with Prof.<br />

Dr. Orlovich, Dr. A. Vodschitz, <strong>Institut</strong> of Physics,<br />

Academy of Sciences, Minsk, Belarus<br />

B. Winter, A2: Photoemission from liquid surfaces;<br />

cooperation with Dr. M. Faubel, <strong>Max</strong>-Planck-<strong>Institut</strong> für<br />

Dynamik und Selbstorganisation<br />

B. Winter, A2: Development of efficient electron detection<br />

from liquid jet; cooperation with Dr. C. Pettenhofer, Hahn-<br />

Meitner-<strong>Institut</strong>, <strong>Berlin</strong><br />

N. Zhavoronkov, A3: Phase transition in solid-state<br />

material; cooperation with Prof. A. I. Sheley, National<br />

<strong>Institut</strong>e for Solid State Physic<br />

Participation in research networks<br />

U. Eichmann, B2: Elementare Ionisationsprozesse in<br />

intensivsten Laserfeldern; DFG-Schwerpunktprogramm<br />

“Wechselwirkung intensiver Laserfelder mit<br />

Materie”<br />

M. Fiebig and K. Reimann, C3: Magnetization dynamics<br />

of antiferromagnetic compounds by nonlinear optical<br />

spectroscopy; DFG-Schwerpunktprogramm “Ultraschnelle<br />

Magnetisierungsprozesse“<br />

U. Griebner, C2: Lasermesstechnik mit ultrakurzen<br />

Impulsen auf Basis der digitalen Holografie;<br />

cooperation with DFG-Projekt, Prof. W. Jüptner, Bremer<br />

<strong>Institut</strong> für angewandte Strahltechnik<br />

U. Griebner and J.W. Tomm, C2: Femtosecond semiconductor<br />

disc laser; BMBF-funded cooperation with<br />

Dr. M. Weyers, FBH, <strong>Berlin</strong><br />

R. Grunwald, C2: Verbundprojekt: Realisierung und<br />

Charakterisierung nichtlinear-optisch aktiver Glas /<br />

Kristall-Komposite auf Basis halbleiterbeschichteter<br />

transparenter Gläser mit optimierter Lokalstruktur;<br />

cooperation with Dr. W. Seeber, Universität Jena, im fachübergreifenden<br />

DFG-Forschungsvorhaben ‘Keramik’<br />

R. Grunwald, C2: CHOCLAB II (Instruments and<br />

standard test procedure for laser beams and optics<br />

characterization); cooperation with<br />

R. Grunwald, C2: Spatio-temporal beam shaping of<br />

femtosecond lasers with microoptical arrays (Raumzeitliche<br />

Strahlformung von Femtosekundenlasern mit<br />

mikrooptischen Arrays); cooperation with Wiss.-techn.<br />

Zusammenarbeit mit Kanada, BMBF-IB<br />

M. P. Kalachnikov, B3: European R&D project; European<br />

R&D project cooperation with LLC Lund (Sweden),<br />

LOA Palaiseau (France), RAL (UK), MPQ Garching<br />

M. P. Kalachnikov and P. V. Nickles, B3: SHARP;<br />

European R&D Projekt cooperation with LLC Lund,<br />

Schweden; LOA Palaiseau, France; RAL, UK, MPQ<br />

Garching<br />

C. Lienau, C3: EU Network: SQID - Semiconductor -<br />

Based Implementation of Quantum Information<br />

Devices; cooperation with Prof. F. Rossi, ISI Turin, Prof.<br />

R. Cingolani, INFM Lecce, Prof. E. Molinari, Universität<br />

Modena, Prof. G. Bastard, ENS Paris, Prof. L. Jacak, TU<br />

Wroclaw, Prof. I. Prigoni, Int. Solvay Inst. Brüssel, Prof. J.<br />

Baumberg, Universität Southampton, Prof. T. Kuhn,<br />

Universität Münster<br />

P. V. Nickles, B1: Ultrashort x-ray emission from gas<br />

clusters irradiated by ultrashort laser pulses; Gilcult<br />

Project (German-Israeli Cooperation in Ultrafast Laser<br />

Technologie) (Coordinator: A. Zigler) cooperation with<br />

Racah <strong>Institut</strong>e, University of Jerusalem, Israel<br />

127


128<br />

P. V. Nickles, M. Schnürer and W. Sandner, B1, B:<br />

Relativistic Plasma Dynamics; DFG-Schwerpunktprogramm<br />

TRANSREGIO cooperation with HHU<br />

Düsseldorf, FSU Jena, LMU München<br />

F. Noack and J. Herrmann, A3: Frontiers of optical<br />

Science: Controlling Intense Light (FOSCIL); Laserlab<br />

Europe; The “Integrated Initiative” of European Laser<br />

Infrastructures in the 6 th Framework Programme of the<br />

European Union (Coordinator: W. Hogervorst)<br />

cooperation with:<br />

LOA; Laboratoire d’Optique Appliquée, Palaiseau,<br />

France / LULI; Laboratoire pour l’Utilisation des Lasers<br />

Intenses, CNRS, Palaiseau, France / lCELIA; Centre<br />

Lasers Intenses et Applications, University of<br />

Bordeaux-I, CNRS, Bordeaux, France / SLIC; Saclay<br />

Laser-Matter Application Centre, CEA, Saclay, France<br />

/ CESTA; Centre d’Etudes Scientifiques et Techniques<br />

d’Aquitaine, CEA, Le Barp, France / CLF; Central Laser<br />

Facility, Rutherford Appleton Laboratory, CCLRC,<br />

Oxfordshire, United Kingdom / FCH; Fachinformationszentrum<br />

Chemie GmbH, <strong>Berlin</strong>, Germany / ULF-<br />

FORTH; <strong>Institut</strong>e of Electronic Structure and Laser,<br />

Ultraviolet Laser Facility, Foundation for Research and<br />

Technology-Hellas, Heraklion, Greece / FSU-IOQ;<br />

<strong>Institut</strong> für Optik und Quantenelektronik, Friedrich-<br />

Schiller-Universität Jena, Germany / GSI; Gesellschaft<br />

für Schwerionenforschung mbH, Darmstadt, Germany<br />

/ LENS; Laboratorio Europeo di Spettroscopie Non<br />

Lineari, Sesto Fiorentino (Florence), Italy / LLC; Lund<br />

Laser Centre, Lunds Universitet, Lund, Sweden / PALS;<br />

Prague Asterix Laser System, <strong>Institut</strong>e of Physics,<br />

Prague, Czech Republic / CUSBO; Centre for Ultrafast<br />

Science and Biomedical Optics, Politecnico di Milano,<br />

Dipartimento di Fisica, Milano, Italia / MPQ; <strong>Max</strong>-<br />

Planck-<strong>Institut</strong>e for Quantum Optics, Garching,<br />

Germany / VULRC; Quantum Electronics Department<br />

and Laser Research Center, Vilnius University, Vilnius,<br />

Lithuania / LCVU; Laser Centre Vrije Universiteit,<br />

Amsterdam, Netherlands<br />

W. Sandner, B: (Speaker): UVR (Interdisziplinärer<br />

Forschungsverbund UV- und Röntgentechnologien);<br />

funded by SenWissForschKult, <strong>Berlin</strong>, cooperation with<br />

more then 40 SME’s and scientific institutions<br />

W. Sandner, B: (Coordinator, Vorstand OpTecBB): Neue<br />

Methoden und Geräteentwicklungen der Röntgenfluoreszenzanalyse<br />

und Röntgendiffraktometrie für den<br />

Einsatz in Industrie und Forschung; funded by<br />

Förderprojekt IFV UVR, SenVerwWAF, <strong>Berlin</strong>,<br />

cooperation with Astro- und Feinwerktechnik Adlershof<br />

GmbH; IfG, <strong>Institut</strong> für Gerätebau GmbH; IAP, <strong>Institut</strong> für<br />

angewandte Photonik e.V.; Röntgenanalytik GmbH;<br />

Röntec GmbH; rtw, Dr. Warrighoff KG, BAM<br />

Bundesanstalt für Materialforschung und -prüfung;<br />

BESSY GmbH; IZM, Fraunhofer Gesellschaft; MBI, <strong>Max</strong>-<br />

<strong>Born</strong>-<strong>Institut</strong>; PTB, Physikalisch Technische Bundesanstalt,<br />

<strong>Berlin</strong>, TUB, Technische Universität <strong>Berlin</strong><br />

W. Sandner, B: (Vorstand und Sprecher des Schwerpunkts<br />

UV- u. Röntgentechnologien): OptecBB,<br />

Kompetenznetz Optische Technologien <strong>Berlin</strong> und<br />

Brandenburg; (Coordinator: I. V. Hertel, Sprecher des<br />

Vorstands von OpTecBB) cooperation with universities<br />

and industry<br />

H. Stiel with D. Leupold, SFB 429 Molekulare Physiologie,<br />

Energetik und Regulation primärer pflanzlicher Stoffwechselprodukte<br />

J. W. Tomm, C2: NANOP Competence centre for the<br />

application of nanostructures in optoelectronics; (Prof.<br />

D. Bimberg, TU-<strong>Berlin</strong>)<br />

J. W. Tomm and F. Weik, C2: Brilliant high-power laser<br />

diodes for industrial applications, BRILASI; (J. Luft,<br />

OSRAM-Opto-Semiconductors, Regensburg)<br />

J. W. Tomm, C2: WWW.Bright.COM- Wide wavelength<br />

light for public welfare: High-brightness laser diode<br />

systems for health, telecom and environment use;<br />

European Union-contract; FW5 integrated project with<br />

about 20 partner institutions cooperation with Dr. M.<br />

Krakowsky, THALES Research and Technology, Orsay,<br />

France<br />

J. W. Tomm and F. Weik, C2: Materials research for lowcost<br />

mid-infrared converters for the λ=4-5 µm wavelength<br />

range; BMBF-(NMT) Verbund-Projekt MIRCO<br />

cooperation with Dr. J. Nurnus, IPM-Freiburg, WSI-TU<br />

München<br />

M. Woerner and T. Elsaesser, C3, C0: Reversible<br />

structural changes of crystalline solids studied by<br />

ultrafast x-ray diffraction; DFG-Schwerpunktprogramm<br />

1134 “Aufklärung transienter Strukturen in kondensierter<br />

Materie mit Ultrakurzzeit-Röntgenmethoden”


Cooperations with industry<br />

W. Freyer, A1: Mass spectra of sensitive porphyrazines;<br />

cooperation with Agilent Technologies Deutschland<br />

GmbH, Waldbronn<br />

P. Glas, C2: Faserherstellung; cooperation with M.<br />

Kreitel, Fa. Fiber-Technol., <strong>Berlin</strong>, M. Zoheid, Fiber-Tech,<br />

<strong>Berlin</strong>, Prof. Langhoff, IFG, <strong>Berlin</strong><br />

R. Grunwald, C2: Charakterisierung von Mikrostrukturen<br />

für Laser- Ophthalmologie; cooperation with Dr. G. Korn,<br />

Katana Technologies GmbH<br />

R. Grunwald, C2: Mikrooptik zur Verbesserung der<br />

Laserdiodenkollimation; cooperation with Dr. T. Poßner,<br />

Grintech GmbH, Jena<br />

R. Grunwald and U. Griebner, C2: Fs-Meßtechnik;<br />

cooperation with E. Büttner, C. Lukas, APE GmbH <strong>Berlin</strong><br />

R. Grunwald and U. Griebner, C2: Mikrosystemtechnologie<br />

für Dünnschicht-Mikrooptiken; cooperation<br />

with H. Mischke, First Sensor Technology GmbH<br />

R. Grunwald and U. Griebner, C2: Mikrooptische<br />

Dünnschicht-Bauelemente; cooperation with Dr. D.<br />

Schäfer, Dr. H.-J. Kühn Quarterwave GmbH <strong>Berlin</strong><br />

R. Grunwald and U. Neumann, C2: Fluoreszenz-<br />

Spektroskopie an ZnO-Nanolayers; cooperation with<br />

Dr. Scholz, Lasertechnik <strong>Berlin</strong> GmbH<br />

D. Leupold, C1: Femtosekunden-Fluorometer zur<br />

Hautkrebs-Früherkennung; cooperation with Dr. M.<br />

Scholz, LTB Lasertechnik <strong>Berlin</strong><br />

U. Neumann, R. Grunwald and U. Griebner, C2:<br />

Dickenmessungen an strukturierten ZnO Schichten im<br />

sub-µm Bereich; cooperation with M. Lindner und Sven<br />

Johannsen, m.u.t. GmbH, Wedel<br />

A. Rosenfeld, A1: Nanostrukturierung von Glasoberflächen;<br />

cooperation with <strong>Berlin</strong>er Glas GmbH and PTB,<br />

<strong>Berlin</strong><br />

H. Stiel, B1: Röntgenoptik; cooperation with Prof. N.<br />

Langhoff, IfG GmbH<br />

J. W. Tomm, C2: Strain and defect analysis of high power<br />

diode lasers; cooperation with D. Lorenzen, Jenoptik,<br />

Laserdiode GmbH<br />

J. W. Tomm, C2: Strain and defect analysis of high power<br />

diode lasers; cooperation with J. Biesenbach, DILAS<br />

Diodenlaser GmbH, Mainz<br />

J. W. Tomm, C2: Spectroscopy of laser diodes; cooperation<br />

with M. Oudard, J. Nagle, THALES Research<br />

and Technology, Orsay, France<br />

J.W. Tomm, C2: Strain and defect analysis of high power<br />

diode lasers; cooperation with Dr. J. Li, Coherent Inc.,<br />

Santa Clara, USA<br />

J. W. Tomm, C2: Deep level spectroscopy of LEDs;<br />

cooperation with Dr. A. Jäger, OSRAM, Regensburg<br />

J. W. Tomm, C2: Analysis of high-power ground-mode<br />

lasers; cooperation with Dr. G. Elger, HYMITE GmbH,<br />

<strong>Berlin</strong><br />

J. W. Tomm and U. Griebner, C2: Spectroscopy of<br />

SESAM-structures and divices; cooperation with Prof.<br />

W. Richter, BATOP-Optoelectronics GmbH, Jena<br />

P. Tzankov, A3: New crystal structures with large<br />

nonlinear dielectric susceptibilities and high damage<br />

threshold; cooperation with Dr. Y. Furukawa, Oxide<br />

Cooperation, Japan<br />

M. Woerner and T. Elsaesser, C3, C0: GaAs/AlGaAs<br />

quantum cascade structures; cooperation with Dr. C.<br />

Sirtori, Thales, Laboratoire de Recherches, 91404<br />

Orsay, France<br />

129


130<br />

Appendix 10<br />

Current Patents, Pending Applications and Registered Design<br />

Application Name Title Filing date<br />

number<br />

597 00 665.2-08 Eleanor Campbell, Verfahren zur Herstellung endohedraler Fullerene 14.03.1997<br />

597 00 665.2 Ingolf Volker Hertel, bzw. Fullerenderivate<br />

Ralf Tellgmann<br />

196 12 993.1-09 Rüdiger Grunwald, Verfahren und Vorrichtung zur Erfassung von 22.03.1996<br />

Hartmut Zimmermann Magnetfeldänderungen<br />

(Crystal GmbH)<br />

196 13 745.4-09 Rüdiger Grunwald, Verfahren zur Herstellung anamorphotischer 01.04.1996<br />

Siegfried Woggon mikrooptischer Arrays und damit ausgestattete<br />

(Karlsruhe) Faserlinse<br />

196 30 547.0-09 Ingo Rogner, Verfahren zur Matrix-unterstützten Laserdesorption 17.07.1996<br />

Eleanor Campbell und Ionisierung von Analytmolekülen,<br />

insbesondere von fragilen bzw. labilen Molekülen<br />

196 36 229.6-51 Jens-Wolfgang Tomm, Verfahren und Vorrichtung zur Bestimmung der 27.08.1996<br />

Artur Bärwolff, Degradationsprozesse in Halbleiterlasern<br />

Thomas Elsässer,<br />

Uwe Menzel<br />

196 48 659.9-51 Jens-Wolfgang Tomm, Verfahren zur Bestimmung von Degradations- 15.11.1996<br />

Christoph Lienau, prozessen in Halbleiterlasern<br />

Alexander Richter,<br />

Thomas Elsässer<br />

197 11 049.5-09 Arkadi Rosenfeld, Verfahren zur Herstellung von räumlichen 03.03.1997<br />

David Ashkenasi, Mikrostrukturen in transparenten Materialien<br />

Harald Varel, mittels Laserbestrahlung<br />

Eleanor Campbell<br />

197 14 346.6-33 Christoph Lienau, Verfahren und Vorrichtung zur optischen 26.03.1997<br />

Gerd Behme, Mikroskopie mit Subwellenlängenauflösung<br />

Alexander Richter,<br />

Marko Süptitz,<br />

Thomas Elsässer<br />

197 21 257.3-51 Rüdiger Grunwald, Anordnung zur Strahlformung und räumlich 15.05.1997<br />

Uwe Neumann (<strong>Berlin</strong>), selektiven Detektion mit nicht-sphärischen<br />

Siegfried Woggon Mikrolinsen<br />

(Karlsruhe)<br />

197 36 155.2-09 Peter Glas, Anordnung für einen kompakten Faserlaser zur 14.08.1997<br />

Michael Kreitel Erzeugung von Laserstrahlung<br />

197 41 122.3-09 Peter Glas, Anordnung zur Vermessung und Strukturierung 12.09.1997<br />

André Schirrmacher (Nahfeldanordnung)<br />

197 53 025.7-43 Wolfgang Freyer Organische Farbstoffe mit unterschiedlich wellen- 17.11.1997<br />

längenselektiven Spezies, derartige Spezies<br />

enthaltender optischer Datenspeicher und<br />

Verfahren zu dessen Herstellung


Application Name Title Filing date<br />

number<br />

197 58 366.0-33 Horst Schönnagel, Verfahren und Vorrichtung zum Diodenpumpen von 22.12.1997<br />

Uwe Griebner Wellenleiterlasern oder Wellenleiterverstärkern<br />

198 11 211.4-54 Uwe Griebner, Multipath-Wellenleiter-Festkörperlaser oder 10.03.1998<br />

Horst Schönnagel -Verstärkeranordnung<br />

199 54 109.4-09 Peter Glas, Vorrichtung zur Erzeugung kurzer Impulse durch 02.11.1999<br />

E243.378 Martin Leitner passive Modenkopplung<br />

00930991.5-2214 Device for producing short pulses by passive<br />

50002591.6-08 mode lock<br />

00930991.5-2214 Peter Glas, Dispositif pour produire de breves impulsions par 24.03.2000<br />

Martin Leitner couplage passif des modesk<br />

199 20 033.5-09 Peter Glas, Anordnung zur Erzeugung eines Laserstrahls 26.04.1999<br />

Thomas Pertsch (Jena), hoher Leistung durch kohärente Kopplung der<br />

Marc-Steffen Wrage Laserstrahlungen mehrerer Einzellaser<br />

199 23 005.6-54 Rüdiger Grunwald, Verfahren und Anordnung zur 14.05.1999<br />

Horst Schönnagel, Frequenzkonversion von Laserstrahlung<br />

Klaus Schwenkenbecher<br />

(Crystal GmbH)<br />

199 35 631.9-52 Rüdiger Grunwald, Verfahren und Anordnung zur Charakterisierung 29.07.1999<br />

Uwe Griebner, von ultrakurzen Laserimpulsen<br />

Thomas Elsässer,<br />

Volker Kebbel,<br />

Werner Jüptner,<br />

Hans-Jürgen Hartmann<br />

(Bremer <strong>Institut</strong> für<br />

Angewandte Strahltechnik,<br />

BIAS)<br />

199 35 630.0-09 Rüdiger Grunwald, Verfahren und Anordnung zur zeitlich und spektral 29.07.1999<br />

Uwe Griebner, aufgelösten Charakterisierung von ultrakurzen<br />

Etlef Büttner, Laserimpulsen<br />

Christian Lukas<br />

(Angewandte Physik u.<br />

Elektronik GmbH)<br />

199 39 706.6-52 Klaus Teuchner, Fluorophor für die Multi-Photonen-Laser-Scanning 18.08.1999<br />

Dieter Leupold, Mikroskopie<br />

Jürgen Ehlert,<br />

Karsten König (Jena)<br />

199 46 182.1-09 Rudolf Ehlich Verfahren und Anordnung zur Herstellung von 21.09.1999<br />

Kohlenstoff-Nanoröhren<br />

199 64 083.1-09 Georg Korn, Laserverstärkersystem mit zeitproportionaler 27.12.1999<br />

Uwe Griebner, Frequenzmodulation<br />

Andreas Tünnermann<br />

(Jena)<br />

100 28 756.5-09 Rüdiger Grunwald, Verfahren und Anordnung zur orts- und zeit- 09.06.2000<br />

Uwe Griebner, aufgelösten interferometrischen Charakterisierung<br />

Thomas Elsässer, von ultrakurzen Laserimpulsen<br />

Volker Kebbel (BIAS),<br />

Werner Jüptner (BIAS),<br />

Hans-Jürgen Hartmann<br />

(BIAS)<br />

131


132<br />

Application Name Title Filing date<br />

number<br />

012 50 179.7-1236 Rüdiger Grunwald, Verfahren und Anordnung zur orts- und zeit- 21.05.2001<br />

6,683,691 B2 Uwe Griebner, aufgelösten interferometrischen Charakterisierung 08.06.2001<br />

Thomas Elsässer, von ultrakurzen Laserimpulsen<br />

Volker Kebbel (BIAS), Method and arrangement for spatially resolved<br />

Werner Jüptner (BIAS), and time-resolved interferometric<br />

Hans-Jürgen Hartmann characterization of ultrashort laser pulses<br />

(BIAS)<br />

101 13 466.5-09 Rüdiger Grunwald, Verfahren und Anordnung zur Erzeugung einer 19.03.2001<br />

Hans-Joachim Kühn Antireflexionsbeschichtung für mikrooptische<br />

(Quaterwave GmbH) Bauelemente<br />

101 25 206.4-34 Arkadi Rosenfeld, Verfahren zur direkten Mikrostrukturierung 14.05.2001<br />

020901 74.0-2216 Razwan Stoian, von Materialien<br />

Mark Boyle,<br />

Andreas Thoß,<br />

Ingolf Volker Hertel,<br />

Georg Korn<br />

101 35 100.3-54 Ingo Will, Verfahren zur Einstellung der optimalen Resonator- 11.07.2001<br />

Armin Liero länge für einen modengekoppelten Laseroszillator<br />

101 35 101.1-09 Jens-Wolfgang Tomm, Verfahren und Anordnung zur Justierung von 11.07.2001<br />

Rüdiger Grunwald Hochleistungs-Halbleiterstrahlungsemittern<br />

zugeordneten optischen Bauelementen zwecks<br />

Strahlformung<br />

201 21 549.7 Dieter Leupold, Strahlungsquelle für kurze Impulse 21.08.2001<br />

Susanne Mueller,<br />

Matthias Scholz (LTB),<br />

Klaus Teuchner,<br />

Beatrix Rahn (LTB),<br />

Markus Stücker,<br />

Klaus Hoffmann<br />

(Univ. Bochum)<br />

102 39 028.2-09 Klaus Teuchner, Verfahren zur Identifizierung von Melaninsorten 21.08.2002<br />

Dieter Leupold,<br />

Wolfgang Becker<br />

(Fa. Becker & Hickl),<br />

Markus Stücker,<br />

Klaus Hoffmann<br />

(Univ. Bochum)<br />

101 48 735.5-54 Peter Glas, Vorrichtung zur simultanen Erzeugung kurzer 27.09.2001<br />

Martin Leitner, Laserimpulse und elektrischer Impulse<br />

Uwe Griebner<br />

102 54 892.7-54 Karol Janulewicz, Verfahren und Anordnung zur Erzeugung 21.11.2002<br />

03729894.0-2222 Peter V. Nickles, verstärkter spontaner Emission kohärenter 21.05.2003<br />

Antonio Lucianetti, kurzwelliger Strahlung<br />

Gerd Priebe,<br />

Wolfgang Sandner


Application Name Title Filing date<br />

number<br />

030 922 881 Christoph Lienau, Induzierte Synthese von chemischen 05.05.2003<br />

Erik Nibbering, Verbindungen auf Metall- oder<br />

Dieter Kern Halbleiter-Nanostrukturen<br />

(Univ. Tübingen),<br />

Heinrich Hoerber<br />

(EMBL Heidelberg),<br />

Manfred Wick<br />

(Life Bits AG, Tübingen)<br />

102 314 63.2 David Ashkenasi Verfahren zur Mikrostrukturierung von 05.07.2002<br />

(LMTB), Lichtwellenleitern zur Erzeugung von<br />

Arkadi Rosenfeld, optischen Funktionselementen<br />

Verena Knappe,<br />

Gerhard Müller (LMTB)<br />

102 38 078.3-09 Rüdiger Grunwald, Verfahren und Anordnung zur orts- und 21.08.2002<br />

Andreas Fischer winkelaufgelösten Reflexionsmessung<br />

102 43 839.0-51 Günter Steinmeyer Verfahren und Schichtensystem zur breitbandigen 13.09.2002<br />

Kompensation von Gruppenlaufzeiteffekten mit<br />

geringen Dispersationsoszillationen in optischen<br />

Systemen<br />

102 43 838.2-09 Rüdiger Grunwald, Verfahren und Anordnung zur ortsaufgelösten 13.09.2002<br />

Volker Kebbel (BIAS), Charakterisierung der Krümmung einer<br />

Uwe Neumann Wellenfront<br />

102 60 376.6-54 Sargis Ter-Avetisyan, Vorrichtung und Verfahren zur Erzeugung 13.12.2002<br />

PCT/DE03/04129 Matthias Schnürer, eines Tröpfchen-Verfahrens 11.12.2003<br />

Peter V. Nickles<br />

102 61 883.6-33 Günter Steinmeyer, Verfahren zur Dispersionskorrektur und 19.12.2002<br />

Uwe Griebner dispersionskompensierendes Element<br />

103 22 110.7-54 Joachim Herrmann, Verfahren zur Erzeugung von diskreten Mehr- 09.05.2003<br />

Anton Husakou wellenlängensignalen mittels Vierwellenmischung<br />

in einem photonischen Kristallfaserarray<br />

PCT / DE04 / Joachim Herrmann, Anordnung zur Erzeugung von optischen 07.05.<strong>2004</strong><br />

000997 Anton Husakou Mehrwellensignalen und Mehrsignal-Quelle<br />

102 004 011 190.1 Rüdiger Grunwald, Verfahren zur Leistungserhöhung von optischen 04.03.<strong>2004</strong><br />

Thomas Elsässer, Strahlformern und optischer Strahlformer<br />

Uwe Neumann<br />

102 004 052 Joachim Herrmann, Verfahren und Anordnung zur Fokussierung 22.10.<strong>2004</strong><br />

146.8-51 Anton Husakou elektromagnetischer Strahlung unterhalb<br />

der Beugungsgrenze<br />

133


134


135<br />

<strong>Max</strong> <strong>Born</strong> <strong>Institut</strong>e (MBI)<br />

for Nonlinear Optics and Short Pulse Spectroscopy<br />

in the Forschungsverbund <strong>Berlin</strong> e. V.<br />

Mail Address:<br />

<strong>Max</strong>-<strong>Born</strong>-<strong>Institut</strong><br />

<strong>Max</strong>-<strong>Born</strong>-Straße 2 A<br />

12489 <strong>Berlin</strong><br />

Germany<br />

Phone: (++49 30) 6392 1505<br />

Fax: (++49 30) 6392 1519<br />

email: mbi@mbi-berlin.de<br />

http://www.mbi-berlin.de<br />

The Divisions of the <strong>Max</strong> <strong>Born</strong> <strong>Institut</strong>e<br />

Division A:<br />

Clusters and Interfaces<br />

Prof. Dr. I. V. Hertel<br />

Division B:<br />

Light Matter Interaction in Intense Laser Fields<br />

Prof. Dr. W. Sandner<br />

Division C:<br />

Nonlinear Processes in Condensed Matter<br />

Prof. Dr. T. Elsaesser<br />

Division Z:<br />

Technical and Administrative Infrastructure<br />

Dr. J. Kaendler<br />

City district: <strong>Berlin</strong> Treptow-Köpenick<br />

Subdistrict: <strong>Berlin</strong>-Adlershof<br />

Site: <strong>Berlin</strong>-Adlershof<br />

Street: <strong>Max</strong>-<strong>Born</strong>-Straße 2 A<br />

S-Bahn: S45, S46, S6, S8 and S9<br />

Station: <strong>Berlin</strong>-Adlershof<br />

from there: Bus 360 to Magnusstraße<br />

Subway: U7<br />

Station: Rudow<br />

from there: Bus 360 to Magnusstraße


136<br />

c/o WISTA-MG

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!