22.12.2012 Views

Mode of phytochrome B action in the photoregulation of seed ...

Mode of phytochrome B action in the photoregulation of seed ...

Mode of phytochrome B action in the photoregulation of seed ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

The Plant Journal (1998) 13(5), 583–590<br />

<strong>Mode</strong> <strong>of</strong> <strong>phytochrome</strong> B <strong>action</strong> <strong>in</strong> <strong>the</strong> <strong>photoregulation</strong> <strong>of</strong><br />

<strong>seed</strong> germ<strong>in</strong>ation <strong>in</strong> Arabidopsis thaliana<br />

Tomoko Sh<strong>in</strong>omura1 , Hiroko Hanzawa1 ,<br />

Eberhard Schäfer2 and Masaki Furuya1,* 1Hitachi Advanced Research Laboratory, Hatoyama,<br />

Saitama 350–0395, Japan, and<br />

2Institut für Biologie II, Albert Ludwigs Universität,<br />

Schänzlestrasse 1, D-7800 Freiburg, Germany<br />

Summary<br />

Arabidopsis thaliana <strong>seed</strong>s imbibed for a short duration<br />

show <strong>phytochrome</strong> B (PhyB)-specific photo-<strong>in</strong>duction <strong>of</strong><br />

germ<strong>in</strong>ation. Us<strong>in</strong>g this system, <strong>the</strong> relationship was<br />

determ<strong>in</strong>ed between <strong>the</strong> amount <strong>of</strong> PhyB <strong>in</strong> <strong>seed</strong>s and<br />

photon energy required for PhyB-specific germ<strong>in</strong>ation <strong>in</strong><br />

two transgenic Arabidopsis l<strong>in</strong>es transformed with ei<strong>the</strong>r<br />

<strong>the</strong> Arabidopsis PhyB cDNA (ABO) or <strong>the</strong> rice PhyB cDNA<br />

(RBO). Immunochemical detection <strong>of</strong> PhyB apoprote<strong>in</strong><br />

(PHYB) showed that <strong>the</strong> expression level <strong>of</strong> PHYB <strong>in</strong> ABO<br />

<strong>seed</strong>s was at least two times higher than that <strong>in</strong> <strong>the</strong><br />

wild-type <strong>seed</strong>s, but <strong>in</strong> RBO <strong>seed</strong>s <strong>the</strong> PHYB level was<br />

<strong>in</strong>dist<strong>in</strong>guishable from that <strong>in</strong> wild-type <strong>seed</strong>s. The photon<br />

fluence required for <strong>in</strong>duction and photoreversible <strong>in</strong>hibition<br />

<strong>of</strong> germ<strong>in</strong>ation was exam<strong>in</strong>ed us<strong>in</strong>g <strong>the</strong> Okazaki large<br />

spectrograph. At <strong>the</strong> wavelengths <strong>of</strong> 400–710 nm, <strong>the</strong> ABO<br />

<strong>seed</strong>s required significantly less photon fluence than wildtype<br />

<strong>seed</strong>s for <strong>in</strong>duction <strong>of</strong> germ<strong>in</strong>ation, whereas <strong>the</strong> RBO<br />

<strong>seed</strong>s required similar fluence to wild-type <strong>seed</strong>s. A critical<br />

threshold wavelength for ei<strong>the</strong>r <strong>in</strong>duction or <strong>in</strong>hibition <strong>of</strong><br />

germ<strong>in</strong>ation <strong>of</strong> ABO <strong>seed</strong>s shifted towards <strong>the</strong> longer<br />

wavelengths relative to wild-type <strong>seed</strong>s. By assum<strong>in</strong>g<br />

that PhyA and PhyB are similar <strong>in</strong> <strong>the</strong>ir photochemical<br />

parameters, amounts <strong>of</strong> P fr at each wavelength were<br />

calculated. The photon fluence required for 50% germ<strong>in</strong>ation<br />

was equivalent to <strong>the</strong> fluence generat<strong>in</strong>g a P fr/P tot<br />

ratio <strong>of</strong> 0.21–0.43 <strong>in</strong> wild-type <strong>seed</strong>s, and <strong>of</strong> 0.035–0.056<br />

<strong>in</strong> ABO <strong>seed</strong>s. These results <strong>in</strong>dicate that PhyB-specific<br />

<strong>seed</strong> germ<strong>in</strong>ation is not strictly a function <strong>of</strong> <strong>the</strong> P fr/<br />

P tot ratio, but is probably a function <strong>of</strong> <strong>the</strong> absolute P fr<br />

concentration.<br />

Introduction<br />

Light plays many crucial roles <strong>in</strong> plant development<br />

(Hendricks and Borthwick, 1967; Mohr and Shropshire,<br />

1983). Phytochrome regulates many <strong>of</strong> <strong>the</strong>se responses to<br />

Received 14 July 1997; revised 20 October 1997; accepted 30 October 1997.<br />

*For correspondence (fax �81 492 96 7511;<br />

e-mail mfuruya@harl.hitachi.co.jp).<br />

light. It undergoes a reversible photoconversion between<br />

<strong>the</strong> red light (R)-absorb<strong>in</strong>g form (P r) and <strong>the</strong> far-red light<br />

(FR)-absorb<strong>in</strong>g form (P fr) upon light irradiation (Butler et al.,<br />

1959). P r and P fr are commonly considered to be <strong>the</strong><br />

physiologically <strong>in</strong>active form and <strong>the</strong> active form, respectively<br />

(Borthwick et al., 1952; Butler et al., 1959).<br />

Early papers showed that physiological responses such<br />

as <strong>seed</strong> germ<strong>in</strong>ation (Borthwick et al., 1954), hook open<strong>in</strong>g<br />

(Kle<strong>in</strong> et al., 1967) and <strong>in</strong>hibition <strong>of</strong> mosocotyl elongation<br />

(We<strong>in</strong>traub and Price, 1947) were proportional to <strong>the</strong> logarithm<br />

<strong>of</strong> <strong>the</strong> <strong>in</strong>cident energy, except for <strong>the</strong> extreme values<br />

near threshold and saturation. The photochemical transformations<br />

<strong>of</strong> <strong>phytochrome</strong> <strong>in</strong> both directions (from P r to<br />

P fr and from P r to P fr) are first-order with respect to<br />

<strong>the</strong> <strong>in</strong>cident energy (Butler et al., 1964). Therefore, it was<br />

expected that <strong>the</strong> magnitude <strong>of</strong> a physiological response<br />

to R and FR would be related <strong>in</strong> some simple way to <strong>the</strong><br />

amount <strong>of</strong> P fr, which can be measured spectrophotometrically<br />

<strong>in</strong> vivo. However, many attempts to determ<strong>in</strong>e<br />

such a correlation have yielded <strong>in</strong>conclusive results<br />

(Furuya, 1989, 1993; Hillman, 1967). Explanations for <strong>the</strong>se<br />

results <strong>in</strong>voke <strong>the</strong> idea that <strong>the</strong> bulk <strong>of</strong> <strong>phytochrome</strong><br />

detected spectrophotometrically is <strong>in</strong>active, and <strong>the</strong> active<br />

fr<strong>action</strong> has different properties from <strong>the</strong> <strong>in</strong>active fr<strong>action</strong><br />

(sensitivity for photoconversion, FR reversibility, rate <strong>of</strong><br />

dark reversion, etc.) (Hillman, 1967).<br />

S<strong>in</strong>ce <strong>the</strong> discovery <strong>of</strong> <strong>the</strong> <strong>phytochrome</strong> multi-gene<br />

family (Clack et al., 1994; Sharrock and Quail, 1989),<br />

research has been directed to determ<strong>in</strong><strong>in</strong>g which member<br />

<strong>of</strong> <strong>the</strong> <strong>phytochrome</strong> family is responsible for which <strong>phytochrome</strong>-mediated<br />

response(s). Among <strong>the</strong>m, <strong>phytochrome</strong><br />

A (PhyA) and <strong>phytochrome</strong> B (PhyB) have been <strong>the</strong> best<br />

analysed so far (Furuya and Schäfer, 1996). The absorption<br />

spectrum <strong>of</strong> PhyA (see, for example, Butler et al., 1964) is<br />

similar to that <strong>of</strong> PhyB (Abe et al., 1989; Kunkel et al., 1993).<br />

In contrast, PhyA and PhyB display a marked diversity <strong>in</strong><br />

am<strong>in</strong>o acid sequences (Sharrock and Quail, 1989) and<br />

expression patterns (Somers and Quail, 1995). Analysis <strong>of</strong><br />

PhyA-null mutants (phyA) and PhyB-null mutants (phyB)<br />

<strong>of</strong> Arabidopsis has led to <strong>the</strong> proposal that PhyA and PhyB<br />

have overlapp<strong>in</strong>g physiological functions but perceive dist<strong>in</strong>ct<br />

features <strong>of</strong> <strong>the</strong> light environment, such as wavelength<br />

and <strong>in</strong>tensity. For example, photo-<strong>in</strong>hibition <strong>of</strong> hypocotyl<br />

elongation <strong>in</strong> Arabidopsis is regulated by both PhyA and<br />

PhyB, but <strong>the</strong>y are active under cont<strong>in</strong>uous irradiation with<br />

FR and R, respectively (Quail et al., 1995). The <strong>photoregulation</strong><br />

<strong>of</strong> <strong>seed</strong> germ<strong>in</strong>ation <strong>in</strong> Arabidopsis is also mediated<br />

by both PhyA and PhyB, but <strong>the</strong> <strong>action</strong> spectra for <strong>the</strong><br />

response mediated by <strong>the</strong>se two <strong>phytochrome</strong>s are quite<br />

© 1998 Blackwell Science Ltd 583


584 Tomoko Sh<strong>in</strong>omura et al.<br />

different <strong>in</strong> <strong>the</strong>ir photon fluence and wavelength requirements<br />

(Sh<strong>in</strong>omura et al., 1996).<br />

These data suggest that one <strong>of</strong> <strong>the</strong> explanations for <strong>the</strong><br />

previous <strong>in</strong>ability to correlate physiological responses with<br />

<strong>the</strong> amount <strong>of</strong> P fr was due to <strong>the</strong> simultaneous spectrophotometric<br />

measurement <strong>of</strong> multiple <strong>phytochrome</strong>s with<br />

differential responses. In order to address this question,<br />

we concentrated on PhyB-specific <strong>seed</strong> germ<strong>in</strong>ation us<strong>in</strong>g<br />

PhyB over-express<strong>in</strong>g transgenic plants. The PhyB role <strong>in</strong><br />

<strong>seed</strong> germ<strong>in</strong>ation is dist<strong>in</strong>guishable from that <strong>of</strong> <strong>the</strong> o<strong>the</strong>r<br />

<strong>phytochrome</strong>s when <strong>seed</strong>s are allowed to imbibe water<br />

for a short period before <strong>the</strong> light treatment (Sh<strong>in</strong>omura<br />

et al., 1994, 1996). The over-expression level <strong>of</strong> <strong>phytochrome</strong>(s)<br />

<strong>in</strong> <strong>seed</strong> has not been demonstrated <strong>in</strong> transgenics<br />

<strong>of</strong> <strong>phytochrome</strong> genes, although <strong>the</strong> expression<br />

level <strong>in</strong> <strong>seed</strong>l<strong>in</strong>gs were measured both immunochemically<br />

and spectrophotometrically (Wagner et al., 1991).<br />

We describe here light fluence–response relationships<br />

<strong>in</strong> PhyB over-express<strong>in</strong>g transgenics that showed different<br />

PhyB levels <strong>in</strong> <strong>seed</strong>s. Quantitative correlation between<br />

<strong>the</strong> amount <strong>of</strong> PhyB <strong>in</strong> P fr form <strong>in</strong> <strong>seed</strong>s and <strong>the</strong> light<br />

energy required for PhyB-<strong>in</strong>duced germ<strong>in</strong>ation will be<br />

discussed.<br />

Results<br />

Immunochemical determ<strong>in</strong>ation <strong>of</strong> PHYB amount <strong>in</strong><br />

<strong>seed</strong>s <strong>of</strong> RBO and ABO<br />

The amount <strong>of</strong> PhyB apoprote<strong>in</strong> (PHYB) <strong>in</strong> <strong>seed</strong>s was<br />

quantified by immunoblot analysis <strong>of</strong> crude <strong>seed</strong> extracts<br />

from two homozygous transgenic l<strong>in</strong>es, transformed with<br />

ei<strong>the</strong>r <strong>the</strong> cDNA <strong>of</strong> <strong>the</strong> Arabidopsis PhyB gene (ABO) or<br />

<strong>the</strong> cDNA <strong>of</strong> <strong>the</strong> rice PhyB gene (RBO). Us<strong>in</strong>g a monoclonal<br />

antibody which reacts with Arabidopsis PHYB, it was demonstrated<br />

that <strong>the</strong> total amount <strong>of</strong> PHYB <strong>in</strong> ABO <strong>seed</strong>s was<br />

greater than that <strong>in</strong> <strong>the</strong> wild-type (WT) <strong>seed</strong>s (Figure 1b).<br />

The magnitude <strong>of</strong> <strong>the</strong> difference <strong>in</strong> PhyB expression levels<br />

between ABO and WT <strong>seed</strong>s was smaller than that <strong>in</strong><br />

<strong>seed</strong>l<strong>in</strong>gs (Figure 1b). Based on a serial dilution comparison<br />

<strong>of</strong> <strong>the</strong> extracts derived from ABO and WT, we estimated<br />

that ABO <strong>seed</strong>s showed more than twice <strong>the</strong> level <strong>of</strong> PHYB<br />

than WT <strong>seed</strong>s (Figure 1c). However, us<strong>in</strong>g <strong>the</strong> monoclonal<br />

antibody which reacts with both rice PHYB and Arabidopsis<br />

PHYB, <strong>the</strong> amount <strong>of</strong> PHYB <strong>in</strong> RBO <strong>seed</strong>s was <strong>in</strong>dist<strong>in</strong>guishable<br />

from <strong>the</strong> levels observed <strong>in</strong> WT <strong>seed</strong>s (Figure 1a).<br />

In contrast, <strong>the</strong> amount <strong>of</strong> PHYB <strong>in</strong> RBO <strong>seed</strong>l<strong>in</strong>gs was<br />

substantially higher than that <strong>in</strong> WT <strong>seed</strong>l<strong>in</strong>gs (Figure 1a).<br />

In conclusion, both ABO and RBO <strong>seed</strong>s showed lower<br />

expression levels <strong>of</strong> PHYB than <strong>seed</strong>l<strong>in</strong>gs, and only ABO<br />

<strong>seed</strong>s exhibited substantial over-expression <strong>of</strong> PHYB <strong>in</strong><br />

<strong>seed</strong>s.<br />

Figure 1. Immunochemical detection <strong>of</strong> Arabidopsis PHYB and rice PHYB<br />

apoprote<strong>in</strong>s extracted from <strong>seed</strong>s and <strong>seed</strong>l<strong>in</strong>gs <strong>of</strong> RBO and ABO.<br />

(a) Crude prote<strong>in</strong> extracts from <strong>seed</strong>s and <strong>seed</strong>l<strong>in</strong>gs <strong>of</strong> WT and RBO were<br />

loaded (50 μg prote<strong>in</strong> <strong>in</strong> each lane) and probed with mBT4 which reacts<br />

with both rice PHYB and Arabidopsis PHYB.<br />

(b) Crude prote<strong>in</strong> extracts <strong>of</strong> WT and ABO were loaded (40 μg prote<strong>in</strong> <strong>in</strong><br />

each lane) and probed with mBA2 which reacts with Arabidopsis PHYB.<br />

(c) Crude extract from ABO <strong>seed</strong>s conta<strong>in</strong><strong>in</strong>g 40 μg prote<strong>in</strong> was serially<br />

diluted to half <strong>of</strong> <strong>the</strong> concentration with extr<strong>action</strong> buffer and probed<br />

with mBA2.<br />

Figure 2. Effect <strong>of</strong> photon fluence <strong>of</strong> 667 nm light on <strong>in</strong>duction <strong>of</strong> PhyBdependent<br />

<strong>seed</strong> germ<strong>in</strong>ation.<br />

The experiment was performed on <strong>seed</strong>s <strong>of</strong> WT (s), <strong>the</strong> phyB mutant (r),<br />

RBO (n) and ABO (u).<br />

Photon fluence <strong>of</strong> R required for <strong>seed</strong> germ<strong>in</strong>ation <strong>in</strong><br />

ABO<br />

Experiments were designed to determ<strong>in</strong>e <strong>the</strong> photon<br />

fluence requirement <strong>of</strong> 667 nm light for PhyB-specific<br />

germ<strong>in</strong>ation. WT (ecotype Nossen) <strong>seed</strong>s effectively<br />

germ<strong>in</strong>ated when irradiated with a fluence higher than<br />

20 μmol m –2 <strong>of</strong> 667 nm light and reached a maximum at a<br />

fluence <strong>of</strong> 200 μmol m –2 (Figure 2). This range <strong>of</strong> photon<br />

fluence is equivalent to <strong>the</strong> PhyB-specific germ<strong>in</strong>ation<br />

previously reported <strong>in</strong> A. thaliana ecotype Landsberg erecta<br />

(Sh<strong>in</strong>omura et al., 1996). Moreover, <strong>seed</strong>s <strong>of</strong> <strong>the</strong> phyB<br />

© Blackwell Science Ltd, The Plant Journal, (1998), 13, 583–590


mutant (established by cross<strong>in</strong>g with Nossen) did not show<br />

photo-<strong>in</strong>duction <strong>of</strong> germ<strong>in</strong>ation when <strong>the</strong>y were allowed<br />

to imbibe water for 3 h (Figure 2), aga<strong>in</strong> similar to <strong>the</strong> phyB<br />

mutant <strong>of</strong> Landsberg erecta (Sh<strong>in</strong>omura et al., 1994).<br />

To determ<strong>in</strong>e whe<strong>the</strong>r an <strong>in</strong>crease <strong>of</strong> over-expressed<br />

PhyB causes an <strong>in</strong>crease or decrease <strong>in</strong> <strong>the</strong> photon fluence<br />

required for <strong>in</strong>duction <strong>of</strong> PhyB-specific germ<strong>in</strong>ation, we<br />

exam<strong>in</strong>ed <strong>the</strong> effect <strong>of</strong> various ranges <strong>of</strong> photon fluence<br />

<strong>of</strong> R (667 nm) on <strong>the</strong> photo-<strong>in</strong>duction <strong>of</strong> RBO and ABO <strong>seed</strong><br />

germ<strong>in</strong>ation. The RBO <strong>seed</strong>s showed similar sensitivity to<br />

that <strong>of</strong> WT <strong>seed</strong>s (Figure 2). In contrast, ABO <strong>seed</strong>s showed<br />

more sensitive <strong>in</strong>duction <strong>of</strong> germ<strong>in</strong>ation than that <strong>of</strong> WT;<br />

photo-<strong>in</strong>duction occurred by irradiation with a fluence<br />

higher than 7 μmol m –2 <strong>of</strong> 667 nm light and reached a<br />

maximum at a fluence <strong>of</strong> 70 μmol m –2 (Figure 2).<br />

The present results (Figure 2) toge<strong>the</strong>r with data on<br />

immunochemical detection <strong>of</strong> PHYB <strong>in</strong> <strong>seed</strong>s <strong>of</strong> RBO and<br />

ABO (Figure 1) <strong>in</strong>dicate that <strong>the</strong> higher <strong>the</strong> amount <strong>of</strong> PHYB<br />

<strong>in</strong> <strong>seed</strong>s, <strong>the</strong> less photon fluence <strong>of</strong> R required for <strong>the</strong><br />

PhyB-specific photo-<strong>in</strong>duction <strong>of</strong> <strong>seed</strong> germ<strong>in</strong>ation.<br />

Shift <strong>of</strong> effective range <strong>of</strong> wavelength <strong>in</strong> ABO<br />

In order to assess whe<strong>the</strong>r <strong>the</strong> over-expression <strong>of</strong> PHYB<br />

leads to a shift <strong>in</strong> <strong>the</strong> effective range <strong>of</strong> wavelength for<br />

<strong>in</strong>duction <strong>of</strong> germ<strong>in</strong>ation, we exam<strong>in</strong>ed <strong>the</strong> effect <strong>of</strong> various<br />

photon fluences <strong>of</strong> monochromatic light <strong>in</strong> <strong>the</strong> spectral<br />

range from 300–720 nm on germ<strong>in</strong>ation us<strong>in</strong>g <strong>the</strong> Okazaki<br />

large spectrograph. RBO showed similar sensitivity to WT<br />

at all wavelengths exam<strong>in</strong>ed (data not shown). Representative<br />

fluence–response curves for <strong>in</strong>duction <strong>of</strong> germ<strong>in</strong>ation<br />

<strong>in</strong> WT and ABO are presented <strong>in</strong> Figure 3.<br />

Based on <strong>the</strong> similarity and differences between <strong>the</strong><br />

fluence–response curves <strong>of</strong> WT and <strong>of</strong> ABO, <strong>the</strong> range <strong>of</strong><br />

wavelength was divided <strong>in</strong>to three groups. In <strong>the</strong> wavelength<br />

range 300–350 nm, both WT and ABO showed<br />

similar fluence–response curves (Figure 3). In <strong>the</strong> range<br />

400–690 nm, both reached a maximum <strong>of</strong> 100% germ<strong>in</strong>ation,<br />

but <strong>the</strong> ABO <strong>seed</strong>s germ<strong>in</strong>ated with a lower photon<br />

fluence than WT <strong>seed</strong>s (Figure 3). Wavelengths longer than<br />

690 nm showed complicated fluence–response curves.<br />

From 694 nm, <strong>the</strong> f<strong>in</strong>al germ<strong>in</strong>ation percentages <strong>of</strong> WT<br />

<strong>seed</strong>s decreased, and irradiation with monochromatic light<br />

longer than 700 nm did not <strong>in</strong>duce germ<strong>in</strong>ation with<strong>in</strong><br />

<strong>the</strong> fluence range exam<strong>in</strong>ed (less than 100 mmol m –2 )<br />

(Figure 3). In contrast, ABO <strong>seed</strong>s germ<strong>in</strong>ated to 100% by<br />

irradiation with monochromatic light from 694–700 nm<br />

(Figure 3). From 705–715 nm, <strong>the</strong> f<strong>in</strong>al germ<strong>in</strong>ation percentages<br />

<strong>of</strong> ABO <strong>seed</strong>s decreased (Figure 3), and irradiation<br />

with monochromatic light longer than 720 nm did not<br />

<strong>in</strong>duce germ<strong>in</strong>ation with<strong>in</strong> <strong>the</strong> fluence range exam<strong>in</strong>ed<br />

(less than 100 mmol m –2 , data not shown). Thus, <strong>in</strong> WT<br />

<strong>seed</strong>s, a critical threshold <strong>of</strong> response to light wavelength<br />

occurred between 700 and 705 nm. In contrast, <strong>the</strong> corres-<br />

© Blackwell Science Ltd, The Plant Journal, (1998), 13, 583–590<br />

<strong>Mode</strong> <strong>of</strong> <strong>phytochrome</strong> B <strong>action</strong> <strong>in</strong> <strong>seed</strong> germ<strong>in</strong>ation 585<br />

Figure 3. Effect <strong>of</strong> photon fluence <strong>of</strong> 300–715 nm light on <strong>in</strong>duction <strong>of</strong> PhyBdependent<br />

<strong>seed</strong> germ<strong>in</strong>ation.<br />

Representative fluence-response relationships for WT (s) and ABO (u)<br />

<strong>seed</strong>s are shown. Wavelengths are shown <strong>in</strong> each section.<br />

pond<strong>in</strong>g critical wavelength for ABO shifted <strong>in</strong> <strong>the</strong> direction<br />

<strong>of</strong> longer wavelength. An explanation for <strong>the</strong>se phenomena<br />

may relate to <strong>the</strong> photoconversion <strong>of</strong> <strong>phytochrome</strong> at<br />

photostationary state (see Discussion).<br />

Photoreversible <strong>in</strong>hibition <strong>of</strong> germ<strong>in</strong>ation <strong>in</strong> ABO<br />

To determ<strong>in</strong>e whe<strong>the</strong>r <strong>the</strong> over-expressed PHYB has any<br />

physiological effects on PhyB-specific photoreversible<br />

regulation <strong>in</strong> <strong>seed</strong>s, we exam<strong>in</strong>ed R/FR reversibility <strong>of</strong> <strong>seed</strong><br />

germ<strong>in</strong>ation <strong>in</strong> WT, ABO and RBO. All <strong>of</strong> <strong>the</strong> l<strong>in</strong>es clearly<br />

exhibited R/FR reversibility by irradiation with R<br />

(5.8 mmol m –2 ) and <strong>the</strong>n FR (18 mmol m –2 ) (data not<br />

shown). This result establishes that over-expressed PHYB<br />

does not <strong>in</strong>terfere with <strong>the</strong> R/FR reversible regulation <strong>of</strong><br />

<strong>seed</strong> germ<strong>in</strong>ation with<strong>in</strong> <strong>the</strong> photon fluence range<br />

exam<strong>in</strong>ed.


586 Tomoko Sh<strong>in</strong>omura et al.<br />

Figure 4. Effect <strong>of</strong> photon fluence <strong>of</strong> 690–820 nm on photoreversible<br />

<strong>in</strong>hibition <strong>of</strong> PhyB-dependent germ<strong>in</strong>ation.<br />

WT (s) and ABO (u) <strong>seed</strong>s were exposed to saturat<strong>in</strong>g R and subsequently<br />

irradiated with monochromatic light. Representative fluence–response<br />

relationships are shown.<br />

To assess whe<strong>the</strong>r PHYB over-express<strong>in</strong>g <strong>seed</strong>s are different<br />

from WT <strong>seed</strong>s <strong>in</strong> terms <strong>of</strong> <strong>the</strong>ir requirements for<br />

light quantity or wavelength for photoreversible <strong>in</strong>hibition<br />

<strong>of</strong> germ<strong>in</strong>ation, fluence–response curves at 690–820 nm<br />

were determ<strong>in</strong>ed (Figure 4). In <strong>the</strong> spectral range <strong>of</strong> 715–<br />

820 nm, ABO required a higher photon fluence level than<br />

WT to reverse <strong>the</strong> promotion <strong>of</strong> <strong>seed</strong> germ<strong>in</strong>ation <strong>in</strong>duced<br />

by previous irradiation with R (1.5 mmol m –2 ); for example,<br />

ABO <strong>seed</strong>s required more than 12 times greater fluence <strong>of</strong><br />

750 nm than WT <strong>seed</strong>s (Figure 4). The photoreversible<br />

<strong>in</strong>hibition <strong>of</strong> germ<strong>in</strong>ation by FR <strong>the</strong>refore required higher<br />

fluences <strong>in</strong> <strong>the</strong> case <strong>of</strong> ABO than WT, which is opposite to<br />

<strong>the</strong> case for <strong>the</strong> <strong>in</strong>duction <strong>of</strong> germ<strong>in</strong>ation by R.<br />

The effective range <strong>of</strong> light wavelengths for photoreversible<br />

<strong>in</strong>hibition <strong>of</strong> germ<strong>in</strong>ation was exam<strong>in</strong>ed. Reversibility<br />

was observed <strong>in</strong> <strong>the</strong> range <strong>of</strong> 690–820 nm for WT <strong>seed</strong>s<br />

(Figure 4). In contrast, <strong>in</strong> ABO <strong>seed</strong>s, reversibility was not<br />

observed at wavelengths shorter than 710 nm, but was<br />

observed at wavelengths longer than 715 nm (Figure 4).<br />

Thus, a critical threshold <strong>of</strong> light wavelength required for<br />

photoreversible <strong>in</strong>hibition <strong>of</strong> WT <strong>seed</strong> germ<strong>in</strong>ation was<br />

postulated between 690 and 698 nm. In contrast, <strong>the</strong> correspond<strong>in</strong>g<br />

wavelength for ABO <strong>seed</strong>s shifted to <strong>the</strong> direction<br />

<strong>of</strong> longer wavelengths between 710 nm and 715 nm. These<br />

results correlated well with <strong>the</strong> shift <strong>of</strong> <strong>the</strong> critical wavelength<br />

observed <strong>in</strong> <strong>the</strong> <strong>in</strong>duction <strong>of</strong> germ<strong>in</strong>ation (Figure 3).<br />

Discussion<br />

The present study demonstrated that <strong>the</strong> expression level<br />

<strong>of</strong> PHYB <strong>in</strong> both ABO and RBO was substantially lower <strong>in</strong><br />

<strong>seed</strong>s than <strong>in</strong> <strong>seed</strong>l<strong>in</strong>gs (Figure 1). In previous papers, <strong>the</strong><br />

PHYB expression levels <strong>in</strong> <strong>phytochrome</strong> over-express<strong>in</strong>g<br />

transgenic plants were determ<strong>in</strong>ed <strong>in</strong> <strong>the</strong> <strong>seed</strong>l<strong>in</strong>g stage<br />

<strong>of</strong> development (Boylan and Quail, 1989, 1991; Cherry<br />

et al., 1991; Kay et al., 1989; Wagner et al., 1991). In contrast,<br />

relatively little evidence has been provided for <strong>the</strong> amount<br />

<strong>of</strong> <strong>phytochrome</strong> <strong>in</strong> <strong>seed</strong>s, ei<strong>the</strong>r us<strong>in</strong>g spectrophotometric<br />

techniques (see reviews, Frankland and Taylorson, 1983;<br />

Sh<strong>in</strong>omura, 1997) or immunochemical techniques (Konomi<br />

et al., 1985, 1987). These results showed that <strong>the</strong> total<br />

amount <strong>of</strong> <strong>phytochrome</strong> <strong>in</strong> <strong>seed</strong>s is very low. Because<br />

PHYB levels <strong>in</strong> Arabidopsis are spectrophotometrically<br />

undetectable <strong>in</strong> WT <strong>seed</strong>l<strong>in</strong>gs (Wagner et al., 1991) and <strong>in</strong><br />

WT <strong>seed</strong>s (Hanzawa et al., unpublished data), only immunochemical<br />

techniques have been successful <strong>in</strong> determ<strong>in</strong><strong>in</strong>g<br />

<strong>the</strong> level <strong>of</strong> PHYB (Sh<strong>in</strong>omura et al., 1994, 1996). The<br />

differences <strong>in</strong> <strong>the</strong> PHYB expression level observed between<br />

<strong>seed</strong>s and <strong>seed</strong>l<strong>in</strong>gs (Figure 1) may be due to <strong>the</strong> differential<br />

activation <strong>of</strong> <strong>the</strong> cauliflower mosaic virus 35S promoter<br />

or <strong>the</strong> differential stability <strong>of</strong> PHYB between <strong>the</strong>se two<br />

developmental stages.<br />

Transgenic Arabidopsis l<strong>in</strong>es over-express<strong>in</strong>g PhyB are<br />

powerful tools to <strong>in</strong>vestigate <strong>the</strong> role <strong>of</strong> PhyB as <strong>the</strong>y allow<br />

<strong>the</strong> effects <strong>of</strong> changes to be studied <strong>in</strong> <strong>the</strong> absolute amount<br />

<strong>of</strong> PhyB <strong>in</strong> vivo (Wagner et al., 1991). The present study<br />

showed that over-expressed PhyB <strong>in</strong> ABO <strong>seed</strong>s functions<br />

<strong>in</strong> a similar way to <strong>the</strong> endogenous PhyB <strong>in</strong> terms <strong>of</strong> <strong>the</strong> R/<br />

FR-reversible regulation <strong>of</strong> germ<strong>in</strong>ation by brief irradiation<br />

(Figure 4). This observation is consistent with <strong>the</strong> results<br />

demonstrat<strong>in</strong>g R/FR reversibility obta<strong>in</strong>ed from <strong>the</strong> test <strong>of</strong><br />

<strong>in</strong>hibition <strong>of</strong> hypocotyl elongation growth <strong>in</strong> ABO and RBO<br />

by <strong>in</strong>termittent irradiation with R and/or FR (McCormac<br />

et al., 1993b).<br />

The present study demonstrated, for <strong>the</strong> first time, <strong>the</strong><br />

quantitative relationship between PhyB and its effect on<br />

<strong>seed</strong> germ<strong>in</strong>ation. Previous work has <strong>in</strong>vestigated <strong>the</strong><br />

photon fluence <strong>of</strong> R and FR required for <strong>seed</strong> germ<strong>in</strong>ation <strong>of</strong><br />

transgenic tobacco over-express<strong>in</strong>g oat PHYA (McCormac<br />

et al., 1993a), but that work was carried out without <strong>the</strong><br />

knowledge <strong>of</strong> <strong>the</strong> differential roles <strong>of</strong> endogenous PhyA<br />

and PhyB for <strong>seed</strong> germ<strong>in</strong>ation. In contrast, <strong>the</strong> present<br />

study demonstrated that <strong>the</strong> <strong>seed</strong>s express<strong>in</strong>g twice <strong>the</strong><br />

total amount <strong>of</strong> PHYB relative to WT (Figure 1) required<br />

© Blackwell Science Ltd, The Plant Journal, (1998), 13, 583–590


<strong>Mode</strong> <strong>of</strong> <strong>phytochrome</strong> B <strong>action</strong> <strong>in</strong> <strong>seed</strong> germ<strong>in</strong>ation 587<br />

Table 1. Photon fluence required for <strong>in</strong>duction <strong>of</strong> 50% germ<strong>in</strong>ation <strong>in</strong> <strong>the</strong> wild-type and ABO <strong>seed</strong>s, and calculated P fr/P tot ratio<br />

Wavelength T a P fr/P r ratio at photo- WT (No-0) ABO<br />

(nm) equilibrium<br />

RF a Calculated P fr/P r RF a Calculated P fr/P r<br />

(μmol m –2 ) ratio (μmol m –2 ) ratio<br />

300 0.11 0.66 c 1100 0.60 660 0.50<br />

350 0.063 0.75 c 1600 0.66 460 0.34<br />

400 0.14 0.57 c 4200 0.57 130 0.10<br />

480 0.37 0.45 c 18 000 0.43 670 0.048<br />

505 0.42 0.51 c 11 000 0.40 840 0.056<br />

530 0.46 0.68 c 2300 0.25 320 0.042<br />

550 0.49 0.80 c 1800 0.37 180 0.049<br />

610 0.55 0.89 c 170 0.26 23 0.042<br />

667 0.58 0.87 c 56 0.25 8.7 0.045<br />

680 0.58 0.80 c 64 0.21 10 0.038<br />

690 0.59 0.61 c 240 0.29 25 0.040<br />

694 0.58 0.49 c 670 0.39 37 0.039<br />

696 0.58 0.42 c 1900 0.42 41 0.035<br />

698 0.58 0.36 c 12 000 0.36 61 0.040<br />

700 0.57 0.30 c,d N b – 68 0.034<br />

705 0.62 0.18 d N b – 200 0.051<br />

710 0.62 0.102 c,d N b – 430 0.050<br />

715 0.61 0.041 d N b – N b –<br />

720 0.61 0.020 c,d N b – N b –<br />

a The required photon fluence (RF) was calculated as follows: RF � F � T, where F is <strong>the</strong> measured fluence required for <strong>in</strong>duction <strong>of</strong> 50%<br />

germ<strong>in</strong>ation based on <strong>the</strong> fluence response curves (Figures 2 and 3), and T is <strong>the</strong> transmittance <strong>of</strong> <strong>the</strong> <strong>seed</strong> coat at each wavelength.<br />

b N means that 50% germ<strong>in</strong>ation was not <strong>in</strong>duced by <strong>the</strong> maximum fluence exam<strong>in</strong>ed (1 mol m –2 ).<br />

c Manc<strong>in</strong>elli (1994).<br />

d Schäfer et al. (1975).<br />

less than one-sixth <strong>of</strong> <strong>the</strong> photon fluence for <strong>in</strong>duction <strong>of</strong><br />

PhyB-dependent germ<strong>in</strong>ation (Figures 2, 3 and Table 1).<br />

Likewise, for photoreversible <strong>in</strong>hibition <strong>of</strong> germ<strong>in</strong>ation, <strong>the</strong><br />

PhyB over-express<strong>in</strong>g <strong>seed</strong>s required more than 12 times<br />

<strong>the</strong> fluence <strong>of</strong> FR than WT (Figure 4). In addition, we<br />

demonstrated that <strong>the</strong> PhyB over-express<strong>in</strong>g <strong>seed</strong>s show<br />

a shift <strong>of</strong> <strong>the</strong> critical wavelength for PhyB-dependent<br />

germ<strong>in</strong>ation (Figures 3 and 4).<br />

These data are consistent with <strong>the</strong> hypo<strong>the</strong>sis that a<br />

certa<strong>in</strong> absolute amount <strong>of</strong> PhyB photoconverted to P fr is<br />

required for <strong>the</strong> <strong>in</strong>duction <strong>of</strong> <strong>seed</strong> germ<strong>in</strong>ation. By def<strong>in</strong>ition,<br />

PHYB over-express<strong>in</strong>g <strong>seed</strong>s conta<strong>in</strong> more P r than<br />

WT <strong>seed</strong>s; <strong>the</strong>refore, <strong>the</strong>y should require a smaller R<br />

photon fluence than WT <strong>seed</strong>s to achieve similar levels <strong>of</strong><br />

P fr for <strong>in</strong>duction <strong>of</strong> germ<strong>in</strong>ation. This is exactly what was<br />

observed <strong>in</strong> WT and ABO <strong>seed</strong>s. Likewise, <strong>in</strong> <strong>the</strong> case <strong>of</strong><br />

photoreversible <strong>in</strong>hibition <strong>of</strong> germ<strong>in</strong>ation, <strong>the</strong> PHYB overexpress<strong>in</strong>g<br />

<strong>seed</strong>s should require a larger photon fluence<br />

<strong>of</strong> FR for revers<strong>in</strong>g P fr to P r, because PHYB over-express<strong>in</strong>g<br />

<strong>seed</strong>s should conta<strong>in</strong> a larger amount <strong>of</strong> P fr than WT <strong>seed</strong>s<br />

by previous irradiation with R. Aga<strong>in</strong>, ABO <strong>seed</strong>s showed<br />

such an <strong>in</strong>creased requirement <strong>of</strong> FR photon fluence to<br />

reverse <strong>seed</strong> germ<strong>in</strong>ation.<br />

It has long been discussed whe<strong>the</strong>r <strong>the</strong> <strong>phytochrome</strong><br />

response is determ<strong>in</strong>ed by <strong>the</strong> amount <strong>of</strong> P fr or by <strong>the</strong> ratio<br />

<strong>of</strong> P fr to total <strong>phytochrome</strong> (P fr/P tot ratio). The P fr/P tot ratio<br />

© Blackwell Science Ltd, The Plant Journal, (1998), 13, 583–590<br />

is estimated as a function <strong>of</strong> light irradiance (photon<br />

fluence and wavelength) and photoconversion parameters<br />

irrespective to <strong>the</strong> absolute amount <strong>of</strong> <strong>phytochrome</strong><br />

(Schäfer et al., 1983). Relatively good correlation between<br />

response and P fr/P tot ratio have been reported for stem<br />

elongation under cont<strong>in</strong>uous irradiation <strong>of</strong> light (Morgan<br />

and Smith, 1976; Smith, 1982). Similarly, photo-<strong>in</strong>duction<br />

<strong>of</strong> <strong>seed</strong> germ<strong>in</strong>ation after brief irradiation with light has<br />

been expla<strong>in</strong>ed <strong>in</strong> relation to <strong>the</strong> P fr/P tot ratio. For example,<br />

a good correlation was reported for <strong>the</strong> germ<strong>in</strong>ation <strong>of</strong><br />

light-requir<strong>in</strong>g weed <strong>seed</strong>s (Taylorson and Borthwick, 1969)<br />

and for <strong>the</strong> germ<strong>in</strong>ation <strong>of</strong> partially light-requir<strong>in</strong>g lettuce<br />

<strong>seed</strong>s (Manc<strong>in</strong>elli, 1994). In <strong>the</strong>se previous experiments,<br />

only P fr/P tot ratios were calculated, but <strong>the</strong> absolute concentration<br />

<strong>of</strong> P fr was not measured because this measurement<br />

is difficult <strong>in</strong> <strong>seed</strong>s (Frankland and Taylorson, 1983).<br />

To determ<strong>in</strong>e whe<strong>the</strong>r <strong>the</strong> <strong>seed</strong> germ<strong>in</strong>ation data<br />

obta<strong>in</strong>ed from <strong>the</strong> present study correlate with <strong>the</strong> P fr/P tot<br />

ratios present <strong>in</strong> <strong>the</strong> <strong>seed</strong> samples used, we calculated<br />

P fr/P tot ratios from photon fluences for each data po<strong>in</strong>t<br />

at three different wavelengths (505, 667, 690 nm). These<br />

calculations were based on <strong>the</strong> photochemical parameters<br />

<strong>of</strong> PhyA (Kelly and Lagarias, 1985; Lagarias et al., 1987;<br />

Manc<strong>in</strong>elli, 1994), because PhyB has similar photochemical<br />

characteristics to PhyA (P.-S. Song, personal communication).<br />

Figure 5 shows germ<strong>in</strong>ation percentages versus


588 Tomoko Sh<strong>in</strong>omura et al.<br />

Figure 5. Relationship between calculated P fr/P tot ratios and germ<strong>in</strong>ation<br />

percentage for <strong>in</strong>duction <strong>of</strong> germ<strong>in</strong>ation <strong>in</strong> WT and ABO <strong>seed</strong>s.<br />

Data from Figures 2 and 3 were plotted as germ<strong>in</strong>ation percentages versus<br />

calculated P fr/P tot ratio. WT <strong>seed</strong>s irradiated with 505 nm (d), 667 nm (j)<br />

and 690 nm (m) and ABO <strong>seed</strong>s irradiated with 505 nm (s), 667 nm (u),<br />

690 nm (n) are shown.<br />

calculated values <strong>of</strong> P fr/P tot ratio. In <strong>the</strong>ory, <strong>the</strong> same P fr/<br />

P tot ratio given with different light wavelengths should<br />

<strong>in</strong>duce <strong>the</strong> same level <strong>of</strong> <strong>seed</strong> germ<strong>in</strong>ation, if <strong>the</strong> P fr/P tot<br />

ratio determ<strong>in</strong>es <strong>the</strong> response. This was demonstrated<br />

when <strong>the</strong> data for different wavelengths were compared<br />

with<strong>in</strong> ei<strong>the</strong>r WT <strong>seed</strong>s or ABO <strong>seed</strong>s (Figure 5). However,<br />

<strong>the</strong> germ<strong>in</strong>ation <strong>of</strong> ABO <strong>seed</strong>s was <strong>in</strong>duced at lower P fr/<br />

P tot ratio than that <strong>of</strong> WT <strong>seed</strong>s (Figure 5). This result<br />

strongly suggests that <strong>the</strong> <strong>seed</strong> germ<strong>in</strong>ation is not determ<strong>in</strong>ed<br />

by <strong>the</strong> P fr/P tot ratio itself.<br />

To analyse <strong>the</strong> difference <strong>in</strong> P fr/P tot ratio between WT<br />

and ABO at various wavelengths, <strong>the</strong> photon fluence<br />

required for 50% <strong>in</strong>duction <strong>of</strong> germ<strong>in</strong>ation were measured<br />

from Figures 2 and 3, and <strong>the</strong> correspond<strong>in</strong>g P fr/P tot ratio<br />

was estimated (Table 1). With<strong>in</strong> <strong>the</strong> wavelength range <strong>of</strong><br />

480–698 nm, 50% <strong>in</strong>duction <strong>of</strong> WT <strong>seed</strong>s was <strong>in</strong>duced by<br />

exposure to a photon fluence which is able to generate a<br />

P fr/P tot ratio <strong>of</strong> 0.21–0.43. In contrast, ABO <strong>seed</strong>s require a<br />

lower fluence which is able to generate P fr/P tot ratio <strong>of</strong><br />

0.035–0.056. These calculated values are consistent with<br />

<strong>the</strong> results <strong>in</strong> Figure 5, and confirm aga<strong>in</strong> <strong>the</strong> assertion that<br />

<strong>seed</strong> germ<strong>in</strong>ation <strong>in</strong> Arabidopsis is not simply regulated by<br />

a mechanism determ<strong>in</strong>ed exclusively by P fr/P tot ratio.<br />

The shift <strong>of</strong> <strong>the</strong> critical threshold <strong>of</strong> light wavelength for<br />

ei<strong>the</strong>r <strong>in</strong>duction or photoreversible <strong>in</strong>hibition <strong>of</strong> germ<strong>in</strong>ation<br />

between WT and ABO <strong>seed</strong>s is also understood <strong>in</strong><br />

similar terms. Theoretically, if <strong>the</strong> P fr/P tot ratio determ<strong>in</strong>es<br />

<strong>seed</strong> germ<strong>in</strong>ation, <strong>the</strong> critical threshold wavelength for<br />

<strong>in</strong>duction <strong>of</strong> germ<strong>in</strong>ation <strong>in</strong> PhyB over-express<strong>in</strong>g <strong>seed</strong>s<br />

should not change from that <strong>of</strong> WT <strong>seed</strong>s. P fr/P tot ratio is<br />

determ<strong>in</strong>ed by wavelength and photon fluence, irrespective<br />

to <strong>the</strong> absolute amount <strong>of</strong> <strong>phytochrome</strong> (Schäfer et al.,<br />

1983). However, Figures 3 and 4 showed a shift <strong>of</strong> <strong>the</strong><br />

critical wavelength <strong>in</strong> ABO <strong>seed</strong>s. WT <strong>seed</strong>s showed a<br />

critical wavelength between 700 and 705 nm which should<br />

generate a P fr/P tot ratio <strong>of</strong> approximately 0.2 <strong>in</strong> <strong>the</strong> photostationary<br />

state (Schäfer et al., 1975). In contrast, ABO<br />

<strong>seed</strong>s showed a longer critical wavelength between 715<br />

and 720 nm which generated a P fr/P tot ratio <strong>of</strong><br />

approximately 0.04 (Schäfer et al., 1975). This difference <strong>of</strong><br />

critical wavelength aga<strong>in</strong> demonstrated that <strong>the</strong> P fr/P tot<br />

ratio did not determ<strong>in</strong>e <strong>the</strong> PhyB-dependent germ<strong>in</strong>ation<br />

<strong>of</strong> Arabidopsis <strong>seed</strong>, but that a certa<strong>in</strong> absolute amount <strong>of</strong><br />

P fr was probably <strong>the</strong> determ<strong>in</strong><strong>in</strong>g factor.<br />

However, <strong>the</strong> quantitative relationship between <strong>the</strong><br />

amount <strong>of</strong> PhyB and <strong>the</strong> amount <strong>of</strong> photon fluence required<br />

for PhyB-dependent germ<strong>in</strong>ation did not show a simple<br />

proportional relationship. For example, ABO <strong>seed</strong>s (which<br />

had twice as much PHYB as WT <strong>seed</strong>s) required less than<br />

one-sixth as much R (667 nm) photon fluence for <strong>in</strong>duction<br />

<strong>of</strong> germ<strong>in</strong>ation and 12 times more FR (750 nm) photon<br />

fluence for <strong>in</strong>hibition <strong>of</strong> germ<strong>in</strong>ation relative to WT <strong>seed</strong>s.<br />

These results suggest that photoperception by <strong>the</strong> PhyB<br />

monomer molecule is not <strong>the</strong> only limit<strong>in</strong>g factor for<br />

PhyB signal transduction towards <strong>seed</strong> germ<strong>in</strong>ation. In <strong>the</strong><br />

future, measurements <strong>of</strong> <strong>the</strong> photochemical parameters <strong>of</strong><br />

PhyB <strong>in</strong> vitro, photoconversion and dark reversion k<strong>in</strong>etics<br />

<strong>of</strong> PhyB <strong>in</strong> vivo, behaviour <strong>of</strong> PhyB dimer molecules, and<br />

detection <strong>of</strong> PhyB signal transduction components are<br />

expected to provide additional <strong>in</strong>sight <strong>in</strong>to how plants<br />

perceive environmental light and adjust <strong>seed</strong> germ<strong>in</strong>ation<br />

accord<strong>in</strong>gly.<br />

Experimental procedures<br />

Plant materials<br />

Arabidopsis thaliana (L.) Heynh., ecotype Nossen, and two derivative<br />

transgenic homozygous l<strong>in</strong>es were used. The cDNA <strong>of</strong> Arabidopsis<br />

PHYB (for ABO) and rice PHYB (for RBO) were fused to <strong>the</strong><br />

cauliflower mosaic virus 35S promoter (Wagner et al., 1991). The<br />

phyB mutant <strong>seed</strong>s were obta<strong>in</strong>ed by cross<strong>in</strong>g <strong>the</strong> phyB-1 allele<br />

(ecotype Landsberg erecta) <strong>in</strong>to WT (ecotype Nossen) twice.<br />

Light treatment and germ<strong>in</strong>ation assay<br />

Seeds were surface-sterilized and sown onto 0.7% (w/v) aqueous<br />

agar medium <strong>in</strong> plastic Petri dishes <strong>in</strong> lots <strong>of</strong> 80–100 <strong>seed</strong>s each,<br />

<strong>the</strong>n immediately exposed to FR (18 mmol m –2 ), <strong>in</strong>hibit<strong>in</strong>g PhyBdependent<br />

dark germ<strong>in</strong>ation as described previously (Sh<strong>in</strong>omura<br />

et al., 1994). They were kept <strong>in</strong> total darkness for 3–9 h at 23°C<br />

before be<strong>in</strong>g transferred to <strong>the</strong> appropriate light treatment. After<br />

<strong>the</strong> light treatment, <strong>seed</strong>s were kept <strong>in</strong> darkness for 7 days at 23°C<br />

to allow germ<strong>in</strong>ation to proceed. Germ<strong>in</strong>ation was scored us<strong>in</strong>g<br />

a microscope to assess radicle emergence. To normalize experimental<br />

differences <strong>in</strong> germ<strong>in</strong>ation percentage, <strong>the</strong> relative<br />

germ<strong>in</strong>ation percentage (Rλ i) was calculated as follows: R λi �<br />

(G λi – G D)/(G R – G D), where G λi is <strong>the</strong> germ<strong>in</strong>ation percentage at<br />

each wavelength at each photon fluence, G D is <strong>the</strong> germ<strong>in</strong>ation<br />

percentage <strong>in</strong> darkness, and G R is <strong>the</strong> germ<strong>in</strong>ation percentage<br />

upon irradiation with <strong>the</strong> saturat<strong>in</strong>g fluence <strong>of</strong> R (3 mmol m –2 ).<br />

Photon fluence was plotted aga<strong>in</strong>st observed <strong>seed</strong> germ<strong>in</strong>ation at<br />

30 different wavelengths from 300 to 820 nm at <strong>in</strong>tervals <strong>of</strong> 2–<br />

50 nm. Each curve was fitted by <strong>the</strong> least-squares method. To test<br />

photoreversible <strong>in</strong>hibition <strong>of</strong> germ<strong>in</strong>ation, <strong>seed</strong>s were exposed to<br />

© Blackwell Science Ltd, The Plant Journal, (1998), 13, 583–590


saturat<strong>in</strong>g R (1.5 mmol m –2 ) and subsequently irradiated with<br />

monochromatic light. Monochromatic light was generated by <strong>the</strong><br />

Okazaki large spectrograph (Watanabe et al., 1982). The total<br />

fluence was varied by chang<strong>in</strong>g <strong>the</strong> duration (1–30 m<strong>in</strong>) and/or<br />

fluence rate (5.0 � 10 –4 to 3.5 � 10 1 μmol m –2 s –1 ) <strong>of</strong> <strong>the</strong> radiation<br />

with threshold boxes and neutral density filters (ND1–50, Hoya,<br />

Tokyo, Japan). Fluence rate was measured by a photon density<br />

meter (PFDM-200LX, Rayon Industrial, Kawasaki, Japan) or a<br />

optical power meter (<strong>Mode</strong>l 1830-C, Newport, CA, USA).<br />

P fr/P tot calculations<br />

Photon fluence irradiated was standardized to <strong>in</strong>cident fluence by<br />

<strong>the</strong> transmittance <strong>of</strong> <strong>the</strong> <strong>seed</strong> coat (%) at each wavelength measured<br />

with a microspectrophotometer (MPM800, Zeiss,<br />

Oberkochen, Germany). P fr/P tot ratios at each wavelength were<br />

calculated from <strong>the</strong> value <strong>of</strong> standardized photon fluence on <strong>the</strong><br />

basis <strong>of</strong> photoconversion k<strong>in</strong>etics <strong>of</strong> PhyA previously reported<br />

(Manc<strong>in</strong>elli, 1994; Schäfer et al., 1975).<br />

Immunochemical detection<br />

For detection <strong>of</strong> PHYB <strong>in</strong> <strong>seed</strong>s, crude extracts were prepared<br />

from about 2 � 10 3 <strong>seed</strong>s and analysed immunochemically as<br />

described previously (López-Juez et al., 1992). Seeds were homogenized<br />

after <strong>in</strong>cubation for 3 h <strong>in</strong> <strong>the</strong> dark on aqueous 0.8%<br />

(w/v) agar medium under illum<strong>in</strong>ation with a green safety lamp.<br />

Seedl<strong>in</strong>gs grown under cont<strong>in</strong>uous irradiation with white light for<br />

7 days were used. To detect Arabidopsis PHYB <strong>in</strong> extracts from<br />

ABO <strong>seed</strong>s and <strong>seed</strong>l<strong>in</strong>gs, a monoclonal antibody mBA2 (raised<br />

aga<strong>in</strong>st recomb<strong>in</strong>ant Arabidopsis PHYB) (Sh<strong>in</strong>omura et al., 1996)<br />

was used. To detect both rice PHYB and Arabidopsis PHYB <strong>in</strong><br />

extracts from RBO, a monoclonal antibody mBT4 (raised aga<strong>in</strong>st<br />

recomb<strong>in</strong>ant tobacco PHYB) (López-Juez et al., 1992) was used.<br />

To quantify <strong>the</strong> level <strong>of</strong> over-expression <strong>in</strong> comparison with WT,<br />

a dilution series <strong>of</strong> extracts from WT and ABO <strong>seed</strong>s was prepared<br />

and reacted with mBA2.<br />

Acknowledgements<br />

We thank Pr<strong>of</strong>essor P. H. Quail for provid<strong>in</strong>g plant material and<br />

for critical suggestions on <strong>the</strong> present work, Pr<strong>of</strong>essor N. Murata<br />

and Dr M. Watanabe for host<strong>in</strong>g us at <strong>the</strong> National Institute for<br />

Basic Biology (NIBB), Drs J. Reed and J. Jelesko for useful<br />

comments and discussion, M. Kubota for assistance with <strong>the</strong><br />

operation <strong>of</strong> <strong>the</strong> Okazaki large spectrograph, R. Katayanagi for<br />

assistance with plant cultivation, and F. Tsunekawa for measur<strong>in</strong>g<br />

<strong>the</strong> transmittance <strong>of</strong> <strong>the</strong> <strong>seed</strong> coat. The work was supported <strong>in</strong><br />

part by a grant from <strong>the</strong> Program for Promotion <strong>of</strong> Basic Research<br />

Activity for Innovative Biosciences to M.F. The experiments were<br />

partly carried out under HARL projects B2018 and B2023 and NIBB<br />

Cooperative Research Programs for OLS 95–528 and 96–522.<br />

References<br />

Abe, H., Takio, K., Titani, K. and Furuya, M. (1989) Am<strong>in</strong>o-term<strong>in</strong>al<br />

am<strong>in</strong>o acid sequences <strong>of</strong> pea <strong>phytochrome</strong> II fragments obta<strong>in</strong>ed<br />

by limited proteolysis. Plant Cell Physiol. 30, 1089–1097.<br />

Borthwick, H.A., Hendricks, S.B., Parker, M.W., Toole, E.H. and<br />

Toole, V.K. (1952) A reversible photore<strong>action</strong> controll<strong>in</strong>g <strong>seed</strong><br />

germ<strong>in</strong>ation. Proc. Natl Acad. Sci. USA, 38, 662–666.<br />

Borthwick, H.A., Hendricks, S.B., Toole, E.H. and Toole, V.K. (1954)<br />

© Blackwell Science Ltd, The Plant Journal, (1998), 13, 583–590<br />

<strong>Mode</strong> <strong>of</strong> <strong>phytochrome</strong> B <strong>action</strong> <strong>in</strong> <strong>seed</strong> germ<strong>in</strong>ation 589<br />

Action <strong>of</strong> light on lettuce-<strong>seed</strong> germ<strong>in</strong>ation. Bot. Gaz. 115,<br />

205–225.<br />

Boylan, M.T. and Quail, P.H. (1989) Oat <strong>phytochrome</strong> is biologically<br />

active <strong>in</strong> transgenic tomatoes. Plant Cell, 1, 765–773.<br />

Boylan, M.T. and Quail, P.H. (1991) Phytochrome A overexpression<br />

<strong>in</strong>hibits hypocotyl elongation <strong>in</strong> transgenic Arabidopsis. Proc.<br />

Natl Acad. Sci. USA, 88, 10806–10810.<br />

Butler, W.L., Norris, K.H., Siegelman, H.W. and Hendricks, S.B.<br />

(1959) Detection, assay, and prelim<strong>in</strong>ary purification <strong>of</strong> <strong>the</strong><br />

pigment controll<strong>in</strong>g photoresponsive development <strong>of</strong> plants.<br />

Proc. Natl Acad. Sci. USA, 45, 1703–1708.<br />

Butler, W.L., Hendricks, S.B. and Siegelman, H.W. (1964) Action<br />

spectra <strong>of</strong> <strong>phytochrome</strong> <strong>in</strong> vitro. Photochem. Photobiol. 3,<br />

521–528.<br />

Cherry, J.R., Hershey, H.P. and Vierstra, R.D. (1991) Characterization<br />

<strong>of</strong> tobacco express<strong>in</strong>g functional oat <strong>phytochrome</strong>. Plant<br />

Physiol. 96, 775–785.<br />

Clack, T., Ma<strong>the</strong>ws, S. and Sharrock, R.A. (1994) The <strong>phytochrome</strong><br />

apoprote<strong>in</strong> family <strong>in</strong> Arabidopsis is encoded by five genes: <strong>the</strong><br />

sequences and expression <strong>of</strong> PHYD and PHYE. Plant Mol. Biol.<br />

25, 413–427.<br />

Frankland, B. and Taylorson, R. (1983) Light control <strong>of</strong> <strong>seed</strong><br />

germ<strong>in</strong>ation. In Photomorphogenesis, Encyclopedia <strong>of</strong> Plant<br />

Physiology, New Series, Volume 16A (Shropshire, W. Jr and<br />

Mohr, H., eds). Berl<strong>in</strong>: Spr<strong>in</strong>ger Verlag, pp. 428–456.<br />

Furuya, M. (1989) Molecular properties and biogenesis <strong>of</strong><br />

<strong>phytochrome</strong> I and II. Adv. Biophys. 25, 133–167.<br />

Furuya, M. (1993) Phytochromes: <strong>the</strong>ir molecular species, gene<br />

families, and functions. Annu. Rev. Plant Physiol. Plant Mol.<br />

Biol. 44, 617–645.<br />

Furuya, M. and Schäfer, E. (1996) Photoperception and signall<strong>in</strong>g<br />

<strong>of</strong> <strong>in</strong>duction re<strong>action</strong> by different <strong>phytochrome</strong>s. Trends Plant<br />

Sci. 1, 301–307.<br />

Hendricks, S.B. and Borthwick, H.A. (1967) The function <strong>of</strong><br />

<strong>phytochrome</strong> <strong>in</strong> regulation <strong>of</strong> plant growth. Proc. Natl Acad.<br />

Sci. USA, 58, 2125–2130.<br />

Hillman, W.S. (1967) The physiology <strong>of</strong> <strong>phytochrome</strong>. Annu. Rev.<br />

Plant Physiol. 18, 301–324.<br />

Kay, S.A., Nagatani, A., Keith, B., Deak, M., Furuya, M. and Chua,<br />

N.-H. (1989) Rice <strong>phytochrome</strong> is biologically active <strong>in</strong> transgenic<br />

tobacco. Plant Cell, 1, 775–782.<br />

Kelly, J.M. and Lagarias, J.C. (1985) Photochemistry <strong>of</strong> 124kilodalton<br />

Avena <strong>phytochrome</strong> under constant illum<strong>in</strong>ation<br />

<strong>in</strong> vitro. Biochemistry, 24, 6003–6010.<br />

Kle<strong>in</strong>, W.H., Edwards, J.L. and Shropshire, W. Jr (1967)<br />

Spectrophotometric measurements <strong>of</strong> <strong>phytochrome</strong> <strong>in</strong> vivo and<br />

<strong>the</strong>ir correlation with photomorphogenic responses <strong>of</strong><br />

Phaseolus. Plant Physiol. 42, 264–270.<br />

Konomi, K., Nagatani, A. and Furuya, M. (1985) Phytochrome<br />

syn<strong>the</strong>sis dur<strong>in</strong>g imbibition <strong>in</strong> embryonic axes <strong>of</strong> Pisum sativum<br />

L. Photochem. Photobiol. 42, 649–653.<br />

Konomi, K., Abe, H. and Furuya, M. (1987) Changes <strong>in</strong> <strong>the</strong> content<br />

<strong>of</strong> <strong>phytochrome</strong> I and II apoprote<strong>in</strong>s <strong>in</strong> embryonic axes <strong>of</strong> pea<br />

<strong>seed</strong>s dur<strong>in</strong>g imbibition. Plant Cell Physiol. 28, 1443–1451.<br />

Kunkel, T., Tomizawa, K.-I., Kern, R., Furuya, M., Chua, N.-H. and<br />

Schäfer, E. (1993) In vitro formation <strong>of</strong> a photoreversible adduct<br />

<strong>of</strong> phycocyanobil<strong>in</strong> and tobacco apo<strong>phytochrome</strong> B. Eur.<br />

J. Biochem. 215, 587–594.<br />

Lagarias, J.C., Kelly, J.M., Cyr, K.L. and Smith, W.O. Jr (1987)<br />

Comparative photochemical analysis <strong>of</strong> highly purified 124<br />

kilodalton oat and rye <strong>phytochrome</strong>s <strong>in</strong> vitro. Photochem.<br />

Photobiol. 46, 5–13.<br />

López-Juez, E., Nagatani, A., Tomizawa, K.-I., Deak, M., Kern,<br />

R., Kendrick, R.E. and Furuya, M. (1992) The cucumber long


590 Tomoko Sh<strong>in</strong>omura et al.<br />

hypocotyl mutant lacks a light-stable PHYB-like <strong>phytochrome</strong>.<br />

Plant Cell, 4, 241–251.<br />

McCormac, A.C., Smith, H. and Whitelam, G.C. (1993a)<br />

Photoregulation <strong>of</strong> germ<strong>in</strong>ation <strong>in</strong> <strong>seed</strong> <strong>of</strong> transgenic l<strong>in</strong>es <strong>of</strong><br />

tobacco and Arabidopsis which express an <strong>in</strong>troduced cDNA<br />

encod<strong>in</strong>g <strong>phytochrome</strong> A or <strong>phytochrome</strong> B. Planta, 191, 386–<br />

393.<br />

McCormac, A.C., Wagner, D., Boylan, M.T., Quail, P.H., Smith,<br />

H. and Whitelam, G.C. (1993b) Photoresponses <strong>of</strong> transgenic<br />

Arabidopsis <strong>seed</strong>l<strong>in</strong>gs express<strong>in</strong>g <strong>in</strong>troduced <strong>phytochrome</strong> Bencod<strong>in</strong>g<br />

cDNAs: evidence that <strong>phytochrome</strong> A and<br />

<strong>phytochrome</strong> B have dist<strong>in</strong>ct photoregulatory functions. Plant<br />

J. 4, 19–27.<br />

Manc<strong>in</strong>elli, A.L. (1994) The physiology <strong>of</strong> <strong>phytochrome</strong> <strong>action</strong>. In<br />

Photomorphogenesis <strong>in</strong> Plants, 2nd edn (Kendrick, R.E. and<br />

Kronenberg, G.H.M., eds). Dordrecht, The Ne<strong>the</strong>rlands: Kluwer<br />

Academic Publishers, pp. 211–269.<br />

Mohr, H. and Shropshire, W. Jr (1983) An <strong>in</strong>troduction to<br />

photomorphogenesis for <strong>the</strong> general reader. In<br />

Photomorphogenesis, Encyclopedia <strong>of</strong> Plant Physiology, New<br />

Series, Volume 16A (Shropshire, W. Jr and Mohr, H., eds).<br />

Berl<strong>in</strong>: Spr<strong>in</strong>ger Verlag, pp. 24–38.<br />

Morgan, D.C. and Smith, H. (1976) L<strong>in</strong>ear relationship between<br />

<strong>phytochrome</strong> photoequilibrium and growth <strong>in</strong> plants under<br />

simulated natural radiation. Nature, 262, 210–211.<br />

Quail, P.H., Boylan, M.T., Parks, B.M., Short, T.W., Xu, Y. and<br />

Wagner, D. (1995) Phytochromes: photosensory perception and<br />

signal transduction. Science, 268, 675–680.<br />

Schäfer, E., Lassig, T.-U. and Schopfer, P. (1975) Photocontrol <strong>of</strong><br />

<strong>phytochrome</strong> destruction <strong>in</strong> grass <strong>seed</strong>l<strong>in</strong>gs. The <strong>in</strong>fluence <strong>of</strong><br />

wavelength and irradiance. Photochem. Photobiol. 22, 193–202.<br />

Schäfer, E., Fukshansky, L. and Shropshire, W. Jr (1983) Action<br />

spectroscopy <strong>of</strong> photoreversible pigment systems. In<br />

Photomorphogenesis, Encyclopedia <strong>of</strong> Plant Physiology, New<br />

Series, Volume 16A (Shropshire, W. Jr and Mohr, H., eds).<br />

Berl<strong>in</strong>: Spr<strong>in</strong>ger Verlag, pp. 39–68.<br />

Sharrock, R.A. and Quail, P.H. (1989) Novel <strong>phytochrome</strong><br />

sequences <strong>in</strong> Arabidopsis thaliana: structure, evolution, and<br />

differential expression <strong>of</strong> a plant regulatory photoreceptor<br />

family. Genes Devel. 3, 1745–1757.<br />

Sh<strong>in</strong>omura, T. (1997) Phytochrome regulation <strong>of</strong> <strong>seed</strong> germ<strong>in</strong>ation.<br />

J. Plant Res. 110, 151–161.<br />

Sh<strong>in</strong>omura, T., Nagatani, A., Chory, J. and Furuya, M. (1994)<br />

The <strong>in</strong>duction <strong>of</strong> <strong>seed</strong> germ<strong>in</strong>ation <strong>in</strong> Arabidopsis thaliana is<br />

regulated pr<strong>in</strong>cipally by <strong>phytochrome</strong> B and secondarily by<br />

<strong>phytochrome</strong> A. Plant Physiol. 104, 363–371.<br />

Sh<strong>in</strong>omura, T., Nagatani, A., Hanzawa, H., Kubota, M., Watanabe,<br />

M. and Furuya, M. (1996) Action spectra for <strong>phytochrome</strong> A- and<br />

B-specific photo<strong>in</strong>duction <strong>of</strong> <strong>seed</strong> germ<strong>in</strong>ation <strong>in</strong> Arabidopsis<br />

thaliana. Proc. Natl Acad. Sci. USA, 93, 8129–8133.<br />

Smith, H. (1982) Light quality, photoperception, and plant strategy.<br />

Annu. Rev. Plant Physiol. 33, 481–518.<br />

Somers, D.E. and Quail, P.H. (1995) Temporal and spatial<br />

expression patterns <strong>of</strong> PHYA and PHYB genes <strong>in</strong> Arabidopsis.<br />

Plant J. 7, 413–427.<br />

Taylorson, R.B. and Borthwick, H.A. (1969) Light filtration by foliar<br />

canopies: significance for light-controlled weed <strong>seed</strong><br />

germ<strong>in</strong>ation. Weed Sci. 17, 48–51.<br />

Wagner, D., Teppermen, J.M. and Quail, P.H. (1991) Overexpression<br />

<strong>of</strong> <strong>phytochrome</strong> B <strong>in</strong>duces a short hypocotyl phenotype <strong>in</strong><br />

transgenic Arabidopsis. Plant Cell, 3, 1275–1288.<br />

Watanabe, M., Furuya, M., Miyoshi, Y., Inoue, Y., Iwahashi, I. and<br />

Matsumoto, K. (1982) Design and performance <strong>of</strong> <strong>the</strong> Okazaki<br />

large spectrograph for photobiological research. Photochem.<br />

Photobiol. 36, 491–498.<br />

We<strong>in</strong>traub, R.L. and Price, L. (1947) Developmental physiology <strong>of</strong><br />

<strong>the</strong> grass <strong>seed</strong>l<strong>in</strong>g. II. Inhibition <strong>of</strong> mesocotyl elongation <strong>in</strong><br />

various grasses by red and by violet light. Smithsonian<br />

Miscellaneous Collections 106 (21), 1–15.<br />

© Blackwell Science Ltd, The Plant Journal, (1998), 13, 583–590

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!