23.12.2012 Views

n - Fachhochschule Jena

n - Fachhochschule Jena

n - Fachhochschule Jena

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Fachhochschule</strong> <strong>Jena</strong><br />

Fachbereich ET/IT – Studiengang Mechatronik<br />

Vorlesung Sensorik<br />

Faseroptische Sensoren (FOS)<br />

Prof. Dr. Reinhardt Willsch und Dr. Wolfgang Ecke<br />

Institut für Photonische Technologien (IPHT) <strong>Jena</strong>, Germany<br />

Arbeitsgruppe Faseroptische Systeme (e-mail: willsch@ipht-jena.de)<br />

� Physikalisch-technische Wirkprinzipien, faseroptische Komponenten<br />

� Multimode-FOS – intensitäts- und spektral-moduliert<br />

� Monomode-FOS – Interferometrie, Polarimetrie<br />

� Verteilte Sensorsysteme – OTDR-Technik, Raman & Brillouin-Rückstreuung<br />

� Fasergitter-Sensoren – Sensornetzwerke, Multiplextechniken<br />

� Anwendungen – Prozesskontrolle, Energietechnik, Transporttechnik uva.<br />

� Ausblick – biochemische Anwendungen, Marktentwicklung<br />

FOS - 1


Komponenten faseroptischer Sensoren (I)<br />

Lichtquellen und -detektoren (optoelektronische Bauelemente):<br />

- LED und Laserdioden auf GaAlAs-Basis für den sichtbaren und nahen IR-<br />

Spektral-bereich (z.B. 780 nm-Laserdioden der CD-Technik)<br />

- Miniatur-Glühstrahler als breitbandige Quellen (z.B. Halogen-Lampen)<br />

- spezielle Lichtquellen wie Superlumineszenzdioden (für Fasergyroskope),<br />

durchstimmbare Laser, Laserdioden-gepumpte Faserlaser u.a.<br />

- Si-Photodioden und Dioden-Arrays, CCD-Zeilen u.a. Photodetektoren<br />

FOS - 2


Komponenten faseroptischer Sensoren (II)<br />

Lichtwellenleiter:<br />

- Multimodenfasern (Stufen- oder Gradientenindex)<br />

- Monomodefasern (normal oder hochdoppelbrechend mit<br />

polarisationserhaltenden Eigenschaften)<br />

- Fasern mit speziellen Dotierungen (z.B. Seltene Erden) oder Überzügen<br />

(Metalle, magnetostriktive oder piezoelektrische Materialien u.a.)<br />

- Fasern aus Spezialgläsern (IR-durchlässige Chalkogenid- oder<br />

Fluoridglasfasern, poröse Borosilikatglasfasern u.a.) oder optisch<br />

transparente Polymere<br />

- Fasern mit hoher numerischer Apertur, mit Mehrfachkern oder spezieller<br />

Kern- bzw. Mantelgeometrie, Faserbündel, u.a.<br />

FOS - 3


Komponenten faseroptischer Sensoren (III)<br />

Miniaturisierte optische Bauelemente und Verbindungstechnik:<br />

- passive BE wie Koppler/Strahlteiler, Polarisatoren, Filter/Multiplexer, Linsen<br />

u.a.<br />

- aktive BE wie Modulatoren für Intensität, Phase, Polarisation oder<br />

Frequenz u.a.<br />

=> Faseroptik, Integrierte Optik oder Mikrooptik sowie Kombination<br />

verschiedener Mikrotechnologien und Aufbau- und Verbindungstechniken -><br />

Mikrosystemtechnik<br />

=> Mikromechanik (z.B. in Si geätzte V-Nuten zur Faserpositionierung oder<br />

Mikroresonatoren, -membranen u.a. als Sensorelemente)<br />

FOS - 4


Mikromechanische Silizium-Komponenten<br />

für die Fasersensorik<br />

Sensorelement mit 2 Spiegeln für<br />

faseroptische Transmissionssensoren<br />

(Lichtschranken, Absorption bzw.<br />

Streuung in Gasen oder Flüssigkeiten<br />

Sensorelement mit reflektierender<br />

Zunge für faseroptische Vibrationsbzw.<br />

Beschleunigungssensoren<br />

FOS - 5


Typen von Lichtleitfasern<br />

Querschnitt Brechzahl- Eingangs- Wellenausbreitung Ausgangs-<br />

Profil Impuls Impuls<br />

FOS - 6


Advantages of Optical Fiber Sensors<br />

� Immunity against / applicable in<br />

- Strong electromagnetic fields, high voltage<br />

- Explosive or chemically aggressive & corrosive media<br />

- Nuclear / ionizing radiation environment<br />

- High temperature<br />

� Highly sensitive, miniaturized, flexible and lightweight (nano-probes)<br />

� Low-loss and non-interfering signal transmission (remote sensing)<br />

� Multiplexing capability, compatible to optical communication<br />

(sensor networks)<br />

� Embedding in composite materials (smart structures)<br />

FOS - 7


Photo:<br />

CFRP with Embedded Fiber-optic<br />

Strain Sensors<br />

A vision is becoming reality:<br />

Smart Structures with integrated “nervous system”<br />

Laminated carbon fiber reinforced polymer (CFRP) composite material<br />

containing embedded sensing optical glass fiber (Bragg grating array)<br />

FOS - 8


Basic Fiber Sensor Configurations<br />

Single-point sensor Optical fiber<br />

Multi-point (quasi-distributed) sensor<br />

Distributed sensor<br />

Continuous sensing element<br />

Sensing element<br />

Multiple sensing points<br />

FOS - 9


Häufig verwendete Messeffekte<br />

Extrjnsische Multimoden-Fasersensoren:<br />

- Reflexion am Lichtleiterende (bewegliche Spiegel, reflektierende Membranen u.a.)<br />

- Transmission zwischen zwei Lichtleitfasern (bewegliche Masken, Streuung an Teilchen u.a).<br />

- Photolumineszenz (Temperaturabhängigkeit der spektralen Intensitätsverteilung & Abklingzeit)<br />

Intrinsische Multimoden-Fasersensoren:<br />

- Mikrobiegung; Makrobiegung<br />

- Streu-, Absorptions- und Fluoreszenzprozesse in speziell dotierten Fasern bzw. durch<br />

Materialdefekte (Kernstrahlung u.a.).<br />

Interferometrische Fasersensoren:<br />

- Längenänderungen: Thermische Dehnung, mechanische Spannung, Magneto- & Elektrostriktion<br />

- Brechzahländerungen: Thermooptischer Effekt, Photoelastischer Effekt, Magneto- &<br />

elektrooptische Effekte<br />

Polarimetrisehe Fasersensoren:<br />

Änderungen der Doppelbrechung: mechanisch induzierte Doppelbrechung (elastooptischer Effekt),<br />

Faradayeffekt (magnetooptischer Effekt), Pockelseffekt (elektrooptlscher Effekt),<br />

Weitere wichtige Messeffekte:<br />

- der relativistische Sagnac-Effekt<br />

- nichtlineare Streuprozesse (Raman- oder Brillouin-Streuung)<br />

FOS - 10


Optical Fiber Sensors: Measurands<br />

• distance, position, displacement, deformation, strain<br />

• temperature<br />

• pressure, force<br />

• refractive index, liquid level, flow velocity<br />

• rotation rate<br />

• vibration<br />

• magnetic, electric and acoustic fields<br />

• electric current, voltage<br />

• nuclear radiation<br />

• chemical parameters<br />

• biochemical reactions<br />

and other<br />

FOS - 11


Optical Fiber Sensors:<br />

Basic Principle & Scheme<br />

Measurand X modulates (encodes) a parameter P of light guided in the fiber:<br />

E x,y (z,t) = A cos (ωt - kz+δ)<br />

• Intensity / amplitude A<br />

• Wavelength /spectral distribution λ = c 2π / ω<br />

• Optical phase δ<br />

• Polarization E x / E y<br />

• Time dependence t (pulse delay, fluorescence decay, modulation frequency,...)<br />

light source<br />

power supply<br />

transmitting fiber receiving fiber<br />

P o<br />

sensitive<br />

element<br />

(transducer)<br />

Measurand X<br />

P(x)<br />

optoelectronic<br />

detector<br />

S(x)<br />

electronic<br />

signal processing<br />

FOS - 12


Optical Fiber Sensors:<br />

Basic Signal Encoding & Processing Concepts<br />

� Intensity-modulated sensors<br />

- low-cost and simple technical solutions<br />

- poor accuracy & stability (influence of light-source intensity, fiber losses, ..)<br />

→ reference channel ( 2 wavelengths, spectral photometry, ... )<br />

- applications in automation & control (on-off sensors), medicine, and other<br />

� Phase-modulated interferometric sensors<br />

- high-sensitive but expensive and sophisticated technical solutions (e.g. fiber gyro)<br />

- cross-sensitivities ( temperature, ... )<br />

- applications in precision measurement, military (fiber hydrophones), seismic sensing<br />

� Spectral-encoded sensors<br />

- potential for cost-efficient high-performance technical sensors (FBG sensor systems, biochemical<br />

sensing,.) using standard optoelectronic signal processing (mini-spectrometers)<br />

- long-term stability, reproducibility and reliability<br />

- interchangeability (calibration by absolutely defined wavelength scale)<br />

- applications in industrial process control, environmental and structural monitoring, bio-medicine<br />

FOS - 13


Optical Fiber Sensor Systems and their Application<br />

• Intensity-modulated optical fiber sensors<br />

FOS - 14


Principle of Reflective Displacement Sensor<br />

a) 1 fiber + fiber coupler b) 2 parallel fibers<br />

Source, I 0<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

L<br />

2R f<br />

Detector, I(L)<br />

I(L) ~ I 0 ·[R f /(R f + L·NA) ]²<br />

NA=0,25<br />

NA=0,15<br />

0 2 4 6 8 10<br />

L/R f<br />

L<br />

Characteristics<br />

depend on<br />

- Numer. Aperture<br />

- fiber radius<br />

- fiber distance<br />

0 2,5 L/mm 5<br />

FOS - 15


Example of an Intensity Sensor:<br />

Diaphragm Pressure Sensor<br />

Pressure, displacement, etc.<br />

Curves A, B, C:<br />

A: step index B: graded index C: 2 fibres<br />

FOS - 16


Application:<br />

Medical In-vivo Brain Pressure Sensor<br />

Fa. Camino/USA<br />

FOS - 17


Fiber-Optic Medical In-vivo<br />

Brain Pressure Sensing<br />

Fa. Camino/USA<br />

FOS - 18


Fiber-Optic Medical In-vivo<br />

Heart Pressure Sensing<br />

Fa. Camino/USA<br />

FOS - 19


Principle of Micro-Bending Fiber-Optic Sensors<br />

Optical transmission losses (leaky modes) caused by periodic fiber bending<br />

Interference of core modes and cladding modes:<br />

Core modes (e.g., n eff = n c ) ⇒ Cladding modes (e.g., n eff = n cl )<br />

Max. sensitivity (losses) at optimal bending period L opt :<br />

(L opt ) -1 = ( λ / n c ) -1 – ( λ / n cl ) -1<br />

L opt mechanical transducer<br />

Cladding, n cl<br />

Core, n c<br />

Example:<br />

n c = 1,460<br />

n cl = 1,459<br />

λ = 0,8 µm<br />

L opt = 0,8 mm<br />

FOS - 20


Technical Micro-Bending Fiber-Optic Sensors<br />

force, pressure<br />

strain<br />

metal wire coiled on optical glass<br />

fiber with optimal bending period<br />

→ distributed intrusion detectors<br />

(Felten&Guilleaume; Herga)<br />

"Optical Strand" strain sensor<br />

(OSMOS DEHA-COM)<br />

FOS - 21


Application of Micro-Bending Sensors:<br />

Structure Monitoring in Civil Engineering<br />

Network of 56 "Optical Strand" fiber-optic micro-bending strain sensors for<br />

structure health monitoring of soccer stadium "Stade de France"<br />

in St. Denis/Paris (OSMOS DEHA-COM GmbH Cologne)<br />

FOS - 22


Optical Fiber Sensor Systems and their Application<br />

• Thin-film Fabry-Perot based extrinsic fiber sensors<br />

FOS - 23


I 0<br />

I R<br />

d, n<br />

Extrinsic Spectrally-Encoded FOS<br />

Using Thin-Film Fabry-Perot Transducers<br />

I T<br />

Partially reflecting mirrors<br />

I R<br />

Λ min~ d, n<br />

Grating<br />

LED<br />

Free Spectral Range > LED spectral width !<br />

λ<br />

Polychromator<br />

CCD line<br />

detector<br />

1 mm<br />

LWL<br />

Fabry-Perot probe<br />

n H<br />

n Low<br />

FOS - 24


Porous Transducer Layers on<br />

Fiber End-Face: Humidity Sensor<br />

Nano-porous thin-film transducer Reflection spectra<br />

H 2 O vapor<br />

Optical fiber<br />

∅≈200 µm<br />

Reflectivity<br />

Wavelength [nm]<br />

1,0<br />

0,5<br />

H 2 0 filled pores<br />

Dry pores<br />

0,0<br />

600 700 800 900 1000<br />

Wavelength [nm]<br />

812<br />

802<br />

792<br />

-90<br />

Sensor characteristic<br />

-60 -30 0 30<br />

Dew point [°C]<br />

FOS - 25


Fiber-Optic Humidity Sensor: Applications<br />

• On-line measurement of residual humidity in gases (natural gas, purified<br />

gases) and in organic liquids<br />

• Measuring range<br />

Dew Point T DP = - 80 °C…+20 °C<br />

= partial pressure p(H 2O) = 10 -2 …10 3 Pa<br />

Natural gas drying station<br />

(German Verbundnetz Gas AG)<br />

Hygrometer (BARTEC GmbH)<br />

Sensor<br />

FOS - 26


T-sensitive Transducer Layers:<br />

Temperature Sensor<br />

• Measuring range: T = -196 °C .. +600 °C (laser micro-welded mounting)<br />

• Resolution: 0,2 %<br />

• Application: gas industry, explosive media,<br />

high-voltage, high-frequency & micro-wave facilities<br />

Typical sensor characteristic<br />

Wavelength [nm]<br />

850<br />

840<br />

830<br />

820<br />

810<br />

800<br />

790<br />

-100 0 100 200 300 400 500 600<br />

Temperature [°C]<br />

Sensor sample<br />

1 cm<br />

FOS - 27


Silicon Micro-Membrane Cavity on<br />

Fiber End-Face: Pressure Sensor<br />

• Measuring ranges: p = 0…1,5 bar…15 bar…50 bar…150 bar<br />

• Resolution: 0,5%<br />

• Application: gas industry, engines, medical engineering, ..<br />

Typical sensor characteristics<br />

Membrane bending [nm]<br />

800<br />

600<br />

400<br />

200<br />

0..1.5 Bar<br />

Measuring range<br />

limited by width of<br />

LED spectrum<br />

0..15 Bar<br />

0..50 Bar<br />

0..150 Bar<br />

0<br />

0 10 20 30 40 50 60<br />

Pressure [Bar]<br />

Sensor sample<br />

Membrane array fabricated on Si wafer<br />

Etched silicon membrane<br />

Anodically bonded<br />

sensor element<br />

Glass substrate<br />

Capillary,<br />

fiber inside<br />

FOS - 28


Optical Fiber Sensor Systems and their Application<br />

• Spectrally encoded sensors<br />

FOS - 29


Fiber-Optic Medical In-vivo<br />

Blood Oxygen Sensing<br />

FOS - 30


Schema: Fa. Asea<br />

Photolumineszenz-Temperatursensor<br />

Wirkprinzip:<br />

Temperaturabhängigkeit<br />

der spektralen<br />

Intensitätsverteilung der<br />

Photolumineszenz eines<br />

GaAlAs-Kristalls<br />

Messprinzip:<br />

2-Wellenlängen-<br />

Verfahren<br />

(Streckenneutralität!)<br />

FOS - 31


Sensorelement Saphirfaser Kollimator Strahlteiler Filter PD Division<br />

Al 2 O 3 - Iridium-<br />

Schutz- Strahler-<br />

Schicht -Schicht<br />

Hochtemperatursensor mit<br />

schwarzem Strahler<br />

λ 2<br />

λ 1<br />

λ 1<br />

λ 2<br />

Strahler-Charakteristik:<br />

E λ δλ=C 1/λ 5 ·[exp(C 2/λT)-1] -1 δλ<br />

C1 = 1,17 W·m²/s<br />

C2 = 0,144 K·m<br />

Sensorauswertung:<br />

T ~ I(λ 1)/I(λ 2)<br />

FOS - 32


Transmissivity<br />

UV Fiber Evanescent Field<br />

Absorption Spectroscopy (EFAS) Sensors<br />

In-situ monitoring of organic pollution (BTEX, PAK) in water, soil or in<br />

atmosphere using sensitive (permeable) optical polymer fiber cladding<br />

1,0<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

Xylene<br />

Toluene<br />

Benzene<br />

Petrol<br />

Naphta<br />

250 300 350 400 450<br />

Wavelength [nm]<br />

Claddin<br />

Analyte g<br />

(air,<br />

water)<br />

BTEX (Benzene, Toluene, Ethylbenzene, Xylene)<br />

spectra in water<br />

BTEX detection limits in air<br />

Substance<br />

Detection limit<br />

(ml/m 3 )<br />

Max. allowed<br />

concentration<br />

Benzene 3 1<br />

Toluene 10 50<br />

Xylene 10 100<br />

FOS - 33


UV-EFAS Fiber-Optic<br />

Hydrocarbon Pollution Sensor<br />

• Sensor fiber: ∅ 200 µm silica core / 20 µm thick PDMS cladding (length 1 m)<br />

• Light source: Xe flash lamp<br />

• Spectrometer: MMS (Carl Zeiss), UV MINOS (IPHT)<br />

Scheme<br />

Control unit<br />

Battery<br />

Sensor fiber<br />

Power supply<br />

Sensor probe<br />

Fiber cable<br />

UV-Spectrometer<br />

UV lamp<br />

Test instrumentation<br />

for soil monitoring<br />

FOS - 34


Fiber-Optic UV Absorption Sensing of BTEX Pollution in Water:<br />

Long-Time Field Test in Groundwater Remediation Facility<br />

Transmission<br />

1,0<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

0,0<br />

Partner:<br />

DBI Gas- und<br />

Umwelttechnik<br />

GmbH Leipzig<br />

Benzene<br />

Toluene<br />

Xylene<br />

Gasoline<br />

Diesel oil<br />

250 300 350 400 450<br />

Wavelength [nm]<br />

Fiber<br />

coil<br />

FOS - 35


Fiber-Optic Hydrocarbon Sensors:<br />

Application<br />

Calibration of UV spectral sensor using<br />

standard BTEX test liquid:<br />

50% Benzene, 30% Toluene,<br />

5% Ethylbenzene, 15% Xylene,<br />

diluted per 1 l water:<br />

Wavelength [nm]<br />

Application (example):<br />

In-situ filter process control<br />

in a groundwater remediation<br />

facility (Lauchhammer, Sax.)<br />

FOS - 36


Spectral In-situ Nutrient Analysis in Inland<br />

and Sea Water<br />

Analytes ranges Analytical methods Measurement<br />

Nitrate UV spectrophotometer 0,5 – 150 µmol/l NO 3 -<br />

o-Phosphate FIA with fluorescence detection 0,05 –5 µmol/l PO 4 3 -<br />

Ammonium FIA with fluorescence detection 0,1 – 20 µmol/l NH 4 +<br />

Sea-test on board of the ferry „Duchess of Scandinavia“ :<br />

Measurement of Nitrate concentration profile in the North Sea<br />

Ferry route<br />

Harwich (GB)-Cuxhaven (D)<br />

NO 3 -N [µg/l]<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

Harwich<br />

harbour<br />

Elbe<br />

estuary<br />

0 2 4 6 8 12 14 16 18<br />

Journey tim e [h]<br />

Measuring data: Institute for Costal Research, GKSS, 01.06/02.06.2006<br />

FOS - 37


Optical Fiber Sensor Systems and their Application<br />

• Single mode fiber sensors - interferometric sensors<br />

FOS - 38


Laser<br />

Principle of Michelson Interferometer<br />

Linearly<br />

polarised<br />

laser mode<br />

Beam<br />

combining<br />

∆φ = (4π/λ0)·(n∆L+L∆n) ·2<br />

Photo<br />

detector<br />

Reflector<br />

Beam<br />

splitting<br />

L 0<br />

Beam splitter Reflector<br />

When does interference<br />

take place?<br />

• Coherence, i.e., defined<br />

phase relations: Path<br />

difference ∆L < coherence<br />

length<br />

L c ~ λ 0 2 /δλ (δλ spectral width)<br />

• Equal states of polarisation<br />

(superposition of electric field<br />

vectors !)<br />

• Almost equal wavelengths<br />

(frequency difference occurs<br />

as intensity modulation<br />

frequency !)<br />

FOS - 39


• Michelson<br />

- 2-beam interference<br />

- reflection type<br />

• Mach-Zehnder<br />

- 2-beam interference<br />

- transmission type<br />

• Fabry-Perot<br />

- multiple-beam interference<br />

- resonator type<br />

• Sagnac<br />

- ring interferometer<br />

- counter-propagating beams<br />

- relativistic effect<br />

- rotation sensor (fiber gyro)<br />

Types of Fiber-Optic Interferometers<br />

Laser<br />

Detector<br />

Laser<br />

Coupler<br />

Detector Coupler<br />

Parameter X<br />

Transducer<br />

X=f (L,n)<br />

Laser Coupler Coupler<br />

Laser<br />

Detector<br />

Coupler<br />

Parameter X<br />

Transducer<br />

X=f (L,n)<br />

Mirror<br />

Parameter X<br />

Transducer<br />

X=f (L,n)<br />

Mirror<br />

Detector<br />

Detector<br />

Fibre coil<br />

Parameter: Rotation<br />

Mirror<br />

Mirror<br />

FOS - 40


Application of Fiber-Optic Interferometers<br />

• seismic sensors, strain-wave measurement<br />

• hydrophones and hydrophone arrays, microphones<br />

• Atomic Force Microscopes (AFM)<br />

• rotation sensors (gyroscopes)<br />

• magnetic field sensors<br />

• electric current sensors (polarization-mode interferometry)<br />

• fiber grating interferometric strain sensors (extensometers)<br />

• laser wavelength stabilization<br />

Examples:<br />

• high temperature sensor (Fabry-Perot interferometer)<br />

• seismometer for deep bore-holes (Michelson interferometer)<br />

• rotation sensor / gyroscope (Sagnac interferometer)<br />

FOS - 41


Deep Borehole Fiber-Optic Seismometer<br />

Technical parameters of<br />

interferometric sensor system:<br />

max. operational temperature 300 °C<br />

Fibre lead length >10 km<br />

Path length resolution < 10 pm/√Hz<br />

Frequency range 0.1 .. 30 Hz<br />

Measuring range ± 1mm<br />

Laser wavelength 1309 nm<br />

Dimensions ∅ 65 mm<br />

length 215 mm<br />

Technical parameters of<br />

seismic sensor:<br />

3 components in 54° geometry<br />

max. operational temperature 260°C<br />

Eigen resonance 2.5Hz<br />

Attenuation 0.5<br />

from DFB laser<br />

Polyimide coated<br />

single mode<br />

optical fibre<br />

Splice<br />

Collimator<br />

f = 6.3 mm<br />

Frame<br />

Damper<br />

Pivot<br />

54.7°<br />

Feder<br />

(Hochtempera<br />

aus de<br />

Seismische<br />

Seismic<br />

mass Masse<br />

High Hochtemperatur-<br />

temperature<br />

spring<br />

to photo detector<br />

Single mode fibre-optic<br />

coupler 50:50<br />

(IPHT high temperature<br />

version)<br />

Fibre end-face,<br />

8° angled<br />

90° prism<br />

Reflector<br />

sphere<br />

Reflektor ø<br />

Hebelarm<br />

Cantilever<br />

FOS - 42


Scheme of Fiber-Optic 3-Axes<br />

Seismic Sensor System<br />

Monochromatic interferometry using wavelength modulation:<br />

FOS - 43


Seismic Deep Borehole Sensor System -<br />

Photograph<br />

3 axes in 54° geometry<br />

FOS - 44


Seismic Sensing: Measurement Example<br />

Measurement of Iran earthquake May 10, 1997 (Mb = 7.1)<br />

seismic measuring station Moxa/Germany<br />

Seismic movement [µm/s]<br />

Time [08:04 GMT + sec]<br />

FOS - 45


Fiber-Optic Hydrophone<br />

(Michelson-Interferometer)<br />

Naval Research Laboratory, Washington DC, USA<br />

FOS - 46


Measurand:<br />

Extrinsic Fiber-Optic<br />

Fabry-Perot Interferometer<br />

Width of air gap, which changes with strain and/or temperature<br />

FOS - 47


Fiber-Optic Temperature Sensor<br />

(Fabry-Perot Interferometer)<br />

Basic<br />

scheme, example of temperature sensor for high temperatures ≥2000 °C:<br />

FOS - 48


Fiber-Optic Sagnac Interferometer<br />

Gyroscope (Principle)<br />

δϕ s = 8πAN Ω / (λc)<br />

A – Area of fibre coil<br />

N – Number of fibre windings<br />

Ω – Angular velocity<br />

c – Light velocity<br />

Example:<br />

N = 800, R =10 cm (L = 500 m)<br />

λ = 0,8 µm, Ω =1°/h<br />

δϕ s = 13 µrad<br />

FOS - 49


Block Scheme of Fiber-Optic Gyroscope<br />

FOS - 50


Bias stability < 1 °/h<br />

Noise < 10 °/h/√Hz<br />

Range ± 200 °/s<br />

Scale factor error<br />

< 400 ppm<br />

Parameters of Fiber-Optic Gyro<br />

Teldix MKF4 (1993)<br />

Dimensions 100x70x80 mm³<br />

Operational temperature<br />

-30..70 °C<br />

FOS - 51


1975<br />

1985<br />

1995<br />

2005<br />

Time Scale of Development of<br />

Fiber-Optic Gyroscopes<br />

First publication<br />

Lab proto @ 0.01 º/hr<br />

First commercial applications<br />

(Boeing 777)<br />

Broader Applications:<br />

(Subsea, automotive, etc)<br />

Photo: KVH Industries<br />

FOS - 52


Polarimetrischer Stromsensor<br />

(Magnetooptischer Effekt)<br />

FOS - 53


Optical Fiber Sensor Systems and their Application<br />

• Distributed Raman & Brillouin / OTDR<br />

fiber sensor systems<br />

FOS - 54


Distributed Fiber-Optic Sensor Systems<br />

• Principle: Optical Time Domain Reflectometry (OTDR)<br />

• Useable optical scattering processes:<br />

– RAMAN scattering R(T)=I a /I s =(λ s /λ a ) 4 exp(-hν/kT) → temperature<br />

– BRILLOUIN scattering ν B =2 n v A /λ → temperature, strain<br />

Local resolution: ∆L=c ∆t/2n ∆L=1m →∆t=10ns<br />

c – vacuum light velocity, n=1.5 (silica refractive index)<br />

Scattering spectrum of Ge-doped silica<br />

fiber (schematically)<br />

Raman scattering<br />

(Antistokes)<br />

≈<br />

∆λ R ≈40nm<br />

(≈13THz)<br />

≈<br />

Rayleigh scattering<br />

Brillouin scattering<br />

≈<br />

ν B ≈12GHz<br />

Raman scattering<br />

(Stokes)<br />

λ<br />

FOS - 55


Distributed Fiber-Optic<br />

RAMAN Temperature Sensor Systems<br />

Scheme: Applications:<br />

Power cables with integrated fiber:<br />

Temperature distribution (hot-spot detection)<br />

Technical parameters (typical values)<br />

• Measurement range: 4…10 km (up to 30 km)<br />

• Local resolution: 1 m (0.3 .. 5 m)<br />

• T-range: -100…+120 (600) °C, resolution ±0.3 .. 3 °C<br />

• Meas. time: about 10 s (for 4 km and ±1 °C)<br />

� Geotechnical & Environmental Monitoring<br />

(GESO GmbH <strong>Jena</strong>)<br />

• Leakage detection of pipelines, gas storages<br />

• Dams, boreholes, dumps, ...<br />

� Health Monitoring Civil Engineering / Energy<br />

(LIOS GmbH Cologne)<br />

• Fire detection in tunnels (Siemens Cerberus)<br />

• Offshore platforms, pipelines (NKT Denmark)<br />

• Electric power cables (Felten & Guilleaume)<br />

Leakage detection pipeline (GESO)<br />

FOS - 56


Optical Fiber Sensor Systems and their Application<br />

• Fiber Bragg Grating (FBG) multiplexed<br />

sensor networks<br />

FOS - 57


Fiber Bragg Grating (FBG)<br />

Sensor and Multiplexing Principle<br />

Fiber Bragg grating: periodic refractive index structure inscribed in fiber core<br />

by illumination with UV laser interference pattern<br />

FBG sensor systems: strain, temperature,…(Wavelength Division Multiplexing)<br />

Λ 1<br />

Grating period Λ≈0.3 µm<br />

Bragg wavelength λB = 2·Λ⋅neff Sensor 1 .. .. Sensor 2 .. 16<br />

Measurands:<br />

e.g., temperature T, strain ε, hydrogen c(H 2 )<br />

Λ 2<br />

Broad-band<br />

input light SLD<br />

800..850nm<br />

Reflected light to<br />

polychromator<br />

λB1 λB2 FOS - 58


Talbot-Interferometer<br />

Beam splitter<br />

UV Excimer laser<br />

single-pulse shots<br />

FBG Fabrication: Draw Tower Technology<br />

Preform material doped<br />

for high photo-sensitivity<br />

Sensor specific coating<br />

(Ormocer, Polyimide ... )<br />

6% tensile strength ⇒ long term reliability<br />

Spectrum<br />

of sensor<br />

array:<br />

Reflectivity [%]<br />

20<br />

10<br />

0<br />

810 830 850<br />

Wavelength [nm]<br />

870<br />

FOS - 59


Light<br />

source<br />

Spectrometer<br />

Signal<br />

processing<br />

FBG Sensor System (Schematically)<br />

I(λ)<br />

R(λ)<br />

R<br />

T<br />

λ B<br />

λB1 λ λ B2 Bn<br />

ε<br />

Temperature sensor: Strain sensor:<br />

∆T=1 K → ∆λ ~ 10 pm<br />

Fiber grating array – wavelength multiplexing<br />

Bragg wavelength:<br />

= f (T,ε)<br />

λ B<br />

λ B<br />

λ<br />

ε=∆L/L=10 -6 → ∆λ ~ 1 pm<br />

FOS - 60


FBG Sensor System: Basic Configuration<br />

• Broadband light source 800...850nm (LED, SLD)<br />

• Polychromator: imaging diffractive grating (polymer replicated by embossing) & CCD detector<br />

• Advantages: high performance & low-cost potential, higher WDM capacity than @ 1550nm<br />

Source<br />

spectrum<br />

820 840 860 880<br />

Wavelength [nm]<br />

Spectrum analyzer<br />

Polychromator<br />

Broadband light source<br />

Superluminescence diode SLD<br />

Fiber optic<br />

beam splitter<br />

CCD array<br />

Fiber Connector<br />

(switch)<br />

Reference<br />

wavelength<br />

Reflection spectrum<br />

of sensor network<br />

825 830 835 840 845 850<br />

Wavelength [nm]<br />

FBG1<br />

FBG2<br />

FBG3<br />

FBG4<br />

FBG5<br />

Sensor array attached<br />

to measuring object<br />

FOS - 61


Ethernet<br />

PC<br />

FBG Sensor System (IPHT <strong>Jena</strong>)<br />

805..860 nm SLD broad-band<br />

light source<br />

Polychromator<br />

New compact fast FBG sensor system:<br />

• CCD processing with ADSP SHARC<br />

• SLD illumination control<br />

• 32 sensors, 1000 meas./s<br />

• All FBG sensors are sampled simultaneously<br />

• Gauss correlation, Kalman filter<br />

• Strain 1σ repeatability 0.1 µε<br />

9V/0.5A<br />

Fiber-optic connectors<br />

to sensor lines<br />

Sensor 1..<br />

Sensor ..16<br />

200×130<br />

FOS - 62


Optical Fiber Grating Sensor Systems:<br />

Performance Parameters<br />

Polychromator & optoelectronics (SPU):<br />

• Spectral resolution 27pm / CCD pixel @ 800...850 nm wavelength range<br />

• FBG peak (centroid) position resolution ±0.3 pm (automatic peak search & fitting)<br />

• Long-term wavelength stability < 5 pm @ -20...+70 °C, DSP control<br />

• Measuring time typically 1ms for FBG array (15 sensors)<br />

Quasi-static strain measurement (1kHz bandwidth):<br />

• Measurement range (typically) –1000...+3000 µm/m, max. >1%<br />

• Resolution < 1 µm/m, repeatability (accuracy) 7 µm/m<br />

Dynamic strain / vibration measurement ( 1MHz bandwidth):<br />

• Measurement range ±1800 µm/m, max. 0.5%<br />

• Resolution 5 nano-strain / Hz 1/2<br />

Temperature measurement:<br />

• Measurement range –50...+250 °C<br />

• Resolution 0.1 K, accuracy 0.5 K<br />

FOS - 63


Optical Fiber Sensor Systems and their Application<br />

• Applications<br />

FOS - 64


Einsatzbeispiele faseroptischer Sensoren (I)<br />

Industrielle Prozesskontrolle und Fertigungstechnik<br />

- Faseroptische Lichtschranken, Positions- und Näherungssensoren In der Automatisierungstechnik<br />

Flexibilität, geringer Platzbedarf, störsichere Datenübertragung, passive Vernetzbarkeit<br />

- Füllstands-, Druck-, Durchfluss-, Trübungs-, Feuchte- und refraktometrische Sensoren in der chemischen<br />

Industrie u.a. Bereichen<br />

- Interferometrische Weg- bzw. Dehnungssensoren in der Präzisionsfertigung<br />

Luft- und Raumfahrttechnik<br />

- Faserkreisel für Navigations- und Lagestabilisierungssysteme (erfolgreiche Tests in Flugzeugen und<br />

Weltraumraketen)<br />

- Erprobung verschiedener faseroptischer Sensoren (z.B. Drucküberwachung in Triebwerken) in<br />

Lichtleiterkontrollsystemen für Flugzeuge, Hubschrauber u.a. ("Fly by Light"-Entwicklungsprogramme)<br />

Medizintechnik<br />

- Serienproduktion von faseroptischen Blutgas- sowie Hirn- bzw. Herzdrucksensoren in den USA seit 1990<br />

(Stückzahlen von mehr als 100.000/Jahr)<br />

Abbildung unten zeigt den Aufbau eines invasiven Katheters zur Simultan-Messung von pH, p0 2 und pC0 2 in<br />

Blutgefäßen auf der Basis von Fluoreszenz bzw. Absorptionsänderungen in geeignet sensitiven chemischen<br />

Indikatormaterialien, die auf der Lichtleiterstirnfläche aufgebracht und mit einer für die nachzuweisenden Stoffe<br />

durchlässigen Membran umgeben werden:<br />

FOS - 65


Energietechnik<br />

Einsatzbeispiele faseroptischer Sensoren (II)<br />

- Faseroptische Strom- und Spannungssensoren (Faraday-Effekt bzw. Pockels-Effekt) in<br />

Hochspannungsanlagen, Generatoren, Transformatoren, Schaltern<br />

- Verteilte faseroptische Temperatursensoren in Starkstromkabeln, Erdöl- und Erdgaspipelines,<br />

Großtrafos, Kernkraftwerken, Gebäuden u.a.<br />

- Erprobung faseroptischer Vibrations- und Temperatursensoren in Hochspannungs-Generatoren<br />

- Verteilte faseroptische Dehnungssensoren in Hochspannungskabeln<br />

Sicherheitstechnik<br />

- Überwachung von Großbauwerken wie Kraftwerksanlagen, Brücken, Tunnel, Staudämme u.a.<br />

mit verteilten faseroptischen Belastungs-, Vlbrations-oder Rissdetektoren<br />

- Entwicklung komplexer faseroptischer Überwachungssysteme auf Bohrinseln, in Bergwerken<br />

(z.B. Methangas-Detektion), Kernkraftwerken (z.B. ortsauflösende Kernstrahlungs-Dosimetrie),<br />

Chemieanlagen und anderen explosionsgefährdeten Bereichen<br />

- Einbettung von Lichtleitfasern als Sensoren in Verbundwerkstoffe für Flugzeug- und Schiffbau,<br />

Bauindustrie und andere Bereiche.<br />

Weitere Einsatzfelder<br />

- Umweltmesstechnik, Biotechnologie: Chemische und biochemische Fasersensoren, z.B.<br />

Fernmessung von Schadstoffkonzentrationen in der Luft und im Wasser.<br />

- Geophysik, Geotechnik: verteilte faseroptische Seismometer & Bohrlochsensoren.<br />

FOS - 66


FBG Sensor Systems:<br />

Applications in Structural Health Monitoring<br />

• Energy<br />

– Generators, gas turbines (Siemens)<br />

– Wind turbines (Jenoptik, Enercon)<br />

• Aviation<br />

– Airbus (DaimlerChrysler, EADS)<br />

– Glider (Akaflieg)<br />

– AirCrane CL-75 prototype (Kayser-Threde, Cargolifter)<br />

• Space<br />

– NASA X-38 prototype CRV for ISS (Kayser-Threde,NASA)<br />

– ESA hydrogen tank monitoring (Kayser-Threde, TU Munich)<br />

• Transportation<br />

– Train pantograph/contact line interface (Siemens, SNCF Paris, ..)<br />

– Contact line inspection gate (Siemens, Furrer+Frey Bern, BLS Bern, ..)<br />

– Monolithic rigid rail (BAM, Deutsche Bahn)<br />

• Geotechnical & Civil Engineering<br />

– Rock-bolts (Ruhrkohle AG, GESO)<br />

– Tie bars (GESO, GFZ Potsdam)<br />

FOS - 67


Application of Fiber Grating Sensor Systems<br />

Power Generators<br />

FBG sensor arrays for measurement of temperature and strain vibrations in<br />

electrical power generators (at critical points of stator winding)<br />

Strain vibrations<br />

start at short circuit<br />

impact<br />

4 FBG vibration<br />

sensor positions<br />

FBG<br />

temperature<br />

sensors<br />

Partner: Siemens AG<br />

FOS - 68


Application of Fiber Grating Sensor Systems<br />

Aircrafts<br />

CFRP aircraft wing fatigue test: 1 year complete lifetime simulation<br />

20 FBG strain sensors over full test: strain results correspond to resistive strain gauges<br />

Strain [µm/m]<br />

-800 - FEM model<br />

-1000 -<br />

-1200 -<br />

RSG<br />

FBG<br />

-1400 -<br />

0 50 100 150 200 250<br />

Sensor position<br />

Surface mounted<br />

resistive strain gages<br />

(RSG) and FBG sensors<br />

Partner:<br />

RSGs with heavy weight<br />

electrical cables<br />

FOS - 69


Application of Fiber Grating Sensor Systems<br />

Spacecrafts<br />

Strain & temperature sensor network: 4 arrays (sensor pads) with 12 sensors<br />

• Health monitoring NASA X-38 CRV prototype for ISS<br />

Partners: IPHT & Kayser-Threde, NASA<br />

Wavelength [nm]<br />

849<br />

848<br />

847<br />

846<br />

845<br />

844<br />

SPU box<br />

(NASA<br />

standard)<br />

-0.36nm=-560µε<br />

elongated sensor<br />

compressed sensor<br />

temperature sensor<br />

1.27nm =2000µε<br />

838<br />

0 5 10 15 20 25<br />

Time [min]<br />

FBG sensor pad<br />

(2 orthogonal strain<br />

& 1 temp. sensor)<br />

test measurement<br />

FOS - 70


Application of Fiber Grating Sensor Systems<br />

Wind Turbines<br />

Strain monitoring in a blade of wind turbine E112:<br />

capacity 4.5 MW, blade length 53 m<br />

6 FBG strain sensor pads inside of blade (push-pull positions):<br />

FBG-SPU<br />

WLAN<br />

FBG strain sensor pads<br />

length 400 mm<br />

Partners: Enercon<br />

Jenoptik<br />

FOS - 71


Application of Fiber Grating Sensor Systems<br />

Railways<br />

Test measurements for power distribution<br />

management:<br />

Temperature sensor arrays at overhead contact lines<br />

(OCL)<br />

(Partners: Siemens & IPHT)<br />

Test measurements in novel concrete /<br />

bitumen slab rail track systems:<br />

Strain sensor arrays embedded in concrete<br />

(Partners: BAM & IPHT, W. Habel et al. SSM-2002)<br />

FOS - 72


Force [N]<br />

600<br />

400<br />

200<br />

0<br />

Application of Fiber Grating Sensor Systems<br />

Smart Monitoring in Train Systems<br />

FBG sensors monitoring railway interface<br />

Pantograph / Overhead Contact Line (OCL)<br />

Defect at OCL<br />

10 ms<br />

Driving direction<br />

Vertical direction<br />

0,1<br />

125 Hz<br />

0,2<br />

Time [s]<br />

0,3<br />

Current Collector<br />

Embedded FBG sensors<br />

monitoring<br />

strain and temperature<br />

Impact force measurements using<br />

"Smart Current Collector"<br />

FOS - 73


Steel rock-bolt with inclined<br />

sensors for measurement of<br />

high strain:<br />

compressed<br />

(19°)<br />

neutral<br />

(28°)<br />

Application of Fiber Grating Sensor Systems<br />

Civil Engineering & Tunnels<br />

stressed FBG<br />

(40°)<br />

Rock bolt test<br />

facility of<br />

Ruhrkohle AG<br />

..20% strain<br />

..500kN<br />

tensile force<br />

Partners:<br />

GESO <strong>Jena</strong><br />

Ruhrkohle AG<br />

FOS - 74


Rock-bolt with fiberoptic<br />

strain sensors<br />

Amplitude [a.u.]<br />

0,3<br />

0,2<br />

0,1<br />

0,0<br />

-0,1<br />

-0,2<br />

Application of Fiber Grating Sensor Systems<br />

Geotechnical Exploration & Mining<br />

-0,3<br />

0 20 40 60 80 100<br />

Time [ms]<br />

Strain wave measurement<br />

at test blasting in a mine<br />

(seismic tomography for<br />

geophysical exploration)<br />

Transversal "S" waves<br />

Amplitude [a.u.]<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

Silver Mine<br />

„Old Elisabeth“<br />

(Saxonia, 200m)<br />

Results: Time response Frequency response<br />

"P" wave<br />

0,0<br />

0 500 1000 1500 2000 2500<br />

Frequency (Hz)<br />

Longitudinal "P" wave<br />

Partners:<br />

IPHT <strong>Jena</strong><br />

GFZ Potsdam<br />

GESO <strong>Jena</strong><br />

FOS - 75


Gas turbines<br />

FBG Sensing at Extreme Temperatures<br />

Flow & temperature sensing<br />

up to 1800 K<br />

EU project HEATTOP 2006-2009<br />

(partners: Siemens,RollsRoyce,...)<br />

Stellarator ring<br />

Strain & displacement sensing in<br />

superconducting magnets at 4...10 K<br />

Nuclear fusion reactor project<br />

(partner: MPI Plasma Physics)<br />

FOS - 76


FBG Evanescent-Field Chemical Sensing:<br />

Refractometer<br />

Analyte<br />

Evanescent field<br />

Optional transducer layers<br />

Temp. reference FBG<br />

Sensor FBG<br />

Refractometric process control<br />

of petrol products:<br />

Λ<br />

coating<br />

Refractometer Bragg wavelength shift:<br />

Side-polished<br />

optical fiber<br />

embedded in<br />

silica block<br />

Bragg Wavelength [nm]<br />

839,0<br />

838,8<br />

838,6<br />

838,4<br />

838,2<br />

838,0<br />

837,8<br />

Analyte n A<br />

∆λ B = 2·∆n eff (n A )·Λ<br />

1,30 1,35 1,40 1,45<br />

n A H2 O<br />

Ethanol<br />

26%NaCl/H 2 O<br />

OZ91<br />

OZ98<br />

SPO<br />

LMO<br />

DAO<br />

FOS - 77


evanescent<br />

field<br />

T-reference (FBG)<br />

Bragg wavelength [nm]<br />

828,00<br />

827,96<br />

827,92<br />

FBG Chemical and Bio-Sensing<br />

Bragg wavelength shift:<br />

∆λB = 2·∆neff (nA )·Λ<br />

analyte n A<br />

(gas or fluid)<br />

transducer layer(s)<br />

(optional)<br />

silica block coating<br />

sensor FBG (grating period Λ )<br />

H 2 gas detection (Pd-film 200nm)<br />

Hydrogen<br />

concentration<br />

in Argon gas<br />

0 %<br />

1 %<br />

1 %<br />

2 %<br />

0 40 80 120<br />

time [min]<br />

single mode fiber<br />

(side-polished)<br />

Sensitive thin-film overlays:<br />

2 %<br />

Process control of petrol products<br />

Bragg wavelength [nm]<br />

838,23<br />

838,22<br />

838,21<br />

S4<br />

838,20<br />

S1<br />

S2<br />

S3<br />

838,19<br />

1,40 1,41 1,42 1,43 1,44 1,45<br />

SPR biochemical sensing (Au 30nm)<br />

Bragg wavelength [nm]<br />

831,70<br />

831,60<br />

831,50<br />

831,40<br />

Partner: IREE Praha<br />

TE polarization<br />

TM polarization<br />

analyte refractive index n A<br />

TE<br />

TM<br />

1,40 1,42 1,44 1,46<br />

analyte refractive index nA FOS - 78


Optical Fiber Sensor Systems and their Application<br />

• Outlook:<br />

- Biochemical sensing based on nano-fibers and<br />

- Fiber sensor market development<br />

FOS - 79


Fiber-Optic Chemical and Bio-Sensor Concepts<br />

Based on Functionalized Micro/Nano-Structures<br />

Micro-structured optical fibers<br />

PCF<br />

preform<br />

�Photonic crystal fibers<br />

�Hollow core fibers<br />

Integration of wave guiding and capillary<br />

structures → long interaction length<br />

�Enhanced analytic sensitivity at small<br />

sample volumes (gases and liquids)<br />

�Efficient light - matter interactions<br />

(absorption, fluorescence, Raman/SERS)<br />

Optical fiber taper<br />

2.8 µm<br />

�Miniaturized instruments for the analysis of<br />

cells and other microstructures<br />

�Enhanced evanescent field interactions<br />

Nanowires<br />

FOS - 80


absorbance [dBm -1 ]<br />

Photonic Crystal Fiber (PCF)<br />

Chemical Sensing<br />

Increased Evanescent Field Absorption in PCF compared to Silica Fibers<br />

Standard silica fiber<br />

2,50<br />

2,00<br />

1,50<br />

1,00<br />

0,50<br />

0,00<br />

absorbance max at 592 nm<br />

550 570 590 610 630 650 670 690<br />

wavelength [nm]<br />

PCF<br />

Standard EFAS fiber<br />

Spectral absorbance of Eosin dye solution<br />

measured in evanescent field of fibers<br />

permeable polymer<br />

coating<br />

∅ core = 200 µm<br />

α solid fiber < 0,14 dBm -1<br />

Microstructured PCF<br />

∅ core = 23.8 µm<br />

d = 4- 6 µm<br />

Λ = 6 µm<br />

α PCF = 2,53 dBm -1<br />

Sensitivity : PCF as EFA-Sensor → 20 times higher than for 200 µm silica fiber<br />

FOS - 81


Optical Nanowire Sensing<br />

Potential of Nanowire Technology for Optical Chemo- and Biosensing<br />

1. Sensitivity Enhancement of extrinsic<br />

Optical Fiber Sensors<br />

• Increasing sensitive surface applying<br />

disordered nanowires (dense grown<br />

„matted“ structures)<br />

• Resonant effects applying oriented<br />

periodic nanowire structures on fiber<br />

end-face (e.g. photonic crystals)<br />

2. Realization of Fiber Nano-sensors with tip<br />

diameters 10...100 nm<br />

• Sensibilized single nanowire as optical<br />

waveguide (evanescent field sensing)<br />

• Optical coupling to conventional fibers<br />

Si nanowires<br />

FOS - 82


FBG Plasmon Biosensing Using<br />

Metallic Nanoparticles<br />

DNA receptors<br />

Sensor FBG, period Λ<br />

DNA marked<br />

Au Nano-beads, ∅ 30 nm<br />

∆λ B = 2·∆n eff(n A)·Λ<br />

Example: Fiber-optic evanescent field DNA detection<br />

→ Bragg wavelength shift ∆λ B due to localized surface plasmon<br />

resonance (SPR) of adsorbed DNA-marked Au nano-beads<br />

→ high sensitivity, multiplexing capability, intrinsic temperature control<br />

FOS - 83


Outlook<br />

Fiber Optics + sub-wavelength Nanostructures :<br />

→ micro-nano integration + coupling to macro-world<br />

→ photonic sensing in molecular dimensions with<br />

ultra-high sensitivity, spatial & temporal resolution<br />

Intracellular fiber-taper nano-biosensor<br />

(schematically)<br />

SiO 2 nanowire on human hair<br />

(L.Tong/E.Mazur, Zhejiang/Harvard Univ.)<br />

FOS - 84


Optical Fiber Sensors:<br />

Applications, Products and Market Growth<br />

• Industrial process control and automation<br />

• Aerospace and transportation<br />

• Biomedical and environmental monitoring<br />

• Electric power and chemical oil & gas off-shore industries<br />

• Civil and geo-technical engineering<br />

• Military and security applications<br />

� Products:<br />

Position & displacement, gyroscopes, blood gas & pressure,<br />

distributed temperature, strain & vibration, current & voltage,<br />

organic pollution (BTEX), humidity, flow & level etc.<br />

� Market:<br />

800 million US$ in 2008 (civil sector) / 2.5 million sensors,<br />

growth rate 15% p.a. (up to 25% for strain and chemical sensors)<br />

FOS - 85


Chemical<br />

14%<br />

Source:<br />

Frost&Sullivan<br />

World Fiber Optic Sensor Market<br />

Distribution by Product Type / Measurand (2000)<br />

Pressure<br />

9%<br />

Gyroscope<br />

14%<br />

Flow<br />

7%<br />

Level<br />

1%<br />

Position/Displacement<br />

33%<br />

Temperature<br />

22%<br />

FOS - 86


Fiber Optic Sensor Market Development<br />

2002 - 2008<br />

Source: David A. Krohn, LightWaveVenture<br />

SPIE Vol. 5589 pp. 34-43 (2004)<br />

Distributed and<br />

Multiplexed<br />

Sensor Systems<br />

Single Sensors<br />

FOS - 87


Application Fields & Market Share Forecast<br />

of Distributed Fiber Optic Sensors<br />

Sources: Light Wave Venture LLC, USA OIDA<br />

cited in: Huff D.B., Lebby M.S., "Fiber Optic Sensing Technology:<br />

Emerging Markets and Trends", Proc. of SPIE, Vol. 6619, p. 661902-1 (2007)<br />

FOS - 88

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!