23.12.2012 Views

a[mm]/l - Memorial University of Newfoundland DAI

a[mm]/l - Memorial University of Newfoundland DAI

a[mm]/l - Memorial University of Newfoundland DAI

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

I<br />

TOTAL OF 10 PAGES ONLY<br />

MAY BE XEROXED<br />

(Withmt Auhm'r b urn)


INFORMATION TO USERS<br />

This manuscript has been reproduced f<strong>mm</strong> lhe micmfilm mastw. UMI films the<br />

ten directly f<strong>mm</strong> me onglnal or cnpy wbmlned. Thus, some mais and<br />

dissertation copes are ~n hlpewter face, while others may be from any type <strong>of</strong><br />

computer pnntet<br />

The quality <strong>of</strong> this nprndunion is depandent upon the quality <strong>of</strong> the copy<br />

submllted. Brnken or lndlstlnct pnnt &red or pDor qualily illustralions and<br />

photqlraphs, pnnt bleedmrnugh, substandard margins, and lmpmper al~gnment<br />

can adversely affect repmduction<br />

In Ihe unlikely event mat me authar d'd not send UMI a complete manuscript and<br />

(here are missing pgas, there will be noted. Also, 1 unauthorized mpynght<br />

material had to be removed, a note wll ~ndicate the deletion.<br />

Ovenize materiais leg, maps, drawings. cham) are reproduced by rRticmlng<br />

me otig~nal, beginniw at me upper leR.had wmer and wntlnulw f m left to<br />

nght #n equal raonr unh small ovedapr.<br />

Phmographs lnduded in me ongtnal manuscript haw been reproduced<br />

xemgraphlcally in Vlis cnpy. Higher quality 6" x C black and white phobgnphlc<br />

primr are available for any photographs or tllusVatiom appearing in +his mpy fol<br />

an additional charge. Cmlact UMI diredly to nder.<br />

Bell 8 H d i<br />

Information aM Learning<br />

3W NO^ Zeeb Road, Ann Arbor. MI 481061346 USA


1+1 6$gn",'kbRly B#blro!heque nallanale<br />

du Canada<br />

Acqu#sl#onn and<br />

Lbllograph~ SewlceS<br />

Acqu#s#llonr el<br />

IeNlCel blbloglaphlque5<br />

PDSWollmnonSlrm Ss nis Wltlmgtm<br />

OnawaON KIIMU O".*.ON Y1ION1<br />

Canada Canada<br />

The author has granted anonexclusive<br />

ltcence allow~na the<br />

Natlonal Library <strong>of</strong> ~anada to<br />

reproduce, loan, dlsrnbute or sell<br />

copxes <strong>of</strong> thls thes~s in m~cr<strong>of</strong>orm.<br />

paper or elechonlc formats.<br />

The author retains ownership <strong>of</strong> the<br />

copyri&t In this thesis. Ne~ther the<br />

thesis nor substantial extracts from it<br />

may be pnnted or othenv~se<br />

reproduced wlthout the author's<br />

oermiss~on<br />

L'auteur a accorde une licence non<br />

exclusive permenant a la<br />

Bibl~otheque natlonale du Canada de<br />

reprodulre, przter, dlsmbuer ou<br />

vendre des copies de cene these sous<br />

la forme de m~cr<strong>of</strong>ichelfilm, de<br />

reproduction sur papier ou sur format<br />

electron~que.<br />

L'auteur conserve la propriete du<br />

droit d'autew qui protege cene these.<br />

Ni la these nl des exhalts substantiels<br />

de celle-CI ne dolvent itre impnmes<br />

ou auhement reproduits sans son<br />

autorisatlon.


BEHAVIOR OF HIGH-STRENGTH CONCRETE<br />

PLATES UNDER IMPACT LOADING<br />

O Suryawan Munradi<br />

A thesis submitted lo the School <strong>of</strong> Graduate<br />

Studies in panial fulfillment <strong>of</strong> the<br />

requirements for the degree <strong>of</strong><br />

Master <strong>of</strong> Engineering<br />

Faculty <strong>of</strong> Engineering and Applied Science<br />

<strong>Memorial</strong> <strong>University</strong> <strong>of</strong> <strong>Newfoundland</strong><br />

March 1999


ABSTRACT<br />

High-smnsh concrete plater are frequently used !n vmous slrucrurnl cngmeenng<br />

systems and vaneuer <strong>of</strong> elvd cngsnecnnp apphcanonr. A research pmg<strong>mm</strong> was cdrned<br />

out at Memonal Unlver~~ty <strong>of</strong> <strong>Newfoundland</strong> to lnvcrtsgvle the behsvlor <strong>of</strong> h~gh-ilrengh<br />

concrete two-way plecr subjected to Impact lon&n& The research program included bath<br />

expnmental lnverrlgarlon and numerical tnverugnlon.<br />

The c umt rercawh nncludes an expenmental lnverllgruon on rlrteen concrete<br />

plater wtth dtmenston <strong>of</strong> 950x950 <strong>mm</strong> md 1W<strong>mm</strong> rhtcknesr. The plales were rupponcd<br />

by r specla1 fame dengncd far thlr tnvemgunon. The suppan fnme 1s made from<br />

~oncrele and steel wllh free opennng <strong>of</strong> 7Wx700 <strong>mm</strong>. Normal-strength md htgh-strength<br />

concrete placer were tested undsr two end eondtsonr. x.e. fixed and slmply supponed. All<br />

<strong>of</strong> ,he rpzct<strong>mm</strong>s were two-way rennforccd plater *ah relnfomsmcnt rmo that vaned<br />

from I%-? 5% I" tmslon face and 0.7%-0.8% ~n eomprerslon face. A ng~d project~lc was<br />

used lo apply the Impact lard to the tesled re~nforced concrete specamens. The ng~d<br />

projecttle was a mlmd steel cylmda wrth ??O-kg mass md 3011.5 <strong>mm</strong> diameter contact<br />

area. The projeellle was dropped f<strong>mm</strong> a vanable helght <strong>of</strong> up to 4 m. An sccele<strong>mm</strong>eter<br />

~9th +2W-g cnpvelly was attached to the eylnnder steel lo record the actual lest<br />

aecclersuon. A data acqutslrlon system b ad on a penonal computer acquired the drtil at<br />

I rampllng rate <strong>of</strong> IWO Hr. The structural behavtor wlIh respect lo d~splacement.<br />

eoncrele and steel stmns. fatlure mode, and energy rbmrpt~an were exa<strong>mm</strong>ed. The effect<br />

<strong>of</strong> d pme loading. concrete strength, reinforcement atdtlo, and suppan patterns were the<br />

test parameters.


A numcncnl mvertigatnon ww conducted lo cvvluore the rest rerultr wlth respect<br />

to the Nonh Amenean code and some European d erp codes A lhnerr elwllc fmcture<br />

mechanics Impact load expressam was used to evnluate Le effect <strong>of</strong> nle <strong>of</strong> loading on<br />

the dynamtc behavnor <strong>of</strong> high-arength concrete plates. Based on the cxpcnmental rerl<br />

results 11 hw been found that the punch~ng fanlures <strong>of</strong> the lmpacl loodnng were about<br />

lwlce the Slauc punchmng shear capnclly The cnltcal velocltte$ <strong>of</strong> ~rfnnuon cm he<br />

csrfmated ;~ccurately for all hlgh-rrrengh concrele rpcctmenr accordtng lo CEB dynamic<br />

cde expresson. The ratlo <strong>of</strong> tmpaa versus rlalnc fracture mergy far high-sirenph<br />

concrete plate war found lo be much hngher than that for normal-strength concrea.<br />

Therefore. hngh-strength concrelc plates are eonrndered to be more efficient lhan normal-<br />

strength concrete plates under tmpacr loading.


ACKNOWLEDGEMENTS<br />

Thlr lherlr was completed at Memonal Unlvcnmty <strong>of</strong> Newfoundlmd as pan <strong>of</strong> Master <strong>of</strong><br />

Eng~neenng degree program. The expenmental work has been caned out n the concrete<br />

and itruclure labonlory <strong>of</strong> Memonal Untveraoly <strong>of</strong> <strong>Newfoundland</strong>. Cim~da. Fundzng !n<br />

the form <strong>of</strong> graduate fcllowsh!p from the Govc<strong>mm</strong>nt <strong>of</strong> Republic lndonesla md ~se;vch<br />

supplement from Mcmonal Unxvcrstty are gracfully acknowledged.<br />

Grateful acknowledgement s alro due lo Dr H. Marzouk. Pmfer~oi <strong>of</strong> Clvnl<br />

Engmeenng. under whose gumdance and supervls>on thc lhertr was carned out.<br />

Acknowledeement Ir alro addressed to Dr. M.R. Haddam. Associate Dem 01<br />

Englnsenng Graduate Srudnes and Research. far has encouragement and the frctllner<br />

provtdcd.<br />

AcLnowledpmer~lr me alro made to the Technical Staff for their nrnnmcc ~n the<br />

expenmental prognm. espemdly Mr. C. Ward. Mr. A. Bur~ey. and Mr. R. O'Dnwall for<br />

then prepdntlon <strong>of</strong> [he test speelmenr and lest equnpment Spectvl thank to Dr. A.<br />

Husseln and Dr. M.A. Fard for their ruppon and dnxurrlon dunng expenmental work.<br />

Last. but nor lesl, the author takes thls chance to express his pr<strong>of</strong>ound gruntuds<br />

to all htr famsly members. espccnally hnr parents for thew prayer and blersng. nlsa he<br />

wffe and son for their patence. continuing encouragement. and afkuan.


Table <strong>of</strong> Contents<br />

ACKNOWLEDGMENTS<br />

Table <strong>of</strong> Contents<br />

Lst<strong>of</strong> Symbols ..................................................................................................


2.1.2.2 2. Fine Aggregates I2<br />

2.1.2.3 Admtxtures .............................................. 13<br />

2 1.2.3 1. Mtneral Admlxrurcs .............................. 11<br />

2.1.2.3.2. Chemtcrl Admixtures ............................. 15<br />

2.1.3. Bmhrng and Mnrlng Squcncer<br />

2.2 Punching Shear Strength<br />

2.3 Impact Performance <strong>of</strong> C<br />

2.3.1 Ovcrvtew <strong>of</strong> Mamal Modeilng<br />

......................................<br />

2.32. S<strong>mm</strong>n Rarer for Vanou3Typrr <strong>of</strong> Load>% ...................... 31<br />

2.3.3. Prapemes<strong>of</strong> Concrete Under Dynamnc Laadtng ................. 36<br />

2.3.3 I Compress~ve Strength<br />

2.3 3 2. Modulr. <strong>of</strong> Elasue~ty ............................................. 27<br />

2.3.3.3. Ult~malc Strrln<br />

2.3 3.4 Comprerrlve Fm<br />

2.3.3.5.Tenrale Laad~ng<br />

2.3.3.6. Tenston Modulus <strong>of</strong> Elarttcnty<br />

2.3.3.7. Tensile Fracture Energy<br />

.............................. 29<br />

2.3.4. lmpacl Reslrl~ncc <strong>of</strong> Relnforced Hlgh-Smnglh Concrete Siabr 32<br />

2.3.4.1. Desg hncttcc 32<br />

2.3 4.2. Eumpan Dertgn Codes for Punching Shear Capaclly<br />

and Cnlical Pefiorft~on Velocnlv ........................... 34


Chqlei 3<br />

EXPERIMENTAL INVESTIGATION<br />

Chapter 4<br />

3.2.1. Re~nfoxomcnt<br />

3.3. Test Spctmens<br />

3.4. Fabncatlon <strong>of</strong> Speclmenr<br />

3 6. lnrtrurnsntation System<br />

3.6. I. Tertmg Load<br />

3.7. Test Pmcedurc<br />

3.6.3.1 Steel Strams<br />

TEST RESULTS AND DISCUSSION<br />

4.1 Craclung Charaaenrtter 66<br />

4.2. Laad-Deflection Chaactensucr 67


Chapter 5<br />

4.3. Dynam~c Fracture Energy<br />

4.4 Steel and Concrete Strmnr<br />

4.5. Mder <strong>of</strong>Fvilure<br />

4 6. Effect <strong>of</strong> Concrete Strength<br />

4.7. Effect <strong>of</strong> Sucl Ranforcement Rauo<br />

IS. Effem <strong>of</strong> Ssppan Patem<br />

4.9 Effect <strong>of</strong> Dynamlc Load, ......................................<br />

NUMERICAL EVALUATION<br />

Chaplet 6<br />

5 1. lntmducr$on I I3<br />

5.2. Impact Load I I4<br />

5.3. Punching Shear (StascCrpac~ty) 115<br />

5.4 Code Reco<strong>mm</strong>endauonr 118<br />

5 5 Cnttcnl Veloctly <strong>of</strong> Pcrfantton I20<br />

5.6. Fnccure Mcchrnlcs Analys~r <strong>of</strong> Impact Laad .................................... 122<br />

5 7. Dynam~c Fmcrure Energy 119<br />

SUMMARY AND CONCLUSIONS<br />

6.1. Expnmental Invesugaean 132<br />

6.2. Numerical lnvest~gvt~an 135<br />

REFERENCES ....................................................................................................... 137


List <strong>of</strong> Figures<br />

Figure 3.1. Cross scuon A-A <strong>of</strong> lyplcal spclmen under fired suppon ............... A7<br />

Rgure 3.1. Typ~cal steel re~nfarcement <strong>of</strong> rpc~men<br />

Fngure 3.3. Arrangement <strong>of</strong> steel relnfarccmcnr reba<br />

F~gure 3 4 Casting <strong>of</strong> fresh concrete f<strong>mm</strong> Ihe mser to the formwork ............ TO<br />

Fkgure 3.5. Compresswe nrength lest <strong>of</strong> a concrete eyllnder ................................. 5 1<br />

F~gre 3.6. Concrete beams <strong>of</strong> thetest frame 51<br />

Fngure 3 7.Concretc and steel beams for fired-suppon 53<br />

Figure 3.8 Speetmen under Axed ruppon ............................................................. 54<br />

Figure 3.9 Bottom rennforcement <strong>of</strong> the concrete base <strong>of</strong> the tcrttng frame ........... 55<br />

Flgure 3.10. Top relnforccmenl <strong>of</strong> the concrete base <strong>of</strong> the lertlng frame ................. 56<br />

Ftgure 3.11. Complclc tcsl fnme wvh guide steel cylinder .................................. 57<br />

Ftgure 3 12 Test set-up for fixed rpctmen<br />

Rpre 3.14 A rpeclmcn dunng ompact te~nng<br />

Figure 3.15. LPDT fixed ar !he center <strong>of</strong> rpnmen<br />

Flgum 3.16. Lacat~ons <strong>of</strong> steel rtraln gageson tenrlon and camprelrlon facer .......... 62<br />

F~gure 3.17. Concrete strain-gage locsuon<br />

Figure 3.18. Dataacquirntian systcm<br />

Figure 3.19. lns<strong>mm</strong>entataon blockdiagram<br />

Rgure 4.1. Failure panems <strong>of</strong> lest specimens HSSI. HSS2. HSS3, and HSS4 ......... 75<br />

F~gure 4.2. Failure parlems <strong>of</strong> test rpeelmcnr HSFI. HSF2. HSF3, and HSF4 ........ 76


F1gure4.3. Filllure paltrmr <strong>of</strong> lest specimens NSSI . NSS? . NSS3 . ;md NSS4 .......... 77<br />

Fbgure 4 4 Failure parems <strong>of</strong> test spcctrnenr NSFI . NS F2. NSF3 . and NSF4 ......... 78<br />

Flgurt4.5 Fatlure pallem <strong>of</strong> a rrpmcal tcrtrpeenmcn at Ihecornprerrron face .......... 79<br />

F~gure 4.6. Load-deflecllon curves for rpectrncn no 1 . 2 . 3 . and 4 ....................... 80<br />

Ftgurc 4.7 bad-defleeuon curves far specmen no . 6 . 7 .and 8 ............................ 81<br />

Flpurp J 8 Loaddeflect$on curves fmorpamen no 9. 10. and I I RZ<br />

hgure 4 9 Lad-deflecuon curves for specmen no . 14 . 15 . md 16 .................... 83<br />

Rgure 4.10. Lord-deflecrron curves for spamen no I and 9 ............................ 84<br />

Figure 4.1 I . Load-defletlon curves for specmen no . 2.6. 10 .and I4 ................... 85<br />

Ftgure 4.12. Load-deflectson curves for specmen no 3.7. I1 . md 15 ................. 86<br />

Figure 4.13. Load-dcflecuon curves far specmen no . 4 . 8 .and 16 ........................... 87<br />

Ftgure 4 14 . bad-erne curves for spectrnen no . 1 . 2 . 3 . and 4 ................................. 88<br />

Figure 4.15. bad-tlm curves far rpcclmcn no . 6 . 7 .and 8 .............................. 89<br />

F~gure 4.16. bad-rtms curves for spec~rnen no 9 . LO. and 11 ............................... 90<br />

Ftgure 4 I7 Load-hmcurvel for rpeclmen no . I4 . IS . and 16 .............................. 91<br />

Flgure4.18 Deflectton-arnecurver for specmen no . I . 2 . 3 . and4 ....................... 92<br />

Fsgure 4.19. Deflecl8on-nme curves for rpcnmen no . 5 . 6 . 7 . and 8 ....................... 93<br />

Figum4.20. Deflectton-tlmecurver for rpectmen no . 9 . LO . I I . and 12 ............... 94<br />

Flgure4.21. Deflectton-nmc curves for specmen no . I3 . 14 . IS . and 16 .................. 95<br />

Figure 4.22. Slccl and concrete r<strong>mm</strong>r <strong>of</strong> specmen HSSl ......................................... 96<br />

Figm 4.23. Steel and concrete srrans <strong>of</strong> specmen HSS2 97<br />

Figure 4.24. Steel and concrete rtmns <strong>of</strong> spscirnen HSS3 98<br />

Flgurt 4.25. SPel and concrete strains <strong>of</strong> specmen HSS4 99


Ftpure 4.26. Steel and concrete stnlns <strong>of</strong> rpeclmen HSFl ...................................... 100<br />

Figure 4.27 Steel and concrete srralnr <strong>of</strong> specmen HSF2 ................................ 101<br />

Ftgure 4 28 Sreel and concrete srranr <strong>of</strong> rpec!mcn HSF3 .................................... 102<br />

Fmpure 4.29. Steel and concrete rtnlnr <strong>of</strong> rpse~men HSF4 .................................. 103<br />

F~UR 4.30. Steel and concrete ~ tn~ns <strong>of</strong> specmen NSSI ................................ IM<br />

Rpore 4.31. Steel mdconcrete rams <strong>of</strong> rpeclmen RSSl ....................... I05<br />

Ftgure 4.32. Sleel and concrete Etnlnl <strong>of</strong> rpeelmen NSS3 .................................... 106<br />

Rere 4.33 Sleel and concrete strains <strong>of</strong> specmen NSS4 ............................... 107<br />

Ftgvre 4.34. St-! and concrete strams<strong>of</strong> specmen NSFl ................................. 108<br />

F~gure 4.35. Steel and concrete rrrdlns <strong>of</strong> rpeclmen NSF2 .............................. 109<br />

Ftgure 4.36. Steel and mncrele nraknr <strong>of</strong> specmen NSF3 ................................... 110<br />

Fipure 4.37. Steel and concrete rtntnr <strong>of</strong> rpect<strong>mm</strong> NSW ............................. 111<br />

Figure 4.38. Htph-strength vmus normal-strength concrete plrte behawor<br />

under lmpvct loodnng 112<br />

F~pure 5 1 Method <strong>of</strong> crlculattng N rom rlrerr!ng n data ................................ I26<br />

Rpure 5.1. Typical load-denealon curve 130


List <strong>of</strong> Tables<br />

Table 2.1 Typ~cal rtnm rarer far various rwr <strong>of</strong> lodtnp . ...... . .. . ...... . .. . . 25<br />

Table 3.1. MIX propanlo" for I I' <strong>of</strong> nonnalirrengrh concrete ...... .... ........ . .... 37<br />

Table 3.2. MIX propomon for l m'<strong>of</strong> h~gh-smngth concrctc .......... ..... ...... . . 38<br />

Table 3.3 Prnpen!cr <strong>of</strong> steel retnforcement<br />

Table 3.4 Delallr <strong>of</strong> specmen<br />

Table 4.1. Test results<br />

Table 5.1. Cntlcal velac~ty <strong>of</strong> perfanuon .. ........... ... . . .. .... ............................ 120<br />

Tnble 5.3. C~lculaled cnllcal velocnty campmd wtlh test velac,ty 121<br />

Tlblc 5 4 Values <strong>of</strong> ZV f<strong>mm</strong> ~mpact tests 128<br />

Tnblc 5.5. Companm <strong>of</strong> dynamsc fracture energy wtth rtatte fraeturccnegy ...... 131


List <strong>of</strong> Symbols<br />

area <strong>of</strong> rsel remfa~ement<br />

enck length<br />

final crack on fncture<br />

lnlcial enck kfore lertlng<br />

accelcratton <strong>of</strong> pm,ecule<br />

total aeceleml~an<br />

ride dnmenrlan <strong>of</strong> square ioaded area<br />

pnmelsr <strong>of</strong> mueal recrlon for shear ~n plater<br />

pnphsry around rhc column excludtng apenlngr<br />

effecuve depth <strong>of</strong> the slab<br />

- do slress rate or vanallon <strong>of</strong> rmss wtlh frmc<br />

I<br />

E modulus delnn~aty<br />

E, modulus aieiast!e!ty <strong>of</strong> concrete<br />

E, modulus elarl!cnty <strong>of</strong> aeel<br />

EeV<br />

dynamic (impact) modulus <strong>of</strong> elastlenty<br />

E,,, nauc modulus <strong>of</strong> slvsticnty<br />

Fir1 Impact loadng<br />

1, mean cencme <strong>mm</strong>gth


I


lmpact test load<br />

mlrrlle penmeter<br />

penmeter <strong>of</strong> the govern!"% rectlon at a dlrtance 1.0 d f<strong>mm</strong> the loaded wen<br />

deflect~an at the load paml<br />

ilccclerslron at the load pala<br />

velm~y <strong>of</strong> crack errenslan<br />

ult!rnnlc shear force<br />

ullnmste load for flexural fatlure<br />

nomlnsl shear stress<br />

ult~mac shear stress<br />

EOnCrelc denslly<br />

crack wdth<br />

wtdlh <strong>of</strong> the fracture pmccsr zone<br />

crack uldth when f, rexhes rem<br />

crack opentng velwlty<br />

dynamtc matenal pmpeny<br />

Pacar whtch adlusts r,for ruppon dlmennons<br />

mtloaf long ride to rhan ride <strong>of</strong> thc concentrated load<br />

fracture surface energy<br />

malenal eaffielent for relnforc~d<br />

tC"S11~ SVdl"<br />

y~cld slmn <strong>of</strong> steel remfmrnca


maxxmurn lenrtle rtnln<br />

impact ullxrnare stram<br />

stme ultlmare rtmin<br />

111~1" nre<br />

rtnln rate n quasi s tali^ condltmn<br />

rcnsllc mnforccrncnt ratio<br />

comprerrlve retniare~mcnt nuo<br />

penmeter <strong>of</strong> the column<br />

frxture sucngh <strong>of</strong> concmre<br />

final rucrr <strong>of</strong> 3 Ipecnmtn measured ~n a fracture test<br />

lnltlal arerr <strong>of</strong> n rpcclmcn<br />

stress rare or vanallon <strong>of</strong> nerr wtth tune<br />

stress nle a qwlsl rletc condtuon.


1.1. General<br />

Chapter 1<br />

INTRODUCTION<br />

ll 1s appropnatc to dlxurr and clmfy a number <strong>of</strong> fundamental poma ~n the subject or<br />

dealing wnth rpec!Rc derlgn munpmcnt. Thm SIX three polnts that rhould be cian8ed<br />

before examsnlng the behavior <strong>of</strong> concrete plates under lmpilcl loading. Frrrlly. thc high-<br />

strength concistc plate should be defined. Secondly. the dcfin~tton <strong>of</strong> Impact loadtng<br />

rhould beoutlmed. Fmally. the ohjcct#ves <strong>of</strong> the research should he dewnbed cledrly.<br />

Hngh-strength concrete IS defined as any concrete wtth eomprernve-strength over<br />

41 MPa. Hlgh-sucnglh 8s reallred thmugh the use <strong>of</strong> silica fume as a pantal replacement<br />

for cement to pmduec extrsmely srmng, hlghly abrvnlon remnant. impmneil. ble. very<br />

durable conmle agalnrt freeze-thaw damage and salt water aanck. Thlr marenal has<br />

already been successfully used far <strong>of</strong>fshore platforms. marine ruuctures. tall buildangs.<br />

and long span bridges.<br />

Impact loading ~r a result d a mllinon between two bodes thar aceur m a very<br />

small interval <strong>of</strong> time, one wtth a h~gh tntt~al speed strilung another at a stelonmy


porltlon by gneraung large forcer. The rlruck oblect. #n clvll engmeenng. Is urually a<br />

structural element that has to be dengncd to rerlri lmpacl Ioadsng Thlr loadmg IS mostly<br />

ei<strong>mm</strong>e lwildang ~8th mnfrequsnt probbbltty <strong>of</strong> extrtenee dunng the Ihfeume <strong>of</strong> !he<br />

structure. However. falure due to Bmpxt loadtng <strong>of</strong>ten results ~n a senous rtruclunl<br />

&mag. Marenal propcn!es like hlgh-cnergy absorprlon have lo be llken lnta<br />

conadcnoon I" the dcrlgn <strong>of</strong> sttic concrcte structure.<br />

Many rmcturer experience Impact loadcng. Some <strong>of</strong> the structures La murl have<br />

the porrtbml~ry <strong>of</strong> Impact loudtng consldered m them desngn are <strong>of</strong>fshore fnc#l~ner. ptles.<br />

deknw shelters. and rlructures ~n retrmlc areas. The tmpacl loading can be ~gnored tn the<br />

derlgn pmcerr when the Iodlng lntcnstry has small Ilumualonr. However. when the<br />

rnsgn!tude <strong>of</strong> the fluclualng component af londlng 3s large. lhc Impact lwdd~ng can be<br />

very rtgnllicmt. Engineers should be able to decsde whelher the mpxt lord~ng must be<br />

accounted for ~n des~gn or neglect a. The resvns!bnltty <strong>of</strong> the data engnncer IS to solve<br />

problems m a safe. effi<strong>mm</strong>t. and economic manner. Therefore. the dcslgn cng~ner<br />

should consdm how the overall ntruclure behaves under lmpact loadmg.<br />

The use <strong>of</strong> h$&-strength concrew IS ~ncrr~nng faster than the development <strong>of</strong><br />

apprapnale dertgn code reco<strong>mm</strong>cndaltan In spite <strong>of</strong> the wtde use <strong>of</strong> high-rtrmgth<br />

concrete. l~ttle research has been canduel~d on the structural behavtor <strong>of</strong> high-strength<br />

concrele beams. slab and columns under dynamic loadmg. The rtruclunl behavlor <strong>of</strong><br />

concrete plater, especially under lmpxt loadnng, needs funher Invenlgaoon. The<br />

concrete plare in a nmple. sonarnica!, and popular nruclunl rysrem. Therefore. hlgh-<br />

strength coneme flat plate was chosen ~n this research, rlnce it bar wvenl clvll<br />

engrnecnng applicat!ons.


1.2. Research Scope<br />

The %ope <strong>of</strong> lhls study IS ro nnvenlgnte the dpamlc behav~or <strong>of</strong> two-way remforced<br />

concrete plates under tmpacl loadtng. The 6nvesugatlon tncludcr an expenmental<br />

anuertlganan and a numerical evaluaton The two phwr <strong>of</strong> the mnversgattons are<br />

dexnbed as fallowr:<br />

The expenmental rerung pmg<strong>mm</strong> will be conducted on wvenl speclmenr<br />

rub~eeted to fmpafr loading. The lmpuc: load sped target rmge between 4 to 9 mls as<br />

~!ccelcrat.tlon ir nnge between 70 to 120 g The rpectmenr will be tested under Axed md<br />

rrmply supponed end-cond8nanr. The behavior <strong>of</strong> high-rmnglh concrete plaer ulll be<br />

evaluated wnth rerpeet lo deflection. concrete md stel smtns, energy rbsorpr~on<br />

capsclry. and fracture encqy.<br />

The numneal evaluilllon will be cmed ou~ lo venfy the valndnty <strong>of</strong> the current<br />

codc prcd!cttonr. The lmpaEl lo~d ccapacllles wlll be compared wlrh Xauc capvcltlcr <strong>of</strong><br />

the coder A fmacture mechanxcr Impact load analytnr based on lhnear elilrt#cr fracture<br />

mechanics ILEFM) wnll be conducted. The purpare <strong>of</strong> the numerical evaluutton 1s to<br />

prov~de a more detall anvlyrns on the effect <strong>of</strong> the rate <strong>of</strong> loading on the dynamtc<br />

behawor <strong>of</strong> h~gh-nrength concrete plates The dynamtc fracture energjes <strong>of</strong> the tested<br />

plates wdl be compared lo sratlc fmcture snsrglsr calculated f<strong>mm</strong> prevnous Invcst>galon.<br />

The nudy wlll provide adcslgn gut& forengnneem on the effect <strong>of</strong> nte <strong>of</strong> loading an the<br />

behvvtor <strong>of</strong> high-strength concrete plate.


1.3. Research 0b.iectives<br />

Thrr ==arch wmll nnvesrngale the rest results <strong>of</strong> 16 different rpectmens Based on the<br />

e\penmenlal lnveslrgatlon a better undentand~ng <strong>of</strong> [he khavlar <strong>of</strong> htgh-smnph<br />

ranforced concrete plates under Impact loading will be reahzed. The mqor objeclwcr are<br />

nor lhmtrcd ro hut wdl conram the followrng objecnver:<br />

(I1 lnverugrtc the rtrvctvnl behrvlor <strong>of</strong> high-strength concrete plate under dynamic<br />

tmpact loadtng.<br />

(21 S~udy the effect <strong>of</strong> the md condttgons on the rttuctunl khavtor <strong>of</strong> hhgh-strength<br />

concrete plate under ampact loadnng.<br />

(3) Exa<strong>mm</strong>e the effect <strong>of</strong> re#nforce<strong>mm</strong>t nu0 an the behi~vtor <strong>of</strong> high-strength concrete<br />

plates.<br />

(4) Record actual concrete strdxns. see1 strams. and deflectlan <strong>of</strong> htgh-strength concrete<br />

plater under Impact loadnng.<br />

(5) lnvcrtlgate the tnfluence <strong>of</strong> the rate <strong>of</strong> lodtng on the Impact bchavlor <strong>of</strong> rpeclmens<br />

usmg fraclure mechanics equatlanr and ten results.<br />

I61 Pmv~de new lnfomallon on the farce-dlrplacement relunonrh~pr <strong>of</strong> h~gh-strength<br />

concrete plater.<br />

(7) Compare the result <strong>of</strong> the invenlgatton with rhcoretrcai erpresaonr and code<br />

equilttanr.<br />

(8) Evaluate the fnnure energy <strong>of</strong> the concrete plate undm Impact loading.


1.4. Format<br />

Thnr therls can be dlvlded Inla three pans. Pan I sppem under Chaprers I and 2 Chapter<br />

I covers the tntmductlon and rhc ablecclver <strong>of</strong> lhir ~nvsmignt~on. Chapter 2 presents !he<br />

lttenrure revtew <strong>of</strong> prevfour xnvestlgatonr.<br />

Pan 11 appears under Chapter 3 thal cover all the cxpcnmental tnvessgauon<br />

camed out to study the effect <strong>of</strong> concrete strength and relnfonement nllo an the<br />

behawor <strong>of</strong> relnfoned concrete plaler subjected to Impact loddnng. Thlr chapter coven<br />

the sa-up <strong>of</strong> labaratory and crpcnmcnral pmgram<br />

Pan Ill appcarr under Chapters 4 and 5. cover the enrlre research Andlngr. rest<br />

results and anrlyllcal tnverugauon ~ncludlng evnluatlan <strong>of</strong> severdl models lo predlcl rhc<br />

iheilr-mrenglh <strong>of</strong> hlgh-stmgth concrete plate. Thlr chirplei also presents I numerical<br />

evaluat~on bared on a fracture mechanics vnalys8r to evvluare thc effect <strong>of</strong> rate <strong>of</strong> loudtng<br />

on the behavior <strong>of</strong> conc~te plater. Rnully. r conclus8on su<strong>mm</strong>anrer the cxpenmcnval<br />

and analyttcrl lnvatkgatnonr are grven 8" Chapter 6.


Chapter 2<br />

REVIEW OF LITERATURE<br />

2.1. High-Strength Concrete<br />

2.1.1. General<br />

Qurlnty <strong>of</strong> concrete IS generally derenbed by as eomprr!ve nrength. Accordtng to the<br />

Amencan Concrete Innlture. ACI 363 (1992). ordsnav strucrural cancrele has been used<br />

wrlh r cornpreslve rlrength in b e nnge <strong>of</strong> 20 to 40 MPa. Whtle. hjgh-strength concrete<br />

1s defined as any concrew wtth over 41 MPa compresswe strength. But. in the 1st two<br />

decadcr. concrete ~8th hlgher compresswe strength has been used tn rhe cansrructlon <strong>of</strong><br />

high-nw buildrngr. long-span bndger. and <strong>of</strong>fshore structures. The new hlgh-strength<br />

concrete has n compresswe strength <strong>of</strong> 70 MPa and IW MPa.<br />

The uoe <strong>of</strong> high-strength concrete a sprendlng rapadly all aver the world and<br />

lncrearing faster than the development <strong>of</strong> appmpnate derlgn code reco<strong>mm</strong>endat8ons.<br />

Several recent invertlgatlons have been conducted on hlgh-strength concrete behvv~m to<br />

find the charancnstic behavlm <strong>of</strong> high-nrmgth concrete and to up@ the cumt


derugn reco<strong>mm</strong>endar~ons so thac the polsnt!rl <strong>of</strong> hngh-strength concrete can be fully<br />

expoad.<br />

Recent tnveniguuonr on high-rtrengrh concrete can be clnrrlficd ~nto three masn<br />

cnrcgoncs. 1.c. khavlor <strong>of</strong> matenal pmpentes. behav~or <strong>of</strong> rlmclunl memberr. and<br />

develapmcnr <strong>of</strong> teslsng equtpment. There three man cacgona can be dercnbed bnelly<br />

~n the followlnp:<br />

(I) W~th altenr~an to the mvtcnal pmpenler. rcvenl ~tudler have been camcd out to<br />

tnvcstlgvle Ihc bchavln <strong>of</strong> h~gh-strength concrete rubjcctcd lo dtfferent stress<br />

condlllms.<br />

(2) Wtrh respect to the behavior <strong>of</strong> rrmcrural members. several rrudler hive been<br />

conducted to lnvestlgate the behavior <strong>of</strong> structuml elements conslmcted wtlh hlgh-<br />

slrmgh concne.<br />

(31 Rnally. with eonsrderatson to the development <strong>of</strong> tesung equlpmenl. xvenl<br />

resenrchcr have been gwen to tmpmvc the lestlng equnpment tn order to ~nvesttgate<br />

ilccurntely the behrv~ar <strong>of</strong> hmgh-strength concrete.<br />

Dunng the pan decade. rcvenl concrete matcnnl and stmctunl mvenlgarnonr<br />

were conducted at Mcmonal Unlvers~ty <strong>of</strong> <strong>Newfoundland</strong>. Mmouk and Hurrcin (19913)<br />

conducted the development <strong>of</strong> hlgh-nrenph mnr den@ f<strong>mm</strong> lacal mrtenalr It h& been<br />

concluded that Iacal matmalr can be used wtth s~llca fume and fly ash to provtde<br />

strength <strong>of</strong> 70 MPn at 28 days. Manouk and Chcn (1995) reco<strong>mm</strong>ended a const~lut~ve<br />

relatronshlp br the behavior d high-rurngth concrete under unlarsrl tension load<br />

~ncludtng the pat-pak sabnmg rerponx and fncture energy.


Mmouk and Husretn (1991) reported that the use <strong>of</strong> the cuble mot <strong>of</strong> the<br />

compresave strength to predlet rhc punehtng shear reststance <strong>of</strong> hcgh-smngth concrete<br />

slabs Ir much better erprerrnon compared to the square mot expresseon used m all Nonh<br />

Amencan coder. Mvnouk and Jtang (1994) ~nvcsrtgatcd rlr different methods la<br />

enhancement <strong>of</strong> the punchang shear capacity. The strucrural behawor <strong>of</strong> hnoh-nrengh<br />

concrete plater rvns cvalunrcd ~n terms <strong>of</strong> ovcrrll load-defleetmn response. ulilmotc<br />

loadrng capaerty. ducultly and energy absarpoon. Fanlure patterns and nlnm dtstnhut~an<br />

we= also dlscurrcd.<br />

2.13. Mix Design <strong>of</strong> High-Strength Concrete<br />

Hlgh-strength concrete IS made wlrh the rumc baste ~ngredlentr as normal-strength<br />

concrete. Famy and Pana~ (1993) reported that the praducuon <strong>of</strong> hlgh-xrcnglh<br />

concrete is achncvcd by opt!mizar~on <strong>of</strong> the follaw~ng facton.<br />

(1) ehaactenrt~cr <strong>of</strong> the eemenung medium.<br />

(2) chnnctcnrtxe~ <strong>of</strong> the aggregates.<br />

(3) pmportlonr <strong>of</strong> the pasts.<br />

(4) paste-agpgates ~ntsraclian.<br />

(5) mixmg, consolidating, and cunng. md<br />

(6) testing pmecdum.<br />

Some relatan <strong>of</strong> <strong>mm</strong>alr and mlxrng methods are being explored thmugh research.<br />

However, atlendon to the &ve nx basic arras Ir <strong>of</strong> exveme impanance whether wlng<br />

exirttng or new materials and techniques. In the United Stater and Canada, the ACI


Co<strong>mm</strong>ltlee 363 (1992) report 8s used 3s r gutde for the dcngn and construcrlon <strong>of</strong> hngh-<br />

slrengh ConCrete EtWClURE<br />

LI.LI. Cement<br />

Cemcn~ pule 4s an imponant faeror ~n malang htgh-strength concrete. Selection <strong>of</strong> r<br />

panlmd cement for htgh~strcngth eancretc should bc bxcd on compmti\.c stxnglh lcrlr<br />

<strong>of</strong> cemea at 28 and 90 dayr. A cement that ytelds the hlghesr compresswe arengh al (he<br />

later age. 90 dayr. Ir obvlourly pefcnblc.<br />

Zrn el nl. (1993) dernbcd tha the cholce <strong>of</strong> nppropnate cementltlour matenills<br />

war governed by consaderat~onr d:<br />

Ill can.<br />

121 av~ilabnhly.<br />

(31 cvtdence <strong>of</strong> rartrfncrary performance.<br />

(4) the cngtneeis confidence in rpec~fylng the mutenal. and<br />

(51 the contrxtor's absllty to produce, handle. and place concrete contalnnng Le pmduct.<br />

In the Unlted Swres and Canada. ACI-363 (19921 reco<strong>mm</strong>endatlonr rqulre n<br />

mtnlmum cement content <strong>of</strong> 360 kg/ml. In order to make hngh-strength concrete: the<br />

mlxrure rhould have r cemenooaur mvtenals content <strong>of</strong> between 360 ta 603 k#m3<br />

However. the use <strong>of</strong> htgh cement content ~n masslvc rtmctures frequently leads la<br />

thermal erxlung. Thermal mbng increases the permeabll8ly and Rduccs the dunbnlity.<br />

Therefore, developnng hxgh-rmngth cement wnth modeate hear <strong>of</strong> hydmt~on 1s<br />

reco<strong>mm</strong>ended ~n order to avoid thlr problem. In the Untted Slates ASTM type I cement


and m Canada CSA type LO cement are the most used type <strong>of</strong> cements to pmduce hngh-<br />

strength COnClelE.<br />

Watersemen1 muo a typtcnlly expressed as the total weight <strong>of</strong> water to the total<br />

wctgh! <strong>of</strong> cement. In addanon. warerscmenrlllous matenvl ratlo ,r expressed as !he rota1<br />

werght <strong>of</strong> wscr to the total combnncd wash1 <strong>of</strong> all ccmentttlous marenalr. In both carer.<br />

:hc total uelgh! <strong>of</strong> uateiexcludes that absorbed by The aggregales. but lncludei my uatlr<br />

intrduich !ntn ?he mlrture as pan <strong>of</strong> an adm#xIure. Some <strong>of</strong> the more finely ground<br />

ponland cements such as ASTM type I11 (h~gh-early-~trcngth) will have hlghcr mnxnng<br />

water requrement for equal workab~bty. pantcularly at law wnlereemenr ratnos. nnd mny<br />

p<strong>mm</strong>oa npvd st!ffcn~ng m hot weather. Unfonunatcly. thm type <strong>of</strong> cement !r not<br />

reco<strong>mm</strong>ended for high-strength concrete<br />

2.12.2. Aggrewta<br />

Aggregates are lhorc pans <strong>of</strong> the concrele that constttule the bulk <strong>of</strong> the Sntshed product<br />

Aggregates constatute the major pan <strong>of</strong> the mlr and compnre 60% lo 80% <strong>of</strong> the volume<br />

<strong>of</strong> the concrete, They have to be so graded that the whole mass <strong>of</strong> concrete scs ;Is I<br />

relntlvely rohd. homogcncou~. dense camb~natlon. wxrh the rmtller rlus acung ar an<br />

filler <strong>of</strong> the votdn.<br />

Usually, the man components <strong>of</strong> aggregates can bs dtvlded ~nto two typr (I)<br />

coarse aggregate: gravel, emshcd rcnc. or blast furnace dag: and (1) Snc aggregate:<br />

nauml or manufacturd sand. The coarse and fine aggregates are de~cnbed bneny m the<br />

followmg drwusnm.


2.1.22.1. C<strong>mm</strong>c Aggregates<br />

The charactenrr#cr <strong>of</strong> the aggregate rngaficandy influence the pmpenler <strong>of</strong> concrete.<br />

lnclud~ng rrrength. The strength <strong>of</strong> aggregates 3s always greater than the strength <strong>of</strong><br />

cement pate. However, for htgh-nrengrh concrrrc pmducnon, the strength <strong>of</strong> the cement<br />

pane Ir hlgh enough to nvnl the rcrength md other vital pmpcntes <strong>of</strong> the aggregate. The<br />

slrength <strong>of</strong>the ugregae. the bond or ldhenlon between cemen! paste 2nd qgreglte. md<br />

the abrarptnon chancrensuc <strong>of</strong> the aggregate all become more imponant for high-<br />

strength concrete than for normal-strength concrete. For thns reason. any one <strong>of</strong> there<br />

propcnles could be n lmlt factor far ultimare nrengh.<br />

There Ir a pnnqcal value ~n determlnlng the oplnmum rlze <strong>of</strong> come aggresJte for<br />

dtfferenr concrete ltrrngth levels. The optlmum nu depends on the followtng factors<br />

(I1 relelve strength <strong>of</strong> the cement paste.<br />

(2) cement-aggregate bond. and<br />

(3) rlrenglh <strong>of</strong> the aggregate pan~cler.<br />

The chemncvl conant <strong>of</strong> the aggregates. that Is the mlnnol present, does lend some<br />

~nrnght snto predicting the mnreract~on bctwen cement paste and aggregate pantcler Stall.<br />

rnvl batches provide the most prxncrl lnformar~on for chaorlng the best aggregae for il<br />

concrete mtxture.<br />

For normal-strength concrete. Walker and Bloem (19M1) explanned that mlrlng<br />

water qulrement IS reduced a coarse aggregate nze Is ~ncreased. The net effect s u<br />

lower watersemcnt rauo and htgher rmngth. Water qulrernent tr a funcrxon <strong>of</strong> the<br />

averall fineness <strong>of</strong> lhc oolid mgredteas.


For high-ruenah mlrlures. rhc use <strong>of</strong> small agpgmer with marlmum nomtnrl<br />

rlze d 190. 12.5. and 9.5 <strong>mm</strong>. usually Ir ~uffie!ent to <strong>of</strong>fset rhe effect <strong>of</strong> Ihc hlgher<br />

mtrmg water demand. Cmquillo (19851 reponcd that the use <strong>of</strong> crushed aggregates tr<br />

reco<strong>mm</strong>ended for the praducrton <strong>of</strong> htgh-strength concrete. rather than mund aggre~ater<br />

Thts was aunbured lo the reduced nggregae-manar lnrerfvce band nrenglh <strong>of</strong> natural<br />

pvel aggreertes<br />

However. the mle <strong>of</strong> aggregates m hngh-arenph concrele Is <strong>mm</strong>or compared wtth<br />

the role <strong>of</strong> cernentit~aur malenals. Manouk. Osmun. and Helmy (19981 reponcd that 11<br />

ha been produced a bgh-strength Ihghtwe#ghr concrete up to 80 MPa a the concrete<br />

laboratory <strong>of</strong> Memonal Unlvennty.<br />

2.I.LZ.L Fine Aggmgates<br />

Saucier. Smllh. md Tynes (1964) ~ndmaed that fine aggregates eontam a much hlghsr<br />

surface area than come aggregates for u gwen we~ghL Because 11 has I much larger<br />

surface area. the fine aggregare isandl can ~nflusnee the amount <strong>of</strong> mlsnng wafer requred<br />

md affect thc pmpemes <strong>of</strong> fresh and hardened paste more than the cornc aggregate. In<br />

sands <strong>of</strong> the wmc gndtng. 1% ~ncresse ~n fine aggregate votdr may tnducs r 5 llm'<br />

~ncwue tn water demand to maaam an equal slump.<br />

Slnce all aggregate m concrete must be coated with paste. the shape and gndnng<br />

<strong>of</strong> fine aggregate as well as Its pmponnan to coarse aggregate will have a direct Impact on<br />

pasts requlrerncnt. More cement paste tr required when more fine aggregate IS used. The<br />

less sand used. however. the harsher mixture and workability maybe senourly ~mpnred.<br />

A balance must be struck !n pmpontonlng h~gh-nmgth mlrtumr In general. using at


least rand conrnrtent wtth necersq workabnltty has gwen the best rfrengrh for a even<br />

pasrc.<br />

The band <strong>of</strong> pwte to line aggregate IS less ngnrlicant lhsn bond lo eorrse<br />

aggregate bccaure <strong>of</strong> the large ruxface area nvalablc I" the fine aggwgare for bond~ng.<br />

Maxlrn~n~ng the come to 6nc aggregate nuo (CAIFAI can result ~n the mon eihctent.<br />

and ~hcrrforc ecooom~cnl. use <strong>of</strong> cemenntlaur mxenals The opurnum nlln nf CW4 wlll probably be apprrea f<strong>mm</strong>tnal batches basedon warkvblltty <strong>of</strong> the msrture.<br />

Rounded and smooth line aggregate pantcles (natural rand1 are better from the<br />

newpomt <strong>of</strong> workab,l~ry than sharp and rough panicles imanufsctured rand). Conerere<br />

mnrlures <strong>of</strong> he same slump and cement factor coaam8ng nau:al sand produce hlgher<br />

rrrengthr than consrctc contmntsg manufactured rand w reponed by Fmy and Pnnmre<br />

119941. The palullcle shlpe and gndlng <strong>of</strong> !here mntennls are probably rerponrlble for the<br />

strength d~fferencer.<br />

Washlng the sand may be necessary. When natural rmdr contslnlng Irrge<br />

qurnttl!cr <strong>of</strong> mlcu. clay, and other delelenour macnalr. Thew harmful macn~lr should<br />

be avo~ded as !hey may tncrcare water demand and affect hydrartan md bond <strong>of</strong> cement<br />

pvrle lo aggregate. Untformrly <strong>of</strong> grading from bach to batch 1s also Imponant for both<br />

the f~ne and come aggregates because <strong>of</strong> Itr effect on workability.<br />

2.1.2.3. Admixtures<br />

Adm~rturer am malcnals other than water, agpgares, and cement that arc used as<br />

~ngredtents <strong>of</strong> concrete. ACI Co<strong>mm</strong>ltlee 212 (1983) ~poncd that he iunctlan <strong>of</strong><br />

admixtun is to modify the pmpnter d concrete to impmve warkahllity, or for


economy. or for other purposes such as Impiovmg conerele strength. These malenrls uc<br />

added lo the batch n<strong>mm</strong>ed~ately before or dunng the mlrtng. There pmpentcr help the<br />

concrete to achlcve high strength and water reductton w~thout loss <strong>of</strong> worhblllr)<br />

Tnal mlxlums rhould be Mde with the ndmlxlure and job matennlr at the same<br />

temperaturer and humidity anrrlpnted on the job Thtr permrrr an evaluatnon <strong>of</strong> the<br />

compvtlb~l~ty <strong>of</strong> an vdm-rture w~th other adm!sturer ad concrete materials. It also server<br />

an evaluarton <strong>of</strong> Ihc ~dmtxlure effects on the propcnrer <strong>of</strong> fresh and hardened concne. A<br />

reco<strong>mm</strong>endatton by the manufacturer or the apttmum amount &lerm#ncd by lnborvrory<br />

lnnl batches should be used. The major type <strong>of</strong> adm~xturer can be ru<strong>mm</strong>anzed ar mlncral<br />

dm~xlurer and chemlcal adm~xturer. whleh wall be described bnefly an the followmg<br />

dtrcurslon<br />

2.1.23.1. Mineral Admixtures<br />

The most lmponant mnnml admnxturer lo the pmduetlon <strong>of</strong> hlgh-rtrengh concrete are<br />

pouolmr The two porzolans most co<strong>mm</strong>only used m h~gh-nrength concrete are fly ash<br />

and rlltca fume. However. espei-#ally I" Canada. gmund grunulared blast-furnace slag has<br />

been used more recently instead <strong>of</strong> ~rllc~ fume. Ground slag far use ~n concrrtc should<br />

confan lo reeuon C989 <strong>of</strong> the ASTM (1997). rpecllicat!on for ground granulaled blrsl-<br />

furnace slag for uw m concrete and mortar.<br />

Fly ash 1s produced as n by-product <strong>of</strong> the comburuon <strong>of</strong> pulverized coal ~n<br />

electnc power generating plant. Th~s marenal 8s used to amend msuffie~ene~es in a<br />

concrete mix by providing mjrsrng fines from the fine aggrrgntc. Usrng fly ash type F to<br />

the mlr can impmvc qual~ties <strong>of</strong> concrete such as reducing permeability, expansan. and


the cost <strong>of</strong> concrete-mahng matennls. Unfonunaely. the pmpntes af fly ash can vary<br />

greatly becau~e <strong>of</strong> the wtde range <strong>of</strong> comporctton <strong>of</strong> coals. Conrndenng the acceptance<br />

and un~fomty, rcsrr should made aceardzng to recrlon C618 <strong>of</strong> the ASTM 0997).<br />

rpeenfiealan for fly ash and nw or calr~ned naural puolsn for us rr a mtnenl<br />

ndmtrture I" panland cement concrete.<br />

S,lrd fume IS a new porrolan~c malenvl (ha! has received constderahle allenllon<br />

~n both research and applleatlon. This malenrl a a byproduct rerult~ng from hngh-punly<br />

qwar wcth coal 10 the clcctnc arc furnace tn the production <strong>of</strong> snliean md ferrorcl%con<br />

dlloys Unltke fly ash. rillca fume IS extremely fine. Mon <strong>of</strong> panleler are less than Ipm.<br />

and the average panicle d<strong>mm</strong>eter 1% about 0 I pm ~8th surface area <strong>of</strong> nbour Z0.W<br />

m'ikg. For comparison. fly ash surface ma typncally ranges from 300 to 5W m'lkg.<br />

ground slrp f<strong>mm</strong> about 400 to 600 m'lkg, and lype I cement f<strong>mm</strong> 300 to 4CnI m'lkg<br />

Attcln and Neville (1993) repned that the addman <strong>of</strong> slltca fume to the mlx<br />

Increaser the coheaveness. viseonty. and water demand <strong>of</strong> fresh concrete. In hardened<br />

concrete. the addillon <strong>of</strong> rtllca fume cm produce slgnlficsnt Increase ~n rtrenpL. modulus<br />

<strong>of</strong> elrn~mly. md flexural ntrengrh. The use <strong>of</strong> rnltca fume rhould canbrm ro wcllan<br />

C1240 <strong>of</strong> the ASTM (1997). rpeclfieauon for sflicr fume for use ~n hydnullc-cement<br />

concrete and monar.<br />

2.1.23.2. Chemical Admir<strong>mm</strong><br />

The benefits to be reallzed f<strong>mm</strong> uw <strong>of</strong> admlxturu m htgh-strength concrete have<br />

plaeucally mandated tktr use. Thcx ndm>rrures increaw the workab~lity and enable<br />

reducing the cement content in propnlon lo the reduetion in water content. A co<strong>mm</strong>on


pracuce a to use s water-ieducmg admixture (ruperplantctzer) m comb~nal#an wtth a<br />

water-reducing retarder.<br />

The type <strong>of</strong> rulphonsed naphthalene formaldehyde ruperplwl!clur nonrlly<br />

used reducer the amount <strong>of</strong> water requnred by 154%. However. usmg thns<br />

ruprplmle~zer aften results !n hxgh rate <strong>of</strong> slump loss. malung ~r difficult lo place the<br />

concrete properly The hlgh nle <strong>of</strong> $lump Imt will he overcome hy the add~laon <strong>of</strong> the<br />

water-reduc8ngretardcr whch exlends the lnme <strong>of</strong> set and -81s the placement af a very<br />

low waterxemenf ratlo concrete.<br />

The compar~b~ltty <strong>of</strong> the vdmlnture~ wlrh the chorce <strong>of</strong> ccrnea 8s u very lmponanl<br />

cans~deratton lo order to reduce any underlrahle effeas 8n concrete. all chemtcal<br />

admlxlures rhould meet the requlrcmsntr <strong>of</strong> $maon C494 <strong>of</strong> the ASTM 0997).<br />

rpecrficanonr for chemtcal adm~xtures for concrele. The use <strong>of</strong> retarder rhould be<br />

confomcd la ~ccuon C494 lyp B and D <strong>of</strong> the ASTM (1997). whllc the use <strong>of</strong><br />

ruperpl=stlc!ur should be conformed lo recnon C494 typ F <strong>of</strong> !he ASTM i 1997).<br />

2.15. Batehing and Mixing Squcnra<br />

The vncarpoalton <strong>of</strong> rllica fume and hrgh-nnge water ~duesn makes It porstble to artan<br />

htgh-nrengtk concrete at early ages. The followang batchlng and mixmg procedure has<br />

heen developed by carlia rerearchen an the concrete Isbomoq <strong>of</strong> the Memonal<br />

Untvcnlry <strong>of</strong> <strong>Newfoundland</strong> far Ihe product~on <strong>of</strong> workable high-strength mar.<br />

(I) Charge 1W% <strong>of</strong> coarse aggregates.<br />

(2) Batch 103% <strong>of</strong> cement.<br />

(3) Balch lW%<strong>of</strong> fly ash.


(41 Barch 100% <strong>of</strong> rand.<br />

15) Mlx for 3-5 minuter afkr uddnng 50% the erum~led water wllh water reduclng rsea.<br />

(61 Prepm a slurry <strong>of</strong> rlltca fume. togelher wtlh 25% <strong>of</strong> gross ruperplarr~c~zcr dare and<br />

20% <strong>of</strong> water.<br />

(71 Mlx for 5 mlnuler.<br />

18) Add 30% <strong>of</strong> mlx!ns water roeerher with utr entnanmnc admtxlure5.<br />

(9) Retemper with the m t <strong>of</strong> ruperplasoenerdore to target slump<br />

Flowtng concrete was pncnlly achleved unng those mlrturer ~ncludlng<br />

rupcrplart!clur and retarder The a!r content ~n the majonly <strong>of</strong> [he mlxrurer Ires v~thln<br />

3% lo 5%. Slump values were lmrely at the 100-<strong>mm</strong> target. while an average value <strong>of</strong><br />

the unll welghl<strong>of</strong> fxsh concrete was 240 kglm'.<br />

2.2. Punching Shear Strength<br />

Renpc!wc ruggrted approaches can be represented u ellher the result <strong>of</strong> an empmncal<br />

study or a ntnonal srudy to e~labllrh r relartanshnp between Ihc load and stress at i~~lurc<br />

<strong>of</strong> concrete plates The emplncsl study used I rlal~tlcsi arnslyas <strong>of</strong> the svallilble lest<br />

results. whsle Le noonal audy descnbcd and ldcvllred rn~thematlcnlly the mechrnnrm <strong>of</strong><br />

failure.<br />

In the cue <strong>of</strong> emp~rieal studies. Forsell and Halcmberg (1946) described that the<br />

cnllcal sectton loeated at a dlstvnce ILQ f<strong>mm</strong> the lded area. Lt has also been reponed<br />

that [he shear stress d~rmbuson over the slab thickness rr assumed parabolrc.


where r 2s the ull#mate shear stress. V Ir the ulumate rhear force. c Is the ride dtmcnrson<br />

<strong>of</strong> arqum column. and h Is the effectwe dcpth <strong>of</strong> the slab.<br />

Mae (1961) conduced an crpenmcntvl mvea#g.atlon to analysts <strong>of</strong> shear rrrcngth<br />

where rhear and flexure were con~ldered as r comblncd laddtng problem Mae rraxcd that<br />

the cnucal scct!on <strong>of</strong> a slab subjected to a coneenwaled load was located at the column<br />

pcnmerer md rhrt the shear urengrh tr to some extent dc~ndcnt upon the flexural<br />

strength Bared on $he expenmental program. a "em,-emptncal type <strong>of</strong> equauon wa<br />

developed to calculate the ult,matc shear rtrenph.<br />

where. u. = ulumnte rhcar nren<br />

V. = ulttmate shear force<br />

V,i.<br />

= ultlmee load for flexunl fatlure<br />

h = rlde dlmenrlon <strong>of</strong> rqum loaded area<br />

r =periphery amund the column excludtng opnlngr<br />

d = sffcctlvs depth <strong>of</strong> the slab<br />

= compresswe strength <strong>of</strong> concrele<br />

It was suggested that Equatxan (2.2) war the be* equalon lo date for predlctlon d<br />

the failure load ~n the repon <strong>of</strong> ACI-ASCE co<strong>mm</strong>ittee 316 (1962) The Co<strong>mm</strong>~ltec<br />

reco<strong>mm</strong>ended that the followmg dertgn equauon for calculating ulumale rhem load.


where b lake us the penmeter at a d!rtance <strong>of</strong> dl2 from the periphery <strong>of</strong> loaded area. and<br />

v 5 4 .06. f; IS the concrete comprerrlve strength. and d tr the effectwe depth <strong>of</strong> the<br />

slab.<br />

The shear derlgn methods <strong>of</strong> ACI-318 Bu!ldlng Code (1995) and CSA A23 3-94<br />

(1994) ore based on the developed I" the most pan an the work Moe 11961). The wto <strong>of</strong><br />

the ulr<strong>mm</strong>ste rhcanngeapaelly <strong>of</strong> the slab to the ulumale flexurrl capac~ry <strong>of</strong> the rhb IS<br />

defined as Q, = x. the followtng cmpnneal expresrlon w;lr developed f<strong>mm</strong><br />

Vn,,<br />

Equauan 12.2) forthe predfctnan <strong>of</strong> the ult~mace shear stress:<br />

v, = [(1(1 - 0.075 Q) - 5 250, ) 12.41<br />

The devclopmenl <strong>of</strong> destgn appmachcs <strong>of</strong> !he Bnurh Codes. BS 81 10 (19851. and<br />

Is based pnmanly on the work <strong>of</strong> Regan (1981). An cqurtnon WAS developed Lo calculsre<br />

punchtng rherr crprc!ly as:<br />

V,, = K. K,.=@.69d)~C + 7.851) 12.51<br />

where. V, = ult?mrte rhenr force<br />

K,<br />

K ,<br />

= 0.13 for normal concrete andO.105 for Ihghrwe~ghl concrete<br />

= 1 .I5 I4 n leolumn area) 1 (column penmeter)' I"'<br />

IWA. = steel ratlo<br />

bd<br />

f,.<br />

= cube strength <strong>of</strong> concrete<br />

d = effectwe depth <strong>of</strong> the slab


ZC = penmeter<strong>of</strong> the column<br />

The rhear penmeter for a rcczangle column a located at distance 1 25 d out from rhe<br />

column. for a ctxular column tr located ! 25 d out from the column.<br />

Manouk and Hursan (1991) tnvert~gaed the rtruelurxl behavnor <strong>of</strong> narmrl-<br />

strength and hlgh-nrength concrete slabs wnrh respect la punching reraaance The result<br />

,huwed that h~gh-strength cuncrra erh~btcs r more bnrtie fanlure than normal-nrengrn<br />

concrete The rerearchen have also lndicvted that the Mae's Equnuon (2.41 cmnot he<br />

mo<strong>mm</strong>ended to predict the punchtng shew capilctty <strong>of</strong> hsgh-strength concrete sldhs The<br />

punchlng renrtance 13 proponlonal ro rhc cuhlc mot <strong>of</strong> concrelc camprerrlve strength<br />

Therefore. the assumpeon <strong>of</strong> the Bnr~rh coder e better than the use <strong>of</strong> rqusre mat <strong>of</strong> the<br />

concrele strength as even an the present Nonh Amencan coder such as ACI-318 (1995)<br />

md CSA A33.3-94 (1994).<br />

Gardner and Shva (19961 eonnned the use <strong>of</strong> cuble mat <strong>of</strong> compresswe strength<br />

uslng rhetr expenmental resulls regarding the punehlng rhear <strong>of</strong> a two-way flat relnfarced<br />

concrele slab. An emplncal method urmg u shear penmeter amund rhe lodded area war<br />

prerenrcd. The cmpnncal reco<strong>mm</strong>ended equatlan was expressed as follows:<br />

where. v. = ult!mate shear rtreor<br />

v, = no<strong>mm</strong>al rhear stress<br />

V. = ulumate rhexfome<br />

tr = penmelcr <strong>of</strong> loaded m a<br />

d = effectwe depth <strong>of</strong> the slab


p<br />

s flexural steel mnforcement rauo. calculated over w~dth c + 6d<br />

f, = yield strength olnexuralrreel<br />

f,, = mean concrete strength<br />

2.3. Impact Performance <strong>of</strong> Concrete Plates<br />

2.3.1. Overview <strong>of</strong> Material Modeling<br />

CEB (19881 repon No. 187. reco<strong>mm</strong>ended hat generally the mechanmcdl behrvlor olthe<br />

concrete malenal s deocnbed by n stress-stram relat!onshlp.<br />

taklnz stram rate tnto account lends ro-<br />

where the rtnm rnte a defined ar:<br />

;md ~texprerser the vaneuon <strong>of</strong> stram wtth nme.<br />

0 = fk) (2.71<br />

b = f(s.f) (2.81<br />

dr<br />

E = - (2 9)<br />

d,<br />

More mesly. several Invesugmronr hrvc revealed that ills (he landing hnrtory should<br />

be tnken lnto account.<br />

b = f (E.Z. fwd bisrop) (2.101<br />

It a obvlaur that material modclr covrnng the relation in Equalton (2.10) are much more<br />

complteaed thvn those for Equalton (Z.7) In this wnx, a bmad vanetter <strong>of</strong> dtlferent<br />

malenal models erlrt which may be grouped nnro the man categoncs <strong>of</strong> clartlcay theory.<br />

plarueity. viwoplarucity, ctc.


The different theones appllcabls lo the modeling <strong>of</strong> eoncrele and steel<br />

re#nfomcmcnr will be dlrcussed bnctly accoidsng to CEB (1988) repon No. 187 rr<br />

follawr.<br />

(I1 Llnearund non-lmear elvstlc models<br />

Llnenr clasttc models m best known due to rhelr nmpltc~ly. buc rr Impact load~ng in<br />

gcneinl cause non-llncwdcfonnation s is not sumd for any aypllcatnon in thtr field<br />

The same may be rtaed for non-Itnear elasl#c models.<br />

(21 Vlvoclvrtlc modelr<br />

Modelr bed on vrruelartlc~ty hrve becn ured for the dercnpllan <strong>of</strong> creep md<br />

relaxallon phenomena. A few authors have used thlr lheory w~th the ~dev thnr<br />

stm~lvlty between creep md rrraln-rate-effects should erst.<br />

(31 Vtscoplwuc models<br />

Modelr brrcd on !he theory <strong>of</strong> v~scoplartic~ry have been ured for many years dlro for<br />

the dercnptlon <strong>of</strong> tmpw problem. The theory <strong>of</strong> v~scaplvsl~e~ty 13 very conventen1<br />

erpeclally for lhc madclmng <strong>of</strong> the remforc~ng steel. md may be r~mplrfied to a varl<br />

extent at lea1 for the one-dtmennonal caw.<br />

(41 MDdCls based on planuaty<br />

Madelr k d on the theory <strong>of</strong> plart~ctly can be arnnged nnlo twocareganes such nr'<br />

(a1 Elaruc-perfectly plarrre matenal behavtor<br />

The material shows elartle behavtor up to a ccnan level, for example<br />

comprerrlve strength where stran IS mcresed at constant stress. The tnfluence <strong>of</strong><br />

stress rate can be taken into account by tnereastng the yteld level aecordnng to this<br />

SIRIS mte


fb) Elastlc plastic behavior wath hwdcn~ng<br />

lnltead <strong>of</strong> under~osng unllmlred deformatlan at ;r conslant rrress level. rhe rrrerser<br />

lncrearc with lncrearlng stram Rate effects upon the yzcld surface are ~ntmduced.<br />

for cramplc tn the form <strong>of</strong> rate hardenmg paramcrcrr.<br />

(5) Endachmntc models<br />

Modclr hared on cndachmn~c theory havr been devclopd for concrete and<br />

re~nforctng steel. Onginally Ihe cndochronlc theory was bared on the vnscoplnruc<br />

Leoq. supplemenled by a new lntemal vanable. the lnlnnrlc tlme. Although the<br />

endoehmn~c theory war the subject <strong>of</strong> cantroverrul dnrcurnonr, a Eecms that some<br />

phenomena. likc the influence <strong>of</strong> the loadnng hlrtory upon the stress-stram<br />

relalonrhjp and the rmtn-rule depndancy. are very well represcntd. For relntorcing<br />

rtel this model a adequate. but for concrete. the problem <strong>of</strong> dnlntancy a1 high nrun<br />

IS not salved yet.<br />

(6) Fneture mcchiln~cs models<br />

Fmcare mechanics has to be ruM#v~ded tnto r lhnear and r nan-Itnear lhwry The<br />

Itnear theory provlder a pod barns to predlet unstable or eatanmph~c propagatton.<br />

Relauonr exla between frrctunng stress. crack length, md ~ lra~n ras. Lanew fmclure<br />

mechanics doer not take any planlc dcformalon or mrm-cracklng ~n the regIan <strong>of</strong><br />

the cmck ep ~nro account. However. as concrete and ductile steel are concerned. thls<br />

mu* be lncludcd because <strong>of</strong> the fact that the energy consumed m the plart~c or mtero-<br />

cracked p mes zone IS more relevam than the elasttc pan.


(71 Damage meehanncr models<br />

Models based on damaxe theory are relrtzvelv recent. erpec~ally on concrete The<br />

method 8s based on the ldsa (ha damage occurs u an ~mvcn~ble dcgmdelon uf thc<br />

mnlenal under deformanon. A damage pameter as rnuoduccd as ;l scalar or vcctonsl<br />

funcr~on <strong>of</strong> thus degndatlon process. The degadauon pmesr IS a contlnuaur and<br />

:lobs1 pracenr and doer not constdcr only degmdatrcn wlthln n dehult l~kr the<br />

fmaurc mechanics concept<br />

(81 Staehastlc models<br />

The frdcture pmcrs withon the malnr <strong>of</strong> concrete IS formulated urmg rrochast!~<br />

farmul~ulon Concrete 8s modelled u a group <strong>of</strong> cauplsd elements wllh two or three<br />

different phases. A lopnthm~c relalan between rhe reststance <strong>of</strong> concrete and rtrerr<br />

or rtraln nle can be formulated.<br />

23.2. Strain Rate For Various T yp alLoading<br />

In men1 years. mspccmble atlentlon has been glven to the influence <strong>of</strong> rtmln rate or<br />

stress nte an the msshvn~cal pmpnlcr <strong>of</strong> concrete. relnforclng $reel. and pre-nrernng<br />

steel. Steel and concrctc wdl be tw~tcd 8" two rubwquent recuonr. The prerentsrlon or<br />

the data will be such [ha a deslgn engtneer ern use such panmeters m sample hand<br />

cnlculrnons and m n llmttcd manner also 8" advanced computer codcs. The propcnlcs<br />

will be gwen ~n graphs and or m fununnlonal farm with rerpea to stnm or stress nte.<br />

Table 2.1 gwes some global est~mares <strong>of</strong> rrraln nter whlch acur dunng vanaur<br />

types <strong>of</strong> loalng. As reponed ~n CEB (1988) repon No. 187, lhev values are not expen<br />

entlmater and have lo be deler<strong>mm</strong>ned more exactly for rplfic structures and load~ng


configunoanr On the other hmd. 11 wnll be Shawn that most relattons between nrcnglh<br />

and strain rare. or ulomrle rm!n and r<strong>mm</strong> rate. are Ihneavloganthmr or double<br />

loganthm~e whlch means tha crrct accuncy IS nor necessary Wtth regard to the second<br />

remarl. there or no mcchrn~crl pmpeny whtch decreases as value at h~gher ream rates<br />

Table 1 I Typlevl strun rarea for vanour type3 <strong>of</strong> Ioadln:<br />

Traffic<br />

23.3. Properties <strong>of</strong> Concrete under Dynamic Loading<br />

A procsedlng <strong>of</strong> the mlemniond rympaslum released I" Germany, BAM (1982).<br />

reported that the most <strong>of</strong> the dynnmtc loadtng research were confined to plam concrete<br />

wtth normal-weight natunl aggregates. The mechnnlcnl pmpenncs whlch were<br />

~nvestigated include the campresswe and tenstie rrrenglh. ulumate rtnln at comprersive<br />

and tenrrle strength. Young's madulus. blaxlal strmgth, rod fracture energy ar tenrtle


loild#n$ Some <strong>of</strong> there pmpenles are well e~rabltrhcd rr a funel!an <strong>of</strong> rrrenr or Erram<br />

vale, deflned as stress or rrwn lmreare tn nme. others are much less ~nvenlgeed.<br />

Unlortunatcly, nor all <strong>of</strong> research papcrr an thtr rubjh-I conrsn the lnformal~on<br />

requ~red to relate hzgh stress rate tests to standard rtatlc lest Thlr ~nfonnauan Is very<br />

important lopwe enough detatlr m order lolud%e the vnl~dlty <strong>of</strong> the results and the rang<br />

<strong>of</strong> apphcattan. However. an altcmpt was made lo crvmlne the rcponcd tesull 10 dcnvr<br />

mOR relatlonr.<br />

Since most mvcnlgauons n htgh rsaln rater were tntended to determfnr the<br />

strength <strong>of</strong> rnaenal. data on ultlmae nrarn are nlher Ihmtted. Furthermore. data are<br />

romet!mr not complete ~n the wnss that starlc refsrenccs are not pwen Thrr maker<br />

compilnron depndenl on assumptions lhat me bared on general knowleds. Although<br />

there relnlonr. for rlrann, we weaker than the strength relat~ons they may rl~ll be useful.<br />

233.1. Campmsivr Strength<br />

A bullcl~n synthenr repan on concrete structure under tmprct and #mpul~lve lardnng war<br />

publlrhed by Camlte Eum-lnlematlonal du Betan. CEB (19881. steed that the sraI.llc<br />

lerung rate war taken ar a, = I MPulr. Srrerr nte 8s convened !"to rtrm rats by<br />

arsumlng elastnc maenal behawor wtth a modulur <strong>of</strong> elarllctty <strong>of</strong> E, = 330M) MPa<br />

The strength rela~onnhxp staned a1 unlty for *talc lerung and reached a value <strong>of</strong> about 2<br />

far law grade concrete. and about 1.4 for hlgh gnde concrete. when lovded more rapndly<br />

at a rate <strong>of</strong> a, = 10~MPalr. Beyond this ares nces rhe increase higher reachlnq values<br />

<strong>of</strong> four and greater. 11 should be noted. however. that thrs steep tnneare has been<br />

delermlned theoretically and lhat expenmental evidence a only atta~nabls for natunl


ocks. Mnlvem. et nl. (1985) reponed lhar recent expnmental results for concrete have<br />

not fully confirmed lhls prsdlcrlon<br />

A<strong>mm</strong>aon and Nusrbvumsr (1995) dcsenbed that the compressrve nrcnglh <strong>of</strong><br />

concrete can be wntlen m lcrmr <strong>of</strong> stram mle as<br />

where. E = %ran raa<br />

6, = rrraan rate at qunrl stauc condtuon<br />

f, = rtatlc cube rtrenah <strong>of</strong> concrete<br />

Thlr relalonrhnp reveals that the lnfluenee <strong>of</strong> loadmg raw decreases as the grade <strong>of</strong><br />

concrete tncreasss. If ,he influence <strong>of</strong> the load~ng ma on !he modulus were no,<br />

considered, the power <strong>of</strong> the equauan above would be I0 o where a IS the dynnmlc<br />

mrrenal pmpny as defined m Eqvatron (2.1 11.<br />

253.2. Modulus <strong>of</strong> ElasliEity<br />

The modulus <strong>of</strong> elasrrc8ty IYoung'r modulus1 <strong>of</strong> the concrete tn eomprerslon lncresrer<br />

wnth stress and srran me. The relatlon between rrauc and dynamlc (Impact) modulus <strong>of</strong><br />

slvrl~c~ry Ir given by A<strong>mm</strong>nnn and Nusrbaumer r 19951 ~n the follawlng equason.<br />

0.025<br />

with E. = 30.10-~ r-I<br />

-- :I - (


where. a = stress rare or vanallon <strong>of</strong> EtrCPr with tmc. 01<br />

a,,= stress rate a qua$, swtlc condltnan.<br />

2.3.3.3. Ultimate Strain<br />

The ulumnle %ram ID compresston tr the raam tha occurs dl mnxlrnurn nresr. The<br />

ulttmate rrrdln sr a funcllon <strong>of</strong> stram rate gwen by A<strong>mm</strong>ann mdNussbuumer (19951 tr.<br />

233.4. Compmsive Fmelure Energy<br />

The fracare energy 3s usually defined as the area unk the complete stress-nratn curve<br />

mult~pl!ed by the appmpnale volume element. Whereas numemun rerulls were avaclable<br />

far struc loudrng. there was no complete nms-st<strong>mm</strong> curve nvalable for high stram rater<br />

<strong>of</strong> compresston loadlng. However, f<strong>mm</strong> the occumncc <strong>of</strong> htgher strength and ulumate<br />

stram tagetha with evldencc <strong>of</strong> enhanced cracking, 11 may be concluded tho1 the fracture<br />

energy tnneascs with tnneaslng smsr rate and rtm~n rae.


23.3.5. Te~ile Loading<br />

A<strong>mm</strong>mn and Nursbaumer (1995) have also descnkd the propenler <strong>of</strong> i'oncres under<br />

lens~le lordtng In conuart to compressive failure. rcnrllc fxslure Is always n dlscrclc<br />

phenomenon. Usually one cnck occurs which dlvldes a rpcrmcn lnto two pans. These<br />

two pans would unload ar the enck width mcwrrer. Energy consumption occurs ~n the<br />

cnck$n$ zone The wluuonrh~pr ktwecn a mechsn$crl pmpeny and the slresr or rtriltn<br />

rate are snmxlar to chore obnmcd. The fomulat~on or also r~mslar to compresswe nrengch<br />

except for the value <strong>of</strong> the cocffiacnt.<br />

Tilklng account vgan <strong>of</strong> the lnfluencc <strong>of</strong> aram ntc on modulus <strong>of</strong> elnrttclty. n<br />

relrtton can be defined ktwcsn rtnm rate and renrlls strength 8n (he fallow~ng.<br />

where f, a rwt!ecuk strength <strong>of</strong>concrete.<br />

Tenrde nrength $3 more rsnrlttve lo rtnm or nrerr nle !f the concrete ha n low<br />

gnde and Lr more wnnttve lo rtnln mte than eomprerrlve arensh. UEually compresrlve<br />

strength Is the reference value for the concrete gnde and Ir therefore known. The tensile<br />

rt~ngh can be ertlmeed f<strong>mm</strong>:<br />

f, = 0.?0(f;)"~ MPa (1.17)<br />

There values <strong>of</strong> concrete strength have also ken reco<strong>mm</strong>cndcd by CEB-RP (1990).<br />

2.336. Tension Modulus <strong>of</strong> Elasticity<br />

The influence <strong>of</strong> svess rate on madulus <strong>of</strong> elastxcity far lension Ir smaller than for<br />

comprur!on. The formvlat~on prcsmted by A<strong>mm</strong>mn and Nurlaumer (1995) such ar:


arc irltd for all iricii and sr<strong>mm</strong> mlcs. andall caneiclc gndc.<br />

The definlrran <strong>of</strong> rtrvsn m a tcnrnle experiment only mrbr Eenrc up to the<br />

moment where a dlrmre aack rtanr la open. t e.. unnl the maximum rtrerr cr re~ched.<br />

Beyond ,has poln~ the cracks open and !he rrmnlnsng undamaged pan <strong>of</strong> the concrele<br />

unloads. Ult~m~lc rtnln tr ,us !he smtn ar marlmum srresr Few expenmeno are<br />

ava#lahle whnch allow anc ro eslabl~rh a relatoon between EltXln and the stress or nrxn<br />

rate Thnr relatton 8s also oven by A<strong>mm</strong>an" md Nursbnumcr (1995) such u:<br />

Thcrc relaeanshnpr are valid for all stress rates. rrnln rarer. and concrete grade<br />

2.3.3.7. Tenslle QrPrtvm Energy<br />

The fraclm energy is defined as are0 under the nrerr-crack opening curve multsplled by<br />

rhc cmsr-sectanal area <strong>of</strong> !he rFsnmsn. The parlsmcked behavior war treated ~8th a<br />

bnltle fracture concept pmpod by Hillerborg (1985). The value can be calculated f<strong>mm</strong>


mregnnng the complete tensfle stress.cnck openxng d~rplacement or crack wtdth such us<br />

follow:<br />

G, = 1;. f, dw<br />

where. Gf = fracturemergy requored to form an unit area<strong>of</strong> crack surface<br />

1, = ten~lle nress. rr r Rnctton <strong>of</strong> r,<br />

b,. = crack wtdth<br />

u, = enck width when f, wilehcs zem.<br />

(2.12)<br />

More co<strong>mm</strong>on an the descnptton <strong>of</strong> englnccnng maanal. the cxpmrion for GI<br />

cun be arnnged and expressed a% ;l funaton <strong>of</strong> a stress-$tram Inw. Thus. Wf Is defaned ar<br />

the fracture energy dennty. or work per unit volume. d~ssopated by cnck~ng. cdn be<br />

expressed rr<br />

where. f, = rcnsllc rrressexprerred on lcrms <strong>of</strong> tcnrlle slnln<br />

~r, = wtdlh <strong>of</strong> the fracture praccrs zone<br />

E, = tenslb stram<br />

(2 23)<br />

emax= martmum tensnle st<strong>mm</strong> when f,reaeher zero at the end <strong>of</strong> the tenslo"<br />

r<strong>of</strong>tenlng bnnch.<br />

As repaned by Marrouk and Chen (IW5). the fracture energy <strong>of</strong> high-nrength<br />

concrete 13 sbout five ttmcr he area under ascendtng ponton <strong>of</strong> its complete stress-rtnnn<br />

curve. Fraaum energy 8s ertmawd about tm times the ;ma under ascending ponion <strong>of</strong> 11%<br />

complete rtress-stmn curve for normal-mgth concrete as repomd by Mass~coue. Elwl.


and Mdregor (1990). Thls lndlcares rhar rhc hlgh-strength concrere a more bntlle tn<br />

lenr~on than normal-strength concrete.<br />

CEB (1988) stated that thc relsllon between fnclure energy under rtalc and<br />

dynamic Impact) londlng rr expressed by the following equarlon:<br />

where, x =the cnck opnlng velmtry<br />

I


lensen. Holwrh. m d Hansen (19931 concluded Iha the ersenual element ~n Lc<br />

lint method IS the duclillry m d the punchtnp rhsvr capacity <strong>of</strong> high-rrrengrh cancres<br />

under Impact and ~mpulr~ve laadln~ The val~dlly <strong>of</strong> the two other methods are lhmttcd to<br />

ccnaln mtrnle velmt>er and concrete lfles. therefore L e methods have lo be vcnfied<br />

An expnmenL.1 Invenlplton on !he cnpactly <strong>of</strong> nnfoned high-niength concrete dabs<br />

under ~mpact load~n~ 19 reco<strong>mm</strong>ended The results may prnv~de venficnttnn ol rnalyr~crl<br />

methods as well rsderngn reca<strong>mm</strong>endal~onr.<br />

Banthlz. Minderr. and Tmttter 11996) conducled an expnmoltal Impact<br />

reststance <strong>of</strong> steel fiber reznfarced conciete urtng u simple lnarumcnl Impzlct m;ach~ne<br />

dealgnsd ro rest concrete m un~arial tenson. B has been reponed that fiber re~nforcement<br />

Ir renr#ttve mrtcnal to stress nte and Is effecllvc 8" lmpmvnng fracture energy absorption<br />

under Impact. Whnle. Banthla. Yun. nnd Sakrl (1998) studled [he lmpael rertrtvnce <strong>of</strong><br />

concrete plnles relnforeed wtth n fiber relnbrced plrrt~c gnd. The plates reanforced wlrh<br />

fiber relnforccd plarltc were found to fail ln a bnlile manner and absorb only a th~d <strong>of</strong><br />

the energy abrarbcd by those remfarccd wtth a trrd#!tonal steel pd. It hrr also been<br />

repaned that the most lmpmvemcntr ~n ihe lmpacl performance occur with (he use <strong>of</strong><br />

fiber reinforced concrete. lmpmvemenlr occur tn bolh the ullrmrte laud camytng cnpauty<br />

and the energy abrorptnon eapnbtltly<br />

B~rr el al. (1982) studled Ihc rpphcrb!hty <strong>of</strong> repltcn scalmg ra the dynnmtc<br />

behav~or <strong>of</strong> rexnforccd concrete slabs ~mpacted by ngld m~rnles. Erpenmental results<br />

were presented for models wllh rehtlve linear scaler <strong>of</strong> 1. 0.37. and 0.12. It has hem<br />

found [hat the rear faces <strong>of</strong> all 3 wales <strong>of</strong> target showed very rlmilar damage and<br />

cracking. A sllght tendency <strong>of</strong> more rear face damage and more concrete nnppmg


occumd tn the bigger target care than ~n the smaller turgrr. The pnenl shapes <strong>of</strong><br />

perforation crates were also stmtlvr on ail 3 r~rcr <strong>of</strong> targel. h har ken concluded that the<br />

use <strong>of</strong> wale models. over the Elre range terted. to prow& dar~ an the perforallon<br />

performance <strong>of</strong> retnforced concrete are jun#ficd.<br />

2.3.42. Eumpan Dsign Codes for Punching Shear Capscity and Critical<br />

Perforation Velocity<br />

The rtatlc punchtng shsarcapactty as rpeclfied ~n the Norwcgvan Code Ir expressed as<br />

follows<br />

where. f,,, = derngo lenrllc strength ot concrete<br />

y, = matenal coefficncnt for retnforced<br />

k,, = IW ~l<strong>mm</strong>'<br />

1.0 < k,.(= l.Sdldl)c 1.4 . dl = I0 m<br />

d = mean slab deph tn the two reinforcement dlrectlonr<br />

a = lmgrh <strong>of</strong> penmeter <strong>of</strong> the gavcmlng xellan at a dnnance 1.0 d<br />

f<strong>mm</strong> the l&d area<br />

p = geametneal mean <strong>of</strong> the onhogonal tenrlon remforrcmenl noa.<br />

(2.25)<br />

Thc upper value <strong>of</strong> the deslgo punching ~hevcapx~ty is ismlted by comprerslve fanlure.<br />

However. thls llmltatlon a not rrlevnnt m the case di~used here.<br />

The enucal vcloclly <strong>of</strong> perforat~on for the dynvm~e loading <strong>of</strong> a two-way plate ar<br />

reco<strong>mm</strong>ended by Ca<strong>mm</strong>tnee Euro-lntcmauonal du Beton. CEB (1988) will be cxa<strong>mm</strong>ed.


The cnrlcrl vcloc8ly <strong>of</strong> pcrfaivl~on can beexpressed s'<br />

where. W = concrete denr~ty<br />

In = cylmdcr comprerrrve strength<br />

p = mtsstlc penmcler<br />

Ir = concrete rlabthmcknsar<br />

M = m!rr~le mars<br />

p = rclnfomementqurntlty.<br />

Bm. el al. (1982) ~ndcrad that the cnck pattern m Ihe eoncrele vilrget. ar well as<br />

the trmnmr dtsplacement measurements. ~nd~carer Iha bending and shew bllure<br />

mechrnlrm were anvalved ~n concrete bch;lvlor. The rexarcherr provided funher<br />

pruf~catlon for the ruggeruon that Equauon (2.26) rhacld be rnodtfied An altemiltc<br />

bendins nnforcemenl qurnllly dependent war included ~n the follownng.<br />

where d a d<strong>mm</strong>cter <strong>of</strong> dmpped obleel. h 1s concrete slab thickness. and m Is mass <strong>of</strong><br />

cylindrical dropped oblecl.


Chapter 3<br />

EXPERIMENTAL INVESTIGATION<br />

3.1. Introduction<br />

As r result <strong>of</strong> vvcnl advancer ~n the <strong>mm</strong>ufacanng <strong>of</strong> chem!cal sdd~nves nnd mrtcnal<br />

releel~on. $1 has been porrxhle to pmduce hlgh-strength concrete <strong>of</strong> 80 MPa and hqher<br />

Thc man oh~ecsve <strong>of</strong> thlr expenmental work. u discussed tn the prerev!our chapter. 8s to<br />

Inverngrs she structunl behavior <strong>of</strong> hlgh-rlrenzth concrete two-way plater ruhjccted to<br />

tmpacl loddlng.<br />

The prpsnmental program cons~sted <strong>of</strong> terllng and evnlus#on <strong>of</strong> the swcrunl<br />

performance <strong>of</strong> sixteen plates. The dctrtlr <strong>of</strong> lest rpcclmsnr md laboratory aerup<br />

arrungemencr are dercnbed !n rhe fallow8ng wctlon The erpcnmcntal rest results wtll be<br />

compared wnth Nanh Amencan coder. ACI-318 (1995) md CSA-A23.3 (19941.<br />

Nowegrim Standard NS-3473 (1992). Bntssh Code 88-81 10 (1985). and European code<br />

CEB-FIP (1990) for predicting the shear strength. The crpnmental tat mulls are<br />

prenled ~n the fallowing ehapsn.


3.2. Materials<br />

3.2.1. Concrete<br />

Ordlnay Ponland ce<strong>mm</strong>l 15s 10. produced ~n <strong>Newfoundland</strong>. quanznte ~nndrtone. and a<br />

crushed granite <strong>of</strong> 19 <strong>mm</strong> mvrlmum no<strong>mm</strong>al nze were used for all lest rpeclmens. In<br />

order to produce hlgh-strength concrete with low water cemenutlaus ratm (wlcl oi ahour<br />

0.27. the follawtng millenllr were added:<br />

(11 Stllcl fume I" n powder farm ~n [he mtlo 88 <strong>of</strong> cement welght.<br />

(2) Class Fhgnan fly rrh f<strong>mm</strong> Nova Scotla ~n the nt~o 12% <strong>of</strong>ccrncnt we~ght.<br />

(31 Suprplmnclzer <strong>of</strong> sulfonared nnphlhallne formaldehyde bare (Eucon 37).<br />

(41 Rerarder <strong>of</strong> polyhydrorycnrboxyllc base (TCDA type DXI rupplled by Eucltd<br />

Adrnlxture Cvnda Inc.<br />

The reco<strong>mm</strong>endatton <strong>of</strong> thc earl~sr mvcrtrgatlon by Msaouk md Husreln 11M)<br />

was used for the mlx proponton <strong>of</strong> wlectcd matmalr. The mix propon~anr for 1 m' ;rre<br />

gwcn tn Table 3.1 for nonrl-nrenglh concrele and Trblc 3.2 for high-strength concrete<br />

The mln wnr dertgned for il comprerslve-nrength targets <strong>of</strong> 35 MPJ for normal-nrenglh<br />

and 80 MPa for htgh-strength concrete<br />

Tnblc 3.1 MLX propMtton for 1 m'ot normal-strength concrete<br />

IPonland Cement 350 kg<br />

C<strong>mm</strong> Ag~eg=ate.tc~ (gnnae 19-<strong>mm</strong>) 1160 kg<br />

fine Aggregates (graded mnd) 690 kg<br />

Warcr 175 lit"


Table 3 2. MIX propomon for I m' <strong>of</strong> hngh-strength concrcle<br />

Ponland Cement<br />

StInca Fume<br />

1 Fly Ash<br />

Come 4:gcegater (gmnlle 19-<strong>mm</strong>)<br />

Ftne Aggregates (graded undl<br />

water<br />

Wiccment~tlou~ marenrls ratlo<br />

Superplarlre~zer<br />

Rcwrder<br />

3.2.2. Relnforrcmenl<br />

Gmde 4W steel relnfarcrng wlth deformed rebm were used conform~ng ro CSA<br />

nwdardr. The steel nnforcemena were abtrlned from one supplner. Two typlcrl No 10<br />

M and No. 15 M bum were uxd as specmen rernforcement. The diameters <strong>of</strong> No 10 M<br />

md No. IS M b m an: 11.3 <strong>mm</strong> md 16.0 <strong>mm</strong>. respectively. as deraled by the Canadian<br />

code. A 3W bps (1335 W) Ttnus Oslen hydraulic tcrtmg mrchnne war used to test the<br />

tenale strength <strong>of</strong> the twosampler <strong>of</strong> the relnforctng rebnn. Whnle. elecmcal rtmn gages<br />

were applied to determlne the rtmn <strong>of</strong> the retnforcmg rebam and WDTs (L~mnr<br />

Potentid Diffsxnual Tmrducsm) were utiltwd ro measure the specmen deformation up<br />

to the failure. The pmpnler <strong>of</strong> the steel reinforcements are su<strong>mm</strong>anzed m Table 3 3.


Table 3 3 Pmpenles <strong>of</strong> steel retnforcement<br />

number f<strong>mm</strong>) f<strong>mm</strong>'l yield rtrerr ult8mae Elasl!c~ly<br />

(MPa) (MPa) ICPJ)<br />

No.lOM 11.3 LOO 0.03235 150 660 191<br />

No 15 M 16.0 200 0.00?25 435 670 193<br />

3.3. Test Specimens<br />

Thlr study has been eonduered on over 16 rpeamenr. Two spcclmcnr were used at the<br />

begtnnlng ns a reference to ertahl!rh the tertnng pmcsdure. ro check the lnrtlumenrrrton<br />

accuracy. lo wl the rate <strong>of</strong> loading and the rate <strong>of</strong> rcvnnlng data. The dimcnrnan for all<br />

tell speclmenr were 950 <strong>mm</strong> rquarr and 100 <strong>mm</strong> th~ck and wvenl vmables were<br />

conrlderrd ~n the ~nvcrt~ga~on The variables xncluded the effeel <strong>of</strong> concrete arcnph.<br />

ruppan patern. and mnforcemea mlo Detallr <strong>of</strong> the ~ndw~dual rpeclmens and #a<br />

vanabler arc given ~n Table 3 4<br />

As even #n the table. each specmen tr ldentlfied ~n column two by three Icrlers<br />

and one numeral. The flrrt and raond letters lndlcate the nmnglh <strong>of</strong> concne: HS<br />

!ndicares hlgh-strenph and NS !nd#cater normal-srmglh. The thtrd letter ~ndlcater the<br />

type <strong>of</strong> rupvpon pattcm, where F cndtcatcr fixed and S indicates simply rupponed. The<br />

last numeral tndtcates the vmable <strong>of</strong> the tenston retnfonement ntto, where number I<br />

lndlcates mnforcemcnt mllo <strong>of</strong> about 1%. 2 mdteates 1.5%. 3 tndlcaer 2% and 4<br />

indlcrter 2.5%. A rypjcal au <strong>of</strong> the rested specmen s gwcn in Figure 3.1. and Figure<br />

3.2 presents a ryplcd reinfo<strong>mm</strong>ens pattern on lenstan and compresston faces.


Trble 3.4. Detalr <strong>of</strong> [err rpclmens<br />

Senes<br />

I HSSl Stmply supponed 81 7 068 7.00<br />

2 1 ,<br />

Notation<br />

HSS: I ,<br />

Suppon fc' Retnforremenr Pm~ccnle'r<br />

No.<br />

Candtlton<br />

p p' Velacltler<br />

(MPa) (51 1%) lmlr)<br />

I I I<br />

Stmply supponed I :: : 1 1 1 7 67<br />

3 HSS3 S~mply~uppmd R 79<br />

4 HSS4 Elmply suppaned 1 81.7 1 I.5 1 0 82 1 8.86<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

I I<br />

12<br />

13<br />

14<br />

I5<br />

16<br />

HSFl<br />

HSR<br />

HSF3<br />

HSF4<br />

NSSl<br />

NSS?<br />

NSS3<br />

NSS4<br />

NSFl<br />

NSF?<br />

NSF3<br />

NSF4<br />

3.4. Fabrication <strong>of</strong> Specimens<br />

3A.1. Formwork<br />

Fired<br />

Fixed<br />

Faxed<br />

Fixed<br />

Slmplysupponcd<br />

Slmply supported<br />

Simply rupporled<br />

S~mplyrupponed<br />

Fixed<br />

Ftxed<br />

Ftxed<br />

F~red<br />

79 1<br />

79.1<br />

79.1<br />

79.1<br />

33.1<br />

33.1<br />

33.1<br />

33.1<br />

36 6<br />

36.6<br />

36.6<br />

36.6<br />

10<br />

1.5<br />

2.0<br />

1.5<br />

1.0<br />

1.5<br />

2.0<br />

2.5<br />

10<br />

1.5<br />

1.0<br />

2.5<br />

0.68 1 700<br />

0.68 7 67<br />

0.74 8.29<br />

0.82 8.86<br />

0.68<br />

0.68<br />

0.74<br />

0.82<br />

4.43<br />

4.95<br />

5.42<br />

5.86<br />

The formwork for the test rpeenmcns was fnbnsatcd 8" the conmete laborarory The<br />

formwork consisted <strong>of</strong> four 960 r 964 <strong>mm</strong> decks made wlth 20 <strong>mm</strong> th~eknesr plywood


wlrh IW <strong>mm</strong> height. The bottom <strong>of</strong> Ihc form was made <strong>of</strong> rleel plates. The form war<br />

constructed such that 11 can be d!rilrrembled and re-used Before each cnstlng. all <strong>of</strong> the<br />

steel plater and plywood surface were cleaned and coated w~lh ihght mould o ~l Dunng<br />

casang. grear care was also gpen to ensure that the four rpeclmenr pmv~ded were<br />

unlfom<br />

3.42. Steel Reinforcement<br />

The lenrlon rleel nnforccrncnl at bottom face and the eomprcrslon rleel remforccmnt dl<br />

lop face were manged bared on the derlgn rpxlng. The tenrlon nee1 relnforcemenc were<br />

rupponcd on the eomprersnon steel retnforcemenr by LO-<strong>mm</strong> dv~meler rpreers. The<br />

rpzcerr airo pmv~ded the concrete clear cover. The spacers were welded lo the ncel<br />

re~nforcernenr at selected loeatlon to el~rnlnxe the effect <strong>of</strong> weldmg. The relnfarcemen!<br />

cap war placed I" the form. both the lenston and cornpreranan rleel reinforcement were<br />

rled togelher wlrh steel wtres. As shown rn Rgure 3.3. thc steel retnfarcemnt were<br />

placed I" the form before eusung<br />

3.43. Mixing, Casting, and Curing<br />

The capaclty <strong>of</strong> concrete mlrer was 0.1 m'. The quvntlty war required lo c~n one<br />

spcelmen using one batch. Befm concrete was placed. the formwork and Ihe relnforclng<br />

reban were thoroughly cleaned.<br />

Figure 3.4 shows the pounng <strong>of</strong> fresh concrete from the batch lo the fomwah<br />

Dch concrete batch was poured tnro the formwork and lhcn was vibrated urmg an<br />

electrical md nbratm. The vibrator was applied to the whole plate to consolidate the


concrere and to ensure nts connrtency. When a full eompacnon was asalned. the surface<br />

<strong>of</strong> the specmen was then leveled and finlrhcd wlrh wooden and steel rmwcl. Four hours<br />

liter edrang. the surface <strong>of</strong> thc spectmenr wcre cured under polyethylene shcctr ~n the<br />

forms. Thtr cunng eonttnued far a week by pounng waer lo Its surface eve? 24 hours<br />

The formwork forthe Epclmen war rtnpped at an average nge <strong>of</strong> one week after carnng.<br />

In order lo dercr<strong>mm</strong>e the comprelrtve arenghi af the rpecmenr, three li0~30n<br />

<strong>mm</strong> concrete eyllnden wcre raken from each batch accordnng to the procedure <strong>of</strong> wctlon<br />

C192 <strong>of</strong> rhe ASTM (1997). Thc ten cylznders were rublectcd to rhc rnmc cunng<br />

condlt~onr as the rcsl rpecunens. The compresswe strengths for the rest cyllnderr wcre<br />

crrned out oiLe 28 days <strong>of</strong> casnng. A roll lest 2670 W machine was used to dctsr<strong>mm</strong>e<br />

the concrete eomprerrtve strength. Fggure 3.5. shows u rpeclrnen dunng compresnve<br />

strength lest.<br />

3.5. Test Set-up<br />

The rpeclmenr were nmply-supponed along the edge on n retniorced concrete irrme<br />

with r ireeapenmg <strong>of</strong> 650x650-<strong>mm</strong> border to s8mulvte r iired-ruppon. four steel plater<br />

wcre bolted to fir the upper face <strong>of</strong> the rpeelmens. A rpclll lcsttng frame war derlped<br />

!ncludnng four eonerere beams for rupponlng the rpsclmcn and steel beams to fix the<br />

edge <strong>of</strong> speelmen as detvlled m Figurer 3 6 and 3.7. Flgure 1.8 shows a specmen under<br />

fixed suppon.<br />

The rpc~al terung frame was placed on a 2MX)x?WOx2W <strong>mm</strong> concrete bare. The<br />

concrete base was made in o&r to protect the basement laboratory flwr. Ftgures 3.9 and


3.10 show the detvllr <strong>of</strong> rreel re!nforcemenr <strong>of</strong> concrete base tn bottom face md top face.<br />

respecuuely<br />

In order to ensure tha the pmjecllle strikes Ihe rpec8<strong>mm</strong> cxilctly at center md<br />

keep 11 ~n that place after hatmq the rpeclmenr. n hollow steel cylmder war used to guldc<br />

the fly~ng pralect#le. The hollow rleel cylnnder war 6 <strong>mm</strong> thlcknerr rreel wolh 50 <strong>mm</strong><br />

d~ameter md 1WO <strong>mm</strong> height The steel cylxndcr wm welded to the supponed steel as<br />

pan <strong>of</strong> the tessng frame to provlde r clwr dnrwnce from the rpecsmen rurfnce A<br />

photograph oithc rpeclal lest frameandthe gade steel cylinder Is shown ln Rgre 3.1 1.<br />

3.6. Instrumentation System<br />

3.6.1. Testing Load<br />

Impact lest$ an the rpeclmns were crrncd 0s after n msntmum <strong>of</strong> 18 drys from catlng.<br />

The impact load was nppllcd ven!crlly lo Ls lest spectmens ustng admp ngbd project~lc.<br />

A solid rrsel cylmder was used a r projsel8lc. The cyllndcr has a 220-kg msrs nnd 304 5<br />

<strong>mm</strong> dnvmctcr flat coarsl ma. whtch can be dmpped f<strong>mm</strong> vanable hctghtr <strong>of</strong> up to 1 m.<br />

The photographs m Ftgures 3.12 and 3.13 show the ngtd pmjecrtle to be ready to k<br />

droppd for Rred and sbmply suppaned rpeclmen. rerpectwely. While. Ftgure 3.14<br />

shows the ngrdpmj~t~le was movlngto hu ;lgsmrt the rcrtedrpe<strong>mm</strong>en.<br />

The rtntlonilry specimen 8s ruddmly rubjeeted lo very hlqh accelerrt~on ~n she<br />

dimllan <strong>of</strong> the projectile when the ngd pmjecttle dmpplng at a hngh sped rlnkes rhe<br />

specimen. An accele<strong>mm</strong>eter war attached to the projcalle. The accelsrometer can read<br />

up to i?00 g, where g 8s Eanh'r gravitauonal aecelemtlon. Before each Irrt. rhe<br />

aceelc<strong>mm</strong>stcr was calibrated. The cal~bratlan chan for the accslsromctcr war rupplted by


the manufncrurer. Th~r nccele<strong>mm</strong>erer recorded the venmcal acceleratton <strong>of</strong> Le pm~cettle<br />

together wllh rhe plate. The Impact velocnly was !hen calculared.<br />

3.62. Deflections<br />

Deflecuan <strong>of</strong> the rest rpeetmen war mevrund dunng sspenmsntrl by m e*.lcmnl LPDT<br />

pga Dcflcction was iecordcd at thc center <strong>of</strong> th* plate. The mastzr pancl iccarded the<br />

defleclton d~ta. and the elcctncal straln gages reading were stored a the data vcqulslllon<br />

system<br />

The voltage readmgr were convened to defleeuanr ustng the LPDT crllbnuon<br />

fiactor. The awnlog clecrncnl slgnalr cams f<strong>mm</strong> the tnrtnrmeno were convened lhmugh<br />

the data ilcqulrnlton board lo dmgllrl ngnalr and recorded tn n d>g,wl computer filer a!<br />

svmplnng rate <strong>of</strong> IWO M as well. The LPDT at the center <strong>of</strong> the terced yxamen wa<br />

plrccd m !tr posltaan Marc rccunng the rpeclmen ~n pos8tlon as shown ~n Figure 3 15<br />

3.63. Strains<br />

3.6.3.1. S-1 Stmim<br />

In order to oblrrn the srntn dssrnbul~on at the cracking prwesr zone. four eleetnsal<br />

reanance sleel rtnm gages wnth gage length <strong>of</strong> 10 rnm were rttrchcd at dlfferent<br />

lwat8ons. Theelectncal rerlrlancc rtratn gages had a resistance <strong>of</strong> 120t0.39. ohms nnd a<br />

gage factor <strong>of</strong> Z.M+0.5% was used forcalrbratlon.<br />

For pmectlon agarnst any passlble waer damage dunng concrete casung, the<br />

steel swam gages wett coated wnh a pmtective swlmt and then covered with a rhnnk


tube waxed at beth cndr. A ryplcal lwarnons <strong>of</strong> the rteel stram gages on renraon md<br />

compresston laces are shown #n Figure 3.16<br />

3.63.2. Concrete Strains<br />

The concrete strams were mezsured on the compresstan lace <strong>of</strong> the concrete plnlcr by<br />

meam <strong>of</strong> rpc~al concrete rtnx zager wrlh gtge length <strong>of</strong> 50 <strong>mm</strong> The


face Concrele rtraln war recorded on [he comprcrslon surface only. Before conducun:<br />

the test. the concrece specmen and the cqutpmcnl were carefully ~nrpecred. Careful<br />

awnnon had rlra been :men to the scrul~ny <strong>of</strong> psges. wxres and data ilcquirnt~on synem<br />

dunnp tcnmg.<br />

A dnla acqutrxtlon system based an 3 personal computer at I rampl~ng rate <strong>of</strong><br />

IW HI war used ln thlr clipenmen1 Labteeh Nnebwk s<strong>of</strong>tware wu% used inr dvla<br />

acqu~s~t!on and pmess fonlml s<strong>of</strong>tware was uultud. The data acqulrnton ryrrcm her n<br />

bu~ld-ttmc rhs enabler to configure the set-up. and a run-tlms (ha eontmlr 3e dau<br />

ncqu~nson and other functton Thns bra acqulrtrton system cm be used to conunuourly<br />

manftar ilnd record all types oc pracers vannbler tneludlng volmge. arannr. d~rplacement.<br />

md ncceleranonr at the wannmg ttme <strong>of</strong> 1 mtcm-second.<br />

There are two barlc types <strong>of</strong> pmecsr contml. open loop and closed loop In m<br />

open loop controlling pmcers. as used I" thlr research, analog output blacks mnsmlr<br />

wavefamr Lo the contml hardware dunng mn-ttmc operatton. In closed loop control. the<br />

controlled system rends response data through Ihc tnsrfacc device to rhc m-rime The<br />

dau ourput functmn uses lhlr tnfomat~on to convert raw data from an tnterface devtce<br />

into rppropnntc rc~enulic or engnneenng unit such ar stnsn. dlrpk~cemcnt and<br />

accelerallan The data acqulslrton rptem used 8" lhns study 13 shown tn Rpure 3.18 and<br />

mrtrumentn8on black-dnagrdm a gwen ~n Rgure 3.18.


Figure 3.1. Cmsr sccrlan A-A <strong>of</strong> a typtcal rpclmen under fired-ruppon


Figure 3.2. Typical sLHl retnforremcnl <strong>of</strong> a test spcexmen<br />

48


Figure 3.3. Anwgemcnt <strong>of</strong> steel reinf-mnt rebars in the fnmwnk bcfon cdng


Figure 3.4. Cmg <strong>of</strong> fxe& coacnte f<strong>mm</strong> tk rmxa a tk f<strong>mm</strong>mk


a[<strong>mm</strong>]/l<br />

it----*l<br />

Figure 3 6. Concme beams <strong>of</strong> the 1st frame<br />

11158 150mrn<br />

< I y f 1 [ H<br />

I5Omrn L<br />

Note: - L has two valuer: 650 <strong>mm</strong> and 950 <strong>mm</strong>


x<br />

Y<br />

urnm


H<br />

:Cm <strong>mm</strong><br />

Rgu~ 3.9. Bottom re~nforeemenl <strong>of</strong> rhc concrete base <strong>of</strong> the wrung frame


h 4<br />

2WO <strong>mm</strong><br />

Ftgure 3.10 Top relnforcemenl <strong>of</strong> the concrete bore <strong>of</strong> the lerlnng frame<br />

-<br />

A<br />

*<br />

ZWO <strong>mm</strong>


y. 'i'


t<br />

F1pt-e 3.13. Test 8st-u~ fordmply-e Bpsimn


1 Campresslon face (lop)<br />

Rgure 3.16. Loeaions <strong>of</strong> sled slmn gages an tenennon and comprsrsion faces


f<br />

one conaete atrain-gage<br />

located al Ihe lop <strong>of</strong><br />

mnaac Ppsimen


Figun 3.18. Dam acquisition sptm


Chapter 4<br />

TEST RESULTS AND DISCUSSION<br />

Thlr chapter dtrcurser the test results <strong>of</strong> the present research inverupt~an ~ncludlng the<br />

cnck paucrns. ult~mate 104s. dsflcsuanr. ducl~l~ry and energy ilbsopson. modes <strong>of</strong><br />

fatlure. nratns both in concrete and steel remforcemen[. A compvnvln was made btwccn<br />

high-strength and normal-strength concrete slabs (erred under rwllc loading !n the same<br />

iabomtory by prev,aur research warken. Marrout and Husoc~n (1990).<br />

Mcasuremntr obmned f<strong>mm</strong> laboratory Invcrugalon are prewnted ~n the<br />

followtng remlon. Due lo rhe large rmounl <strong>of</strong> recorded data. only a few reprexntnt~vc <strong>of</strong><br />

the (err resulls are selected ~n thlr prermtauon In addtaon. the crack patterns at failure<br />

are represented graphteally by means <strong>of</strong> photograph.<br />

4.1. Cracking Characteristics<br />

The crack paltemr, aflcr failures. are depncled ~n Figures 4.1 thmugh 4 4 for tenson face<br />

damages. While the srripprng <strong>of</strong> the concrete cover f<strong>mm</strong> the compression face shown in<br />

Ftgure 4.5. Both the renrton face and he compression face <strong>of</strong> all sptmenr showed very<br />

rimtlarcraclung damage.


It war not parrtble to determnnc a relmahle value far the shear-cmhng load. 1.e.<br />

the load dl whmch the shear cracks rtmcd up The erumntlon <strong>of</strong> such load from the crack<br />

pattern was uncenan because there was no fundamental d~fferencc between shes crack<br />

and flexural crack erpnnd~ng m tangentgal d#rectsan However. employng the decrease <strong>of</strong><br />

!he rlcel stram ~n the nnforcement can be used as a p de for delermlnsng Lhe shear<br />

crarkln: load? As pmpred hy K~nnunen and Nylander (10601. the observed punching<br />

lards <strong>of</strong> two-way concrete slabs w~rhout shear re~nforcement were wound 70-80 percent<br />

<strong>of</strong> r k ult!mnte lo&.<br />

For dynamtc loadmg. a rbght trend <strong>of</strong> mon tenston face damilge and more<br />

concrete stnpplng aceumd at u larger relnforccmenl steel ntlo p than the rmallcr ratlo.<br />

The same obssrviltlan war more evident for the care <strong>of</strong> hsgh-strength concrete th~n<br />

normal-strength eoncrele Radtal cncb expandtng to the edger <strong>of</strong> the spclmenr were<br />

evdent on all the test spclmenr. The cnck lnd~eater that bendmg and shew fatlure<br />

mechrnl~mr were detected m all the specn<strong>mm</strong> Therefore. ~t can be concluded tha all the<br />

rpeclmenr were falied under aduclnle shctr failure<br />

4.2. Load-Deflection Characteristics<br />

The Impact lauds vmur the deflccuon at the center <strong>of</strong> the plater for the dlfferea rest<br />

wner an pnscntcd in Ftgure 4 6 through 4.11. The load-time curves for the different lest<br />

sene3 have also shown in Figure 4.14 thmugh 4.17. whtle the dcfleet~an -tmc curves<br />

given m Figure4.18 thmugh 4.21.<br />

The deflsctnonr far all tested specimens were obtained using LPDT measurements<br />

at the center <strong>of</strong> rp<strong>mm</strong>en. Urlng dynamne tquillbnum m the venrcal dlmdon, the Impact


lard war oblalned f<strong>mm</strong> the aceelerartonr that war pmv~ded f<strong>mm</strong> the areele<strong>mm</strong>eter. The<br />

dynam~c equllsbnum m Le vemcal dmeuon tr dexnbed ~n Be follow!ngequatton<br />

where. FlrJ = Impart loading<br />

,on = mar <strong>of</strong> pro)cctlle<br />

I. = msr <strong>of</strong> specmen<br />

o, = arceleranon <strong>of</strong> project~lc.<br />

FIIJ = f m, + 0.5 m.1 o,<br />

The load versus deflcetnon curve can be used for csttmaung the cncrgy rbrorplton<br />

clpxily by ~alculallng the area under the load-deflecuon curve. In add#l!on. load-<br />

dlrplaccment curve cm be apprornmarcd by ~veral straght lhncs wtth dlffcrent slopes<br />

The awend~ng curve has a slope that represents to the ruffncrr <strong>of</strong> the qeclmen before<br />

cracked. Wtlhxn a glven curve, the pre-craclung stage represented by the rlape <strong>of</strong> the<br />

rrcendtng curves a normally steeper than the desccndnng curve <strong>of</strong> the port-cracktng<br />

nrge. As expected. the ~t~ffncss <strong>of</strong> concrete plater were decreased after cncktng.<br />

Laud-deflccean curves <strong>of</strong> the test specimens shown ~n Figurer 1.6 lhmugh 4.9<br />

were made wtth dzffeml Erecl resnforeement ratla. md had the rnmc concrete strengths<br />

as well as the same support condtnonr. Rgumr 4.6 to 4.9 show that for pre-cracking<br />

stages. the slope <strong>of</strong> arcend!ngfurve <strong>of</strong> the btgpr nnfareemcnc ratto were al~ghtly htgher<br />

thvn thme f<strong>mm</strong> plates wlrh smaller re8nfo<strong>mm</strong>nt rauo. This lnd~cater chat the plate<br />

rttffness tncreased with the ,"crease <strong>of</strong> nnforeemea mtto.<br />

Repting the lam menrnoned pmcedure for different spec~mens wlth different<br />

concrete strength and suppon eondlttans are shown m Flgures 4.10 thmugh 4.13. All the<br />

figures lndicated that the plate stiffness lnfreacd with the lncrrorr <strong>of</strong> concrete-strength.


The rtlffncsses <strong>of</strong> concrete plates were rl!ghtly lncreared wlrh the change <strong>of</strong> cnd-<br />

condltions from rlmply rupncd to fired<br />

4.3. Dynamic Fracture Energy<br />

The ener$y ahromt~on eupaty IS defined as the ma under rhe load-d!rplxemenl curve<br />

The lest rerula .?re glven I" Table I The results include the energy abrorplmn Clpnclty <strong>of</strong><br />

all tested lpeenmenr at blure<br />

Table 4.1 Test results<br />

1 1<br />

1 1 1 1 " 1<br />

ser~r Slab Svppn 6' Re8niorrsmsnt Sped hrccl D~spl Emey<br />

No No<br />

I<br />

Condlllon<br />

P P'<br />

nt cnlcr Aburpaoo<br />

(MPaI 1%) 1%) Ids1 1x1 l<strong>mm</strong>l IkNnmb<br />

I I , I I I I<br />

HSSI Slmplysuppned 81 7 095 0.68 7W 110 120 l h<br />

eHSS3 S~mply suppned d 8 81 7 1 HSSJ Simply ruppncd 81 7 2.32 0 82 8 86 290 1121<br />

9<br />

I0<br />

I1<br />

12<br />

I3<br />

14<br />

I5<br />

16<br />

NSSI Lmply~upponcd 33 1<br />

NSS2 Simply suppaned 33 1<br />

NSS3 Shmply suppaned 33 1<br />

NSY Stmply suppaned 11 I<br />

NSFI Fmed<br />

NSP. Rxcd<br />

NSF3 Rrrd<br />

NSF4 Rxed<br />

366<br />

3b6<br />

166<br />

366<br />

095<br />

126<br />

1.90<br />

1.32<br />

095<br />

I26<br />

190<br />

232<br />

068<br />

0 68<br />

074<br />

082<br />

068<br />

068<br />

074<br />

082<br />

542<br />

626<br />

7 W<br />

767<br />

443<br />

4.95<br />

542<br />

586<br />

70<br />

76<br />

95<br />

106<br />

It s evident f<strong>mm</strong> the gtvcn table that the cn~rgy atsqtlon capnclty nncreaad as<br />

he concrete suength inc-cd. Tert results <strong>of</strong> the spccnmens made with different<br />

72<br />

78<br />

85<br />

98<br />

51<br />

I9<br />

108<br />

11 2<br />

47<br />

6.0<br />

84<br />

100<br />

77<br />

162<br />

181<br />

?55<br />

61<br />

110<br />

186<br />

2M)


concrete strength. and had rhc same re~nfo<strong>mm</strong>encmtia and ruppon cond1r8an revealed<br />

that energy absarptmn mereased wnth !he tneredw <strong>of</strong> concrete nrengh. The use <strong>of</strong> hlgh-<br />

rtrengrh concrete plate can be employed 10 lmpmvs the energy absarpllon cirpahtl~ry <strong>of</strong><br />

the concrete plate by aboul4 ttmcs hlgherthan normal-rtrenah mnereleplare<br />

The effect <strong>of</strong> supponsond~t~on on the energy abrorptlan capaclty war nor r<br />

e:nlficml fsctor hr Lc cndsondltlon changed f<strong>mm</strong> Rxcd to rlmply-wpponcd. a 5llohr<br />

change ~n the energy absorprlon eapxaly <strong>of</strong> the ten plate was recorded. On !he other<br />

hand. the effect <strong>of</strong> relnforccmsnt ntro on the energy absorption capaclly was rlgnlficml.<br />

For errmple. tncreaslng the retnfarcement nuo i<strong>mm</strong> I% ro 2%. rhe energy abrorptlon<br />

crpclty <strong>of</strong> the rpetmen sncreascd by about lhme t>msr. both for the care <strong>of</strong> htgh-<br />

rtrengh and nomal-strength concrete.<br />

4.4. Steel and Concrete Strains<br />

F~gures 4 22 through 4.37 show the dtrtnbut~on <strong>of</strong> the measured steel nmns snd concrete<br />

itrams <strong>of</strong> all rpe<strong>mm</strong>enr. The rtwns were mcarured at polar <strong>of</strong> speclnl lnteresl ~n order lo<br />

obtan ~nformat~on on the aate <strong>of</strong> r!mra. as menuoned #n recuonr 3.6.3.1 and recrton<br />

3.6.3.2. Unfonunately. not all the mcarursd data are reponed snce Eame stram gages<br />

were lost due to slecmcal problems and dzimages lo tho gags dung castlng.<br />

All the tested spcimens eipnmeed ylcldlng <strong>of</strong> steel relnforccmnt befare<br />

punehtng fatlure accumd. The tenston reinforcement reached the yteld pomr at straw <strong>of</strong><br />

about 0.W25. Comparing the lenston rrel stnln at approximately same locartan from [he<br />

compresslo" face. It has been found that the steel strains m the ease <strong>of</strong> tmpact loading<br />

were about rwlm htgher than those corded for static load~ng as lrpned prrviourly.


There was aconccnrrarton <strong>of</strong> stresses at the m a under tmpact load Whde u large<br />

are* <strong>of</strong> steel had ynelded. the amn at the concrete compresslo" filce lusl reached to n<br />

mrr~mum <strong>of</strong> 17M) mcm strain at fu~lurc. Thtr Is rppmx~mately half the value tha<br />

obtained expenmentally at the same location under rtvtlc loadfng as repaned prewourly.<br />

Since. I" the case <strong>of</strong> rmpacr loading. the conciete sudace suddenly perfordled. the<br />

concrew surface have been separated, hence the concrete rtnlnr on the separate face were<br />

no1 recorded.<br />

4.5. Modes <strong>of</strong> Failure<br />

Moder <strong>of</strong> fadure <strong>of</strong> convcnt~onnl two-way plates under rtatle lord cm k clarrllicd lnlo<br />

three casegones<br />

(11 Pure flexural fallure<br />

111 Pure rhear faxlure<br />

(31 Ducuie rhea faxlure.<br />

Pure flexural falure taker place ~n plater where mon <strong>of</strong> the relnfocemcnt ylclds<br />

before punchlng occurs. Conrequenlly. the plater erhtblt large dcflectlonr pnor the<br />

fanlurr. Usually thlr type <strong>of</strong> failure happens m the case <strong>of</strong> lightly remiarced plates. As the<br />

reinforcement ratlo decreases, more steel yxelding approaches la the coral area <strong>of</strong> the<br />

tsnllan steel relnforcement.<br />

The second category <strong>of</strong> hlux 1s pure shear fnllure. Pure rhear fanlvrr occurs<br />

when the yl~lding <strong>of</strong> tk lensson reel Is very lacal~zed at the center <strong>of</strong> loading. U~ually.<br />

spclmenr with heavy retnforcement ratlo faled under punchtng shear. The thtd t w ol


failure IS ductile shear fatlure or shear failure with ducul~ty. Thln type <strong>of</strong> fmlure Ir aeuc<br />

<strong>of</strong> transttlon between pure punchmg and pure flexure failures.<br />

As mentioned ~n the Sccuan 4 1, all rpeccmens failed under duct~le she= fallure.<br />

Thlr falure can be calegonzed under the thlrd type <strong>of</strong> failure. The Impact punching lmd<br />

~ncreased nr the concrete-strength mereased and the steel re~nfarcement ratlo tncreued.<br />

The fxlum rurf3ee <strong>of</strong> nomc <strong>of</strong> the rested rpclmcnr were csrrful!y removed and<br />

eliamtned. The observed angler <strong>of</strong> failure surface had some vanallon. Far normal-<br />

sirength concrete plates. the observed angle <strong>of</strong> falure surface war about 60 de~ee. wh~le<br />

for hlgh-smngth concrete plates. !he angle war found lo about 65 depe. In addmon. Le<br />

punching shear radius on the tenstan face happened a a dtrrance <strong>of</strong> (1 6-2.0) rlrncr the<br />

plate depth (dl f<strong>mm</strong> the edge <strong>of</strong> loaded urrn for most <strong>of</strong> the tested rpeflmcns compared to<br />

a dtnance d/Z for nasc load~ng.<br />

4.6. Effect <strong>of</strong> Concrete Strength<br />

The dertpled FompEsSlve strength targea for rhtr Inveseea!on were 35 MPil for narmdl-<br />

strength and 80 MPP for hlgh-strength concrete as described ~n secllon 3.1. Increnang the<br />

concrete compresswe rmngth f<strong>mm</strong> normal-strength to hlgh-smngth concrete mcre~sed<br />

the energy abrorpl~an capac#ty, cntlcvl velocity <strong>of</strong> perforelon. and deflecaon al the<br />

center<strong>of</strong> speclmenr.<br />

The energy absorption capnclty increaxd by nnge <strong>of</strong> about 3-5 smn, whdc the<br />

cnrscal velas~ty <strong>of</strong> perfmuon nncreaxd by a range <strong>of</strong> about 20-30 percent. The<br />

displacements st the center <strong>of</strong> spclrnm also increased amund twlu. This obrervntlon<br />

nndicated that high-rmngth conerrre can pmvide higher ducrlltty for concrete plater.


4.7. Effect <strong>of</strong> Steel Reinforcement Ratio<br />

The tenson remforcement ratios were 1%. 15%. 2%. and 2.5% Ar renrlon steel nu0<br />

was ~ncrevwd f<strong>mm</strong> about 1% to 1.5%. the cnr~cal veloctly <strong>of</strong> perfoniton ~ncrcnred by<br />

about ten percenl. The energy sbsorptron cnpnctry has also lncrerred by about fifty<br />

percent for hlgh-strength concrete and hundred percent for normal-strength concrete<br />

lncrerrlng tenrlon reeel ratlo from 1% to 2%. the cntlcal velac~ly <strong>of</strong> perfonl~on<br />

~ncrsnsed by ahouttwenty percenr. While. thc cnergy ahrorpt~on eapsclty af the specmen<br />

lncreared by about three t lm, both ~n hlgh-strength and tn normal-strength concrsa. In<br />

add~tton. when the tensnon steel ratlo tnsreased f<strong>mm</strong> I% to 2.5%. the cnrtcal vclocaly <strong>of</strong><br />

perforatton 1ncrs3ssd by about chmy percent. In thts ease. the energy rbrarptmon cilpnry<br />

h;ls also lncreilred by about four tunes for hlgh-strength concrete us well as normal-<br />

strength concrete.<br />

4.8. Effect <strong>of</strong> Support Pattern<br />

As menuoned !n ~etnon 3.3. this study was conducted on I6 rpeczmr under lwo types<br />

<strong>of</strong> ruppon patterns, fixed and amply rupponed. The effect <strong>of</strong> ruppon pauem can he<br />

dercnkd bnclly m the follow~ng recnon.<br />

Energy absorption sapnclty <strong>of</strong> the two types had nearly the same behavtor bath in<br />

the case <strong>of</strong> Bred and stmply supported. Therefore, hers was no ~lgn~ficanl effecl <strong>of</strong><br />

support pattern for specimens regardrng the energy abrorpuon capacity.<br />

However. ("creasing lhe concrete rtrength f<strong>mm</strong> 35 MF'a to 80 MF'a resulted tnto a<br />

significant effect on the critical veloctty <strong>of</strong> pelioration. The enrlcal veloctly <strong>of</strong>


perfomt~an ~ncreascd by about 10-30 percent for rpeelmens under rtrnply supponed end<br />

eondltton. and 50-M) p ent for speclmenr under fixed end condlllon<br />

4.9. Effect <strong>of</strong> Dynamic Loading on Peak Strain<br />

Carnpanng Le rtatlc loadtng to the dynamic (Impact) loudlng can be ru<strong>mm</strong>anzed ~n the<br />

tollaw~ng Eectlan 1" case ot 11311C loildnng, the peak rtmn and the marlmum detlectton<br />

happen an the same tlmc wlth the peak load. However, under dynarnlc laad~ng. the pcsk<br />

slraln accurs rl8ghlly delayed wlth renpfft to !he peak load but ahead lo the rnax~mum<br />

deflectaan. An ~llunrallon <strong>of</strong> the dnfference behsvtor between normal-strength and hleh-<br />

strength concrete br shown m Ftgurs 4.38.<br />

Under lmpm loadmg. the lenston steel stt-~#tt ts est$matd by about twlce that<br />

under rrattc lordcng. On the other hand. the concrete rtmn on the outer r>& Area <strong>of</strong><br />

conraa loading decreased by about half. As dercnbed !n the previous rectlon. the<br />

concrete surface suddenly perfonled under dynmlc lauding. hence the concrete rrranr<br />

on the repanted macould not be recorded.


Rgre 4 6 Lord-deflecson curves for spslmen no. I. 2.3 nnd 4


LOAD. DEFLECTION<br />

Ilwimnr 6. I. and 8)<br />

Rgure 4 7 Load-defleetlon curves for specmen no. 6.7. and 8


Rgum 4.8. Loaddeflectioncurves for rpccnmen no. 9. 10, and I1


LOAD. DEFLECM)N<br />

(SpRim 14.15,and 16)<br />

Fqure 4.9. Load-deflecuon curves for specmen no 14. IS.nnd 16


Rgure 4.10. Load-deflecoon curves for speelmen no 1 und 9


hgux 4.1 I. Load-deflecuon curves for rpectmen no. 2.6. 10. and I4


Rgum 4.12. Load-denecuon curves far spectmen no. 3.7. 1 I. md IS


F~gure 4 13. Load-deflscnon curves far specmen no. 4.8. md 16


Figure4.14. Load-r~mecurvc~ for rpcsnmens no. I. 2.3. and4


Flsure 4.15. Laad-tlmc curves forrpeet<strong>mm</strong>r no. 6. 7. and 8


R~urc 4.16. Load-ome curves for speclrncnr no. 9.10. and I I


Rgm 4.17. Lord-time curves br Epfftmenr no. 14. IS. and 16


Figure 4 I8 Detlccuon-ome curves for specimens no. 1.2.3 and 4


Ftsure 4.19. Dcfl~t~on-oms curves for rpcclmenr no. 5.6.7. and 8


OeLECnCN AT-<br />

(~mar9.10,ll.ndl?)<br />

Rgure 4.20. Dcflect~on-t~mccurver for rpclmcnr no. 9. 10. I I. and I?


Figure 4 11. Deflect>an-t~rneeurver for rpeemenr no. 13. 14. 15. and 16


u.)<br />

STEEL AND CONCRETE STRAWS OF HSSj


STEEL AND CONCRETE STRAINS OF HSS2<br />

Rgure 4.23. Steel and concrete rtmnr <strong>of</strong> specimen HSSZ


STEEL AND CONCRETE STRAINS OF HSS3<br />

Fsgure 4.24. Steel and concrete rmnr <strong>of</strong> specimen HSS3


STEEL AND CONCRETE STRAINS OF HSS4


600<br />

;<br />

: 3.0 ------<br />

B 2.0 -<br />

too<br />

STEEL AND CONCRETE STRAINS OF HSFl<br />

-- .<br />

I0 I, 10 3, 10<br />

Tim..",.<br />

Flgure 4.26 Steel and concrete stralnr <strong>of</strong> specmen HSFl


Figure 4.27 Steel and concrete smns <strong>of</strong> rpccnmen HSF2


STEEL AND CONCRETE STRAINS OF HSF3<br />

Figu~ 4.28. Steel and concrete stnlnr <strong>of</strong> Ipcc>men HSF3


,000<br />

STEEL AND CONCRETE STRAINS OF HSF4<br />

Rgure 4.19. Steel and concfelc s<strong>mm</strong>s <strong>of</strong> specmen HSW


STEEL AND CONCRETE STRAINS OF NSSI<br />

Figure 4.30 Steel and concrete nratnr <strong>of</strong> rpeclrncn NSSI


STEEL AND CONCRETE STRAINS OF NSS2<br />

Figure 4.31. Slcel and concrete srrans <strong>of</strong> specimen NSS?


m --<br />

STEEL AND CONCRETE STRAINS OF NSS3<br />

Figure 4.32. Stecl and concrete strains <strong>of</strong> specmen NSS3


-<br />

STEEL AND CONCRETE STRAINS OF NSS4<br />

Figure 4.33 Steel and concrete smns <strong>of</strong> speenmcn NSS4


' :I:-<br />

500<br />

:::,<br />

$00<br />

,m -'<br />

70B<br />

STEEL AND CONCRETE STRAINS OF NSFl<br />

*: 7 .. -.__ . . -. . . . .<br />

-- --_i..<br />

TI,".. m.<br />

(Concrete nratnr are not uvaxlabie)<br />

Flgurx 4.34. Steel andconcrete swns d npeelmcn NSFl<br />

--


STEEL AND CONCRETE STRAINS OF NSFP<br />

Figure 4.35. Steel and concrete rnains <strong>of</strong> spslmen NSR


STEEL AND CONCRETE STRAINS OF NSW<br />

I \<br />

i 'm<br />

. ,.---__ .-. .<br />

dm-- ! "1 ', ,,\,,.<br />

-ST<<br />

... ST,<br />

ST.<br />

--<br />

L -.<br />

dm-<br />

.-....<br />

',~<br />

..___..___._.----- ---...- -<br />

>IXJ , , . ... . -- . .<br />

. . .<br />

10 7 1 111 21<br />

-<br />

1<br />

::=<br />

nm. m.<br />

,400<br />

;<br />

E 600 -<br />

so0<br />

200<br />

,o 1, *a<br />

Ti."., m.<br />

F~gure 4.36. Steel and conerere rlrainr <strong>of</strong> specmen NSF?<br />

110


STEEL AND CONCRETE STRAINS OF NSF4<br />

Tim, rnr<br />

Figure 4.37. Slsel and concha seains <strong>of</strong> specimen NSF4


Figure 4.38. High-strength vsnus normal-strength sonnctc plats behavior under impan<br />

loading


5.1. Introduction<br />

Chapter 5<br />

NUMERICAL EVALUATION<br />

Htgh-strength concrete has a dlfferent behavior than normal-strength concrete. B falls by<br />

cnclung through the vggregarer rerultmg tn a smwth facture surface. whlle normal-<br />

nrength conerete fndr by the aggregate pulltng out d the matnx multlng I" r mugh<br />

tracture surface. This phenomenon can s~gtficanlly affect the structural performance <strong>of</strong><br />

concrete marenal ~n many appllcationr. For example. the shear transfer rnechrn~rm ~n<br />

rennforeed concrete rlruclures relies pan~rlly an as,-gate ~nterlociong across the shear<br />

cmckr. Thls mchanlrm will be reduced greatly for high-strength concrete as a result <strong>of</strong><br />

le failure mode.<br />

Thnr chapter presents a numerical evaluauon <strong>of</strong> the test results. The performances<br />

<strong>of</strong> numerical evaluation am evaluated aganrt Nonh Amencan coder and some Eumpean<br />

codes such as BS-8110 (1985). CEB-FIP (1990). and NS-3473 (1992). The analyrnr wnll<br />

lncludc a cornpanson betwem the ratios <strong>of</strong> dynamic to stattc tmpact load. The rrauc<br />

punchlng shear rvength capactttes according to the current cade pdmians will be


examlned with respect ro the expen<strong>mm</strong>wl results The values <strong>of</strong> the cnacal vcla~ty <strong>of</strong><br />

perfowlon calcularcd f<strong>mm</strong> rhc test results are compared lo vrlucr calculared according to<br />

the dynamle code CEB (1988).<br />

A fracture mechanics analysis was used to evaluate the tmpact loads on hhlgh-<br />

strength concrete plate. The fracture rnechanncs appmach 3s consldsred r s od promnrxng<br />

approach bi lnvtsttgarlng the hnltle fa~lun <strong>of</strong> amcrunl concrete clcmenn accurately<br />

The fracture mechvnlcr appmvch 18 usedto mvcrllgate the effect <strong>of</strong> the rate <strong>of</strong> laadlng on<br />

a bnttlc marenal bared a Isnear cla~r~c fracture rnechan~cs (LEFM) Onc <strong>of</strong> the<br />

ahjecllve~ <strong>of</strong> the prewnt study IS to pmvlde the deslgn englnssrn with a rate renrltlvlty<br />

numkr for high-strength concrete plates<br />

5.2. Impact Load<br />

In order ro calculae the Impact load <strong>of</strong> the lest nrulfr. the venncal equation <strong>of</strong> dynamrc<br />

cqu~l~bnum. tgnonng damping. cm be wntten as.<br />

Ftr) = m, m, (5.11<br />

where F(r)lr rhs total force. a,lr the total xcclerat~ons, and the total mass m, Ir the<br />

rum <strong>of</strong> the projectile mars and half <strong>of</strong> the specmen mass. If 0, Is equal to the projesulc<br />

accclera8an rrp. whtlc ntpand rn, are the masses <strong>of</strong> the pmjeetile and the specnmen.<br />

rerpecnvely. Equation (5.1) ean then bs wnnen as:<br />

F(r) = (mp + 0.5 m , ) ~ ~<br />

Equntlan (5.2) can thm be used for ccalculat~ng the impact lest load P,#,, = Fit1


5.3. Punching Shear (Static Capacity)<br />

The derp shear strength equauon !ncorporaled tn bulldlng codes are a dlrecr result <strong>of</strong><br />

empt~ical pmccdurer developed f<strong>mm</strong> laboratory lerts. Ar mennoned prevtourly. the<br />

Nanh Amencan codes arc based pnnclpally on Mae's (1961) wok. whde the Bntlsh<br />

codes arc based mnmnly on Regan's (1981) work. It becomes necessary lo cx;lmtnc rhc<br />

exsung formula strength <strong>of</strong> h~gh-strength concrete plater <strong>of</strong> 80 MPa compresswe<br />

nrength.<br />

Martmum shear stress rertrranee prov~ded by a concrete plate wlthos rhea<br />

relnfoxement. v,. calculated according lo ACL-318 (1995) under S.1 untt. rhrll be the<br />

rmallest <strong>of</strong>.<br />

where. &= ratno <strong>of</strong> long side to shon sldc <strong>of</strong> the comenmlcd load<br />

f,= speetfied compresswe strength <strong>of</strong> canere*<br />

a,= factor which adjusts v, for ruppon dtmenstans<br />

15.3n)<br />

d = dl~tanee f<strong>mm</strong> ei<strong>mm</strong>c compresslan fiber to ccntmtd <strong>of</strong> lenston nnforce<strong>mm</strong>t<br />

be= perimeter <strong>of</strong> cnlical section for shear in plates.


The Cornmlrtee reco<strong>mm</strong>ended that the following deslgn equntlon for calculattng ulrtmae<br />

shear loud.<br />

V,, = v,, b. d<br />

(5.4)<br />

The cnttcnl sectson shall k n rectlan perpendscular lo the plane <strong>of</strong> the plate and located<br />

ro that tu penmeter. b,. tr u mnnnmum. But. the sccson need not approach closer lhdn<br />

dl2 to Ihs penmeler <strong>of</strong> the concentnted load. Thereiore. b, = n (c + El. where c Is the<br />

dlametcr <strong>of</strong> loaded arw.<br />

The Bntlrh Codes. 0s-8110 (19851. and code <strong>of</strong> pracuce for structural urc <strong>of</strong><br />

concrele. CP-I I0 (1972). rrco<strong>mm</strong>endsd the followtng equallon for cnlsulaune. punchmg<br />

V, = Ka K,,=(?.69d)~C + 7.85d) (5 5)<br />

where. V, = ult!mate shear force (N)<br />

K,<br />

K,<br />

f,.<br />

= 0.13 for normal concrete 0.105 fo~ hghrwefghr concrete<br />

= I I5 [4n(column arcall lcolumn pnmeler)' 1"'<br />

= cube smgth <strong>of</strong> concrele IMPa)<br />

d = effective dcph <strong>of</strong> the slab (<strong>mm</strong>)<br />

ZC = penmeter <strong>of</strong> the column (<strong>mm</strong>)<br />

The rhear p<strong>mm</strong>elcr for a rectangle column 1s located a distance 1.25 d out f<strong>mm</strong> the<br />

column. for a clrfuiar column a located 1.25 d out f<strong>mm</strong> the column. Aeeordtng lo the


code predrmwmr. the abavs llmll <strong>of</strong> 40 MPU <strong>of</strong> the cube strength <strong>of</strong> Equation (5.5) was<br />

neglccred when calsulat~ng he shear strength.<br />

Norntnd shear strew. vc. according to CEB-FIP (1990) Is'<br />

vc =018 [,+El= (5.6)<br />

Thc hlghcsl conciclc strength conrldcred I" CEB-FlP (1993) 1% SO &%Pa. The control<br />

penmeter Ir !he mnnimum length taken f<strong>mm</strong> 2d f<strong>mm</strong> the concentrated load penphery<br />

Equauon (54) can also be used for srlculauon the punch~ng rhear espclty, where. the<br />

penmctcr ho for arcular loaded area IE = x IC + W.<br />

The Nowcgnan code NS-3473 (1992) rpeclfier the punehzng rhcrrcapaclly as<br />

Vd = 0.33(f,d +kAply,)udk,. < 0.66f,udk, 15.7)<br />

where. frd = derngn tenrlle nlrengh <strong>of</strong> concrete<br />

y, = malenal coefric!enr for reonforced concrete = 1.0<br />

tA = IW Nl<strong>mm</strong>:<br />

1.0 < k,,l=1.5dldl) < 14. dl = 1.0rn<br />

d = mean platsdspth in the twore~nfo<strong>mm</strong>cnt d~rectnons<br />

I = the length <strong>of</strong> penmeter <strong>of</strong> the governing reclnon at a dnaancc I 0 dfrom<br />

loaded area<br />

p = lcnrlon re~nforccmcnt ratto.<br />

Compress~ve amngth Is usually given ar. the reference value for a concrete pade.<br />

According to the CEB-FIP (1990) reco<strong>mm</strong>endation for mean values. the tcnsllc nmngth<br />

<strong>of</strong> concrete can be enimavd f<strong>mm</strong> compresswe strength by:


J,~ = 0 . 2 0 ~ ~ ~ ~ ~ (5.8)<br />

The measured rest tmpact loads P, and the calculation <strong>of</strong> Ihe shear strength by dtfferent<br />

codes are wbulared ~n Table 5.1.<br />

5.4. Code Reco<strong>mm</strong>endations<br />

In order to evaluate the validbty <strong>of</strong> the current dessgn npecificalonr. the calcuiatlonr <strong>of</strong><br />

the formulas f a sratnc punehrng shear capaclrler llrted m Table 5 1 are to be dnrcursed<br />

bncfly !n present recnon. The r!s!c punehlng shear rcru <strong>of</strong> all rpeclmens can be used ar<br />

a reference for all <strong>of</strong> the dynumte lmpnct tens.<br />

The naltc punehtng shear capncltler calculated aerordin~ to ACI-318 (19951 and<br />

[he dynvmlc test results we used for the dynvm~c shear capactt8es. The ratno <strong>of</strong> dyndmlc<br />

to statlc punching shear tr m the range <strong>of</strong> 1.39-2.31: a the same ratio n npd between<br />

150-1.82. 1.361.65. and 1.87-2.33 accordnng to the BS-8110 (1985). CEB-FIP (19W).<br />

and NS-3473 (1992). respecsuely.<br />

The lmpaer tesl results ~ndlcare that the punch~ng failures were at a much higher<br />

load level than the rtnlc punchtng rhear capaclly. The ntlo <strong>of</strong> Impact vcnur rtnuc lord<br />

aecadlng to the Nonh Amencan coder 1s normally vaned between u wider range<br />

compared to the European codes. The rario <strong>of</strong> dyonmlc to rtatlc punehtng shear accordmg<br />

to NS-3473 (19921 is al<strong>mm</strong>l con~lrtcnt and hlgher than other coder predictnonr. b<br />

concluaon, the resulU con be used as a destgn guide lor engtnecn to predict the dynrm~c<br />

capaclty <strong>of</strong> high-mph concrete plates.


5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

HSF1<br />

HSF2<br />

HSF3<br />

HSF4<br />

NSS1<br />

NSSZ<br />

NSS3<br />

NSS4<br />

79 1<br />

79 1<br />

79.1<br />

791<br />

331<br />

33.1<br />

33.1<br />

33.1<br />

0.95<br />

1.26<br />

1.90<br />

2.32<br />

095<br />

126<br />

1.90<br />

232<br />

NIA<br />

328 50<br />

37681<br />

389.70<br />

225.44<br />

244.77<br />

305 96<br />

341 39<br />

23660<br />

23660<br />

22639<br />

22639<br />

15305<br />

15305<br />

147.74<br />

147.74<br />

194 34<br />

213 52<br />

23428<br />

250.40<br />

14536<br />

15971<br />

175 23<br />

187.29<br />

212 22<br />

233 17<br />

25890<br />

276 72<br />

15873<br />

174.40<br />

193 65<br />

20698<br />

161.90<br />

172 73<br />

196.99<br />

201.05<br />

10521<br />

11604<br />

132 65<br />

14671<br />

NIA<br />

139<br />

165<br />

171<br />

147<br />

180<br />

2.07<br />

2.31<br />

N/A<br />

154<br />

161<br />

156<br />

1.55<br />

153<br />

175<br />

182<br />

N/A<br />

141<br />

146<br />

1.41<br />

1.42<br />

140<br />

156<br />

165<br />

NIA<br />

1.90<br />

2.02<br />

1.94<br />

2.14<br />

2.11<br />

2 31<br />

233


5.5. Critical Velocity <strong>of</strong> Perforation<br />

'The values <strong>of</strong> the cntlcal velalry <strong>of</strong> perforatnon can be cnlculared aceord~ng the formula:<br />

where. W = concreledcns8ly<br />

Thccrlsulnt~onr <strong>of</strong> cnrtcrl velwlry then am given ~n Table 5.1 as follows:<br />

Table 5.Z. Cnttcal veloclry <strong>of</strong> prforamn


In order to evaluate the pred!etton <strong>of</strong> Equalon (5.9). the calculated cnucal<br />

velactty tr then compared to the actual ten velaclly. The eompanson between the<br />

ealculrted cnncal velacnty and rhc actual rent velaclly are g ~en ~n Table 5.3 below:<br />

Table 5.3 Calculated cntical vclactty compared wtth tea velacnty<br />

enes Noiatan Marlmum Maxlmum Cmlsal Test<br />

No P.ccsleration Displacement Velacny Velmny<br />

at Center frm code<br />

(gl l<strong>mm</strong>l (mbl lrmsl<br />

It can be seen f<strong>mm</strong>Table 5.3 that under lmpact loadmg, both <strong>of</strong> the menrured and<br />

salculacd accclcrations for h~gh-strength sonoere wcre htghcr lhnn normal-strength<br />

concrete. The acceleration for heavy re8nforccmnt plater were h&er than [ha far<br />

lhghtcr mnforeement. Thlr lndrcatcn that the aeceleratlon rnagnrtude increased when the<br />

concrete strength and EWI nnfaacmenl ratio wcre ~ncrrarrd. lncrear~ng concrete<br />

strenah from nonnal-strenph to high-strength. horn abut 35 MPa to 80 MPa. increased


the acceleml~on by about 40% I" the case <strong>of</strong> somply-supported and lncrravd about 30%<br />

~n the case <strong>of</strong> fired support. In addltion. as the rlul remforcemcnr ntlo ~ncre;csd by<br />

about 0 5%. the aeeelenttan lncread by about 10%.<br />

The cntlcal vcloc8ty <strong>of</strong> pcrfonr~on aceord~ng to CEB (1988) were very close lo<br />

the test re~ults for hlgh-strenpth ConerCle plates. both tn the case <strong>of</strong> fired and nmply-<br />

supported However. br normal-strength concrete. the cnucal velmlaer were different.<br />

Under fired condlnon, the ten results <strong>of</strong> normal-strength concrete plam were much<br />

hlgher by about 308 than the code predicttan. On [he other hand. for ~nmply-supported<br />

plses. the test mulls were rl~ghtlv lower by about 4% than the CEB (19881 predict8an.<br />

In concluaon. the predietxon <strong>of</strong> cntlcal vcloctty bared on the CEB 11988) Equvtlon (5.9)<br />

8s adequate md ern bs used to erttrnate the cnt~cal vclaclty <strong>of</strong> hlgh-strength concrete<br />

plates rublecred lo tmpact loading accurately.<br />

5.6. Fracture Mechanics Analysis <strong>of</strong> Impact Load<br />

The strength <strong>of</strong> mtcnals depends on how rapndly the stress a applncd Thus. the rare <strong>of</strong><br />

lodlng effect 13 crtrrmcly Impman,. smec It sets a lhmtr on the allowable slresrcs ~n<br />

structures based on the expled ttme under load. One <strong>of</strong> the mntn objective Is to use<br />

fncture mcchantcr to pmvlde a more detvtled estamatc <strong>of</strong> the nte <strong>of</strong> loading effects on<br />

the behanor <strong>of</strong> the concrete plats under Impact.<br />

The fmture mshanlcs appmach to the nte <strong>of</strong> loading effect I" bnttle matmrlr 8s<br />

bawd on he classical Griffith (1925) theory. The fracture 1% governed by equatnon:


where, a, = fracture rlrenglh<br />

E = modulus <strong>of</strong> elast#c#ty<br />

y = fncturs surface energy<br />

o = cnck length<br />

If G, = Zy IS the cnt~cvl anin energy release rile. then the Equation (5.10) can also k<br />

wntten ~n the form:<br />

An lntnnrnc marcnal propcny called fncars toughness. K, . can then be defined as<br />

K, = a (5.12)<br />

In order to sracs that fracture wtll %cur when the crack length. a. reacher some cnllcal<br />

value. rubrt!tuting Equalon (5.121 lnlo Equaaon (5.1 1) g~ve-<br />

Subcnl8cal cack gmwth a defined as the gmwth <strong>of</strong> cracks [ha are loo small to<br />

cause frllure under the prevanllng nrrerr. Dunng ruknucal crack gmwth. an emplncal<br />

relat~anshtp IS also ut~l~zed that describes the crack vsloc!ty as<br />

whm. V = 6 = rate <strong>of</strong>crack extenson. w hkA and Nanconaanu. KI 8s the stress<br />

lntenslty factor and equal to K, at the cntncal stress condion.<br />

Assumtng. Y = &. Equalton (5.131 become.


a -K,<br />

( - *,"2<br />

Umg r more genenl form. Equalton (5.151 can be expressed as.<br />

K = YO<br />

Combtnmg Equallan (5.16) wllh Equatlan (5.141 glvcr:<br />

The rare <strong>of</strong> stress can be define ax<br />

da<br />

- = AylYah',&r?<br />

d,<br />

db - =<br />

dt<br />

Alrernrttvely. 10 other way. Equatlan (5.181 can be wnaen as:<br />

I5 181<br />

dt = dP 15.191<br />

0<br />

Subsntuung Equatlan (5.191 lnro Equarlon (5 17) and leads to the !nregmuan gtver.<br />

J:,,,-N~?~. = (5.201<br />

d<br />

1 L,-,N-~,?, ,;, N-112,]= AyN_O,N*I<br />

iq (N+l)U<br />

(5.21)<br />

where the sukcnpt i and f refer lo he initla1 cond~tnan before terung and the final<br />

condition on fncturs. respscttvely. lnrenlng Equauon (5.15) into Equarlon (5.111. gvcs:<br />

Lert~ng:<br />

a,n+l - ~ aKc~-~(N+l) L,N-2 -0,~-2]<br />

AY2(N-2)<br />

- ZKC'-~ (N+l)<br />

AY?(N-Z)<br />

(5.221<br />

(5.231


And.<br />

otN+l = B., b,'V-? - <strong>of</strong>N.? ]<br />

<strong>of</strong>N+' + BoatN-l = Boo,N-~<br />

From Equalon (5 251. ~f the final strength <strong>of</strong> a specmen tr measured m r fracture ten.<br />

the lnlllal strength can be computed by knowing the slrcrring rate a Conversely. tf the<br />

nn!t~nl strength <strong>of</strong> s rpcclmcn IS known. @he fracture rmngth m any constant loudlng nte<br />

lest can be defined from Equallan 15.251 by numencvl methods.<br />

As reported by Nadeau. Bennet. and Fuller 11982). urlng the pnncnples <strong>of</strong> Ihnear<br />

elanc fracrure mechan!er. the dependence <strong>of</strong> strength on the rare <strong>of</strong> loadmg cnn be<br />

expressed by [he lagmthmlc fm <strong>of</strong> Equation (5.24). The erpresrlon can be wntlen ar<br />

follows.<br />

Ino, = L l n ~ + o -L ln,!o,'-' -<br />

Ntl N+I af'v-2 )<br />

(5.26)<br />

Analysis <strong>of</strong> Equrtaon (5.261 tmpllcr that a plot <strong>of</strong> Ino, Venus In0 would have a<br />

slope <strong>of</strong> [II(N+I)] ar lower valuer <strong>of</strong> o . Rnaily, s would reach I eonnant value lrem<br />

rlapcl as high values <strong>of</strong> 6. Thts tseonsnstent with the suknl#cal cnck growth model that<br />

ar very hlgh loadtng ntcs. the strcngth would be largely andependent <strong>of</strong> loading me.<br />

Sbnee. there 3s not enough time for rukntlcal crack gmwth to occur. the mltlal md final<br />

strength ue eswnually equal.<br />

In Xcmt yean, there are three nndependent mcthcds for evaluating the constant B<br />

in Equatlon (5.23) by detcrmnnnng the conswt N baed on.


1 I) dmct observations <strong>of</strong> crack pwth mensurementr where the constant N IS the slope<br />

and the canrwnt A IS the tntereept <strong>of</strong> the V-K plot. where V!s cnck vclaclty and K Ir<br />

nntnns~c mvtenal propcny.plot an a lopnthm~c scale.<br />

(2) the mtc <strong>of</strong> loading effect ~n whtch the firs two terms <strong>of</strong> Equalon 15.26) are plotled<br />

gwmg bath the slope Nand f<strong>mm</strong> the lnrcrcept 6.<br />

(3) r !o:mthrnle plot <strong>of</strong> the spplled stress against the erne to fa~lure. the slop <strong>of</strong> rhts plot<br />

LS [-!IN].<br />

Mlndesr (1984) reported that the values <strong>of</strong> N obrnr.ed f<strong>mm</strong> lrnpacl lerts are<br />

~ssent~rlly Ihe same as those oblaned f<strong>mm</strong> constant mte <strong>of</strong> loading lcrlr IIhc second<br />

method). Thtr would suggest that even at these very hngh stress mte, the fmcture<br />

pmeerrer an much the same.<br />

Flpre 5.1. Method <strong>of</strong> calculating Nf<strong>mm</strong> stress!ng rate data<br />

108" 0


The method <strong>of</strong> enlculat~ng N from rtrerstng rate data IS shown m Feure 5.1 when<br />

matcnalr can be assumed to behave m a lhnear elasec manner. The strength. a,. can be<br />

expressed as a funct~on <strong>of</strong> rrress iate.0 Then. the slop= <strong>of</strong> loga,. venur lo0 ts<br />

defined as[l/(~+~)] When matenalr can be assumed lo behave on a lhnear e1;rrtr. he<br />

nrers nu m r tea cm be related ro the rtnm rate. e . through n rlmple relation: a = Er<br />

The llrlt hump a stmn versus hllure ,$me plot ~ndteater lncntrl stram and thc second<br />

hump ts where the bnttle matnx fractures. Since the matnx cnck created dunng the<br />

second hump. the value <strong>of</strong> N m present research obtalned f<strong>mm</strong> a logrnthmnc plot <strong>of</strong><br />

applied stwn venur the tlme to fablure ~n nsnng pan <strong>of</strong> the second hump The slope <strong>of</strong><br />

thxs plot 8s [IN].<br />

The valuer <strong>of</strong> N ~n the present erpenment are prerenled ~n Table 5.4. The rrble<br />

notwes that the value <strong>of</strong> N vanes between wide limlts. In general. the valuer <strong>of</strong> N are<br />

h~gher than normally reported for Mher types <strong>of</strong> concrete The test ~sull nndxeates that<br />

concrete 8s known lo be far more rensltlve to stress nle under lmprct lo~d~ng than tn any<br />

other mode. Thls phenomenon pmbrbly caused by a lack<strong>of</strong> a llneilr response. Concrete Ir<br />

not 6dmIly bnttle and the o -c response is far f<strong>mm</strong> llncar The valuer <strong>of</strong> N therefore<br />

m ~ not y be expected lo capture the <strong>mm</strong>e nature <strong>of</strong> nmrs nte Ernlltlvlty ~n these malenlls.<br />

Therefore. as pomted by Mindesr (1985). the vrrumptron <strong>of</strong> n lhnslr elasuc fracture<br />

response assumed m Equauon (5.14) Ir not enurely valid. However. the pmpenler <strong>of</strong><br />

high-strength concrrle BE close to more lhnear response than normal-nrength concrete.<br />

Hence. the uw <strong>of</strong> linear fracture mechanics far structures made wrth hlgh-strength<br />

concme are mare valld than nonnal-rmgh concrete.


For rpctmenr loaded slowly. mom rtme IS available for slow crack pwlh than<br />

rpeclmens lwdded rapidly. Therefore. Ihc nce <strong>of</strong> loadnnr effect on the tested rpes~mar<br />

must be conndemd. Under very htph rate <strong>of</strong> landtn~ such as nnpsct londln$. the crack<br />

velae~ty (crack growth) depends an she valuer <strong>of</strong> Nas defined by Equauon (5.14) As the<br />

value <strong>of</strong> N ~ncmascr. the crack velalty rncreass. I1 can be seen ~n Table 5.4 lhat the<br />

crrck vslaclry mcmse as well 2s !n thecase cf an lncrevlc <strong>of</strong> Ihe concmre strengh and m<br />

the care <strong>of</strong> a deerem tn steel relnforccment ram<br />

Values <strong>of</strong> N f<strong>mm</strong> impact tess<br />

NO.<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

6<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

Speclmsn<br />

HSSl<br />

HSS2<br />

HSS3<br />

HSS4<br />

HSFl<br />

HSF2<br />

HSF3<br />

HSF4<br />

NSS1<br />

NSS2<br />

NSS3<br />

NSS4<br />

NSFl<br />

NSF2<br />

NSF3<br />

NSF4<br />

fi'<br />

MPa<br />

81 7<br />

81.7<br />

61 7<br />

81 7<br />

79.1<br />

79.1<br />

79.1<br />

79.1<br />

33.1<br />

331<br />

33 1<br />

33.1<br />

36.6<br />

366<br />

36.6<br />

36.6<br />

70 P<br />

0.95<br />

1.26<br />

1.90<br />

2.32<br />

0.95<br />

1.26<br />

1.90<br />

2.32<br />

0.95<br />

126<br />

1.90<br />

2 32<br />

095<br />

1.26<br />

1.90<br />

2.32<br />

However, some msemhm lhke Relnhardl (1985) suggssrcd an allernatwe<br />

sxplunason af the obssrvsd trends gwcn on the bas,% <strong>of</strong> "on-Innear fracture mechanics. 11<br />

has bem rceognlud Iha ~<strong>mm</strong>edtately ahead <strong>of</strong> a movnng crack is a zone <strong>of</strong> mtsm<br />

N<br />

28<br />

28<br />

24<br />

23<br />

33<br />

24<br />

22<br />

28<br />

24<br />

16<br />

14<br />

28<br />

24<br />

21<br />

17


cmclung. called process zone. The rze <strong>of</strong> he zone <strong>of</strong> mncm-craclung dcpndtng on the<br />

velocity <strong>of</strong> the crack. A faster crack has a larger zone <strong>of</strong> mzm-cnclung ahead <strong>of</strong> 11. At a<br />

hlghei nrerr nle that crack propagates faster, and therefore the pmess zone will be<br />

htggcr. Thar ,"creased mem-craelung may crpliun the h~gher fracture energy<br />

Rqulremenrr at hlgher rtress rates.<br />

The prcvlour ursumenr seems to contnd!ct wrth the argument presented above<br />

The rubsnl>cal cnrk gmwB. predmcrs less <strong>mm</strong>m-crackmg ~n htgh-rrrerr rrlc loading<br />

rltual!onr However, these two phenomena occur on $he oppornrs rldsr <strong>of</strong> Ihe pnk lxd.<br />

The concept <strong>of</strong> rubcntlcal crack gmwth ~s applncable pnor to the pak load whtle the<br />

concept <strong>of</strong> larger pmerr zone appl~es for orhc pan-peak load regnon where the unrtable<br />

crack propagason co<strong>mm</strong>encer.<br />

5.7. Dynamic Fracture Energy<br />

When the pmjectnle htls the rpclmen. a sudden transfer <strong>of</strong> energy f<strong>mm</strong> the pmject!le to<br />

the specmen occurs. The energy lost by the pmjeculc Ir panly mnsfemd to the<br />

rpeclmen and panly rrayr wrthtn the pmjccrnic tn the form <strong>of</strong> slasue rlrrlns and<br />

vlbrauons. The energy mewed by the rpcnmen from the pmjecttie 19 the energy even<br />

by the area under bendrng load versus deflectton curve. as dexnbed m the follow~ng<br />

cqurtmn:<br />

GI(') = ~~PIl)du 15.27)<br />

where. GJ It) =bending energy -wed by the spcrmsn<br />

PI!) = punchmg load


ulrl<br />

= &fleetton at the load polnt<br />

The dcflcctlon slt) can be obluncd by double lnlcgratlon <strong>of</strong> the extrapolated accclerarlon<br />

ar the load pamr. i(r1. by equation:<br />

"(I) = 66 ti(,) d dt<br />

(5.281<br />

Rpre 5.2 ~llusrrares a typ~cvl load venur defleetlon plat. The area under lond-<br />

deflectnan curve reprexne the haeture energy recelvrd by the ~pecimcn subjecled lo<br />

Impact loudlng.<br />

Figure 5.1. Typtcal load-&fleeson curve<br />

The dynamic fra~lure energy values under tmpul laadlng for all tested Jpectmcnn<br />

are then compared to static fmture energy under rtnttc loading. The valves <strong>of</strong> naric<br />

fracture energy were obmned f<strong>mm</strong> prevsou mvesligmrr. t.e. Husem (1990). Marrout.<br />

Em. and Hlld (1995). and Osman. Marrauk. and Hclmy (1998).


The eompan%on d fnctue energy berwccn dyamlc to rtaic tests are then<br />

tabulated tn Table 5.5. The results tnd~eate thar concrete undcr Impact loading. erpeclrlly<br />

hl@ rtrenoh concrete. IS more energy ahorbing lhan undcr slartc lording. In gncnl.<br />

concrete 1s a rensltwe matenal lo the chnng tn the nrerr-a. The nlmr <strong>of</strong> Impact ro<br />

Erattc fncture energy was found to be hlgher for hngh-nrensh concrete than normal-<br />

strength concrete Thnefnre hlgh-arengh concrete plaler are cansadcrrd to have more<br />

tmpacr mtrrance than normal-strength concrete.<br />

Table 5.5. Comprnron <strong>of</strong> dyvmlc fracture energy wah rtrllc fracture energy<br />

5<br />

6<br />

7<br />

8<br />

9<br />

Cmdltlon FrCIure Fracture DYnamh<br />

(MPa) (50 (kN%k:!Yld C~?k:'lOs Stat'c<br />

HsS1 Slmph/lupporled 81.7 095<br />

HSS2 Slmply supponed 81 7 1.26 4.21 2.74 1.5<br />

HSS3 Slmplyrupponsd 61.7 1.90 876 3.01 2 9<br />

HSS4 Slmply OUppOned 61.7 2.32 12.27 3.18 3 9<br />

HSFl<br />

HSF2<br />

HSF3<br />

HSF4<br />

NSSl<br />

Fixed<br />

Flxed<br />

Flxed<br />

Flied<br />

Slmply rupponed<br />

79 1<br />

79.1<br />

79 1<br />

79.1<br />

33.1<br />

095<br />

1 26<br />

190<br />

2.32<br />

095<br />

NIA<br />

3.64<br />

8.12<br />

1245<br />

0.77<br />

2.32<br />

2.56<br />

2.44<br />

2.61<br />

243<br />

I IS I NSF~ Flxed 1 36.6 1 1.90 / 1.86 1 NSFI I Fixed 36.6 232 2.60 2.43<br />

.<br />

1 4<br />

3.3<br />

4.8<br />

0.3<br />

2.E ( f (


Chapter 6<br />

SUMMARY AND CONCLUSIONS<br />

The dynamnc behavior <strong>of</strong> the two-way reinforced concrete plates under lmpvcr lodtng<br />

are ru<strong>mm</strong>anzed bncfly. The present rcremh lnvesligllon eomb~ncr lnro an<br />

cxpenmenl~l mvestlgnttan and a numeneal mverrigruon. A su<strong>mm</strong>ary <strong>of</strong> [he two phases<br />

<strong>of</strong> the #nverttgrl8on IS desenbcd m the followmg sectran.<br />

The crpenmsnlal lsstlng program was conducted on sixteen retnfomed concrete<br />

plater under umety <strong>of</strong> concrete srmgth. steel remforeement rruor. and two end-<br />

condit~onr. The plates were lsrtcd under dynamlc lmpvct laud. The Impact load speed<br />

ranged between 4.0 lo 9.0 mlr as aceelemuon ranged between 70 to 120 g Elghr<br />

rpecnmcnr were constructed wlth high-strength concrete, whtle the other elght spclmens<br />

were conrlructed wtth normal strength concrete. The concrete strength ranged berween 35<br />

to 80 MPaand had r vanety <strong>of</strong> mnfo~cmcnc rataor m the range <strong>of</strong> aboa 1.0%-2.5%. and<br />

were tested u nk fired and simply suppaned end-condsllon. The behnvnor <strong>of</strong> htgh-<br />

strength eonmtc plarcs was evaluated in terms <strong>of</strong> deflection, concrete and steel strams.<br />

ensrgy absorptnon. and frasturc mergy.


The numeneal lnvcstlgatnon war earned our lo verify the vnl~dnly <strong>of</strong> the coder'<br />

predimlonr. The resonled lmpaCt load eapncases were compmd with rtatc capacstter <strong>of</strong><br />

cumnt coder' predlct~m. In uddltlon. a fracture mechanlcs tmpvet load analyslr based on<br />

lhnear elarucr fncture mcchanxcr (LEFM) was performed. The purpose <strong>of</strong> Ihe numerical<br />

Inverogauon was ro piovlde a more deratled analyrlr on the effect <strong>of</strong> the rate <strong>of</strong> land~ng<br />

on the dynamic behamor <strong>of</strong> high-strength concrete plater. The dynamscr fixture energy<br />

<strong>of</strong> the leslcd plates were comparcd lo ~wtlc fracture energy calculsted from prevlaur<br />

inverligeorr.<br />

6.1. Experimental Investigation<br />

Expenmental rtvdxa were conducted on stxteen re~nforced eanmtc twrrway plater<br />

rubjcclcd lo impact lading. The followcng emelus~onr were *ached from the present<br />

tnvesugalan ewcsrnlng the effect <strong>of</strong> concrete strength. steel rr~niarccmcnt mtlo. md<br />

end-condlttan<br />

I. All EpeCimens fallsd under duct~lc shear fatlure. The observed angles <strong>of</strong> hilurc were<br />

about M) degree for normal-strength concrete and 65 degree for hlgh-rtrenph<br />

concrete. In addillon. the punchlng shear surface on the tension face was laated at a<br />

dnstanee <strong>of</strong> 1.6-2.0 tnmer the plate deplh (d) f<strong>mm</strong> the edge <strong>of</strong> loaded area for the most<br />

<strong>of</strong> the tested spamenr.<br />

2. As the concrete ruenph incrensed from nmal-rt-ngth to hlgh-strength (35 MPa to<br />

SO MPa). energy absorption capaelty and cnttcal velasty <strong>of</strong> perforaim mcrrased.<br />

The energy absorption capanty mncreased by a a gc <strong>of</strong> about 3-5 timer. and the<br />

critreal velsity <strong>of</strong> perforat~on inerrad by a range d aboul20%-30%.


3. The steel reunfarcemcnt has a major effect on the dynamle behavtar <strong>of</strong> h~gh-strength<br />

concrete plates, lncreas~ng retnforcemenr nuo fram 1% to 1.5%. the cncrgy<br />

rbsorptlan tncmarcd by 50% for hcgh-nrengh concrete and 100% for normal-<br />

strength concrete. whnle the cntncal veloclty <strong>of</strong> perfonuon maeased by about 10%<br />

for both high-strength and normal-strength concrete. lncreas~ng rennforccmsnt ratlo<br />

from 1% to 2%. the cncrgy abrarprlon mcrcascd by about 3004 md the cntlcal<br />

velocxty <strong>of</strong> perfanuon ,"creased by about 20% for both high-strength and normal-<br />

rrrenglh concne. Increasing re~nforeemsnl nua fram 1% to 2.5%. the energy<br />

ahsorpllon sncreued by about 400% md the crit!cal velocity ~ncreised by about 30%<br />

far hngh-rtmgrh concrete u well as normal-ntrengIh concrete.<br />

4 The effect <strong>of</strong> the end-condieon was las ~xgn8ficvnt on the behvvlor <strong>of</strong> hvgh-rrrenph<br />

concrete plater under imprcl lord. Ar concrcrc strength mcreased from normal-<br />

strength lo htgh-strength. the cnrtcal velocity <strong>of</strong> prforatnon inerwwd by about 20%-<br />

30% for the snmply rupponcd speclmcnr. While under fixed-end candtt!on. he<br />

cnrlcal velrrxty <strong>of</strong> perfowion lncrersed by about 50%-60%.<br />

5 In the case <strong>of</strong> rtatle loadmg, the peak-load, peak-nwn md mnr~murn-defleeeon<br />

occurred at the same ume. However. I" the case <strong>of</strong> tmpacc loadmg. the peak-smln<br />

oecur. rllghtly later than lo the peak-load bur ahsad <strong>of</strong> manmum-dcflem~on. In<br />

addieon. the tension nee1 nnln s esumared by about twice that recorded under rtattc<br />

loading. The ten results illunnte the difference between ampacr failure mechvntrm<br />

compared to rutsc fatlure mechannsm. All <strong>of</strong> the impact tcn specimens failed under<br />

ductile shear failure.


6.2. Numerical Investigation<br />

An analr~cal ~nvesugation war camed out an the impact loadrng on a concrele plates<br />

The recorded tmpacr load capaclues were compmd to rtat~c capac~lies calculated by the<br />

formula <strong>of</strong> cumnr codes. A fracture mshantcs analyslr based on linear elasrlcs frilclure<br />

mechanlcr (LEMI was performed to evaluate the effect <strong>of</strong> "re <strong>of</strong> laadang an the<br />

dynamic oehvvtor <strong>of</strong> high-nrength concrete plater. The dynamner fracture energy was<br />

campmd to nruc fracture energy far all <strong>of</strong> the tested rpe<strong>mm</strong>enr. The rtgnlficvnce and<br />

contnbutton <strong>of</strong> the present numeneal lnvertlgallon can be concluded ar follows.<br />

I. The punching shear cvpaclly due lo tmpact loadnng were about twlcc rhrr <strong>of</strong> the rtalc<br />

punchlng shwr capacity. The rarlo <strong>of</strong> Impact punching shear clpaclly lo strtlc rr<br />

crtrrnated by [he ACI-318 (1995) was ~n the nnge <strong>of</strong> 1.39-2.31 The same ratto baed<br />

on BS- 8110 (1985). CEB-FIP (19901. and NS-3473 (1992) were 1.50-1.82. 136-<br />

1.65. ilnd 1.81-2.33. respeet~vcly.<br />

2. The cnlmcal veloc~lmes <strong>of</strong> perfmson can be ertlmated accurately for all high-strrnglh<br />

concrete specimens according to CEB (1988) code expresson. However. for nondl-<br />

strength concrete under fixed-end condmon. the cntlcal velmly <strong>of</strong> the ten result wrr<br />

30% hlghcr than the cads predictnon. On the contrary, under simply-suppaned<br />

cond~tnon, the test result war nltghtly lower by abut 4% than the code valuer. In<br />

general. he prediction <strong>of</strong> the CEB (1988) code can be uoed accurately lo esllrnale Ihe<br />

cnueal Impact velocity, erpecnally for high-strength concrete plater.<br />

3. A linear elastlc fracture mechantcr impact load expoian can be used m evaluate the<br />

effect <strong>of</strong> rate <strong>of</strong> loadxng on the dynsmtc behav~or <strong>of</strong> htgh-~lrength connete plats.<br />

High-smnglh concrete is more brinlc and close to more Itneat rrspanse pnm to peak


load than normal-strength concrete. Therefore, linear frvture mechsn~sr can be used<br />

lo pmvlde a good degree a1 confidence.<br />

4. The concrere fracture rrrength. a,. can be erpnsed ar a funcrsan <strong>of</strong> the stress rate.<br />

6 The slopes <strong>of</strong> log a, Venus logdwere determ~ned expnmenwlly. The<br />

suggested valuer far N and rubqumtly the two canrlanrr A and B can be used to<br />

RpreSent the Etrerr nle renrlttvlty numbers lor hlgh-strength and normal-slrength<br />

concrete plater. Therefore. the reco<strong>mm</strong>ended valuer can be used by derper la<br />

predtct the dynamsc behavln <strong>of</strong> any plarc under m prt load~ng.<br />

5 The dynnmnc vcnur rlauc fmture energy rauo <strong>of</strong> h~gh-rtmgth concrete plate under<br />

~mpact load war found to be much hagher than that for normal-strength cancrele.<br />

Therefore, hlgh-rmph concrete plates rre constdered lo be mare effiaent marenal<br />

for conrtruct!on under Impact loodmg. mgh-nrengrh concrele Is u better matmnl than<br />

nonnrl concrete ~n dynrmlc rttvananr kause <strong>of</strong> !e tncreassd impact rennance.


REFERENCES<br />

ACI-ASCE Ca<strong>mm</strong>lnee 316. 1962. Shear and Dtapnal Tcnnon. Pmceed!ngs. Amencan<br />

Concrete Inrt#lute. Volume 59. pp. I-M.<br />

ACI Co<strong>mm</strong>~ttce 212. 1983. Adm~rturer for Concrete. ACI Manual <strong>of</strong> Concrete Plasucc.<br />

AC1212.I R-81. Detnt. 29p.<br />

ACI Co<strong>mm</strong>~nee 318 1995. Building Code Reqvlremenls for Svuetunl Concrelc IACI<br />

318M-953 and Co<strong>mm</strong>entary (ACT 318RM-95). Amencan Conc~le Inrurute.<br />

Farm!ngton Hills. MI. 371 p.<br />

ACI Ca<strong>mm</strong>tttee 357. 1985, Guide for Derngn and Canstruelion <strong>of</strong> Fwd Offshore<br />

Swmurer. A<strong>mm</strong>can Concntc Inntale. Dermnl.<br />

ACI Co<strong>mm</strong>ittee 363. 1992. State <strong>of</strong> the An Repan on High-Strength Concrete. ACI<br />

363R-92. Detrolt. 55 p.<br />

ACI Co<strong>mm</strong>jttee 421. 1992. Abrtrncl <strong>of</strong> Shear Retnfarccmenl for Slabs. ACI Slmclural<br />

Journal. V.89. No.5. pp. 587-589.<br />

ASTM. 1997. Amencan Swnety far Testlng and Mvtcnrls Standard I" Bulldlng Codes.<br />

Spemfisutionr. Test Metha. Racl~ccr. Clasnficattonr. Term8nolagy. Amrnean<br />

Swiety for Tsrt~ng and Material. West Conshahocken. Pennrylvanta.<br />

Aktcm. P.. and NCYIIIE. A. 1993. Hngh Perfomwnce Conmtc Demysnfied. Concrete<br />

Intemationd. Amencan Concrete Inrt~tute. Dctmit, pp. 21-26.<br />

A<strong>mm</strong>an". W. and Nursbaumer. H. 1995. Behavrour <strong>of</strong> Concrete and See1 Under<br />

dynamic Actsons. In Vihtion Mlemr m Stmctwer: Practical Gu$delma.


Edited bv H Bachman. Inrtirur fur Baunauk und Konrrukt!on cth Hanggerberg.<br />

Bskhaurer. Bascl.Gmany, pp. 177-183.<br />

BAM (Bunderanswlt fur Mutenalprufung). 1982. Concres Slrucares under lmpacl and<br />

Impulnvc Laadlng. Roceedlng <strong>of</strong> the Intematcan~l Symponum. Vol. 3. Bedln. p.<br />

656.<br />

Banthrn. N . Yan. C.. and Saka~. K. 1998 Impact Reslrrrncc <strong>of</strong> Cancrele Plates<br />

Retnforced wtth a Fiber Reinforced Plaruc Grid. ACI Matenair loumrl. V 95.<br />

No.l,pp. 11-18<br />

Bmthla. N.. Mlndess. S.. 2nd Benar. A. 1987. Impact Bchsv~aur <strong>of</strong> Concrete Berms<br />

RILEM. Mmenals and Strucarsr. 20. pp. 293-302.<br />

Banthvn. N.. Mmdess. S.. and Transr. J.F. 1996. Impact Rsnstance <strong>of</strong> Sleel Flbcr<br />

Retnfarced Concrete. ACI Matenalr Journal. V 93. No. 5. pp 472479<br />

Bnrr. P.. Caner. PC.. Howe. W.D. and Nellson AJ 1982. RepInca Scailns Sludlcs <strong>of</strong><br />

Hard M!rs!le Impacts an Retnfo~ed Cemrete. Symparnum on Concrete<br />

Structures under Impact and Lmpulr~ve Loadnng. BAM Pmeeedtngr. Bcriln. pp.<br />

329-344.<br />

Bmwn. I.C.. and Pemy. S.H. 1982. An Expenmental Method to lnvertlgate lmpacl on<br />

Concretc Slabs Symposium on Concrete Smclurer under Impact and lmpuls!ve<br />

Laad~ng. BAM Raeedtngr. Berlm. pp 102-211.<br />

BS 8110. 1985. Structural Use <strong>of</strong> Cancrea: Pan I. Code <strong>of</strong> htiee for Design and<br />

Connrucuon. British Slandard Inn!tute. London. U.K.. 126 p.<br />

Carrasqu~lla. R.L. 1985. Pmduction <strong>of</strong> High-Smnglh Concrete Pastes. Ma<strong>mm</strong>, and<br />

Concretes. Racedmgr. Matenel Research Society. Volume 42. pp. 151-168.


CEB (Comltc Eum-lntemar!onal du Beron). 1988. Concrete Struclurer Under Impacl a d<br />

lmpulr8ve Londmg. Synthesis Repon. Bullettn No. 187. Lauranne.<br />

Chen. Z md Marrauk H.1993. Nonl~ncnr Analyr!r <strong>of</strong> High-Strength Conmete Slrbr.<br />

Engtnemng & Applxed Sclencc Technscal Rcpon Sener No. 93MW. Faculty <strong>of</strong><br />

Engnneenng & Appllcd Sc~cncc. Mcmonal Unnvcnlty <strong>of</strong> <strong>Newfoundland</strong>. Sr<br />

John\. <strong>Newfoundland</strong><br />

CPllO 1972. Code <strong>of</strong> Pracrnce for $he Slrucrunl Use <strong>of</strong> Cancrerc. Pan I Bnurh<br />

Standards lnrutution London. U.K..155 p<br />

CSA Standard A23 3-94. 1995. Concrete Desgn Handbook. Canadinn Panland Cement<br />

Asratatton. Ontano. Canada<br />

Fang. H.M.. and Leach. P 1997. The Elasto-Plartks Dsslgn <strong>of</strong> Re~nforccd Conerere<br />

Beamn and Slabs Subjst to Dynrmoc Laadlng. Proceeding <strong>of</strong> The Inaaut~on <strong>of</strong><br />

Clvll Englneen Slruclurer and Butldtngr. Vol. I??. London, pp 117-123<br />

Famy. J.A.. and Punurenc. W C. 1994. High-Strength Concrete Engmeenng Bulleun.<br />

Ponland Cement Assoclat~on. Illmor~. 48 p.<br />

Forsel. C.. and Holemberg. A. I964 Conxntrvled Laads on Concrete Slabs. Belong.<br />

Volume 3 I. No. 2. St~kholm. Sweden, pp. 95-123.<br />

Gurdner. N.J.. and Shao. X. 1996. Punch~ng Shew Capx~ty <strong>of</strong> Rcmforccd Concrete<br />

Slabs. ACI Strvclunl Joumal. Vol. 93. No. 2, pp. 218.228.<br />

Gnffiih. A.A 1925. The Theory <strong>of</strong> Ruptum. Pmceedtng <strong>of</strong> I" Internaltonal Congrers<br />

Applied Mcchnnicr. Biezeho and Burgen cd.. Wallman. pp. 55-63.<br />

Hillerborg. A. 1985. The Theoretical Basts <strong>of</strong> a Method lo Determzne the Fracture Energy<br />

G,<strong>of</strong> Concare. Material and Svucture. RILEM. 18(106), pp. 291.296.


Hurr-.an. A. 1994 Behav~or <strong>of</strong> Two Way Slabs Mndc W~th Htgh-Strength Concrete.<br />

M.Eng. Thesr. Memonal Unnvmrty <strong>of</strong> <strong>Newfoundland</strong>. Canada.<br />

Jenren. J.J. Hoseth. K.V.. and Hansen. E.A. 1993. Duct!ltly <strong>of</strong> Hngh-Strength Concrete<br />

at High Rate Londlng. HSC Proceedings. Lfllcha<strong>mm</strong>er. pp. 241-250<br />

Klnnunen. S.. md Nylandcr. H. l%O. Punehmg <strong>of</strong> Concrete Slabs Wtthoa Shear<br />

Rclnforcement Tanrilct~on No 158. Royal Inqnlure oFTcchnolnpy. Srwkholm.<br />

Sweden.<br />

Labtech 1992. Data Acquir!l$m and Rocerr Control Saftwwc. Labontory Technologes<br />

Corpamttm. Wil<strong>mm</strong>gron. USA.<br />

Millvem. L.E.. Jenkmr. D.A.. Tang, T.. and Rmr. C.A. 1985. Dyoam~c Cornprerrxve<br />

Tert~ng <strong>of</strong> Concrete. Raceedtng 4 Sympor~um The Iseacuon <strong>of</strong> Non-nuclear<br />

Munlt!ons wlth Structures. Panama Clly Beach. Flanda, pp. 194.199.<br />

Manouk. H.. and Chcn. 2. 1993. Finttc Element Analyslr <strong>of</strong> Hngh-Strength Concrete<br />

Slabs. ACI Slnutural Journal. V.90. Na5. pp. 505-513.<br />

Mmwk. H.. and Chcn. Z. 1995. Fracture Energy and Tennon Pmpenles ot Wgh-<br />

Strength Concrete ASCE Journal <strong>of</strong> Materials ~n Clvll Engmanng. Va1.7. No 3.<br />

Mmouk. H.. and Chen. Z. 1993 Nmllnear Analyr~r <strong>of</strong> Normal- and HI&-Strength<br />

Concrete Slabs. Canrdlan Journal <strong>of</strong> Civil Engineering. UI. pp. 696.707,<br />

Marrouk. H.. Emam. M.. and Hllnl. M.S. 1996 Effece <strong>of</strong> High-Strength Concrete<br />

Columns on the Behavtor <strong>of</strong> Slat-Column Connecsonr. ACI Structural Journal.<br />

V.93. No.5. Title no. 93-S5I.<br />

Manouk. H.. and Hurwtn. A. 1991. Experimental Invcouganon on the Behawor <strong>of</strong> H~gh-<br />

Svengh Consretc Slabs. ACI Svuclunl Journal. V.88. No.6.


Manouk. H.. and Husetn. A 1991. Punching Shear Analysts <strong>of</strong> Reinforced Hlgh-<br />

Smngth Concrete Slabs. Canadtan Journal <strong>of</strong> Civd Enpvnenng. 18. pp. 954-963.<br />

Marrouk. H.. and Jlang. D 1996 Ftnlre Element Evaluatton <strong>of</strong> Shear Enhancement <strong>of</strong><br />

Hz$-Stnnph Concret; Plater. ACI Smctural Journal. V.93. No.6. Title no. 93-<br />

S63.<br />

M~ss!cortc. B.. Elwl. A E. and MacGregar. J G 1090. Tenrlan Strffentng Model fcr<br />

Planar Remforccd Concrete Members. Journal <strong>of</strong> Structural Engneenng. ASCE.<br />

Volume 116. No. l I. pp. 3039-3058.<br />

Minders. S.. Banth~a. N . and Ym. C. 1987. The Fracture Toughness <strong>of</strong> Concrete Under<br />

Impacr Loading. Pergamon Journals Ltd.. Cement and Concrete Research. Val<br />

17. USA. pp. 231-241<br />

Mmdcrr. S. 19W. Rate <strong>of</strong> Loadnng Eflecrr on L e Fnclure <strong>of</strong> Cementtllous Malenals. In<br />

Appllcarlon <strong>of</strong> Fracture Mechanics to Cernentlllour Componas. Edirrd 6v S.P.<br />

Shah. NATO Advanced Research Workshop. Mantnur Nilh<strong>of</strong>f Publkrher.<br />

Dordreeht. pp.617-636.<br />

Ma. J !%I. Shevnng Strength <strong>of</strong> Remiorccd Concrete Slabs and Fwr~ngr Under<br />

Consentrated Laadr. Development Dcpanmcnt Bulletin D47. Panland Cement<br />

Asaclaoan. Skoloe.<br />

Nadsau. J.S.. Benncth. R., and Fuller. E.R. 1982. Erplvnot~m <strong>of</strong> the Rau-<strong>of</strong>-Lordtng and<br />

Duraum-<strong>of</strong>-Load Effecrr m Wood m Tcrm <strong>of</strong> Fracture Mechanna. Journal <strong>of</strong><br />

Matenal Scnenee. V.17. pp. 2831-2840.<br />

Nonuegan Standard NS 3473. 1992. Cmsntc Struetunr. Design Ruler. Nonucgtan<br />

Council fcr Buildtng Standardization (NBR). 4' edluon.


Orman. M.. Manouk. H.. and Heltny. S. 1998. Bchavtor <strong>of</strong> High-Strength Lmghtwclght<br />

Concrete Inrenor flat-Slab Connecnon under Starc and Cyel~c Loudnng.<br />

Englneenng 81 Applted Science Technncvl Repan Sener No. 98001. Faculty <strong>of</strong><br />

Engtneenng & Applned Scnencc. Memonal Un!vcrs!ly <strong>of</strong> <strong>Newfoundland</strong>. St.<br />

lohn's. <strong>Newfoundland</strong><br />

Reem. P.E 1981 Bchavtor <strong>of</strong> Reinforced Concrere Slabs. CIRlA Repan No. 89.<br />

Connruct~on Industry Rewmh Ad Informarlon Arsac~anon. London.<br />

Remhilrdt. H.W. 1985. Tensile Fracture <strong>of</strong> Concrete at Htgh Rater <strong>of</strong> Loading. In<br />

Appllcat~on <strong>of</strong> Fmcture Meehan~cr ro Cemcnt8tiour Composttcs. Edrrrd b? S.P.<br />

Shah. Manmw Nghaff. The Hague, pp. 559-590.<br />

Suuclcr. K. L.. Smah. EF.. and Tymes. W.O. 1964. Wgh-Compresavc Strength<br />

Concrete. Development <strong>of</strong> Concrrtc M~itun. Techntsal Rcpon No. RTD-TDR<br />

63-3114. US. Am Weapons Laboratory.<br />

Tnkcdn. I.. Tach~kawa. H. md Fujnmo!o. K. 1982 Mechantcal Propenass <strong>of</strong> Concrete<br />

and Steel ~n Rclnforced Concrete Slrucrure~ Subjected to Impact or lmpulrlve<br />

Lording Symportum an Concrete Structures under lmpacl and lmpul~~ve<br />

Loadmg. BAM heedrngs. Berlin. pp. 83-91.<br />

Tomasrewtcz. A. 1993. Punching Shear Capacnty <strong>of</strong> Rennforced Concrete Slabs. In<br />

Utlllrat~on <strong>of</strong> High-Strength Concrete. Edited by I. Holand and E Sellevold.<br />

Prmed~ngs. Vol. I. Sympastum m hlleha<strong>mm</strong>er. Noway, pp.393-401.<br />

Walker. S and Blocm. D.L. I%O. Effects <strong>of</strong> Aggregate Size on Ropenlcs <strong>of</strong> Concrete.<br />

Joumal <strong>of</strong> the American Cancm Inrtitae. heeding. Vol. 57. No. 3. Detroit.<br />

pp. 283-298.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!