24.12.2012 Views

Electromagnetics in deterministic and stochastic bianisotropic media

Electromagnetics in deterministic and stochastic bianisotropic media

Electromagnetics in deterministic and stochastic bianisotropic media

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Electromagnetics</strong><br />

<strong>in</strong> determ<strong>in</strong>istic <strong>and</strong> <strong>stochastic</strong><br />

<strong>bianisotropic</strong> <strong>media</strong><br />

Ioannis G. Stratis<br />

Department of Mathematics<br />

National <strong>and</strong> Kapodistrian University of Athens<br />

Greece<br />

istratis@math.uoa.gr<br />

November 18, 2011<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 1 / 95


Outl<strong>in</strong>e<br />

1 Some remarks on the history of the subject<br />

2 Determ<strong>in</strong>istic problems: Modell<strong>in</strong>g<br />

3 Time-harmonic Problems – The Interior Problem<br />

4 Time-doma<strong>in</strong> problems<br />

5 Homogenisation (determ<strong>in</strong>istic <strong>media</strong>)<br />

6 Nonl<strong>in</strong>ear <strong>media</strong><br />

7 Stochastic problems<br />

8 Homogenisation (r<strong>and</strong>om <strong>media</strong>)<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 2 / 95


Some remarks on the history of the subject<br />

Optical Activity is the ability of a material to rotate the plane of<br />

polarisation of a beam of light pass<strong>in</strong>g through it.<br />

Orig<strong>in</strong>al experimental studies by F. Arago (1811), J.-B. Biot (1812),<br />

A. Fresnel (1822).<br />

A. L. Cauchy (1842 – first mathematical work on the laws of circular<br />

polarisation).<br />

Explanation given by L. Pasteur (1848) 1 : <strong>in</strong>troduction of Geometry <strong>in</strong>to<br />

Chemistry (orig<strong>in</strong> of the branch nowadays called Stereochemistry). 2<br />

1 A notable historical co<strong>in</strong>cidence: at the same time that Pasteur brought left<br />

<strong>and</strong> right <strong>in</strong>to Chemistry, K. Marx <strong>and</strong> F. Engels “officially” <strong>in</strong>troduced them<br />

<strong>in</strong>to Politics (publication of the Communist Manifesto)!<br />

2 The Nobel Prize Lecture by V.Prelog (1975 Nobel Prize w<strong>in</strong>ner <strong>in</strong><br />

Chemistry (together with Sir J. W. Cornforth)) is very <strong>in</strong>terest<strong>in</strong>g on the rôle of<br />

chirality <strong>in</strong> Chemistry.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 3 / 95


Some remarks on the history of the subject<br />

H<strong>and</strong>edness is a characteristic of natural <strong>and</strong> manufactured objects (e.g.,<br />

DNA, certa<strong>in</strong> bacteria, shells, w<strong>in</strong>d<strong>in</strong>g plants, spiral galaxies / cork-screws,<br />

doors, cookers, computer mice, keyboards, guitars, a variety of<br />

construction tools / Möbius strips, irregular tetrahedra).<br />

The mirror image of a right-h<strong>and</strong>ed object is otherwise the same as the<br />

orig<strong>in</strong>al, but it is left-h<strong>and</strong>ed (the orig<strong>in</strong>al object cannot be superposed<br />

upon its mirror image).<br />

A h<strong>and</strong>ed object is called chiral 3 .<br />

3 From the Greek word χειϱ mean<strong>in</strong>g h<strong>and</strong>. This term was <strong>in</strong>troduced by<br />

Lord Kelv<strong>in</strong> <strong>in</strong> 1888 (first time <strong>in</strong> pr<strong>in</strong>t <strong>in</strong> his famous 1904 Baltimore Lectures).<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 4 / 95


Some remarks on the history of the subject<br />

It was the relation between the chiral (micro)structure <strong>and</strong> the<br />

(macroscopic) optical rotation that was discovered by Pasteur: he<br />

noticed that that two substances which where chemically identical (<strong>in</strong><br />

the classification scheme of that time), but which had molecules be<strong>in</strong>g<br />

mirror images of each other, exhibited different physical properties 4 .<br />

I. Kant 5 was the first em<strong>in</strong>ent scholar to po<strong>in</strong>t out the philosophical<br />

significance of mirror operation: “Hence the difference between similar<br />

<strong>and</strong> equal th<strong>in</strong>gs, which are yet not congruent (for <strong>in</strong>stance, two<br />

symmetric helices), cannot be made <strong>in</strong>telligible by any concept, but<br />

only by the relation to the right <strong>and</strong> the left h<strong>and</strong>s which im<strong>media</strong>tely<br />

refers to <strong>in</strong>tuition”.<br />

4 E.g., one enantiomer of thalidomide may be used to cure morn<strong>in</strong>g sickness<br />

<strong>in</strong> pregnant women, but its mirror image <strong>in</strong>duces fetal malformation - a big<br />

problem <strong>in</strong> the U.K. <strong>in</strong> the late 1950s.)<br />

5 In his celebrated book “Prolegomena To Any Future Metaphysics” (1783).<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 5 / 95


Some remarks on the history of the subject<br />

In the last part of the 19th century, after Maxwell’s unification of optics<br />

with electricity <strong>and</strong> magnetism, it became possible to establish the<br />

connection between optical activity <strong>and</strong> the electromagnetic parameters of<br />

materials.<br />

In 1914, Karl F. L<strong>in</strong>dman was the first to demonstrate the effect of a chiral<br />

medium on electromagnetic waves (his work <strong>in</strong> this field was about 40<br />

years ahead of that of other scientists); he devised a macroscopic model<br />

for the phenomenon of “optical” activity that used microwaves <strong>in</strong>stead of<br />

light <strong>and</strong> wire spirals <strong>in</strong>stead of chiral molecules. His related work was<br />

published <strong>in</strong> 1920 <strong>and</strong> 1922.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 6 / 95


Some remarks on the history of the subject<br />

The revival <strong>in</strong> the <strong>in</strong>terest of complex <strong>media</strong> <strong>in</strong> <strong>Electromagnetics</strong> emerged<br />

<strong>in</strong> the mid 1980s, motivated <strong>and</strong> assisted by vast technological progress,<br />

especially at microwave frequencies.<br />

Already <strong>in</strong> the beg<strong>in</strong>n<strong>in</strong>g of the 21st century, the related publications<br />

with<strong>in</strong> the Applied Physics <strong>and</strong> Electrical Eng<strong>in</strong>eer<strong>in</strong>g communities were<br />

calculated <strong>in</strong> more than 3000 papers.<br />

Related books:<br />

A. Lakhtakia, V. K. Varadan, V. V. Varadan, 1989.<br />

A. Lakhtakia, 1994.<br />

I. L<strong>in</strong>dell, A. H. Sihvola, S. A. Tretyakov, A. J. Viitanen, 1994.<br />

A. Serdyukov, I. Semchenko, S. Tretyakov, A. Sihvola, 2001.<br />

S. Zouhdi, A. H. Sihvola, A. P. V<strong>in</strong>ogradov (eds.), 2009.<br />

G. Kristensson (<strong>in</strong> progress).<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 7 / 95


Some remarks on the history of the subject<br />

Mathematical Work – 1: Frequency doma<strong>in</strong> problems<br />

(time-harmonic fields)<br />

(As far as I know) the first publication is by Petri Ola (1994).<br />

Simultaneous/<strong>in</strong>dependent work from the mid 1990s by the groups at<br />

CMAP, École Polytechnique (Palaiseau): Jean-Claude Nédélec, Habib<br />

Ammari, <strong>and</strong> their collaborators.<br />

the Department of Mathematics of the National <strong>and</strong> Kapodistrian<br />

University of Athens: Christos Athanasiadis, S, <strong>and</strong> later on<br />

collaborators <strong>in</strong> various places.<br />

From the late 1990s, <strong>in</strong> addition to the above, many researchers enter<br />

the field; <strong>in</strong>dicatively (<strong>in</strong> alphabetical, non-chronological, order) some<br />

names: A. Boutet de Monvel, G. Costakis, P. Courilleau, T. Gerlach,<br />

S. Heumann, T. Hors<strong>in</strong>, H. Kiili, V. Kravchenko, S. Li, P. A. Mart<strong>in</strong>,<br />

S. R. McDowall, M. Mitrea, R. Potthast, D. Shepelsky, S. Vänskä, ...<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 8 / 95


Some remarks on the history of the subject<br />

Mathematical Work – 2: Time doma<strong>in</strong> problems<br />

From the early 2000s attention is focussed on the time doma<strong>in</strong>, as well.<br />

Problems on the solvability, the homogenisation, <strong>and</strong> the controllability of<br />

IBVPs for the Maxwell equations, supplemented with nonlocal <strong>in</strong> time, l<strong>in</strong>ear<br />

constitutive relations (describ<strong>in</strong>g the so-called <strong>bianisotropic</strong> <strong>media</strong>), are<br />

studied.<br />

Aga<strong>in</strong> a representative (yet <strong>in</strong>complete) list of researchers:<br />

C. E. Athanasiadis, G. Barbatis, A. Bossavit, P. Ciarlet jr., P. Courilleau, G.<br />

Griso, S. Halkos, T. Hors<strong>in</strong>, A. Ioannidis, A. Karlsson, G. Kristensson, G.<br />

Legendre, K. Liaskos, B. Miara, S. Nicaise, G. F. Roach, D. Sjöberg, S., N.<br />

Well<strong>and</strong>er, A. N. Yannacopoulos, ...<br />

The biggest part of this work deals with determ<strong>in</strong>istic <strong>bianisotropic</strong> <strong>media</strong>.<br />

But problems regard<strong>in</strong>g <strong>stochastic</strong> <strong>bianisotropic</strong> <strong>media</strong> are also studied.<br />

A new book will be published <strong>in</strong> spr<strong>in</strong>g 2012, by Pr<strong>in</strong>ceton U. P.:<br />

G. F. Roach, I. G. Stratis, A. N. Yannacopoulos: Mathematical<br />

Analysis of Determ<strong>in</strong>istic <strong>and</strong> Stochastic Problems <strong>in</strong><br />

Complex Media <strong>Electromagnetics</strong><br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 9 / 95


The Maxwell system<br />

Determ<strong>in</strong>istic problems: Modell<strong>in</strong>g<br />

Electromagnetic phenomena are specified by 4 (vector) quantities: the electric<br />

field E, the magnetic field H, the electric flux density D <strong>and</strong> the magnetic flux<br />

density B. The <strong>in</strong>ter-dependence between these quantities is given by the<br />

celebrated Maxwell system,<br />

curlH(t, x) = ∂tD(t, x) + J(t, x),<br />

curlE(t, x) = −∂tB(t, x),<br />

where J is the electric current density. All fields are considered for x ∈ O ⊂ R 3<br />

<strong>and</strong> t ∈ R, O be<strong>in</strong>g a doma<strong>in</strong> with appropriately smooth boundary. These<br />

equations are the so called Ampère’s law <strong>and</strong> Faraday’s law, respectively. In<br />

addition to the above, we have the two laws of Gauss<br />

divD(t, x) = ρ(t, x),<br />

divB(t, x) = 0,<br />

where ρ is the density of the (externally impressed) electric charge.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 10 / 95<br />

(1)<br />

(2)


Determ<strong>in</strong>istic problems: Modell<strong>in</strong>g<br />

Initial <strong>and</strong> Boundary conditions<br />

The <strong>in</strong>itial conditions are considered to be of the form<br />

E(0, x) = E0(x) , H(0, x) = H0(x) , x ∈ O . (3)<br />

We consider the “perfect conductor” boundary condition<br />

n(x) × E(t, x) = 0 , x ∈ ∂O , t ∈ I , (4)<br />

where I is a time <strong>in</strong>terval, <strong>and</strong> n(x) denotes the outward normal on ∂O.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 11 / 95


Determ<strong>in</strong>istic problems: Modell<strong>in</strong>g<br />

From (1) <strong>and</strong> (2) we wish to determ<strong>in</strong>e the quadruplet (B, D, E, H),<br />

assum<strong>in</strong>g that the vector J <strong>and</strong> the scalar ρ are known.<br />

Need to calculate 12 scalar functions from a system of 8 scalar equations.<br />

So, constitutive relations must be <strong>in</strong>troduced<br />

D = D(E, H) , B = B(E, H) . (5)<br />

It can be seen that we may consider as “the Maxwell system” the set of<br />

equations (1) (curlH = ∂tD + J <strong>and</strong> curlE = −∂tB), plus the constitutive<br />

relations (5), plus the equation of cont<strong>in</strong>uity<br />

∂tρ + divJ = 0. (6)<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 12 / 95


Determ<strong>in</strong>istic problems: Modell<strong>in</strong>g<br />

The six vector notation<br />

To express the system <strong>in</strong> more compact form, we use the six-vector<br />

notation:<br />

⊲ the electromagnetic flux density d := (D, B) tr ,<br />

⊲ the electromagnetic field u := (u1, u2) tr := (E, H) tr ,<br />

⊲ the current j := (−J, 0) tr ,<br />

⊲ the <strong>in</strong>itial state u0 := (E0, H0) tr ,<br />

where the superscript tr denotes transposition.<br />

A l<strong>in</strong>ear operator act<strong>in</strong>g on u is written as a 2 × 2 (block) matrix with<br />

l<strong>in</strong>ear operators as its entries.<br />

An important case is the Maxwell operator<br />

�<br />

0<br />

M :=<br />

−curl<br />

�<br />

curl<br />

.<br />

0<br />

(7)<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 13 / 95


Determ<strong>in</strong>istic problems: Modell<strong>in</strong>g<br />

The Maxwell system as an IVP<br />

The constitutive relations are now modelled by an operator L <strong>and</strong> are<br />

understood as the functional equation<br />

d = Lu.<br />

The properties of this operator reflect the physical properties of the<br />

medium <strong>in</strong> question.<br />

So the Maxwell system can be written as an IVP for an abstract evolution<br />

equation<br />

(Lu) ′ (t) = Mu(t) + j(t) , for t > 0 ,<br />

(8)<br />

u(0) = u0 .<br />

The prime st<strong>and</strong>s for the time derivative.<br />

The equation <strong>in</strong> the IVP (28) is an <strong>in</strong>homogeneous neutral functional<br />

differential equation.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 14 / 95


Postulates<br />

Determ<strong>in</strong>istic problems: Modell<strong>in</strong>g<br />

To state the postulates that govern the evolution of the e/m field <strong>in</strong> a<br />

complex medium we follow a system-theoretic approach (Ioannidis (PhD;<br />

2006) / Ioannidis, Kristensson, S), <strong>in</strong> the sense that we consider the e/m<br />

field u as the cause, <strong>and</strong> the e/m flux density d as the effect.<br />

Postulates (plausible physical hypotheses)<br />

⊲ Determ<strong>in</strong>ism: For every cause there exists exactly one effect.<br />

⊲ L<strong>in</strong>earity: The effect is produced l<strong>in</strong>early by its cause.<br />

⊲ Causality: The effect cannot precede its cause.<br />

⊲ Locality <strong>in</strong> space: A cause at any particular spatial po<strong>in</strong>t produces an<br />

effect only at this po<strong>in</strong>t <strong>and</strong> not elsewhere.<br />

⊲ Time–translation <strong>in</strong>variance: If the cause is advanced (or delayed) by<br />

some time <strong>in</strong>terval, the same time-shift occurs for the effect.<br />

Compliance with these postulates dictates the form of the operator L.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 15 / 95


Determ<strong>in</strong>istic problems: Modell<strong>in</strong>g<br />

Mathematical <strong>in</strong>terpretation <strong>in</strong> terms of L<br />

⊲ Determ<strong>in</strong>ism: L exists <strong>and</strong> is a s<strong>in</strong>gle-valued nontrivial operator.<br />

⊲ L<strong>in</strong>earity: L is a l<strong>in</strong>ear operator.<br />

⊲ Causality: If u(t, x) = 0 for t ≤ τ, then (Lu)(t, x) = 0, for t ≤ τ.<br />

⊲ Locality <strong>in</strong> space: L is a local operator with respect to the spatial<br />

variables, i.e., L(u(·, x))(·, x) = s(·, x) where s is a local functional,<br />

allow<strong>in</strong>g spatial derivatives of the electromagnetic fields, but not <strong>in</strong>tegrals<br />

with respect to the spatial variables.<br />

Locality with respect to temporal variables is not assumed, on the<br />

contrary memory effects are allowed.<br />

⊲ Time–translation <strong>in</strong>variance: For all κ ≥ 0, L commutes with the right<br />

κ-shift operator τκ. Therefore, the time <strong>in</strong>stant at which the observation<br />

starts does not play any significant rôle; the “present” can be chosen<br />

arbitrarily.<br />

We do not assume cont<strong>in</strong>uity: it follows by l<strong>in</strong>earity <strong>and</strong> time–translation<br />

<strong>in</strong>variance.<br />

Note that cont<strong>in</strong>uity is not ascerta<strong>in</strong>ed <strong>in</strong> the case where the left shift<br />

replaces the right shift.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 16 / 95


Determ<strong>in</strong>istic problems: Modell<strong>in</strong>g<br />

The constitutive relations for <strong>bianisotropic</strong> <strong>media</strong><br />

The general form of L, consistent with the above physical postulates,<br />

turns to be a cont<strong>in</strong>uous operator hav<strong>in</strong>g the convolution form<br />

� t<br />

d(t, x) = (Lu)(t, x) = Aor(x)u(t, x) + Gd(t − s, x)u(s, x) ds (9)<br />

0<br />

A or(x) :=<br />

�<br />

ε(x)<br />

�<br />

ξ(x)<br />

ζ(x) µ(x)<br />

, G d(t, x) :=<br />

� εd(t, x) ξd(t, x)<br />

ζd(t, x) µd(t, x)<br />

�<br />

. (10)<br />

Each A or(·), G d(t, ·) def<strong>in</strong>es a multiplication operator <strong>in</strong> the state space.<br />

The above constitutive equation is abbreviated as<br />

d = A oru + G d ⋆ u. (11)<br />

The local <strong>in</strong> space part A or (optical response operator) of L models the<br />

<strong>in</strong>stantaneous response of the medium. The nonlocal <strong>in</strong> space part G d⋆ of<br />

L models the dispersion phenomena; G d is called the susceptibility kernel.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 17 / 95


Media Classification<br />

A material is called<br />

Determ<strong>in</strong>istic problems: Modell<strong>in</strong>g<br />

⊲ Isotropic: if ε, µ, εd, µd are scalar multiples of I3×3 <strong>and</strong><br />

ξ = ζ = ξd = ζd = 0.<br />

⊲ Anisotropic: if the members of at least one of the pairs ε, εd or µ, µd<br />

are not scalar multiples of I3×3 <strong>and</strong> ξ = ζ = ξd = ζd = 0.<br />

⊲ Biisotropic: if all the blocks of the matrices A or, G d are scalar<br />

multiples of I3×3.<br />

⊲ Bianisotropic: <strong>in</strong> all other cases.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 18 / 95


Assumptions<br />

Assumption (A or)<br />

Determ<strong>in</strong>istic problems: Modell<strong>in</strong>g<br />

The optical response matrix A or has<br />

<strong>and</strong> is<br />

essentially bounded entries<br />

almost everywhere symmetric,<br />

i.e., A or(x) = A or(x) tr , for almost all x ∈ O,<br />

almost everywhere uniformly coercive,<br />

i.e., there exists a constant C, such that |y · A or(x) y| ≥ C |y| 2 , for almost<br />

all x ∈ O <strong>and</strong> all (0 �=) y ∈ R 6 .<br />

Assumption (G d at t = 0)<br />

The dispersion matrix G d(0, x) is<br />

almost everywhere non-negative def<strong>in</strong>ite,<br />

i.e., G d(0, x) y · y ≥ 0, for almost all x ∈ O <strong>and</strong> all (0 �=) y ∈ R 6 .<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 19 / 95


Determ<strong>in</strong>istic problems: Modell<strong>in</strong>g<br />

The time-harmonic case<br />

Tak<strong>in</strong>g the Fourier transform 6 , we obta<strong>in</strong><br />

<strong>and</strong> lett<strong>in</strong>g<br />

�A or := A or + � G d =<br />

� d = Aor�u + � G d�u , (12)<br />

�<br />

ε + �εd ξ + � ξd<br />

ζ + � �<br />

=:<br />

ζd µ + �µd<br />

we get the frequency doma<strong>in</strong> constitutive relations<br />

� εF ξ F<br />

ζ F<br />

�<br />

µ F<br />

, (13)<br />

� d = � Aor�u . (14)<br />

6 Let s be a proxy for the vector fields d, u, j, <strong>and</strong> ϖ be the angular<br />

frequency. Then s(t, x) = 1 � +∞<br />

2π −∞ e−iϖt �s(ϖ, x) dϖ.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 20 / 95


Assumptions<br />

Assumption ( � A or)<br />

Determ<strong>in</strong>istic problems: Modell<strong>in</strong>g<br />

Let c, C be positive constants. For any fixed frequency ϖ, the matrix<br />

�A or = � A or(x; ϖ) satisfies the follow<strong>in</strong>g properties<br />

(i) � A or ∈ L ∞ (O, C 6×6 ) .<br />

(ii) z tr · (Im � A or) z ≥ c ||z|| 2 , for all z ∈ C 6 .<br />

(iii) |z 1 · � A or z 2| ≤ C ||z 1|| ||z 2|| , for all z 1, z 2 ∈ C 6 .<br />

We now elaborate further on the classification of biisotropic <strong>media</strong> <strong>in</strong> the<br />

frequency doma<strong>in</strong>. Let<br />

ξ F = κ + iχ , ζ F = κ − iχ . (15)<br />

The chirality parameter χ measures the degree of h<strong>and</strong>edness of the<br />

material; a change <strong>in</strong> the sign of χ corresponds to the consideration of the<br />

mirror image of the material. The other parameter κ describes the<br />

magnetoelectric effect; materials with κ �= 0 are nonreciprocal.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 21 / 95


Media classification<br />

Determ<strong>in</strong>istic problems: Modell<strong>in</strong>g<br />

In the time-harmonic case a medium is called:<br />

⊲ Isotropic, if κ = 0 <strong>and</strong> χ = 0, i.e., when ξ F = ζ F = 0.<br />

⊲ Nonreciprocal Nonchiral, or Tellegen, if κ �= 0 <strong>and</strong> χ = 0, i.e.,<br />

when ξ F = ζ F.<br />

⊲ Reciprocal Chiral, or Pasteur, if κ = 0 <strong>and</strong> χ �= 0, i.e., when<br />

ξ F = − ζ F.<br />

⊲ Nonreciprocal Chiral or General Biisotropic, if κ �= 0 <strong>and</strong> χ �= 0,<br />

i.e., when ξ F �= ζ F, − ζ F.<br />

Reciprocal chiral <strong>media</strong> will be simply referred to as chiral <strong>media</strong>.<br />

In the case of chiral <strong>media</strong> the constitutive relations for time-harmonic<br />

fields are usually written as<br />

�D = ε T � E + βT � H, � B = µT � H − βT � E, (16)<br />

(where ε T := ε F, µ T := µ F, β T := ξ F = −ζ F).<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 22 / 95


Determ<strong>in</strong>istic problems: Modell<strong>in</strong>g<br />

The DBF constitutive relations<br />

The Drude-Born-Fedorov (DBF) constitutive relations were <strong>in</strong>troduced <strong>in</strong><br />

1959 by F. I. Fedorov as a modification of constitutive relations used <strong>in</strong><br />

1900 by P. K. L. Drude <strong>and</strong> <strong>in</strong> 1915 by M. Born. These read<br />

�D = ε DBF( � E + β DBF curl � E), � B = µDBF( � H + β DBF curl � H). (17)<br />

The medium is characterised by three 7 (<strong>in</strong> general, complex) parameters,<br />

the electric permittivity ε DBF, the magnetic permeability µ DBF, <strong>and</strong> the<br />

chirality measure β DBF.<br />

7 For source-free regions the constitutive parameters εT, µT <strong>and</strong> βT of (16)<br />

are connected to the constitutive parameters εDBF, µDBF <strong>and</strong> βDBF of (17) via<br />

εDBF<br />

µDBF<br />

εT =<br />

1 − ϖ2εDBFµDBFβ2 , µT =<br />

DBF 1 − ϖ2εDBFµDBFβ2 ,<br />

DBF<br />

βT = iϖεDBFµDBF<br />

βDBF<br />

1 − ϖ2εDBFµDBFβ2 .<br />

DBF<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 23 / 95


Time-harmonic Problems – The Interior Problem<br />

Time-harmonic problems<br />

The study of time-harmonic problems for the Maxwell equations<br />

supplemented with the DBF constitutive relations is a well-developed area.<br />

The solvability of <strong>in</strong>terior <strong>and</strong> exterior BVPs is established by variational<br />

techniques, <strong>and</strong> their discretised versions are studied as well.<br />

The <strong>in</strong>terior problem reads<br />

curl E = βγ2E + iϖµ � γ �2 k H,<br />

curl H = βγ2H − iϖε � γ �2 <strong>in</strong> O, (18)<br />

k E,<br />

where ϖ > 0 is the angular frequency <strong>and</strong><br />

k 2 := ϖ 2 εµ , γ 2 := k 2 (1 − β 2 k 2 ) −1 . (19)<br />

These equations are complemented with the boundary condition<br />

n × E = f , on ∂O, (20)<br />

where f ∈ H −1/2 (div, ∂O) is a prescribed electric field on ∂O.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 24 / 95


Time-harmonic Problems – The Interior Problem<br />

Assumptions<br />

A typical assumption on the data is<br />

Assumption<br />

(i) O is a bounded doma<strong>in</strong> <strong>and</strong> ∂O is of class C 1,1 .<br />

(ii) The coefficients ε, µ <strong>and</strong> β are real valued <strong>and</strong> positive C 2 (O)<br />

functions.<br />

(iii) The function µ −1 (1 − ϖ 2 εµβ 2 ) is positive <strong>in</strong> O.<br />

The solvability of the <strong>in</strong>terior problem ((18), (20)) is established by<br />

Ammari <strong>and</strong> Nédélec, while the study of the discretised version is by S <strong>and</strong><br />

Yannacopoulos.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 25 / 95


Time-harmonic Problems – The Interior Problem<br />

The Exterior Problem – Radiation Conditions<br />

As for the exterior problem, it consists of the equations<br />

curl Ee = βeγ 2 � �2 γe<br />

e Ee + iϖµe H, ke<br />

curl He = βeγ 2 � �2 γe<br />

e He − iϖεe E,<br />

<strong>in</strong> Oe, (21)<br />

with boundary condition<br />

ke<br />

n × Ee = fe, on ∂Oe<br />

<strong>and</strong> with one of the two Silver-Müller radiation conditions<br />

or<br />

uniformly over all directions �x.<br />

lim<br />

|x|→∞ |x| (√ µHe × �x − √ εEe) = 0 , (22)<br />

lim<br />

|x|→∞ |x| (√εEe × �x + √ µHe) = 0 , (23)<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 26 / 95


Time-harmonic Problems – The Interior Problem<br />

It is known (Ammari <strong>and</strong> Nédélec) that the “st<strong>and</strong>ard” (achiral)<br />

Silver-Müller radiation conditions (written above) are adequate to<br />

cover the chiral case, too.<br />

Another important property is a “cont<strong>in</strong>uity result” <strong>in</strong> terms of the<br />

chirality measure β. It is known (Ammari <strong>and</strong> Nédélec) that if β is<br />

assumed to be a non-negative constant, then the limit of the solution<br />

of the chiral problem as β → 0 co<strong>in</strong>cides with the solution of the<br />

correspond<strong>in</strong>g achiral (β = 0) problem.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 27 / 95


Time-harmonic Problems – The Interior Problem<br />

Scatter<strong>in</strong>g problems – BIEs<br />

Another very well developed area of research regard<strong>in</strong>g chiral <strong>media</strong> <strong>in</strong> the<br />

time-harmonic regime deals with scatter<strong>in</strong>g problems.<br />

Consider that an electromagnetic wave propagat<strong>in</strong>g <strong>in</strong> a chiral (or achiral)<br />

homogeneous environment is <strong>in</strong>cident upon a chiral (or achiral) obstacle.<br />

Depend<strong>in</strong>g on the materials with which the surround<strong>in</strong>g space <strong>and</strong> the<br />

obstacle are filled, <strong>and</strong> on the boundary condition(s) on the obstacle’s<br />

surface, a variety of scatter<strong>in</strong>g problems (exterior BVPs, transmission<br />

problems) is treated. For example,<br />

Us<strong>in</strong>g classical potentials, BIEs are employed to study the solvability,<br />

the determ<strong>in</strong>ation of uniquely solvable equations, <strong>and</strong> the<br />

“low-chirality” approximation:<br />

Ammari, Nédélec / Athanasiadis, S / Athanasiadis, Costakis, S /<br />

Athanasiadis, Mart<strong>in</strong>, S / Mitrea / Ola.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 28 / 95


Time-harmonic Problems – The Interior Problem<br />

Typical scatter<strong>in</strong>g results (e.g., the reciprocity pr<strong>in</strong>ciple, the optical<br />

theorem, the general scatter<strong>in</strong>g theorem) are extended to the chiral<br />

case for plane <strong>and</strong> spherical <strong>in</strong>cident waves:<br />

Athanasiadis, Mart<strong>in</strong>, S / Athanasiadis, Giotopoulos / Athanasiadis,<br />

Tsitsas.<br />

A Low-Frequency theory is developed:<br />

Ammari, Laouadi, Nédélec / Athanasiadis, Costakis, S.<br />

Herglotz functions <strong>and</strong> pairs are <strong>in</strong>troduced <strong>and</strong> studied:<br />

Athanasiadis, Kardasi.<br />

Inf<strong>in</strong>ite Fréchet differentiability of the mapp<strong>in</strong>g from the boundary of<br />

the scatterer onto the far-field patterns is established, along with a<br />

characterisation of the Fréchet derivative as a solution to an<br />

appropriate boundary value problem:<br />

Potthast, S.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 29 / 95


Time-harmonic Problems – The Interior Problem<br />

Periodic structures, grat<strong>in</strong>gs:<br />

Ammari, Bao / Zhang, Ma.<br />

Quaternionic methods:<br />

Kravchenko.<br />

Inverse scatter<strong>in</strong>g problems:<br />

Athanasiadis, S / Boutet de Monvel, Shepelsky / Gao, Ma, Zhang /<br />

Gerlach / Heumann / Li / Mc Dowall / Rikte, Sauviac, Kristensson,<br />

Mariotte.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 30 / 95


Time-harmonic Problems – The Interior Problem<br />

The Bohren decomposition – Beltrami fields<br />

In view of the DBF constitutive relations, the Maxwell equations can be<br />

written as<br />

� �<br />

curl E<br />

=<br />

curl H<br />

γ2<br />

k2 �<br />

βk 2 i ϖµ<br />

−i ϖε βk 2<br />

� � �<br />

E<br />

. (24)<br />

H<br />

Diagonalis<strong>in</strong>g the matrix <strong>in</strong> (24), we obta<strong>in</strong><br />

� �<br />

curl (i η−1E + H)<br />

=<br />

curl (E + i η H)<br />

� k<br />

1−kβ<br />

0<br />

0 − k<br />

1+kβ<br />

� �i �<br />

η−1 E + H<br />

, (25)<br />

E + i η H<br />

where η = µ 1/2 ε −1/2 is the <strong>in</strong>tr<strong>in</strong>sic impedance of the medium.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 31 / 95


Time-harmonic Problems – The Interior Problem<br />

The Bohren decomposition – Beltrami fields<br />

Introduc<strong>in</strong>g the fields<br />

we note that (25) is written as<br />

where<br />

Q L := i η −1 E + H , Q R := E + i η H ,<br />

curlQ L = γ L Q L,<br />

curlQ R = −γ R Q R,<br />

γ L := k(1 − kβ) −1 , γ R := k(1 + kβ) −1 .<br />

Note that γ 2 = γ Lγ R. Q L <strong>and</strong> Q R satisfy the vector Helmholtz equation<br />

∆Q λ + γ 2 λQ λ = 0, λ = L, R ,<br />

(26)<br />

<strong>and</strong> γ L, γ R are the wave numbers of the Beltrami fields Q L, Q R, respectively.<br />

If E, H are divergence free, the same holds for Q L, Q R, as well.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 32 / 95


Time-harmonic Problems – The Interior Problem<br />

The Bohren decomposition – Beltrami fields<br />

Thus we obta<strong>in</strong> the Bohren decomposition of E, H <strong>in</strong>to Q L, Q R<br />

E = Q L − i η Q R,<br />

H = Q R − i η −1 Q L.<br />

From (26), <strong>and</strong> if the two complex-valued wave numbers γ L <strong>and</strong> γ R have<br />

positive real parts, we note that while Q L is a left-h<strong>and</strong>ed Beltrami field,<br />

Q R is a right-h<strong>and</strong>ed one.<br />

This decomposition is very useful <strong>in</strong> the study of chiral <strong>media</strong>, s<strong>in</strong>ce<br />

representation formulae for the fields <strong>in</strong> chiral <strong>media</strong> - that constitute the<br />

first basic step <strong>in</strong> develop<strong>in</strong>g BIE methods - can easily be deduced from<br />

the correspond<strong>in</strong>g ones of metaharmonic fields.<br />

(27)<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 33 / 95


Time-doma<strong>in</strong> problems<br />

Time-doma<strong>in</strong> problems: Well-posedness<br />

Several alternative approaches to the solvability of the IVP for the Maxwell<br />

system<br />

(Lu) ′ (t) = Mu(t) + j(t) , for t > 0 ,<br />

(28)<br />

u(0) = u0 ,<br />

supplemented with the constitutive relations for dissipative <strong>bianisotropic</strong><br />

<strong>media</strong><br />

� t<br />

(Lu)(t, x) = Aor(x)u(t, x) + Gd(t − s, x)u(s, x) ds , (29)<br />

0<br />

can be considered, e.g., semigroups, evolution families, the Faedo–Galerk<strong>in</strong><br />

method.<br />

We adopt the former, based on the semigroup generated by the Maxwell<br />

operator. Then the convolution terms are treated as perturbations of this<br />

semigroup.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 34 / 95


Time-doma<strong>in</strong> problems<br />

The choice of the semigroup approach is plausible s<strong>in</strong>ce<br />

the semigroup (group actually) generated by the Maxwell operator is<br />

very well studied,<br />

the kernels <strong>in</strong> the convolution terms are known to be physically small,<br />

therefore, it is plausible to consider them as perturbations.<br />

These approaches have been used <strong>in</strong> different variations by Bossavit, Griso<br />

<strong>and</strong> Miara / Ciarlet jr. <strong>and</strong> Legendre / Ioannidis, Kristensson <strong>and</strong> S /<br />

Liaskos, S <strong>and</strong> Yannacopoulos.<br />

For the <strong>in</strong>tegrodifferential equation (28) a variety of different types of<br />

solutions can be def<strong>in</strong>ed, regard<strong>in</strong>g spatial - or temporal - regularity.<br />

We totally skip their technical descriptions here.<br />

So a well-posedness result can be stated<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 35 / 95


Well-posedness<br />

Theorem<br />

Time-doma<strong>in</strong> problems<br />

Under suitable regularity assumptions on the data, (28) is weakly / mildly<br />

/ strongly / classically well-posed.<br />

The underly<strong>in</strong>g space is H0(curl, O) × H(curl, O), where<br />

H(curl, O) := {u ∈ (L 2 (O)) 3 : curl u ∈ (L 2 (O)) 3 }.<br />

For bounded O, H0(curl, O) is the space<br />

{u ∈ H(curl, O) : n × u|∂O = 0}.<br />

The first component of the underly<strong>in</strong>g space <strong>in</strong>corporates the perfect<br />

conductor boundary condition for the electric field.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 36 / 95


Time-doma<strong>in</strong> problems<br />

Other constitutive relations <strong>in</strong> the time-doma<strong>in</strong><br />

Instead of us<strong>in</strong>g the (general) non-local <strong>in</strong> time constitutive relations<br />

d = A oru + G d ⋆ u ,<br />

employed so far, a variety of problems on the class of complex <strong>media</strong><br />

described by adopt<strong>in</strong>g the DBF-like (local <strong>in</strong> time) constitutive relations <strong>in</strong><br />

the time-doma<strong>in</strong><br />

d = A0u + β C u ,<br />

where<br />

A0 :=<br />

� �<br />

ε 0<br />

0 µ<br />

, C :=<br />

� �<br />

ε curl 0<br />

,<br />

0 µ curl<br />

has been studied by a number of authors, e.g., Ciarlet jr., Legendre /<br />

Ciarlet jr., Legendre, Nicaise / Courilleau, Hors<strong>in</strong> / Courilleau, Hors<strong>in</strong>, S /<br />

Liaskos, S, Yannacopoulos.<br />

In these studies there are subtleties <strong>in</strong>volved regard<strong>in</strong>g the spectrum of the<br />

operator curl.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 37 / 95


Time-doma<strong>in</strong> problems<br />

Controllability Problems<br />

The govern<strong>in</strong>g equation<br />

(A oru + G d ⋆ u) ′ = Mu + j, (30)<br />

can be simplified if we assume that Gd(t, x) is weakly differentiable with<br />

respect to the temporal variable. Then we may differentiate the<br />

convolution <strong>in</strong>tegral, <strong>and</strong> by multiply<strong>in</strong>g to the right by A−1 or we get<br />

where<br />

u ′ = M Au + G A ⋆ u + J A, (31)<br />

G A := −A −1<br />

or G ′ d , M A := A −1<br />

or M , J A := A −1<br />

or j,<br />

<strong>and</strong> we have assumed that G d(0, x) = 0.<br />

The boundary conditions, as well as the divergence free character of the<br />

electromagnetic field, can be <strong>in</strong>cluded <strong>in</strong> the def<strong>in</strong>ition of the operator M<br />

<strong>in</strong> appropriately selected function spaces.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 38 / 95


Time-doma<strong>in</strong> problems<br />

We now assume that we have access to an <strong>in</strong>ternal control v, that acts on<br />

the system. The action of the control v on the state of the system is<br />

modelled, via the so-called control to state operator B, by the evolution<br />

equation<br />

u ′ = M Au + J A + G A ⋆ u + Bv. (32)<br />

The problem of controllability can now be stated as follows:<br />

Given T > 0, an <strong>in</strong>itial condition u(0) = U0 <strong>and</strong> a f<strong>in</strong>al<br />

condition u(T ) = UT , can we f<strong>in</strong>d a control procedure v ∗ (·)<br />

such that the solution of the system (32) with v(·) = v ∗ (·)<br />

satisfies u(0) = U0 <strong>and</strong> u(T ) = UT ?<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 39 / 95


Time-doma<strong>in</strong> problems<br />

By a perturbative (fixed-po<strong>in</strong>t scheme) approach based on J.-L. Lions’<br />

Hilbert Uniqueness Method the <strong>in</strong>ternal controllability of (32) has been<br />

studied (S <strong>and</strong> Yannacopoulos).<br />

The study of boundary controllability problems <strong>and</strong> optimal control<br />

problems is <strong>in</strong> progress.<br />

In the case of time-harmonic fields, the approximate controllability problem<br />

has been studied (Hors<strong>in</strong> <strong>and</strong> S).<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 40 / 95


Homogenisation<br />

Homogenisation (determ<strong>in</strong>istic <strong>media</strong>)<br />

With<strong>in</strong> the electromagnetic (applied physics/electrical eng<strong>in</strong>eer<strong>in</strong>g)<br />

community, homogenisation of composites has a huge literature, the major<br />

part of which is devoted to dielectrics.<br />

In this community, the related literature on <strong>bianisotropic</strong> composites is<br />

much smaller. Among the recent developments are the work on Maxwell<br />

Garnett <strong>and</strong> Bruggeman formalisms for different classes of <strong>bianisotropic</strong><br />

<strong>in</strong>clusions <strong>and</strong> the work on the Strong Property Fluctuation Theory for<br />

<strong>bianisotropic</strong> composites.<br />

There are many important applications, e.g., <strong>in</strong> biomedical eng<strong>in</strong>eer<strong>in</strong>g <strong>and</strong><br />

optics (optical waveguides, high-dielectric th<strong>in</strong>-film capacitors, captive<br />

video disc units, novel antennas <strong>and</strong> design of complementary split-r<strong>in</strong>g<br />

resonators).<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 41 / 95


Homogenisation (determ<strong>in</strong>istic <strong>media</strong>)<br />

For isotropic <strong>media</strong> there is important rigorous mathematical work by<br />

many authors: see, <strong>in</strong> particular, the contribution by Artola <strong>and</strong> Cessenat /<br />

Bensoussan, J.-L. Lions <strong>and</strong> Papanicolaou / Jikov, Kozlov <strong>and</strong> Ole<strong>in</strong>ik /<br />

Markowich <strong>and</strong> Poupaud / Sanchez-Hubert / Sanchez-Palencia / Vis<strong>in</strong>t<strong>in</strong><br />

/ Well<strong>and</strong>er.<br />

For dissipative <strong>bianisotropic</strong> <strong>media</strong> the problem was orig<strong>in</strong>ally studied by<br />

Barbatis <strong>and</strong> S (2003) <strong>and</strong> further developed by S <strong>and</strong> Yannacopoulos.<br />

Related work by Bossavit, Griso <strong>and</strong> Miara (2005) / Sjöberg (2005) /<br />

J.S. Jiang, C.K. L<strong>in</strong> <strong>and</strong> C.H. Liu (2008) / L.Cao, Y. Zhang, Allegretto<br />

<strong>and</strong> Y. L<strong>in</strong> (2010).<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 42 / 95


Homogenisation (determ<strong>in</strong>istic <strong>media</strong>)<br />

Let O be a doma<strong>in</strong> <strong>in</strong> R 3 , filled by a complex electromagnetic medium<br />

modelled by constitutive relations of the general form<br />

d = A oru + G d ⋆ u. (33)<br />

The material is spatially <strong>in</strong>homogeneous i.e., A or = A or(x), G d = G d(x).<br />

The evolution of the field u = (u1, u2) tr <strong>in</strong> O is governed by the Maxwell<br />

equations,<br />

(A oru + G d ⋆ u) ′ = Mu + j, (34)<br />

complemented with the <strong>in</strong>itial condition<br />

<strong>and</strong> the perfect conductor boundary condition,<br />

u = 0, x ∈ O, t = 0, (35)<br />

n × u1 = 0, t > 0, x ∈ ∂O , (36)<br />

where n is the outward unit normal on ∂O.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 43 / 95


Assumption<br />

Homogenisation (determ<strong>in</strong>istic <strong>media</strong>)<br />

The medium exhibits small scale periodicity, i.e.,<br />

Aor = A ɛ or(x) = A per<br />

�<br />

x<br />

�<br />

or ,<br />

ɛ<br />

Gd = G ɛ d(x) = G per<br />

�<br />

x<br />

�<br />

d ,<br />

ɛ<br />

where A per<br />

or (·), G per<br />

d (·) are periodic matrix-valued functions on the<br />

parallelepided Y = [0, ℓ1] × [0, ℓ2] × [0, ℓ3] ⊂ R 3 <strong>and</strong> 0 < ɛ ≪ 1.<br />

(37)<br />

The set Y may be considered as the fundamental cell of the medium; the<br />

whole medium structure can be generated by repeat<strong>in</strong>g the structure <strong>in</strong> Y<br />

us<strong>in</strong>g translations.<br />

To ease notation, we drop the superscript “per” from Aper Aɛ � �<br />

or(x) = Aor <strong>and</strong> Gɛ d(x) = Gd <strong>in</strong>stead.<br />

� x<br />

ɛ<br />

� x<br />

ɛ<br />

or <strong>and</strong> G per<br />

d<br />

<strong>and</strong> use<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 44 / 95


Homogenisation (determ<strong>in</strong>istic <strong>media</strong>)<br />

We also need the follow<strong>in</strong>g def<strong>in</strong>ition:<br />

If a : Y → R is a periodic function then the periodic averag<strong>in</strong>g operator is<br />

〈a〉 := 1<br />

�<br />

a(y) dy,<br />

|Y |<br />

where |Y | = ℓ1 ℓ2 ℓ3 is the Lebesgue measure of Y.<br />

In order to be able to model the small scale periodic microstructure, we<br />

must let ɛ vary over a range of arbitrarily small values. S<strong>in</strong>ce Aper or (x) is<br />

periodic with period Y , it follows that Aper � �<br />

x<br />

or ɛ is periodic with period ɛY .<br />

We are therefore led to a sequence of boundary value problems,<br />

Y<br />

(A ɛ oru ɛ + G ɛ d ⋆ u ɛ ) ′ = Mu ɛ + j (38)<br />

with <strong>in</strong>itial condition u ɛ = 0, <strong>and</strong> the perfect conductor boundary condition<br />

n × u ɛ 1 = 0, on O. (39)<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 45 / 95


Homogenisation (determ<strong>in</strong>istic <strong>media</strong>)<br />

The solution of the above sequence of boundary value problems exists for<br />

all ɛ > 0 by the follow<strong>in</strong>g result. This generates a sequence of functions<br />

u ɛ = u ɛ (x, t).<br />

Theorem (Existence <strong>and</strong> uniform bounds)<br />

Assume that j is locally Hölder cont<strong>in</strong>uous, <strong>and</strong> further that<br />

j ∈ L 1 ([0, T ], X). Then the Maxwell system (38)–(39) has a unique<br />

solution u ɛ = (u ɛ 1 , uɛ 2 )tr = (E ɛ , H ɛ ) tr <strong>in</strong> C([0, T ], X) satisfy<strong>in</strong>g the uniform<br />

bounds ||u ɛ (t)|| X < C, ɛ > 0, where X := (L 2 (O)) 3 × (L 2 (O)) 3 .<br />

The claim follows either by semigroup theory, or by the Faedo-Galerk<strong>in</strong><br />

approach.<br />

The question of <strong>in</strong>terest to homogenisation theory is what happens <strong>in</strong> the<br />

limit of very small scale microstructures.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 46 / 95


Homogenisation (determ<strong>in</strong>istic <strong>media</strong>)<br />

There are alternative ways that can be used to treat the homogenisation<br />

problem. Two pr<strong>in</strong>cipal ones are based on<br />

The reduction to a properly selected elliptic homogenisation problem,<br />

A rigourisation of the double scale expansion method, the so-called<br />

periodic unfold<strong>in</strong>g method.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 47 / 95


Homogenisation (determ<strong>in</strong>istic <strong>media</strong>)<br />

Reduction to Elliptic Homogenisation – A two-scale<br />

Expansion<br />

Tak<strong>in</strong>g the Laplace transform of (38) (with respect to t) <strong>and</strong> dropp<strong>in</strong>g the<br />

explicit dependence on the Laplace variable p we obta<strong>in</strong><br />

where ε ɛ L, ξ ɛ L, µ ɛ L, ζ ɛ L are given by<br />

� ε ɛ L<br />

ζ ɛ L<br />

curl � H ɛ = p(ε ɛ L � E ɛ + ξ ɛ L � H ɛ ) + � J,<br />

−curl � E ɛ = p(µ ɛ L � H ɛ + ζ ɛ L � E ɛ ).<br />

ξɛ L<br />

µ ɛ � �<br />

:=<br />

L<br />

εɛ + �ε ɛ d ξ + � ξɛ d<br />

ζɛ + � ζɛ d µɛ + �µ ɛ d<br />

where �s denotes the Laplace transform of s.<br />

�<br />

(40)<br />

=: A ɛ L(y, p) , (41)<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 48 / 95


Homogenisation (determ<strong>in</strong>istic <strong>media</strong>)<br />

Assume that the electromagnetic field has an expansion <strong>in</strong> power series <strong>in</strong> ɛ<br />

where<br />

�E ɛ (x) = � E (0) (x) + ɛ � E (1) (x) + ɛ 2 � E (2) (x) + · · · ,<br />

�H ɛ (x) = � H (0) (x) + ɛ � H (1) (x) + ɛ 2 � H (2) (x) + · · · ,<br />

�E (j) (x) = � �<br />

(j)<br />

E x, x<br />

�<br />

,<br />

ɛ<br />

� H (j) (x) = � �<br />

(j)<br />

H x, x<br />

�<br />

,<br />

ɛ<br />

that may be considered as functions of the variables x <strong>and</strong> y = x<br />

ɛ<br />

(considered as <strong>in</strong>dependent variables).<br />

Substitut<strong>in</strong>g these expressions <strong>in</strong> (40) <strong>and</strong> work<strong>in</strong>g with orders O(ɛ −1 ),<br />

O(ɛ 0 ) we can formally see that the homogenised system has coefficients<br />

obta<strong>in</strong>ed by averag<strong>in</strong>g the orig<strong>in</strong>al coefficients <strong>and</strong> then multiply<strong>in</strong>g the<br />

outcome by solutions of the deduced cell equations.<br />

This formal two-scale expansion motivates the follow<strong>in</strong>g rigorous result.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 49 / 95


Theorem<br />

Homogenisation (determ<strong>in</strong>istic <strong>media</strong>)<br />

Assume that the family of matrices A(y, p) satisfies<br />

for A = A L, A −1<br />

L<br />

(Re A(y, p))u · u ≥ c�u� 2 , y ∈ Y , p ∈ C+, u ∈ R 6 . (42)<br />

(def<strong>in</strong>ed <strong>in</strong> (41)).<br />

The solution u ɛ = (E ɛ , H ɛ ) tr of (A ɛ oru ɛ + G ɛ d ⋆ u ɛ ) ′ = Mu ɛ + j with zero <strong>in</strong>itial<br />

conditions <strong>and</strong> the perfect conductor boundary condition satisfies<br />

u ɛ ∗ ⇀ u ∗ , <strong>in</strong> L ∞ ([0, T ], X),<br />

where u ∗ = (E ∗ , H ∗ ) tr is the unique solution of the homogeneous Maxwell<br />

system<br />

(d ∗ ) ′ = Mu ∗ + j, <strong>in</strong> (0, T ] × O, (43)<br />

with zero <strong>in</strong>itial conditions <strong>and</strong> the perfect conductor boundary condition, <strong>and</strong><br />

subject to the constitutive relations<br />

such that A h or + � G h d = A h L, where<br />

d ∗ = A h oru ∗ + G h d ⋆ u ∗<br />

A h �<br />

εh L<br />

L =<br />

ζ h L<br />

ξh L<br />

µ h �<br />

,<br />

L<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 50 / 95<br />

(44)


Theorem (cont<strong>in</strong>ued)<br />

Homogenisation (determ<strong>in</strong>istic <strong>media</strong>)<br />

grad ySℓ =<br />

ε h L := 〈ε L + ε L grad yR1 + ζ L grad yR2〉,<br />

ζ h L := 〈ζ L + ε L grad yV1 + ζ L grad yV2〉,<br />

ξ h L := 〈ξ L + ξ L grad yR1 + µ L grad yR2〉,<br />

µ h L := 〈µ L + ξ L grad yV1 + µ L grad yV2〉,<br />

⎛<br />

⎜<br />

⎝<br />

∂y1 s(1)<br />

ℓ<br />

∂y1 s(2)<br />

ℓ<br />

∂y1 s(3)<br />

ℓ<br />

∂y2 s(1)<br />

ℓ<br />

∂y2 s(2)<br />

ℓ<br />

∂y2 s(3)<br />

ℓ<br />

∂y3 s(1)<br />

ℓ<br />

∂y3 s(2)<br />

ℓ<br />

∂y3 s(3)<br />

ℓ<br />

⎞<br />

⎟<br />

⎠ , ℓ = 1, 2,<br />

S <strong>and</strong> s be<strong>in</strong>g proxies for R, V <strong>and</strong> r, v, respectively, <strong>and</strong> r (j) = (r (j) (j)<br />

1 , r 2 )tr ,<br />

v (j) = (v (j) (j)<br />

1 , v 2 )tr , j = 1, 2, 3, be<strong>in</strong>g the solutions of the elliptic systemsa L L,per<br />

�<br />

r (j)<br />

1<br />

r (j)<br />

2<br />

�<br />

�<br />

divy(εL)j,♯ =<br />

divy(ξL)j,♯ �<br />

, L L,per<br />

�<br />

v (j)<br />

1<br />

v (j)<br />

2<br />

�<br />

L L,per := divy(A tr<br />

L (y, p) grad y).<br />

a Notation: for a 3 × 3 matrix m, mj,♯ denotes its j-th row.<br />

�<br />

divy(ζL)j,♯ =<br />

divy(µ L)j,♯<br />

(45)<br />

�<br />

, (46)<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 51 / 95


Homogenisation (determ<strong>in</strong>istic <strong>media</strong>)<br />

The periodic unfold<strong>in</strong>g method <strong>and</strong> two scale convergence<br />

In 1990, Arbogast, Douglas <strong>and</strong> Hornung def<strong>in</strong>ed a “dilation” operator to<br />

study homogenisation for a periodic medium with double porosity.<br />

In 2002, Cioranescu, Damlamian <strong>and</strong> Griso exp<strong>and</strong>ed this idea <strong>and</strong><br />

presented a general <strong>and</strong> simple approach for classical or multiscale periodic<br />

homogenisation, under the name periodic unfold<strong>in</strong>g method.<br />

This method is essentially based on two <strong>in</strong>gredients: the unfold<strong>in</strong>g<br />

operator (which is similar to the dilation operator <strong>and</strong> whose effect is to<br />

“zoom”the microscopic structure <strong>in</strong> a periodic manner), <strong>and</strong> the separation<br />

of the characteristic scales by decompos<strong>in</strong>g every function φ ∈ W 1,p (O)<br />

<strong>in</strong>to two parts; this scale-splitt<strong>in</strong>g can be either achieved by us<strong>in</strong>g the local<br />

average, or by a procedure <strong>in</strong>spired by the F<strong>in</strong>ite Element Method.<br />

The periodic unfold<strong>in</strong>g method simplifies many of the two-scale<br />

convergence proofs.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 52 / 95


Homogenisation (determ<strong>in</strong>istic <strong>media</strong>)<br />

Homogenisation of the Maxwell system for <strong>bianisotropic</strong><br />

<strong>media</strong>: the periodic unfold<strong>in</strong>g method<br />

Let Y = [0, ℓ1] × [0, ℓ2] × [0, ℓ3] be the reference periodic cell. Def<strong>in</strong>e<br />

[x]Y :=<br />

3�<br />

kiℓi, x ∈ R 3<br />

i=1<br />

to be the unique <strong>in</strong>teger comb<strong>in</strong>ation of periods such that<br />

Hence<br />

x = ɛ<br />

{x}Y := x − [x]Y ∈ Y .<br />

��<br />

x<br />

�<br />

+<br />

ɛ Y<br />

�<br />

x<br />

� �<br />

ɛ Y<br />

a.e. ∀x ∈ R 3 .<br />

Further, def<strong>in</strong>e � Oɛ as the largest union of translated <strong>and</strong> rescaled ɛ (k + Y )<br />

cells which are <strong>in</strong>cluded <strong>in</strong> O.<br />

F<strong>in</strong>ally, let Λɛ = O \ � Oɛ be the subset of O conta<strong>in</strong><strong>in</strong>g the translated <strong>and</strong><br />

rescaled cells that <strong>in</strong>tersect ∂O.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 53 / 95


Homogenisation (determ<strong>in</strong>istic <strong>media</strong>)<br />

The periodic unfold<strong>in</strong>g operator T ɛ : L 2 (O) → L 2 (O × Y ) is def<strong>in</strong>ed by<br />

T ɛ (u)(x, y) =<br />

� � � �<br />

x u ɛ ɛ + ɛy� for x ∈ Y � Oɛ, y ∈ Y<br />

0 for x ∈ Λɛ, y ∈ Y .<br />

If u = aɛ � �<br />

x<br />

(x) = aper ɛ where aper is a periodic function of period Y then<br />

T ɛ (aɛ )(x, y) = aper(y). This shows that the action of the operator T ɛ is to<br />

“magnify” the periodic microstructure.<br />

Clearly, for functions of the special type considered above<br />

T ɛ (a)(x, y) → a per(y), a.e. <strong>in</strong> O × Y .<br />

This result extends trivially for matrix valued functions of this special type.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 54 / 95


Homogenisation (determ<strong>in</strong>istic <strong>media</strong>)<br />

Furthermore, the follow<strong>in</strong>g properties (Bossavit, Griso <strong>and</strong> Miara (2005))<br />

of T ɛ are very important:<br />

1 T ɛ is a l<strong>in</strong>ear <strong>and</strong> cont<strong>in</strong>uous operator.<br />

2 For all u, v ∈ L 2 (O), we have that T ɛ (u v) = T ɛ (u) T ɛ (v).<br />

3 For all u ∈ L2 (O)<br />

�<br />

u(x) dx =<br />

O<br />

1<br />

�<br />

T<br />

|Y | O×Y<br />

ɛ (u)(x, y) dx dy + C(ɛ)<br />

where C(ɛ) is a correction term that may be shown to be negligible <strong>in</strong><br />

the limit as ɛ → 0.<br />

We need the space H 1 per(Y ) def<strong>in</strong>ed as follows: let C ∞ per (Y ) be the subset of<br />

C ∞ (R N ) of Y -periodic functions.<br />

H 1 per(Y ) is the closure of C ∞ per (Y ) <strong>in</strong> the H 1 -norm.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 55 / 95


Homogenisation (determ<strong>in</strong>istic <strong>media</strong>)<br />

The follow<strong>in</strong>g convergence results hold for T ɛ :<br />

1 If {u ɛ } is uniformly bounded <strong>in</strong> L 2 (O) then there exists u ∈ L 2 (O × Y )<br />

such that T ɛ (u ɛ ) ⇀ u <strong>in</strong> L 2 (O × Y ) (up to subsequences).<br />

2 If {u ɛ } is uniformly bounded <strong>in</strong> H(curl, O) then there exist a triplet<br />

(u, v, w) ∈ H(curl, O) × L 2 (O, H 1 per(Y ; R)) × L 2 (O, H 1 per(Y ; R 3 )), with<br />

divyw = 0 so that<br />

u ɛ ⇀ u, <strong>in</strong> H(curl, O),<br />

T ɛ (u ɛ ) ⇀ u + grad yv <strong>in</strong> L 2 (O × Y ; R 3 ),<br />

T ɛ (curlu ɛ ) ⇀ curlxu + curlyw <strong>in</strong> L 2 (O × Y ; R 3 ).<br />

3 If {u ɛ } is bounded <strong>in</strong> L 2 (O) <strong>and</strong> such that T ɛ (u ɛ ) ⇀ �u <strong>in</strong> L 2 (O × Y )<br />

then<br />

u ɛ ⇀ u := 1<br />

�<br />

�u dy<br />

|Y | Y<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 56 / 95


Homogenisation (determ<strong>in</strong>istic <strong>media</strong>)<br />

The functions v, w are to be understood as correctors.<br />

v(x, y) is a scalar <strong>and</strong> can be understood as a function<br />

v : O → H1 per(Y ), such that �<br />

dx < ∞.<br />

O ||v||2 H 1 per(Y )<br />

w(x, y) is a 3-vector <strong>and</strong> can be understood as a function<br />

w : O → H1 per(Y ; R3 ) � (H1 per(Y )) 3 �<br />

, such that<br />

dx < ∞.<br />

O ||w||2 H 1 per (Y ;R3 )<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 57 / 95


Homogenisation (determ<strong>in</strong>istic <strong>media</strong>)<br />

The above weak compactness results allow us to derive a homogenised<br />

Maxwell equation. We first def<strong>in</strong>e the follow<strong>in</strong>g auxiliary system:<br />

Def<strong>in</strong>ition (Cell equations)<br />

Let rk ∈ H 1 per(Y ) × H 1 per(Y ), mk ∈ W 2,1 ([0, T ]; H 1 per(Y ) × H 1 per(Y )),<br />

hk ∈ W 1,1 ([0, T ]; H 1 per(Y ) × H 1 per(Y )), k = 1, . . . , 6 be the solutions of the<br />

follow<strong>in</strong>g systems<br />

− divy(Aor(y)gradyrk) = divy(Aor(y)ek), �<br />

− divy Aor(y)gradymk(y, t) + (Gmk)(y, t) � = −divy(Aor(y)ek), �<br />

− divy Aor(y)gradyhk(y, t) + (Ghk)(y, t) �<br />

= −divy(G d(y, t)(ek + grad yrk(y))),<br />

where (Gs)(y, t) := � t<br />

0 G d(y, t − s)grad ys(y, s)ds <strong>and</strong> ek is the canonical<br />

basis <strong>in</strong> R 6 .<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 58 / 95


Homogenisation (determ<strong>in</strong>istic <strong>media</strong>)<br />

Def<strong>in</strong>ition (Homogenised coefficients)<br />

The homogenised optical response matrix Ah or <strong>and</strong> the homogenised<br />

dispersion matrix Gh d consist of the columns<br />

(A h �<br />

or)♯,k = Aor(y)rk(y)dy, Y<br />

(G h �<br />

�<br />

d )♯,k =<br />

�<br />

Gd(y, t)rk(y)dy +<br />

Y<br />

Aor(y)gradyhk(y, t)dy<br />

Y<br />

+ (Ghk)(y, t)dy<br />

Y<br />

for k = 1, . . . , 6 where rk := ek + grad yrk(y)) <strong>and</strong> (Ghk)(y, t) is as <strong>in</strong> the<br />

previous def<strong>in</strong>ition.<br />

Notation: for a 3 × 3 matrix m, m♯,k denotes its k-th column.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 59 / 95


Theorem<br />

The solution u ɛ of<br />

Homogenisation (determ<strong>in</strong>istic <strong>media</strong>)<br />

(A ɛ oru ɛ + G ɛ d ⋆ u ɛ ) ′ = Mu ɛ + j<br />

(with <strong>in</strong>itial condition uɛ = 0, <strong>and</strong> the perfect conductor boundary<br />

condition n × uɛ 1 = 0), is such that<br />

u ɛ ∗ ⇀ u <strong>in</strong> L ∞ ([0, T ], H0(curl, O) × H(curl, O)) ,<br />

where u is the solution of the homogenised Maxwell system<br />

(A h oru + G h d ⋆ u) ′ = Mu + j h ,<br />

with A h or, G h d given as <strong>in</strong> the previous def<strong>in</strong>ition.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 60 / 95


Nonl<strong>in</strong>ear problems<br />

Nonl<strong>in</strong>ear <strong>media</strong><br />

Regard<strong>in</strong>g chiral <strong>media</strong>, although third-order nonl<strong>in</strong>ear effects were predicted as<br />

early as 1967, nonl<strong>in</strong>ear optical rotation experiments were not undertaken before<br />

1993.<br />

We consider a nonl<strong>in</strong>ear complex electromagnetic medium modelled by<br />

where the l<strong>in</strong>ear part is given by<br />

A 0(x) =<br />

d = Lu = A 0u + G 0 ⋆ u + G 0,nℓ ⋆ N(u)u ,<br />

� ε(x) 0<br />

0 µ(x)<br />

while the nonl<strong>in</strong>earity is given by<br />

N(u) :=<br />

� N1|u1| q 0<br />

0 N2|u2| q<br />

�<br />

, G 0 (t, x) =<br />

�<br />

ε(x)χe (t) χem (t)<br />

χme (t) µ(x)χm �<br />

,<br />

(t)<br />

�<br />

�<br />

χe , G0,nℓ (t, x) := nℓ(t, x) 0<br />

0 χm �<br />

,<br />

nℓ(t, x)<br />

where q ∈ N, N1, N2 ∈ R 3×3 are matrices <strong>in</strong>dependent of the spatial <strong>and</strong><br />

temporal variables.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 61 / 95


Nonl<strong>in</strong>ear <strong>media</strong><br />

Let B A := G −1<br />

0 G 0,nℓ (0), G A,nℓ := G −1<br />

0 G ′ 0,nℓ , M A := G −1<br />

0 M, G A := −G −1<br />

0 G ′ 0 ,<br />

J A := G −1<br />

0<br />

j.<br />

Then, under suitable regularity assumptions on G 0 <strong>and</strong> G 0,nℓ , the Maxwell<br />

system takes the form<br />

u ′ + B AN(u)u + G A,nℓ ⋆ N(u)u = M Au + G A ⋆ u + J A ,<br />

with <strong>in</strong>itial condition<br />

u(0, x) = u0(x), x ∈ O ,<br />

<strong>and</strong> the perfect conductor boundary condition<br />

n × u1 = 0, (t, x) ∈ [0, T ] × ∂O .<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 62 / 95


Assumption<br />

Nonl<strong>in</strong>ear <strong>media</strong><br />

1 B AN(u)u is monotone, i.e., there exists a p ∈ N such that<br />

N(v)v · v ≥ c |v| p , c > 0, ∀v ∈ R 6 .<br />

2 There exists a constant α > 0 such that<br />

3 B AN(u)u satisfies<br />

|N(v)v| ≤ α (1 + |v| p−1 ) , ∀v ∈ R 6 .<br />

Dv<br />

� �<br />

BAN(v)v w · w ≥ 0 , ∀v, w ∈ R 6 ,<br />

where Dv denotes the derivative with respect to the vector v.<br />

4 There exists a constant C > 0 such that<br />

�<br />

�<br />

GA,nℓ ⋆ N(u)u<br />

(t) · u(t) ≥ C<br />

for every function u <strong>and</strong> t ∈ [0, T ].<br />

� �<br />

BAN(u)u (t) · u(t) ,<br />

Assumption 2 corresponds to the convexity of the energy functional of the<br />

medium. Assumptions 1 <strong>and</strong> 3 (for p = q + 2) hold provided that the matrices<br />

N1, N2 are positive def<strong>in</strong>ite. Assumption 4 can be seen as a generalisation, <strong>in</strong><br />

the framework of nonl<strong>in</strong>ear equations, of the condition that the kernels are<br />

functions of positive type, a fact consistent with energy considerations.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 63 / 95


Nonl<strong>in</strong>ear <strong>media</strong><br />

Based on the Faedo-Galerk<strong>in</strong> approximation <strong>and</strong> monotonicity arguments<br />

we have<br />

Theorem<br />

Under the previous assumptions on the nonl<strong>in</strong>earity <strong>and</strong> further assum<strong>in</strong>g<br />

that<br />

G 0 ∈ W 1,∞ ([0, T ]; L ∞ (O) 6×6 ),<br />

G A ∈ W 1,1 ([0, T ], (L ∞ (O)) 6×6 ),<br />

u0 ∈ (L q+2 (O)) 3 × (L q+2 (O)) 3 ,<br />

J A ∈ W 1,1 ([0, T ]; (L 2 (O)) 3 × (L 2 (O)) 3 ),<br />

the IBVP has a unique weak solution<br />

u ∈ L ∞ ([0, T ], H0(curl, O) × H(curl, O)) ∩ L ∞ ([0, T ], (L q+2 (O)) 6 ) .<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 64 / 95


Nonl<strong>in</strong>ear <strong>media</strong><br />

Nonl<strong>in</strong>ear systems present <strong>in</strong>terest<strong>in</strong>g types of solutions <strong>in</strong> the form of<br />

travell<strong>in</strong>g waves that propagate with unchanged shape through the medium as<br />

an effect of the <strong>in</strong>terplay between dispersion <strong>and</strong> nonl<strong>in</strong>earity. This type of<br />

behaviour is typical <strong>and</strong> is very well studied <strong>in</strong> <strong>in</strong>tegrable systems; however,<br />

solutions of similar type are often present <strong>in</strong> non<strong>in</strong>tegrable systems <strong>and</strong> f<strong>in</strong>d<br />

important applications <strong>in</strong> various branches of science.<br />

A formal approach to the evolution of nonl<strong>in</strong>ear waves <strong>in</strong> chiral <strong>media</strong> with<br />

weak dispersion <strong>and</strong> weak nonl<strong>in</strong>earity of the Kerr type <strong>in</strong> the low chirality case<br />

has been studied by Frantzeskakis, S, Yannacopoulos <strong>and</strong> by Tsitsas,<br />

Frantzeskakis, Lakhtakia.<br />

A set of modulation equations is obta<strong>in</strong>ed for the evolution of the slowly<br />

vary<strong>in</strong>g field envelopes that is <strong>in</strong> the form of 4 coupled nonl<strong>in</strong>ear Schröd<strong>in</strong>ger<br />

equations. This set of equations is non<strong>in</strong>tegrable; however, with the use of<br />

reductive perturbation theory, under certa<strong>in</strong> conditions these equations may be<br />

reduced to an <strong>in</strong>tegrable system, the Melnikov system. This system is known<br />

to possess vector soliton solutions. Thus, by the above reduction, <strong>in</strong> certa<strong>in</strong><br />

(limit<strong>in</strong>g) cases the existence of vector solitons <strong>in</strong> chiral <strong>media</strong> may be shown;<br />

these appear <strong>in</strong> pairs of dark <strong>and</strong> bright solitons. Depend<strong>in</strong>g on the chosen<br />

behaviour at <strong>in</strong>f<strong>in</strong>ity, the dark component can be along the right-h<strong>and</strong>ed<br />

component of the field <strong>and</strong> the bright component along the left-h<strong>and</strong>ed<br />

component of the field, or vice versa.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 65 / 95


Stochastic problems<br />

Stochastic problems<br />

In many applications there is uncerta<strong>in</strong>ty concern<strong>in</strong>g either the externally<br />

imposed sources or the nature of the medium under consideration. In such<br />

cases, it is useful to model the uncerta<strong>in</strong> quantities as r<strong>and</strong>om variables,<br />

with a prescribed probability distribution. These r<strong>and</strong>om variables are now<br />

functions of the spatial variables <strong>and</strong> of time, <strong>and</strong> can be considered as<br />

r<strong>and</strong>om fields def<strong>in</strong>ed on a probability space (Ω, F, P). The r<strong>and</strong>omness is<br />

assumed to have as an effect that the repetition of different experiments<br />

on the medium will generate different outcomes ω, either of the medium<br />

parameters or of the external sources. The set Ω conta<strong>in</strong>s the outcomes ω<br />

of all possible experiments or all possible realisations of the medium, F is a<br />

σ-algebra on Ω <strong>and</strong> P is a probability measure on F, quantify<strong>in</strong>g the<br />

relative frequency of realisations of different outcomes <strong>in</strong> an (ideally<br />

<strong>in</strong>f<strong>in</strong>ite) repetition of experiments under identical experimental conditions.<br />

In turn, the r<strong>and</strong>omness <strong>in</strong> the sources or the medium is reflected <strong>in</strong> the<br />

result<strong>in</strong>g electromagnetic fields, which have to be modelled as r<strong>and</strong>om<br />

fields as well.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 66 / 95


Stochastic problems<br />

The constitutive relations for r<strong>and</strong>om <strong>media</strong> are of the form<br />

d ω = A or,ωu ω + G ω ⋆ u ω, (47)<br />

where now the quantities d ω, u ω are considered to be r<strong>and</strong>om fields,<br />

depend<strong>in</strong>g on x <strong>and</strong> t, with the explicit dependence suppressed for<br />

simplicity. We <strong>in</strong>clude the explicit dependence on ω to rem<strong>in</strong>d us that the<br />

values of these quantities depend on the particular realisation ω of the<br />

experiment performed (or the particular realisation of the r<strong>and</strong>om<br />

medium). Furthermore, A or,ω, G ω are (<strong>in</strong> general) r<strong>and</strong>om matrices whose<br />

elements consist of r<strong>and</strong>om fields, which model the r<strong>and</strong>om parameters of<br />

the medium. The medium may be spatially homogeneous or not,<br />

depend<strong>in</strong>g on the circumstances. Similarly, we consider the external source<br />

J a r<strong>and</strong>om field J = J(t, x, ω).<br />

The description of r<strong>and</strong>om <strong>media</strong> <strong>in</strong> terms of r<strong>and</strong>om fields f<strong>in</strong>ds a number<br />

of <strong>in</strong>terest<strong>in</strong>g applications <strong>in</strong> the theory of composites <strong>and</strong> <strong>in</strong> scatter<strong>in</strong>g<br />

problems from rough surfaces.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 67 / 95


The Maxwell system<br />

Stochastic problems<br />

In view of the constitutive relations (47) the Maxwell system becomes<br />

(A or,ωu + G ω ⋆ u) ′ = Mu + j ω , (48)<br />

where now j ω = j(t, x, ω) is a r<strong>and</strong>om process def<strong>in</strong>ed on (Ω, F, P).<br />

An important aspect of the problem is the choice of a convenient model<br />

for the r<strong>and</strong>omness.<br />

There are two major classes, present<strong>in</strong>g qualitatively different behaviour,<br />

depend<strong>in</strong>g on the choice of j ω (<strong>in</strong> particular on its variation with respect to<br />

time):<br />

j ω is of f<strong>in</strong>ite variation ↣ R<strong>and</strong>om ↣ evolution equations treated <strong>in</strong><br />

the usual sense (Riemann-Stieltjes or Bochner <strong>in</strong>tegration) ↣ partial<br />

<strong>in</strong>tegrodifferential equation with r<strong>and</strong>om coefficients.<br />

j ω is of <strong>in</strong>f<strong>in</strong>ite variation ↣ Stochastic ↣ Banach space valued<br />

<strong>stochastic</strong> processes (Q-Wiener) <strong>in</strong>volved ↣ Itō <strong>stochastic</strong><br />

<strong>in</strong>tegration ↣ SPDEs.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 68 / 95


The Maxwell system<br />

The <strong>in</strong>tegral form of (48) is<br />

� t<br />

u(t) = u(0) +<br />

0<br />

Stochastic problems<br />

� t<br />

+ QA(s, ω) dW (s),<br />

0<br />

� � s<br />

�<br />

MAu(s) + GA(s − r)u(r) dr + JA(s) ds<br />

0<br />

(49)<br />

where GA = A−1 or,ωGω , MA = A−1 or,ω M, <strong>and</strong> JA = A−1 or,ω jω. The first <strong>in</strong>tegral is considered as a Riemann-Stieltjes <strong>in</strong>tegral, whereas the<br />

second one is considered as an Itō <strong>in</strong>tegral w.r.t. the <strong>in</strong>f<strong>in</strong>ite-dimensional<br />

Wiener process W (t).<br />

QA is an operator-valued <strong>stochastic</strong> process that models the effect of spatial<br />

correlations of the fluctuat<strong>in</strong>g terms; it may be either <strong>in</strong>dependent of, or<br />

dependent on, the electromagnetic field. The first case, especially if GA is not<br />

a r<strong>and</strong>om process, is called the additive noise case; the second case is called<br />

the multiplicative noise case.<br />

The boundary conditions are considered to be those of the perfect<br />

conductor.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 69 / 95


Solvability<br />

Stochastic problems<br />

Upon properly 8 def<strong>in</strong><strong>in</strong>g the notions of “mild”, “weak” <strong>and</strong> “strong”<br />

solutions 9 for (49) <strong>and</strong> employ<strong>in</strong>g a semigroup approach (based on the<br />

semigroup generated by the Maxwell operator <strong>and</strong> treat<strong>in</strong>g the convolution<br />

terms as perturbations of this semigroup) we have the follow<strong>in</strong>g result<br />

(Liaskos, S, Yannacopoulos)<br />

Theorem<br />

Under suitable regularity assumptions on the data, (49) is weakly / mildly<br />

/ strongly well-posed.<br />

8 The electromagnetic field is now a <strong>stochastic</strong> process on the probability<br />

space (Ω, F, P) tak<strong>in</strong>g values on (L 2 (O)) 3 × (L 2 (O)) 3 .<br />

9 The temporal regularity is not expected to be as good as the spatial<br />

regularity because of the pathological properties of the Wiener process (with<br />

respect to temporal regularity) that are <strong>in</strong>herited by the solution of (49).<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 70 / 95


Stochastic problems<br />

The Wiener chaos approach to solvability<br />

Another approach for the solvability of (49) is based on a Wiener chaos<br />

expansion, i.e., on an expansion of square-<strong>in</strong>tegrable <strong>stochastic</strong> processes<br />

adapted 10 with respect to the filtration 11 generated by the Wiener process<br />

(S, Yannacopoulos).<br />

This important approach was <strong>in</strong>itially (2006) <strong>in</strong>troduced by Rozovskii <strong>and</strong><br />

Lototsky for parabolic SPDEs, <strong>and</strong> then generalised by Kalp<strong>in</strong>elli, Frangos<br />

<strong>and</strong> Yannacopoulos for hyperbolic SPDEs (2011) <strong>and</strong> by Yannacopoulos,<br />

Frangos <strong>and</strong> Karatzas for backward SPDEs (2011).<br />

10 A <strong>stochastic</strong> process {X (t)} with the property that X (s) is measurable with<br />

respect to Fs, for all s ∈ I, is called adapted.<br />

11 A family of σ-algebras {Ft}t∈I is called a filtration if it has the property<br />

Fs ⊆ Ft for s ≤ t.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 71 / 95


Stochastic problems<br />

The Wiener chaos approach to (49) is particularly <strong>in</strong>terest<strong>in</strong>g s<strong>in</strong>ce:<br />

(i) It reduces the orig<strong>in</strong>al <strong>stochastic</strong> problem to an <strong>in</strong>f<strong>in</strong>ite hierarchy of<br />

determ<strong>in</strong>istic problems. This hierarchy is decoupled <strong>in</strong> the case of<br />

additive noise <strong>and</strong> has a lower triangular structure <strong>in</strong> the case of<br />

multiplicative noise.<br />

(ii) It can be seen as a Galerk<strong>in</strong>-type approach, which separates the effects<br />

of r<strong>and</strong>omness from the effects of the spatio-temporal dynamics; it is<br />

well suited for numerical analysis <strong>and</strong> simulation purposes, especially<br />

when statistical moments of the solutions are needed.<br />

(iii) It allows an easier treatment of the spatial regularity of the solutions.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 72 / 95


Homogenisation (r<strong>and</strong>om <strong>media</strong>)<br />

Homogenisation for r<strong>and</strong>om complex <strong>media</strong> present<strong>in</strong>g an<br />

ergodic structure<br />

In certa<strong>in</strong> classes of materials the spatial structure is not as regular as to be<br />

modelled by periodic functions. Such materials can be modelled as r<strong>and</strong>om<br />

<strong>media</strong> hav<strong>in</strong>g some sort of statistical periodicity (the structure of the<br />

material repeats itself <strong>in</strong> a statistical law); this is expressed mathematically<br />

via the notion of ergodicity. This concept is powerful enough to generalise<br />

periodicity <strong>and</strong> allows the construction of a homogenisation theory that<br />

bypasses the need for periodic structure. From the applications po<strong>in</strong>t of<br />

view, this generalisation leads to more realistic models.<br />

Regard<strong>in</strong>g electromagnetics <strong>in</strong> complex <strong>media</strong>, accord<strong>in</strong>g to some authors<br />

chirality itself is due to r<strong>and</strong>omly positioned helices <strong>in</strong> the medium.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 73 / 95


Homogenisation (r<strong>and</strong>om <strong>media</strong>)<br />

Recently, there has been a resurgence of <strong>in</strong>terest <strong>in</strong> the homogenisation of<br />

first- <strong>and</strong> second-order PDEs <strong>in</strong> r<strong>and</strong>om stationary ergodic <strong>media</strong>.<br />

This is a very general sett<strong>in</strong>g lack<strong>in</strong>g the compactness properties used<br />

extensively <strong>in</strong> various places <strong>in</strong> the study of the periodic / almost periodic<br />

homogenisation.<br />

To overcome this difficulty, it is necessary to resort to the ergodic theorem,<br />

coupled with stationarity properties.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 74 / 95


Homogenisation (r<strong>and</strong>om <strong>media</strong>)<br />

Self-averag<strong>in</strong>g environments<br />

Periodic, quasi-periodic (l<strong>in</strong>ear comb<strong>in</strong>ation of periodic of<br />

<strong>in</strong>commensurate periods), almost periodic (closure of quasi-periodic).<br />

R<strong>and</strong>om: for each experiment we encounter a different material (lack<br />

of <strong>in</strong>formation of the exact composition, or true r<strong>and</strong>omness); the<br />

frequency of appearance of each particular material configuration is<br />

described by a probability measure µ on the measurable space of all<br />

possible configurations (Ω, F).<br />

For a r<strong>and</strong>om environment to be self-averag<strong>in</strong>g, statistical self<br />

repetition is required (from a sufficiently large block of a particular<br />

realisation of the material, one should be able to reconstruct all<br />

possible realisations of the material at a particular po<strong>in</strong>t): stationarity<br />

<strong>and</strong> ergodicity.<br />

This is a k<strong>in</strong>d of a generalisation of (classical) periodicity, <strong>in</strong> which<br />

from a s<strong>in</strong>gle cell the whole material can be reproduced by<br />

translations.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 75 / 95


Homogenisation (r<strong>and</strong>om <strong>media</strong>)<br />

Let (Ω, F, P) be a probability space, <strong>and</strong> let G be a group of<br />

transformations on Ω.<br />

We say that the probability measure P is preserved under the action τ of<br />

the group G, if P(τA) = P(A) for every A ∈ F.<br />

A typical example of this setup is the case where Ω = R 3 , i.e., each ω<br />

is identified with a po<strong>in</strong>t x ∈ R 3 .<br />

Further, (R 3 , +) is the usual translation group, <strong>and</strong> τy = x + y the<br />

action of a group act<strong>in</strong>g on Ω such that the probability measure is<br />

preserved under the action of the group, i.e.,<br />

P(τyA) = P(A), ∀A ∈ F, ∀y ∈ R 3 .<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 76 / 95


Homogenisation (r<strong>and</strong>om <strong>media</strong>)<br />

The probability space (Ω, F, P) is to be <strong>in</strong>terpreted as follows: Each<br />

realisation ω is to be understood as a particular configuration of the<br />

medium. In other words, each experiment we perform on a particular<br />

medium corresponds to a particular choice of ω ∈ Ω. However, it is neither<br />

known beforeh<strong>and</strong>, nor with certa<strong>in</strong>ty, which medium is to be realised at<br />

the time <strong>in</strong>stant that the experiment is performed. The probability that a<br />

particular medium is realised is given by the probability measure P.<br />

A r<strong>and</strong>om variable F : Ω → X , where X is an appropriate metric space will<br />

serve as a mathematical model for a medium. For <strong>in</strong>stance, when<br />

X ∈ R 6×6 we may consider F as a particular outcome of the<br />

electromagnetic parameters of a r<strong>and</strong>om complex medium (e.g., a<br />

particular outcome of A or,ω or G ω ).<br />

More precisely, if F is a measurable function on Ω, we will call for each<br />

fixed ω ∈ Ω, F (τxω) a realisation of F . A measurable function F is called<br />

<strong>in</strong>variant under the group action if F (τxω) = F (ω) for every x <strong>and</strong> ω.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 77 / 95


Homogenisation (r<strong>and</strong>om <strong>media</strong>)<br />

Ergodicity <strong>and</strong> Stationarity<br />

1 The action τ is called ergodic if for all A ∈ F<br />

τx A = A , ∀x ∈ R 3 =⇒ P(A) = 0, or P(A) = 1.<br />

2 A r<strong>and</strong>om variable F is called stationary if<br />

∀y ∈ R 3 , F (x + y, ω) = F (x, τyω), a.e. <strong>in</strong> x, a.s.<br />

An alternative def<strong>in</strong>ition of ergodicity is to say that an action is ergodic if<br />

every <strong>in</strong>variant function under this action is the constant function almost<br />

surely <strong>in</strong> Ω (P-a.s.). One can say that ergodicity implies that when mov<strong>in</strong>g<br />

along the medium (<strong>in</strong> one realisation), by the time we reach <strong>in</strong>f<strong>in</strong>ity it is as<br />

if we have seen all possible realisations of the medium at a s<strong>in</strong>gle po<strong>in</strong>t.<br />

This allows to <strong>in</strong>terchange averag<strong>in</strong>g over the probability measure with<br />

averag<strong>in</strong>g over space.<br />

As for stationarity, it means that what is observed at a po<strong>in</strong>t x is<br />

statistically the same with what is observed at the po<strong>in</strong>t x + y (this is the<br />

analogue of periodicity).<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 78 / 95


Homogenisation (r<strong>and</strong>om <strong>media</strong>)<br />

These properties guarantee that, <strong>in</strong> a statistical sense, parts of the<br />

material located at different positions will present the same properties.<br />

This fact allows us to look at average properties of the material at long<br />

scales <strong>and</strong> obta<strong>in</strong> nice expressions for these quantities.<br />

The ergodic hypothesis implies that <strong>in</strong>stead of look<strong>in</strong>g at an ensemble<br />

average of <strong>media</strong>, <strong>and</strong> averag<strong>in</strong>g the properties of the medium on the<br />

ensemble average, we may consider a s<strong>in</strong>gle realisation of the medium<br />

whose spatial dimensions are large <strong>and</strong> sample its properties by travers<strong>in</strong>g<br />

this s<strong>in</strong>gle realisation for large enough distances.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 79 / 95


Homogenisation (r<strong>and</strong>om <strong>media</strong>)<br />

Complex Media <strong>Electromagnetics</strong><br />

Now, let O be a doma<strong>in</strong> <strong>in</strong> R 3 , filled with a r<strong>and</strong>om complex l<strong>in</strong>ear<br />

electromagnetic medium. We consider the case where the r<strong>and</strong>omness is<br />

assumed to be spatial only. The effect of the r<strong>and</strong>om structure of the<br />

medium is that the electromagnetic field is a r<strong>and</strong>om field, whose<br />

evolution is given by the r<strong>and</strong>om Maxwell equations<br />

∂t(A or,ωu + G ω ⋆ u) = Mu + j, <strong>in</strong> (0, T ] × O, (50)<br />

subject to the perfect conductor boundary condition<br />

n × u1 = 0, <strong>in</strong> [0, T ] × ∂O ,<br />

<strong>and</strong> for homogeneous <strong>in</strong>itial conditions u(x, 0) = 0, x ∈ O.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 80 / 95


Homogenisation (r<strong>and</strong>om <strong>media</strong>)<br />

The coefficients of the medium are now r<strong>and</strong>om variables, with a spatial<br />

dependence; the same can also hold for the source term j.<br />

The fields u = u(t, x; ω) are r<strong>and</strong>om fields (vector space valued r<strong>and</strong>om<br />

variables).<br />

All these r<strong>and</strong>om variables are assumed to be def<strong>in</strong>ed on a suitable<br />

probability space (Ω, F, P) related to the nature of the r<strong>and</strong>om structure of<br />

the medium.<br />

The differential equation (50) is now an equation between r<strong>and</strong>om<br />

variables <strong>and</strong> is assumed to hold almost surely <strong>in</strong> P; it is a r<strong>and</strong>om<br />

differential equation.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 81 / 95


Homogenisation (r<strong>and</strong>om <strong>media</strong>)<br />

The medium coefficients must be of such form as to allow us to model<br />

small scale (fast vary<strong>in</strong>g) r<strong>and</strong>om microstructure:<br />

1 Consider a probability space (Ω, F, P) <strong>and</strong> let Φ(·, ω) : R 3 → R 3 be a<br />

r<strong>and</strong>om diffeomorphism P−a.s. with the property that gradΦ is<br />

stationary under an ergodic group action, i.e.,<br />

∀y ∈ R 3 , gradΦ(x + y, ω) = gradΦ(x, τyω).<br />

2 The r<strong>and</strong>om medium can be modelled with coefficients of the form<br />

Aor,ω = A ɛ �<br />

or(x, ω) = Aor Φ −1 � x<br />

��<br />

, ω ,<br />

ɛ<br />

Gω = G ɛ �<br />

d(t, x, ω) = Gd t, Φ −1 � x<br />

�� (51)<br />

, ω<br />

ɛ<br />

where A or(y) <strong>and</strong> G d(y, t) are determ<strong>in</strong>istic matrix valued functions<br />

periodic <strong>in</strong> y ∈ R 3 with common period Y , while Φ is as above.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 82 / 95


Homogenisation (r<strong>and</strong>om <strong>media</strong>)<br />

This assumption on the coefficients of the medium is <strong>in</strong>spired by recent<br />

very <strong>in</strong>terest<strong>in</strong>g work by X. Blanc, C. Le Bris <strong>and</strong> P.-L. Lions (2006, 2007)<br />

on <strong>stochastic</strong> elliptic homogenisation. This type of coefficients models<br />

some k<strong>in</strong>d of statistical periodicity of the medium <strong>and</strong> guarantees<br />

ergodicity.<br />

In order to be able to model the small scale periodic microstructure, we<br />

must let ɛ vary over a range of arbitrarily small values. We are therefore<br />

led to a sequence of r<strong>and</strong>om boundary value problems,<br />

(A ɛ oru ɛ + G ɛ d ⋆ u ɛ ) ′ = Mu ɛ + j (52)<br />

with <strong>in</strong>itial condition u ɛ = 0, <strong>and</strong> the perfect conductor boundary condition<br />

n × u ɛ 1 = 0, on O. (53)<br />

The explicit t, x <strong>and</strong> ω dependence is omitted for simplicity.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 83 / 95


Homogenisation (r<strong>and</strong>om <strong>media</strong>)<br />

If the solution of the above sequence of r<strong>and</strong>om boundary value problems<br />

exists for all ɛ > 0, then this will generate a sequence of r<strong>and</strong>om fields<br />

{u ɛ } = {u ɛ (t, x, ω)}. To underst<strong>and</strong> the effects of small scale r<strong>and</strong>om<br />

microstructure we must go to the limit as ɛ → 0.<br />

Questions similar to those posed <strong>in</strong> the determ<strong>in</strong>istic case arise, e.g.,<br />

Does the sequence of r<strong>and</strong>om fields {u ɛ } converge <strong>in</strong> some weak sense to<br />

a limit r<strong>and</strong>om field u ∗ ?<br />

Is this limit r<strong>and</strong>om field the solution of a differential equation<br />

(A h oru ∗ + G h d ⋆ u ∗ ) ′ = Mu ∗ + j ,<br />

similar <strong>in</strong> type with the orig<strong>in</strong>al Maxwell system, but now with constant<br />

coefficients A h or, G h d ?<br />

Can these coefficients be specified by those of the orig<strong>in</strong>al medium?<br />

Can it be that, <strong>in</strong> certa<strong>in</strong> circumstances, the limit<strong>in</strong>g field <strong>and</strong> the limit<strong>in</strong>g<br />

differential equation are not r<strong>and</strong>om?<br />

The answer to these questions is complicated, s<strong>in</strong>ce quantities <strong>in</strong>volved are<br />

r<strong>and</strong>om fields def<strong>in</strong>ed on a probability space <strong>and</strong> not just determ<strong>in</strong>istic<br />

functions.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 84 / 95


Homogenisation (r<strong>and</strong>om <strong>media</strong>)<br />

Well posedness of the r<strong>and</strong>om Maxwell system<br />

Theorem<br />

The Maxwell system (50) is uniquely solvable for all ɛ > 0 <strong>and</strong> ω ∈ Ω <strong>and</strong><br />

the solution satisfies<br />

<strong>and</strong><br />

�u ɛ (t)� X ≤ C, for all ɛ, t > 0, P − a.s.<br />

�u ɛ (t)� L 2 (Ω,F,P;X) ≤ C, for all ɛ, t > 0.<br />

The existence of a solution P-a.s. follows by the Galerk<strong>in</strong> method.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 85 / 95


Homogenisation (r<strong>and</strong>om <strong>media</strong>)<br />

An auxiliary r<strong>and</strong>om elliptic problem<br />

Motivated by a formal two scale expansion we see that the follow<strong>in</strong>g<br />

r<strong>and</strong>om elliptic system is closely related to the Laplace transformed<br />

r<strong>and</strong>om Maxwell problem.<br />

Consider a 6 × 6 r<strong>and</strong>om matrix Aeℓ expressed <strong>in</strong> block form as<br />

Aeℓ �<br />

a<br />

=<br />

c<br />

b<br />

d<br />

�<br />

, (54)<br />

where a, b, c, d are r<strong>and</strong>om matrices of the form assumed <strong>in</strong> (51).<br />

Def<strong>in</strong>ition<br />

For a r<strong>and</strong>om matrix A eℓ (x, ω) as <strong>in</strong> equation (54) consider the r<strong>and</strong>om<br />

elliptic operator L ɛ : H 1 0 (O) × H1 0 (O) → H−1 (O) × H −1 (O), def<strong>in</strong>ed as<br />

L ɛ = divx(A eℓ (x, ω) grad x ·) .<br />

Note that it is the quantity m � Φ −1 � x<br />

ɛ , ω�� which is r<strong>and</strong>om. The matrix<br />

m itself is not r<strong>and</strong>om.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 86 / 95


Assumption (A eℓ )<br />

Homogenisation (r<strong>and</strong>om <strong>media</strong>)<br />

The matrix A eℓ ∈ L ∞ (O, R 6×6 ) is assumed to satisfy the conditions<br />

1 There exists a positive constant c1 such that |A eℓ (z) y · y| ≥ c1 |y|, for<br />

almost all z ∈ O <strong>and</strong> all (determ<strong>in</strong>istic) y ∈ R 6 .<br />

2 There exists a positive constant c2 such that |A −1<br />

eℓ (z) y · y| ≥ c2 |y|,<br />

for almost all z ∈ O <strong>and</strong> all y ∈ R 6 .<br />

When choos<strong>in</strong>g z = Φ −1 � x<br />

ɛ , ω� the above Assumption holds P-a.s. for the<br />

family of r<strong>and</strong>om matrices {A ɛ eℓ }.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 87 / 95


Homogenisation (r<strong>and</strong>om <strong>media</strong>)<br />

Def<strong>in</strong>ition (r<strong>and</strong>om averag<strong>in</strong>g operator)<br />

Let s be a r<strong>and</strong>om field of the form s(x, y, ω) = s � x, Φ−1 (y, ω) � . The<br />

r<strong>and</strong>om averag<strong>in</strong>g operator is def<strong>in</strong>ed as<br />

� ��<br />

��−1 �� 〈s〉 = E det(gradΦ(y, ω)) dy E s(x, Φ<br />

Y<br />

Φ(Y )<br />

−1 �<br />

(y, ω))dy .<br />

This is the r<strong>and</strong>om generalisation of the periodic averag<strong>in</strong>g operator used<br />

<strong>in</strong> the determ<strong>in</strong>istic case.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 88 / 95


Homogenisation (r<strong>and</strong>om <strong>media</strong>)<br />

Def<strong>in</strong>ition (r<strong>and</strong>om cell systems)<br />

For j = 1, 2, 3, ℓ = 1, 2 the r<strong>and</strong>om cell systems are the r<strong>and</strong>om elliptic<br />

systems<br />

�<br />

r<br />

Lc<br />

(j)<br />

1<br />

r (j)<br />

� � � �<br />

divya♯,j<br />

v<br />

=<br />

, Lc<br />

divyc♯,j<br />

2<br />

(j)<br />

1<br />

v (j)<br />

� � �<br />

divyb♯,j<br />

=<br />

, (55)<br />

divyd♯,j<br />

2<br />

where Lc is the r<strong>and</strong>om matrix operator<br />

� � −1<br />

Lc = −divyAor Φ (y, ω grady· )<br />

<strong>and</strong> m(y) = m(Φ −1 (y, ω)), where m is a proxy for the matrices a, b, c, d.<br />

These equations are supplemented with the conditions (a generalisation of<br />

the periodic boundary conditions used <strong>in</strong> the determ<strong>in</strong>istic case)<br />

grad ys = grad y ˇs(Φ −1 (y, ω)), grad y ˇs is stationary, 〈grad ys〉 = 0 (56)<br />

where s is a proxy for the r<strong>and</strong>om fields r (j) , v (j) , j = 1, 2, 3.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 89 / 95


Homogenisation (r<strong>and</strong>om <strong>media</strong>)<br />

This system of equations (55) is called the cell system <strong>and</strong> complemented<br />

with the boundary conditions (56) has a unique solution (modulo r<strong>and</strong>om<br />

constants).<br />

Note that <strong>in</strong> (55) y is <strong>in</strong> R 3 rather than <strong>in</strong> Y ; it is Φ −1 (y, ω) that belongs<br />

<strong>in</strong> Y .<br />

The solvability follows by a proper application of the Lax-Milgram lemma,<br />

adapt<strong>in</strong>g the approach of Blanc, Le Bris, P.-L. Lions (2007) to elliptic<br />

systems.<br />

The solution is <strong>in</strong> L 2 (Ω, F, P; H 1 loc (R3 ) × H 1 loc (R3 )).<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 90 / 95


Homogenisation (r<strong>and</strong>om <strong>media</strong>)<br />

Consider now the 3 × 3 matrices a h , b h , c h , d h def<strong>in</strong>ed as<br />

(a h )ij = 〈aij +<br />

(b h )ij = 〈bij +<br />

(c h )ij = 〈cij +<br />

(d h )ij = 〈dij +<br />

3�<br />

k=1<br />

3�<br />

k=1<br />

3�<br />

k=1<br />

3�<br />

k=1<br />

(j)<br />

aik∂yk r<br />

1 +<br />

(j)<br />

aik∂yk v<br />

(j)<br />

cik∂yk r<br />

1 +<br />

1 +<br />

(j)<br />

cik∂yk v<br />

1 +<br />

3�<br />

k=1<br />

3�<br />

k=1<br />

3�<br />

k=1<br />

3�<br />

k=1<br />

(j)<br />

bik∂yk r 2 〉,<br />

(j)<br />

bik∂yk v 2 〉,<br />

(j)<br />

dik∂yk r 2 〉,<br />

(j)<br />

dik∂yk v 2 〉,<br />

where r (j)<br />

ℓ , v (j)<br />

ℓ , j = 1, 2, 3, ℓ = 1, 2 are the solutions of the cell systems<br />

(55) <strong>and</strong> the averag<strong>in</strong>g operation is to be understood <strong>in</strong> the sense def<strong>in</strong>ed<br />

above.<br />

(57)<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 91 / 95


Homogenisation (r<strong>and</strong>om <strong>media</strong>)<br />

Def<strong>in</strong>ition (homogenised diffusion matrix)<br />

The constant coefficient matrix<br />

A h eℓ<br />

�<br />

ah =<br />

bh c h d h<br />

�<br />

, (58)<br />

where a h , b h , c h , d h are def<strong>in</strong>ed as <strong>in</strong> (57) is called the homogenised<br />

diffusion matrix.<br />

The follow<strong>in</strong>g r<strong>and</strong>om homogenisation theorem holds for the elliptic<br />

problem:<br />

Theorem<br />

Consider the solution u ɛ of the r<strong>and</strong>om elliptic problem L ɛ u ɛ = f . As<br />

ɛ → 0, we have that u ɛ ⇀ u h , <strong>in</strong> H 1 0 (O) × H1 0 (O), P-a.s. where uh is the<br />

solution of the elliptic problem L h u h = f . The homogenised matrix A h eℓ is<br />

given as <strong>in</strong> (58). Furthermore, A ɛ eℓ u ɛ ⇀ A h eℓ u h , <strong>in</strong> L 2 (O).<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 92 / 95


Homogenisation (r<strong>and</strong>om <strong>media</strong>)<br />

Homogenisation of the r<strong>and</strong>om Maxwell system<br />

We work with the Laplace transform of the Maxwell system <strong>and</strong> make the<br />

follow<strong>in</strong>g<br />

Assumption<br />

The block matrix<br />

A or,ω(y, p) := A or,ω(y)+ � G ω (y, p) =<br />

�<br />

ε + �εd<br />

ξtr + � ξtr d<br />

satisfies the conditions of the assumptions on A eℓ .<br />

ξ + � ξd<br />

µ + �µd<br />

�<br />

=:<br />

� εL ξ L<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 93 / 95<br />

ζ L<br />

µ L<br />


Homogenisation (r<strong>and</strong>om <strong>media</strong>)<br />

The follow<strong>in</strong>g r<strong>and</strong>om elliptic operators are needed.<br />

Def<strong>in</strong>ition<br />

The auxiliary “microstructure” r<strong>and</strong>om elliptic operator associated with the<br />

Maxwell system is<br />

L ɛ M = −divx(A ɛ,tr<br />

or grad x·), (59)<br />

<strong>and</strong> the auxiliary “cell” r<strong>and</strong>om elliptic operator associated with the<br />

Maxwell system is<br />

Lc,M = −divy((A per<br />

or ) tr grad y·) (60)<br />

Let A h or,ω be the homogenised matrix for the r<strong>and</strong>om elliptic system of the<br />

above def<strong>in</strong>ition, obta<strong>in</strong>ed as <strong>in</strong> the previous discussion. Then, the Laplace<br />

transform of the homogenised constitutive relation is given by<br />

� d h = A h or,ω �u<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 94 / 95


Homogenisation (r<strong>and</strong>om <strong>media</strong>)<br />

We now perform r<strong>and</strong>om elliptic homogenisation for the auxiliary elliptic<br />

systems <strong>and</strong> obta<strong>in</strong> the constant coefficient matrix A h or. Note that by the<br />

ergodicity of the medium the homogenised coefficients are determ<strong>in</strong>istic.<br />

Theorem<br />

The solution u ɛ = (E ɛ , H ɛ ) tr of the r<strong>and</strong>om Maxwell system<br />

satisfies<br />

(A ɛ oru ɛ + G ɛ d ⋆ u ɛ ) ′ = Mu ɛ + j<br />

u ɛ ∗ ⇀ u ∗ , <strong>in</strong> L 2 (Ω, F, P; L ∞ ([0, T ], X)),<br />

where u ∗ = (E ∗ , H ∗ ) tr is the unique solution of the Maxwell system<br />

(A h oru + G h d ⋆ u) ′ = Mu + j<br />

with homogeneous <strong>in</strong>itial conditions <strong>and</strong> perfect conductor boundary<br />

conditions, where the homogenised coefficients A h or <strong>and</strong> G h d are def<strong>in</strong>ed as<br />

above.<br />

I. G. Stratis (Maths Dept, NKUA) Collège de France November 18, 2011 95 / 95

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!