24.12.2012 Views

Missing out on the latest research developments in ... - Sigma-Aldrich

Missing out on the latest research developments in ... - Sigma-Aldrich

Missing out on the latest research developments in ... - Sigma-Aldrich

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Aldrich</strong><br />

Cyclopropylbor<strong>on</strong>ic acid MIDA ester: a useful build<strong>in</strong>g block for use <strong>in</strong><br />

Suzuki-Miyaura reacti<strong>on</strong>s.<br />

VOLUME 11 NUMBER 1 2011 20 2011 11<br />

Asymmetric SSyn<br />

ynth <strong>the</strong>s es esis is<br />

Catalysis<br />

Ch Chem emic ic ical al BBio<br />

io iolo lo logy g<br />

Organo nome meta ta tall ll llic ic ics<br />

Bu B ild<strong>in</strong>g Block cks<br />

Sy Synt n<strong>the</strong> heti ti tic c Re Reag ag agen ents ts<br />

Stab able le IIso<br />

sotopes<br />

St Stockroom m Re Reag ag agen en ents ts<br />

La Labw b are No Note tes


* Thoms<strong>on</strong> Reuters; Journal Citati<strong>on</strong> Reports ® , Science Editi<strong>on</strong>.<br />

<str<strong>on</strong>g>Miss<strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>out</str<strong>on</strong>g> <strong>on</strong><br />

<strong>the</strong> <strong>latest</strong> <strong>research</strong><br />

<strong>developments</strong> <strong>in</strong><br />

Chemistry?<br />

<strong>Aldrich</strong>imica Acta is a complimentary quarterly<br />

publicati<strong>on</strong>, which has been an <strong>in</strong>ternati<strong>on</strong>al forum for<br />

<strong>the</strong> fr<strong>on</strong>tiers of chemical <strong>research</strong> for <strong>the</strong> past 43 years.<br />

Articles, written by chemists from around <strong>the</strong> world, cover<br />

a variety of topics usually based <strong>on</strong> a syn<strong>the</strong>tic <strong>the</strong>me<br />

<strong>in</strong>volv<strong>in</strong>g organic, organometallic, bio-organic, or <strong>in</strong>organic<br />

chemistry. It has been ranked #1 by Impact Factor <strong>in</strong> eight<br />

of <strong>the</strong> past n<strong>in</strong>e years <strong>in</strong> <strong>the</strong> fi eld of organic chemistry (<str<strong>on</strong>g>out</str<strong>on</strong>g><br />

of over 50 similar journals), with an Impact Factor of 18.688<br />

(2009).*<br />

<strong>Aldrich</strong>imica Acta helps keep you <strong>in</strong>formed of <strong>the</strong> <strong>latest</strong><br />

<strong>research</strong> methodologies and trends, as well as <strong>the</strong> related<br />

<strong>Aldrich</strong> Chemistry products to support <strong>the</strong>m.<br />

Request your FREE copy today<br />

<strong>Aldrich</strong>.com/acta


<strong>Aldrich</strong><br />

Volume 11, Number 1<br />

<strong>Sigma</strong>-<strong>Aldrich</strong> Corporati<strong>on</strong><br />

6000 N. Teut<strong>on</strong>ia Ave.<br />

Milwaukee, WI 53209, USA<br />

Editorial Team<br />

Haydn Boehm, Ph.D.<br />

Wesley Smith<br />

Dean Llanas<br />

Sharbil J. Firsan, Ph.D.<br />

Weim<strong>in</strong> Qian, Ph.D.<br />

Producti<strong>on</strong> Team<br />

Cynthia Skaggs<br />

Carrie Spear<br />

Chris Le<strong>in</strong><br />

Tom Beckermann<br />

Christian Hagmann<br />

Denise de Voogd<br />

Chemistry Team<br />

Aar<strong>on</strong> Thornt<strong>on</strong>, Ph.D.<br />

Daniel Weibel, Ph.D.<br />

Joseph<strong>in</strong>e Nakhla, Ph.D.<br />

Matthias Junkers, Ph.D.<br />

Mark Redlich, Ph.D.<br />

Troy Ryba, Ph.D.<br />

Todd Halkoski<br />

Paula Freemantle<br />

Mike Willis<br />

<strong>Aldrich</strong> ChemFiles Subscripti<strong>on</strong>s<br />

To request your FREE subscripti<strong>on</strong> to <strong>Aldrich</strong> ChemFiles, ei<strong>the</strong>r<br />

visit our website at: aldrich.com/chemfi les or c<strong>on</strong>tact your local<br />

<strong>Sigma</strong>-<strong>Aldrich</strong> offi ce (see back cover).<br />

<strong>Aldrich</strong> ChemFiles Onl<strong>in</strong>e<br />

<strong>Aldrich</strong> ChemFiles is also available <strong>in</strong> PDF format <strong>on</strong> <strong>the</strong> Internet at<br />

aldrich.com/chemfi les.<br />

<strong>Aldrich</strong> Chemistry Products<br />

<strong>Aldrich</strong> brand products are sold through <strong>Sigma</strong>-<strong>Aldrich</strong>, Inc.<br />

<strong>Sigma</strong>-<strong>Aldrich</strong>, Inc. warrants that its products c<strong>on</strong>form to <strong>the</strong><br />

<strong>in</strong>formati<strong>on</strong> c<strong>on</strong>ta<strong>in</strong>ed <strong>in</strong> this and o<strong>the</strong>r <strong>Sigma</strong>-<strong>Aldrich</strong> publicati<strong>on</strong>s.<br />

Purchaser must determ<strong>in</strong>e <strong>the</strong> suitability of <strong>the</strong> product for its<br />

particular use. See reverse side of <strong>in</strong>voice or pack<strong>in</strong>g slip for additi<strong>on</strong>al<br />

terms and c<strong>on</strong>diti<strong>on</strong>s of sale. All prices are subject to change<br />

with<str<strong>on</strong>g>out</str<strong>on</strong>g> notice.<br />

To Place Orders or C<strong>on</strong>tact Customer/<br />

Technical Services<br />

Please c<strong>on</strong>tact your local <strong>Sigma</strong>-<strong>Aldrich</strong> offi ce (see back cover).<br />

<strong>Aldrich</strong> ChemFiles (ISSN 1933–9658) is a publicati<strong>on</strong> of <strong>Aldrich</strong><br />

Chemical Co., Inc. <strong>Aldrich</strong> is a member of <strong>the</strong> <strong>Sigma</strong>-<strong>Aldrich</strong> Group.<br />

© 2011 <strong>Sigma</strong>-<strong>Aldrich</strong> Co.<br />

Haydn Boehm, Ph. D.<br />

Global Market<strong>in</strong>g Manager: Chemical Syn<strong>the</strong>sis<br />

haydn.boehm@sial.com<br />

Introducti<strong>on</strong> 3<br />

Dear Chemists,<br />

Welcome to <strong>the</strong> fi rst editi<strong>on</strong> of <strong>the</strong> <strong>Aldrich</strong> ChemFiles for 2011.<br />

<strong>Aldrich</strong> ChemFiles is our FREE quarterly newsletter written by<br />

our experts <strong>in</strong> Product Management and R&D. Our aim is to<br />

keep you keep <strong>in</strong>formed of new <strong>Aldrich</strong> Chemistry products that facilitate <strong>the</strong> <strong>latest</strong><br />

<strong>research</strong> methodologies and trends, and allow you to access key start<strong>in</strong>g materials and<br />

reagents more effi ciently.<br />

As well as <strong>in</strong>troduc<strong>in</strong>g all <strong>the</strong> <strong>latest</strong> <strong>in</strong>novati<strong>on</strong>s across all our product l<strong>in</strong>es, each<br />

2011 editi<strong>on</strong> of <strong>Aldrich</strong> ChemFiles will be <strong>the</strong>med to a product l<strong>in</strong>e. <strong>Aldrich</strong> ChemFiles<br />

11.1 focuses <strong>on</strong> Organometallic Reagents, which is very timely as it aff ords me <strong>the</strong><br />

opportunity to welcome Dr. Aar<strong>on</strong> Thornt<strong>on</strong> as our new Organometallic Reagents<br />

Product Manager. Our cover molecule is cyclopropylbor<strong>on</strong>ic acid MIDA ester, which<br />

is a new additi<strong>on</strong> to our ever-grow<strong>in</strong>g MIDA bor<strong>on</strong>ate portfolio. Aar<strong>on</strong> also highlights<br />

our <strong>latest</strong> trifl uoroborates, a complementary strategy to MIDA bor<strong>on</strong>ates for selective<br />

Suzuki-Miyaura coupl<strong>in</strong>g reacti<strong>on</strong>s. This “Organometallics issue” also features our<br />

<strong>latest</strong> organot<strong>in</strong> reagents for Stille coupl<strong>in</strong>gs, as well as TurboGrignards for selective<br />

metallati<strong>on</strong>s.<br />

<strong>Aldrich</strong> ChemFiles 11.1 also <strong>in</strong>troduces our new iridium catalysts (Catalysis),<br />

<strong>in</strong>doles and thiazoles (Build<strong>in</strong>g Blocks), reagents for organometallic chemistry <strong>in</strong> water<br />

(Syn<strong>the</strong>tic Reagents) and ChemMatrix Res<strong>in</strong> for solid phase peptide syn<strong>the</strong>sis (Chemical<br />

Biology).<br />

We hope that <strong>Aldrich</strong> ChemFiles enables you to expand your <strong>research</strong> toolbox and<br />

advance your chemistry more eff ectively by implement<strong>in</strong>g <strong>the</strong> <strong>latest</strong> <strong>in</strong>novative<br />

syn<strong>the</strong>tic strategies.<br />

K<strong>in</strong>d Regards,<br />

Haydn Boehm, Ph. D.<br />

Global Market<strong>in</strong>g Manager: Chemical Syn<strong>the</strong>sis<br />

Table of C<strong>on</strong>tents<br />

Asymmetric Syn<strong>the</strong>sis ...............................................................................................................................4<br />

Catalysis ................................................................................................................................................................8<br />

Chemical Biology ....................................................................................................................................... 10<br />

Organometallic Reagents .................................................................................................................... 14<br />

Build<strong>in</strong>g Blocks ............................................................................................................................................ 22<br />

Syn<strong>the</strong>tic Reagents ................................................................................................................................... 24<br />

Stable Isotopes ............................................................................................................................................ 26<br />

Stockroom Reagents ...............................................................................................................................28<br />

Labware Notes .............................................................................................................................................. 30


4<br />

BASF’s ChiPros®: Optically Active Intermediates<br />

<strong>on</strong> an Industrial Scale<br />

In recent years, s<strong>in</strong>gle-enantiomer drugs and drug candidates have<br />

become more and more important <strong>in</strong> <strong>the</strong> pharmaceutical and agrochemical<br />

<strong>in</strong>dustry. Therefore, effi cient methods for <strong>the</strong> syn<strong>the</strong>sis of small,<br />

homochiral <strong>in</strong>termediates, which are frequently used as build<strong>in</strong>g blocks<br />

for many pharmaceuticals and crop protecti<strong>on</strong> agents like herbicides,<br />

fungicides and <strong>in</strong>secticides, but also resolv<strong>in</strong>g agents and chiral auxiliaries,<br />

are of central <strong>in</strong>terest.<br />

With its ChiPros portfolio 1 , BASF off ers a broad and grow<strong>in</strong>g range of<br />

chiral am<strong>in</strong>es, alcohols, epoxides and carboxylic acids. The ChiPros toolbox<br />

holds <strong>the</strong> best-<strong>in</strong>-class technologies of enzyme-based biocatalysis<br />

<strong>in</strong>clud<strong>in</strong>g lipases, dehydrogenases, nitrilases, esterases, oxygenases, etc.<br />

In additi<strong>on</strong>, chemical methods such as catalytic asymmetric hydrogenati<strong>on</strong>s<br />

and CBS reducti<strong>on</strong>s are utilized to fur<strong>the</strong>r streng<strong>the</strong>n <strong>the</strong> technology<br />

portfolio. 2<br />

ChiPros Chiral Am<strong>in</strong>es<br />

Chiral am<strong>in</strong>es play an important role <strong>in</strong> stereoselective organic syn<strong>the</strong>sis.<br />

They are used directly as resolv<strong>in</strong>g agents, build<strong>in</strong>g blocks or chiral<br />

auxiliaries. While classically available through racemic resoluti<strong>on</strong> with<br />

optically active acids, biotechnological approaches also open a way to<br />

chiral am<strong>in</strong>es. 3 BASF’s optimized lipase-catalyzed r<str<strong>on</strong>g>out</str<strong>on</strong>g>e to optically active<br />

am<strong>in</strong>es (Scheme 1) can be run at a scale of several thousand t<strong>on</strong>s. Due<br />

to <strong>the</strong> wide range of substrates tolerated by <strong>the</strong> enzymes, a large variety<br />

of diff erent chiral am<strong>in</strong>es and chiral am<strong>in</strong>oalcohols are commercially<br />

available.<br />

<strong>Aldrich</strong>.com<br />

NH 2<br />

CH 3<br />

Lipase<br />

NH 2<br />

CH 3<br />

Scheme 1: Lipase-catalyzed resoluti<strong>on</strong> of racemic am<strong>in</strong>es.<br />

Asymmetric Syn<strong>the</strong>sis<br />

Daniel Weibel, Ph.D.<br />

European Market Segment Manager, Chemical Syn<strong>the</strong>sis<br />

daniel.weibel@sial.com<br />

+<br />

O<br />

HN CH 3<br />

CH 3<br />

TO ORDER: C<strong>on</strong>tact your local <strong>Sigma</strong>-<strong>Aldrich</strong> offi ce (see back cover), or visit <strong>Aldrich</strong>.com/chemicalsyn<strong>the</strong>sis.<br />

H 3C<br />

NH 2<br />

NH 2<br />

CH 3<br />

726621<br />

NH2 H3C CH3 H3C CH3<br />

726729<br />

NH2 H3C CH3 H3C CH3<br />

726559<br />

H 2N<br />

NH 2<br />

CH3<br />

NH 2<br />

CH3<br />

OCH 3<br />

NH 2<br />

CH 3<br />

CH 3<br />

F<br />

H 3C<br />

H 3C<br />

Cl<br />

HN<br />

NH 2<br />

O<br />

NH 2<br />

O<br />

NH 2<br />

NH 2<br />

CH 3<br />

CH 3<br />

CH 3<br />

NH 2<br />

NH2<br />

CH 3<br />

NH 2<br />

CH 3<br />

CH3<br />

H 3CO<br />

H 3CO<br />

H 3CO<br />

H 3CO<br />

H 3C<br />

CH 3<br />

Br<br />

727229<br />

727288<br />

NH 2<br />

O<br />

NH 2<br />

NH 2<br />

NH 2<br />

NH 2<br />

NH 2<br />

CH 3<br />

NH 2<br />

NH 2<br />

CH 3<br />

CH 3<br />

CH 3<br />

CH 3<br />

CH 3<br />

Cl<br />

Cl<br />

H 3C<br />

NH2 H3C CH3 CH3 NH2 H3C CH3 CH3 H2N CH3<br />

727164 726494 726591 727156<br />

726486<br />

727148<br />

727024<br />

727172<br />

726532 727105 726680 726524<br />

726796<br />

726583<br />

726915<br />

726710<br />

726516<br />

726664<br />

726826<br />

726540<br />

726974<br />

726907<br />

726850<br />

726648<br />

NH 2<br />

O<br />

NH 2<br />

NH 2<br />

726702<br />

726931<br />

CH3<br />

CH 3<br />

NH 2<br />

726737<br />

NH 2<br />

CH3


H 3C<br />

H 3CO<br />

Br<br />

726893<br />

NH 2<br />

727083<br />

726842<br />

NH 2<br />

726869<br />

NH 2<br />

NH 2<br />

CH 3<br />

ChiPros Chiral Acids<br />

Enantiopure α- and ß-hydroxy acids and esters are versatile build<strong>in</strong>g<br />

blocks for <strong>the</strong> preparati<strong>on</strong> of a wide range of active pharmaceutical<br />

<strong>in</strong>gredients by <strong>in</strong>corporat<strong>in</strong>g <strong>the</strong>m as esters, amides or e<strong>the</strong>rs, or after<br />

fur<strong>the</strong>r derivatizati<strong>on</strong>, as diols, am<strong>in</strong>o alcohols, thioe<strong>the</strong>rs.<br />

Hydroxy acids are accessible via a range of biotransformati<strong>on</strong>s, am<strong>on</strong>g<br />

<strong>the</strong>m are <strong>the</strong> stereoselective hydrolysis of <strong>the</strong> racemic ester precursor or<br />

reducti<strong>on</strong> of <strong>the</strong> corresp<strong>on</strong>d<strong>in</strong>g keto esters. Hydroxynitrile lyase (HNL)<br />

processes catalyze <strong>the</strong> stereoselective additi<strong>on</strong> of HCN to aldehydes and<br />

ket<strong>on</strong>es yield<strong>in</strong>g s<strong>in</strong>gle-enantiomeric nitriles. 3 Applicati<strong>on</strong> of nitrilases or<br />

a comb<strong>in</strong>ati<strong>on</strong> of nitrile-hydratase plus amidase allows <strong>the</strong> transformati<strong>on</strong><br />

of <strong>the</strong> start<strong>in</strong>g material <strong>in</strong>to <strong>the</strong> desired enantiomer of <strong>the</strong> corresp<strong>on</strong>d<strong>in</strong>g<br />

acid <strong>in</strong> a dynamic k<strong>in</strong>etic resoluti<strong>on</strong> fi nally yield<strong>in</strong>g mandelic<br />

acid derivatives.<br />

BASF developed proprietary processes based <strong>on</strong> dehydrogenases to off er<br />

access to a wide range of α- and ß-hydroxy esters, start<strong>in</strong>g from readily<br />

available keto esters. Due to <strong>the</strong> large range of enzymes available, both<br />

enantiomers can normally be made. Ano<strong>the</strong>r established technology is<br />

enzymatic resoluti<strong>on</strong> us<strong>in</strong>g lipases which <strong>on</strong>ly acylate <strong>on</strong>e enantiomer.<br />

Cl OH<br />

CH 3<br />

O<br />

727067<br />

H 3C<br />

CH3 H3C OH<br />

H 3C<br />

NH2 CH3 726605<br />

726885<br />

NH 2<br />

726923<br />

727342<br />

NH 2<br />

CH 3<br />

CH3 H3C NH2<br />

CH3<br />

OH<br />

726990<br />

O<br />

OH<br />

HN<br />

NH 2<br />

CH 3<br />

726818<br />

NH2 CH3 726613<br />

727180<br />

727032<br />

NH 2<br />

CH 3<br />

NH3 O<br />

H3C OH<br />

727350<br />

Br<br />

CH3<br />

H3CO SO 3<br />

CH 3<br />

ChiPros Chiral Alcohols<br />

Ready to scale up? For competitive quotes <strong>on</strong> larger quantities or custom syn<strong>the</strong>sis, c<strong>on</strong>tact your local <strong>Sigma</strong>-<strong>Aldrich</strong> offi ce, or visit safcglobal.com.<br />

NH 2<br />

726958<br />

NCO<br />

CH 3<br />

726761<br />

726656<br />

CH 3<br />

NH 2<br />

CH 3<br />

Asymmetric Syn<strong>the</strong>sis 5<br />

Chiral alcohols form a versatile class of chiral synth<strong>on</strong>s, s<strong>in</strong>ce <strong>the</strong>y can<br />

be <strong>in</strong>corporated <strong>in</strong>to <strong>the</strong> API structures directly as esters or e<strong>the</strong>rs. They<br />

can be start<strong>in</strong>g materials for <strong>the</strong> formati<strong>on</strong> of am<strong>in</strong>es, amides, thiols,<br />

thioe<strong>the</strong>rs. In additi<strong>on</strong>, after transform<strong>in</strong>g <strong>the</strong> hydroxyl functi<strong>on</strong> <strong>in</strong>to a<br />

leav<strong>in</strong>g group by way of mesylati<strong>on</strong>, tosylati<strong>on</strong> or trifl ati<strong>on</strong>, <strong>the</strong>y can be<br />

used to form new C–C b<strong>on</strong>ds.<br />

Many manufactur<strong>in</strong>g r<str<strong>on</strong>g>out</str<strong>on</strong>g>es make use of asymmetric hydrogenati<strong>on</strong><br />

methods. 4 The two most important biocatalytical processes for <strong>the</strong> formati<strong>on</strong><br />

of chiral alcohols apply lipases and dehydrogenases, respectively. 3<br />

The latter off ers <strong>the</strong> advantage that <strong>on</strong>ly <strong>the</strong> requested enantiomer is<br />

obta<strong>in</strong>ed. Enzyme-catalyzed acylati<strong>on</strong>s us<strong>in</strong>g lipases, however, achieve<br />

<strong>the</strong> resoluti<strong>on</strong> of racemic mixtures of alcohols but with an <strong>in</strong>herent 50<br />

percent maximum yield of <strong>the</strong> total amount of start<strong>in</strong>g material. One<br />

enantiomer of <strong>the</strong> racemic mixture rema<strong>in</strong>s unchanged while <strong>the</strong> antipodal<br />

enantiomer is esterifi ed (Scheme 2).<br />

H 3CO<br />

O<br />

O<br />

CH 3<br />

OH<br />

OH<br />

+ CH3 Lipase<br />

CH3 +<br />

R<br />

Scheme 2: Lipase-catalyzed resoluti<strong>on</strong> of aryl-substituted alcohols.<br />

R<br />

R<br />

O<br />

O<br />

CH 3<br />

OCH 3<br />

Thanks to a variety of commercial and proprietary enzymes at its disposal,<br />

BASF off ers a wide range of aliphatic and cycloaliphatic and aryl-substituted<br />

s<strong>in</strong>gle-enantiomer alcohols under <strong>the</strong> ChiPros brand.<br />

H3C<br />

OH<br />

CH 3<br />

726753 726672<br />

OH<br />

726567<br />

CH 3<br />

H 3C<br />

OH<br />

CH 3<br />

H 3C<br />

OH<br />

727059<br />

CH 3<br />

OH<br />

O<br />

O<br />

727210<br />

CH 3


6<br />

ChiPros Chiral Epoxides<br />

Oxiranes are very valuable build<strong>in</strong>g blocks which allow<br />

derivatizati<strong>on</strong>:<br />

• by form<strong>in</strong>g C-X b<strong>on</strong>ds (through reacti<strong>on</strong>s with alcohols,<br />

amm<strong>on</strong>ia, am<strong>in</strong>es, phenolates etc.)<br />

• or by form<strong>in</strong>g new C–C b<strong>on</strong>ds (through reacti<strong>on</strong>s with cyanide,<br />

mal<strong>on</strong>ates, allyl silyl reagents, metal-organic reagents, e.g. Mg, Zn,<br />

Li organyls)<br />

There are several alternative r<str<strong>on</strong>g>out</str<strong>on</strong>g>es towards chiral aryl-substituted epoxides,<br />

am<strong>on</strong>g <strong>the</strong>m Jacobsen’s asymmetric epoxidati<strong>on</strong> 5 or his hydrolytic<br />

k<strong>in</strong>etic resoluti<strong>on</strong> 6 method, Sharpless’s asymmetric epoxidati<strong>on</strong> 7 us<strong>in</strong>g<br />

catalytic titan(IV)- isopropylate/diethyl tartrate complexes and tert-butylhydroperoxide,<br />

complemented by Shi’s reacti<strong>on</strong> 8 us<strong>in</strong>g peroxom<strong>on</strong>osulfate<br />

with a chiral ket<strong>on</strong>e as catalyst, or am<strong>on</strong>g <strong>the</strong> enzymatic methods,<br />

applicati<strong>on</strong> of epoxide hydrolases, lipases or m<strong>on</strong>ooxygenases. The stereoselective<br />

reducti<strong>on</strong> of α-chlor<strong>in</strong>ated acetophen<strong>on</strong>es us<strong>in</strong>g dehydrogenases,<br />

however, aff ords a very versatile and more cost-effi cient access<br />

to a wide range of oxiranes, <strong>in</strong>clud<strong>in</strong>g both enantiomers of styrene oxide<br />

as well as very diff erently substituted phenyl oxiranes (Scheme 3).<br />

<strong>Aldrich</strong>.com<br />

O O<br />

CH 3<br />

R R<br />

Scheme 3: Stereoselective syn<strong>the</strong>sis of oxiranes.<br />

X<br />

R<br />

OH<br />

X<br />

Base<br />

R<br />

TO ORDER: C<strong>on</strong>tact your local <strong>Sigma</strong>-<strong>Aldrich</strong> offi ce (see back cover), or visit <strong>Aldrich</strong>.com/chemicalsyn<strong>the</strong>sis.<br />

O<br />

O<br />

726508<br />

F<br />

727253<br />

O<br />

Cl<br />

726699<br />

O<br />

O<br />

726834<br />

<strong>Aldrich</strong> Chemistry is proud to off er ChiPros <strong>in</strong> small quantities (up to<br />

kilograms). A total of 79 products from <strong>the</strong> ChiPros portfolio are available<br />

from <strong>Aldrich</strong> Chemistry, <strong>in</strong>clud<strong>in</strong>g chiral am<strong>in</strong>es, alcohols, epoxides and<br />

carboxylic acids.<br />

References:<br />

(1) http://www.chipros.com (2) Karl, U.; Sim<strong>on</strong>, A. Chimica Oggi/Chemistry Today 2009,<br />

27, 5. (3) Breuer, M.; Ditrich, K. et al. Angew. Chem. Int. Ed. 2004, 43, 788-824. (4) Blaser, H.<br />

U.; Schmidt, E. Asymmetric Catalysis <strong>on</strong> Industrial Scale, Wiley-VCH. 2004 (5) Zhang, W.;<br />

Loebach, J. L. et al. J. Am. Chem. Soc. 1990, 112, 2801-2803. (6) White, D. E.; Jacobsen, E. N.<br />

Tetrahedr<strong>on</strong>: Asymmetry 2003, 14, 3633-3638. (7) (a) Katsuki, T.; Sharpless, K. B. J. Am. Chem.<br />

Soc. 1980, 102, 5974-5976. (b) Review: Hüft, E. Top. Curr. Chem. 1993, 164, 63-77.<br />

(8) (a) Wang, Z.-X.; Tu, Y. et al. J. Am. Chem. Soc. 1997, 119, 11224-11235; (b) Ager, D.;<br />

Anders<strong>on</strong>, K. et al., Org. Proc. Res. Dev. 2007, 11, 44-51; (c) <strong>Aldrich</strong> Chemfi les 2010, 3, 4-5.<br />

For a complete list of Chiral Build<strong>in</strong>g Blocks available from<br />

<strong>Aldrich</strong> Chemistry, visit <strong>Aldrich</strong>.com/chiralbb


New Q-Tube Pressure Reactors<br />

Q-Tubes are affordable alternatives to a microwave syn<strong>the</strong>sizer<br />

and feature a safe pressure-release system (patent pend<strong>in</strong>g) that<br />

prevents accidental explosi<strong>on</strong>s due to overpressurizati<strong>on</strong>. Starter<br />

kits c<strong>on</strong>ta<strong>in</strong> all items needed for immediate use.<br />

Q-Block Heat<strong>in</strong>g Blocks<br />

These anodized-alum<strong>in</strong>um heat<strong>in</strong>g blocks are designed for<br />

use with 12-mL and 35-mL Q-Tubes. The maximum work<strong>in</strong>g<br />

temperature is 204 °C. Blocks have a safety lock<strong>in</strong>g plate, safety<br />

shield, <strong>the</strong>rmally stable silic<strong>on</strong>e tub<strong>in</strong>g, and an <strong>in</strong>ternal cool<strong>in</strong>g<br />

channel for fast cool<strong>in</strong>g (nitrogen, compressed air, or vacuum).<br />

There is also a <strong>the</strong>rmocouple well for accurate temperature<br />

measurement.<br />

Q-Tube Size Cat. No.<br />

12 mL Z567914<br />

35 mL Z567922<br />

Q-Tube Benefi ts:<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

Better yield<br />

Cleaner product<br />

Reduced reacti<strong>on</strong> time<br />

Higher reproducibility<br />

Scalability (up to 20 grams)<br />

Safer automatic pressure release<br />

Aff ordability<br />

Ma<strong>in</strong>tenance-free<br />

Q-Tube Starter Kits:<br />

Kits c<strong>on</strong>ta<strong>in</strong> all items needed for immediate use.<br />

View accessory product list<strong>in</strong>gs and technical <strong>in</strong>formati<strong>on</strong><br />

ab<str<strong>on</strong>g>out</str<strong>on</strong>g> Q-Tubes <strong>on</strong> our website at<br />

sigma-aldrich.com/qtube<br />

Q-Tube Size Cat. No.<br />

12 mL Z567671<br />

35 mL Z567736


8<br />

Ir(I)-Catalyzed C–H<br />

Borylati<strong>on</strong><br />

Arylbor<strong>on</strong>ic acids and esters are <strong>in</strong>valuable tools for <strong>the</strong> chemical community.<br />

These powerful reagents are used for a variety of transformati<strong>on</strong>s,<br />

most notably <strong>the</strong> Suzuki-Miyaura cross-coupl<strong>in</strong>g reacti<strong>on</strong>. This reacti<strong>on</strong><br />

is used to selectively c<strong>on</strong>struct C–C b<strong>on</strong>ds through <strong>the</strong> comb<strong>in</strong>ati<strong>on</strong> of<br />

an organo-bor<strong>on</strong> nucleophile with a suitable aryl, alkenyl, or alkyl halide<br />

or trifl ate. While <strong>the</strong> Suzuki-Miyaura reacti<strong>on</strong> has become comm<strong>on</strong>place<br />

with<strong>in</strong> <strong>the</strong> syn<strong>the</strong>tic community, <strong>on</strong>e limitati<strong>on</strong> of this method is <strong>the</strong><br />

limited ability to access <strong>the</strong> requisite organo-bor<strong>on</strong> species.<br />

Historically, methods for <strong>the</strong> syn<strong>the</strong>sis for aryl C–B b<strong>on</strong>ds have relied<br />

up<strong>on</strong> <strong>the</strong> use of harshly basic reacti<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s or substrates c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g<br />

prefuncti<strong>on</strong>alized carb<strong>on</strong> centers. These shortcom<strong>in</strong>gs require that<br />

additi<strong>on</strong>al steps must be taken to ei<strong>the</strong>r protect sensitive functi<strong>on</strong>ality<br />

or <strong>in</strong>stall <strong>the</strong> necessary functi<strong>on</strong>al handle prior to C–B b<strong>on</strong>d formati<strong>on</strong><br />

(Scheme 1).<br />

R<br />

X<br />

X = Cl, Br, I<br />

R<br />

DG<br />

H<br />

<strong>Aldrich</strong>.com<br />

R'MX<br />

R'Li<br />

R<br />

X<br />

Pd(0), Base<br />

HB(OR'')2<br />

or<br />

(OR'') 2B B(OR'')2<br />

R<br />

X = Br, I, OTf<br />

R<br />

R<br />

MX<br />

B(OR'')3<br />

R<br />

B(OR'')2<br />

DG<br />

B(OR'')3<br />

R<br />

DG<br />

Li B(OR'')2<br />

B(OR'') 2<br />

Scheme 1: Classical methods for C–B b<strong>on</strong>d formati<strong>on</strong>.<br />

Harshly basic reacti<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s<br />

Multiple steps and manipulati<strong>on</strong>s<br />

Requires prefuncti<strong>on</strong>alized start<strong>in</strong>g materials<br />

The direct formati<strong>on</strong> of aryl C–B b<strong>on</strong>ds from aryl C–H b<strong>on</strong>ds thus represents<br />

a powerful strategy for streaml<strong>in</strong><strong>in</strong>g <strong>the</strong> syn<strong>the</strong>sis of <strong>the</strong>se useful<br />

reagents (Scheme 2). 1<br />

R<br />

H [M]<br />

HB(OR'')2<br />

or<br />

(OR'')2B B(OR'')2<br />

R<br />

B(OR'')2<br />

Scheme 2: Metal-catalyzed direct C–H borylati<strong>on</strong>.<br />

Catalysis<br />

Joseph<strong>in</strong>e Nakhla, Ph.D.<br />

Market Segment Manager<br />

Organometallics and Catalysis<br />

joseph<strong>in</strong>e.nakhla@sial.com<br />

No harsh reagents or reacti<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s<br />

No need for prefuncti<strong>on</strong>alizati<strong>on</strong><br />

Atom ec<strong>on</strong>omical<br />

TO ORDER: C<strong>on</strong>tact your local <strong>Sigma</strong>-<strong>Aldrich</strong> offi ce (see back cover), or visit <strong>Aldrich</strong>.com/chemicalsyn<strong>the</strong>sis.<br />

Build<strong>in</strong>g up<strong>on</strong> <strong>the</strong>ir previous work with<strong>in</strong> <strong>the</strong> area, 2 Professor John F.<br />

Hartwig has disclosed a method for <strong>the</strong> direct c<strong>on</strong>versi<strong>on</strong> of aryl C–H<br />

b<strong>on</strong>ds to aryl C–B b<strong>on</strong>ds through <strong>the</strong> use of an Ir(I) catalyst and B2p<strong>in</strong>2<br />

(Table 1). 3 This powerful system displays excellent regioselectivity that<br />

can be easily predicted by sterics and leads to <strong>the</strong> rapid syn<strong>the</strong>sis of<br />

highly useful arylbor<strong>on</strong>ic esters.<br />

H 3C<br />

H3CO<br />

R<br />

arene product<br />

CH3<br />

H<br />

H<br />

H<br />

H3C<br />

CH3<br />

H<br />

H3CO<br />

OCH3 OCH3<br />

Cl Cl<br />

Cl<br />

Bp<strong>in</strong><br />

Bp<strong>in</strong><br />

Bp<strong>in</strong><br />

1/2[IrCl(COD)]2/bpy<br />

B2p<strong>in</strong>2, 80 oC, 16 h.<br />

95 %<br />

83 %<br />

86 %<br />

H Bp<strong>in</strong><br />

H3CO H<br />

83 %<br />

Table 1: Ir(I)-Catalyzed aryl C–H borylati<strong>on</strong>.<br />

Cl<br />

R<br />

Bp<strong>in</strong><br />

yield arene product yield<br />

H 3C<br />

H3C<br />

H3CO<br />

CH3<br />

CH3<br />

Br<br />

CH3<br />

H 3C<br />

H3C<br />

H3CO<br />

H3CO<br />

This method provides a simple and direct r<str<strong>on</strong>g>out</str<strong>on</strong>g>e to arylbor<strong>on</strong>ic esters that<br />

fully avoids <strong>the</strong> use of harshly basic reacti<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s and does not<br />

require multiple reacti<strong>on</strong> steps and manipulati<strong>on</strong>s. Importantly, this reacti<strong>on</strong><br />

employs catalysts and reagents that are all readily accessible, and<br />

now available from <strong>Aldrich</strong>.<br />

Reference: (1) Cho, J. Y.; Tse, M. K.; Holmes, D.; Maleczka Jr., R. E.; Smith III, M. R.<br />

Science, 2002, 295, 305 (2) (a) Chen, H.; Hartwig, J. F. Angew. Chem. Int. Ed. Engl. 1999, 38,<br />

3391. (b) Chen, H.; Schlecht, S.; Semple, T. C.; Hartwig, J. F. Science 2000, 287, 1995.<br />

(3) Hartwig, J. F. et al. J. Am. Chem. Soc. 2002, 124, 390. (4) Hartwig, J. F.<br />

et al. Chem. Rev. 2010, 110, 890.<br />

H<br />

H<br />

H<br />

CH3<br />

CH3<br />

Br<br />

Bp<strong>in</strong><br />

CH3<br />

Bp<strong>in</strong><br />

Bp<strong>in</strong><br />

Bp<strong>in</strong><br />

58 %<br />

86 %<br />

72 %<br />

73 %


Iridium(I) Catalysts, Bipyrid<strong>in</strong>e Ligands, and<br />

Borylati<strong>on</strong> Reagents from <strong>Aldrich</strong>:<br />

Ir(I) Catalysts Bipyrid<strong>in</strong>e Ligands Borylati<strong>on</strong> Reagents<br />

For a complete list of C–H borylati<strong>on</strong> reagents available from <strong>Aldrich</strong><br />

Chemistry, please visit <strong>Aldrich</strong>.com/borylati<strong>on</strong><br />

Carboranes as Superweak Ani<strong>on</strong>s<br />

The chemistry of weakly coord<strong>in</strong>at<strong>in</strong>g ani<strong>on</strong>s, or superweak ani<strong>on</strong>s,<br />

c<strong>on</strong>t<strong>in</strong>ues to be actively <strong>in</strong>vestigated with<strong>in</strong> many laboratories for a<br />

variety of purposes. These useful molecules often allow for <strong>the</strong> isolati<strong>on</strong><br />

of extremely reactive salts of cati<strong>on</strong>s, mak<strong>in</strong>g <strong>the</strong>m applicable to <strong>the</strong> ever<br />

grow<strong>in</strong>g list of chemical tasks that require highly reactive cati<strong>on</strong>s. These<br />

uses <strong>in</strong>clude <strong>the</strong> catalytic polymerizati<strong>on</strong> of olefi ns, <strong>the</strong> catalytic formati<strong>on</strong><br />

of C–C b<strong>on</strong>ds, <strong>the</strong> manufacture of high-current-density lithium batteries,<br />

and <strong>the</strong> activati<strong>on</strong> of C–H b<strong>on</strong>ds. Discover how carboranes from <strong>Aldrich</strong><br />

can advance your <strong>research</strong>.<br />

Carboranes from <strong>Aldrich</strong>:<br />

F<br />

B F<br />

B<br />

B<br />

F<br />

Cl<br />

Ir Ir<br />

Cl<br />

683094<br />

CH3<br />

O<br />

Ir Ir<br />

O<br />

B<br />

CH3<br />

685062<br />

[Ir(COE) 2 Cl] 2<br />

377155<br />

Ir<br />

685011<br />

F<br />

B<br />

B<br />

F<br />

F F F<br />

B<br />

B<br />

F<br />

F B<br />

F<br />

B Cs<br />

B<br />

Cs<br />

B<br />

F<br />

N N<br />

36759 473294<br />

H3C CH3<br />

N N<br />

569593<br />

H3C CH3<br />

N N<br />

513040<br />

H3CO OCH3<br />

N N<br />

536040<br />

t-Bu t-Bu<br />

N N<br />

515477<br />

F<br />

F<br />

B<br />

B<br />

F<br />

B<br />

B<br />

F<br />

B<br />

B<br />

F<br />

B<br />

B<br />

F<br />

F<br />

B<br />

B<br />

F F F<br />

723509 720887<br />

H3C<br />

H3C<br />

H3C<br />

H3C H3C<br />

H3C<br />

H<br />

H<br />

B<br />

B<br />

O O<br />

B B<br />

O O<br />

O<br />

B<br />

O<br />

CH3<br />

CH3<br />

CH3<br />

CH3<br />

655856<br />

O O<br />

B B<br />

O O<br />

473286<br />

O<br />

B<br />

O<br />

188913<br />

O<br />

B<br />

O<br />

518808<br />

F<br />

F<br />

Ready to scale up? For competitive quotes <strong>on</strong> larger quantities or custom syn<strong>the</strong>sis, c<strong>on</strong>tact your local <strong>Sigma</strong>-<strong>Aldrich</strong> offi ce, or visit safcglobal.com.<br />

K<br />

K<br />

CH3<br />

CH3<br />

CH3<br />

CH3 O CH3<br />

B<br />

O CH3<br />

Frustrated Lewis Pairs as Hydrogenati<strong>on</strong><br />

Catalysts<br />

Catalysis<br />

The hydrogenati<strong>on</strong> of organic substrates with molecular hydrogen (H2)<br />

has been used for purposes rang<strong>in</strong>g from <strong>the</strong> large-scale upgrad<strong>in</strong>g of<br />

crude-oil, to <strong>the</strong> syn<strong>the</strong>sis of fi ne chemicals used <strong>in</strong> food, agriculture, and<br />

<strong>the</strong> pharmaceutical <strong>in</strong>dustry. While <strong>the</strong> majority of methods rely <strong>on</strong> <strong>the</strong><br />

use of costly precious metal catalysts, recent work from <strong>the</strong> lab of Professor<br />

Douglas W. Stephan has illustrated <strong>the</strong> use of frustrated Lewis pairs<br />

for <strong>the</strong> same purpose. 1,2 These powerful n<strong>on</strong>-metallic catalysts c<strong>on</strong>ta<strong>in</strong><br />

both Lewis acidic (borane) and Lewis basic (phosph<strong>in</strong>e) moieties that<br />

cannot be quenched <strong>in</strong>ternally due to steric c<strong>on</strong>stra<strong>in</strong>ts. Because of this<br />

unquenched reactivity, <strong>the</strong>se organic catalysts are used to activate a variety<br />

of small molecules, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> heterolytic cleavage of H2, lead<strong>in</strong>g to<br />

a powerful catalyst system for <strong>the</strong> hydrogenati<strong>on</strong> of im<strong>in</strong>es and azirid<strong>in</strong>es<br />

(Scheme 3).<br />

Scheme 3: Frustrated Lewis pairs for <strong>the</strong> hydrogenati<strong>on</strong> of im<strong>in</strong>es<br />

and azirid<strong>in</strong>es.<br />

Reference: (1) Welch, G. C.; San Juan, R. R.; Masuda, J. D.; Stephan, D. W. Science 2006, 314,<br />

1124. (2) (a) Chase, P. A.; Welch, G. C.; Jurca, T.; Stephan, D. W. Angew. Chem., Int. Ed. 2007,<br />

46, 8050. (b) Chase, P. A.; Welch, G. C.; Jurca, T.; Stephan, D. W. Angew. Chem., Int. Ed. 2007,<br />

46, 9136.<br />

Frustrated Lewis Pairs from <strong>Aldrich</strong>:<br />

F<br />

F<br />

t-Bu<br />

N<br />

703087 5 mol %<br />

t-Bu<br />

NH<br />

H Ph<br />

5 atm H 2<br />

H Ph<br />

H<br />

98 %<br />

F<br />

F<br />

F F<br />

H<br />

B<br />

F F<br />

F F<br />

F<br />

Ph<br />

F<br />

Ph<br />

N<br />

Ph<br />

F<br />

t-Bu<br />

P<br />

t-Bu<br />

F<br />

H +<br />

703095<br />

5 atm H 2<br />

F<br />

F<br />

For a complete list of Frustrated Lewis pairs available from <strong>Aldrich</strong><br />

Chemistry, please visit <strong>Aldrich</strong>.com/fl p<br />

F<br />

F<br />

F<br />

F<br />

10 mol %<br />

F<br />

BH<br />

F F<br />

F<br />

F<br />

F<br />

F<br />

H3C Ph<br />

NH<br />

H +<br />

F H3C 703087 703095<br />

Ph<br />

Ph<br />

98 %<br />

P<br />

CH 3<br />

CH3 CH3<br />

CH3<br />

9


10<br />

ChemMatrix® Res<strong>in</strong> – A major advance <strong>in</strong> solid<br />

phase peptide syn<strong>the</strong>sis<br />

ChemMatrix® is a proprietary, 100% PEG (polyethylene glycol) based<br />

res<strong>in</strong> from PCAS BioMatrix. It comb<strong>in</strong>es <strong>the</strong> strengths of two major<br />

res<strong>in</strong> systems — <strong>the</strong> chemical stability of polystyrene res<strong>in</strong>s and <strong>the</strong><br />

superior performance of PEG grafted res<strong>in</strong>s mak<strong>in</strong>g it <strong>the</strong> ultimate<br />

choice for <strong>the</strong> solid supported syn<strong>the</strong>sis of large or hydrophobic<br />

peptides and even prote<strong>in</strong>s.<br />

In <strong>the</strong> past decades polystyrene res<strong>in</strong>s have been <strong>the</strong> primary choice for<br />

solid supported peptide syn<strong>the</strong>sis due to <strong>the</strong>ir good results <strong>in</strong> <strong>the</strong> syn<strong>the</strong>sis<br />

of small peptides. Never<strong>the</strong>less, with <strong>the</strong> grow<strong>in</strong>g am<strong>in</strong>o acid cha<strong>in</strong><br />

dur<strong>in</strong>g <strong>the</strong> syn<strong>the</strong>sis, <strong>the</strong> tendency of <strong>the</strong> peptide to form sec<strong>on</strong>dary<br />

structures <strong>in</strong>creases. The hydrophobic envir<strong>on</strong>ment of <strong>the</strong> polystyrene<br />

res<strong>in</strong> amplifi es <strong>the</strong> aggregati<strong>on</strong>al behavior of <strong>the</strong> peptide mak<strong>in</strong>g <strong>the</strong><br />

syn<strong>the</strong>sis of large peptides extremely diffi cult or even impossible. Crude<br />

products of large peptides syn<strong>the</strong>sized <strong>on</strong> polystyrene res<strong>in</strong>s exhibit a<br />

mixture of deleti<strong>on</strong> sequences and uncompleted fragments. PEG grafted<br />

res<strong>in</strong>s have helped to reach better crude peptide purities by mak<strong>in</strong>g <strong>the</strong><br />

res<strong>in</strong> more polar and improv<strong>in</strong>g <strong>the</strong> swell<strong>in</strong>g properties <strong>in</strong> both polar<br />

and unpolar solvents. As a drawback such PEG grafted res<strong>in</strong>s <strong>on</strong>ly allow<br />

smaller load<strong>in</strong>gs and are less chemically stable lead<strong>in</strong>g to potential leach<strong>in</strong>g<br />

dur<strong>in</strong>g <strong>the</strong> cleavage step.<br />

ChemMatrix res<strong>in</strong> was designed from scratch start<strong>in</strong>g with a new type of<br />

m<strong>on</strong>omer build<strong>in</strong>g block. The fi nal polymer res<strong>in</strong> is built exclusively <strong>on</strong><br />

primary e<strong>the</strong>r b<strong>on</strong>ds and <strong>the</strong>refore exhibits high chemical stability, avoid<strong>in</strong>g<br />

leach<strong>in</strong>g (Figure 1). 1<br />

O<br />

H2N O<br />

H2N O<br />

H2N O<br />

Figure 1: The scaff old of Am<strong>in</strong>omethyl-ChemMatrix res<strong>in</strong> is built completely <strong>on</strong><br />

chemically stable polye<strong>the</strong>r b<strong>on</strong>ds (left). Microscopic image of ChemMatrix beads<br />

(right).<br />

<strong>Aldrich</strong>.com<br />

O<br />

O<br />

O<br />

O<br />

O<br />

n<br />

nO<br />

NH2 nO<br />

NH2<br />

O<br />

n<br />

NH2 Chemical Biology<br />

Matthias Junkers, Ph.D.<br />

Product Manager<br />

matthias.junkers@sial.com<br />

TO ORDER: C<strong>on</strong>tact your local <strong>Sigma</strong>-<strong>Aldrich</strong> offi ce (see back cover), or visit <strong>Aldrich</strong>.com/chemicalsyn<strong>the</strong>sis.<br />

At <strong>the</strong> same time, <strong>the</strong> <strong>in</strong>creased polarity of <strong>the</strong> res<strong>in</strong> allows <strong>the</strong> use of various<br />

polar solvents, <strong>in</strong>clud<strong>in</strong>g: water, THF, DMF, methanol and acet<strong>on</strong>itrile,<br />

<strong>in</strong> which <strong>the</strong> res<strong>in</strong> displays excellent swell<strong>in</strong>g properties (Figure 2). High<br />

swell<strong>in</strong>g properties should be c<strong>on</strong>sidered dur<strong>in</strong>g practical use as <strong>the</strong> wet<br />

ChemMatrix res<strong>in</strong> will c<strong>on</strong>sume c<strong>on</strong>siderably more space <strong>in</strong> <strong>the</strong> reacti<strong>on</strong><br />

vessel than c<strong>on</strong>venti<strong>on</strong>al polystyrene res<strong>in</strong>s. Typical load<strong>in</strong>g ranges are<br />

between 0.4 and 0.7 mmol/g which is a comparable b<strong>in</strong>d<strong>in</strong>g capacity as<br />

polystyrene res<strong>in</strong>s.<br />

Swell<strong>in</strong>g (mL/g)<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Acet<strong>on</strong>itrile<br />

DCM<br />

DMF<br />

NMP<br />

DMSO<br />

Methanol<br />

TFA<br />

Water<br />

Figure 2: Swell<strong>in</strong>g properties of ChemMatrix res<strong>in</strong> compared to<br />

polystyrene res<strong>in</strong>.<br />

Polystyrene<br />

Am<strong>in</strong>omethyl-<br />

ChemMatrix<br />

Two recent <strong>in</strong>dependent publicati<strong>on</strong>s give remarkable evidence for<br />

<strong>the</strong> unmatched performance of ChemMatrix res<strong>in</strong>. For <strong>the</strong> syn<strong>the</strong>sis of<br />

HIV–1 protease, a large peptide of 99 am<strong>in</strong>o acids, ChemMatrix res<strong>in</strong><br />

was compared directly to polystyrene. 2 As <strong>the</strong> follow<strong>in</strong>g chromatograms<br />

clearly show, <strong>the</strong> desired peptide is <strong>the</strong> ma<strong>in</strong> comp<strong>on</strong>ent of <strong>the</strong> crude<br />

product us<strong>in</strong>g ChemMatrix as <strong>the</strong> solid support (Figure 3). Polystyrene<br />

res<strong>in</strong>s <strong>on</strong>ly deliver crude mixtures prevent<strong>in</strong>g <strong>the</strong> direct, l<strong>in</strong>ear syn<strong>the</strong>sis<br />

of l<strong>on</strong>g peptides.


1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00<br />

M<strong>in</strong>utes<br />

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00<br />

M<strong>in</strong>utes<br />

Figure 3: HPLC chromatograms of HIV–1 protease (99 am<strong>in</strong>o acids) after<br />

78 am<strong>in</strong>o acids. The syn<strong>the</strong>sis <strong>on</strong> ChemMatrix res<strong>in</strong> yields <strong>the</strong> desired peptide<br />

directly with<str<strong>on</strong>g>out</str<strong>on</strong>g> fur<strong>the</strong>r purifi cati<strong>on</strong> (top) whereas polystyrene<br />

res<strong>in</strong> <strong>on</strong>ly yields a very crude mixture (bottom). 2<br />

7.025<br />

In a sec<strong>on</strong>d amaz<strong>in</strong>g example, Bacsa et al. reported <strong>in</strong> 2010, <strong>the</strong> solid<br />

supported, microwave assisted syn<strong>the</strong>sis of <strong>the</strong> polypeptide Aβ(1–42). 3<br />

Aβ (1–42) plays a crucial role <strong>in</strong> <strong>the</strong> pathogenesis of Alzheimer’s disease<br />

<strong>in</strong> that it forms β–sheet structures and amyloid fi brils which <strong>in</strong>duce<br />

neurotoxicity. Thus, it is a key material needed to fur<strong>the</strong>r <strong>in</strong>vestigate <strong>the</strong><br />

molecular mechanisms of Alzheimer’s disease and potential drugs for its<br />

treatment. Due to its aggregati<strong>on</strong>al behavior this peptide is highly diffi cult<br />

to syn<strong>the</strong>size. ChemMatrix res<strong>in</strong> allows <strong>the</strong> direct, l<strong>in</strong>ear syn<strong>the</strong>sis with a<br />

standard Fmoc/t–Bu syn<strong>the</strong>sis strategy apply<strong>in</strong>g DIC/HOBt as a simple<br />

and <strong>in</strong>expensive coupl<strong>in</strong>g reagent. Except for <strong>the</strong> coupl<strong>in</strong>g of three<br />

racemizati<strong>on</strong> sensitive histid<strong>in</strong>e residues which was carried <str<strong>on</strong>g>out</str<strong>on</strong>g> at room<br />

temperature <strong>the</strong> syn<strong>the</strong>sis was achieved under c<strong>on</strong>trolled microwave<br />

c<strong>on</strong>diti<strong>on</strong>s at 86 °C. ChemMatrix res<strong>in</strong> rema<strong>in</strong>ed completely stable under<br />

<strong>the</strong>se c<strong>on</strong>diti<strong>on</strong>s. 4 F<strong>in</strong>ally, Aβ(1–42) was obta<strong>in</strong>ed with<strong>in</strong> a 15h overall<br />

process<strong>in</strong>g time <strong>in</strong> high yield and purity (78% crude yield). 3<br />

Apart from peptide syn<strong>the</strong>sis ChemMatrix res<strong>in</strong> has also been used successfully<br />

<strong>in</strong> comb<strong>in</strong>atorial syn<strong>the</strong>sis, 5 for <strong>the</strong> syn<strong>the</strong>sis of olig<strong>on</strong>ucleotide<br />

derivatives, 6 PNA, 7 asymmetrically substituted phthalocyan<strong>in</strong>es, 8 and<br />

peptide hybrids <strong>in</strong>corporat<strong>in</strong>g n<strong>on</strong>-natural chemical residues. 9<br />

In summary, ChemMatrix overcomes <strong>the</strong> challenges of syn<strong>the</strong>siz<strong>in</strong>g<br />

l<strong>on</strong>ger and more complex <strong>the</strong>rapeutic peptides. Peptides produced with<br />

ChemMatrix have higher purity and can be obta<strong>in</strong>ed with better yields.<br />

Peptides that were hi<strong>the</strong>rto achievable <strong>on</strong>ly by ligati<strong>on</strong> or recomb<strong>in</strong>ant<br />

techniques can now be syn<strong>the</strong>sized directly <strong>on</strong> solid support.<br />

Ready to scale up? For competitive quotes <strong>on</strong> larger quantities or custom syn<strong>the</strong>sis, c<strong>on</strong>tact your local <strong>Sigma</strong>-<strong>Aldrich</strong> offi ce, or visit safcglobal.com.<br />

Chemical Biology<br />

For <strong>the</strong> syn<strong>the</strong>sis of peptide acids, we recommend us<strong>in</strong>g <strong>the</strong> ChemMatrix<br />

with a HMPB anchor as this res<strong>in</strong> will provide high crude purity and a<br />

recovery yield of 90–95%. The Wang-ChemMatrix will produce similar<br />

crude peptide purity, but <strong>the</strong> recovery yield is lower (60–70%). HMPB–ChemMatrix<br />

res<strong>in</strong>s are also off ered preloaded with <strong>the</strong> most comm<strong>on</strong> am<strong>in</strong>o<br />

acids. A number of protocols for <strong>the</strong> applicati<strong>on</strong> of ChemMatrix res<strong>in</strong> have<br />

been published recently <strong>in</strong> <strong>the</strong> literature. 10<br />

Features of ChemMatrix Res<strong>in</strong><br />

• Excepti<strong>on</strong>al Stability<br />

ChemMatrix res<strong>in</strong> is made exclusively from primary e<strong>the</strong>r b<strong>on</strong>ds which<br />

are highly chemically stable. No leach<strong>in</strong>g occurs dur<strong>in</strong>g syn<strong>the</strong>sis and<br />

cleavage.<br />

• High Load<strong>in</strong>g<br />

ChemMatrix res<strong>in</strong>s have a load<strong>in</strong>g of 0.4–0.7 mmol/g.<br />

• Solvent Compatibility<br />

ChemMatrix allows <strong>the</strong> use of almost any k<strong>in</strong>d of solvent, even water.<br />

High swell<strong>in</strong>g properties of ChemMatrix <strong>in</strong> water allows high throughput<br />

post-syn<strong>the</strong>tic downstream screen<strong>in</strong>g.<br />

• Versatile Choices<br />

ChemMatrix res<strong>in</strong> is off ered with an extensive range of l<strong>in</strong>kers for<br />

peptide acids, amides and fragments. For peptide syn<strong>the</strong>sis, preloaded<br />

res<strong>in</strong>s are also available for your c<strong>on</strong>venience.<br />

• Dem<strong>on</strong>strated Superiority<br />

ChemMatrix res<strong>in</strong> has been fi eld proven for easier and faster development<br />

of l<strong>on</strong>g, complex and hydrophobic peptides. The l<strong>on</strong>ger, <strong>the</strong> more<br />

complex or hydrophobic your peptide is, <strong>the</strong> more improvement you<br />

will see with ChemMatrix.<br />

• Microwave assisted syn<strong>the</strong>sis<br />

No leach<strong>in</strong>g is observed <strong>on</strong> microwave syn<strong>the</strong>sizers at 80 °C.<br />

References: (1) García-Mart<strong>in</strong>, F.; Albericio, F. Chem. Today 2008, 26, 29. (2) Frutos, S.;<br />

Tulla-Pucha, J.; Albericio, F.; Giralt, E. Intern. J. of Pept. Res. Ther. 2007, 13, 221. (3) Bacsa, B.;<br />

Bösze, S.; Kappe. C. O. J. Org. Chem. 2010, 75, 2103. (4a) Subiros-Funosas, R.; Acosta, G. A.;<br />

El-Faham, A.; Albericio, F. Tet. Lett. 2009, 50, 6200. (4b) Galanis, A. S.; Albericio, F.; Grøtli,<br />

M. Org. Lett. 2009, 11, 4488. (5) Marani, M.M.; Martínez-Cer<strong>on</strong>, M. C.; Giudicessi, S. L.; de<br />

Oliveira, E.; Côté S.; Erra-Balsells, R.; Albericio, F.; Casc<strong>on</strong>e, O.; Camperi, S. A. J. Comb. Chem.<br />

2009, 11, 146. (6) Mazz<strong>in</strong>i, S.; García-Mart<strong>in</strong>, F.; Alvira, M.; Aviñó, A.; Mann<strong>in</strong>g, B.; Albericio, F.;<br />

Eritja, R. Chem. Biodiv. 2008, 5, 209. (7) Fabani, M. M.; Abreu-Goodger, C.; Williams, D.; Ly<strong>on</strong>s,<br />

P. A.; Torres, A. G.; Smith, K. G. C.; Enright, A. J.; Gait, M. J.; Vigorito., E. Nucl. Acids Res. 2010, 38,<br />

4466. (8) Erdem, S. S.; Nesterova, I. V.; Soper, S. A.; Hammer, R. P. J. Org. Chem. 2008, 73, 5003.<br />

(9) Spengler, J.; Ruíz-Rodríguez, J.; Yraola, F.; Royo, M.; W<strong>in</strong>ter, M.; Burger, K.; Albericio. F. J.<br />

Org. Chem. 2008, 73, 2311. (10) García-Ramos Y.; Paradís-Bas, M.; Tulla-Puchea, J.; Albericio, F.<br />

J. Pept. Science 2010, 16, 675.<br />

11


12<br />

ChemMatrix res<strong>in</strong>s<br />

N<br />

H<br />

O<br />

HMPB-CM<br />

727741<br />

N<br />

H<br />

O<br />

Wang-CM<br />

64191<br />

N<br />

H<br />

O<br />

Ramage-CM<br />

<strong>Aldrich</strong>.com<br />

O<br />

O<br />

O<br />

H2N O<br />

H2N O<br />

H2N O<br />

OH<br />

OCH3<br />

OH<br />

NHFmoc<br />

O<br />

O<br />

O<br />

Am<strong>in</strong>omethyl CM<br />

68571<br />

nO<br />

NH2<br />

nO<br />

NH2<br />

O NH2<br />

n<br />

N<br />

H<br />

O<br />

O<br />

R<strong>in</strong>k amide CM<br />

727768<br />

N<br />

H<br />

O<br />

Trityl-OH CM<br />

727776<br />

N<br />

H<br />

O<br />

PAL-CM<br />

727792 727784<br />

OH<br />

O<br />

NHFmoc<br />

OCH3<br />

OCH3<br />

OCH 3<br />

NHFmoc<br />

OCH3<br />

ChemMatrix HMPB preloaded res<strong>in</strong>s<br />

TO ORDER: C<strong>on</strong>tact your local <strong>Sigma</strong>-<strong>Aldrich</strong> offi ce (see back cover), or visit <strong>Aldrich</strong>.com/chemicalsyn<strong>the</strong>sis.<br />

N<br />

H<br />

N<br />

H<br />

N<br />

H<br />

N<br />

H<br />

O<br />

O<br />

O<br />

OCH3<br />

O<br />

NH2<br />

O<br />

H-Gly-HMPB-CM H-Ala-HMPB-CM<br />

O<br />

H-Arg(Pbf)-HMPB-CM<br />

O<br />

O<br />

727806 727822<br />

O<br />

H-Leu-HMPB-CM<br />

O<br />

H-Phe-HMPB-CM<br />

OCH3<br />

O<br />

HN<br />

OCH3<br />

O<br />

OCH3<br />

O<br />

O<br />

NH2<br />

NH<br />

NHPbf<br />

NH2 CH3<br />

CH3<br />

O<br />

N<br />

H<br />

N<br />

H<br />

N<br />

H<br />

O<br />

O<br />

O<br />

O<br />

O<br />

H-Lys(Boc)-HMPB-CM<br />

727849 727865<br />

O<br />

H-Val-HMPB-CM<br />

727814 727830<br />

NH2<br />

O<br />

N H<br />

O<br />

O<br />

H-Pro-HMPB-CM<br />

727857 727873<br />

OCH3<br />

O<br />

OCH3<br />

O<br />

OCH3<br />

O<br />

O<br />

O<br />

BocHN<br />

NH2<br />

NH2<br />

NH2<br />

OCH3<br />

HN<br />

O<br />

O<br />

CH3<br />

CH3<br />

CH3 O<br />

For a complete list of ChemMatrix products available from <strong>Aldrich</strong><br />

Chemistry, please visit <strong>Aldrich</strong>.com/chemmatrix


Custom Packaged Reagents (CPR)<br />

To register for an <strong>on</strong>l<strong>in</strong>e order<strong>in</strong>g<br />

account or to submit <strong>in</strong>quiries, visit<br />

Discoverycpr.com<br />

Our CPR Service provides a cost eff ective strategy to<br />

procure <strong>on</strong>e to thousands of unique, custom packaged<br />

build<strong>in</strong>g blocks and screen<strong>in</strong>g compounds for use <strong>in</strong><br />

<strong>research</strong> programs.<br />

CPR is optimized to support several discovery activities:<br />

• The chemist look<strong>in</strong>g to identify and procure sets of build<strong>in</strong>g blocks for <strong>the</strong>ir high<br />

throughput syn<strong>the</strong>tic reacti<strong>on</strong>s<br />

• The chemical biologist or biologist <strong>in</strong>terested <strong>in</strong> <strong>the</strong> diversity of <strong>the</strong> world’s largest<br />

selecti<strong>on</strong> of screen<strong>in</strong>g compounds<br />

Customized packag<strong>in</strong>g allows you to receive samples <strong>in</strong> a ready-to-use format, allow<strong>in</strong>g<br />

you to focus <strong>on</strong> your <strong>research</strong> ra<strong>the</strong>r than spend<strong>in</strong>g time weigh<strong>in</strong>g <str<strong>on</strong>g>out</str<strong>on</strong>g> build<strong>in</strong>g blocks or<br />

track<strong>in</strong>g down vendors.<br />

CPR from <strong>Aldrich</strong> provides:<br />

• Widest selecti<strong>on</strong> of build<strong>in</strong>g blocks, reagents, and screen<strong>in</strong>g compounds through<br />

hundreds of managed vendors worldwide<br />

• Internet-based chemical database and procurement functi<strong>on</strong>ality<br />

• Custom packag<strong>in</strong>g of over 200,000 off -<strong>the</strong>-shelf products from global sources<br />

• Availability and pric<strong>in</strong>g <strong>in</strong> a s<strong>in</strong>gle quotati<strong>on</strong> with c<strong>on</strong>solidati<strong>on</strong> of <strong>in</strong>voic<strong>in</strong>g<br />

• Standard or client-supplied custom packag<strong>in</strong>g <strong>in</strong> vials or plates<br />

• Customized label<strong>in</strong>g, <strong>in</strong>clud<strong>in</strong>g 1-D or 2-D barcod<strong>in</strong>g to your specifi cati<strong>on</strong>s<br />

Normalizati<strong>on</strong> of electr<strong>on</strong>ic data with shipment <strong>in</strong>clud<strong>in</strong>g SD fi le generati<strong>on</strong><br />


14<br />

MIDA Bor<strong>on</strong>ates for Suzuki–Miyaura<br />

Cross-Coupl<strong>in</strong>gs<br />

<strong>Aldrich</strong>.com<br />

Organometallics<br />

Aar<strong>on</strong> Thornt<strong>on</strong>, Ph.D.<br />

Product Manager<br />

aar<strong>on</strong>.thornt<strong>on</strong>@sial.com<br />

Professor Mart<strong>in</strong> Burke and coworkers recently prepared ret<strong>in</strong>al us<strong>in</strong>g<br />

key MIDA build<strong>in</strong>g block BB1 <strong>in</strong> iterative Suzuki-Miyaura cross coupl<strong>in</strong>g<br />

reacti<strong>on</strong>s (Scheme 1). The MIDA unit of BB1 is unreactive under <strong>the</strong>se<br />

c<strong>on</strong>diti<strong>on</strong>s, allow<strong>in</strong>g for <strong>the</strong> selective cross-coupl<strong>in</strong>g of BB1 with triene<br />

(1). Subsequent hydrolysis of <strong>the</strong> MIDA unit of (2) followed by a sec<strong>on</strong>d<br />

Suzuki-Miyaura reacti<strong>on</strong> provided all-trans-ret<strong>in</strong>al.<br />

H3C<br />

CH3<br />

CH3<br />

B(OH)2<br />

H3C N<br />

BB1<br />

O<br />

B O<br />

Br O O<br />

703478<br />

Pd(OAc)2, SPhos, K3PO4<br />

H3C CH3<br />

CH3<br />

H3C<br />

N<br />

B O<br />

O<br />

O<br />

O<br />

CH3 1 toluene<br />

23 °C, 78%<br />

CH3 2<br />

1. aq. NaOH, THF, 23 °C<br />

CH3 H<br />

2.<br />

Br O<br />

Pd(OAc)2, SPhos, K3PO4, THF<br />

23 °C, 66%<br />

CH3 CH3 H3C<br />

H<br />

CH3<br />

O<br />

CH3<br />

all-trans-ret<strong>in</strong>al<br />

Scheme 1: Iterative Suzuki-Miyaura cross-coupl<strong>in</strong>gs <strong>in</strong> <strong>the</strong> syn<strong>the</strong>sis of<br />

all-trans-ret<strong>in</strong>al.<br />

Reference: Lee, S. J. et al. J. Am. Chem. Soc. 2008, 130, 466.<br />

The many advantages of <strong>the</strong> MIDA bor<strong>on</strong>ate platform <strong>in</strong>clude air and<br />

moisture stability, stability under anhydrous cross-coupl<strong>in</strong>g c<strong>on</strong>diti<strong>on</strong>s,<br />

compatibility with a range of comm<strong>on</strong> and harsh reagents, solubility<br />

<strong>in</strong> various organic solvents, silica gel compatibility, and <strong>the</strong> ability to<br />

undergo slow release cross-coupl<strong>in</strong>gs.<br />

MIDA Bor<strong>on</strong>ates from <strong>Aldrich</strong>:<br />

H3C<br />

N<br />

B O O<br />

O O<br />

697311<br />

H3C<br />

H3C<br />

N<br />

B O<br />

O<br />

CH2 O<br />

O<br />

707252<br />

TO ORDER: C<strong>on</strong>tact your local <strong>Sigma</strong>-<strong>Aldrich</strong> offi ce (see back cover), or visit <strong>Aldrich</strong>.com/chemicalsyn<strong>the</strong>sis.<br />

H2C<br />

H2C<br />

H3C<br />

N<br />

B O O<br />

O O<br />

N<br />

B<br />

O<br />

O<br />

O O<br />

H3C<br />

698709 700231<br />

N<br />

B<br />

O<br />

O<br />

O O<br />

H3C<br />

704415<br />

HC<br />

S<br />

N<br />

B<br />

O<br />

O<br />

O O<br />

H3C<br />

708828<br />

For complete list of MIDA bor<strong>on</strong>ates available from<br />

<strong>Aldrich</strong> Chemistry, visit <strong>Aldrich</strong>.com/mida<br />

Slow-Release of Unstable Bor<strong>on</strong>ic Acids from<br />

MIDA Bor<strong>on</strong>ates<br />

In additi<strong>on</strong> to attenuated reactivity towards anhydrous cross-coupl<strong>in</strong>g<br />

c<strong>on</strong>diti<strong>on</strong>s, MIDA bor<strong>on</strong>ates also possess <strong>the</strong> capacity for <strong>in</strong> situ slowrelease<br />

of bor<strong>on</strong>ic acids under aqueous basic c<strong>on</strong>diti<strong>on</strong>s (Scheme 2).<br />

Harness<strong>in</strong>g this phenomen<strong>on</strong>, bor<strong>on</strong>ic acids that are notoriously unstable<br />

can be eff ectively utilized <strong>in</strong> cross-coupl<strong>in</strong>g when employed as MIDA<br />

bor<strong>on</strong>ates. While aqueous soluti<strong>on</strong>s of NaOH promote <strong>the</strong> fast hydrolysis<br />

of MIDA bor<strong>on</strong>ates to <strong>the</strong>ir corresp<strong>on</strong>d<strong>in</strong>g bor<strong>on</strong>ic acids, <strong>the</strong> use of aqueous<br />

K3PO4 allows for <strong>the</strong> slow-release of relatively unstable bor<strong>on</strong>ic acids,<br />

prevent<strong>in</strong>g decompositi<strong>on</strong> of <strong>the</strong> organometallic species and improv<strong>in</strong>g<br />

overall yields for many Suzuki-Miyaura reacti<strong>on</strong>s.<br />

Slow Release of Unstable Bor<strong>on</strong>ic Acids<br />

R B<br />

H3C<br />

Pd-catalyst<br />

N<br />

O<br />

O<br />

O<br />

O<br />

mild aqueous base (e.g. K3PO4)<br />

Cl R'<br />

R B(OH)2<br />

Scheme 2: Slow-release of unstable bor<strong>on</strong>ic acids from MIDA bor<strong>on</strong>ates.<br />

Burke and coworkers exam<strong>in</strong>ed this slow-release c<strong>on</strong>cept by compar<strong>in</strong>g<br />

various freshly prepared bor<strong>on</strong>ic acids with <strong>the</strong>ir corresp<strong>on</strong>d<strong>in</strong>g MIDA<br />

bor<strong>on</strong>ates. The study revealed that many bor<strong>on</strong>ic acids decompose<br />

signifi cantly via various pathways, <strong>in</strong>clud<strong>in</strong>g protodeborylati<strong>on</strong>, oxidati<strong>on</strong>,<br />

and polymerizati<strong>on</strong>, after just 15 days of benchtop storage under air. On<br />

<strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong> corresp<strong>on</strong>d<strong>in</strong>g MIDA bor<strong>on</strong>ates were remarkably<br />

stable, with >95% of each MIDA rema<strong>in</strong><strong>in</strong>g after ≥60 days of benchtop<br />

storage under air. In additi<strong>on</strong> to complicati<strong>on</strong>s related to storage, <strong>the</strong><br />

overall effi ciency of cross-coupl<strong>in</strong>g for <strong>the</strong>se reagents is also impacted<br />

by <strong>the</strong> nature of <strong>the</strong> bor<strong>on</strong> unit. For example, while isolated yields are<br />

R R'


generally low to moderate even when freshly-prepared bor<strong>on</strong>ic acids are<br />

employed <strong>in</strong> Suzuki-Miyaura cross-coupl<strong>in</strong>gs, employ<strong>in</strong>g <strong>the</strong> corresp<strong>on</strong>d<strong>in</strong>g<br />

MIDA bor<strong>on</strong>ate results <strong>in</strong> excellent yields of <strong>the</strong> desired cross-coupled<br />

products (Table 1).<br />

Entry<br />

1<br />

2<br />

3<br />

4<br />

R B<br />

H3C<br />

R B(OH)2 or<br />

N<br />

O<br />

O<br />

O<br />

O<br />

1 eq 1 eq<br />

A B<br />

R<br />

O<br />

Boc<br />

N<br />

% rema<strong>in</strong><strong>in</strong>g after benchtop<br />

storage under air<br />

A (15 days) B (>60 days)<br />

7 >95<br />

95<br />

5 >95 a<br />

Ot-Bu<br />

Cl 1 mmol<br />

Pd(OAc)2, SPhos<br />

K3PO4, dioxane:H2O (5:1)<br />

60 °C, 6 h<br />

Boc<br />

N<br />

SO2Ph SO2Ph<br />

N<br />

95<br />

N<br />

a cross coupl<strong>in</strong>g c<strong>on</strong>ducted at 100 °C<br />

O<br />

C<br />

Ot-Bu<br />

Ot-Bu<br />

Ot-Bu<br />

Ot-Bu<br />

R<br />

C<br />

Ot-Bu<br />

Cross Coupl<strong>in</strong>g<br />

Isolated Yield (%)<br />

with A with B<br />

68 94<br />

61 90<br />

79 98<br />

14 93<br />

Table 1: Stability and slow-release cross-coupl<strong>in</strong>g studies of MIDA bor<strong>on</strong>ates vs.<br />

bor<strong>on</strong>ic acids.<br />

MIDA Bor<strong>on</strong>ates for Classically Challeng<strong>in</strong>g<br />

Suzuki-Miyaura Cross-Coupl<strong>in</strong>gs<br />

The power of this slow-release c<strong>on</strong>cept has been fur<strong>the</strong>r illustrated by<br />

utiliz<strong>in</strong>g various MIDA bor<strong>on</strong>ates of which <strong>the</strong> corresp<strong>on</strong>d<strong>in</strong>g bor<strong>on</strong>ic<br />

acids have historically exhibited challenges with respect to ei<strong>the</strong>r storage<br />

or use, <strong>in</strong>clud<strong>in</strong>g 2-heterocyclic, v<strong>in</strong>yl and cyclopropyl bor<strong>on</strong>ic acids.<br />

Because <strong>the</strong>se organobor<strong>on</strong> species readily decompose through a variety<br />

of pathways, <strong>the</strong> effi ciency with which <strong>the</strong>ir corresp<strong>on</strong>d<strong>in</strong>g MIDA bor<strong>on</strong>ates<br />

may be coupled is particularily noteworthy (Table 2).<br />

R B<br />

H3C N<br />

O<br />

O<br />

O<br />

O<br />

Cl R'<br />

Pd(OAc)2, SPhos, K3PO4<br />

dioxane/H2O (5:1), 60 °C, 6 h<br />

R R'<br />

Entry R MIDA R' Cl<br />

Product Isolated Yield (%)<br />

H3C<br />

N<br />

N<br />

N<br />

1<br />

S B O<br />

O<br />

H3C<br />

O<br />

O Cl N<br />

S<br />

N<br />

97<br />

2<br />

Boc<br />

N<br />

N<br />

B O<br />

O<br />

O<br />

O<br />

Cl<br />

O<br />

N<br />

CH3<br />

Boc<br />

N<br />

O<br />

N<br />

CH3<br />

98<br />

H3C 3<br />

N<br />

B O<br />

O<br />

O<br />

O Cl<br />

N NH2<br />

N NH2<br />

76<br />

H3C<br />

N<br />

H3C CH3 H3C CH3<br />

4<br />

B O<br />

O<br />

O<br />

O Cl<br />

CH3<br />

CH3<br />

79<br />

Table 2: Slow-release cross-coupl<strong>in</strong>g of MIDA bor<strong>on</strong>ates with historically challeng<strong>in</strong>g<br />

substrates.<br />

Ready to scale up? For competitive quotes <strong>on</strong> larger quantities or custom syn<strong>the</strong>sis, c<strong>on</strong>tact your local <strong>Sigma</strong>-<strong>Aldrich</strong> offi ce, or visit safcglobal.com.<br />

Organometallics<br />

2-Pyrid<strong>in</strong>ylbor<strong>on</strong>ic Acid MIDA Ester as a Stable<br />

2-Pyrid<strong>in</strong>yl Bor<strong>on</strong> Ani<strong>on</strong> Equivalent<br />

The development of a viable air-stable surrogate for <strong>the</strong> notoriously<br />

unstable 2-pyrid<strong>in</strong>ylbor<strong>on</strong>ic acid has been a l<strong>on</strong>g-stand<strong>in</strong>g challenge<br />

<strong>in</strong> <strong>the</strong> fi eld of cross-coupl<strong>in</strong>g. This motif is ubiquitous <strong>in</strong> drug-like small<br />

molecules, and <strong>the</strong>refore of particular importance to <strong>the</strong> syn<strong>the</strong>tic community.<br />

While 2-pyrid<strong>in</strong>ylbor<strong>on</strong>ic acid surrogates exist, <strong>the</strong>ir use is often<br />

complicated by air- and moisture-sensitivity as well as <strong>the</strong>ir somewhat<br />

variable and impure compositi<strong>on</strong>s. In c<strong>on</strong>trast, Burke and coworkers<br />

found that 2-pyrid<strong>in</strong>yl MIDA bor<strong>on</strong>ate is isolable, benchtop and chromatography<br />

stable, and under slow-release c<strong>on</strong>diti<strong>on</strong>s can be successfully<br />

coupled with a variety of aryl and heteroaryl chlorides (Table 3).<br />

H3C N<br />

N<br />

B O<br />

O<br />

O<br />

O<br />

Cl R<br />

Pd2(dba)3, XPhos, K3PO4<br />

Cu(OAc) 2, K2CO3<br />

DMF/IPA (4:1), 100 °C, 4 h<br />

N R<br />

Entry Cl R Product Isolated Yield (%)<br />

1<br />

2<br />

3<br />

Cl<br />

Cl<br />

Cl<br />

719390<br />

N<br />

N<br />

O<br />

C CH3<br />

CN<br />

N<br />

N<br />

N<br />

N<br />

N<br />

O<br />

C CH3<br />

Table 3: Slow-release cross-coupl<strong>in</strong>g of 2-pyrid<strong>in</strong>ylbor<strong>on</strong>ic acid MIDA ester.<br />

References: (1) Gillis, E. P.; Burke, M. D. <strong>Aldrich</strong>imica Acta 2009, 131, 17. (2) Knapp, D. M.;<br />

Gillis, E. P.; Burke, M. D. J. Am. Chem. Soc. 2009, 131, 6961.<br />

Pyrid<strong>in</strong>yl MIDA Bor<strong>on</strong>ates from <strong>Aldrich</strong><br />

Cl<br />

N<br />

N<br />

H3C<br />

N<br />

B<br />

O<br />

O<br />

O O<br />

719390<br />

H3C<br />

N<br />

700908<br />

H3C<br />

N<br />

B O O<br />

O O<br />

N OCH3<br />

701084<br />

B O O<br />

O O<br />

Br<br />

H3CO<br />

N<br />

N<br />

H3C<br />

N<br />

723959<br />

N<br />

B<br />

O<br />

O<br />

O O<br />

H3C<br />

N<br />

702269<br />

H3C<br />

N<br />

723053<br />

B O O<br />

O O<br />

B<br />

O<br />

O<br />

O O<br />

CN<br />

Br<br />

H3CO<br />

For a complete list of MIDA bor<strong>on</strong>ates available from<br />

<strong>Aldrich</strong> Chemistry, visit <strong>Aldrich</strong>.com/mida<br />

H3C<br />

N<br />

N<br />

72<br />

60<br />

79<br />

H3C<br />

N<br />

B O O<br />

O O<br />

N<br />

704563<br />

H3C<br />

N<br />

703370<br />

H3C<br />

N<br />

699845<br />

B O O<br />

O O<br />

B O O<br />

O O<br />

15


16<br />

Heterocyclic Organot<strong>in</strong> Reagents for<br />

Stille Coupl<strong>in</strong>g<br />

Stille reacti<strong>on</strong>s rema<strong>in</strong> <strong>on</strong>e of <strong>the</strong> most viable methods for <strong>the</strong> formati<strong>on</strong><br />

of C–C b<strong>on</strong>ds <strong>in</strong> organic chemistry. 1 Their use has been highlighted <strong>in</strong><br />

various areas, <strong>in</strong>clud<strong>in</strong>g countless natural product syn<strong>the</strong>ses, material science<br />

applicati<strong>on</strong>s, and <strong>in</strong> numerous syn<strong>the</strong>tic methodology studies. The<br />

coupl<strong>in</strong>g of imidazolyl stannane 718793 with heterocycle (4) by process<br />

chemists at Pfi zer was reported <strong>in</strong> 2003 (Scheme 3). 2 This coupl<strong>in</strong>g<br />

employed Pd(PPh3)4 as <strong>the</strong> catalyst and was carried <str<strong>on</strong>g>out</str<strong>on</strong>g> <strong>in</strong> 67% isolated<br />

yield. Additi<strong>on</strong>/elim<strong>in</strong>ati<strong>on</strong> <strong>on</strong> <strong>the</strong> result<strong>in</strong>g functi<strong>on</strong>alized thienopyrid<strong>in</strong>e<br />

provided bulk material of <strong>the</strong> desired VEGFR k<strong>in</strong>ase <strong>in</strong>hibitor (5). It<br />

is worth not<strong>in</strong>g that of several cross-coupl<strong>in</strong>gs which were exam<strong>in</strong>ed,<br />

<strong>the</strong> Stille coupl<strong>in</strong>g employ<strong>in</strong>g stannane 718793 was <strong>the</strong> <strong>on</strong>ly reacti<strong>on</strong><br />

feasible <strong>on</strong> scales >50g.<br />

Cl<br />

N<br />

S<br />

<strong>Aldrich</strong>.com<br />

I<br />

CH3<br />

N<br />

SnBu3<br />

N<br />

718793<br />

Pd(PPh3)4 (5 mol%)<br />

DMF, 95 C<br />

40 h, 67%<br />

Cl<br />

N<br />

H3C<br />

S N<br />

N<br />

H3C<br />

t-BuOH/DCE<br />

100 C<br />

4 5<br />

Scheme 3: Stille reacti<strong>on</strong> <strong>in</strong> <strong>the</strong> preparati<strong>on</strong> of VEGFR k<strong>in</strong>ase <strong>in</strong>hibitors (5).<br />

H<br />

N<br />

52%<br />

NH2<br />

H3C<br />

H<br />

N<br />

NH<br />

N<br />

H3C<br />

S N<br />

N<br />

References: (1) Mascitti, V<strong>in</strong>cent. Stille coupl<strong>in</strong>g. Name Reacti<strong>on</strong>s for Homologati<strong>on</strong>s 2009,<br />

(Pt. 1), 133–162. (2) Ragan, J. A.; Ragg<strong>on</strong>, J. W.; Hill, P. D.; J<strong>on</strong>es, B. P.; McDermott, R. E.;<br />

Munchhof, M. J.; Marx, M. A.; Casavant, J. M.; Cooper, B. A.; Doty, J. L.; Lu, Y. Org. Proc. Res.<br />

Dev. 2003, 7, 676.<br />

Organot<strong>in</strong> Reagents from <strong>Aldrich</strong>:<br />

Bu3Sn SnBu3<br />

S<br />

Bu 3Sn<br />

Bu3Sn N<br />

N<br />

678333 698598<br />

Bu3Sn<br />

Bu3Sn<br />

717703<br />

N<br />

S<br />

H3C<br />

N<br />

Bu3Sn<br />

683930 719366<br />

Bu3Sn<br />

718807<br />

719730 706868 707031<br />

O<br />

O N<br />

706981<br />

N<br />

OCH2CH3<br />

Bu 3Sn<br />

Bu3Sn<br />

N<br />

N<br />

N N<br />

CH3 Cl<br />

Bu3Sn<br />

Bu3Sn<br />

N<br />

Cl N Cl<br />

707813 717630<br />

N<br />

Bu3Sn<br />

N<br />

OCH3<br />

CH3<br />

N<br />

N<br />

TO ORDER: C<strong>on</strong>tact your local <strong>Sigma</strong>-<strong>Aldrich</strong> offi ce (see back cover), or visit <strong>Aldrich</strong>.com/chemicalsyn<strong>the</strong>sis.<br />

Bu 3Sn<br />

N<br />

O<br />

Bu3Sn<br />

638617 642541 706965<br />

Bu 3Sn<br />

N<br />

CH3<br />

Bu3Sn<br />

675679 719501 718793<br />

N<br />

S<br />

N<br />

N<br />

CH3<br />

Br<br />

N<br />

S<br />

Bu3Sn<br />

SnBu3<br />

For a complete list of Organot<strong>in</strong> Reagents available from<br />

<strong>Aldrich</strong> Chemistry, visit <strong>Aldrich</strong>.com/organot<strong>in</strong><br />

Selective 1,2-Additi<strong>on</strong>s with LaCl3·2LiCl<br />

While <strong>the</strong> 1,2-additi<strong>on</strong> of Grignard reagents to ket<strong>on</strong>es is undoubtedly<br />

a powerful transformati<strong>on</strong>, oftentimes selectivity issues aris<strong>in</strong>g from<br />

competitive alpha-deprot<strong>on</strong>ati<strong>on</strong> detract from <strong>the</strong> use of <strong>the</strong>se reagents.<br />

Various methods have been developed to address this shortcom<strong>in</strong>g,<br />

<strong>in</strong>clud<strong>in</strong>g <strong>the</strong> use of CeCl3 and o<strong>the</strong>r Lewis acidic salts. However, because<br />

of <strong>the</strong> heterogeneous nature of <strong>the</strong>se reagents, it is often diffi cult to<br />

obta<strong>in</strong> adequate selectivity. With this <strong>in</strong> m<strong>in</strong>d, <strong>the</strong> lab of Professor Paul<br />

Knochel has shown that LaCl3•2LiCl (703559) may be used to attenuate<br />

<strong>the</strong> basicity of Grignard reagents, <strong>in</strong> turn prevent<strong>in</strong>g competitive enolizati<strong>on</strong><br />

side reacti<strong>on</strong>s while lead<strong>in</strong>g to a powerful method for <strong>the</strong> selective<br />

1,2-additi<strong>on</strong> of Grignard reagents to ket<strong>on</strong>es. In additi<strong>on</strong> to enolizable<br />

ket<strong>on</strong>es, even sterically h<strong>in</strong>dered ket<strong>on</strong>es, as well as Michael acceptors<br />

and unactivated im<strong>in</strong>es can undergo 1,2-additi<strong>on</strong>s selectively to provide<br />

<strong>the</strong> desired additi<strong>on</strong> products (Table 4). 1<br />

Entry<br />

1<br />

2<br />

EtO2C<br />

3<br />

Grignard<br />

Reagent<br />

i-PrMgCl<br />

MgCl LiCl<br />

N<br />

R1MgCl + R2 Br<br />

Ket<strong>on</strong>e<br />

O<br />

Ph Ph EtO2C<br />

MgCl LiCl<br />

Ph<br />

O<br />

Ph<br />

Product<br />

i-Pr<br />

OH<br />

a Isolated yield of product based <strong>on</strong> reacti<strong>on</strong> between ket<strong>on</strong>e and Grignard reagent<br />

b Isolated yield of product <strong>in</strong> <strong>the</strong> presence of 1.5 eq CeCl3 (Dimitrov Method)<br />

c Isolated yield of product <strong>in</strong> <strong>the</strong> presence of 1.0 eq LaCl3 2LiCl<br />

O<br />

R 3<br />

O<br />

0 °C, 10 m<strong>in</strong>-6h<br />

LaCl3 2LiCl<br />

703559<br />

Table 4: LaCl3•2LiCl mediated additi<strong>on</strong> to ket<strong>on</strong>es.<br />

OH<br />

N<br />

R 2<br />

OH<br />

Bn<br />

Bn<br />

Br<br />

OMgCl<br />

R3 R1 N<br />

N<br />

CH3<br />

with<br />

no additives a<br />

with<br />

CeCl3 b<br />

5<br />

72<br />

39 11<br />

35<br />

Yield (%)<br />

__<br />

with<br />

LaCl3 2LiCl c<br />

92<br />

92<br />

81


Subsequent to <strong>the</strong>se <strong>in</strong>itial studies with LaCl3•2LiCl, Knochel and coworkers<br />

reported that sub-stoichiometric quantities of <strong>the</strong> lanthanide salt are<br />

suffi cient to promote <strong>the</strong> desired 1,2-additi<strong>on</strong>, as dem<strong>on</strong>strated by <strong>the</strong><br />

additi<strong>on</strong> of i-PrMgCl•LiCl to unactivated im<strong>in</strong>es (Scheme 4). This protocol<br />

is amenable to <strong>the</strong> use of alkyl, aryl, and heteroaryl Grignard reagents. 2<br />

Ph<br />

N<br />

OMe<br />

+ i-PrMgCl LiCl<br />

LaCl3 2LiCl<br />

(10 mol%)<br />

THF, rt, 12h<br />

HN<br />

Ph i-Pr<br />

Scheme 4: 1,2-Additi<strong>on</strong> of organomagnesium reagents <strong>in</strong> <strong>the</strong> presence of catalytic<br />

LaCl3•2LiCl.<br />

Advantages of LaCl3•2LiCl:<br />

• No pretreatment procedures necessary<br />

Easy handl<strong>in</strong>g of reagents and reacti<strong>on</strong> setup<br />

• Homogeneous reacti<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s<br />

• Improved selectivity and reactivity provid<strong>in</strong>g better yields and<br />

• decreased reacti<strong>on</strong> times<br />

References: (1) Krasovskiy, A.; Kopp, F.; Knochel, P. Angew. Chem. Int. Ed. 2006, 45, 497. (2)<br />

Metzger, A.; Gavryush<strong>in</strong>, A.; Knochel, P. SynLett 2009, 1433.<br />

For a complete list of selective metallati<strong>on</strong> reagents available from<br />

<strong>Aldrich</strong> Chemistry, visit <strong>Aldrich</strong>.com/metallati<strong>on</strong>s<br />

Chiral Silacycles for Enantioselective<br />

Allylati<strong>on</strong> and Crotylati<strong>on</strong> Reacti<strong>on</strong>s<br />

The asymmetric allylati<strong>on</strong> and crotylati<strong>on</strong> of aldehydes and o<strong>the</strong>r carb<strong>on</strong>yl<br />

compounds rema<strong>in</strong>s <strong>on</strong>e of <strong>the</strong> most fundamental reacti<strong>on</strong>s for <strong>the</strong><br />

c<strong>on</strong>structi<strong>on</strong> of chiral build<strong>in</strong>g blocks. While numerous methods for this<br />

challeng<strong>in</strong>g task have been exam<strong>in</strong>ed previously, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> use of<br />

chiral auxiliaries, chiral reagents and catalytic systems, still today a truly<br />

c<strong>on</strong>venient and broadly reach<strong>in</strong>g method rema<strong>in</strong>s elusive. With this goal<br />

<strong>in</strong> m<strong>in</strong>d, <strong>the</strong> group of Professor James Leight<strong>on</strong> has developed a versatile<br />

system that has proven to be uniquely eff ective. Leight<strong>on</strong> and co-workers<br />

have harnessed <strong>the</strong> power of stra<strong>in</strong>ed silacycles for use as allylati<strong>on</strong> reagents<br />

with<str<strong>on</strong>g>out</str<strong>on</strong>g> <strong>the</strong> need for any fur<strong>the</strong>r catalysts or reagents (Scheme 5).<br />

Me<br />

Ph<br />

Me<br />

N<br />

Si<br />

O Cl<br />

Me<br />

Ph<br />

Me<br />

N<br />

Si<br />

O Cl<br />

Scheme 5: Leight<strong>on</strong>’s chiral allyl silanes.<br />

H<br />

N<br />

Si<br />

N Cl<br />

H<br />

Br<br />

Br<br />

OMe<br />

84%<br />

H<br />

N<br />

Si<br />

N Cl<br />

H<br />

These bench-stable and n<strong>on</strong>-toxic reagents undergo enantioselective additi<strong>on</strong><br />

to a range of carb<strong>on</strong>yl compounds, <strong>in</strong>clud<strong>in</strong>g aldehydes, ket<strong>on</strong>es,<br />

Ready to scale up? For competitive quotes <strong>on</strong> larger quantities or custom syn<strong>the</strong>sis, c<strong>on</strong>tact your local <strong>Sigma</strong>-<strong>Aldrich</strong> offi ce, or visit safcglobal.com.<br />

Br<br />

Br<br />

Organometallics<br />

and hydraz<strong>on</strong>es 1 (Table 5). Notably, all of <strong>the</strong>se reacti<strong>on</strong>s are carried <str<strong>on</strong>g>out</str<strong>on</strong>g> at<br />

c<strong>on</strong>venient reacti<strong>on</strong> temperatures with<str<strong>on</strong>g>out</str<strong>on</strong>g> <strong>the</strong> need for external activat<strong>in</strong>g<br />

reagents, <strong>the</strong>reby simplify<strong>in</strong>g reacti<strong>on</strong> set-up and manipulati<strong>on</strong>.<br />

Me<br />

Ph<br />

Me<br />

N<br />

Si<br />

O Cl<br />

706671<br />

O<br />

OH<br />

+<br />

R H R<br />

R T ( o C) yield % e.e. %<br />

-10<br />

-10<br />

-10<br />

80<br />

59<br />

84<br />

81<br />

78<br />

88<br />

Me<br />

Ph<br />

Me<br />

N<br />

Si<br />

O Cl<br />

706671<br />

R<br />

+<br />

NHBz<br />

N R' NHNHBz<br />

R R' R<br />

R' T ( o C) yield % e.e. %<br />

CH3<br />

CO2Me<br />

Table 5: Enantioselective allylati<strong>on</strong> of various aldehydes and hydraz<strong>on</strong>es with<br />

706671.<br />

In additi<strong>on</strong> to enantioselective allylati<strong>on</strong> reacti<strong>on</strong>s, Leight<strong>on</strong> and<br />

co-workers have extended this c<strong>on</strong>cept to <strong>the</strong> enantioselective crotylati<strong>on</strong><br />

of carb<strong>on</strong>yl compounds 2 (Table 6). Importantly, <strong>the</strong>se diam<strong>in</strong>e<br />

derived silacycles are bench-stable crystall<strong>in</strong>e solids, provid<strong>in</strong>g <strong>the</strong> added<br />

benefi t of simple reacti<strong>on</strong> setup and purifi cati<strong>on</strong>.<br />

H<br />

N<br />

Si<br />

N Cl<br />

H<br />

Br<br />

CH 3<br />

CH3<br />

R<br />

R<br />

-10<br />

-10<br />

-10<br />

OH<br />

OH<br />

CH 3<br />

CH 3<br />

Silane R product yield % e.e. %<br />

A<br />

B<br />

A<br />

B<br />

A<br />

B<br />

A<br />

B<br />

A<br />

H<br />

N<br />

Si<br />

N Cl<br />

H<br />

B<br />

or<br />

H 3C<br />

BnO<br />

Br O<br />

+<br />

DBU<br />

o<br />

Br R H CH2Cl2, 0 C<br />

Br<br />

CH 3<br />

CH 3<br />

Table 6: Enantioselective crotylati<strong>on</strong> of aldehydes.<br />

References: (1) (a) K<strong>in</strong>naird, J. W. H.; Ng, P. Y.; Kubota, K.; Wang, X.; Leight<strong>on</strong>, J. L. J.Am.<br />

Chem. Soc. 2002, 124, 7920. (b) Berger, R.; Duff , K.; Leight<strong>on</strong>, J. L. J. Am. Chem. Soc. 2004, 126,<br />

5686. (2) Hackman, B. M.; Lombardi, P. J.; Leight<strong>on</strong>, J. L. Org. Lett. 2004, 23, 4375.<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

83<br />

81<br />

70<br />

71<br />

82<br />

83<br />

67<br />

52<br />

1<br />

2<br />

or<br />

97<br />

98<br />

96<br />

97<br />

96<br />

99<br />

95<br />

94<br />

80<br />

59<br />

84<br />

81<br />

78<br />

88<br />

17


18<br />

Chiral Allyl and Crotylsilanes:<br />

Me<br />

Ph<br />

H<br />

N<br />

Si<br />

N Cl<br />

H<br />

704725<br />

Me<br />

N<br />

Si<br />

O Cl<br />

706671<br />

For a complete list of allylati<strong>on</strong> reagents available from<br />

<strong>Aldrich</strong> Chemistry, visit <strong>Aldrich</strong>.com/allylati<strong>on</strong>s<br />

Selective Metalati<strong>on</strong>s us<strong>in</strong>g i-PrMgCl·LiCl and<br />

s-BuMgCl·LiCl<br />

While halogen-metal exchange reacti<strong>on</strong>s are am<strong>on</strong>g <strong>the</strong> most comm<strong>on</strong><br />

methods for prepar<strong>in</strong>g reactive organometallic reagents, Li-halogen<br />

exchange reacti<strong>on</strong>s typically require low temperatures and off er limited<br />

compatibility with o<strong>the</strong>r functi<strong>on</strong>alities. On <strong>the</strong> o<strong>the</strong>r hand, Mg-halogen<br />

exchange reacti<strong>on</strong>s require higher temperatures and are often pr<strong>on</strong>e to<br />

elim<strong>in</strong>ati<strong>on</strong> side reacti<strong>on</strong>s. To address <strong>the</strong>se issues, Knochel and coworkers<br />

have found that <strong>the</strong> use of salt additives <strong>in</strong>crease both <strong>the</strong> rate and<br />

<strong>the</strong> effi ciency of this Mg-halogen exchange reacti<strong>on</strong>. The most eff ective<br />

reagents are generated with R-MgCl (R = i-Pr, s-Butyl) and 1.0 equiv<br />

of LiCl. The <strong>in</strong>creased reactivity of <strong>the</strong>se aptly named TurboGrignards<br />

may be due to <strong>the</strong> breakup of polymeric aggregates known to exist <strong>in</strong><br />

classical soluti<strong>on</strong>s of Grignard reagents. TurboGrignards allow for <strong>the</strong><br />

c<strong>on</strong>versi<strong>on</strong> of a variety of functi<strong>on</strong>alized and highly sensitive substrates,<br />

<strong>in</strong>clud<strong>in</strong>g those c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g CO2R, CN, OMe, and halogen moieties, to<br />

<strong>the</strong>ir corresp<strong>on</strong>d<strong>in</strong>g functi<strong>on</strong>alized organometallic derivatives. While rate<br />

enhancements are observed with TurboGrignards, this <strong>in</strong>creased reactivity<br />

does not have a negative impact <strong>on</strong> <strong>the</strong> overall scope of <strong>the</strong> reacti<strong>on</strong>,<br />

permitt<strong>in</strong>g transformati<strong>on</strong>s to occur <strong>in</strong> <strong>the</strong> presence of a broad range of<br />

functi<strong>on</strong>al groups (Table 7). 1<br />

<strong>Aldrich</strong>.com<br />

Br<br />

Br<br />

Me<br />

Ph<br />

H<br />

N<br />

Si<br />

N Cl<br />

H<br />

705098<br />

Me<br />

N<br />

Si<br />

O Cl<br />

719056<br />

Br<br />

Br<br />

H<br />

N<br />

Si<br />

N Cl<br />

H<br />

733075<br />

Br<br />

CH3<br />

Br<br />

H<br />

N<br />

Si<br />

N Cl<br />

H<br />

733199<br />

TO ORDER: C<strong>on</strong>tact your local <strong>Sigma</strong>-<strong>Aldrich</strong> offi ce (see back cover), or visit <strong>Aldrich</strong>.com/chemicalsyn<strong>the</strong>sis.<br />

Br<br />

CH3<br />

Br<br />

Entry<br />

1<br />

2<br />

i-PrMgCl LiCl<br />

Br 656984<br />

(TurboGrignard)<br />

FG<br />

THF, -15 °C to 25 °C<br />

or heteroaryl halide<br />

FG = CO2R', CN, OMe, halogen<br />

FG<br />

MgCl LiCl<br />

Reagent<br />

Electrophile Product<br />

i-PrO O<br />

O<br />

O<br />

MgCl LiCl<br />

PhCHO<br />

Br<br />

N<br />

MgCl LiCl<br />

Allyl Bromide<br />

N MgCl LiCl<br />

PhCHO<br />

3<br />

S<br />

aThe halogen-metal exchange was c<strong>on</strong>ducted <strong>in</strong> THF/DMPU.<br />

bGrignard was transmetalated with CuCN 2LiCl before additi<strong>on</strong> of E.<br />

Br<br />

E<br />

FG<br />

N<br />

OH<br />

N<br />

Ph<br />

S<br />

E<br />

Ph 80 a<br />

Allyl<br />

Isolated<br />

Yield<br />

Table 7: Aryl/heteroaryl Grignard reagents prepared us<strong>in</strong>g i-PrMgCl·LiCl and reacti<strong>on</strong>s<br />

with electrophiles.<br />

Advantages of TurboGrignards:<br />

• Increased functi<strong>on</strong>al group compatibility<br />

• Mild reacti<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s<br />

• M<strong>in</strong>imal side reacti<strong>on</strong>s<br />

• Allows for <strong>the</strong> large-scale producti<strong>on</strong> of reactive<br />

Grignard reagents<br />

References: (1) Krasovskiy, A.; Knochel, P. Angew. Chem. Int. Ed. 2004, 43, 3333.<br />

(2) P. Knochel, E P 1582 524 A1.<br />

TurboGrignard Reagents from <strong>Aldrich</strong>:<br />

H3C<br />

CH3<br />

MgCl . LiCl<br />

656984<br />

For more <strong>in</strong>formati<strong>on</strong> <strong>on</strong> <strong>the</strong>se new reagents, visit<br />

<strong>Aldrich</strong>.com/metalati<strong>on</strong>s<br />

Sold <strong>in</strong> collaborati<strong>on</strong> with<br />

H3C<br />

CH3<br />

MgCl . LiCl<br />

703486<br />

93 b<br />

87


Organotrifl uoroborates as Coupl<strong>in</strong>g<br />

Partners <strong>in</strong> Suzuki-Miyaura Reacti<strong>on</strong>s<br />

Suzuki-Miyaura cross-coupl<strong>in</strong>g reacti<strong>on</strong>s are some of <strong>the</strong> most comm<strong>on</strong><br />

methods for <strong>the</strong> formati<strong>on</strong> of C–C b<strong>on</strong>ds <strong>in</strong> organic chemistry. The use of<br />

organotrifl uoroborate salts as bor<strong>on</strong>ic acid surrogates has lead to signifi -<br />

cant advancement <strong>in</strong> <strong>the</strong> fi eld of Suzuki-Miyaura reacti<strong>on</strong>s. Trifl uoroborates<br />

exhibit excellent functi<strong>on</strong>al group tolerance and stability towards<br />

1, 2<br />

comm<strong>on</strong> reagents, <strong>in</strong> turn lead<strong>in</strong>g to a truly versatile class of reagents.<br />

Our platform of trifl uoroborate salts is c<strong>on</strong>t<strong>in</strong>ually grow<strong>in</strong>g, with new<br />

product <strong>in</strong>troducti<strong>on</strong>s occurr<strong>in</strong>g regularly.<br />

Benefi ts of Organotrifl uoroborates:<br />

• Stable tetracoord<strong>in</strong>ate species<br />

Less pr<strong>on</strong>e to protodebor<strong>on</strong>ati<strong>on</strong><br />

• Air-and moisture-stable<br />

•<br />

Potassium V<strong>in</strong>yltrifl uoroborate as a Versatile<br />

Diani<strong>on</strong> Precursor<br />

Molander and co-workers have developed a powerful strategy for <strong>the</strong><br />

producti<strong>on</strong> of a unique 1,2-diani<strong>on</strong> equivalent us<strong>in</strong>g potassium v<strong>in</strong>yltrifl<br />

uoroborate. 1 This useful organotrifl uoroborate undergoes selective<br />

hydroborati<strong>on</strong> with 9-BBN to generate (3), a 1,2-diani<strong>on</strong> equivalent that<br />

can <strong>the</strong>n undergo a variety of selective transformati<strong>on</strong>s (Scheme 6).<br />

9-BBN<br />

BF3K<br />

Potassium v<strong>in</strong>yltrifluoroborate<br />

655228<br />

B<br />

3<br />

BF3K<br />

Scheme 6: Hydroborated <strong>in</strong>termediate (3) as a 1,2-diani<strong>on</strong> equivalent.<br />

Ready to scale up? For competitive quotes <strong>on</strong> larger quantities or custom syn<strong>the</strong>sis, c<strong>on</strong>tact your local <strong>Sigma</strong>-<strong>Aldrich</strong> offi ce, or visit safcglobal.com.<br />

Organometallics<br />

This versatile 1,2-diani<strong>on</strong> equivalent undergoes sequential Suzuki-Miyaura<br />

cross-coupl<strong>in</strong>g with a range of organic electrophiles, <strong>in</strong>clud<strong>in</strong>g aryl-,<br />

heteroaryl-, and alkenyl halides (Table 8).<br />

BF 3K<br />

1.) 9-BBN<br />

2.) Pd(OAc)2, DavePhos, KF,<br />

R' Br<br />

3.) RuPhos, K2CO3,toluene/H2O R'' Br<br />

R'-Br R''-Br yield %<br />

OMe<br />

MeO Br<br />

OMe<br />

MeO Br<br />

OMe<br />

MeO Br<br />

H<br />

O<br />

Me<br />

O Cl<br />

Me<br />

Me<br />

Br<br />

Br OMe<br />

N<br />

Cl S O<br />

Br<br />

Br<br />

N<br />

N<br />

N<br />

H<br />

Br OMe<br />

MeO<br />

MeO<br />

MeO<br />

Table 8: Sequential Suzuki-Miyaura cross-coupl<strong>in</strong>gs to build molecular complexity<br />

from potassium v<strong>in</strong>yltrifl uoroborate.<br />

Me<br />

H<br />

O<br />

OMe<br />

OMe<br />

Me<br />

OMe<br />

Me<br />

O<br />

N<br />

N<br />

S<br />

R'<br />

OMe<br />

N<br />

O<br />

H<br />

N<br />

OMe<br />

References: Molander. G. A.; Sandrock, D. L. Org. Lett. 2009, 11, 2369.<br />

Alkenyl Potassium Trifl uoroborates from <strong>Aldrich</strong>:<br />

BF3K<br />

655228<br />

H3C<br />

BF3K<br />

CH3 720682<br />

Br<br />

684937<br />

BF3K<br />

CH3<br />

H3C<br />

BF3K<br />

CH3<br />

720933<br />

H3CO<br />

H3C<br />

683590<br />

BF3K<br />

CH3<br />

BF3K<br />

720747<br />

R''<br />

CH 3<br />

82<br />

84<br />

74<br />

60<br />

80<br />

BF3K<br />

723916<br />

19


20<br />

Ni-Catalyzed Cross-Coupl<strong>in</strong>g of<br />

Heteroaryltrifl uoroborates with Unactivated<br />

Alkyl Halides<br />

Recently <strong>the</strong> lab of Professor Gary Molander disclosed a method for <strong>the</strong><br />

eff ective cross-coupl<strong>in</strong>g of air and moisture stable heteroaryltrifl uoroborates<br />

with unactivated alkyl halides. 3 While previous methods for<br />

this same transformati<strong>on</strong> have been developed, still today a number of<br />

shortcom<strong>in</strong>gs rema<strong>in</strong>. Most notable is <strong>the</strong> need for excess organobor<strong>on</strong><br />

coupl<strong>in</strong>g partner, and <strong>the</strong> limited scope of organobor<strong>on</strong> reagents that<br />

can be used for this transformati<strong>on</strong> (generally restricted to aryl bor<strong>on</strong>ic<br />

acids <strong>on</strong>ly). To address <strong>the</strong>se issues, Molander has taken advantage of<br />

<strong>the</strong> <strong>in</strong>creased stability of organotrifl uoroborates as well as <strong>the</strong> <strong>in</strong>creased<br />

reactivity of Ni catalysts. Under <strong>the</strong> optimized c<strong>on</strong>diti<strong>on</strong>s a range of<br />

heteroaryltrifl uoroborates can be coupled effi ciently with both alkyl<br />

bromides and iodides (Table 9).<br />

N<br />

<strong>Aldrich</strong>.com<br />

BF3K<br />

O<br />

or<br />

NiBr .<br />

2 glyme (10 mol %)<br />

BF3K + Alkyl X<br />

(X = Br, I)<br />

bathophenanthrol<strong>in</strong>e (10 mol %)<br />

LiHMDS (3 eq), s-BuOH<br />

Cl<br />

BnO<br />

Alkyl-X<br />

O<br />

O<br />

Br<br />

Br<br />

I<br />

yield % Alkyl-X yield %<br />

A, 80<br />

B, 76<br />

A, 76<br />

B, 78<br />

A, 84<br />

B, 63<br />

Br<br />

I<br />

Br<br />

Alkyl<br />

O<br />

A or<br />

Alkyl<br />

B<br />

A, 67<br />

B, 68<br />

A, 63<br />

B, 68<br />

A, 60<br />

B, 71<br />

Table 9: Cross-coupl<strong>in</strong>g of 2-benzofuranyl- and 4-pyrid<strong>in</strong>yltrifl uoroborates with<br />

various alkyl halides.<br />

References: (1) Molander, G. A.; Ellis, N. Acc. Chem. Res. 2007, 40, 275.<br />

(2) Molander, G. A.; Figueroa, R. <strong>Aldrich</strong>imica Acta 2005, 38, 49. (3) Molander, G. A.;<br />

Arg<strong>in</strong>taru, O. A.; Ar<strong>on</strong>, I.; Dreher, S. D. Org. Lett. 2010, 24, 5783.<br />

N<br />

Heteroaryltrifl uoroborates from <strong>Aldrich</strong>:<br />

TO ORDER: C<strong>on</strong>tact your local <strong>Sigma</strong>-<strong>Aldrich</strong> offi ce (see back cover), or visit <strong>Aldrich</strong>.com/chemicalsyn<strong>the</strong>sis.<br />

N<br />

N<br />

H<br />

BF3K<br />

711144<br />

KF3B<br />

N<br />

N<br />

O<br />

722588<br />

BF3K<br />

N<br />

Boc<br />

719420<br />

KF3B<br />

KF3B<br />

N<br />

711098<br />

706116<br />

S<br />

717509<br />

N<br />

N<br />

O<br />

N<br />

BF3K<br />

N<br />

BF3K<br />

711101<br />

BF3K<br />

H3C CH3 S<br />

711136<br />

Br<br />

F<br />

N<br />

717517<br />

N<br />

BF3K<br />

BF3K<br />

717487<br />

For a complete list of organotrifl uoroborates available from <strong>Aldrich</strong><br />

Chemistry, visit <strong>Aldrich</strong>.com/tfb


Nano-layers of metals, semic<strong>on</strong>duct<strong>in</strong>g and dielectric materials are<br />

crucial comp<strong>on</strong>ents of modern electr<strong>on</strong>ic devices, high-effi ciency<br />

solar panels, memory systems, computer chips and a broad variety of<br />

high-performance tools.<br />

The technique of choice for deposit<strong>in</strong>g nano-fi lms <strong>on</strong> various surfaces<br />

is Atomic Layer Depositi<strong>on</strong> (ALD), which uses c<strong>on</strong>secutive chemical<br />

reacti<strong>on</strong>s <strong>on</strong> a material’s surface to create nanostructures with<br />

predeterm<strong>in</strong>ed thickness and chemical compositi<strong>on</strong> (Figure 1).<br />

<strong>Aldrich</strong> Materials Science off ers high-quality precursors for ALD safely<br />

packaged <strong>in</strong> steel cyl<strong>in</strong>ders suitable for use with a variety of<br />

depositi<strong>on</strong> systems.<br />

We c<strong>on</strong>t<strong>in</strong>ue to expand our portfolio of ALD precursors to <strong>in</strong>clude<br />

new materials. For an updated list of our depositi<strong>on</strong> precursors, please<br />

visit aldrich.com/ald<br />

Materials Science<br />

Precursors for Atomic Layer Depositi<strong>on</strong><br />

High-Tech Soluti<strong>on</strong>s for Your Research Needs<br />

Precursors Packaged for Depositi<strong>on</strong> Systems<br />

Atomic<br />

No. Descripti<strong>on</strong> Molecular Formula Form Prod. No.<br />

Water packaged for use <strong>in</strong><br />

depositi<strong>on</strong> systems<br />

H 2O liquid 697125<br />

13 Trimethylalum<strong>in</strong>um (CH 3) 3Al liquid 663301<br />

14 (3-Am<strong>in</strong>opropyl)triethoxysilane H 2N(CH 2) 3Si(OC 2H 5) 3 liquid 706493<br />

14 Silic<strong>on</strong> tetrachloride SiCl 4 liquid 688509<br />

14 Tris(tert-butoxy)silanol ((CH 3) 3CO) 3SiOH solid 697281<br />

14 Tris(tert-pentoxy)silanol (CH 3CH 2C(CH 3) 2O) 3SiOH liquid 697303<br />

22 Tetrakis(diethylamido)titanium(IV) [(C 2H5) 2N] 4Ti liquid 725536<br />

22 Tetrakis(dimethylamido)<br />

titanium(IV)<br />

[(CH 3) 2N] 4Ti liquid 669008<br />

22 Titanium tetrachloride TiCl 4 liquid 697079<br />

22 Titanium(IV) isopropoxide Ti[OCH(CH 3) 2] 4 liquid 687502<br />

30 Diethylz<strong>in</strong>c (C 2H 5) 2Zn liquid 668729<br />

31 Triethylgallium (C 3H 2) 3Ga liquid 730726<br />

31 Trimethylgallium Ga(CH 3) 3 liquid 730734<br />

39 Tris[N,N-bis(trimethylsilyl)amide]<br />

yttrium<br />

40 Bis(methyl-η5-cyclo-pentadienyl)<br />

methoxymethylzirc<strong>on</strong>ium<br />

[[(CH 3) 3Si] 2N] 3Y solid 702021<br />

Zr(CH 3C 5H 4) 2CH 3OCH 3 liquid 725471<br />

(a)<br />

(b)<br />

Figure 1. Schematic of <strong>the</strong> ALD method based <strong>on</strong> sequential, self-limit<strong>in</strong>g<br />

surface reacti<strong>on</strong>s.<br />

Atomic<br />

No. Descripti<strong>on</strong> Molecular Formula Form Prod. No.<br />

40 Tetrakis(dimethylamido)<br />

zirc<strong>on</strong>ium(IV)<br />

40 Tetrakis(ethylmethylamido)<br />

zirc<strong>on</strong>ium(IV)<br />

44 Bis(ethylcyclopentadienyl)<br />

ru<strong>the</strong>nium(II)<br />

72 Bis(methyl-η5-cyclopentadienyl)<br />

dimethylhafnium<br />

72 Bis(methyl-η5-cyclopentadienyl)<br />

methoxymethylhafnium<br />

72 Tetrakis(dimethylamido)<br />

hafnium(IV)<br />

72 Tetrakis(ethylmethylamido)<br />

hafnium(IV)<br />

73 Tris(diethylamido)(tertbutylimido)tantalum(V)<br />

74 Bis(tert-butylim<strong>in</strong>o)<br />

bis(dimethylam<strong>in</strong>o)tungsten(VI)<br />

78 Trimethyl(methylcyclopentadienyl)plat<strong>in</strong>um(IV)<br />

For additi<strong>on</strong>al vapor depositi<strong>on</strong> precursors prepacked <strong>in</strong> cyl<strong>in</strong>ders, please c<strong>on</strong>tact us by email at matsci@sial.com<br />

[(CH 3) 2N] 4Zr solid 669016<br />

C 12H 32N 4Zr liquid 725528<br />

C 7H 9RuC 7H 9 liquid 679798<br />

Hf[C 5H 4(CH 3)] 2(CH 3) 2 solid 725501<br />

HfCH 3(OCH 3)[C 5H 4(CH 3)] 2 liquid 725498<br />

[(CH 3) 2N] 4Hf lowmelt<strong>in</strong>g<br />

solid<br />

666610<br />

[(CH 3)(C 2H 5)N] 4Hf liquid 725544<br />

(CH 3) 3CNTa(N(C 2H 5) 2) 3 liquid 668990<br />

((CH 3) 3CN) 2W(N(CH 3) 2) 2 liquid 668885<br />

C 5H 4CH 3Pt(CH 3) 3<br />

lowmelt<strong>in</strong>g<br />

solid<br />

697540


22<br />

Indoles and Indole Isosteres<br />

Substituted <strong>in</strong>doles have frequently been referred to as “privileged structures”<br />

s<strong>in</strong>ce <strong>the</strong>y are capable of b<strong>in</strong>d<strong>in</strong>g to multiple receptors with high<br />

affi nity, and thus have applicati<strong>on</strong>s across a wide range of <strong>the</strong>rapeutic<br />

areas. 1 However, recent publicati<strong>on</strong>s often dem<strong>on</strong>strate <strong>the</strong> need for a<br />

<strong>research</strong>er to attenuate or amplify <strong>the</strong> activity of <strong>the</strong>ir target compound<br />

with<str<strong>on</strong>g>out</str<strong>on</strong>g> alter<strong>in</strong>g <strong>the</strong> steric bulk of <strong>the</strong> structure; thus, isosteres of <strong>the</strong> <strong>in</strong>dole<br />

r<strong>in</strong>g have proven very valuable to syn<strong>the</strong>tic and medic<strong>in</strong>al chemists.<br />

The aza<strong>in</strong>dole and <strong>in</strong>dazole moieties diff er <strong>on</strong>ly by <strong>the</strong> additi<strong>on</strong> of an<br />

extra r<strong>in</strong>g nitrogen, and thus exhibit excellent potential as bioisosteres<br />

of <strong>the</strong> <strong>in</strong>dole r<strong>in</strong>g system. Although more rare <strong>in</strong> nature, <strong>in</strong>terest <strong>in</strong> <strong>the</strong>se<br />

structures has surged over <strong>the</strong> past decade and <strong>the</strong>y comprise essential<br />

subunits <strong>in</strong> many pharmaceutically relevant compounds. 2,3 Indazoles<br />

have been widely reported to display signifi cant activity as antifungals,<br />

anti-<strong>in</strong>fl ammatory agents, antiarrhythmic agents, analgesics, and nitric<br />

oxide synthase <strong>in</strong>hibitors. 2a Of <strong>the</strong> various aza<strong>in</strong>doles, 7-aza<strong>in</strong>doles are of<br />

particular <strong>in</strong>terest because of <strong>the</strong>ir ability to mimic pur<strong>in</strong>es <strong>in</strong> <strong>the</strong>ir roles<br />

as hydrogen-b<strong>on</strong>d<strong>in</strong>g partners. Similarly, imidazopyrid<strong>in</strong>es have proven<br />

eff ective as pur<strong>in</strong>e mimics <strong>in</strong> several recent studies. 4<br />

When two r<strong>in</strong>g nitrogens are added to <strong>the</strong> <strong>in</strong>dole subunit, it results <strong>in</strong><br />

7-deazapur<strong>in</strong>es, an important class of compounds found <strong>in</strong> a wide variety<br />

of biological niches. Various rib<strong>on</strong>ucleosides c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g 7-deazapur<strong>in</strong>es<br />

dem<strong>on</strong>strate a broad spectrum of biological activity, even at<br />

nanomolar c<strong>on</strong>centrati<strong>on</strong>s. 5<br />

<strong>Aldrich</strong> is pleased to off er a wide variety of <strong>the</strong>se useful build<strong>in</strong>g blocks<br />

for your <strong>research</strong>.<br />

New Indoles<br />

H 2N<br />

Br O<br />

N<br />

H<br />

O<br />

For a complete list of <strong>in</strong>doles from <strong>Aldrich</strong> Chemistry, visit<br />

<strong>Aldrich</strong>.com/<strong>in</strong>dole<br />

<strong>Aldrich</strong>.com<br />

N<br />

H<br />

CH 3<br />

H 3CO<br />

H 3CO<br />

F 3C<br />

733040 723789 716529<br />

N<br />

H<br />

724718 724378<br />

Build<strong>in</strong>g Blocks<br />

Mark Redlich<br />

Product Manager<br />

mark.redlich@sial.com<br />

N<br />

H<br />

O<br />

H<br />

N<br />

H<br />

CH 3<br />

New Aza<strong>in</strong>doles<br />

For a complete list of aza<strong>in</strong>doles available from<br />

<strong>Aldrich</strong> Chemistry, visit <strong>Aldrich</strong>.com/aza<strong>in</strong>dole<br />

New Indazoles<br />

For a complete list of <strong>in</strong>dazoles available from<br />

<strong>Aldrich</strong> Chemistry, visit <strong>Aldrich</strong>.com/<strong>in</strong>dazole<br />

New Imidazopyrid<strong>in</strong>es<br />

NH2 N<br />

N<br />

TO ORDER: C<strong>on</strong>tact your local <strong>Sigma</strong>-<strong>Aldrich</strong> offi ce (see back cover), or visit <strong>Aldrich</strong>.com/chemicalsyn<strong>the</strong>sis.<br />

N<br />

Br<br />

N<br />

H<br />

Br<br />

N<br />

N<br />

685755 721050 732141<br />

For a complete list of imidazopyrid<strong>in</strong>es available from<br />

<strong>Aldrich</strong> Chemistry, visit <strong>Aldrich</strong>.com/imidazopyrid<strong>in</strong>e<br />

New Pur<strong>in</strong>es and Deazapur<strong>in</strong>es<br />

CH3 H3CO N<br />

H3C Si O N<br />

N<br />

H<br />

CH3 732168 707953 723770<br />

Br<br />

N<br />

N<br />

H<br />

N<br />

N<br />

CH3 717525 717215<br />

N<br />

NH 2<br />

N<br />

N H<br />

Cl<br />

722332 717592<br />

N<br />

Br<br />

NH2 H<br />

N<br />

N<br />

N<br />

For a complete list of pur<strong>in</strong>es and deazapur<strong>in</strong>es available from <strong>Aldrich</strong><br />

Chemistry, visit <strong>Aldrich</strong>.com/pur<strong>in</strong>e<br />

Br<br />

N<br />

N<br />

N<br />

H


Thiazoles<br />

Thiazoles have been frequently discovered as a vital comp<strong>on</strong>ent of novel<br />

and structurally diverse natural products that exhibit a wide variety of<br />

biological activities. Their presence <strong>in</strong> peptides, <strong>the</strong>ir ability to b<strong>in</strong>d to<br />

prote<strong>in</strong>s, DNA, and RNA, as well as <strong>the</strong> excepti<strong>on</strong>al range of antitumor,<br />

antiviral, and antibiotic activities of thiazole-c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g compounds have<br />

directed numerous syn<strong>the</strong>tic studies and new applicati<strong>on</strong>s. The thiazole<br />

r<strong>in</strong>g has been identifi ed as a central feature of myriad natural products,<br />

and syn<strong>the</strong>tic variants have been pursued by pharmaceutical companies<br />

due to <strong>the</strong>ir signifi cant activity. 6<br />

Additi<strong>on</strong>ally, thiazoles are important features of various peptides and<br />

pseudopeptides that functi<strong>on</strong> as potent ant<strong>in</strong>eoplastic agents, 7 or have<br />

dem<strong>on</strong>strated signifi cant cytotoxicity or antibiotic properties. 8 Thiazoles<br />

can also serve as a protected formyl group that can be liberated <strong>in</strong> <strong>the</strong><br />

late stages of a complex natural product syn<strong>the</strong>sis. 9<br />

New Thiazoles<br />

Br<br />

N<br />

t-Bu<br />

S<br />

Boc<br />

N<br />

H<br />

N<br />

S Br<br />

723649 724122 722375<br />

H 3C<br />

S<br />

N<br />

NH2<br />

H 3C<br />

For a complete list of thiazoles available from<br />

<strong>Aldrich</strong> Chemistry, visit <strong>Aldrich</strong>.com/thiazole<br />

O<strong>the</strong>r New Build<strong>in</strong>g Blocks<br />

Br<br />

O<br />

717851 717258<br />

OH<br />

Cl Br<br />

718076<br />

729442<br />

N<br />

N<br />

H<br />

O<br />

725293<br />

NH 2<br />

O<br />

OCH 3<br />

O CH 3<br />

N OH<br />

NH2<br />

Boc N<br />

HO<br />

O<br />

CH 3<br />

723282<br />

722316<br />

O<br />

722340<br />

O<br />

H<br />

N Boc<br />

O<br />

N N<br />

CH3<br />

OH<br />

CH3<br />

S<br />

N<br />

N<br />

O<br />

N<br />

H<br />

H 3C<br />

O<br />

HO<br />

O<br />

722464<br />

O<br />

O<br />

721530<br />

722359<br />

H 3C<br />

O<br />

O CH 3<br />

N N<br />

CH3<br />

724890 722367 724149<br />

OH<br />

H3CO NH 2<br />

O<br />

Ready to scale up? For competitive quotes <strong>on</strong> larger quantities or custom syn<strong>the</strong>sis, c<strong>on</strong>tact your local <strong>Sigma</strong>-<strong>Aldrich</strong> offi ce, or visit safcglobal.com.<br />

CH 3<br />

OH<br />

O<br />

S Cl<br />

O<br />

Cl NO2<br />

S<br />

N<br />

NH 2<br />

O<strong>the</strong>r New Build<strong>in</strong>g Blocks — c<strong>on</strong>t'd<br />

H 3CO<br />

Cl<br />

722073<br />

722022<br />

725048<br />

O 2N<br />

720321<br />

O<br />

S<br />

O<br />

NO 2<br />

O H<br />

N<br />

Boc<br />

N<br />

N<br />

N<br />

O<br />

NH 2<br />

NH 2<br />

N<br />

N<br />

O<br />

727598<br />

724254<br />

OH<br />

Cl<br />

NH2<br />

O<br />

O<br />

H<br />

N<br />

Boc<br />

Cl<br />

H 3CO<br />

H<br />

N CH3<br />

715646<br />

O<br />

N<br />

N<br />

N<br />

720844<br />

N<br />

720917<br />

714372<br />

H 3C<br />

O<br />

Build<strong>in</strong>g Blocks<br />

N<br />

CH3 724165<br />

697966<br />

719722<br />

730343<br />

For a comprehensive list of Build<strong>in</strong>g Blocks available form <strong>Aldrich</strong><br />

Chemistry, visit <strong>Aldrich</strong>.com/bb<br />

Cl<br />

References: (1) Hort<strong>on</strong>, D. A. et al. Chem. Rev. 2003, 103, 893 and references <strong>the</strong>re<strong>in</strong>.<br />

(2) Recent reviews of <strong>in</strong>dazoles: a) Schmidt, A. et al. Eur. J. Org. Chem. 2008, 4073. (b)<br />

Cerecetto, H. et al. M<strong>in</strong>i-Rev. Med. Chem. 2005, 5, 869. (c) Stadlbauer, W.; Camp, N. In<br />

Science of Syn<strong>the</strong>sis: Houben-Weyl Methods of Molecular Transformati<strong>on</strong>s; Bellus, D., Ley,<br />

S. V., Noyori, R., Regitz, M., Schaumann, E., Sh<strong>in</strong>kai, E., Thomas, E. J., Trost, B. M., Reider, P.<br />

J., Eds.; Thieme: Stuttgart, Germany, 2002; Vol. 12, p 227. (3) Recent reviews of aza<strong>in</strong>doles:<br />

(a) Popowycz, F. et al. Tetrahedr<strong>on</strong> 2007, 63, 1031. (b) Popowycz, F. et al. Tetrahedr<strong>on</strong><br />

2007, 63, 8689. (c) S<strong>on</strong>g, J. J. et al. Chem. Soc. Rev. 2007, 36, 1120. (4) Huang, W.-S. et al.<br />

J. Med. Chem. 2010, 53, 4701. (b) Buckley, G. M. et al. Bioorg. Med. Chem. Lett. 2008, 18,<br />

3656. (c) Buckley, G. M. et al. Bioorg. Med. Chem. Lett. 2008, 18, 3291. (5) (a) Suhadolnik,<br />

R. J. Pyrrolopyrimid<strong>in</strong>e Nucleosides <strong>in</strong> Nucleoside Antibiotics; Wiley-Interscience: New York,<br />

1970; 298 and references <strong>the</strong>re<strong>in</strong>. (b) Kasai, H. et al. Biochemistry 1975, 14, 4198. (c) Nauš,<br />

P. et al. J. Med. Chem. 2010, 53, 460. (6) J<strong>in</strong>, Z. Nat. Prod. Rep., 2005, 22, 196. (7) Pettit, G. R.<br />

et al. J. Am. Chem. Soc. 1987, 109, 6883. (8) (a) Davids<strong>on</strong>, B. S. Chem. Rev. 1993, 93, 1771.<br />

(b) Fusetani, N.; Matsunaga, S. Chem. Rev. 1993, 93, 1793. (c) Wipf, P. Chem. Rev. 1995, 95,<br />

2115. (d) Aulakh, V. S.; Ciufol<strong>in</strong>i, M. A. J. Org. Chem. 2009, 74, 5750. (9) D<strong>on</strong>d<strong>on</strong>i, A.; Marra,<br />

A. Chem. Rev. 2004, 104, 2557.<br />

N<br />

N<br />

Cl<br />

CF 3<br />

N<br />

722243<br />

694770<br />

O<br />

O<br />

N<br />

Cl<br />

H<br />

Cl<br />

O<br />

O<br />

O<br />

CH 3<br />

H<br />

N CH 3<br />

Br<br />

N<br />

Br N Br<br />

F<br />

N<br />

N<br />

S<br />

NH2<br />

O<br />

722251<br />

724157<br />

O<br />

S Cl<br />

O<br />

23


24<br />

Cross-Coupl<strong>in</strong>gs <strong>in</strong> Water<br />

C<strong>on</strong>duct<strong>in</strong>g transiti<strong>on</strong> metal-catalyzed cross-coupl<strong>in</strong>g chemistry <strong>in</strong> water<br />

<strong>in</strong>stead of organic solvent has a number of potential benefi ts <strong>in</strong> terms of<br />

cost, envir<strong>on</strong>mental impact, safety, and impurity profi les. Increas<strong>in</strong>g focus<br />

<strong>on</strong> <strong>the</strong> “green-ness” of chemical processes has fur<strong>the</strong>r promoted recent<br />

<strong>developments</strong> <strong>in</strong> this fi eld. The actual means of implement<strong>in</strong>g reacti<strong>on</strong>s<br />

<strong>in</strong> water, however, especially at room temperature and for water-<strong>in</strong>soluble<br />

organic substrates, has not always been clear. One soluti<strong>on</strong> that has<br />

been applied to a broad range of transiti<strong>on</strong> metal-catalyzed processes is<br />

<strong>the</strong> use of small amounts of a nanomicelle-form<strong>in</strong>g amphiphile <strong>in</strong> water,<br />

which provides a lipophilic medium <strong>in</strong> which cross-coupl<strong>in</strong>g reacti<strong>on</strong>s<br />

can take place.<br />

Micellar Catalysis<br />

<strong>Aldrich</strong>.com<br />

Syn<strong>the</strong>tic Reagents<br />

Troy Ryba, Ph.D.<br />

Product Manager<br />

troy.ryba@sial.com<br />

TPGS–750–M: Sec<strong>on</strong>d Generati<strong>on</strong> Amphiphile for Organometallic Chemistry <strong>in</strong> Water @ RT<br />

Beg<strong>in</strong>n<strong>in</strong>g <strong>in</strong> 2008, Lipshutz et al. published a series of papers dem<strong>on</strong>strat<strong>in</strong>g<br />

<strong>the</strong> viability of surfactant promoted, transiti<strong>on</strong> metal-catalyzed<br />

chemistry <strong>in</strong> water at room temperature. Us<strong>in</strong>g a variety of commercially<br />

available surfactants, a number of palladium- and ru<strong>the</strong>nium-catalyzed<br />

processes were found to be amenable to mild, room temperature reacti<strong>on</strong>s<br />

<strong>in</strong> water. Products can be recovered from <strong>the</strong> aqueous phase us<strong>in</strong>g<br />

standard extracti<strong>on</strong> procedures and <strong>in</strong> high isolated yields.<br />

TPGS–750–M: A Sec<strong>on</strong>d Generati<strong>on</strong><br />

Amphiphile<br />

TO ORDER: C<strong>on</strong>tact your local <strong>Sigma</strong>-<strong>Aldrich</strong> offi ce (see back cover), or visit <strong>Aldrich</strong>.com/chemicalsyn<strong>the</strong>sis.<br />

Lipshutz and co-workers have recently developed a sec<strong>on</strong>d<br />

generati<strong>on</strong> technology to <strong>the</strong>ir orig<strong>in</strong>al PTS-enabl<strong>in</strong>g surfactant based<br />

<strong>on</strong> a polyoxyethanyl-α-tocopheryl succ<strong>in</strong>ate derivative, TPGS-750-M<br />

(733857) (Figure 1). This designer surfactant is composed of a lipophilic<br />

α-tocopherol moiety and a hydrophilic PEG-750-M cha<strong>in</strong>, jo<strong>in</strong>ed by an<br />

<strong>in</strong>expensive succ<strong>in</strong>ic acid l<strong>in</strong>ker, and sp<strong>on</strong>taneously forms micelles up<strong>on</strong><br />

dissoluti<strong>on</strong> <strong>in</strong> water. The balance and compositi<strong>on</strong> of TPGS-750-M’s<br />

lipophilic and hydrophilic comp<strong>on</strong>ents has been tailored to promote a<br />

broader array of chemistry <strong>in</strong> water more effi ciently than that seen <strong>in</strong> PTS.<br />

Fur<strong>the</strong>rmore, this new, more practical surfactant can be readily substituted<br />

for older amphiphiles, usually with equal or greater<br />

effi ciency <strong>in</strong> terms of both yield and reacti<strong>on</strong> times.<br />

Figure 1: TPGS–750–M.<br />

3<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O Me<br />

16<br />

*Special thanks to Professor Bruce Lipshutz, Zarko V. Boskovic and Alex R. Abela of<br />

University of California, Santa Barbara for c<strong>on</strong>tribut<strong>in</strong>g this article <strong>on</strong> TPGS-750-M.


Olefi n Meta<strong>the</strong>sis<br />

Employ<strong>in</strong>g <strong>the</strong> sec<strong>on</strong>d generati<strong>on</strong> Grubbs catalyst (2 mol %) a variety of<br />

lypophillic substrates successfully undergo r<strong>in</strong>g-clos<strong>in</strong>g or cross-meta<strong>the</strong>sis<br />

<strong>in</strong> water at room temperature to produce high isolated yields of <strong>the</strong><br />

desired products (Scheme 1). Reacti<strong>on</strong>s were c<strong>on</strong>ducted <strong>in</strong> 2.5% TPGS-<br />

750-M/water, with yields equal to or slightly better than those performed<br />

us<strong>in</strong>g various o<strong>the</strong>r surfactant-water comb<strong>in</strong>ati<strong>on</strong>s.<br />

OTBS<br />

N<br />

Ts<br />

Scheme 1: Selected olefi n meta<strong>the</strong>sis.<br />

O<br />

O<br />

Grubbs-2 (2 mol %)<br />

2.5% TPGS-750-M, water<br />

22 o C, 12 h<br />

Grubbs-2 (2 mol %)<br />

2.5% TPGS-750-M, water<br />

22 o C, 12 h<br />

O<br />

OTBS<br />

91%<br />

N<br />

Ts<br />

88%<br />

Pd-Catalyzed Cross-Coupl<strong>in</strong>g Reacti<strong>on</strong>s<br />

A variety of widely used palladium-catalyzed cross-coupl<strong>in</strong>g reacti<strong>on</strong>s can<br />

now be run under mild room temperature c<strong>on</strong>diti<strong>on</strong>s <strong>in</strong> water with TPGS-<br />

750-M, us<strong>in</strong>g a variety of commercially available palladium complexes<br />

and ligands. These transformati<strong>on</strong>s, <strong>in</strong>clud<strong>in</strong>g Suzuki-Miyaura, S<strong>on</strong>ogashira,<br />

Buchwald-Hartwig am<strong>in</strong>ati<strong>on</strong>s, and Heck, are am<strong>on</strong>gst <strong>the</strong> most<br />

heavily used b<strong>on</strong>d form<strong>in</strong>g reacti<strong>on</strong>s, both <strong>in</strong>dustrially and academically<br />

(Scheme 2).<br />

I<br />

Br<br />

Br<br />

+<br />

+<br />

B(OH) 2<br />

OMe<br />

Br NH 2<br />

+<br />

OMe +<br />

2 mol % Pd(dtbpf)Cl2<br />

Et3N (3 equiv)<br />

2% TPGS-750-M, water<br />

20 °C, 24 h<br />

3% TPGS-750-M, water<br />

22 o PdCl2(CH3CN)2 (1 mol %)<br />

X-Phos (2.5 mol %)<br />

Et3N (2 eq.)<br />

C, 21 h<br />

[(allyl)PdCl] 2 (0.5 mol %)<br />

Takasago's cBRIDP (2 mol %)<br />

KOH (1.5 equiv)<br />

2% TPGS-750-M, water<br />

22 o C, 19 h<br />

(PtBu3)2Pd (2 mol %)<br />

Et3N (3 equiv)<br />

5% TPGS-750-M, water<br />

22 o C, 12 h<br />

Scheme 2: Selected Pd-catalyzed cross coupl<strong>in</strong>g reacti<strong>on</strong>s.<br />

Operati<strong>on</strong>ally extremely simple Suzuki-Miyaura reacti<strong>on</strong>s us<strong>in</strong>g micellar<br />

catalysis and bis(di-tert-butylphosph<strong>in</strong>o)ferrocene palladium chloride<br />

complex provide access to highly sterically c<strong>on</strong>gested substrates at room<br />

temperature us<strong>in</strong>g triethylam<strong>in</strong>e as base.<br />

O<br />

88%<br />

99%<br />

H<br />

N<br />

93%<br />

Ready to scale up? For competitive quotes <strong>on</strong> larger quantities or custom syn<strong>the</strong>sis, c<strong>on</strong>tact your local <strong>Sigma</strong>-<strong>Aldrich</strong> offi ce, or visit safcglobal.com.<br />

OMe<br />

95%<br />

OMe<br />

Syn<strong>the</strong>tic Reagents<br />

S<strong>on</strong>ogashira reacti<strong>on</strong>s and Buchwald-Hartwig am<strong>in</strong>ati<strong>on</strong>s are also<br />

amenable to reacti<strong>on</strong> <strong>in</strong> water with TPGS-750-M us<strong>in</strong>g <strong>the</strong> palladium<br />

chloride/X-Phos comb<strong>in</strong>ati<strong>on</strong> <strong>in</strong> <strong>the</strong> former, and allyl palladium chloride/cBRIDP<br />

<strong>in</strong> <strong>the</strong> latter (Figure 2).<br />

Figure 2: Selected ligand examples.<br />

Heck cross-coupl<strong>in</strong>gs with aryl iodides can be successfully performed<br />

us<strong>in</strong>g Pd(P(t-Bu)3)2 as <strong>the</strong> palladium source <strong>in</strong> <strong>the</strong> bulk aqueous envir<strong>on</strong>ment<br />

c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g TPGS-750-M (5 wt. %), obviat<strong>in</strong>g <strong>the</strong> need for high<br />

temperatures comm<strong>on</strong>ly associated with Heck reacti<strong>on</strong>s.<br />

Z<strong>in</strong>c-mediated Negishi-like coupl<strong>in</strong>gs between aryl and alkyl<br />

halides can be performed <strong>in</strong> aqueous TPGS-750-M (Scheme 3).<br />

Under <strong>the</strong>se c<strong>on</strong>diti<strong>on</strong>s, typically highly moisture sensitive organoz<strong>in</strong>c<br />

halides are formed <strong>in</strong> situ from an alkyl halide and z<strong>in</strong>c dust, and react<br />

with an aryl halide under palladium catalysis. With <strong>the</strong> aid of a surfactant<br />

and a stabiliz<strong>in</strong>g ligand for RZnX, such as tetramethylethylenediam<strong>in</strong>e<br />

(TMEDA), this entire process takes place <strong>in</strong> water, lead<strong>in</strong>g to a<br />

variety of primary and sec<strong>on</strong>dary alkyl-substituted aromatics. The choice<br />

of catalyst is crucial for <strong>the</strong> success of <strong>the</strong> reacti<strong>on</strong>; Pd(Amphos)2Cl2<br />

(Bis(di-tert-butyl (4-dimethylam<strong>in</strong>ophenyl)phosph<strong>in</strong>e) palladium(II)<br />

chloride) was found to be <strong>the</strong> optimal catalyst.<br />

Scheme 3: Selected Negishi-like cross-coupl<strong>in</strong>g example.<br />

C–H Activati<strong>on</strong> Reacti<strong>on</strong>s<br />

Cati<strong>on</strong>ic palladium <strong>in</strong> comb<strong>in</strong>ati<strong>on</strong> with stoichiometric oxidant benzoqu<strong>in</strong><strong>on</strong>e<br />

and silver nitrate successfully catalyzes ortho-functi<strong>on</strong>alizati<strong>on</strong><br />

of a variety of aryl acetamides <strong>in</strong> water at room temperature us<strong>in</strong>g this<br />

amphiphile (Scheme 4).<br />

Scheme 4: Selected C–H activati<strong>on</strong> reacti<strong>on</strong>.<br />

H<br />

OMe<br />

Br<br />

H<br />

N<br />

O<br />

i-Pr<br />

+<br />

EtO2C<br />

+<br />

i-Pr<br />

PCy2 i-Pr<br />

Reference: Lipshutz, B. H.; Ghorai, S. <strong>Aldrich</strong>imica Acta 2008, 41, 59.<br />

For more <strong>in</strong>formati<strong>on</strong> <strong>on</strong> TPGS–750–M, visit<br />

<strong>Aldrich</strong>.com/tpgs750m<br />

Ph<br />

Ph<br />

Me<br />

X-Phos cBRIDP<br />

638064<br />

O<br />

Br<br />

On-Bu<br />

P(t-Bu)2<br />

685151<br />

0.5% Pd(Amphos)2Cl2<br />

TMEDA (1 equiv)<br />

Zn dust (3 equiv)<br />

2% TPGS-750-M, water, rt<br />

EtO2C<br />

[Pd(MeCN)4](BF4)2 (10 mol %)<br />

BQ, AgNO3<br />

2% TPGS-750-M, water, rt<br />

OMe<br />

80%<br />

CO2n-Bu<br />

H<br />

N<br />

83%<br />

O<br />

25


26<br />

Stable Isotope Labeled<br />

Reagents from ISOTEC®<br />

Stable isotope c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g compounds are used <strong>in</strong> a variety of applicati<strong>on</strong>s<br />

<strong>in</strong>clud<strong>in</strong>g tracers <strong>in</strong> cl<strong>in</strong>ical studies, 1 labeled am<strong>in</strong>o acids for use <strong>in</strong><br />

prote<strong>in</strong> quantifi cati<strong>on</strong> 2 and standards for metabolic <strong>research</strong>. 3 Historically,<br />

<strong>the</strong> <strong>in</strong>troducti<strong>on</strong> of stable isotopes has been a diffi cult, time c<strong>on</strong>sum<strong>in</strong>g<br />

and costly process requir<strong>in</strong>g <strong>the</strong> specialized skill of a stable isotope<br />

chemist. The reagents below were designed to <strong>in</strong>troduce stable isotopes<br />

us<strong>in</strong>g standard chemical procedures.<br />

13 C Labeled Olefi nati<strong>on</strong> Reagents<br />

The 13 C labeled olefi nati<strong>on</strong> reagents 4 were developed to simplify <strong>the</strong><br />

label<strong>in</strong>g process by provid<strong>in</strong>g a set of substrates ready to be <strong>in</strong>corporated<br />

<strong>in</strong>to precedented chemical syn<strong>the</strong>ses. 5 These olefi nati<strong>on</strong> reagents<br />

provide access to a fi xed 13 C label with<strong>in</strong> <strong>the</strong> alkene as well as site-variable<br />

deuterium <strong>in</strong>corporati<strong>on</strong> (Scheme 1). This methodology effi ciently<br />

provides a densely labeled compound ready for fur<strong>the</strong>r functi<strong>on</strong>alizati<strong>on</strong>.<br />

O O<br />

S<br />

Ph 13CH<br />

<strong>Aldrich</strong>.com<br />

CH2<br />

O O<br />

Ph<br />

S<br />

13C<br />

R<br />

R'<br />

K2CO3, CH2O<br />

K2CO3, CD2O<br />

H2O/DMSO<br />

D2O/DMSO O O O<br />

K2CO3, CH2O<br />

S P D2O/DMSO<br />

13CH2 OEt<br />

Ph<br />

OEt<br />

1. K2CO3<br />

H2O/DMSO<br />

2. RI, 3. R'CHO<br />

Scheme 1: Olefi nati<strong>on</strong> reagents label<strong>in</strong>g strategies.<br />

K 2CO3, CD2O<br />

H 2O/DMSO<br />

O O<br />

Ph<br />

S<br />

13C<br />

D<br />

D D<br />

O O<br />

Ph<br />

S<br />

13C<br />

D<br />

CH2 O O<br />

S<br />

Ph 13CH<br />

The availability of all three sulfur oxidati<strong>on</strong> states allows c<strong>on</strong>trol of <strong>the</strong><br />

reacti<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s <strong>in</strong>clud<strong>in</strong>g base type and strength as well as access to<br />

a preferred sulfur removal strategy. 6 By provid<strong>in</strong>g access to mild reacti<strong>on</strong><br />

c<strong>on</strong>diti<strong>on</strong>s, fewer compatibility issues arise between reacti<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s,<br />

olefi nati<strong>on</strong> reagent and substrate.<br />

New 13 C Labeled Olefi nati<strong>on</strong> Reagents<br />

Ph<br />

O<br />

S P<br />

13CH2 OEt<br />

OEt<br />

Ph<br />

O<br />

S P<br />

13CH2 OEt<br />

OEt<br />

O O O<br />

Ph<br />

S P<br />

13CH2 OEt<br />

OEt<br />

715832 715824<br />

715816<br />

O<br />

Stable Isotopes<br />

Lisa Roth, Ph.D.<br />

Product Manager<br />

lisa.roth@sial.com<br />

D<br />

D<br />

TO ORDER: C<strong>on</strong>tact your local <strong>Sigma</strong>-<strong>Aldrich</strong> offi ce (see back cover), or visit <strong>Aldrich</strong>.com/chemicalsyn<strong>the</strong>sis.<br />

D and/or 13 C Labeled 1,3–Dithiane<br />

Unlabeled 1,3–Dithiane is a versatile reagent able to act as an acyl ani<strong>on</strong><br />

equivalent when submitted to Corey-Seebach reacti<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s. 7<br />

This well known chemistry can also be carried <str<strong>on</strong>g>out</str<strong>on</strong>g> when 1,3–Dithiane<br />

is labeled at <strong>the</strong> 2 positi<strong>on</strong> provid<strong>in</strong>g labeled and protected aldehydes,<br />

ket<strong>on</strong>es, α-hydroxyket<strong>on</strong>es, 1,2–diket<strong>on</strong>es and α-keto acid derivatives.<br />

Deprotecti<strong>on</strong> can be facilitated us<strong>in</strong>g standard methods to give <strong>the</strong><br />

appropriately labeled substrates (Scheme 2). 8<br />

Scheme 2: 1,3–Dithiane for <strong>the</strong> <strong>in</strong>troducti<strong>on</strong> of D and/or 13 C.<br />

New Labeled D and/or 13 C 1,3–Dithiane<br />

S<br />

13 H<br />

C<br />

H<br />

S<br />

716111<br />

S<br />

13 D<br />

C<br />

D<br />

S<br />

716073<br />

References: (1) Brown, L. D.; Cheung, A.; Harwood, J. E. F.; Battaglia, F. C.; J. Nut. 2009,<br />

139, 1649. (2) Hanke, S.; Besir, H.; Oesterhelt, D.; Mann, M.; J. Proteome. Res. 2008, 7, 1118.<br />

(3) Li, C.; Hill, R.W.; J<strong>on</strong>es, A. D.; J. Chrom. B 2010, 878, 1809. (4) Licensed from Highlands<br />

Stable Isotopes Corp. (5) a) Capela, R.; Oliveira, R.; G<strong>on</strong>çalves, L. M.; Dom<strong>in</strong>gos, A; Gut, J.;<br />

Rosenthal, P. J.; Lopes, F.; Moreira, R.; Biorg. Med. Chem. Lett. 2009, 19, 3229. (b) Verissimo,<br />

E.; Berry, N.; Gibb<strong>on</strong>s, P.; Cristiano, M. L. S.; Rosenthal, P. J.; Gut, J.; Ward, S. A.; O’Neill, P. M.;<br />

Biorg. Med. Chem. Lett. 2008, 18, 4210. (6) a) Beye, G. E.; Ward, D. E.; J. Am. Chem. Soc. 2010,<br />

132, 7210. (b) Pellissier, H.; Tetrahedr<strong>on</strong> 2006, 62, 5559. (7) a) Seebach, D.; Corey, E. J.; J. Org.<br />

Chem. 1975, 40, 231. (b) Mundy, P. B.; Ellerd, M. G.; Favaloro, F. G., Jr.; Name Reacti<strong>on</strong>s and<br />

Reagents <strong>in</strong> Organic Syn<strong>the</strong>sis, 2nd ed.; Wiley & S<strong>on</strong>s: New York, 2005; p 186, 745. (8) Wutz, P.<br />

G. M.; Greene, T. W.; Protecti<strong>on</strong> for <strong>the</strong> Carb<strong>on</strong>yl Group, Greene’s Protective Groups <strong>in</strong> Organic<br />

Syn<strong>the</strong>sis, 4th ed.; Wiley & S<strong>on</strong>s: New York, 2007; p 482.<br />

For more <strong>in</strong>formati<strong>on</strong> <strong>on</strong> <strong>the</strong>se products avaliable from<br />

<strong>Aldrich</strong> Chemistry, visit <strong>Aldrich</strong>.com/s<strong>in</strong>ext<br />

or c<strong>on</strong>tact:<br />

S<br />

13 R<br />

C<br />

S R<br />

R = H or D<br />

O<br />

O OH<br />

13C R R' O<br />

O<br />

13C R R'<br />

13C R<br />

OH 13C R<br />

R'<br />

O<br />

O<br />

Stable Isotope Technical Services<br />

Ph<strong>on</strong>e: (937) 859-1808<br />

(800) 448-9760 (US and Canada)<br />

Fax: (937) 859-4878<br />

E-mail: isosales@sial.com


Unlock a smarter, greener laboratory<br />

Visit our Greener Alternatives Web portal at sigma-aldrich.com/green to learn how you can<br />

reduce your lab’s envir<strong>on</strong>mental impact–with<str<strong>on</strong>g>out</str<strong>on</strong>g> compromis<strong>in</strong>g <strong>the</strong> quality of your data<br />

or <strong>research</strong>. Come see how <strong>Sigma</strong>-<strong>Aldrich</strong>® is meet<strong>in</strong>g <strong>the</strong> <strong>research</strong> community’s needs<br />

for products and services which can signifi cantly lessen envir<strong>on</strong>mental impact. Put our<br />

commitment to envir<strong>on</strong>mental susta<strong>in</strong>ability to work <strong>in</strong> your lab.<br />

Greener Products<br />

Browse greener alternatives.<br />

Programs and Services<br />

Discover soluti<strong>on</strong>s designed to reduce <strong>the</strong> envir<strong>on</strong>mental impact of your lab.<br />

Learn<strong>in</strong>g Center<br />

Resources and l<strong>in</strong>ks to <strong>in</strong>formati<strong>on</strong> <strong>on</strong> envir<strong>on</strong>mental susta<strong>in</strong>ability.<br />

Greener<br />

Alternatives<br />

Check <str<strong>on</strong>g>out</str<strong>on</strong>g> our Web portal to f<strong>in</strong>d <str<strong>on</strong>g>out</str<strong>on</strong>g> ab<str<strong>on</strong>g>out</str<strong>on</strong>g><br />

our Greener Products and Programs<br />

For more <strong>in</strong>formati<strong>on</strong> <strong>on</strong> our<br />

Greener Alternatives, Programs<br />

and Services, visit<br />

sigma-aldrich.com/green


28<br />

<strong>Aldrich</strong> NMR Solvents<br />

Challenge Us... and see why our Quality is<br />

Unsurpassed!<br />

High quality NMR solvents are essential for satisfy<strong>in</strong>g <strong>the</strong> most rigorous<br />

demands of NMR-based <strong>research</strong> and analyses. At <strong>Aldrich</strong>, we are passi<strong>on</strong>ate<br />

ab<str<strong>on</strong>g>out</str<strong>on</strong>g> provid<strong>in</strong>g this high level of quality to our customers and<br />

work c<strong>on</strong>t<strong>in</strong>uously to meet <strong>the</strong>se requirements. We off er <strong>the</strong> widest<br />

range of NMR solvents with <strong>the</strong> highest isotopic enrichment available<br />

al<strong>on</strong>g with excellent chemical purity. We c<strong>on</strong>sistently review and improve<br />

our methods for solvent purifi cati<strong>on</strong> and for <strong>the</strong> reducti<strong>on</strong> of water<br />

c<strong>on</strong>tent <strong>in</strong> our already high quality NMR solvents. All of our NMR solvents<br />

undergo thorough quality c<strong>on</strong>trol test<strong>in</strong>g dur<strong>in</strong>g <strong>the</strong> manufactur<strong>in</strong>g and<br />

packag<strong>in</strong>g processes to verify that <strong>the</strong> product quality is preserved.<br />

Use and Handl<strong>in</strong>g of NMR Solvents<br />

Most deuterated NMR solvents readily absorb moisture. To m<strong>in</strong>imize <strong>the</strong> chance of<br />

water c<strong>on</strong>tam<strong>in</strong>ati<strong>on</strong>, use carefully dried NMR tubes and handle NMR solvents <strong>in</strong> a<br />

dry atmosphere.<br />

How to Obta<strong>in</strong> a Nearly Moisture-free Surface<br />

1. Dry glassware at ~150 °C for 24 hours and cool under an <strong>in</strong>ert atmosphere.<br />

2. R<strong>in</strong>se <strong>the</strong> NMR tube with <strong>the</strong> deuterated solvent prior to prepar<strong>in</strong>g <strong>the</strong> sample.<br />

This allows for a complete exchange of prot<strong>on</strong>s from any residual moisture <strong>on</strong><br />

<strong>the</strong> glass surface.<br />

3. For less demand<strong>in</strong>g applicati<strong>on</strong>s, a nitrogen blanket over <strong>the</strong> sample preparati<strong>on</strong><br />

setup may be adequate.<br />

How to Avoid Sources of Impurities and Chemical Residues<br />

1. Use clean, dry glassware and PTFE accessories.<br />

2. Use a vortex mixer <strong>in</strong>stead of shak<strong>in</strong>g <strong>the</strong> tube c<strong>on</strong>tents. The latter acti<strong>on</strong> can<br />

<strong>in</strong>troduce c<strong>on</strong>tam<strong>in</strong>ants from <strong>the</strong> NMR tube cap.<br />

3. Residual chemical vapor from equipment can be a source of impurities;<br />

residual acet<strong>on</strong>e <strong>in</strong> pipette bulbs is a comm<strong>on</strong> example.<br />

<strong>Aldrich</strong>.com<br />

Stockroom Reagents<br />

Todd Halkoski<br />

Market Segment Manager<br />

Solvents<br />

todd.halkoski@sial.com<br />

TO ORDER: C<strong>on</strong>tact your local <strong>Sigma</strong>-<strong>Aldrich</strong> offi ce (see back cover), or visit <strong>Aldrich</strong>.com/chemicalsyn<strong>the</strong>sis.<br />

<strong>Aldrich</strong> also off ers unparalleled c<strong>on</strong>venience and service. Our awardw<strong>in</strong>n<strong>in</strong>g<br />

website allows for quick product search<strong>in</strong>g, easy order<strong>in</strong>g, and a<br />

wealth of valuable tools and <strong>in</strong>formati<strong>on</strong> to aid your <strong>research</strong> eff orts. We<br />

also off er <strong>on</strong>-site stock<strong>in</strong>g programs for NMR solvents so <strong>the</strong>y are available<br />

to you for immediate use. If you have technical questi<strong>on</strong>s, you can feel<br />

comfortable know<strong>in</strong>g our knowledgeable and well-tra<strong>in</strong>ed technical<br />

service specialists can answer your toughest questi<strong>on</strong>s.<br />

Try our NMR Solvents today to see <strong>the</strong>ir high quality<br />

for yourself.<br />

For a complete list<strong>in</strong>g of all NMR-related products and <strong>in</strong>formati<strong>on</strong>,<br />

visit <strong>Aldrich</strong>.com/nmr<br />

How to Remove Solvent Residue<br />

1. Prot<strong>on</strong>ated solvent residue can be removed by co-evaporati<strong>on</strong>.<br />

2. Use a small quantity of <strong>the</strong> desired deuterated solvent, a brief high vacuum<br />

dry<strong>in</strong>g (5–10 m<strong>in</strong>), and <strong>the</strong>n prepare <strong>the</strong> NMR sample.<br />

3. Solvents such as chloroform-d, benzene-d6, and toluene-d8, also remove<br />

residual water azeotropically.<br />

How to Avoid TMS Evaporati<strong>on</strong><br />

1. Extended storage of TMS-c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g solvents can lead to some loss of TMS.<br />

Stor<strong>in</strong>g <strong>the</strong>se solvents <strong>in</strong> Sure/Seal bottles virtually elim<strong>in</strong>ates such a loss. *<br />

2. Purchase TMS-c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g solvents <strong>in</strong> s<strong>in</strong>gle-use ampules.<br />

* To dispense <strong>the</strong> product from Sure/Seal bottle or septum vials, use standard<br />

syr<strong>in</strong>ge needle techniques. For details and recommended procedures, please refer<br />

to <strong>Aldrich</strong> Technical Bullet<strong>in</strong> AL-134 or visit our Web site at <strong>Aldrich</strong>.com.


Specialty NMR Solvents<br />

<strong>Aldrich</strong> off ers a wide range of high purity deuterated solvents for <strong>the</strong><br />

NMR community. In additi<strong>on</strong>, we also off er various specialty solvents for<br />

more demand<strong>in</strong>g applicati<strong>on</strong>s. Whe<strong>the</strong>r you need <strong>the</strong> highest enriched<br />

deuterium oxide available, or solvents with a reduced HOD peak, we<br />

have what you need.<br />

“Special HOH” Solvents<br />

When customers requested NMR solvents with a suppressed HOD peak<br />

we listened, and developed NMR solvents called “Special HOH”. These<br />

solvents have an HOD peak which is less than 1% of <strong>the</strong> HOH peak, to<br />

m<strong>in</strong>imize potential exchange with an analyte. “Special HOH” solvents also<br />

meet our standard water specifi cati<strong>on</strong> for NMR solvents.<br />

1 H-NMR Spectrum of DMSO-d6 “Special HOH”<br />

Acet<strong>on</strong>itrile-d3, 99.8 atom % D, "Special HOH"<br />

699543-10G glass bottle 10 g<br />

699543-25G glass bottle 25 g<br />

699543-50G glass bottle 50 g<br />

Dimethyl sulfoxide-d6, 99.9 atom % D, "Special HOH"<br />

612324-25G glass bottle 25 g<br />

612324-50G glass bottle 50 g<br />

612324-100G glass bottle 100 g<br />

716731-10x0.75ML ampule 10 x 0.75 mL<br />

716731-10ML serum vial 10 mL<br />

716731-50ML serum vial 50 mL<br />

Data acquired <strong>on</strong> a Varian 400 MHz <strong>in</strong>strument.<br />

11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 –0.5<br />

ppm<br />

HOH<br />

3.3<br />

ppm<br />

HOD<br />

DMSO-d6<br />

residual peak<br />

2.5 2.4<br />

ppm<br />

Anhydrous NMR Solvents<br />

Ready to scale up? For competitive quotes <strong>on</strong> larger quantities or custom syn<strong>the</strong>sis, c<strong>on</strong>tact your local <strong>Sigma</strong>-<strong>Aldrich</strong> offi ce, or visit safcglobal.com.<br />

Stockroom Reagents<br />

When water c<strong>on</strong>tent is of paramount c<strong>on</strong>cern, try our anhydrous<br />

solvents that c<strong>on</strong>ta<strong>in</strong> reduced levels of water.<br />

Acet<strong>on</strong>itrile-d 3, 99.8 atom % D, Anhydrous (water < 10 ppm)<br />

569550-10X1ML ampule 10 x 1 mL<br />

Benzene-d 6, 99.6 atom % D, Anhydrous (water < 10 ppm)<br />

570680-50G glass bottle 50 g<br />

Chloroform-d, 99.8 atom % D, Anhydrous (water < 10 ppm)<br />

570699-50G glass bottle 50 g<br />

Dimethyl sulfoxide-d 6, 99.9 atom % D, Anhydrous (water < 50 ppm)<br />

570672-50G glass bottle 50 g<br />

569585-5X1ML ampule 5 x 1 mL<br />

569585-10X1ML ampule 10 x 1 mL<br />

Methanol-d 4, 99.8 atom % D, Anhydrous (water < 50 ppm)<br />

570729-50G glass bottle 50 g<br />

569534-5X1ML ampule 5 x 1 mL<br />

569534-10X1ML ampule 10 x 1 mL<br />

Toluene-d 8, 99.6 atom % D, Anhydrous (water < 10 ppm)<br />

570710-50G glass bottle 50 g<br />

“Extra” Enriched D 2O<br />

With an enrichment of 99.994 atom % D, this is <strong>the</strong> highest enriched<br />

deuterium oxide available.<br />

Deuterium oxide, Extra, 99.994 atom % D<br />

613398-10G serum bottle 10 g<br />

613398-50G serum bottle 50 g<br />

For additi<strong>on</strong>al <strong>in</strong>formati<strong>on</strong> visit us at <strong>Aldrich</strong>.com/nmr<br />

or c<strong>on</strong>tact:<br />

Stable Isotope Technical Services<br />

Ph<strong>on</strong>e: (937) 859-1808<br />

(800) 448-9760 (US and Canada)<br />

Fax: (937) 859-4878<br />

E-mail: isosales@sial.com<br />

29


30<br />

Inert Atmosphere Glove-Boxes<br />

<strong>Sigma</strong>-<strong>Aldrich</strong>® off ers a wide range of Plas-Labs glove boxes for most<br />

oxygen and moisture-sensitive applicati<strong>on</strong>s .<br />

The boxes are manufactured with a clear, <strong>on</strong>e piece acrylic top and a<br />

molded base secti<strong>on</strong>. Gaskets are double layered for a reliable, airtight<br />

seal. The 8 <strong>in</strong>. ports with ambidextrous Hypal<strong>on</strong>® glove with SS O-r<strong>in</strong>gs<br />

give easy access to all parts of <strong>the</strong> glove box. The transparent transfer<br />

chamber has an adjustable vacuum gauge.<br />

Nitrogen Dry Box<br />

The Plas-Labs nitrogen Dry Box is a completely enclosed chamber<br />

designed for work<strong>in</strong>g <strong>in</strong> nitrogen, arg<strong>on</strong> and plasma-type atmospheres<br />

and ideal for handl<strong>in</strong>g oxygen sensitive materials.<br />

• Two vacuum/pressure pumps to speed purg<strong>in</strong>g.<br />

• Fluorescent light system with illum<strong>in</strong>ated c<strong>on</strong>trols<br />

•<br />

S<strong>in</strong>gle-stati<strong>on</strong> model - Internal H×W×D - 26 <strong>in</strong>.×41 <strong>in</strong>.×26 <strong>in</strong>.<br />

Dry<strong>in</strong>g tra<strong>in</strong> removal with<str<strong>on</strong>g>out</str<strong>on</strong>g> disturb<strong>in</strong>g <strong>in</strong>ternal atmosphere<br />

Z562920 AC <strong>in</strong>put 120 V<br />

Z563285 AC <strong>in</strong>put 240 V, Euro plug<br />

Z562939 AC <strong>in</strong>put 240 V, UK plug<br />

Multi-stati<strong>on</strong> model - Internal H×W×D - 28 <strong>in</strong>.×60 <strong>in</strong>.×38 <strong>in</strong>.<br />

Z562947 AC <strong>in</strong>put 120 V<br />

Z563293 AC <strong>in</strong>put 240 V, Euro plug<br />

Z562955 AC <strong>in</strong>put 240 V, UK plug<br />

<strong>Aldrich</strong>.com<br />

Labware Notes<br />

Paula Freemantle<br />

Product Manager<br />

labware@sial.com<br />

Basic Glove Box<br />

The Plas-Labs Basic glove<br />

boxes are eng<strong>in</strong>eered to<br />

fi t general laboratory isolati<strong>on</strong><br />

applicati<strong>on</strong>s. They<br />

can be easily modifi ed<br />

for specifi c uses and are<br />

very handy for isolat<strong>in</strong>g<br />

sensitive <strong>research</strong> studies<br />

from a hostile exterior<br />

envir<strong>on</strong>ment.<br />

TO ORDER: C<strong>on</strong>tact your local <strong>Sigma</strong>-<strong>Aldrich</strong> offi ce (see back cover), or visit <strong>Aldrich</strong>.com/chemicalsyn<strong>the</strong>sis.<br />

These ec<strong>on</strong>omical units are compact, portable, lightweight and<br />

self-c<strong>on</strong>ta<strong>in</strong>ed.<br />

• Three tier suspended clear acrylic shelves<br />

White level<strong>in</strong>g tray for transferr<strong>in</strong>g <strong>the</strong> transfer chamber.<br />

• Four purge valves<br />

• Multiple electrical <str<strong>on</strong>g>out</str<strong>on</strong>g>let strip<br />

•<br />

S<strong>in</strong>gle-stati<strong>on</strong> model - Internal H×W×D - 26 <strong>in</strong>.×41 <strong>in</strong>.×28 <strong>in</strong>.<br />

Z563013 AC <strong>in</strong>put 120 V<br />

Z563307 AC <strong>in</strong>put 240 V, Euro plug<br />

Z563021 AC <strong>in</strong>put 240 V, UK plug<br />

Multi-stati<strong>on</strong> model - Internal H×W×D - 28 <strong>in</strong>. × 60 <strong>in</strong>. × 38 <strong>in</strong>.<br />

Z563048 AC <strong>in</strong>put 120 V<br />

Z563315 AC <strong>in</strong>put 240 V, Euro plug<br />

Z563056 AC <strong>in</strong>put 240 V, UK plug


Elim<strong>in</strong>at<strong>in</strong>g Static<br />

from Glove Boxes<br />

Static <strong>in</strong> plastic glove boxes<br />

and bags can be a problem <strong>in</strong><br />

many applicati<strong>on</strong>s. The antistatic<br />

i<strong>on</strong>izer from Plas-Labs<br />

is an eff ective way to elim<strong>in</strong>ate<br />

all static charges with<strong>in</strong> 36<br />

<strong>in</strong>ches (90 cm) of unit.<br />

• I<strong>on</strong> balance adjustment<br />

Compact footpr<strong>in</strong>t<br />

• Virtually ma<strong>in</strong>tenance free<br />

•<br />

Z563064 120 V<br />

Z563072 240 V, UK plug<br />

Z563323 240 V, Euro plug<br />

For more <strong>in</strong>formati<strong>on</strong> ab<str<strong>on</strong>g>out</str<strong>on</strong>g> <strong>the</strong>se products or to place an order visit<br />

<strong>Aldrich</strong>.com<br />

The AtmosBag<br />

An Ec<strong>on</strong>omical Soluti<strong>on</strong> for<br />

C<strong>on</strong>trolled<br />

Atmosphere Applicati<strong>on</strong>s.<br />

AtmosBag is a fl exible, <strong>in</strong>fl atable<br />

polyethylene chamber with built-<strong>in</strong><br />

gloves that lets you work <strong>in</strong> a totally<br />

isolated and c<strong>on</strong>trolled envir<strong>on</strong>ment.<br />

Our customers use it for a<br />

wide variety of applicati<strong>on</strong>s from<br />

provid<strong>in</strong>g an emergency isolati<strong>on</strong> envir<strong>on</strong>ment for <strong>in</strong>spect<strong>in</strong>g unknown<br />

materials to <strong>the</strong> transfer of air- and moisture-sensitive materials when<br />

sampl<strong>in</strong>g or weigh<strong>in</strong>g. AtmosBag even permits weigh<strong>in</strong>g operati<strong>on</strong>s<br />

<strong>in</strong>side a fume hood for added safety. Air currents that would <strong>in</strong>terfere with<br />

weigh<strong>in</strong>g are elim<strong>in</strong>ated <strong>in</strong>side of AtmosBag.<br />

Z106089 Two-hand, n<strong>on</strong>-sterile, size L, Tape-seal<br />

Z108405 Four-hand, n<strong>on</strong>-sterile, Tape-seal<br />

Z112828 Two-hand, n<strong>on</strong>-sterile, size M, Tape-seal<br />

Z112836 Two-hand, n<strong>on</strong>-sterile, size S, Tape-seal<br />

Z118354 Two-hand, sterile, size L, Tape-seal<br />

Z118362 Two-hand, sterile, size M, Tape-seal<br />

Z118370 Two-hand, sterile, size S, Tape-seal<br />

Z530204 Two-hand, size S, Zipper-lock<br />

Z530212 Two-hand, size M, Zipper-lock<br />

Z530220 Two-hand, size L, Zipper-lock<br />

Z555525 Four-hand, Zipper-lock<br />

Full details can be found <strong>in</strong> our Technical Bullet<strong>in</strong> AL 211 which can be<br />

downloaded from <strong>Aldrich</strong>.com<br />

NMR Tube Holders<br />

Unbreakable, NMR tube carrier<br />

provides protecti<strong>on</strong> for<br />

<strong>the</strong> tube and lab pers<strong>on</strong>nel<br />

when transport<strong>in</strong>g samples.<br />

Ready to scale up? For competitive quotes <strong>on</strong> larger quantities or custom syn<strong>the</strong>sis, c<strong>on</strong>tact your local <strong>Sigma</strong>-<strong>Aldrich</strong> offi ce, or visit safcglobal.com.<br />

Labware Notes<br />

The clear, shatter-resistant<br />

polycarb<strong>on</strong>ate case allows<br />

for visual sample identifi cati<strong>on</strong><br />

and <strong>in</strong>specti<strong>on</strong> prior<br />

to open<strong>in</strong>g. Natural rubber<br />

plugs <strong>on</strong> both ends of <strong>the</strong><br />

case provide impact absorpti<strong>on</strong><br />

if accidentally dropped. NMR tubes are held securely <strong>in</strong> place <strong>in</strong>side<br />

<strong>the</strong> PC case by <strong>the</strong> bottom load<strong>in</strong>g rubber plug. Carrier holds <strong>on</strong>e 5 mm<br />

diameter tube, 7 or 8 <strong>in</strong>. L.<br />

Z567078-5EA<br />

News and Innovati<strong>on</strong><br />

Chemrus® Disposable Filter Funnels<br />

C<strong>on</strong>venient and <strong>in</strong>expensive, <strong>the</strong>se disposable fi lter funnels have<br />

polypropylene bodies with tapered stems that fi t 7/10 jo<strong>in</strong>ts with<str<strong>on</strong>g>out</str<strong>on</strong>g><br />

seals. The funnels are available <strong>in</strong> two styles, Buchner and Hirsch,<br />

and a choice of 10 micr<strong>on</strong> polyethylene frit, Celite, or perforated<br />

plate for use with fi lter paper.<br />

Maximum use temperature is 110 °C. Order vacuum adapters, fi lter<br />

paper, vials and 20–400 to 24–400 vial c<strong>on</strong>nector separately not<br />

given below.<br />

Cat. No. Style Filter type Capacity (mL)<br />

Z679798 Buchner PE frit, 10 micr<strong>on</strong> 18<br />

Z679801 Buchner PE frit, 10 micr<strong>on</strong> 40<br />

Z679828 Buchner PE frit, 10 micr<strong>on</strong> 110<br />

Z679860 Buchner Celite® (0.5g) 18<br />

Z679860 Buchner Celite® (1.5g) 40<br />

Z679836 Hirsch Perforated Plate 20<br />

Z679844 Hirsch Perforated Plate 60<br />

31


<strong>Sigma</strong>-<strong>Aldrich</strong><br />

3050 Spruce Street<br />

St. Louis, MO 63103 USA<br />

<strong>Sigma</strong>-<strong>Aldrich</strong> ® Worldwide Offices<br />

Argent<strong>in</strong>a<br />

Free Tel: 0810 888 7446<br />

Tel: (+54) 11 4556 1472<br />

Fax: (+54) 11 4552 1698<br />

Australia<br />

Free Tel: 1800 800 097<br />

Free Fax: 1800 800 096<br />

Tel: (+61) 2 9841 0555<br />

Fax: (+61) 2 9841 0500<br />

Austria<br />

Tel: (+43) 1 605 81 10<br />

Fax: (+43) 1 605 81 20<br />

Belgium<br />

Free Tel: 0800 14747<br />

Free Fax: 0800 14745<br />

Tel: (+32) 3 899 13 01<br />

Fax: (+32) 3 899 13 11<br />

Brazil<br />

Free Tel: 0800 701 7425<br />

Tel: (+55) 11 3732 3100<br />

Fax: (+55) 11 5522 9895<br />

Canada<br />

Free Tel: 1800 565 1400<br />

Free Fax: 1800 265 3858<br />

Tel: (+1) 905 829 9500<br />

Fax: (+1) 905 829 9292<br />

Chile<br />

Tel: (+56) 2 495 7395<br />

Fax: (+56) 2 495 7396<br />

Ch<strong>in</strong>a<br />

Free Tel: 800 819 3336<br />

Tel: (+86) 21 6141 5566<br />

Fax: (+86) 21 6141 5567<br />

Czech Republic<br />

Tel: (+420) 246 003 200<br />

Fax: (+420) 246 003 291<br />

Enabl<strong>in</strong>g Science to<br />

Improve <strong>the</strong> Quality of Life<br />

Denmark<br />

Tel: (+45) 43 56 59 00<br />

Fax: (+45) 43 56 59 05<br />

F<strong>in</strong>land<br />

Tel: (+358) 9 350 9250<br />

Fax: (+358) 9 350 92555<br />

France<br />

Free Tel: 0800 211 408<br />

Free Fax: 0800 031 052<br />

Tel: (+33) 474 82 28 88<br />

Fax: (+33) 474 95 68 08<br />

Germany<br />

Free Tel: 0800 51 55 000<br />

Free Fax: 0800 64 90 000<br />

Tel: (+49) 89 6513 0<br />

Fax: (+49) 89 6513 1160<br />

Hungary<br />

Ingyenes telef<strong>on</strong>szám: 06 80 355 355<br />

Ingyenes fax szám: 06 80 344 344<br />

Tel: (+36) 1 235 9063<br />

Fax: (+36) 1 269 6470<br />

India<br />

Teleph<strong>on</strong>e<br />

Bangalore: (+91) 80 6621 9400<br />

New Delhi: (+91) 11 4358 8000<br />

Mumbai: (+91) 22 4087 2364<br />

Hyderabad: (+91) 40 4015 5488<br />

Kolkata: (+91) 33 4013 8000<br />

Fax<br />

Bangalore: (+91) 80 6621 9550<br />

New Delhi: (+91) 11 4358 8001<br />

Mumbai: (+91) 22 2579 7589<br />

Hyderabad: (+91) 40 4015 5466<br />

Kolkata: (+91) 33 4013 8016<br />

Ireland<br />

Free Tel: 1800 200 888<br />

Free Fax: 1800 600 222<br />

Tel: (+353) 402 20370<br />

Fax: (+ 353) 402 20375<br />

Israel<br />

Free Tel: 1 800 70 2222<br />

Tel: (+972) 8 948 4100<br />

Fax: (+972) 8 948 4200<br />

Italy<br />

Free Tel: 800 827 018<br />

Tel: (+39) 02 3341 7310<br />

Fax: (+39) 02 3801 0737<br />

Japan<br />

Tel: (+81) 3 5796 7300<br />

Fax: (+81) 3 5796 7315<br />

Korea<br />

Free Tel: (+82) 80 023 7111<br />

Free Fax: (+82) 80 023 8111<br />

Tel: (+82) 31 329 9000<br />

Fax: (+82) 31 329 9090<br />

Malaysia<br />

Tel: (+60) 3 5635 3321<br />

Fax: (+60) 3 5635 4116<br />

Mexico<br />

Free Tel: 01 800 007 5300<br />

Free Fax: 01 800 712 9920<br />

Tel: (+52) 722 276 1600<br />

Fax: (+52) 722 276 1601<br />

The Ne<strong>the</strong>rlands<br />

Free Tel: 0800 022 9088<br />

Free Fax: 0800 022 9089<br />

Tel: (+31) 78 620 5411<br />

Fax: (+31) 78 620 5421<br />

New Zealand<br />

Free Tel: 0800 936 666<br />

Free Fax: 0800 937 777<br />

Tel: (+61) 2 9841 0555<br />

Fax: (+61) 2 9841 0500<br />

Norway<br />

Tel: (+47) 23 17 60 00<br />

Fax: (+47) 23 17 60 10<br />

Poland<br />

Tel: (+48) 61 829 01 00<br />

Fax: (+48) 61 829 01 20<br />

Portugal<br />

Free Tel: 800 202 180<br />

Free Fax: 800 202 178<br />

Tel: (+351) 21 924 2555<br />

Fax: (+351) 21 924 2610<br />

Russia<br />

Tel: (+7) 495 621 5828<br />

Fax: (+7) 495 621 6037<br />

S<strong>in</strong>gapore<br />

Tel: (+65) 6779 1200<br />

Fax: (+65) 6779 1822<br />

Slovakia<br />

Tel: (+421) 255 571 562<br />

Fax: (+421) 255 571 564<br />

S<str<strong>on</strong>g>out</str<strong>on</strong>g>h Africa<br />

Free Tel: 0800 1100 75<br />

Free Fax: 0800 1100 79<br />

Tel: (+27) 11 979 1188<br />

Fax: (+27) 11 979 1119<br />

Spa<strong>in</strong><br />

Free Tel: 900 101 376<br />

Free Fax: 900 102 028<br />

Tel: (+34) 91 661 99 77<br />

Fax: (+34) 91 661 96 42<br />

Order/Customer Service (800) 325-3010 Fax (800) 325-5052<br />

Technical Service (800) 325-5832 sigma-aldrich.com/techservice<br />

Development/Custom Manufactur<strong>in</strong>g Inquiries (800) 244-1173<br />

Safety-related Informati<strong>on</strong> sigma-aldrich.com/safetycenter<br />

©2011 <strong>Sigma</strong>-<strong>Aldrich</strong> Co. All rights reserved. SIGMA, SAFC, SIGMA-ALDRICH, ALDRICH, and SUPELCO are registered trademarks of <strong>Sigma</strong>-<strong>Aldrich</strong> Biotechnology L.P. FLUKA is a registered<br />

trademark of Fluka GmbH. Isotec, Sure/Seal and AtmosBag are trademarks of <strong>Sigma</strong>-<strong>Aldrich</strong> Biotechnology L.P. Journal Citati<strong>on</strong> Reports is a registered trademark of Thoms<strong>on</strong> Reuters. Hypal<strong>on</strong> is<br />

a registered trademark of E.I. du P<strong>on</strong>t de Nemours & Co., Inc. Celite is a registered trademark of Celite Corp. ChiPros is a registered trademark of BASF SE. ChemMatrix is a registered trademark of<br />

Matrix Innovati<strong>on</strong>s Inc. Chemrus is a registered trademark of Xiaogao Liu and Jianjian Cai. Q-Tube and Q-Block are trademarks of Q Labtech LLC. Plas-Labs is a trademark of Plas Labs, Inc.<br />

<strong>Sigma</strong> brand products are sold through <strong>Sigma</strong>-<strong>Aldrich</strong>, Inc. <strong>Sigma</strong>-<strong>Aldrich</strong>, Inc. warrants that its products c<strong>on</strong>form to <strong>the</strong> <strong>in</strong>formati<strong>on</strong> c<strong>on</strong>ta<strong>in</strong>ed <strong>in</strong> this and o<strong>the</strong>r <strong>Sigma</strong>-<strong>Aldrich</strong> publicati<strong>on</strong>s.<br />

Purchaser must determ<strong>in</strong>e <strong>the</strong> suitability of <strong>the</strong> product(s) for <strong>the</strong>ir particular use. Additi<strong>on</strong>al terms and c<strong>on</strong>diti<strong>on</strong>s may apply. Please see reverse side of <strong>the</strong> <strong>in</strong>voice or pack<strong>in</strong>g slip.<br />

Sweden<br />

Tel: (+46) 8 742 4200<br />

Fax: (+46) 8 742 4243<br />

Switzerland<br />

Free Tel: 0800 80 00 80<br />

Free Fax: 0800 80 00 81<br />

Tel: (+41) 81 755 2828<br />

Fax: (+41) 81 755 2815<br />

United K<strong>in</strong>gdom<br />

Free Tel: 0800 717 181<br />

Free Fax: 0800 378 785<br />

Tel: (+44) 1747 833 000<br />

Fax: (+44) 1747 833 313<br />

United States<br />

Toll-Free: 800 325 3010<br />

Toll-Free Fax: 800 325 5052<br />

Tel: (+1) 314 771 5765<br />

Fax: (+1) 314 771 5757<br />

Vietnam<br />

Tel: (+84) 3516 2810<br />

Fax: (+84) 6258 4238<br />

Internet<br />

sigma-aldrich.com<br />

World Headquarters<br />

3050 Spruce St.<br />

St. Louis, MO 63103<br />

(314) 771-5765<br />

sigma-aldrich.com<br />

NJO<br />

75210-510265<br />

1011

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!