24.12.2012 Views

caulerpa taxifolia in moreton bay - Centre for Marine Science ...

caulerpa taxifolia in moreton bay - Centre for Marine Science ...

caulerpa taxifolia in moreton bay - Centre for Marine Science ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

CAULERPA TAXIFOLIA IN MORETON BAY-<br />

DISTRIBUTION AND SEAGRASS INTERACTIONS<br />

JANE THOMAS, BSC<br />

THESIS SUBMITTED TO THE DEPARTMENT OF BOTANY,<br />

THE UNIVERSITY OF QUEENSLAND,<br />

AUSTRALIA<br />

FOR THE PARTIAL FULFILMENT OF BACHELOR OF SCIENCE (HONOURS).<br />

26 MAY 2003<br />

SUPERVISORS: DR JAMES UDY (CENTRE FOR MARINE STUDIES)<br />

DR SUSANNE SCHMIDT (DEPARTMENT OF BOTANY)<br />

WORD COUNT: 8550


STATEMENT<br />

The work presented <strong>in</strong> this thesis is, to the best of my knowledge and belief,<br />

orig<strong>in</strong>al, except as acknowledged <strong>in</strong> the text, and the material has not been<br />

submitted, either <strong>in</strong> whole or <strong>in</strong> part, <strong>for</strong> a degree at this or any other University.<br />

Jane Thomas<br />

May 2003<br />

Jane Thomas<br />

-ii-


ACKNOWLEDGEMENTS<br />

Thanks to my supervisors, James Udy and Susanne Schmidt, as well as the head<br />

of the Mar<strong>in</strong>e Botany Group, Norm Duke and the rest of the MarBots <strong>for</strong> be<strong>in</strong>g<br />

such a supportive, helpful and generally great bunch of people – I couldn’t have<br />

done it without the practical and moral support from you guys. Thanks to<br />

everyone who read this thesis at various stages and helped with comments, edits<br />

and coffee – I th<strong>in</strong>k everyone <strong>in</strong> MarBot knows I have a double-shot alp<strong>in</strong>e latte<br />

first-th<strong>in</strong>g <strong>in</strong> the morn<strong>in</strong>g!<br />

My field crew – Kathryn, Big Dan, Little Dan, Chris, Shano and Todd <strong>for</strong> driv<strong>in</strong>g<br />

boats, collect<strong>in</strong>g seagrass and algae and gett<strong>in</strong>g wet with me. Kath, Kev and<br />

Shano from Moreton Bay Research Station <strong>for</strong> their help, sympathy, chocolate<br />

and erm, poetry. Nicola Udy and John Esdaile from Qld Parks and Wildlife<br />

Service <strong>for</strong> lett<strong>in</strong>g me know when they found my algae out <strong>in</strong> the field.<br />

Chris Roelfsema (the Crazy Dutchie) and Big Dan <strong>for</strong> <strong>in</strong>troduc<strong>in</strong>g me to the big<br />

bad world of GIS and ArcView, and Diana Kle<strong>in</strong>e (the Other Crazy Dutchie) <strong>for</strong><br />

help with graphic design.<br />

My mum <strong>for</strong> her unconditional love and support and <strong>for</strong> look<strong>in</strong>g after me,<br />

especially <strong>in</strong> the last few months.<br />

Bill Dennison and Judy O’Neil <strong>for</strong> gett<strong>in</strong>g me <strong>in</strong>terested <strong>in</strong> mar<strong>in</strong>e plants <strong>in</strong> the<br />

first place (and <strong>for</strong> giv<strong>in</strong>g me a job when I f<strong>in</strong>ish!) and Tim Carruthers <strong>for</strong> helpful<br />

advice and support, even from the other side of the world.<br />

Jane Thomas<br />

-iii-


TABLE OF CONTENTS<br />

1. ABSTRACT ............................................................ 1<br />

2. INTRODUCTION.................................................... 2<br />

2.1 GENERAL BIOLOGY .................................................................................4<br />

2.2 CAULERPA TAXIFOLIA IN QUEENSLAND.......................................................4<br />

2.3 ECOLOGICAL IMPACTS OF CAULERPA TAXIFOLIA PROLIFERATION.....................5<br />

2.4 OBJECTIVES OF THE PRESENT STUDY ...........................................................6<br />

3. MATERIALS AND METHODS ................................... 7<br />

3.1 STUDY AREA ..........................................................................................7<br />

3.2 BENTHIC SURVEYS...................................................................................9<br />

Jane Thomas<br />

3.2.1 Selection of sites.........................................................................9<br />

3.2.2 Survey technique and analyses...................................................9<br />

3.3 RECIPROCAL TRANSPLANTS.....................................................................11<br />

3.3.1 Site description.........................................................................11<br />

3.3.2 Experimental design, measurements and analyses.....................11<br />

3.4 SEAGRASS AQUARIA EXPERIMENTS............................................................12<br />

3.4.1 Effect of Caulerpa <strong>taxifolia</strong> extract on three seagrass species .....12<br />

3.4.2 Experimental design .................................................................15<br />

3.4.3 Effect of Caulerpa <strong>taxifolia</strong> extract on Zostera capricorni ..........15<br />

3.4.4 PAM fluorometry......................................................................16<br />

3.4.5 Pigment analysis and biomass measurements ...........................16<br />

3.4.6 Statistical analyses....................................................................17<br />

4. RESULTS ..............................................................18<br />

4.1 BENTHIC SURVEYS.................................................................................18<br />

4.1.1 Overall <strong>in</strong> Moreton Bay............................................................18<br />

4.1.2 Western Moreton Bay...............................................................21<br />

4.1.2.1 Caulerpa <strong>taxifolia</strong> distribution <strong>in</strong> 2003....................................21<br />

4.1.2.2 Change <strong>in</strong> Caulerpa distribution 1998-2003............................22<br />

-iv-


Jane Thomas<br />

4.1.3 Southern Moreton Bay..............................................................23<br />

4.1.3.1 Caulerpa <strong>taxifolia</strong> distribution <strong>in</strong> 2003....................................23<br />

4.1.3.2 Change <strong>in</strong> Caulerpa distribution 1998-2003............................24<br />

4.1.4 Pumicestone Passage................................................................25<br />

4.1.4.1 Caulerpa <strong>taxifolia</strong> distribution <strong>in</strong> 2003....................................25<br />

4.1.4.2 Change <strong>in</strong> Caulerpa distribution 1998-2003............................26<br />

4.1.5 Eastern Moreton Bay ................................................................27<br />

4.1.5.1 Caulerpa <strong>taxifolia</strong> distribution <strong>in</strong> 2003....................................27<br />

4.1.5.2 Change <strong>in</strong> Caulerpa distribution 1998-2003............................28<br />

4.2 RECIPROCAL TRANSPLANTS.....................................................................29<br />

4.3 EFFECT OF CAULERPA TAXIFOLIA EXTRACT ON SEAGRASSES...........................30<br />

4.3.1 Shoot density of three seagrass species .....................................30<br />

4.3.2 Maximum leaf length of three seagrass species .........................32<br />

4.3.3 PAM fluorometry and leaves per shoot of three seagrass species. 34<br />

4.3.4 Effect of Caulerpa <strong>taxifolia</strong> extract on Zostera capricorni ..........34<br />

5. DISCUSSION ........................................................36<br />

5.1 COMPARISON WITH OTHER CAULERPA TAXIFOLIA POPULATIONS ..................36<br />

5.2 FACTORS AFFECTING CAULERPA TAXIFOLIA DISTRIBUTION IN MORETON BAY..37<br />

5.2.1 Water temperature ...................................................................39<br />

5.2.2 Caulerpa <strong>taxifolia</strong> and seagrass <strong>in</strong>teractions..............................40<br />

5.2.2.1 Water quality ............................................................................40<br />

5.2.2.2 Physical disturbance .................................................................41<br />

5.2.2.3 Accumulation of sulphide <strong>in</strong> sediments ...................................42<br />

5.2.2.4 Caulerpa <strong>taxifolia</strong> tox<strong>in</strong>s..........................................................43<br />

5.3 CONCLUSIONS AND RECOMMENDATIONS.................................................44<br />

6. REFERENCES.........................................................46<br />

7. APPENDIX............................................................58<br />

-v-


1. ABSTRACT<br />

Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

Caulerpa <strong>taxifolia</strong> is a green macroalga that has ga<strong>in</strong>ed notoriety <strong>in</strong> the last two decades<br />

as an <strong>in</strong>vasive species follow<strong>in</strong>g its <strong>in</strong>troduction and subsequent <strong>in</strong>vasion of large areas<br />

of the north-western Mediterranean Sea. It is native to Moreton Bay <strong>in</strong> south-east<br />

Queensland, where it shares its soft-sediment niche with seven species of seagrass. The<br />

current distribution of C. <strong>taxifolia</strong> <strong>in</strong> Moreton Bay was mapped, and compared with its<br />

distribution five years ago to detect any changes. To explore <strong>in</strong>teractions between<br />

C. <strong>taxifolia</strong> and Moreton Bay seagrasses, experiments <strong>in</strong>vestigated the effect of<br />

C. <strong>taxifolia</strong> extract and of physical disturbance on seagrasses.<br />

There was a significant <strong>in</strong>crease <strong>in</strong> C. <strong>taxifolia</strong> distribution <strong>in</strong> Moreton Bay <strong>in</strong> the last<br />

five years, particularly <strong>in</strong> western and southern regions with more sites and <strong>in</strong>creased<br />

cover. In western Moreton Bay, C. <strong>taxifolia</strong> ma<strong>in</strong>ly colonised bare sediments, while<br />

<strong>in</strong> the southern Bay and Pumicestone Passage it replaced seagrass. It is <strong>in</strong>terest<strong>in</strong>g to<br />

note that at the sites where C. <strong>taxifolia</strong> cover decreased <strong>in</strong> western Moreton Bay, it<br />

was replaced by seagrass, which <strong>in</strong>dicates the potential <strong>for</strong> seagrasses to recover after<br />

colonisation by C. <strong>taxifolia</strong>. There were dense populations present around Dunwich<br />

at North Stradbroke Island <strong>in</strong> eastern Moreton Bay, however C. <strong>taxifolia</strong> was only<br />

present at low densities on the eastern banks.<br />

Planthouse experiments showed some significant results, with seagrass shoot<br />

density be<strong>in</strong>g negatively affected by the addition of C. <strong>taxifolia</strong> extract, however the<br />

results were highly variable. Reciprocal transplants of C. <strong>taxifolia</strong> and the seagrass<br />

Zostera capricorni <strong>in</strong>dicated that Z. capricorni is more susceptible to physical<br />

disturbance than C. <strong>taxifolia</strong>, which can utilise disturbance as an opportunity <strong>for</strong><br />

expansion.<br />

Five processes are hypothesised to synergistically affect C. <strong>taxifolia</strong> distribution and<br />

seagrass <strong>in</strong>teractions <strong>in</strong> Moreton Bay, <strong>in</strong>clud<strong>in</strong>g susta<strong>in</strong>ed high seawater temperatures,<br />

water quality decl<strong>in</strong>e, physical disturbance, allelopathic <strong>in</strong>teractions from C. <strong>taxifolia</strong><br />

tox<strong>in</strong>s, and the accumulation of sulphide <strong>in</strong> the sediments.<br />

Jane Thomas -1-<br />

Abstract


2. INTRODUCTION<br />

Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

The mar<strong>in</strong>e macroalga Caulerpa <strong>taxifolia</strong> (Vahl) C. Agardh (Bryopsidales,<br />

Chlorophyta) grows anchored <strong>in</strong> soft sediments throughout tropical and subtropical<br />

waters (Huisman, 2000; Phillips and Price, 2002). C. <strong>taxifolia</strong> has ga<strong>in</strong>ed notoriety<br />

follow<strong>in</strong>g its <strong>in</strong>troduction and subsequent <strong>in</strong>vasion of large areas of the north-western<br />

Mediterranean Sea over the last two decades (Me<strong>in</strong>esz and Hesse, 1991; Me<strong>in</strong>esz et<br />

al., 2001). In the last three years, additional <strong>in</strong>troductions have been recorded off the<br />

coast of Cali<strong>for</strong>nia <strong>in</strong> the United States, and <strong>in</strong> several locations <strong>in</strong> Australia (Dalton,<br />

2000; Kaiser, 2000; Schaffelke et al., 2002; Williams and Grosholz, 2002) (Figure 1).<br />

C. <strong>taxifolia</strong> is widely used as an aquarium plant as it is decorative, fast-grow<strong>in</strong>g and<br />

robust and the multiple <strong>in</strong>troductions of C. <strong>taxifolia</strong> are almost certa<strong>in</strong>ly the result of<br />

accidental release from private or public aquaria <strong>in</strong>to the sea (Jousson et al., 1998;<br />

Jousson et al., 2000; Wiedenmann et al., 2001; Primary Industries and Resources SA,<br />

2002). C. <strong>taxifolia</strong> is out-compet<strong>in</strong>g and replac<strong>in</strong>g seagrasses <strong>in</strong> the Mediterranean<br />

Sea, and occurs with seagrasses at other <strong>in</strong>troduction sites <strong>in</strong> the U.S.A. and Australia<br />

(de Villèle and Verlaque, 1995; NSW Fisheries, 2002; Williams and Grosholz, 2002).<br />

C. <strong>taxifolia</strong> is native to Queensland, Australia and is distributed throughout Moreton<br />

Bay <strong>in</strong> south-east Queensland (Phillips and Price, 2002), where it shares its shallow<br />

soft-sediment niche with seven species of seagrass (Hyland et al., 1989; Udy et al.,<br />

1999). Anecdotal evidence has suggested that C. <strong>taxifolia</strong> has expanded its range<br />

with<strong>in</strong> Moreton Bay with<strong>in</strong> the last five years, and prelim<strong>in</strong>ary research has <strong>in</strong>dicated<br />

that C. <strong>taxifolia</strong> may out-compete the seagrass Zostera capricorni Aschers.<br />

(Potamogetonales, Magnoliophyta) at Fisherman Islands <strong>in</strong> western Moreton Bay<br />

(Thomas, 2002a).<br />

Jane Thomas -2-<br />

Introduction


Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

Jane Thomas -3-<br />

Introduction<br />

C. <strong>taxifolia</strong> native distribution<br />

C. <strong>taxifolia</strong> <strong>in</strong>troductions<br />

Figure 1. Distribution of native and <strong>in</strong>troduced Caulerpa <strong>taxifolia</strong> populations around the world.


2.1 GENERAL BIOLOGY<br />

Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

The morphology of the Caulerpa thallus is a horizontal creep<strong>in</strong>g stolon from which<br />

the photosynthetic fronds and anchor<strong>in</strong>g rhizoid pillars arise. All Bryopsidophyceaen<br />

macroalgae, <strong>in</strong>clud<strong>in</strong>g Caulerpa are coenocytic, that is, the protoplasm is<br />

mult<strong>in</strong>ucleate and cont<strong>in</strong>uous and not separated by <strong>in</strong>ternal cell walls, although<br />

<strong>in</strong>ternal support structures are present (Clayton and K<strong>in</strong>g, 1990). Fragmentation is an<br />

efficient mode of reproduction <strong>for</strong> coenocytic green macroalgae, and fragments as<br />

small as 2 mm may propagate <strong>in</strong>to full-size plants (Brück and Schnetter, 1993;<br />

Walters and Smith, 1994; Smith and Walters, 1999).<br />

Caulerpa conta<strong>in</strong>s a suite of toxic secondary metabolites, the major one of which is a<br />

sesquiterpenoid called caulerpenyne (Amico et al., 1978; Paul and Fenical, 1986;<br />

1987). The array of tox<strong>in</strong>s <strong>in</strong> C. <strong>taxifolia</strong> are antiviral (Nicoletti et al., 1999),<br />

neurotoxic (Brunelli et al., 2000), cytotoxic and cell growth <strong>in</strong>hibitors (Barbier et al.,<br />

2001). They also display active or toxic effects on phytoplankton (Lemée et al.,<br />

1997), mar<strong>in</strong>e ciliate protists (Ricci et al., 1999) and fertilised eggs of the major<br />

Mediterranean herbivore, the sea urch<strong>in</strong> Paracentrotus lividus (Lamarck) (Pedrotti et<br />

al., 1996; Pesando et al., 1996; Pesando et al., 1998; Pesando et al., 1999).<br />

Additionally, adult P. lividus preferentially avoid graz<strong>in</strong>g on C. <strong>taxifolia</strong> (Lemée et<br />

al., 1993; Boudouresque et al., 1996; Lemée et al., 1996). This implies that these<br />

tox<strong>in</strong>s are active on eukaryotes and prokaryotes alike, and there is some evidence that<br />

they are toxic to angiosperm plants, <strong>in</strong>clud<strong>in</strong>g seagrasses (Guerriero et al., 1994).<br />

2.2 CAULERPA TAXIFOLIA IN QUEENSLAND<br />

C. <strong>taxifolia</strong> has been recorded from the Queensland coast s<strong>in</strong>ce the 1850s and occurs<br />

from Cape York to the Gold Coast (Harvey, 1860; Cribb, 1958; Huisman, 2000;<br />

Phillips and Price, 2002). It has been recorded from south-east Queensland s<strong>in</strong>ce<br />

1909, and from Moreton Bay s<strong>in</strong>ce 1950 which implies that it is most likely a native<br />

species (Phillips and Price, 2002; Qld Herbarium, 2002).<br />

Numerous genetic studies have suggested that the so-called <strong>in</strong>vasive “aquarium-<br />

Mediterranean” stra<strong>in</strong> of C. <strong>taxifolia</strong> orig<strong>in</strong>ated <strong>in</strong> Moreton Bay, us<strong>in</strong>g techniques<br />

such as allozyme surveys (Benzie et al., 2000), DNA f<strong>in</strong>gerpr<strong>in</strong>ts (Wiedenmann et al.,<br />

2001), ITS sequences (Jousson et al., 2000; Meusnier et al., 2001; Famà et al., 2002;<br />

Jane Thomas -4-<br />

Introduction


Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

Meusnier et al., 2002; Schaffelke et al., 2002), and the presence/absence of a<br />

chloroplast DNA <strong>in</strong>tron located <strong>in</strong> the rbcL gene (Famà et al., 2002). In addition to<br />

these genetic similarities, the “aquarium-Mediterranean” stra<strong>in</strong> also shares a robust<br />

morphology and cold tolerance with the Moreton Bay population (Me<strong>in</strong>esz et al.,<br />

1995; Komatsu et al., 1997; Phillips and Price, 2002).<br />

2.3 ECOLOGICAL IMPACTS OF CAULERPA TAXIFOLIA PROLIFERATION<br />

In the Mediterranean, C. <strong>taxifolia</strong> apparently out-competes two native seagrasses,<br />

Posidonia oceanica (L<strong>in</strong>naeus) Delile and Cymodocea nodosa (Ucria) Aschers. (de<br />

Villèle and Verlaque, 1995; Ceccherelli and C<strong>in</strong>elli, 1997). It has been suggested that<br />

the observed responses of P. oceanica to C. <strong>taxifolia</strong> presence (decrease <strong>in</strong> leaf<br />

number, width and longevity, and <strong>in</strong>crease <strong>in</strong> leaf turnover) may be the result of<br />

allelopathy from C. <strong>taxifolia</strong> secondary metabolites (de Villèle and Verlaque, 1995;<br />

Dumay et al., 2002).<br />

Endemic Mediterranean macroalgae are also deleteriously affected by the presence of<br />

C. <strong>taxifolia</strong>, with a decl<strong>in</strong>e <strong>in</strong> the productivities of Cystoseira barbata f. aurantia<br />

(Kütz<strong>in</strong>g) Giaccone (Fucales, Phaeophyta) and Gracilaria bursa-pastoris (Gmel<strong>in</strong>)<br />

Silva (Gracilariales, Rhodophyta), which has also been attributed to the tox<strong>in</strong>s<br />

conta<strong>in</strong>ed <strong>in</strong> C. <strong>taxifolia</strong> (Ferrer et al., 1997). The reduction of other common species<br />

of Mediterranean macroalgae has also been associated with the presence of<br />

C. <strong>taxifolia</strong> (Verlaque and Fritayre, 1994).<br />

Although C. <strong>taxifolia</strong> <strong>in</strong> Moreton Bay does not currently exhibit the <strong>in</strong>vasiveness of<br />

that <strong>in</strong> the Mediterranean, the genetic, morphological and physiological similarities<br />

between the <strong>in</strong>vasive “aquarium-Mediterranean” stra<strong>in</strong> and the Moreton Bay<br />

population of C. <strong>taxifolia</strong> <strong>in</strong>dicates the potential <strong>for</strong> the expansion of this<br />

opportunistic macroalga <strong>in</strong> Moreton Bay. The current study presents an opportunity<br />

to study C. <strong>taxifolia</strong> <strong>in</strong> its native habitat as a way of understand<strong>in</strong>g its ecological<br />

characteristics. As C. <strong>taxifolia</strong> is native to Moreton Bay, it seems likely that natural<br />

controls on its expansion are present, although these may be compromised by<br />

decl<strong>in</strong><strong>in</strong>g water quality from anthropogenic causes.<br />

Jane Thomas -5-<br />

Introduction


Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

2.4 OBJECTIVES OF THE PRESENT STUDY<br />

The present study was designed to <strong>in</strong>vestigate the current distribution of C. <strong>taxifolia</strong> <strong>in</strong><br />

Moreton Bay and to compare this with its distribution five years ago, to detect any<br />

changes <strong>in</strong> its spatial distribution between 1998 and 2003. Interactions between<br />

C. <strong>taxifolia</strong> and Moreton Bay seagrass species were explored us<strong>in</strong>g replicated<br />

manipulative experiments. These were designed to <strong>in</strong>vestigate the potential of tox<strong>in</strong>s<br />

<strong>in</strong> C. <strong>taxifolia</strong> extract to affect seagrasses, and to exam<strong>in</strong>e the effects of physical<br />

disturbance on C. <strong>taxifolia</strong> and seagrass.<br />

Jane Thomas -6-<br />

Introduction


Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

3. MATERIALS AND METHODS<br />

3.1 STUDY AREA<br />

Moreton Bay is a shallow subtropical 1523 km 2 em<strong>bay</strong>ment adjacent to the city of<br />

Brisbane <strong>in</strong> south-east Queensland, Australia (approximately 27.5º S, 153.3º E)<br />

(Figure 2). It is largely enclosed and sheltered to the east by a series of barrier sand<br />

islands (Moreton, North and South Stradbroke Islands). Moreton Bay exhibits strong<br />

east-west and north-south gradients <strong>in</strong> water quality due to terrigenous <strong>in</strong>puts <strong>in</strong> the<br />

western and southern areas from its 21,220 km 2 catchment area, and <strong>in</strong>creased oceanic<br />

flush<strong>in</strong>g <strong>in</strong> the eastern and northern Bay (Neil, 1998; Dennison and Abal, 1999).<br />

South-east Queensland supports a population of more than 2 million people, most of<br />

whom are located with<strong>in</strong> the Moreton Bay catchment area (Sk<strong>in</strong>ner et al., 1998). This<br />

region has been the fastest-grow<strong>in</strong>g region of Australia <strong>for</strong> the past decade, and has<br />

been one of the most rapidly grow<strong>in</strong>g areas <strong>in</strong> the world over the last 50 years<br />

(Sk<strong>in</strong>ner et al., 1998). As much of the population growth is occurr<strong>in</strong>g on the coastal<br />

floodpla<strong>in</strong> and along the river estuaries, <strong>in</strong>creased pressure on the catchment and<br />

Moreton Bay is to be expected from <strong>in</strong>creased sewage, <strong>in</strong>tensive land use and more<br />

demands on the waterways (Dennison and Abal, 1999).<br />

Despite these pressures and changes, Moreton Bay supports a high diversity of habitat<br />

types, with soft sediment areas support<strong>in</strong>g extensive seagrass meadows (25,000 ha)<br />

and mangrove <strong>for</strong>ests (14,000 ha), and hard substrates support<strong>in</strong>g diverse coral and<br />

macroalgal communities (Abal et al., 1998; Dennison and Abal, 1999). These<br />

habitats <strong>in</strong> turn support a high biological diversity of other species, result<strong>in</strong>g <strong>in</strong> a<br />

unique assemblage of southern temperate and northern tropical species (Davie and<br />

Hooper, 1998).<br />

All field experiments and plant collections <strong>for</strong> the planthouse experiments were<br />

per<strong>for</strong>med at Dunwich, North Stradbroke Island, a site with relatively good water<br />

quality (Dennison and Abal, 1999) (Figure 2).<br />

Jane Thomas -7-<br />

Materials and Methods


Caboolture<br />

Caboolture<br />

River<br />

P<strong>in</strong>e<br />

River<br />

Brisbane<br />

city<br />

Brisbane<br />

Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

�� N<br />

Bribie<br />

Island<br />

Deception<br />

Bay<br />

Bramble<br />

Bay<br />

Brisbane Brisbane<br />

River<br />

N<br />

MORETON<br />

BAY<br />

Waterloo<br />

Bay<br />

Logan<br />

River<br />

0<br />

20<br />

LANDSAT ETM 21/3/2003<br />

GEOIMAGE<br />

Moreton Moreton<br />

Island Island<br />

Dunwich<br />

North<br />

Stradbroke<br />

Island<br />

40 km<br />

Figure 2. Map of Moreton Bay <strong>in</strong> south-east Queensland, show<strong>in</strong>g the location of the<br />

field experiments and collections, <strong>in</strong> One Mile Harbour, Dunwich, North Stradbroke<br />

Island.<br />

Jane Thomas -8-<br />

Materials and Methods


3.2 BENTHIC SURVEYS<br />

3.2.1 Selection of sites<br />

Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

In 1998, approximately 1000 sites with less than 5 m water depth across Moreton Bay<br />

were surveyed <strong>for</strong> benthic species and cover, <strong>in</strong>clud<strong>in</strong>g seagrass and algal species<br />

(Udy et al., 1999). Of these sites, 44 had some cover of Caulerpa macroalgae<br />

(species not recorded). The current study re-surveyed all 44 sites which had Caulerpa<br />

present <strong>in</strong> 1998, as well as 148 adjacent sites which previously recorded no cover of<br />

Caulerpa species, giv<strong>in</strong>g a total of 192 sites surveyed <strong>in</strong> both 1998 and 2003. In the<br />

current surveys (2003), the species of Caulerpa were also recorded. An additional 26<br />

sites were quantitatively surveyed <strong>in</strong> 2003. Reports from Queensland Parks and<br />

Wildlife mar<strong>in</strong>e park rangers and from staff and students from the Mar<strong>in</strong>e Botany<br />

Group at The University of Queensland resulted <strong>in</strong> a further 25 sites where presence<br />

of C. <strong>taxifolia</strong> was recorded. For the purposes of analysis, Moreton Bay was divided<br />

up <strong>in</strong>to four regions (eastern Moreton Bay, Pumicestone Passage, southern Moreton<br />

Bay and western Moreton Bay) (Figure 3).<br />

3.2.2 Survey technique and analyses<br />

Geographic coord<strong>in</strong>ates (latitude and longitude) were available <strong>for</strong> each site, and sites<br />

were relocated us<strong>in</strong>g a handheld global position<strong>in</strong>g system (GPS). At each site, a 10<br />

m snorkel transect was per<strong>for</strong>med to estimate and record species composition and<br />

percent cover of benthic species such as macroalgae and seagrasses, and substrate<br />

type such as bedrock, sand and mud. A modified Braun Blanquet scale was used to<br />

estimate percent cover, with cover estimated to the nearest 5% (Mueller-Dombois and<br />

Ellenberg, 1974). The spatially explicit data enabled the use of geographic<br />

<strong>in</strong><strong>for</strong>mation systems (GIS) technology to produce detailed maps and conduct spatial<br />

analysis of each region along with benthic characteristics, us<strong>in</strong>g ArcView GIS<br />

Version 3.2 software package.<br />

Change <strong>in</strong> percentage cover of Caulerpa 1998 – 2003 was analysed us<strong>in</strong>g a dependent<br />

samples t-test <strong>for</strong> all of Moreton Bay and also <strong>for</strong> each region. A grouped<br />

<strong>in</strong>dependent t-test was used to compare sites with <strong>in</strong>creased cover to those with<br />

reduced cover.<br />

Jane Thomas -9-<br />

Materials and Methods


A<br />

Brisbane city<br />

Survey site<br />

Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

Bribie<br />

Island<br />

B<br />

Moreton<br />

Bay<br />

Moreton<br />

Island<br />

North<br />

Stradbroke<br />

Island<br />

Figure 3. Location of sites surveyed <strong>in</strong> 2003 <strong>for</strong> Caulerpa <strong>taxifolia</strong>. These were separated <strong>in</strong>to the<br />

regions A: Pumicestone Passage; B: western Moreton Bay; C: eastern Moreton Bay; and D: southern<br />

Moreton Bay.<br />

Jane Thomas -10-<br />

Materials and Methods<br />

D<br />

C


3.3 RECIPROCAL TRANSPLANTS<br />

3.3.1 Site Description<br />

Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

To exam<strong>in</strong>e competitive <strong>in</strong>teractions and the effect of physical disturbance, reciprocal<br />

transplant experiments were per<strong>for</strong>med between a monospecific C. <strong>taxifolia</strong> bed and a<br />

monospecific Zostera capricorni seagrass bed <strong>in</strong> similar water depth (~80 cm at low<br />

tide) <strong>in</strong> One Mile Harbour, Dunwich, North Stradbroke Island (Figure 2, page 8).<br />

3.3.2 Experimental design, measurements and analyses<br />

In the reciprocal transplant experiment, a 122 mm diameter sta<strong>in</strong>less steel corer was<br />

used to take a core to a sediment depth of 10 cm. Four C. <strong>taxifolia</strong> cores were<br />

removed, leav<strong>in</strong>g holes <strong>in</strong> the sediment. Four Z. capricorni cores were then taken and<br />

placed <strong>in</strong> the holes left by the C. <strong>taxifolia</strong> cores. The C. <strong>taxifolia</strong> cores were then<br />

placed <strong>in</strong> the holes left by the cores <strong>in</strong> the Z. capricorni patch. Transplant controls<br />

consisted of four cores of C. <strong>taxifolia</strong> replaced <strong>in</strong> their orig<strong>in</strong>al holes, and was<br />

repeated <strong>for</strong> Z. capricorni (Figure 4). The location of the cores were marked us<strong>in</strong>g<br />

galvanised tent pegs with float<strong>in</strong>g plastic cha<strong>in</strong> attached and these were <strong>in</strong>serted <strong>in</strong> the<br />

middle of the core. Survivorship of the cores was recorded three months after the<br />

commencement of the experiment. Frond density and the distance grown away from<br />

the orig<strong>in</strong>al core were also recorded <strong>for</strong> the C. <strong>taxifolia</strong> cores. Due to poor<br />

survivorship of the Z. capricorni cores, other measurements could not be used.<br />

Results were analysed us<strong>in</strong>g a general l<strong>in</strong>ear model.<br />

Caulerpa <strong>taxifolia</strong> Zostera capricorni<br />

Figure 4. Conceptual diagram depict<strong>in</strong>g experimental design of the reciprocal transplant experiment.<br />

Jane Thomas -11-<br />

Materials and Methods


3.4 SEAGRASS AQUARIA EXPERIMENTS<br />

Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

Conceptual diagrams of these two experiments are shown <strong>in</strong> Figures 5, 6, 7 and 8.<br />

3.4.1 Effect of Caulerpa <strong>taxifolia</strong> extract on three seagrass species<br />

This experiment was designed to <strong>in</strong>vestigate the effects of C. <strong>taxifolia</strong> extract on three<br />

Moreton Bay seagrass species: Z. capricorni, Syr<strong>in</strong>godium isoetifolium (Aschers.)<br />

Dandy (Potamogetonales, Magnoliophyta) and Cymodocea serrulata (R. Br.) Aschers<br />

(Potamogetonales, Magnoliophyta). Cores of these three seagrass species were<br />

collected from One Mile Harbour, Dunwich, North Stradbroke Island (Figure 2, page<br />

8), us<strong>in</strong>g 106 mm diameter sta<strong>in</strong>less steel corers. Intact cores were transferred <strong>in</strong>to<br />

black plastic flower pots l<strong>in</strong>ed with ziplock bags, and transported to the Moreton Bay<br />

Research Station, Dunwich, North Stradbroke Island <strong>in</strong> b<strong>in</strong>s full of seawater.<br />

Intact cores were placed <strong>in</strong>to aerated polyv<strong>in</strong>ylchloride (PVC) tanks (1.5 m x 60 cm<br />

x 30 cm). Three cores (one of each species) were randomly placed <strong>in</strong> each tank (12<br />

tanks <strong>in</strong> total) and left to acclimate <strong>for</strong> approximately one month prior to the<br />

<strong>in</strong>itiation of experiments. Approximately 80% of <strong>in</strong>cident light passed through the<br />

roof of the planthouse. The addition of 50% neutral density shadecloth reduced the<br />

light reach<strong>in</strong>g the seagrasses to approximately 40% of <strong>in</strong>cident light, which<br />

simulated ambient light conditions and is above the m<strong>in</strong>imum light requirement <strong>for</strong><br />

seagrasses (Duarte, 1991; Dennison et al., 1993; Longstaff, 2003). The whole<br />

planthouse was enclosed by clear plastic screens to prevent freshwater<br />

contam<strong>in</strong>ation from precipitation. Each <strong>in</strong>dividual tank system consisted of two<br />

tanks; a lower water storage tank (~300 L) and an upper tank (~250 L) <strong>in</strong> which the<br />

seagrass cores were situated. Water was pumped up from the lower tank us<strong>in</strong>g 12 V<br />

bilge pumps, and airstones <strong>in</strong> each upper tank ensured that the water was well<br />

aerated. Both tanks were filled with fresh seawater collected from One Mile<br />

Harbour, North Stradbroke Island. Water loss from the tanks occurred due to<br />

evaporation and to compensate <strong>for</strong> this, carbon-filtered fresh water was added as<br />

required to ma<strong>in</strong>ta<strong>in</strong> seawater sal<strong>in</strong>ity (~36 ‰).<br />

Jane Thomas -12-<br />

Materials and Methods


A.<br />

Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

Figure 6. A: Planthouse at Moreton<br />

Bay Research Station, North<br />

Stradbroke Island; and B: Three<br />

seagrass species acclimat<strong>in</strong>g <strong>in</strong><br />

aquarium.<br />

Figure 5. Conceptual diagram depict<strong>in</strong>g the experimental design <strong>for</strong> the seagrass aquaria experiment, us<strong>in</strong>g three species<br />

of seagrass, Cymodocea serrulata, Syr<strong>in</strong>godium isoetifolium and Zostera capricorni..<br />

Jane Thomas -13-<br />

Materials and Methods<br />

B.


A.<br />

Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

B.<br />

C.<br />

Figure 8. Zostera capricorni seagrass<br />

treatments. A: control; B: Low C. <strong>taxifolia</strong><br />

dose; and C: High C. <strong>taxifolia</strong> dose.<br />

Figure 7. Conceptual diagram depict<strong>in</strong>g the experimental design <strong>for</strong> the seagrass aquaria experiment, us<strong>in</strong>g Zostera<br />

capricorni seagrass.<br />

Jane Thomas -14-<br />

Materials and Methods


3.4.2 Experimental design<br />

Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

60 cores of C. <strong>taxifolia</strong> (106 mm diameter) were collected and washed and ground <strong>in</strong>to<br />

a homogeneous paste us<strong>in</strong>g an electric blender. This paste was applied to the surface of<br />

the sediment of the pots of seagrass us<strong>in</strong>g a cut-off 60 ml syr<strong>in</strong>ge. Three treatments,<br />

replicated <strong>in</strong> four tanks, were 1) control (no C. <strong>taxifolia</strong> extract added); 2) low dose of<br />

C. <strong>taxifolia</strong> extract; and 3) high dose of C. <strong>taxifolia</strong> extract. The three cores of seagrass<br />

<strong>in</strong> each tank were subjected to the same treatment to prevent contam<strong>in</strong>ation. The low<br />

dose of C. <strong>taxifolia</strong> extract treatment consisted of the equivalent of one core of<br />

C. <strong>taxifolia</strong> biomass per core of seagrass (30 ml of C. <strong>taxifolia</strong> extract), and the high<br />

dose of C. <strong>taxifolia</strong> extract consisted of the equivalent of four cores of C. <strong>taxifolia</strong><br />

biomass per core of seagrass (120 ml of extract).<br />

Prior to <strong>in</strong>itiation of the experimental treatments, <strong>in</strong>itial measurements were taken of<br />

seagrass shoot density of each core, the number of leaves per shoot of 10 haphazardlychosen<br />

shoots with<strong>in</strong> each core, and the maximum leaf length of the longest leaf of 10<br />

haphazardly-chosen shoots <strong>in</strong> each core. These measurements were repeated each<br />

week <strong>for</strong> the three-week duration of the experiment. Fluorescence us<strong>in</strong>g the PAM<br />

(pulse-amplitude modulated) fluorometer was also measured prior to experimental<br />

treatments. Fluorescence was measured every three days <strong>for</strong> the duration of the<br />

experiment. This experiment was term<strong>in</strong>ated when it became apparent that the<br />

seagrass cores, particularly those of Z. capricorni were experienc<strong>in</strong>g stress that was<br />

<strong>in</strong>dependent of the experimental treatments.<br />

3.4.3 Effect of Caulerpa <strong>taxifolia</strong> extract on Zostera capricorni<br />

Due to the variability of response of Z. capricorni <strong>in</strong> the experiment with three<br />

seagrass species, the above experiment was repeated us<strong>in</strong>g only Z. capricorni and<br />

with the follow<strong>in</strong>g additional changes to the experimental design (Figures 7 and 8).<br />

Larger cores were collected (36 <strong>in</strong> total; 150 mm diameter) and acclimation was<br />

limited to one week <strong>in</strong> an attempt to reduce the stress to the seagrass that was apparent<br />

after five weeks of acclimation <strong>in</strong> the previous experiment.<br />

An additional 36 Z. capricorni shoots were haphazardly collected at the same time<br />

and from the same area as the cores. These shoots were analysed <strong>for</strong> pigment<br />

concentration, <strong>for</strong> comparison with shoots harvested from the experimental cores at<br />

Jane Thomas -15-<br />

Materials and Methods


Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

the middle and at the conclusion of the experiment. The mean and standard error of<br />

these 36 shoots were used as the <strong>in</strong>itial values <strong>for</strong> all the treatments.<br />

PAM fluorometry and shoot density measurements were per<strong>for</strong>med every three and<br />

seven days, respectively. Maximum leaf length and the number of leaves per shoot<br />

were not measured. At the conclusion of the experiment, one random core from each<br />

tank was analysed <strong>for</strong> biomass. Half the water <strong>in</strong> the tanks was exchanged <strong>for</strong> fresh<br />

seawater every two weeks <strong>for</strong> the five-week duration of the experiment.<br />

3.4.4 PAM fluorometry<br />

The photochemical response of the seagrasses to the treatments was determ<strong>in</strong>ed us<strong>in</strong>g<br />

a PAM fluorometer (Walz, Germany) which provides rapid and non-destructive<br />

photosynthetic measurements (Schreiber and Bilger, 1987). Maximum Photosystem<br />

II quantum yield (Fv /Fm ratio) was measured by emitt<strong>in</strong>g a saturat<strong>in</strong>g pulse of light to<br />

the dark-adapted photosystem. The result<strong>in</strong>g emitted fluorescence will be at a<br />

maximum and the photochemical efficiency or yield was calculated as<br />

(Fv /Fm) = (Fm – Fo)/Fm<br />

where Fo is <strong>in</strong>itial fluorescence, Fm is maximum fluorescence and Fv is the difference<br />

between them (Schreiber et al., 1994).<br />

The fluorescence signal was measured just above the leaf sheath at the base of whole<br />

seagrass shoots. Measurements were taken on three haphazardly-chosen shoots <strong>in</strong><br />

each core. Fluorescence signals were measured every three days <strong>for</strong> the duration of<br />

the experiment, and measurements were started approximately one hour after sunset<br />

each even<strong>in</strong>g which removed the need to dark-adapt each shoot.<br />

3.4.5 Pigment analysis and biomass measurements<br />

At the conclusion of the experiment, one random core from each of the 12 tanks was<br />

immediately separated <strong>in</strong>to above- and below-ground biomass. Above-ground<br />

biomass consisted of all live shoots, and below-ground biomass consisted of rhizomes<br />

and roots. The samples were washed <strong>in</strong> a 500 µm sieve to remove adher<strong>in</strong>g sediment<br />

and dried <strong>in</strong> a dry<strong>in</strong>g oven at 65˚C overnight to obta<strong>in</strong> dry weight.<br />

Jane Thomas -16-<br />

Materials and Methods


Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

For chlorophyll analysis, a 2 cm section of the second-youngest seagrass leaf was<br />

clipped off 2 cm above the leaf sheath. Sample surface area and wet weights were<br />

determ<strong>in</strong>ed prior to analysis. The leaf sections were macerated with a razor blade<br />

then ground <strong>in</strong> a darkened room us<strong>in</strong>g a mortar and pestle <strong>in</strong> 10 ml of 90% acetone.<br />

The extracts were stored at 0 °C <strong>in</strong> the dark <strong>for</strong> 24 hours and then centrifuged <strong>in</strong> an<br />

IEC Centra-3C centrifuge at 2400 rpm <strong>for</strong> 15 m<strong>in</strong>utes to settle any suspended<br />

material. Absorbances of the extracts were measures <strong>in</strong> a Pharmacia LKB Ultrospec<br />

III spectrophotometer at 725, 663 and 645 nm (Dennison, 1990). Chlorophyll a and b<br />

concentrations were calculated from these absorbances (Arnon, 1949).<br />

3.4.6 Statistical analyses<br />

Six tanks were located along the north-east wall of the planthouse and six along the<br />

south-west wall (Figure 9). To test <strong>for</strong> any potential difference <strong>in</strong> light regime<br />

received by the two rows of tanks, ‘Block’ was <strong>in</strong>cluded as a factor <strong>in</strong> the repeated<br />

measures analysis of variance (ANOVA) model. Tank arrangement had a negligible<br />

effect on the response variables, there<strong>for</strong>e measurements were pooled. PAM<br />

fluorometry, shoot density, morphology (leaves per shoot and maximum leaf length),<br />

and pigment values were analysed us<strong>in</strong>g a repeated measures analysis of variance<br />

(ANOVA) model. All measurements with<strong>in</strong> a tank were pooled. Biomass values<br />

were analysed us<strong>in</strong>g a one-way ANOVA model and a Fisher’s post-hoc LSD test was<br />

used to test <strong>for</strong> differences between means.<br />

N<br />

Block 1<br />

Block 2<br />

Figure 9. Conceptual diagram depict<strong>in</strong>g the arrangement of the tanks with<strong>in</strong> the planthouse at Moreton<br />

Bay Research Station, North Stradbroke Island.<br />

Jane Thomas -17-<br />

Materials and Methods


4. RESULTS<br />

4.1 BENTHIC SURVEYS<br />

4.1.1 Overall <strong>in</strong> Moreton Bay<br />

Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

In the 1998 surveys, only the genus of Caulerpa was recorded, not the species. The<br />

2003 surveys did record species, however only C. <strong>taxifolia</strong> was found on the surveys.<br />

In the 1998-2003 comparison, only the genus Caulerpa will be referred to. It is likely<br />

that the majority of the Caulerpa occurrences <strong>in</strong> 1998 were <strong>in</strong>deed C. <strong>taxifolia</strong><br />

(J. Udy, pers. comm.).<br />

A total of 218 sites were quantitatively surveyed <strong>in</strong> 2003 <strong>for</strong> C. <strong>taxifolia</strong> cover. Of<br />

these, 71 sites had an average of 55% cover of C. <strong>taxifolia</strong>. There were an additional<br />

25 sites where C. <strong>taxifolia</strong> was reported by other sources, result<strong>in</strong>g <strong>in</strong> 96 sites where<br />

Caulerpa was present <strong>in</strong> 2003, compared with 44 out of more than 1000 sites<br />

surveyed <strong>in</strong> 1998 (Figure 10).<br />

Of the 218 sites surveyed <strong>in</strong> 2003, 192 had been previously surveyed <strong>in</strong> 1998,<br />

allow<strong>in</strong>g <strong>for</strong> analysis of change <strong>in</strong> Caulerpa spatial distribution and cover over this<br />

five-year period (Table 1). There was a net ga<strong>in</strong> of 12 sites where Caulerpa was<br />

observed <strong>in</strong> 2003 (56 sites) compared to 1998 (44 sites). However, the sites where<br />

C. <strong>taxifolia</strong> was found <strong>in</strong> 2003 were not always the same sites at which Caulerpa was<br />

found <strong>in</strong> 1998. Cover of Caulerpa <strong>in</strong>creased at 55 sites, and reduced at 27 sites. The<br />

magnitude of the <strong>in</strong>crease <strong>in</strong> cover, when it occurred, was significantly higher<br />

(p = 0.047) than the magnitude of any reduction <strong>in</strong> cover (Table 4.1.1 <strong>in</strong> Appendix,<br />

page 58). Percent cover of Caulerpa <strong>in</strong>creased at all but one site where it was present<br />

<strong>in</strong> both 1998 and 2003 (Table 1). There was a significant <strong>in</strong>crease (p = 0.0002) <strong>in</strong><br />

cover of Caulerpa over the entire Moreton Bay area, and also regionally <strong>in</strong> the<br />

western Moreton Bay (p = 0.019) and southern Moreton Bay (p = 0.001) regions.<br />

Jane Thomas -18-<br />

Results


Brisbane city<br />

Bribie<br />

Island<br />

C. <strong>taxifolia</strong> distribution 2003<br />

Present<br />

Absent<br />

Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

Moreton<br />

Bay<br />

Moreton<br />

Island<br />

North<br />

Stradbroke<br />

Island<br />

Figure 10. Map of Moreton Bay show<strong>in</strong>g locations of Caulerpa <strong>taxifolia</strong> presence/absence.<br />

Jane Thomas -19-<br />

Results


Table 1. Summary of benthic survey results.<br />

Mean %<br />

cover of<br />

additional<br />

sites<br />

No. of sites<br />

with<br />

anecdotal<br />

reports of<br />

C. <strong>taxifolia</strong><br />

presence <strong>in</strong><br />

2003<br />

Mean % cover<br />

change of sites<br />

with <strong>in</strong>creased<br />

Caulerpa cover<br />

s<strong>in</strong>ce 1998<br />

Mean % cover<br />

change of sites<br />

with reduced<br />

Caulerpa cover<br />

s<strong>in</strong>ce 1998<br />

Mean change<br />

<strong>in</strong> % cover of<br />

Caulerpa<br />

s<strong>in</strong>ce 1998<br />

Mean %<br />

cover of<br />

C. <strong>taxifolia</strong><br />

<strong>in</strong> 2003<br />

Mean %<br />

cover of<br />

Caulerpa <strong>in</strong><br />

1998<br />

Net no. of sites<br />

lost (–) or<br />

ga<strong>in</strong>ed (+)<br />

Caulerpa s<strong>in</strong>ce<br />

1998<br />

No. of sites<br />

with<br />

C. <strong>taxifolia</strong><br />

<strong>in</strong> 2003<br />

No. of sites<br />

with<br />

Caulerpa <strong>in</strong><br />

1998<br />

No. of sites<br />

surveyed<br />

1998 and<br />

2003<br />

Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

– 13 95<br />

(n = 6)<br />

– -5 -5<br />

(n = 1)<br />

4 1 0 -1 5<br />

(n = 1)<br />

Eastern<br />

Moreton Bay<br />

5 26<br />

(n = 4)<br />

+9<br />

(n = 9)<br />

-39 -80<br />

(n = 1)<br />

11<br />

(n = 9)<br />

22 2 9 +7 50<br />

(n = 2)<br />

Pumicestone<br />

Passage<br />

Jane Thomas -20-<br />

Results<br />

2 67<br />

(n = 3)<br />

+61<br />

(n = 15)<br />

+55 -7<br />

(n = 8)<br />

69<br />

(n = 15)<br />

64 12 15 +3 14<br />

(n = 12)<br />

Southern<br />

Moreton Bay<br />

5 60<br />

(n = 2)<br />

+47<br />

(n = 31)<br />

+25 -34<br />

(n = 17)<br />

59<br />

(n = 32)<br />

102 29 32 +3 34<br />

(n = 29)<br />

Western<br />

Moreton Bay<br />

25 66<br />

(n = 15)<br />

+45<br />

(n = 55)<br />

+23 -26<br />

(n = 27)<br />

54<br />

(n = 56)<br />

Total 192 44 56 +11 29<br />

(n = 44)


4.1.2 Western Moreton Bay<br />

Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

4.1.2.1 Caulerpa <strong>taxifolia</strong> distribution <strong>in</strong> 2003<br />

105 sites were quantitatively surveyed <strong>in</strong> 2003 <strong>for</strong> C. <strong>taxifolia</strong> cover <strong>in</strong> the western<br />

Moreton Bay region. 34 sites had an average of 56% cover (eight of these sites had<br />

100% cover). Dur<strong>in</strong>g 2002-3, there were also five additional sites where C. <strong>taxifolia</strong><br />

was reported by other sources (Figure 11). These sites were located east of Fishermen<br />

Islands, near the mouth of the Brisbane River. Dense populations were present from<br />

Fishermen Islands south to Manly. However, no C. <strong>taxifolia</strong> was observed south of<br />

Manly to Well<strong>in</strong>gton Po<strong>in</strong>t.<br />

Brisbane<br />

River<br />

Fisherman<br />

Islands<br />

Wynnum<br />

Manly<br />

Mud<br />

Island<br />

Well<strong>in</strong>gton<br />

Po<strong>in</strong>t<br />

Figure 11. Map of western Moreton Bay region show<strong>in</strong>g<br />

distribution of Caulerpa <strong>taxifolia</strong> <strong>in</strong> 2003.<br />

C. <strong>taxifolia</strong> cover 2003<br />

Absent<br />

Present (anecdotal)<br />

1-25% cover<br />

26-50% cover<br />

51-75% cover<br />

76-100% cover<br />

Jane Thomas -21-<br />

Results


Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

4.1.2.2 Change <strong>in</strong> Caulerpa distribution 1998-2003<br />

102 of the 105 sites surveyed <strong>in</strong> the western Moreton Bay region <strong>in</strong> 2003 were<br />

previously surveyed <strong>in</strong> 1998. Of these 102 sites, 32 had an average of 59% cover of<br />

C. <strong>taxifolia</strong>. In 1998, 29 sites had Caulerpa present with an average of 34% cover.<br />

Caulerpa cover <strong>in</strong>creased by an average of 47% at 31 sites s<strong>in</strong>ce 1998, and 19 of these<br />

had no Caulerpa <strong>in</strong> 1998. Conversely, Caulerpa was absent from 16 out of 17 sites<br />

where it occurred <strong>in</strong> 1998, with an average reduction of 34% cover. Cover of<br />

Caulerpa <strong>in</strong>creased at 12 out of 13 sites at which it was present <strong>in</strong> both 1998 and 2003<br />

(Figure 12). There was no Caulerpa east of Fisherman Islands <strong>in</strong> 1998, however <strong>in</strong><br />

2003, eight sites had C. <strong>taxifolia</strong> <strong>in</strong> this area. Although Caulerpa distribution and<br />

cover were variable between 1998 and 2003, there was a significant overall <strong>in</strong>crease<br />

(p = 0.0194) <strong>in</strong> Caulerpa cover between 1998 and 2003. Caulerpa is generally<br />

colonis<strong>in</strong>g bare sediment <strong>in</strong> this region, with an average decl<strong>in</strong>e of 38% bare substrate<br />

cover at the sites where Caulerpa had <strong>in</strong>creased. There was an average <strong>in</strong>crease of<br />

43% seagrass cover at the sites where Caulerpa cover had reduced.<br />

Brisbane<br />

River<br />

Fisherman<br />

Islands<br />

Wynnum<br />

Manly<br />

Well<strong>in</strong>gton<br />

Po<strong>in</strong>t<br />

Mud<br />

Island<br />

Figure 12. Map of western Moreton Bay region show<strong>in</strong>g<br />

change <strong>in</strong> cover of Caulerpa 1998-2003.<br />

Change <strong>in</strong> cover of<br />

C. <strong>taxifolia</strong> 1998-2003<br />

Reduction 76-100% cover<br />

Reduction 51-75% cover<br />

Reduction 26-50% cover<br />

Reduction 1-25% cover<br />

No change (absent both years)<br />

Increase 1-25% cover<br />

Increase 26-50% cover<br />

Increase 51-75% cover<br />

Increase 76-100% cover<br />

Jane Thomas -22-<br />

Results


4.1.3 Southern Moreton Bay<br />

Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

4.1.3.1 Caulerpa <strong>taxifolia</strong> distribution <strong>in</strong> 2003<br />

70 sites were quantitatively surveyed <strong>in</strong> 2003 <strong>for</strong> C. <strong>taxifolia</strong> cover <strong>in</strong> the southern<br />

Moreton Bay region. 18 sites had an average of 69% cover (five of these sites had<br />

100% cover). Dur<strong>in</strong>g 2002-3, there were also two additional sites where C. <strong>taxifolia</strong><br />

was reported by other sources (Figure 13). C. <strong>taxifolia</strong> was distributed across the<br />

whole southern Moreton Bay region, with dense populations at Cleveland, Victoria<br />

Po<strong>in</strong>t and <strong>in</strong> the Pelican Banks area.<br />

Cleveland<br />

Victoria Po<strong>in</strong>t<br />

Macleay<br />

Island<br />

Russell<br />

Island<br />

Pelican<br />

Banks<br />

North<br />

Stradbroke<br />

Island<br />

Figure 13. Map of southern Moreton Bay region show<strong>in</strong>g distribution of Caulerpa<br />

<strong>taxifolia</strong> <strong>in</strong> 2003.<br />

C. <strong>taxifolia</strong> cover 2003<br />

Absent<br />

Present (anecdotal)<br />

1-25% cover<br />

26-50% cover<br />

51-75% cover<br />

76-100% cover<br />

Jane Thomas -23-<br />

Results


Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

4.1.3.2 Change <strong>in</strong> Caulerpa distribution 1998-2003<br />

64 of the 70 sites surveyed <strong>in</strong> the southern Moreton Bay region <strong>in</strong> 2003 had<br />

previously been surveyed <strong>in</strong> 1998. Of these 64 sites, 15 had an average of 69% cover<br />

of C. <strong>taxifolia</strong> <strong>in</strong> 2003. In 1998 only 12 sites had Caulerpa present with an average of<br />

14% cover. Cover of Caulerpa <strong>in</strong>creased by an average of 61% at 15 sites s<strong>in</strong>ce<br />

1998, and 11 of these sites had no Caulerpa five years ago (Figure 14). Conversely,<br />

Caulerpa was absent from eight sites <strong>in</strong> 2003 where it was present <strong>in</strong> 1998, result<strong>in</strong>g<br />

<strong>in</strong> an average reduction of 7% cover. Caulerpa cover <strong>in</strong>creased by an average of 45%<br />

at all four sites at which it was present <strong>in</strong> both 1998 and 2003. There was a net ga<strong>in</strong> of<br />

sites and cover of Caulerpa, result<strong>in</strong>g <strong>in</strong> a significant <strong>in</strong>crease (p = 0.0011) <strong>in</strong><br />

Caulerpa cover between 1998 and 2003. Caulerpa is replac<strong>in</strong>g seagrasses and bare<br />

sediment <strong>in</strong> this region, with an average decl<strong>in</strong>e of 38% seagrass cover and 22% bare<br />

substrate cover at the sites where Caulerpa had <strong>in</strong>creased.<br />

Cleveland<br />

Victoria Po<strong>in</strong>t<br />

Macleay<br />

Island<br />

Russell<br />

Island<br />

Pelican<br />

Banks<br />

North<br />

Stradbroke<br />

Island<br />

Figure 14. Map of southern Moreton Bay region show<strong>in</strong>g change <strong>in</strong> cover of<br />

Caulerpa 1998-2003.<br />

Change <strong>in</strong> cover of<br />

C. <strong>taxifolia</strong> 1998-2003<br />

Reduction 76-100% cover<br />

Reduction 51-75% cover<br />

Reduction 26-50% cover<br />

Reduction 1-25% cover<br />

No change (absent both years)<br />

Increase 1-25% cover<br />

Increase 26-50% cover<br />

Increase 51-75% cover<br />

Increase 76-100% cover<br />

Jane Thomas -24-<br />

Results


4.1.4 Pumicestone Passage<br />

Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

4.1.4.1 Caulerpa <strong>taxifolia</strong> distribution <strong>in</strong> 2003<br />

33 sites were quantitatively surveyed <strong>in</strong> 2003 <strong>for</strong> C. <strong>taxifolia</strong> cover. 13 sites had an<br />

average of 16% cover. Dur<strong>in</strong>g 2002-3, there were also five additional sites where<br />

C. <strong>taxifolia</strong> was reported by other sources (Figure 15). The majority of these<br />

additional sites were located at the southern end of Pumicestone Passage and around<br />

Sandstone Po<strong>in</strong>t <strong>in</strong> northern Deception Bay. However, one site was reported at the<br />

northern end of Pumicestone Passage. Although cover was not quantitatively<br />

assessed at these additional sites, reports suggest cover ranged from moderate (~20%)<br />

to dense (up to 70%).<br />

Pumicestone<br />

Passage<br />

Bribie<br />

Island<br />

Sandstone Po<strong>in</strong>t<br />

Deception Bay<br />

Figure 15. Map of Pumicestone Passage region show<strong>in</strong>g distribution<br />

of Cauerpa <strong>taxifolia</strong> <strong>in</strong> 2003.<br />

C. <strong>taxifolia</strong> cover 2003<br />

Absent<br />

Present (anecdotal)<br />

1-25% cover<br />

26-50% cover<br />

51-75% cover<br />

76-100% cover<br />

Jane Thomas -25-<br />

Results


Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

4.1.4.2 Change <strong>in</strong> Caulerpa distribution 1998-2003<br />

22 of the 33 sites surveyed <strong>in</strong> the Pumicestone Passage region <strong>in</strong> 2003 had previously<br />

been surveyed <strong>in</strong> 1998. Of these 22 sites, n<strong>in</strong>e had an average of 11% cover of<br />

C. <strong>taxifolia</strong> <strong>in</strong> 2003. The number of sites with Caulerpa <strong>in</strong>creased by seven sites, as <strong>in</strong><br />

1998 only two sites had Caulerpa. Cover of Caulerpa <strong>in</strong>creased by an average of 9% at<br />

n<strong>in</strong>e sites s<strong>in</strong>ce 1998, and eight of these did not have Caulerpa five years ago (Figure<br />

16). Caulerpa cover reduced at only one site s<strong>in</strong>ce 1998, from 80% cover to absent.<br />

There was an <strong>in</strong>crease <strong>in</strong> Caulerpa spatial distribution from 1998 to 2003, however this<br />

change was not significant (p = 0.9914). The large reduction <strong>in</strong> cover at one site<br />

<strong>in</strong>fluenced this result. When this site was removed from the analysis, there was a<br />

significant <strong>in</strong>crease (p = 0.048) <strong>in</strong> cover of Caulerpa s<strong>in</strong>ce 1998 <strong>in</strong> the Pumicestone<br />

Passage region. Caulerpa is replac<strong>in</strong>g seagrasses <strong>in</strong> Pumicestone Passage, with an<br />

average decl<strong>in</strong>e of 14% seagrass cover at the sites where Caulerpa <strong>in</strong>creased.<br />

Pumicestone<br />

Passage<br />

Bribie<br />

Island<br />

Sandstone Po<strong>in</strong>t<br />

Deception Bay<br />

Figure 16. Map of Pumicestone Passage region show<strong>in</strong>g change <strong>in</strong><br />

cover of Caulerpa 1998-2003.<br />

Change <strong>in</strong> cover of<br />

C. <strong>taxifolia</strong> 1998-2003<br />

Reduction 76-100% cover<br />

Reduction 51-75% cover<br />

Reduction 26-50% cover<br />

Reduction 1-25% cover<br />

No change (absent both years)<br />

Increase 1-25% cover<br />

Increase 26-50% cover<br />

Increase 51-75% cover<br />

Increase 76-100% cover<br />

Jane Thomas -26-<br />

Results


4.1.5 Eastern Moreton Bay<br />

Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

4.1.5.1 2003 Caulerpa <strong>taxifolia</strong> distribution<br />

There was an average of 95% C. <strong>taxifolia</strong> cover at six out of the 10 sites quantitatively<br />

surveyed <strong>in</strong> 2003 <strong>in</strong> the eastern Moreton Bay region. Dur<strong>in</strong>g 2002-3, there were also<br />

13 additional sites where C. <strong>taxifolia</strong> was reported by other sources (Figure 17).<br />

These sites ma<strong>in</strong>ly occurred on the eastern banks, with one site at Po<strong>in</strong>t Lookout on<br />

the oceanic side of North Stradbroke Island. Although quantitative cover was not<br />

recorded at these sites, the anecdotal reports suggest that C. <strong>taxifolia</strong> occurs only<br />

sparsely on the banks and is ephemeral <strong>in</strong> its temporal distribution.<br />

Moreton<br />

Banks<br />

Peel<br />

Island<br />

Amity<br />

Banks<br />

Moreton<br />

Island<br />

Dunwich<br />

North<br />

Stradbroke<br />

Island<br />

Po<strong>in</strong>t Lookout<br />

Figure 17. Map of eastern Moreton Bay region show<strong>in</strong>g distribution<br />

of Caulerpa <strong>taxifolia</strong> <strong>in</strong> 2003.<br />

C. <strong>taxifolia</strong> cover 2003<br />

Absent<br />

Present (anecdotal)<br />

1-25% cover<br />

26-50% cover<br />

51-75% cover<br />

76-100% cover<br />

Jane Thomas -27-<br />

Results


Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

4.1.5.2 Change <strong>in</strong> Caulerpa distribution s<strong>in</strong>ce 1998<br />

In eastern Moreton Bay <strong>in</strong> 1998, only one site out of 53 had Caulerpa present with<br />

5% cover. No Caulerpa was present at this site or at three additional adjacent sites<br />

<strong>in</strong> 2003 (Figure 18). Due to the low number of sites and low percentage of<br />

Caulerpa cover <strong>in</strong> 1998, there was no significant change (p = 0.391) <strong>in</strong> Caulerpa<br />

cover over the last five years.<br />

Moreton<br />

Banks<br />

Peel<br />

Island<br />

Amity<br />

Banks<br />

Moreton<br />

Island<br />

Dunwich<br />

North<br />

Stradbroke<br />

Island<br />

Po<strong>in</strong>t Lookout<br />

Figure 18. Map of eastern Moreton Bay region show<strong>in</strong>g change <strong>in</strong> cover of<br />

Caulerpa 1998-2003.<br />

Change <strong>in</strong> cover of<br />

C. <strong>taxifolia</strong> 1998-2003<br />

Reduction 76-100% cover<br />

Reduction 51-75% cover<br />

Reduction 26-50% cover<br />

Reduction 1-25% cover<br />

No change (absent both years)<br />

Increase 1-25% cover<br />

Increase 26-50% cover<br />

Increase 51-75% cover<br />

Increase 76-100% cover<br />

Jane Thomas -28-<br />

Results


4.2 RECIPROCAL TRANSPLANTS<br />

Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

None of the Z. capricorni transplants (transplanted <strong>in</strong>to C. <strong>taxifolia</strong> and <strong>in</strong>to<br />

Z. capricorni) survived the three-month duration of the experiment (Table 2). All of<br />

the C. <strong>taxifolia</strong> transplanted <strong>in</strong>to C. <strong>taxifolia</strong> (controls) survived, while 50% of the<br />

C. <strong>taxifolia</strong> transplanted <strong>in</strong>to Z. capricorni survived. Due to the low survivorship of<br />

the transplants <strong>in</strong> general, there was no significant effect of treatment (p = 0.907) or<br />

species (p = 0.869) on survival.<br />

Dest<strong>in</strong>ation<br />

of transplant<br />

Source of transplant<br />

% survival Z. capricorni C. <strong>taxifolia</strong><br />

Z. capricorni 0% 50%<br />

C. <strong>taxifolia</strong> 0% 100%<br />

Of the orig<strong>in</strong>al four C. <strong>taxifolia</strong> cores transplanted <strong>in</strong>to Z. capricorni, two (50%) were<br />

still alive after three months. Of the two surviv<strong>in</strong>g C. <strong>taxifolia</strong> cores transplanted <strong>in</strong>to<br />

the Z. capricorni bed, one core doubled the orig<strong>in</strong>al number of fronds and expanded<br />

by an average of 18 cm away from the perimeter of the orig<strong>in</strong>al core. The other<br />

surviv<strong>in</strong>g core ma<strong>in</strong>ta<strong>in</strong>ed the orig<strong>in</strong>al frond number, and expanded an average of 14<br />

cm away from the perimeter of the orig<strong>in</strong>al core (Figure 19). This experiment<br />

suggests that Z. capricorni is more susceptible to small-scale physical disturbance<br />

than C. <strong>taxifolia</strong>, and that physical disturbance to C. <strong>taxifolia</strong> can result <strong>in</strong> its<br />

colonisation and expansion.<br />

% of orig<strong>in</strong>al<br />

frond density<br />

Table 2. Percentage of transplants surviv<strong>in</strong>g after three months.<br />

200<br />

100<br />

24 cm<br />

13 cm<br />

20 cm<br />

14 cm<br />

20 cm<br />

14 cm<br />

17 cm<br />

15 cm<br />

Orig<strong>in</strong>al core<br />

Growth away<br />

from perimeter<br />

of orig<strong>in</strong>al core<br />

Figure 19. Change <strong>in</strong> frond density<br />

and distance of growth away from<br />

the orig<strong>in</strong>al core after three months<br />

of the two surviv<strong>in</strong>g Caulerpa<br />

<strong>taxifolia</strong> cores transplanted <strong>in</strong>to<br />

Zostera capricorni.<br />

Jane Thomas -29-<br />

Results


Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

4.3 EFFECT OF CAULERPA TAXIFOLIA EXTRACT ON SEAGRASSES<br />

In the first experiment with three seagrass species, shoot density and maximum leaf<br />

length of the seagrass Syr<strong>in</strong>godium isoetifolium were the only variables that were<br />

significantly affected by the addition of C. <strong>taxifolia</strong> extract (Table 4.3 <strong>in</strong> Appendix,<br />

page 58). In the second experiment with Z. capricorni, shoot density was significantly<br />

affected by the addition of C. <strong>taxifolia</strong> extract (Table 4.3.4.2 <strong>in</strong> Appendix, page 60).<br />

4.3.1 Shoot density of three seagrass species<br />

There was a significant difference (p = 0.010) <strong>in</strong> seagrass species response to exposure<br />

to C. <strong>taxifolia</strong> extract (Table 4.3.1.1 <strong>in</strong> Appendix, page 58). S. isoetifolium was the<br />

seagrass species most affected by the addition of C. <strong>taxifolia</strong> extract, with a significant<br />

reduction (p = 0.007) <strong>in</strong> shoot density (Figure 20; Table 4.3.1.2 <strong>in</strong> Appendix, page 59).<br />

Z. capricorni had the greatest decl<strong>in</strong>e <strong>in</strong> shoot density of all species. One control core<br />

and one core of high C. <strong>taxifolia</strong> extract treatment died be<strong>for</strong>e the end of the<br />

experiment. Although there was a greater decl<strong>in</strong>e of Z. capricorni, there was no<br />

significant difference (p = 0.384) between treatments. Shoot density of Cymodocea<br />

serrulata was most affected by exposure to high concentration of C. <strong>taxifolia</strong> extract but<br />

overall this species was the least affected by exposure to C. <strong>taxifolia</strong> extract and there<br />

was no significant difference between treatments (p = 0.372). Fisher’s post-hoc LSD<br />

test showed that S. isoetifolium subjected to the high dose of C. <strong>taxifolia</strong> extract was<br />

significantly less than the shoot densities of both the control (p = 0.009) and low dose of<br />

C. <strong>taxifolia</strong> extract (p = 0.044).<br />

Jane Thomas -30-<br />

Results


% of orig<strong>in</strong>al shoot density<br />

% of orig<strong>in</strong>al shoot density<br />

% of orig<strong>in</strong>al shoot density<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

120<br />

100<br />

0<br />

0 7<br />

Time (days)<br />

14<br />

80<br />

60<br />

40<br />

20<br />

0<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Cymodocea serrulata<br />

Syr<strong>in</strong>godium isoetifolium<br />

0 7 14<br />

Time (days)<br />

Zostera capricorni<br />

0 7 14<br />

Time (days)<br />

Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

A<br />

B<br />

C<br />

a<br />

a<br />

Figure 20. Shoot density responses of three<br />

seagrass species, A: Cymodocea serrulata;<br />

B: Syr<strong>in</strong>godium isoetifolium; and C: Zostera<br />

capricorni to three different concentrations of<br />

Caulerpa <strong>taxifolia</strong> extract (error = standard<br />

error of the mean). Different letters at the<br />

end of the graph (a, b) <strong>in</strong>dicate a significant<br />

difference (p < 0.05) accord<strong>in</strong>g to the<br />

repeated measures ANOVA conducted <strong>for</strong><br />

each of the three species.<br />

a<br />

b<br />

b<br />

a<br />

a<br />

a<br />

a<br />

Control<br />

Low C. <strong>taxifolia</strong> dose<br />

High C. <strong>taxifolia</strong> dose<br />

Jane Thomas -31-<br />

Results


Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

4.3.2 Maximum leaf length of three seagrass species<br />

Maximum leaf length was significantly different (p = 0.000) between species (Figure<br />

21; Table 4.3.2.1 <strong>in</strong> Appendix, page 59). S. isoetifolium was the seagrass species<br />

most affected by the addition of C. <strong>taxifolia</strong> extract, with a significant reduction<br />

(p = 0.000) <strong>in</strong> maximum leaf length (Table 4.3.2.2 <strong>in</strong> Appendix, page 59).<br />

Z. capricorni maximum leaf length was highly variable, due to the loss of one control<br />

core and one high C. <strong>taxifolia</strong> treatment core and there was no significant difference<br />

(p = 0.069) between treatments. Cymodocea serrulata was least affected by the<br />

treatments (p = 0.462). Fisher’s post-hoc LSD test showed that the maximum leaf<br />

length of S. isoetifolium subjected to the low dose of C. <strong>taxifolia</strong> treatment was<br />

significantly lower (p = 0.004) than the high dosage treatment which was significantly<br />

lower (p = 0.000) than the control. However this result may be an artefact of the<br />

random variability of the <strong>in</strong>itial measurements (on day 0 – prior to application of<br />

experimental treatments) <strong>in</strong> which S. isoetifolium exposed to the low C. <strong>taxifolia</strong><br />

treatment already had a lower maximum leaf length than the high dosage treatment<br />

and the control, hence the C. <strong>taxifolia</strong> may have only enhanced a trend that was<br />

already present <strong>in</strong> the cores.<br />

Jane Thomas -32-<br />

Results


Maximum leaf length (mm)<br />

Maximum leaf length (mm)<br />

Maximum leaf length (mm)<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

120<br />

100<br />

0<br />

0 7<br />

Time (days)<br />

14<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Cymodocea serrulata<br />

0 7 14<br />

Time (days)<br />

Syr<strong>in</strong>godium isoetifolium<br />

Zostera capricorni<br />

0 7 14<br />

Time (days)<br />

Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

Figure 21. Maximum leaf length responses of<br />

three seagrass species, A: Cymodocea serrulata;<br />

B: Syr<strong>in</strong>godium isoetifolium; and C: Zostera<br />

capricorni to three different concentrations of<br />

Caulerpa <strong>taxifolia</strong> extract (error = 1 standard<br />

error of the mean). Different letters at the end of<br />

the graph (a, b, c) <strong>in</strong>dicate a significant difference<br />

(p < 0.05) accord<strong>in</strong>g to the repeated measures<br />

ANOVA conducted <strong>for</strong> each of the three species.<br />

A<br />

B<br />

C<br />

a<br />

a<br />

c<br />

b<br />

a<br />

a<br />

a<br />

Control<br />

Low C. <strong>taxifolia</strong> dose<br />

High C. <strong>taxifolia</strong> dose<br />

Jane Thomas -33-<br />

Results


Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

4.3.3 PAM fluorometry and leaves per shoot of three seagrass species<br />

The photosynthetic response and the number of leaves per shoot were significantly<br />

different between species (p = 0.000 <strong>for</strong> both variables). For all species there was no<br />

significant effect of treatment on these variables (p = 0.212 and p = 0.192,<br />

respectively) (Table 4.3 <strong>in</strong> Appendix, page 58).<br />

4.3.4 Effect of Caulerpa <strong>taxifolia</strong> extract on Zostera capricorni<br />

A repeated measures ANOVA showed a significant effect (p = 0.024) of treatment on<br />

shoot density of Z. capricorni, and Fisher’s post-hoc LSD test showed that the shoot<br />

density of the low treatment was significantly lower than the control (p = 0.030) and<br />

high treatments (p = 0.011) (Figure 22; Table 4.3.4.1 <strong>in</strong> Appendix, page 60). Treatment<br />

had no significant effect on the other variables measured (PAM fluorometry, biomass<br />

and pigment concentration) (Table 4.3.4.2 <strong>in</strong> Appendix, page 60).<br />

% of orig<strong>in</strong>al shoot density<br />

100<br />

90<br />

80<br />

70<br />

60<br />

0 7 14<br />

Time (days)<br />

21 28 35<br />

Control<br />

Low C. <strong>taxifolia</strong> dose<br />

High C. <strong>taxifolia</strong> dose<br />

Figure 22. Shoot density response of Zostera<br />

capricorni to three different concentrations of<br />

Caulerpa <strong>taxifolia</strong> extract (error = 1 standard error<br />

of the mean).<br />

There was no significant effect (p = 0.210) of treatment on the photosynthetic<br />

response of Z. capricorni, and these measurements were discont<strong>in</strong>ued when the<br />

cont<strong>in</strong>u<strong>in</strong>g decl<strong>in</strong><strong>in</strong>g health of the seagrass made the photosynthetic response data<br />

unreliable (Figure 23). Although there was no significant difference <strong>in</strong> yield with<br />

treatment, there was a significant effect of tank arrangement <strong>in</strong> the planthouse. Six<br />

tanks were located along the north-east wall of the planthouse and six along the southwest<br />

wall (Figure 9, page 17). To test <strong>for</strong> any difference <strong>in</strong> light regime received by<br />

the two rows of tanks, ‘Block’ was <strong>in</strong>cluded as a factor <strong>in</strong> the ANOVA, and<br />

significantly affected the photosynthetic response of Z. capricorni, both <strong>in</strong>dependently<br />

Jane Thomas -34-<br />

Results


Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

(p = 0.000) and <strong>in</strong> <strong>in</strong>teraction with treatment (p = 0.000) (Table 4.3.4.3 <strong>in</strong> Appendix,<br />

page 60).<br />

Fisher’s post-hoc LSD test showed that the photosynthetic response of the high<br />

C. <strong>taxifolia</strong> dose treatments <strong>in</strong> Block 1 (along the north-east wall) were significantly<br />

lower than the high C. <strong>taxifolia</strong> dose treatments <strong>in</strong> Block 2 (along the south-west wall)<br />

(p = 0.000), and the same result was obta<strong>in</strong>ed <strong>for</strong> the low C. <strong>taxifolia</strong> treatment (p =<br />

0.000). There was very little difference between the m<strong>in</strong>imum mean (729 <strong>for</strong> the low<br />

C. <strong>taxifolia</strong> dose treatment <strong>in</strong> Block 1) and the maximum mean obta<strong>in</strong>ed (773 <strong>for</strong> the<br />

high C. <strong>taxifolia</strong> dose treatment). The random allocation of treatments to tanks<br />

resulted <strong>in</strong> an uneven block design, with one control tank, two low C. <strong>taxifolia</strong> dose<br />

treatment tanks and three high C. <strong>taxifolia</strong> treatment tanks located <strong>in</strong> Block 1. Block<br />

2 conta<strong>in</strong>ed three control tanks, two low C. <strong>taxifolia</strong> dose treatment tanks and one<br />

high C. <strong>taxifolia</strong> treatment tank. This uneven design, with the lack of tank replicates<br />

of the control and high C. <strong>taxifolia</strong> dose treatments may make this apparent<br />

significance unreliable.<br />

Effective quantum yield (Fv /Fm)<br />

850<br />

800<br />

750<br />

700<br />

650<br />

600<br />

550<br />

0<br />

7 14 21 28 35<br />

Time (days)<br />

Control<br />

Low C. <strong>taxifolia</strong> dose<br />

High C. <strong>taxifolia</strong> dose<br />

Figure 23. Photosynthetic response of Zostera<br />

capricorni to three different concentrations of<br />

Caulerpa <strong>taxifolia</strong> extract (error = 1 standard error<br />

of the mean).<br />

Jane Thomas -35-<br />

Results


5. DISCUSSION<br />

Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

There was a significant <strong>in</strong>crease <strong>in</strong> sites and cover of C. <strong>taxifolia</strong> <strong>in</strong> Moreton Bay <strong>in</strong><br />

the last five years, particularly <strong>in</strong> western and southern regions. In western Moreton<br />

Bay, C. <strong>taxifolia</strong> appeared to ma<strong>in</strong>ly colonised bare sediments, while <strong>in</strong> the southern<br />

Bay and Pumicestone Passage it apparently replaced seagrass. It is <strong>in</strong>terest<strong>in</strong>g to note<br />

that at the sites where C. <strong>taxifolia</strong> cover decreased <strong>in</strong> western Moreton Bay, it<br />

appeared to be replaced by seagrass, which <strong>in</strong>dicates the potential <strong>for</strong> seagrasses to<br />

recover after colonisation by C. <strong>taxifolia</strong>. There were dense populations present<br />

around Dunwich at North Stradbroke Island <strong>in</strong> eastern Moreton Bay, however<br />

C. <strong>taxifolia</strong> was only present at low densities on the eastern banks.<br />

The planthouse experiments showed some significant results, with seagrass shoot<br />

density be<strong>in</strong>g negatively affected by the addition of C. <strong>taxifolia</strong> extract, however the<br />

results were highly variable. Reciprocal transplants of C. <strong>taxifolia</strong> and the seagrass<br />

Z. capricorni <strong>in</strong>dicated that Z. capricorni is more susceptible to physical disturbance<br />

than C. <strong>taxifolia</strong>, which may utilise disturbance as an opportunity <strong>for</strong> expansion.<br />

It appears that C. <strong>taxifolia</strong> and seagrass <strong>in</strong>teractions <strong>in</strong> Moreton Bay are not<br />

unidirectional as <strong>in</strong> the Mediterranean Sea, but are dynamic and changes can occur <strong>in</strong><br />

both directions (de Villèle and Verlaque, 1995). Five processes are hypothesised to<br />

synergistically affect C. <strong>taxifolia</strong> distribution and seagrass <strong>in</strong>teractions <strong>in</strong> Moreton<br />

Bay. These are high water temperature, water quality decl<strong>in</strong>e, physical disturbance,<br />

allelopathic <strong>in</strong>teractions from C. <strong>taxifolia</strong> tox<strong>in</strong>s, and the accumulation of sulphide <strong>in</strong><br />

the sediments, a by-product of anaerobic metabolism which is toxic to seagrasses<br />

(Jorgensen, 1983; Carlson et al., 1994; Goodman et al., 1995; Azzoni et al., 2001)<br />

(Figure 24, page 38).<br />

5.1 COMPARISON WITH OTHER CAULERPA TAXIFOLIA POPULATIONS<br />

The Moreton Bay populations of C. <strong>taxifolia</strong> are <strong>in</strong>termediate <strong>in</strong> biomass, structure<br />

and morphology between the “<strong>in</strong>vasive-Mediterranean” stra<strong>in</strong> and tropical<br />

populations (Table 3). In the Mediterranean, biomass of C. <strong>taxifolia</strong> (480 – 700 g DW<br />

m -2 ) is much higher than <strong>in</strong> Moreton Bay (59 – 76 g DW m -2 ) which is higher than<br />

tropical populations (0.046 g DW m -2 ). Although frond density is much lower <strong>in</strong><br />

Jane Thomas -36-<br />

Discussion


Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

tropical regions (37 fronds m -2 ), the densities reported <strong>in</strong> Moreton Bay (4837 – 22,037<br />

fronds m -2 ) and the Mediterranean (5100 – 13,920 fronds m -2 ) are comparable<br />

(Garrigue, 1994; Me<strong>in</strong>esz et al., 1995; Thomas, 2002a). The higher biomass <strong>in</strong> the<br />

Mediterranean due to generally longer frond length and <strong>in</strong>creased frond branch<strong>in</strong>g<br />

(Me<strong>in</strong>esz et al., 1995; Pillen et al., 1998; Thomas, 2002a). The most recent genetic<br />

study on C. <strong>taxifolia</strong> supports this hypothesis that the Moreton Bay C. <strong>taxifolia</strong> is<br />

<strong>in</strong>termediate between the “<strong>in</strong>vasive-Mediterranean” stra<strong>in</strong> and tropical populations,<br />

suggest<strong>in</strong>g that the “<strong>in</strong>vasive-Mediterranean” stra<strong>in</strong> is derived from Moreton Bay<br />

populations which are <strong>in</strong> turn derived from tropical populations, <strong>in</strong>volv<strong>in</strong>g subspeciation<br />

at each of these founder events (Meusnier et al., 2002). However,<br />

Caulerpa is well known to exhibit considerable morphological plasticity <strong>in</strong> response<br />

to environmental conditions such as light, temperature and water motion, and this<br />

would also be an important factor <strong>in</strong> the differences between tropical, Moreton Bay<br />

and Mediterranean populations of C. <strong>taxifolia</strong> (Calvert, 1976; Koehl, 1986; Ohba and<br />

Enomoto, 1987; Ohba et al., 1992; Collado-Vides and Robledo, 1999).<br />

Frond density<br />

(fronds m -2 )<br />

Frond length<br />

(cm)<br />

Biomass<br />

(g DW m -2 )<br />

Reference<br />

Moreton Bay 4837 – 22,037 10 – 15 59 – 76 [1], [2]<br />

Mediterranean Sea 5100 – 13,920 5 – 40 480 – 700 [3]<br />

New Caledonia 37 2 – 10 1.8 [4]<br />

Table 3. Comparison of morphology, structure and biomass of Caulerpa<br />

<strong>taxifolia</strong> <strong>in</strong> Moreton Bay, the Mediterranean Sea and tropical New Caledonia.<br />

References: [1] This study; [2] Thomas, 2002a; [3] Me<strong>in</strong>esz, et al., 1995;<br />

[4] Garrigue, 1994.<br />

5.2 FACTORS AFFECTING CAULERPA TAXIFOLIA DISTRIBUTION IN MORETON BAY<br />

C. <strong>taxifolia</strong> <strong>in</strong> Moreton Bay does not currently exhibit the <strong>in</strong>vasiveness of the<br />

Mediterranean populations, with considerable temporal and spatial variability <strong>in</strong> its<br />

distribution with<strong>in</strong> Moreton Bay. However, the devastat<strong>in</strong>g ecological consequences<br />

of its widespread <strong>in</strong>vasion of the Mediterranean makes it imperative to better<br />

understand factors that affect its distribution <strong>in</strong> its native habitat. A number of<br />

processes are hypothesised to affect C. <strong>taxifolia</strong> <strong>in</strong> Moreton Bay (Figure 24).<br />

Jane Thomas -37-<br />

Discussion


Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

Figure 24. Conceptual diagram outl<strong>in</strong><strong>in</strong>g the processes hypothesised to<br />

affect Caulerpa <strong>taxifolia</strong> distribution <strong>in</strong> Moreton Bay, and its potential<br />

<strong>in</strong>teractions with seagrasses.<br />

Jane Thomas -38-<br />

Discussion


5.2.1 Water temperature<br />

Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

Anecdotal evidence from professional fishermen has suggested that the distribution of<br />

C. <strong>taxifolia</strong> <strong>in</strong> Moreton Bay varies <strong>in</strong>ter-annually (G. Savige, pers.comm.). A possible<br />

cause of this temporal variability could be changes of water temperature <strong>in</strong>terseasonally.<br />

Surface water temperature data <strong>for</strong> Moreton Bay shows that the previous<br />

two w<strong>in</strong>ters (2001 and 2002) were warmer than preced<strong>in</strong>g years (Figure 25;<br />

Ecosystem Health Monitor<strong>in</strong>g Program, unpub. data). Temperature is one of the most<br />

important abiotic factors affect<strong>in</strong>g macroalgal growth (Graham and Wilcox, 2000).<br />

C. <strong>taxifolia</strong> <strong>in</strong> the Mediterranean Sea displays high biomass and density <strong>in</strong> summer<br />

with some die-off evident over w<strong>in</strong>ter (Me<strong>in</strong>esz et al., 1995). Susta<strong>in</strong>ed high seawater<br />

temperatures have been associated with high population abundance of Caulerpa<br />

sertularioides (S.G. Gmel<strong>in</strong>) M. Howe <strong>in</strong> Mexico (Scrosati, 2001). Moreton Bay<br />

experiences similar m<strong>in</strong>imum w<strong>in</strong>ter temperatures to the Mediterranean Sea, and these<br />

two populations of C. <strong>taxifolia</strong> exhibit similar cold tolerance thresholds (Komatsu et<br />

al., 1997; Chisholm et al., 2000; Phillips and Price, 2002). The 1998 and 2003<br />

benthic surveys were conducted at similar times of the year (over summer), and the<br />

warmer w<strong>in</strong>ters preced<strong>in</strong>g the 2003 surveys comb<strong>in</strong>ed with the cooler w<strong>in</strong>ters<br />

preced<strong>in</strong>g the 1998 surveys may have resulted <strong>in</strong> less die-off of C. <strong>taxifolia</strong> <strong>in</strong> w<strong>in</strong>ter.<br />

This may be partially responsible <strong>for</strong> the overall <strong>in</strong>crease <strong>in</strong> C. <strong>taxifolia</strong> distribution<br />

observed s<strong>in</strong>ce 1998 <strong>in</strong> Moreton Bay.<br />

Surface water temperature (° C)<br />

30<br />

25<br />

20<br />

15<br />

10<br />

Jan-96<br />

Cool w<strong>in</strong>ters<br />

Jul-96<br />

Jan-97<br />

Jul-97<br />

1998<br />

surveys<br />

Jan-98<br />

Jul-98<br />

Jan-99<br />

Jul-99<br />

Jane Thomas -39-<br />

Discussion<br />

Jan-00<br />

Jul-00<br />

Jan-01<br />

Warm w<strong>in</strong>ters<br />

Time<br />

Figure 25. Surface water temperatures of Moreton Bay from<br />

January 1996 to May 2003 (Ecosystem Health Monitor<strong>in</strong>g Program,<br />

unpub. data). Values are means ± one standard error of the mean.<br />

Jul-01<br />

Jan-02<br />

Jul-02<br />

2003<br />

surveys<br />

Jan-03


Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

5.2.2 Caulerpa <strong>taxifolia</strong> and seagrass <strong>in</strong>teractions<br />

5.2.2.1 Water quality<br />

The significant <strong>in</strong>crease of C. <strong>taxifolia</strong> cover and spatial distribution <strong>in</strong> western and<br />

southern areas of Moreton Bay suggest that C. <strong>taxifolia</strong> distribution may be l<strong>in</strong>ked to<br />

Moreton Bay water quality. There is an east-west and a north-south gradient <strong>in</strong> water<br />

quality across Moreton Bay, with eastern and northern areas hav<strong>in</strong>g generally better<br />

water quality as they receive greater oceanic flush<strong>in</strong>g and less nutrient and sediment<br />

<strong>in</strong>puts (Dennison and Abal, 1999). In contrast, western and southern Moreton Bay are<br />

more impacted by human pressures, with sediment, stormwater and sewage <strong>in</strong>puts<br />

from adjacent rivers result<strong>in</strong>g <strong>in</strong> lower and more variable light penetration <strong>in</strong> these<br />

regions (Dennison and Abal, 1999; Longstaff, 2003). These gradients may help to<br />

expla<strong>in</strong> localised changes <strong>in</strong> C. <strong>taxifolia</strong> distribution across Moreton Bay.<br />

In Moreton Bay, low water quality affects seagrasses primarily by light attenuation <strong>in</strong><br />

the water column, pr<strong>in</strong>cipally from suspended sediment and, to a lesser extent,<br />

phytoplankton (Longstaff, 2003). This reduces not only the quantity but also the<br />

quality of light reach<strong>in</strong>g seagrass (Dawes, 1998). Macroalgae, <strong>in</strong>clud<strong>in</strong>g C. <strong>taxifolia</strong><br />

are typically tolerant of lower light conditions than are seagrasses which generally<br />

require up to 10 times more light than macroalgae (Lün<strong>in</strong>g, 1990; Duarte, 1991;<br />

Dennison et al., 1993). Thus a decl<strong>in</strong>e <strong>in</strong> water quality <strong>in</strong> Moreton Bay may give<br />

C. <strong>taxifolia</strong> a competitive advantage, even though it is a native species. Alternatively,<br />

the opportunistic C. <strong>taxifolia</strong> may colonise the niche left vacant from seagrass loss<br />

due to poor water quality. Studies <strong>in</strong> the Mediterranean have associated C. <strong>taxifolia</strong><br />

proliferation with urban wastewater discharge and seagrass loss, with C. <strong>taxifolia</strong> able<br />

to utilise the decay<strong>in</strong>g seagrass vegetation <strong>in</strong> the sediment as a nutrient source<br />

(Chisholm et al., 1997; Chisholm and Moul<strong>in</strong>, 2003).<br />

C. <strong>taxifolia</strong> has significantly <strong>in</strong>creased its distribution <strong>in</strong> southern and western<br />

Moreton Bay. In southern Moreton Bay it has replaced seagrass, while <strong>in</strong> western<br />

Moreton Bay it has ma<strong>in</strong>ly colonised bare sediment. Turbidity <strong>in</strong> southern Moreton<br />

Bay was at a m<strong>in</strong>imum <strong>in</strong> 1998 but has been <strong>in</strong>creas<strong>in</strong>g s<strong>in</strong>ce then (Qld<br />

Environmental Protection Agency, unpub. data) which may have contributed to the<br />

seagrass loss and C. <strong>taxifolia</strong> <strong>in</strong>crease <strong>in</strong> this region. At the sites where C. <strong>taxifolia</strong><br />

Jane Thomas -40-<br />

Discussion


Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

cover decreased <strong>in</strong> western Moreton Bay, it was replaced by seagrass, which <strong>in</strong>dicates<br />

the potential <strong>for</strong> seagrasses to recover after colonisation by C. <strong>taxifolia</strong>. Western<br />

Moreton Bay has exhibited an improvement of water quality s<strong>in</strong>ce 2000 (Counihan et<br />

al., 2002) which could enhance recovery of seagrass beds <strong>in</strong> the region.<br />

The seagrass Halophila sp<strong>in</strong>ulosa (R. Br.) Aschers. (Hydrocharitales, Magnoliophyta)<br />

was often seen grow<strong>in</strong>g with C. <strong>taxifolia</strong> (pers. obs.). As the deepest-grow<strong>in</strong>g seagrass<br />

species <strong>in</strong> Moreton Bay (Young and Kirkman, 1975; Abal et al., 1998), it is the most<br />

vulnerable to reductions <strong>in</strong> water quality. H. sp<strong>in</strong>ulosa usually <strong>for</strong>ms the deep edge of<br />

the seagrass meadows, with the shallow areas dom<strong>in</strong>ated by other species (Abal et al.,<br />

1998). Monitor<strong>in</strong>g of seagrass depth range has suggested that C. <strong>taxifolia</strong> is replac<strong>in</strong>g<br />

H. sp<strong>in</strong>ulosa at the deep edge of seagrass meadows at sites east of Fisherman Islands <strong>in</strong><br />

western Moreton Bay, and <strong>in</strong> One Mile Harbour at Dunwich at North Stradbroke Island<br />

Counihan et al., 2002; N. Udy, pers. comm.; pers. obs.).<br />

5.2.2.2 Physical disturbance<br />

Commercial digg<strong>in</strong>g <strong>for</strong> bait worms occurs <strong>in</strong> four areas <strong>in</strong> western Moreton Bay<br />

seagrass beds which are specifically zoned <strong>for</strong> commercial bloodworm gather<strong>in</strong>g<br />

(Environmental Protection Agency Qld, 2003) (Figure 26). Commercial bloodworm<br />

harvest<strong>in</strong>g <strong>in</strong>volves digg<strong>in</strong>g up several square metres of seagrass to harvest the<br />

worms, and the seagrass sods must be replaced after digg<strong>in</strong>g. Recent colonisation by<br />

C. <strong>taxifolia</strong> has occurred <strong>in</strong> two of these zones (Figure 26). Previously these areas,<br />

immediately to the east of Fisherman Islands, were dom<strong>in</strong>ated by Z. capricorni, with<br />

Halophila sp<strong>in</strong>ulosa and Halophila ovalis (R. Br.) Hook. (Hyland et al., 1989; Udy et<br />

al., 1999). The susceptibility of Z. capricorni to physical disturbance suggested by<br />

this study may provide colonisation opportunities <strong>for</strong> C. <strong>taxifolia</strong>, which is able to<br />

utilise physical disturbance as an opportunity <strong>for</strong> growth. C. <strong>taxifolia</strong> has been<br />

observed grow<strong>in</strong>g <strong>in</strong> recently-dug plots immediately to the east of Fisherman Islands<br />

(pers. obs.) and this physical disturbance may facilitate the fragmentation and<br />

there<strong>for</strong>e spread of C. <strong>taxifolia</strong>. Shoot density of Z. capricorni is less when grow<strong>in</strong>g<br />

with C. <strong>taxifolia</strong> <strong>in</strong> this region, <strong>in</strong> addition to a decl<strong>in</strong>e of Z. capricorni shoot density<br />

over time when grow<strong>in</strong>g with the alga (Thomas, 2002a).<br />

Jane Thomas -41-<br />

Discussion


Brisbane<br />

River<br />

Fisherman<br />

Islands<br />

Wynnum<br />

Manly<br />

Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

Well<strong>in</strong>gton<br />

Po<strong>in</strong>t<br />

Figure 26. Map of Western Moreton Bay region show<strong>in</strong>g<br />

distribution of Caulerpa <strong>taxifolia</strong> <strong>in</strong> 2003, and locations of<br />

commercial bloodworm gather<strong>in</strong>g areas.<br />

5.2.2.3 Accumulation of sulphide <strong>in</strong> sediments<br />

Mud<br />

Island<br />

LEGEND<br />

C. <strong>taxifolia</strong> cover 2003<br />

Absent<br />

Present (anecdotal)<br />

1-25% cover<br />

26-50% cover<br />

51-75% cover<br />

76-100% cover<br />

Location of commercial<br />

bloodworm gather<strong>in</strong>g area<br />

Location of areas<br />

colonised by C. <strong>taxifolia</strong><br />

s<strong>in</strong>ce 1998<br />

Increased flux of organic matter to the sediments stimulates anaerobic bacterial<br />

metabolism, particularly bacteria utilis<strong>in</strong>g sulphate (SO4 2- ) as a term<strong>in</strong>al electron<br />

acceptor, reduc<strong>in</strong>g it to sulphide (S 2- ) (Jorgensen, 1983). The sulphate-sulphide<br />

reactions are the ma<strong>in</strong> pathway of organic matter trans<strong>for</strong>mation <strong>in</strong> mar<strong>in</strong>e sediments<br />

(Howarth and Teal, 1979; Howarth and Gibl<strong>in</strong>, 1983; Howes et al., 1984).<br />

Eutrophication and anthropogenic <strong>in</strong>fluences may enhance anaerobic sediment<br />

processes <strong>in</strong> two ways (Duarte, 2002). First, the reduction of seagrass primary<br />

production due to shad<strong>in</strong>g from suspended sediments and phytoplankton blooms<br />

reduces the amount of oxygen produced by seagrasses. Seagrasses pump oxygen out<br />

of their roots to ma<strong>in</strong>ta<strong>in</strong> an oxidised zone <strong>in</strong> their rhizosphere and so decrease<br />

exposure to the toxic by-products of anaerobic metabolism such as sulphide. A<br />

Jane Thomas -42-<br />

Discussion


Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

reduction <strong>in</strong> the amount of oxygen transported by seagrasses to the rhizosphere would<br />

allow anaerobic processes to dom<strong>in</strong>ate <strong>in</strong> this area. Second, the <strong>in</strong>creased primary<br />

production from macroalgae and phytoplankton that is often associated with<br />

eutrophication leads to a greater <strong>in</strong>put of organic matter to the sediment which<br />

enhances anaerobic microbial activity.<br />

Sediments colonised by C. <strong>taxifolia</strong> <strong>in</strong> Moreton Bay had typical anaerobic<br />

characteristics, ie. black colour and sulphide smell (pers. obs.). High sulphide<br />

concentrations <strong>in</strong> sediments colonised by C. <strong>taxifolia</strong> have also been observed <strong>in</strong> the<br />

Mediterranean (Chisholm et al., 1997; Fernex et al., 2001) which implies that<br />

sulphide is not toxic to C. <strong>taxifolia</strong> as it is to some seagrasses (Carlson et al., 1994;<br />

Goodman et al., 1995; Azzoni et al., 2001). The leakage of photosynthetically-fixed<br />

dissolved organic carbon (DOC) from C. <strong>taxifolia</strong> rhizoids <strong>in</strong>to the surround<strong>in</strong>g<br />

sediment further stimulates anaerobic bacterial metabolism, <strong>in</strong>clud<strong>in</strong>g nitrogen<br />

fixation and sulphate reduction (Thomas, 2002b; Chisholm and Moul<strong>in</strong>, 2003).<br />

5.2.2.4 Caulerpa <strong>taxifolia</strong> tox<strong>in</strong>s<br />

The tox<strong>in</strong>s <strong>in</strong> C. <strong>taxifolia</strong> represent another potential mechanism <strong>for</strong> compet<strong>in</strong>g with<br />

seagrass. This was explored with planthouse experiments, and no significant effect on<br />

growth and physiology of the seagrasses Z. capricorni and Cymodocea serrulata was<br />

demonstrated. The ma<strong>in</strong> tox<strong>in</strong> <strong>in</strong> Caulerpa, caulerpenyne, is apparently degraded <strong>in</strong> the<br />

presence of light, oxygen and chlorophyll. However, it is unknown if the degradation<br />

products are also toxic (Guerriero et al., 1994). A wound-activated trans<strong>for</strong>mation of<br />

caulerpenyne <strong>in</strong>to potentially more toxic <strong>for</strong>ms has also been observed (Jung and<br />

Pohnert, 2001). However, the tox<strong>in</strong>s may still be active <strong>in</strong> the sediment as mar<strong>in</strong>e<br />

sediments are typically anoxic and dark. The methodology used <strong>in</strong> the planthouse<br />

experiments may not have exposed the seagrass to the potentially toxic compounds, as<br />

the mechanical damage to C. <strong>taxifolia</strong> dur<strong>in</strong>g production of the extract and the<br />

application of it to the light-exposed sediment surface may have reduced the amount of<br />

tox<strong>in</strong>s <strong>in</strong> the extract. Additionally, the application of the C. <strong>taxifolia</strong> extract to the<br />

sediment surface may have prevented the tox<strong>in</strong>s from reach<strong>in</strong>g the seagrass roots. In<br />

situ, the C. <strong>taxifolia</strong> rhizoids and seagrass roots are <strong>in</strong> close enough proximity <strong>for</strong><br />

exposure to the tox<strong>in</strong>s (pers. obs.). The role of C. <strong>taxifolia</strong> tox<strong>in</strong>s <strong>in</strong> allelopathic<br />

<strong>in</strong>teractions has been explored us<strong>in</strong>g seawater conta<strong>in</strong><strong>in</strong>g C. <strong>taxifolia</strong> extract, however<br />

Jane Thomas -43-<br />

Discussion


Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

the role of the tox<strong>in</strong>s <strong>in</strong> sediment allelopathic <strong>in</strong>teractions suggested by Thomas (2002a)<br />

has not been attempted prior to the current study.<br />

There was some effect of C. <strong>taxifolia</strong> extract observed on the seagrass Syr<strong>in</strong>godium<br />

isoetifolium, with a reduction of shoot density and maximum leaf length. In contrast,<br />

there was a general lack of effect of C. <strong>taxifolia</strong> extract on Cymodocea serrulata.<br />

S. isoetifolium has a more aerobic rhizosphere than C. serrulata and so may be more<br />

susceptible to <strong>in</strong>creased anaerobic conditions caused by the addition of organic matter<br />

<strong>in</strong> the <strong>for</strong>m of the C. <strong>taxifolia</strong> extract (Perry, 1997).<br />

The relative lack of response of the high C. <strong>taxifolia</strong> treatment on shoot density of<br />

Z. capricorni, when compared to the control and the low C. <strong>taxifolia</strong> treatment <strong>in</strong> the<br />

second planthouse experiment is difficult to expla<strong>in</strong> and will require further<br />

<strong>in</strong>vestigation.<br />

5.3 CONCLUSIONS AND RECOMMENDATIONS<br />

This study has suggested that C. <strong>taxifolia</strong> is expand<strong>in</strong>g its range <strong>in</strong> Moreton Bay,<br />

possibly at the expense of seagrasses. With the potential <strong>for</strong> water quality<br />

improvement throughout the Bay from reduced sediment loads and improved<br />

wastewater treatment, it is possible that seagrasses could re-colonise areas where<br />

C. <strong>taxifolia</strong> is distributed.<br />

South-east Queensland is one of the fastest-grow<strong>in</strong>g regions <strong>in</strong> Australia (Qld<br />

Department of Local Government and Plann<strong>in</strong>g, 2001). The population of the<br />

region was 2.3 million people <strong>in</strong> 2000 and is projected to <strong>in</strong>creased to 3.4 million by<br />

2021 (Qld Department of Local Government and Plann<strong>in</strong>g, 2001). A general<br />

decl<strong>in</strong>e <strong>in</strong> water quality would be expected from this population <strong>in</strong>crease due to<br />

<strong>in</strong>creased <strong>in</strong>puts of nutrients and sediments from sewage discharge, run-off and<br />

disturbance. This could lead to further reductions <strong>in</strong> seagrass distribution and<br />

facilitate the spread of C. <strong>taxifolia</strong>.<br />

M<strong>in</strong>imis<strong>in</strong>g physical disturbance to areas where dense populations of C. <strong>taxifolia</strong><br />

exist could assist controll<strong>in</strong>g its expansion <strong>in</strong> Moreton Bay. This could <strong>in</strong>clude the<br />

<strong>in</strong>stallation of boat moor<strong>in</strong>gs to prevent fragmentation of the alga by boat anchors,<br />

Jane Thomas -44-<br />

Discussion


Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

and restriction of commercial bait gather<strong>in</strong>g activities to areas where<br />

C. <strong>taxifolia</strong> is absent.<br />

Ecological <strong>in</strong>teractions between Moreton Bay seagrasses and C. <strong>taxifolia</strong> are clearly<br />

dynamic, complex and subject to considerable temporal and spatial variation. A<br />

number of processes likely operate synergistically. Monitor<strong>in</strong>g of C. <strong>taxifolia</strong> and<br />

seagrass distribution <strong>in</strong> Moreton Bay is recommended to more clearly def<strong>in</strong>e longterm<br />

patterns <strong>in</strong> their <strong>in</strong>teractions. This should be comb<strong>in</strong>ed with monitor<strong>in</strong>g of water<br />

quality parameters and water temperature to establish any correlation between<br />

C. <strong>taxifolia</strong> expansion and water quality decl<strong>in</strong>e or temperature <strong>in</strong>crease. Experiments<br />

explor<strong>in</strong>g the role of C. <strong>taxifolia</strong> tox<strong>in</strong>s and of sulphide <strong>in</strong> sediments may help to<br />

p<strong>in</strong>po<strong>in</strong>t a mechanism of <strong>in</strong>teraction with seagrasses.<br />

Jane Thomas -45-<br />

Discussion


6. REFERENCES<br />

Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

Abal, E.G., Dennison, W.C., and O'Donohue, M.J. (1998). Seagrasses and mangroves<br />

<strong>in</strong> Moreton Bay. In: Tibbetts, I.R., Hall, N.J., and Dennison, W.C. Eds. Moreton<br />

Bay and Catchment. School of Mar<strong>in</strong>e <strong>Science</strong>, The University of Queensland,<br />

Brisbane. pp 269-278.<br />

Amico, V., Oriente, G., Piattelli, M., and Tr<strong>in</strong>gali, C. (1978). Caulerpenyne, an<br />

unusual sesquiterpenoid from the green alga Caulerpa prolifera. Tetrahedron<br />

Letters 38: 3593-3596.<br />

Arnon, D.I. (1949). Copper enzymes <strong>in</strong> isolated chloroplasts. Polyphenoloxidase <strong>in</strong><br />

Beta vulgaris. Plant Physiology 24: 1-15.<br />

Azzoni, R., Giordani, G., Bartoli, M., Welsh, D.T., and Viaroli, P. (2001). Iron,<br />

sulphur and phosphorus cycl<strong>in</strong>g <strong>in</strong> the rhizosphere sediments of a eutrophic<br />

Ruppia cirrhosa meadow (Valle Smarlacca, Italy). Journal of Sea Research 45:<br />

15-26.<br />

Barbier, P., Guise, S., Huitorel, P., Amade, P., Pesando, D., Briand, C., and Peyrot, V.<br />

(2001). Caulerpenyne from Caulerpa <strong>taxifolia</strong> has an antiproliferative activity on<br />

tumor cell l<strong>in</strong>e SK-N-SH and modifies the microtubule network. Life <strong>Science</strong>s 70:<br />

415-429.<br />

Benzie, J.A.H., Ballment, E., Chisholm, J.R.M., and Jaubert, J.M. (2000). Genetic<br />

variation <strong>in</strong> the green alga Caulerpa <strong>taxifolia</strong>. Aquatic Botany 66: 131-139.<br />

Boudouresque, C.F., Lemée, R., Mari, X., and Me<strong>in</strong>esz, A. (1996). The <strong>in</strong>vasive alga<br />

Caulerpa <strong>taxifolia</strong> is not a suitable diet <strong>for</strong> the sea urch<strong>in</strong> Paracentrotus lividus.<br />

Aquatic Botany 53: 245-250.<br />

Jane Thomas -46-<br />

References


Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

Brück, B., and Schnetter, R. (1993). Vegetative propagation of the microthallus <strong>in</strong> a<br />

stra<strong>in</strong> of Bryopsis plumosa (Chlorophyta, Bryopsidales) from the Canary Islands.<br />

Phycologia 32: 310-312.<br />

Brunelli, M., Garcia-Gil, M., Mozzachiodi, R., Roberto, M., Scuri, R., Tra<strong>in</strong>a, G., and<br />

Zaccardi, M.L. (2000). Neurotoxic effects of caulerpenyne. Progress <strong>in</strong> Neuro-<br />

Psychopharmacology and Biological Psychiatry 24: 939-954.<br />

Calvert, H.E. (1976). Culture studies on some Florida species of Caulerpa:<br />

morphological responses to reduced illum<strong>in</strong>ation. British Phycological Journal<br />

11: 203-214.<br />

Carlson, P.R., Yarbro, L.A., and Barber, T.R. (1994). Relationship of sediment sulfide<br />

to mortality of Thalassia testud<strong>in</strong>um <strong>in</strong> Florida Bay. Bullet<strong>in</strong> of Mar<strong>in</strong>e <strong>Science</strong><br />

54: 733-746.<br />

Ceccherelli, G., and C<strong>in</strong>elli, F. (1997). Short-term effects of nutrient enrichment of<br />

the sediment and <strong>in</strong>teractions between the seagrass Cymodocea nodosa and the<br />

<strong>in</strong>troduced green alga Caulerpa <strong>taxifolia</strong> <strong>in</strong> a Mediterranean <strong>bay</strong>. Journal of<br />

Experimental Mar<strong>in</strong>e Biology and Ecology 217: 165-177.<br />

Chisholm, J.R.M., Fernex, F.E., Mathieu, D., and Jaubert, J.M. (1997). Wastewater<br />

discharge, seagrass decl<strong>in</strong>e and algal proliferation on the Côte d'Azur. Mar<strong>in</strong>e<br />

Pollution Bullet<strong>in</strong> 34: 78-84.<br />

Chisholm, J.R.M., Marchioretti, M., and Jaubert, J.M. (2000). Effect of low water<br />

temperature on metabolism and growth of a subtropical stra<strong>in</strong> of Caulerpa<br />

<strong>taxifolia</strong> (Chlorophyta). Mar<strong>in</strong>e Ecology Progress Series 201: 189-198.<br />

Chisholm, J.R.M., and Moul<strong>in</strong>, P. (2003). Stimulation of nitrogen fixation <strong>in</strong><br />

refractory organic sediments by Caulerpa <strong>taxifolia</strong> (Chlorophyta). Limnology and<br />

Oceanography 48: 787-794.<br />

Jane Thomas -47-<br />

References


Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

Clayton, M.N., and K<strong>in</strong>g, R.J. (1990). Biology of Mar<strong>in</strong>e Plants. Longman Australia,<br />

Melbourne. 501 pp.<br />

Collado-Vides, L., and Robledo, D. (1999). Morphology and photosynthesis of<br />

Caulerpa (Chlorophyta) <strong>in</strong> relation to growth <strong>for</strong>m. Journal of Phycology 35:<br />

325-330.<br />

Counihan, R., Costanzo, S., D'Souza, F., Dennison, W.C., Grice, A.M., Holland, I.,<br />

Longstaff, B.J., Maxwell, P., Pantus, F., Schlacher, T., Taranto, T., Toscas, P.,<br />

Udy, J.W., Udy, N., and Wruck, D. (2002). Ecosystem Health Monitor<strong>in</strong>g<br />

Program 2001-2002 Annual Report. CRC Coastal Zone, Estuary and Waterway<br />

Management and Moreton Bay Waterways and Catchments Partnership,<br />

Brisbane.<br />

Cribb, A.B. (1958). Records of mar<strong>in</strong>e algae from south-eastern Queensland. IV:<br />

Caulerpa. The University of Queensland papers, Vol. III, Department of Botany.<br />

The University of Queensland, Brisbane. pp 207-220.<br />

Dalton, R. (2000). Researchers criticize response to killer algae. Nature 406: 447.<br />

Davie, P., and Hooper, J.N.A. (1998). Patterns of biodiversity <strong>in</strong> mar<strong>in</strong>e <strong>in</strong>vertebrate<br />

and fish communities of Moreton Bay. In: Tibbetts, I.R., Hall, N.J., and<br />

Dennison, W.C. Eds. Moreton Bay and Catchment. School of Mar<strong>in</strong>e <strong>Science</strong>,<br />

The University of Queensland, Brisbane. pp 331-346.<br />

Dawes, C.J. (1998). Mar<strong>in</strong>e Botany, 2nd ed. John Wiley & Sons, Inc., New York. 480<br />

pp.<br />

de Villèle, X., and Verlaque, M. (1995). Changes and degradation <strong>in</strong> a Posidonia<br />

oceanica bed <strong>in</strong>vaded by the <strong>in</strong>troduced tropical alga Caulerpa <strong>taxifolia</strong> <strong>in</strong> the<br />

north western Mediterranean. Botanica Mar<strong>in</strong>a 38: 79-87.<br />

Jane Thomas -48-<br />

References


Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

Dennison, W.C. (1990). Seagrasses: chlorophyll content. In: Phillips, R.C. Ed.<br />

Seagrass Research Methods. UNESCO. pp 83-86.<br />

Dennison, W.C., and Abal, E.G. (1999). Moreton Bay Study: A Scientific Basis <strong>for</strong> the<br />

Healthy Waterways Campaign. South East Queensland Regional Water Quality<br />

Management Strategy, Brisbane. 245 pp.<br />

Dennison, W.C., Orth, R.J., Moore, K.A., Stevenson, J.C., Carter, V., Kollar, S.,<br />

Bergstrom, P.W., and Batiuk, R.A. (1993). Assess<strong>in</strong>g water quality with<br />

submersed aquatic vegetation. Bioscience 43: 86-94.<br />

Duarte, C.M. (1991). Seagrass depth limits. Aquatic Botany 40: 363-377.<br />

Duarte, C.M. (2002). The future of seagrass meadows. Environmental Conservation<br />

29: 192-206.<br />

Dumay, O., Fernández, C., and Pergent, G. (2002). Primary production and vegetative<br />

cycle <strong>in</strong> Posidonia oceanica when <strong>in</strong> competition with the green algae Caulerpa<br />

<strong>taxifolia</strong> and Caulerpa racemosa. Journal of the Mar<strong>in</strong>e Biological Association of<br />

the United K<strong>in</strong>gdom 82: 379-387.<br />

Environmental Protection Agency Qld (2003). Moreton Bay Mar<strong>in</strong>e Park. Last<br />

updated: 1 September 2001. Retrieved 6 May 2003 from<br />

http://www.epa.qld.gov.au/environment/coast/parks/mb.html.<br />

Famà, P., Jousson, O., Zan<strong>in</strong>etti, L., Me<strong>in</strong>esz, A., D<strong>in</strong>i, F., di Giuseppe, G., Millar,<br />

A.J.K., and Pawlowski, J. (2002). Genetic polymorphism <strong>in</strong> Caulerpa <strong>taxifolia</strong><br />

(Ulvophyceae) chloroplast DNA revealed by a PCR-based assay of the <strong>in</strong>vasive<br />

Mediterranean stra<strong>in</strong>. Journal of Evolutionary Biology 15: 618-624.<br />

Fernex, F.E., Migon, C., and Chisholm, J.R.M. (2001). Entrapment of pollutants <strong>in</strong><br />

Mediterranean sediments and biogeochemical <strong>in</strong>dicators of their impact.<br />

Hydrobiologia 450: 31-46.<br />

Jane Thomas -49-<br />

References


Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

Ferrer, E., Garreta, A.G., and Ribera, M.A. (1997). Effect of Caulerpa <strong>taxifolia</strong> on the<br />

productivity of two Mediterranean macrophytes. Mar<strong>in</strong>e Ecology Progress Series<br />

149: 279-287.<br />

Garrigue, C. (1994). Biomasse et repartition de Caulerpa <strong>taxifolia</strong> dans les lagons de<br />

Nouvelle-Caledonie. Oceanologica Acta 17: 563-569.<br />

Goodman, J.L., Moore, K.A., and Dennison, W.C. (1995). Photosynthetic responses<br />

of eelgrass (Zostera mar<strong>in</strong>a L.) to light and sediment sulfide <strong>in</strong> a shallow barrier<br />

island lagoon. Aquatic Botany 50: 37-47.<br />

Graham, L.E., and Wilcox, L.W. (2000). Algae. Prentice-Hall, Inc., Upper Saddle<br />

River. 640 pp.<br />

Guerriero, A., Depentori, D., D'Ambrosio, M., Durante, M., D<strong>in</strong>i, F., and Pietra, F.<br />

(1994). Chlorophyll-photosensitised photodegradation of caulerpenyne; a<br />

potentially harmful sesquiterpenoid from tropical green seaweeds <strong>in</strong> the genus<br />

Caulerpa. Journal of the Chemical Society; Chemical Communications: 2083-<br />

2084.<br />

Harvey, W.H. (1860). Phycologia Australica, Vol. III. Lovell Reeve, London. pp.<br />

Howarth, R.W., and Gibl<strong>in</strong>, A. (1983). Sulfate reduction <strong>in</strong> the salt marshes at Sapelo<br />

Island, Georgia. Limnology and Oceanography 28: 7082.<br />

Howarth, R.W., and Teal, J.M. (1979). Sulfate reduction <strong>in</strong> a New England salt<br />

marsh. Limnology and Oceanography 24: 999-1013.<br />

Howes, B.L., Dacey, J.W.H., and K<strong>in</strong>g, G.M. (1984). Carbon flow through oxygen<br />

and sulfate reduction pathways <strong>in</strong> salt marsh sediments. Limnology and<br />

Oceanography 29: 1037-1051.<br />

Huisman, J.M. (2000). Mar<strong>in</strong>e Plants of Australia. University of Western Australia<br />

Press, Nedlands. 300 pp.<br />

Jane Thomas -50-<br />

References


Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

Hyland, S.J., Courtney, A.J., and Butler, C.T. (1989). Distribution of seagrass <strong>in</strong> the<br />

Moreton region from Coolangatta to Noosa. Qld Department of Primary<br />

Industries In<strong>for</strong>mation Series Q189010, Brisbane. 31 pp.<br />

Jorgensen, B.B. (1983). The microbial sulfur cycle. In: Kumbe<strong>in</strong>, W.E. Ed. Microbial<br />

Geochemistry. Blackwell Scientific Publications, London. pp 91-124.<br />

Jousson, O., Pawlowski, J., Zan<strong>in</strong>etti, L., Me<strong>in</strong>esz, A., and Boudouresque, C.F.<br />

(1998). Molecular evidence <strong>for</strong> the aquarium orig<strong>in</strong> of the green alga Caulerpa<br />

<strong>taxifolia</strong> <strong>in</strong>troduced to the Mediterranean Sea. Mar<strong>in</strong>e Ecology Progress Series<br />

172: 275-280.<br />

Jousson, O., Pawlowski, J., Zan<strong>in</strong>etti, L., Zechman, F.W., D<strong>in</strong>i, F., di Giuseppe, G.,<br />

Woodfield, R., Millar, A., and Me<strong>in</strong>esz, A. (2000). Invasive alga reaches<br />

Cali<strong>for</strong>nia. Nature 408: 157-158.<br />

Jung, V., and Pohnert, G. (2001). Rapid wound-activated trans<strong>for</strong>mation of the green<br />

algal defensive metabolite caulerpenyne. Tetrahedron 57: 7169-7172.<br />

Kaiser, J. (2000). Cali<strong>for</strong>nia algae may be feared European species. <strong>Science</strong> 289: 222-<br />

223.<br />

Koehl, M.A.R. (1986). Seaweeds <strong>in</strong> mov<strong>in</strong>g water: <strong>for</strong>m and mechanical function. In:<br />

Givnish, T.J. Ed. On The Economy of Plant Form and Function. Cambridge<br />

University Press, Cambridge. pp 603-633.<br />

Komatsu, T., Me<strong>in</strong>esz, A., and Buckles, D. (1997). Temperature and light responses<br />

of alga Caulerpa <strong>taxifolia</strong> <strong>in</strong>troduced <strong>in</strong>to the Mediterranean Sea. Mar<strong>in</strong>e<br />

Ecology Progress Series 146: 145-153.<br />

Lemée, R., Boudouresque, C.F., Gobert, J., Malestroit, P., Mari, X., Me<strong>in</strong>esz, M.,<br />

Manager, V., and Ruitton, S. (1996). Feed<strong>in</strong>g behaviour of Paracentrotus lividus<br />

Jane Thomas -51-<br />

References


Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

<strong>in</strong> the presence of Caulerpa <strong>taxifolia</strong> <strong>in</strong>troduced <strong>in</strong> the Mediterranean Sea.<br />

Oceanologica Acta 19: 245-253.<br />

Lemée, R., Pesando, D., Durand-Clément, M., Dubreuil, A., Me<strong>in</strong>esz, A., and<br />

Guerriero (1993). Prelim<strong>in</strong>ary survey of toxicity of the green alga Caulerpa<br />

<strong>taxifolia</strong> <strong>in</strong>troduced <strong>in</strong>to the Mediterranean. Journal of Applied Phycology 5: 485-<br />

493.<br />

Lemée, R., Pesando, D., Issanchou, C., and Amade, P. (1997). Microalgae: a model to<br />

<strong>in</strong>vestigate the ecotoxicity of the green alga Caulerpa <strong>taxifolia</strong> from the<br />

Mediterranean Sea. Mar<strong>in</strong>e Environmental Research 44: 13-25.<br />

Longstaff, B.J. (2003). Light requirements of seagrasses of north-eastern Australia.<br />

PhD Thesis, The University of Queensland, Brisbane. 153 pp.<br />

Lün<strong>in</strong>g, K. (1990). Seaweeds: Their Environment, Biogeography, and Ecophysiology.<br />

John Wiley & Sons, Inc., New York. 527 pp.<br />

Me<strong>in</strong>esz, A., Belsher, T., Thibaut, T., Antolic, B., Ben Mustapha, K., Boudouresque,<br />

C.F., Chiaver<strong>in</strong>i, D., C<strong>in</strong>elli, F., Cottalorda, J.M., Djellouli, A., El Abed, A.,<br />

Orestano, C., Grau, A.M., Ivesa, L., Jakl<strong>in</strong>, A., Langar, H., Massuti-Pascual, E.,<br />

Peirano, A., Tunesi, L., de Vaugelas, J., Zavodnik, N., and Zuljevic, A. (2001).<br />

The <strong>in</strong>troduced green alga Caulerpa <strong>taxifolia</strong> cont<strong>in</strong>ues to spread <strong>in</strong> the<br />

Mediterranean. Biological Invasions 3: 201-210.<br />

Me<strong>in</strong>esz, A., Benichou, L., Blachier, J., Komatsu, T., Lemée, R., Molenaar, H., and<br />

Mari, X. (1995). Variations <strong>in</strong> the structure, morphology and biomass of<br />

Caulerpa <strong>taxifolia</strong> <strong>in</strong> the Mediterranean Sea. Botanica Mar<strong>in</strong>a 38: 499-508.<br />

Me<strong>in</strong>esz, A., and Hesse, B. (1991). Introduction of the tropical alga Caulerpa <strong>taxifolia</strong><br />

and its <strong>in</strong>vasion of the northwestern Mediterranean. Oceanologica Acta 14: 415-<br />

426.<br />

Jane Thomas -52-<br />

References


Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

Meusnier, I., Olsen, J.L., Stam, W.T., Destombe, C., and Valero, M. (2001).<br />

Phylogenetic analyses of Caulerpa <strong>taxifolia</strong> (Chlorophyta) and of its associated<br />

bacterial microflora provide clues to the orig<strong>in</strong> of the Mediterranean <strong>in</strong>troduction.<br />

Molecular Ecology 10: 931-946.<br />

Meusnier, I., Valero, M., Destombe, C., Godé, C., Desmarais, E., Bonhomme, F.,<br />

Stam, W.T., and Olsen, J.L. (2002). Polymerase cha<strong>in</strong> reaction-s<strong>in</strong>gle strand<br />

con<strong>for</strong>mation polymorphism analyses of nuclear and chloroplast DNA provide<br />

evidence <strong>for</strong> recomb<strong>in</strong>ation, multiple <strong>in</strong>troductions and nascent speciation <strong>in</strong> the<br />

Caulerpa <strong>taxifolia</strong> complex. Molecular Ecology 11: 2317-2325.<br />

Mueller-Dombois, D., and Ellenberg, H. (1974). Aims and Methods <strong>in</strong> Vegetation<br />

Ecology. John Wiley & Sons, Inc, New York. 547 pp.<br />

Neil, D.T. (1998). Moreton Bay and its catchment: seascape and landscape,<br />

development and degradation. In: Tibbetts, I.R., Hall, N.J., and Dennison, W.C.<br />

Eds. Moreton Bay and Catchment. School of Mar<strong>in</strong>e <strong>Science</strong>, The University of<br />

Queensland, Brisbane. pp 3-54.<br />

Nicoletti, E., Della Pieta, F., Calderone, V., Bandecchi, P., Pistello, M., Morelli, I.,<br />

and C<strong>in</strong>elli, F. (1999). Antiviral properties of a crude extract from a green alga<br />

Caulerpa <strong>taxifolia</strong> (Vahl) C. Agardh. Phytotherapy Research 13: 245-247.<br />

NSW Fisheries (2002). Caulerpa <strong>taxifolia</strong>. Last updated: November 2002. Retrieved<br />

14 December 2002 from<br />

http://www.fisheries.nsw.gov.au/conservation/aquahab/<strong>caulerpa</strong>.htm.<br />

Ohba, H., and Enomoto, S. (1987). Culture studies on Caulerpa (Caulerpales,<br />

Chlorophyceae). II. Morphological variation of C. racemosa var. laetevirens<br />

under various culture conditions. Japanese Journal of Phycology 35: 178-188.<br />

Jane Thomas -53-<br />

References


Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

Ohba, H., Nashima, H., and Enomoto, S. (1992). Culture studies on Caulerpa<br />

(Caulerpales, Chlorophyceae). III. Reproduction, development and morphological<br />

variation of laboratory-cultured C. racemosa var. peltata. The Botanical<br />

Magaz<strong>in</strong>e, Tokyo 105: 589-600.<br />

Paul, V.J., and Fenical, W. (1986). Chemical defense <strong>in</strong> tropical green algae, order<br />

Caulerpales. Mar<strong>in</strong>e Ecology Progress Series 34: 157-169.<br />

Paul, V.J., and Fenical, W. (1987). Natural products chemistry and chemical defense<br />

<strong>in</strong> tropical mar<strong>in</strong>e algae of the Phylum Chlorophyta. In: Scheuer, P.J. Ed.<br />

Bioorganic Mar<strong>in</strong>e Chemistry Vol. 1. Spr<strong>in</strong>ger-Verlag, Heidelberg. pp 1-29.<br />

Pedrotti, M.L., Marchi, B., and Lemée, R. (1996). Effects of Caulerpa <strong>taxifolia</strong><br />

secondary metabolites on the embryogenesis, larval development and<br />

metamorphosis of the sea urch<strong>in</strong> Paracentrotus lividus. Oceanologica Acta 19:<br />

255-262.<br />

Perry, C.J. (1997). Microbial processes <strong>in</strong> seagrass sediments. PhD Thesis, The<br />

University of Queensland, Brisbane. 164 pp.<br />

Pesando, D., Huitorel, P., Dolc<strong>in</strong>i, V., Amade, P., and Girard, J. (1998). Caulerpenyne<br />

<strong>in</strong>terferes with microtubule-dependent events dur<strong>in</strong>g the first mitotic cycle of sea<br />

urch<strong>in</strong> eggs. European Journal of Cell Biology 77: 19-26.<br />

Pesando, D., Lemée, R., Ferrua, C., Amade, P., and Girard, J. (1996). Effects of<br />

caulerpenyne, the major tox<strong>in</strong> from Caulerpa <strong>taxifolia</strong> on mechanisms related to<br />

sea urch<strong>in</strong> egg cleavage. Aquatic Toxicology 35: 139-155.<br />

Pesando, D., Pesci-Bardon, C., Huitorel, P., and Girard, J.-P. (1999). Caulerpenyne<br />

blocks MBP k<strong>in</strong>ase activation controll<strong>in</strong>g mitosis <strong>in</strong> sea urch<strong>in</strong> eggs. European<br />

Journal of Cell Biology 78: 903-910.<br />

Jane Thomas -54-<br />

References


Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

Phillips, J.A., and Price, I.R. (2002). How different is Mediterranean Caulerpa<br />

<strong>taxifolia</strong> (Caulerpales: Chlorophyta) to other populations of the species? Mar<strong>in</strong>e<br />

Ecology Progress Series 238: 61-71.<br />

Pillen, T.L., R<strong>in</strong>geltaube, P., and Dennison, W.C. (1998). Are expand<strong>in</strong>g populations<br />

of the tropical green alga Caulerpa <strong>taxifolia</strong> a potential threat <strong>for</strong> Moreton Bay?<br />

In: Tibbetts, I.R., Hall, N.J., and Dennison, W.C. Eds. Moreton Bay and<br />

Catchment. School of Mar<strong>in</strong>e <strong>Science</strong>, The University of Queensland, Brisbane.<br />

pp 327-328.<br />

Primary Industries and Resources SA (2002). Overseas test<strong>in</strong>g confirms exotic<br />

seaweed is <strong>in</strong>vasive aquarium stra<strong>in</strong>. Last updated: April 2002. Retrieved 29<br />

October 2002 from<br />

http://www.pir.sa.gov.au/pages/showcase/media/current/caluerpatest.htm:sectID=<br />

600&tempID=3.<br />

Qld Department of Local Government and Plann<strong>in</strong>g (2001). Population trends and<br />

prospects <strong>for</strong> Queensland, 2001 edition. Qld Department of Local Government<br />

and Plann<strong>in</strong>g, Plann<strong>in</strong>g In<strong>for</strong>mation and Forecast<strong>in</strong>g Unit, Brisbane. 166 pp.<br />

Qld Herbarium (2002). Qld Herbarium HERBRECS Taxa database, Qld Herbarium,<br />

Mt Coot-tha, Brisbane Qld.<br />

Ricci, N., Capovani, C., and D<strong>in</strong>i, F. (1999). Behavioural modifications imposed to<br />

the ciliate protist Euplotes crassus by caulerpenyne: the major toxic terpenoid of<br />

the green seaweed, Caulerpa <strong>taxifolia</strong>. European Journal of Protistology 35: 290-<br />

303.<br />

Schaffelke, B., Murphy, N., and Uthicke, S. (2002). Us<strong>in</strong>g genetic techniques to<br />

<strong>in</strong>vestigate the sources of the <strong>in</strong>vasive alga Caulerpa <strong>taxifolia</strong> <strong>in</strong> three new<br />

locations <strong>in</strong> Australia. Mar<strong>in</strong>e Pollution Bullet<strong>in</strong> 44: 204-210.<br />

Jane Thomas -55-<br />

References


Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

Schreiber, U., and Bilger, W. (1987). Rapid assessment of stress effects on plant<br />

leaves by chlorophyll fluorescence measurements. In: Tenhunen, J.D., Catar<strong>in</strong>o,<br />

F.M., Lange, O.L., and Oechel, W.L. Eds. Plant Response to Stress - Functional<br />

Analysis <strong>in</strong> Mediterranean Ecosystems. Spr<strong>in</strong>ger-Verlag, Berl<strong>in</strong>/Heidelberg. pp<br />

27-53.<br />

Schreiber, U., Bilger, W., and Neubauer, C. (1994). Chlorophyll fluorescence as a<br />

non<strong>in</strong>trusive <strong>in</strong>dicator <strong>for</strong> rapid assessment of <strong>in</strong> vivo photosynthesis. In: Schulze,<br />

M., and Caldwell, M.M. Eds. Ecophysiology of Photosynthesis. Spr<strong>in</strong>ger-Verlag,<br />

Berl<strong>in</strong>/New York. pp 49-70.<br />

Scrosati, R. (2001). Population dynamics of Caulerpa sertularioides (Chlorophyta:<br />

Bryopsidales) from Baja Cali<strong>for</strong>nia, Mexico, dur<strong>in</strong>g El Niño and La Niña years.<br />

Journal of the Mar<strong>in</strong>e Biological Association of the United K<strong>in</strong>gdom 81: 721-<br />

726.<br />

Sk<strong>in</strong>ner, J.L., Gillam, E., and Rohl<strong>in</strong>, C.-J. (1998). The demographic fugure of the<br />

Moreton region. In: Tibbetts, I.R., Hall, N.J., and Dennison, W.C. Eds. Moreton<br />

Bay and Catchment. School of Mar<strong>in</strong>e <strong>Science</strong>, The University of Queensland,<br />

Brisbane. pp 67-78.<br />

Smith, C.M., and Walters, L.J. (1999). Fragmentation as a strategy <strong>for</strong> Caulerpa<br />

species: fates of fragments and implications <strong>for</strong> management of an <strong>in</strong>vasive weed.<br />

Mar<strong>in</strong>e Ecology 20: 307-319.<br />

Thomas, J.E. (2002a). Does Caulerpa <strong>taxifolia</strong> compete with Zostera capricorni <strong>in</strong><br />

Moreton Bay, Australia? Special Botanical Studies report, The University of<br />

Queensland, Brisbane.<br />

Jane Thomas -56-<br />

References


Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

Thomas, J.E. (2002b). Nitrogen fixation <strong>in</strong> the rhizosphere of the chlorophyte<br />

Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay, Australia. Special Botanical Studies report,<br />

The University of Queensland, Brisbane.<br />

Udy, J.W., Dennison, W.C., Rogers, J., Chaston, K., Prange, J., Duffy, E., and Duke,<br />

N.C. (1999). Task BFND: Benthic Flora Nutrient Dynamics - Phase 2 F<strong>in</strong>al<br />

Report. South East Queensland Regional Water Quality Management Strategy,<br />

Brisbane.<br />

Verlaque, M., and Fritayre, P. (1994). Modifications des communautés algales<br />

méditerranéennes en présence de l'algue envahissante Caulerpa <strong>taxifolia</strong> (Vahl)<br />

C. Agardh. Oceanologica Acta 17: 659-672.<br />

Walters, L.J., and Smith, C.M. (1994). Rapid rhizoid production <strong>in</strong> Halimeda<br />

discoidea Decaisne (Chlorophyta, Caulerpales) fragments: a mechanism <strong>for</strong><br />

survival after separation from adult thalli. Journal of Experimental Mar<strong>in</strong>e<br />

Biology and Ecology 175: 105-120.<br />

Wiedenmann, J., Baumstark, A., Pillen, T.L., Me<strong>in</strong>esz, A., and Vogel, W. (2001).<br />

DNA f<strong>in</strong>gerpr<strong>in</strong>ts of Caulerpa <strong>taxifolia</strong> provide evidence <strong>for</strong> the <strong>in</strong>troduction of<br />

an aquarium stra<strong>in</strong> <strong>in</strong>to the Mediterranean Sea and its close relationship to an<br />

Australian population. Mar<strong>in</strong>e Biology 138: 229-234.<br />

Williams, S.L., and Grosholz, E.D. (2002). Prelim<strong>in</strong>ary reports from the Caulerpa<br />

<strong>taxifolia</strong> <strong>in</strong>vasion <strong>in</strong> southern Cali<strong>for</strong>nia. Mar<strong>in</strong>e Ecology Progress Series 233:<br />

307-310.<br />

Young, P.C., and Kirkman, H. (1975). The seagrass communities of Moreton Bay,<br />

Queensland. Aquatic Botany 1: 191-202.<br />

Jane Thomas -57-<br />

References


7. APPENDIX<br />

Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

Table 4.1.1. A summary of the dependent samples t-test<br />

results <strong>for</strong> the benthic surveys. * represents a significant<br />

difference (p < 0.05).<br />

Region df t p<br />

Western Moreton Bay 101 -2.376 0.019*<br />

Southern Moreton Bay<br />

Pumicestone Passage<br />

63 -3.404 0.001*<br />

- all sites 21 -0.010 0.991<br />

- m<strong>in</strong>us one site with reduced cover 20 -2.097 0.049*<br />

Eastern Moreton Bay 3 1.000 0.391<br />

All Moreton Bay 191 -3.774 0.000*<br />

Table 4.3. Summary of results from the planthouse experiments us<strong>in</strong>g three seagrass species. Values are mean ± one<br />

standard error. Values <strong>in</strong> shaded boxes were significantly affected by the treatment (p < 0.05).<br />

Seagrass species Treatment PAM fluorometry<br />

(Fv /Fm ratio)<br />

Initial F<strong>in</strong>al Initial F<strong>in</strong>al Initial F<strong>in</strong>al Initial F<strong>in</strong>al<br />

Shoot density<br />

(% of orig<strong>in</strong>al)<br />

Factor SS df MS F p<br />

Treatment 9398.3 2 4699.2 5.3436 0.011*<br />

Species 9614.3 2 4807.1 5.4664 0.010*<br />

Treatment*Species 1166.3 4 291.6 0.3316 0.854<br />

Error 23743.6 27 879.4<br />

Time 5330.9 1 5330.9 24.1537 0.000*<br />

Time*Treatment 697.1 2 348.5 1.5792 0.225<br />

Time*Species 470.8 2 235.4 1.0667 0.358<br />

Time*Treatment*Species 441.9 4 110.5 0.5006 0.735<br />

Error 5959.1 27 220.7<br />

Leaves per shoot Max. leaf length<br />

(mm)<br />

Cymodocea serrulata Control 661±13.4 708±14.5 100±0.0 93.7±3.17 2.5±0.13 2.35±0.10 61.6±2.9 52.3±4.6<br />

Low C. <strong>taxifolia</strong> dose 696±21.9 720±17.9 100±0.0 85.2±13.78 2.4±0.17 2.27±0.09 57.4±3.4 49.4±2.3<br />

High C. <strong>taxifolia</strong> dose 719±8.5 676±41.7 100±0.0 63.1±21.5 2.2±0.06 2.07±0.36 58.4±4.0 58.6±12.1<br />

Syr<strong>in</strong>godium isoetifolium Control 763±3.0 730±18.3 100±0.0 84.9±7.8 1.8±0.13 1.6±0.03 71.9±11.3 56.5±8.3<br />

Low C. <strong>taxifolia</strong> dose 758±11.7 703±12.0 100±0.0 69.6±2.46 1.8±0.06 1.48±0.14 60.6±16.8 28.9±8.9<br />

High C. <strong>taxifolia</strong> dose 715±28.2 714±12.1 100±0.0 41.1±8.46 1.8±0.13 1.3±0.09 68.8±18.2 40.9±7.7<br />

Zostera capricorni Control 692±15.0 494±191.3 100±0.0 54.1±23.48 2.1±0.21 2.4±0.13 68.3±16.6 81.8±12.5<br />

Low C. <strong>taxifolia</strong> dose 711±31.9 620±8.3 100±0.0 60.0±15.7 2.5±0.09 2.3±0.05 97.8±7.9 90.6±22.4<br />

High C. <strong>taxifolia</strong> dose 686±44.1 478±194.3 100±0.0 28.6±11.69 2.4±0.13 2.4±0.20 86.6±4.8 96.2±8.5<br />

Table 4.3.1.1. A summary of the repeated measures ANOVA <strong>for</strong><br />

shoot density response of three seagrass species. * represents a<br />

significant difference (p < 0.05).<br />

Jane Thomas -58-<br />

Appendix


Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

Table 4.3.1.2. A summary of the repeated measures<br />

ANOVA <strong>for</strong> shoot density response of Syr<strong>in</strong>godium<br />

isoetifolium. * represents a significant difference (p < 0.05).<br />

Factor SS df MS F p<br />

Treatment 5565.4 2 2782.7 8.8876 0.007*<br />

Error 2817.9 9 313.1<br />

Time 968.8 1 968.8 3.2489 0.105<br />

Time*Treatment 209.1 2 104.5 0.3505 0.714<br />

Error 2683.9 9 298.2<br />

Table 4.3.2.1. A summary of the repeated measures ANOVA <strong>for</strong><br />

maximum leaf length response of three seagrass species. * represents a<br />

significant difference (p < 0.05).<br />

Factor SS df MS F p<br />

Treatment 4750 2 2375 2.842 0.060<br />

Species 220386 2 110193 131.875 0.000*<br />

Treatment*Species 21728 4 5432 6.501 0.000*<br />

Error 254018 304 836<br />

Time 23987 2 11994 24.940 0.000*<br />

Time*Treatment 5447 4 1362 2.832 0.024*<br />

Time*Species 19225 4 4806 9.994 0.000*<br />

Time*Treatment*Species 9457 8 1182 2.458 0.012*<br />

Error 292393 608 481<br />

Table 4.3.2.2. A summary of the repeated measures ANOVA<br />

<strong>for</strong> maximum leaf length response of Syr<strong>in</strong>godium isoetifolium.<br />

* represents a significant difference (p < 0.05).<br />

Factor SS df MS F p<br />

Treatment 24908.8 2 12454.4 12.769 0.000*<br />

Error 114117.8 117 975.4<br />

Time 40290.2 2 20145.1 34.322 0.000*<br />

Time*Treatment 3244.3 4 811.1 1.382 0.241<br />

Error 137346.2 234 586.9<br />

Jane Thomas -59-<br />

Appendix


Caulerpa <strong>taxifolia</strong> <strong>in</strong> Moreton Bay<br />

Table 4.3.4.1. A summary of the repeated measures<br />

ANOVA <strong>for</strong> shoot density response of Zostera capricorni.<br />

* represents a significant difference (p < 0.05).<br />

Factor SS df MS F p<br />

Treatment 3413 2 1706 4.169 0.024*<br />

Error 13506 33 409<br />

Time 3901 4 975 16.054 0.000*<br />

Time*Treatment 1195 8 149 2.459 0.016*<br />

Error 8018 132 61<br />

Table 4.3.4.2. Summary of results from the planthouse experiments us<strong>in</strong>g Zostera capricorni. Values are mean ± one<br />

standard error. Values <strong>in</strong> shaded boxes were significantly affected by the treatment (p < 0.05).<br />

Treatment PAM fluorometry<br />

(Fv /Fm ratio)<br />

Initial F<strong>in</strong>al Initial F<strong>in</strong>al F<strong>in</strong>al F<strong>in</strong>al F<strong>in</strong>al F<strong>in</strong>al F<strong>in</strong>al<br />

Shoot density<br />

(% of orig<strong>in</strong>al)<br />

Biomass<br />

(g DW m -2 )<br />

Biomass<br />

(above:below<br />

ground ratio)<br />

Chlorophyll<br />

(mg chl a+b g -1 )<br />

Table 4.3.4.3. A summary of the repeated measures ANOVA <strong>for</strong><br />

photosynthetic response of Zostera capricorni. * represents a<br />

significant difference (p < 0.05).<br />

Factor SS df MS F p<br />

Block 91798 1 91798 25.8 0.000*<br />

Treatment 11265 2 5633 1.6 0.210<br />

Block*Treatment 81730 2 40865 11.5 0.000*<br />

Error 362472 102 3554<br />

Time 1873689 8 234211 158.8 0.000*<br />

Time*Block 102893 8 12862 8.7 0.000*<br />

Time*Treatment 22323 16 1395 0.9 0.515<br />

Time*Block*Treatment 76349 16 4772 3.2 0.000*<br />

Error 1203225 816 1475<br />

Chlorophyll<br />

(mg chl a+b dm -2 )<br />

Jane Thomas -60-<br />

Appendix<br />

Chl a:b ratio<br />

Control 798±0.81 638±24.96 100±0.0 82.8±7.41 286±35.7 0.16±0.01 1.95±0.24 1.73±0.17 1.90±0.14<br />

Low C. <strong>taxifolia</strong> dose 795±4.62 627±45.57 100±0.0 71.0±8.89 312±49.9 0.15±0.04 1.67±0.33 1.78±0.21 2.11±0.03<br />

High C. <strong>taxifolia</strong> dose 797±3.55 635±23.47 100±0.0 89.0±2.84 334±11.4 0.16±0.01 1.570±0.06 1.728±0.11 2.043±0.03

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!